]> git.proxmox.com Git - mirror_zfs.git/blob - lib/libspl/include/sys/kstat.h
Remove bcopy(), bzero(), bcmp()
[mirror_zfs.git] / lib / libspl / include / sys / kstat.h
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #ifndef _SYS_KSTAT_H
27 #define _SYS_KSTAT_H
28
29
30
31 /*
32 * Definition of general kernel statistics structures and /dev/kstat ioctls
33 */
34
35 #include <sys/types.h>
36 #include <sys/time.h>
37
38 #ifdef __cplusplus
39 extern "C" {
40 #endif
41
42 typedef int kid_t; /* unique kstat id */
43
44 /*
45 * Kernel statistics driver (/dev/kstat) ioctls
46 */
47
48 #define KSTAT_IOC_BASE ('K' << 8)
49
50 #define KSTAT_IOC_CHAIN_ID KSTAT_IOC_BASE | 0x01
51 #define KSTAT_IOC_READ KSTAT_IOC_BASE | 0x02
52 #define KSTAT_IOC_WRITE KSTAT_IOC_BASE | 0x03
53
54 /*
55 * /dev/kstat ioctl usage (kd denotes /dev/kstat descriptor):
56 *
57 * kcid = ioctl(kd, KSTAT_IOC_CHAIN_ID, NULL);
58 * kcid = ioctl(kd, KSTAT_IOC_READ, kstat_t *);
59 * kcid = ioctl(kd, KSTAT_IOC_WRITE, kstat_t *);
60 */
61
62 #define KSTAT_STRLEN 255 /* 254 chars + NULL; must be 16 * n - 1 */
63
64 /*
65 * The generic kstat header
66 */
67
68 typedef struct kstat {
69 /*
70 * Fields relevant to both kernel and user
71 */
72 hrtime_t ks_crtime; /* creation time (from gethrtime()) */
73 struct kstat *ks_next; /* kstat chain linkage */
74 kid_t ks_kid; /* unique kstat ID */
75 char ks_module[KSTAT_STRLEN]; /* provider module name */
76 uchar_t ks_resv; /* reserved, currently just padding */
77 int ks_instance; /* provider module's instance */
78 char ks_name[KSTAT_STRLEN]; /* kstat name */
79 uchar_t ks_type; /* kstat data type */
80 char ks_class[KSTAT_STRLEN]; /* kstat class */
81 uchar_t ks_flags; /* kstat flags */
82 void *ks_data; /* kstat type-specific data */
83 uint_t ks_ndata; /* # of type-specific data records */
84 size_t ks_data_size; /* total size of kstat data section */
85 hrtime_t ks_snaptime; /* time of last data snapshot */
86 /*
87 * Fields relevant to kernel only
88 */
89 int (*ks_update)(struct kstat *, int); /* dynamic update */
90 void *ks_private; /* arbitrary provider-private data */
91 int (*ks_snapshot)(struct kstat *, void *, int);
92 void *ks_lock; /* protects this kstat's data */
93 } kstat_t;
94
95 #ifdef _SYSCALL32
96
97 typedef int32_t kid32_t;
98
99 typedef struct kstat32 {
100 /*
101 * Fields relevant to both kernel and user
102 */
103 hrtime_t ks_crtime;
104 caddr32_t ks_next; /* struct kstat pointer */
105 kid32_t ks_kid;
106 char ks_module[KSTAT_STRLEN];
107 uint8_t ks_resv;
108 int32_t ks_instance;
109 char ks_name[KSTAT_STRLEN];
110 uint8_t ks_type;
111 char ks_class[KSTAT_STRLEN];
112 uint8_t ks_flags;
113 caddr32_t ks_data; /* type-specific data */
114 uint32_t ks_ndata;
115 size32_t ks_data_size;
116 hrtime_t ks_snaptime;
117 /*
118 * Fields relevant to kernel only (only needed here for padding)
119 */
120 int32_t _ks_update;
121 caddr32_t _ks_private;
122 int32_t _ks_snapshot;
123 caddr32_t _ks_lock;
124 } kstat32_t;
125
126 #endif /* _SYSCALL32 */
127
128 /*
129 * kstat structure and locking strategy
130 *
131 * Each kstat consists of a header section (a kstat_t) and a data section.
132 * The system maintains a set of kstats, protected by kstat_chain_lock.
133 * kstat_chain_lock protects all additions to/deletions from this set,
134 * as well as all changes to kstat headers. kstat data sections are
135 * *optionally* protected by the per-kstat ks_lock. If ks_lock is non-NULL,
136 * kstat clients (e.g. /dev/kstat) will acquire this lock for all of their
137 * operations on that kstat. It is up to the kstat provider to decide whether
138 * guaranteeing consistent data to kstat clients is sufficiently important
139 * to justify the locking cost. Note, however, that most statistic updates
140 * already occur under one of the provider's mutexes, so if the provider sets
141 * ks_lock to point to that mutex, then kstat data locking is free.
142 *
143 * NOTE: variable-size kstats MUST employ kstat data locking, to prevent
144 * data-size races with kstat clients.
145 *
146 * NOTE: ks_lock is really of type (kmutex_t *); it is declared as (void *)
147 * in the kstat header so that users don't have to be exposed to all of the
148 * kernel's lock-related data structures.
149 */
150
151 #if defined(_KERNEL)
152
153 #define KSTAT_ENTER(k) \
154 { kmutex_t *lp = (k)->ks_lock; if (lp) mutex_enter(lp); }
155
156 #define KSTAT_EXIT(k) \
157 { kmutex_t *lp = (k)->ks_lock; if (lp) mutex_exit(lp); }
158
159 #define KSTAT_UPDATE(k, rw) (*(k)->ks_update)((k), (rw))
160
161 #define KSTAT_SNAPSHOT(k, buf, rw) (*(k)->ks_snapshot)((k), (buf), (rw))
162
163 #endif /* defined(_KERNEL) */
164
165 /*
166 * kstat time
167 *
168 * All times associated with kstats (e.g. creation time, snapshot time,
169 * kstat_timer_t and kstat_io_t timestamps, etc.) are 64-bit nanosecond values,
170 * as returned by gethrtime(). The accuracy of these timestamps is machine
171 * dependent, but the precision (units) is the same across all platforms.
172 */
173
174 /*
175 * kstat identity (KID)
176 *
177 * Each kstat is assigned a unique KID (kstat ID) when it is added to the
178 * global kstat chain. The KID is used as a cookie by /dev/kstat to
179 * request information about the corresponding kstat. There is also
180 * an identity associated with the entire kstat chain, kstat_chain_id,
181 * which is bumped each time a kstat is added or deleted. /dev/kstat uses
182 * the chain ID to detect changes in the kstat chain (e.g., a new disk
183 * coming online) between ioctl()s.
184 */
185
186 /*
187 * kstat module, kstat instance
188 *
189 * ks_module and ks_instance contain the name and instance of the module
190 * that created the kstat. In cases where there can only be one instance,
191 * ks_instance is 0. The kernel proper (/kernel/unix) uses "unix" as its
192 * module name.
193 */
194
195 /*
196 * kstat name
197 *
198 * ks_name gives a meaningful name to a kstat. The full kstat namespace
199 * is module.instance.name, so the name only need be unique within a
200 * module. kstat_create() will fail if you try to create a kstat with
201 * an already-used (ks_module, ks_instance, ks_name) triplet. Spaces are
202 * allowed in kstat names, but strongly discouraged, since they hinder
203 * awk-style processing at user level.
204 */
205
206 /*
207 * kstat type
208 *
209 * The kstat mechanism provides several flavors of kstat data, defined
210 * below. The "raw" kstat type is just treated as an array of bytes; you
211 * can use this to export any kind of data you want.
212 *
213 * Some kstat types allow multiple data structures per kstat, e.g.
214 * KSTAT_TYPE_NAMED; others do not. This is part of the spec for each
215 * kstat data type.
216 *
217 * User-level tools should *not* rely on the #define KSTAT_NUM_TYPES. To
218 * get this information, read out the standard system kstat "kstat_types".
219 */
220
221 #define KSTAT_TYPE_RAW 0 /* can be anything */
222 /* ks_ndata >= 1 */
223 #define KSTAT_TYPE_NAMED 1 /* name/value pair */
224 /* ks_ndata >= 1 */
225 #define KSTAT_TYPE_INTR 2 /* interrupt statistics */
226 /* ks_ndata == 1 */
227 #define KSTAT_TYPE_IO 3 /* I/O statistics */
228 /* ks_ndata == 1 */
229 #define KSTAT_TYPE_TIMER 4 /* event timer */
230 /* ks_ndata >= 1 */
231
232 #define KSTAT_NUM_TYPES 5
233
234 /*
235 * kstat class
236 *
237 * Each kstat can be characterized as belonging to some broad class
238 * of statistics, e.g. disk, tape, net, vm, streams, etc. This field
239 * can be used as a filter to extract related kstats. The following
240 * values are currently in use: disk, tape, net, controller, vm, kvm,
241 * hat, streams, kstat, and misc. (The kstat class encompasses things
242 * like kstat_types.)
243 */
244
245 /*
246 * kstat flags
247 *
248 * Any of the following flags may be passed to kstat_create(). They are
249 * all zero by default.
250 *
251 * KSTAT_FLAG_VIRTUAL:
252 *
253 * Tells kstat_create() not to allocate memory for the
254 * kstat data section; instead, you will set the ks_data
255 * field to point to the data you wish to export. This
256 * provides a convenient way to export existing data
257 * structures.
258 *
259 * KSTAT_FLAG_VAR_SIZE:
260 *
261 * The size of the kstat you are creating will vary over time.
262 * For example, you may want to use the kstat mechanism to
263 * export a linked list. NOTE: The kstat framework does not
264 * manage the data section, so all variable-size kstats must be
265 * virtual kstats. Moreover, variable-size kstats MUST employ
266 * kstat data locking to prevent data-size races with kstat
267 * clients. See the section on "kstat snapshot" for details.
268 *
269 * KSTAT_FLAG_WRITABLE:
270 *
271 * Makes the kstat's data section writable by root.
272 * The ks_snapshot routine (see below) does not need to check for
273 * this; permission checking is handled in the kstat driver.
274 *
275 * KSTAT_FLAG_PERSISTENT:
276 *
277 * Indicates that this kstat is to be persistent over time.
278 * For persistent kstats, kstat_delete() simply marks the
279 * kstat as dormant; a subsequent kstat_create() reactivates
280 * the kstat. This feature is provided so that statistics
281 * are not lost across driver close/open (e.g., raw disk I/O
282 * on a disk with no mounted partitions.)
283 * NOTE: Persistent kstats cannot be virtual, since ks_data
284 * points to garbage as soon as the driver goes away.
285 *
286 * The following flags are maintained by the kstat framework:
287 *
288 * KSTAT_FLAG_DORMANT:
289 *
290 * For persistent kstats, indicates that the kstat is in the
291 * dormant state (e.g., the corresponding device is closed).
292 *
293 * KSTAT_FLAG_INVALID:
294 *
295 * This flag is set when a kstat is in a transitional state,
296 * e.g. between kstat_create() and kstat_install().
297 * kstat clients must not attempt to access the kstat's data
298 * if this flag is set.
299 */
300
301 #define KSTAT_FLAG_VIRTUAL 0x01
302 #define KSTAT_FLAG_VAR_SIZE 0x02
303 #define KSTAT_FLAG_WRITABLE 0x04
304 #define KSTAT_FLAG_PERSISTENT 0x08
305 #define KSTAT_FLAG_DORMANT 0x10
306 #define KSTAT_FLAG_INVALID 0x20
307 #define KSTAT_FLAG_LONGSTRINGS 0x40
308 #define KSTAT_FLAG_NO_HEADERS 0x80
309
310 /*
311 * Dynamic update support
312 *
313 * The kstat mechanism allows for an optional ks_update function to update
314 * kstat data. This is useful for drivers where the underlying device
315 * keeps cheap hardware stats, but extraction is expensive. Instead of
316 * constantly keeping the kstat data section up to date, you can supply a
317 * ks_update function which updates the kstat's data section on demand.
318 * To take advantage of this feature, simply set the ks_update field before
319 * calling kstat_install().
320 *
321 * The ks_update function, if supplied, must have the following structure:
322 *
323 * int
324 * foo_kstat_update(kstat_t *ksp, int rw)
325 * {
326 * if (rw == KSTAT_WRITE) {
327 * ... update the native stats from ksp->ks_data;
328 * return EACCES if you don't support this
329 * } else {
330 * ... update ksp->ks_data from the native stats
331 * }
332 * }
333 *
334 * The ks_update return codes are: 0 for success, EACCES if you don't allow
335 * KSTAT_WRITE, and EIO for any other type of error.
336 *
337 * In general, the ks_update function may need to refer to provider-private
338 * data; for example, it may need a pointer to the provider's raw statistics.
339 * The ks_private field is available for this purpose. Its use is entirely
340 * at the provider's discretion.
341 *
342 * All variable-size kstats MUST supply a ks_update routine, which computes
343 * and sets ks_data_size (and ks_ndata if that is meaningful), since these
344 * are needed to perform kstat snapshots (see below).
345 *
346 * No kstat locking should be done inside the ks_update routine. The caller
347 * will already be holding the kstat's ks_lock (to ensure consistent data).
348 */
349
350 #define KSTAT_READ 0
351 #define KSTAT_WRITE 1
352
353 /*
354 * Kstat snapshot
355 *
356 * In order to get a consistent view of a kstat's data, clients must obey
357 * the kstat's locking strategy. However, these clients may need to perform
358 * operations on the data which could cause a fault (e.g. copyout()), or
359 * operations which are simply expensive. Doing so could cause deadlock
360 * (e.g. if you're holding a disk's kstat lock which is ultimately required
361 * to resolve a copyout() fault), performance degradation (since the providers'
362 * activity is serialized at the kstat lock), device timing problems, etc.
363 *
364 * To avoid these problems, kstat data is provided via snapshots. Taking
365 * a snapshot is a simple process: allocate a wired-down kernel buffer,
366 * acquire the kstat's data lock, copy the data into the buffer ("take the
367 * snapshot"), and release the lock. This ensures that the kstat's data lock
368 * will be held as briefly as possible, and that no faults will occur while
369 * the lock is held.
370 *
371 * Normally, the snapshot is taken by default_kstat_snapshot(), which
372 * timestamps the data (sets ks_snaptime), copies it, and does a little
373 * massaging to deal with incomplete transactions on i/o kstats. However,
374 * this routine only works for kstats with contiguous data (the typical case).
375 * If you create a kstat whose data is, say, a linked list, you must provide
376 * your own ks_snapshot routine. The routine you supply must have the
377 * following prototype (replace "foo" with something appropriate):
378 *
379 * int foo_kstat_snapshot(kstat_t *ksp, void *buf, int rw);
380 *
381 * The minimal snapshot routine -- one which copies contiguous data that
382 * doesn't need any massaging -- would be this:
383 *
384 * ksp->ks_snaptime = gethrtime();
385 * if (rw == KSTAT_WRITE)
386 * memcpy(ksp->ks_data, buf, ksp->ks_data_size);
387 * else
388 * memcpy(buf, ksp->ks_data, ksp->ks_data_size);
389 * return (0);
390 *
391 * A more illuminating example is taking a snapshot of a linked list:
392 *
393 * ksp->ks_snaptime = gethrtime();
394 * if (rw == KSTAT_WRITE)
395 * return (EACCES); ... See below ...
396 * for (foo = first_foo; foo; foo = foo->next) {
397 * memcpy(buf, foo, sizeof (struct foo));
398 * buf = ((struct foo *) buf) + 1;
399 * }
400 * return (0);
401 *
402 * In the example above, we have decided that we don't want to allow
403 * KSTAT_WRITE access, so we return EACCES if this is attempted.
404 *
405 * The key points are:
406 *
407 * (1) ks_snaptime must be set (via gethrtime()) to timestamp the data.
408 * (2) Data gets copied from the kstat to the buffer on KSTAT_READ,
409 * and from the buffer to the kstat on KSTAT_WRITE.
410 * (3) ks_snapshot return values are: 0 for success, EACCES if you
411 * don't allow KSTAT_WRITE, and EIO for any other type of error.
412 *
413 * Named kstats (see section on "Named statistics" below) containing long
414 * strings (KSTAT_DATA_STRING) need special handling. The kstat driver
415 * assumes that all strings are copied into the buffer after the array of
416 * named kstats, and the pointers (KSTAT_NAMED_STR_PTR()) are updated to point
417 * into the copy within the buffer. The default snapshot routine does this,
418 * but overriding routines should contain at least the following:
419 *
420 * if (rw == KSTAT_READ) {
421 * kstat_named_t *knp = buf;
422 * char *end = knp + ksp->ks_ndata;
423 * uint_t i;
424 *
425 * ... Do the regular copy ...
426 * memcpy(buf, ksp->ks_data, sizeof (kstat_named_t) * ksp->ks_ndata);
427 *
428 * for (i = 0; i < ksp->ks_ndata; i++, knp++) {
429 * if (knp[i].data_type == KSTAT_DATA_STRING &&
430 * KSTAT_NAMED_STR_PTR(knp) != NULL) {
431 * memcpy(end, KSTAT_NAMED_STR_PTR(knp),
432 * KSTAT_NAMED_STR_BUFLEN(knp));
433 * KSTAT_NAMED_STR_PTR(knp) = end;
434 * end += KSTAT_NAMED_STR_BUFLEN(knp);
435 * }
436 * }
437 */
438
439 /*
440 * Named statistics.
441 *
442 * List of arbitrary name=value statistics.
443 */
444
445 typedef struct kstat_named {
446 char name[KSTAT_STRLEN]; /* name of counter */
447 uchar_t data_type; /* data type */
448 union {
449 char c[16]; /* enough for 128-bit ints */
450 int32_t i32;
451 uint32_t ui32;
452 struct {
453 union {
454 char *ptr; /* NULL-term string */
455 #if defined(_KERNEL) && defined(_MULTI_DATAMODEL)
456 caddr32_t ptr32;
457 #endif
458 char __pad[8]; /* 64-bit padding */
459 } addr;
460 uint32_t len; /* # bytes for strlen + '\0' */
461 } str;
462 /*
463 * The int64_t and uint64_t types are not valid for a maximally conformant
464 * 32-bit compilation environment (cc -Xc) using compilers prior to the
465 * introduction of C99 conforming compiler (reference ISO/IEC 9899:1990).
466 * In these cases, the visibility of i64 and ui64 is only permitted for
467 * 64-bit compilation environments or 32-bit non-maximally conformant
468 * C89 or C90 ANSI C compilation environments (cc -Xt and cc -Xa). In the
469 * C99 ANSI C compilation environment, the long long type is supported.
470 * The _INT64_TYPE is defined by the implementation (see sys/int_types.h).
471 */
472 #if defined(_INT64_TYPE)
473 int64_t i64;
474 uint64_t ui64;
475 #endif
476 long l;
477 ulong_t ul;
478
479 /* These structure members are obsolete */
480
481 longlong_t ll;
482 u_longlong_t ull;
483 float f;
484 double d;
485 } value; /* value of counter */
486 } kstat_named_t;
487
488 #define KSTAT_DATA_CHAR 0
489 #define KSTAT_DATA_INT32 1
490 #define KSTAT_DATA_UINT32 2
491 #define KSTAT_DATA_INT64 3
492 #define KSTAT_DATA_UINT64 4
493
494 #if !defined(_LP64)
495 #define KSTAT_DATA_LONG KSTAT_DATA_INT32
496 #define KSTAT_DATA_ULONG KSTAT_DATA_UINT32
497 #else
498 #if !defined(_KERNEL)
499 #define KSTAT_DATA_LONG KSTAT_DATA_INT64
500 #define KSTAT_DATA_ULONG KSTAT_DATA_UINT64
501 #else
502 #define KSTAT_DATA_LONG 7 /* only visible to the kernel */
503 #define KSTAT_DATA_ULONG 8 /* only visible to the kernel */
504 #endif /* !_KERNEL */
505 #endif /* !_LP64 */
506
507 /*
508 * Statistics exporting named kstats with long strings (KSTAT_DATA_STRING)
509 * may not make the assumption that ks_data_size is equal to (ks_ndata * sizeof
510 * (kstat_named_t)). ks_data_size in these cases is equal to the sum of the
511 * amount of space required to store the strings (ie, the sum of
512 * KSTAT_NAMED_STR_BUFLEN() for all KSTAT_DATA_STRING statistics) plus the
513 * space required to store the kstat_named_t's.
514 *
515 * The default update routine will update ks_data_size automatically for
516 * variable-length kstats containing long strings (using the default update
517 * routine only makes sense if the string is the only thing that is changing
518 * in size, and ks_ndata is constant). Fixed-length kstats containing long
519 * strings must explicitly change ks_data_size (after creation but before
520 * initialization) to reflect the correct amount of space required for the
521 * long strings and the kstat_named_t's.
522 */
523 #define KSTAT_DATA_STRING 9
524
525 /* These types are obsolete */
526
527 #define KSTAT_DATA_LONGLONG KSTAT_DATA_INT64
528 #define KSTAT_DATA_ULONGLONG KSTAT_DATA_UINT64
529 #define KSTAT_DATA_FLOAT 5
530 #define KSTAT_DATA_DOUBLE 6
531
532 #define KSTAT_NAMED_PTR(kptr) ((kstat_named_t *)(kptr)->ks_data)
533
534 /*
535 * Retrieve the pointer of the string contained in the given named kstat.
536 */
537 #define KSTAT_NAMED_STR_PTR(knptr) ((knptr)->value.str.addr.ptr)
538
539 /*
540 * Retrieve the length of the buffer required to store the string in the given
541 * named kstat.
542 */
543 #define KSTAT_NAMED_STR_BUFLEN(knptr) ((knptr)->value.str.len)
544
545 /*
546 * Interrupt statistics.
547 *
548 * An interrupt is a hard interrupt (sourced from the hardware device
549 * itself), a soft interrupt (induced by the system via the use of
550 * some system interrupt source), a watchdog interrupt (induced by
551 * a periodic timer call), spurious (an interrupt entry point was
552 * entered but there was no interrupt condition to service),
553 * or multiple service (an interrupt condition was detected and
554 * serviced just prior to returning from any of the other types).
555 *
556 * Measurement of the spurious class of interrupts is useful for
557 * autovectored devices in order to pinpoint any interrupt latency
558 * problems in a particular system configuration.
559 *
560 * Devices that have more than one interrupt of the same
561 * type should use multiple structures.
562 */
563
564 #define KSTAT_INTR_HARD 0
565 #define KSTAT_INTR_SOFT 1
566 #define KSTAT_INTR_WATCHDOG 2
567 #define KSTAT_INTR_SPURIOUS 3
568 #define KSTAT_INTR_MULTSVC 4
569
570 #define KSTAT_NUM_INTRS 5
571
572 typedef struct kstat_intr {
573 uint_t intrs[KSTAT_NUM_INTRS]; /* interrupt counters */
574 } kstat_intr_t;
575
576 #define KSTAT_INTR_PTR(kptr) ((kstat_intr_t *)(kptr)->ks_data)
577
578 /*
579 * I/O statistics.
580 */
581
582 typedef struct kstat_io {
583
584 /*
585 * Basic counters.
586 *
587 * The counters should be updated at the end of service
588 * (e.g., just prior to calling biodone()).
589 */
590
591 u_longlong_t nread; /* number of bytes read */
592 u_longlong_t nwritten; /* number of bytes written */
593 uint_t reads; /* number of read operations */
594 uint_t writes; /* number of write operations */
595
596 /*
597 * Accumulated time and queue length statistics.
598 *
599 * Accumulated time statistics are kept as a running sum
600 * of "active" time. Queue length statistics are kept as a
601 * running sum of the product of queue length and elapsed time
602 * at that length -- i.e., a Riemann sum for queue length
603 * integrated against time. (You can also think of the active time
604 * as a Riemann sum, for the boolean function (queue_length > 0)
605 * integrated against time, or you can think of it as the
606 * Lebesgue measure of the set on which queue_length > 0.)
607 *
608 * ^
609 * | _________
610 * 8 | i4 |
611 * | | |
612 * Queue 6 | |
613 * Length | _________ | |
614 * 4 | i2 |_______| |
615 * | | i3 |
616 * 2_______| |
617 * | i1 |
618 * |_______________________________|
619 * Time-> t1 t2 t3 t4
620 *
621 * At each change of state (entry or exit from the queue),
622 * we add the elapsed time (since the previous state change)
623 * to the active time if the queue length was non-zero during
624 * that interval; and we add the product of the elapsed time
625 * times the queue length to the running length*time sum.
626 *
627 * This method is generalizable to measuring residency
628 * in any defined system: instead of queue lengths, think
629 * of "outstanding RPC calls to server X".
630 *
631 * A large number of I/O subsystems have at least two basic
632 * "lists" of transactions they manage: one for transactions
633 * that have been accepted for processing but for which processing
634 * has yet to begin, and one for transactions which are actively
635 * being processed (but not done). For this reason, two cumulative
636 * time statistics are defined here: wait (pre-service) time,
637 * and run (service) time.
638 *
639 * All times are 64-bit nanoseconds (hrtime_t), as returned by
640 * gethrtime().
641 *
642 * The units of cumulative busy time are accumulated nanoseconds.
643 * The units of cumulative length*time products are elapsed time
644 * times queue length.
645 *
646 * Updates to the fields below are performed implicitly by calls to
647 * these five functions:
648 *
649 * kstat_waitq_enter()
650 * kstat_waitq_exit()
651 * kstat_runq_enter()
652 * kstat_runq_exit()
653 *
654 * kstat_waitq_to_runq() (see below)
655 * kstat_runq_back_to_waitq() (see below)
656 *
657 * Since kstat_waitq_exit() is typically followed immediately
658 * by kstat_runq_enter(), there is a single kstat_waitq_to_runq()
659 * function which performs both operations. This is a performance
660 * win since only one timestamp is required.
661 *
662 * In some instances, it may be necessary to move a request from
663 * the run queue back to the wait queue, e.g. for write throttling.
664 * For these situations, call kstat_runq_back_to_waitq().
665 *
666 * These fields should never be updated by any other means.
667 */
668
669 hrtime_t wtime; /* cumulative wait (pre-service) time */
670 hrtime_t wlentime; /* cumulative wait length*time product */
671 hrtime_t wlastupdate; /* last time wait queue changed */
672 hrtime_t rtime; /* cumulative run (service) time */
673 hrtime_t rlentime; /* cumulative run length*time product */
674 hrtime_t rlastupdate; /* last time run queue changed */
675
676 uint_t wcnt; /* count of elements in wait state */
677 uint_t rcnt; /* count of elements in run state */
678
679 } kstat_io_t;
680
681 #define KSTAT_IO_PTR(kptr) ((kstat_io_t *)(kptr)->ks_data)
682
683 /*
684 * Event timer statistics - cumulative elapsed time and number of events.
685 *
686 * Updates to these fields are performed implicitly by calls to
687 * kstat_timer_start() and kstat_timer_stop().
688 */
689
690 typedef struct kstat_timer {
691 char name[KSTAT_STRLEN]; /* event name */
692 uchar_t resv; /* reserved */
693 u_longlong_t num_events; /* number of events */
694 hrtime_t elapsed_time; /* cumulative elapsed time */
695 hrtime_t min_time; /* shortest event duration */
696 hrtime_t max_time; /* longest event duration */
697 hrtime_t start_time; /* previous event start time */
698 hrtime_t stop_time; /* previous event stop time */
699 } kstat_timer_t;
700
701 #define KSTAT_TIMER_PTR(kptr) ((kstat_timer_t *)(kptr)->ks_data)
702
703 #if defined(_KERNEL)
704
705 #include <sys/t_lock.h>
706
707 extern kid_t kstat_chain_id; /* bumped at each state change */
708 extern void kstat_init(void); /* initialize kstat framework */
709
710 /*
711 * Adding and deleting kstats.
712 *
713 * The typical sequence to add a kstat is:
714 *
715 * ksp = kstat_create(module, instance, name, class, type, ndata, flags);
716 * if (ksp) {
717 * ... provider initialization, if necessary
718 * kstat_install(ksp);
719 * }
720 *
721 * There are three logically distinct steps here:
722 *
723 * Step 1: System Initialization (kstat_create)
724 *
725 * kstat_create() performs system initialization. kstat_create()
726 * allocates memory for the entire kstat (header plus data), initializes
727 * all header fields, initializes the data section to all zeroes, assigns
728 * a unique KID, and puts the kstat onto the system's kstat chain.
729 * The returned kstat is marked invalid (KSTAT_FLAG_INVALID is set),
730 * because the provider (caller) has not yet had a chance to initialize
731 * the data section.
732 *
733 * By default, kstats are exported to all zones on the system. A kstat may be
734 * created via kstat_create_zone() to specify a zone to which the statistics
735 * should be exported. kstat_zone_add() may be used to specify additional
736 * zones to which the statistics are to be exported.
737 *
738 * Step 2: Provider Initialization
739 *
740 * The provider performs any necessary initialization of the data section,
741 * e.g. setting the name fields in a KSTAT_TYPE_NAMED. Virtual kstats set
742 * the ks_data field at this time. The provider may also set the ks_update,
743 * ks_snapshot, ks_private, and ks_lock fields if necessary.
744 *
745 * Step 3: Installation (kstat_install)
746 *
747 * Once the kstat is completely initialized, kstat_install() clears the
748 * INVALID flag, thus making the kstat accessible to the outside world.
749 * kstat_install() also clears the DORMANT flag for persistent kstats.
750 *
751 * Removing a kstat from the system
752 *
753 * kstat_delete(ksp) removes ksp from the kstat chain and frees all
754 * associated system resources. NOTE: When you call kstat_delete(),
755 * you must NOT be holding that kstat's ks_lock. Otherwise, you may
756 * deadlock with a kstat reader.
757 *
758 * Persistent kstats
759 *
760 * From the provider's point of view, persistence is transparent. The only
761 * difference between ephemeral (normal) kstats and persistent kstats
762 * is that you pass KSTAT_FLAG_PERSISTENT to kstat_create(). Magically,
763 * this has the effect of making your data visible even when you're
764 * not home. Persistence is important to tools like iostat, which want
765 * to get a meaningful picture of disk activity. Without persistence,
766 * raw disk i/o statistics could never accumulate: they would come and
767 * go with each open/close of the raw device.
768 *
769 * The magic of persistence works by slightly altering the behavior of
770 * kstat_create() and kstat_delete(). The first call to kstat_create()
771 * creates a new kstat, as usual. However, kstat_delete() does not
772 * actually delete the kstat: it performs one final update of the data
773 * (i.e., calls the ks_update routine), marks the kstat as dormant, and
774 * sets the ks_lock, ks_update, ks_private, and ks_snapshot fields back
775 * to their default values (since they might otherwise point to garbage,
776 * e.g. if the provider is going away). kstat clients can still access
777 * the dormant kstat just like a live kstat; they just continue to see
778 * the final data values as long as the kstat remains dormant.
779 * All subsequent kstat_create() calls simply find the already-existing,
780 * dormant kstat and return a pointer to it, without altering any fields.
781 * The provider then performs its usual initialization sequence, and
782 * calls kstat_install(). kstat_install() uses the old data values to
783 * initialize the native data (i.e., ks_update is called with KSTAT_WRITE),
784 * thus making it seem like you were never gone.
785 */
786
787 extern kstat_t *kstat_create(const char *, int, const char *, const char *,
788 uchar_t, uint_t, uchar_t);
789 extern kstat_t *kstat_create_zone(const char *, int, const char *,
790 const char *, uchar_t, uint_t, uchar_t, zoneid_t);
791 extern void kstat_install(kstat_t *);
792 extern void kstat_delete(kstat_t *);
793 extern void kstat_named_setstr(kstat_named_t *knp, const char *src);
794 extern void kstat_set_string(char *, const char *);
795 extern void kstat_delete_byname(const char *, int, const char *);
796 extern void kstat_delete_byname_zone(const char *, int, const char *, zoneid_t);
797 extern void kstat_named_init(kstat_named_t *, const char *, uchar_t);
798 extern void kstat_timer_init(kstat_timer_t *, const char *);
799 extern void kstat_timer_start(kstat_timer_t *);
800 extern void kstat_timer_stop(kstat_timer_t *);
801
802 extern void kstat_zone_add(kstat_t *, zoneid_t);
803 extern void kstat_zone_remove(kstat_t *, zoneid_t);
804 extern int kstat_zone_find(kstat_t *, zoneid_t);
805
806 extern kstat_t *kstat_hold_bykid(kid_t kid, zoneid_t);
807 extern kstat_t *kstat_hold_byname(const char *, int, const char *, zoneid_t);
808 extern void kstat_rele(kstat_t *);
809
810 #endif /* defined(_KERNEL) */
811
812 #ifdef __cplusplus
813 }
814 #endif
815
816 #endif /* _SYS_KSTAT_H */