]> git.proxmox.com Git - mirror_zfs.git/blob - lib/libzfs/libzfs_import.c
Update core ZFS code from build 121 to build 141.
[mirror_zfs.git] / lib / libzfs / libzfs_import.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Pool import support functions.
28 *
29 * To import a pool, we rely on reading the configuration information from the
30 * ZFS label of each device. If we successfully read the label, then we
31 * organize the configuration information in the following hierarchy:
32 *
33 * pool guid -> toplevel vdev guid -> label txg
34 *
35 * Duplicate entries matching this same tuple will be discarded. Once we have
36 * examined every device, we pick the best label txg config for each toplevel
37 * vdev. We then arrange these toplevel vdevs into a complete pool config, and
38 * update any paths that have changed. Finally, we attempt to import the pool
39 * using our derived config, and record the results.
40 */
41
42 #include <ctype.h>
43 #include <devid.h>
44 #include <dirent.h>
45 #include <errno.h>
46 #include <libintl.h>
47 #include <stddef.h>
48 #include <stdlib.h>
49 #include <string.h>
50 #include <sys/stat.h>
51 #include <unistd.h>
52 #include <fcntl.h>
53 #include <sys/vtoc.h>
54 #include <sys/dktp/fdisk.h>
55 #include <sys/efi_partition.h>
56 #include <thread_pool.h>
57
58 #include <sys/vdev_impl.h>
59
60 #include "libzfs.h"
61 #include "libzfs_impl.h"
62
63 /*
64 * Intermediate structures used to gather configuration information.
65 */
66 typedef struct config_entry {
67 uint64_t ce_txg;
68 nvlist_t *ce_config;
69 struct config_entry *ce_next;
70 } config_entry_t;
71
72 typedef struct vdev_entry {
73 uint64_t ve_guid;
74 config_entry_t *ve_configs;
75 struct vdev_entry *ve_next;
76 } vdev_entry_t;
77
78 typedef struct pool_entry {
79 uint64_t pe_guid;
80 vdev_entry_t *pe_vdevs;
81 struct pool_entry *pe_next;
82 } pool_entry_t;
83
84 typedef struct name_entry {
85 char *ne_name;
86 uint64_t ne_guid;
87 struct name_entry *ne_next;
88 } name_entry_t;
89
90 typedef struct pool_list {
91 pool_entry_t *pools;
92 name_entry_t *names;
93 } pool_list_t;
94
95 static char *
96 get_devid(const char *path)
97 {
98 int fd;
99 ddi_devid_t devid;
100 char *minor, *ret;
101
102 if ((fd = open(path, O_RDONLY)) < 0)
103 return (NULL);
104
105 minor = NULL;
106 ret = NULL;
107 if (devid_get(fd, &devid) == 0) {
108 if (devid_get_minor_name(fd, &minor) == 0)
109 ret = devid_str_encode(devid, minor);
110 if (minor != NULL)
111 devid_str_free(minor);
112 devid_free(devid);
113 }
114 (void) close(fd);
115
116 return (ret);
117 }
118
119
120 /*
121 * Go through and fix up any path and/or devid information for the given vdev
122 * configuration.
123 */
124 static int
125 fix_paths(nvlist_t *nv, name_entry_t *names)
126 {
127 nvlist_t **child;
128 uint_t c, children;
129 uint64_t guid;
130 name_entry_t *ne, *best;
131 char *path, *devid;
132 int matched;
133
134 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
135 &child, &children) == 0) {
136 for (c = 0; c < children; c++)
137 if (fix_paths(child[c], names) != 0)
138 return (-1);
139 return (0);
140 }
141
142 /*
143 * This is a leaf (file or disk) vdev. In either case, go through
144 * the name list and see if we find a matching guid. If so, replace
145 * the path and see if we can calculate a new devid.
146 *
147 * There may be multiple names associated with a particular guid, in
148 * which case we have overlapping slices or multiple paths to the same
149 * disk. If this is the case, then we want to pick the path that is
150 * the most similar to the original, where "most similar" is the number
151 * of matching characters starting from the end of the path. This will
152 * preserve slice numbers even if the disks have been reorganized, and
153 * will also catch preferred disk names if multiple paths exist.
154 */
155 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
156 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
157 path = NULL;
158
159 matched = 0;
160 best = NULL;
161 for (ne = names; ne != NULL; ne = ne->ne_next) {
162 if (ne->ne_guid == guid) {
163 const char *src, *dst;
164 int count;
165
166 if (path == NULL) {
167 best = ne;
168 break;
169 }
170
171 src = ne->ne_name + strlen(ne->ne_name) - 1;
172 dst = path + strlen(path) - 1;
173 for (count = 0; src >= ne->ne_name && dst >= path;
174 src--, dst--, count++)
175 if (*src != *dst)
176 break;
177
178 /*
179 * At this point, 'count' is the number of characters
180 * matched from the end.
181 */
182 if (count > matched || best == NULL) {
183 best = ne;
184 matched = count;
185 }
186 }
187 }
188
189 if (best == NULL)
190 return (0);
191
192 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
193 return (-1);
194
195 if ((devid = get_devid(best->ne_name)) == NULL) {
196 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
197 } else {
198 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
199 return (-1);
200 devid_str_free(devid);
201 }
202
203 return (0);
204 }
205
206 /*
207 * Add the given configuration to the list of known devices.
208 */
209 static int
210 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
211 nvlist_t *config)
212 {
213 uint64_t pool_guid, vdev_guid, top_guid, txg, state;
214 pool_entry_t *pe;
215 vdev_entry_t *ve;
216 config_entry_t *ce;
217 name_entry_t *ne;
218
219 /*
220 * If this is a hot spare not currently in use or level 2 cache
221 * device, add it to the list of names to translate, but don't do
222 * anything else.
223 */
224 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
225 &state) == 0 &&
226 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
227 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
228 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
229 return (-1);
230
231 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
232 free(ne);
233 return (-1);
234 }
235 ne->ne_guid = vdev_guid;
236 ne->ne_next = pl->names;
237 pl->names = ne;
238 return (0);
239 }
240
241 /*
242 * If we have a valid config but cannot read any of these fields, then
243 * it means we have a half-initialized label. In vdev_label_init()
244 * we write a label with txg == 0 so that we can identify the device
245 * in case the user refers to the same disk later on. If we fail to
246 * create the pool, we'll be left with a label in this state
247 * which should not be considered part of a valid pool.
248 */
249 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
250 &pool_guid) != 0 ||
251 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
252 &vdev_guid) != 0 ||
253 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
254 &top_guid) != 0 ||
255 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
256 &txg) != 0 || txg == 0) {
257 nvlist_free(config);
258 return (0);
259 }
260
261 /*
262 * First, see if we know about this pool. If not, then add it to the
263 * list of known pools.
264 */
265 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
266 if (pe->pe_guid == pool_guid)
267 break;
268 }
269
270 if (pe == NULL) {
271 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
272 nvlist_free(config);
273 return (-1);
274 }
275 pe->pe_guid = pool_guid;
276 pe->pe_next = pl->pools;
277 pl->pools = pe;
278 }
279
280 /*
281 * Second, see if we know about this toplevel vdev. Add it if its
282 * missing.
283 */
284 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
285 if (ve->ve_guid == top_guid)
286 break;
287 }
288
289 if (ve == NULL) {
290 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
291 nvlist_free(config);
292 return (-1);
293 }
294 ve->ve_guid = top_guid;
295 ve->ve_next = pe->pe_vdevs;
296 pe->pe_vdevs = ve;
297 }
298
299 /*
300 * Third, see if we have a config with a matching transaction group. If
301 * so, then we do nothing. Otherwise, add it to the list of known
302 * configs.
303 */
304 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
305 if (ce->ce_txg == txg)
306 break;
307 }
308
309 if (ce == NULL) {
310 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
311 nvlist_free(config);
312 return (-1);
313 }
314 ce->ce_txg = txg;
315 ce->ce_config = config;
316 ce->ce_next = ve->ve_configs;
317 ve->ve_configs = ce;
318 } else {
319 nvlist_free(config);
320 }
321
322 /*
323 * At this point we've successfully added our config to the list of
324 * known configs. The last thing to do is add the vdev guid -> path
325 * mappings so that we can fix up the configuration as necessary before
326 * doing the import.
327 */
328 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
329 return (-1);
330
331 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
332 free(ne);
333 return (-1);
334 }
335
336 ne->ne_guid = vdev_guid;
337 ne->ne_next = pl->names;
338 pl->names = ne;
339
340 return (0);
341 }
342
343 /*
344 * Returns true if the named pool matches the given GUID.
345 */
346 static int
347 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
348 boolean_t *isactive)
349 {
350 zpool_handle_t *zhp;
351 uint64_t theguid;
352
353 if (zpool_open_silent(hdl, name, &zhp) != 0)
354 return (-1);
355
356 if (zhp == NULL) {
357 *isactive = B_FALSE;
358 return (0);
359 }
360
361 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
362 &theguid) == 0);
363
364 zpool_close(zhp);
365
366 *isactive = (theguid == guid);
367 return (0);
368 }
369
370 static nvlist_t *
371 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
372 {
373 nvlist_t *nvl;
374 zfs_cmd_t zc = { 0 };
375 int err;
376
377 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
378 return (NULL);
379
380 if (zcmd_alloc_dst_nvlist(hdl, &zc,
381 zc.zc_nvlist_conf_size * 2) != 0) {
382 zcmd_free_nvlists(&zc);
383 return (NULL);
384 }
385
386 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
387 &zc)) != 0 && errno == ENOMEM) {
388 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
389 zcmd_free_nvlists(&zc);
390 return (NULL);
391 }
392 }
393
394 if (err) {
395 zcmd_free_nvlists(&zc);
396 return (NULL);
397 }
398
399 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
400 zcmd_free_nvlists(&zc);
401 return (NULL);
402 }
403
404 zcmd_free_nvlists(&zc);
405 return (nvl);
406 }
407
408 /*
409 * Determine if the vdev id is a hole in the namespace.
410 */
411 boolean_t
412 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
413 {
414 for (int c = 0; c < holes; c++) {
415
416 /* Top-level is a hole */
417 if (hole_array[c] == id)
418 return (B_TRUE);
419 }
420 return (B_FALSE);
421 }
422
423 /*
424 * Convert our list of pools into the definitive set of configurations. We
425 * start by picking the best config for each toplevel vdev. Once that's done,
426 * we assemble the toplevel vdevs into a full config for the pool. We make a
427 * pass to fix up any incorrect paths, and then add it to the main list to
428 * return to the user.
429 */
430 static nvlist_t *
431 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
432 {
433 pool_entry_t *pe;
434 vdev_entry_t *ve;
435 config_entry_t *ce;
436 nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
437 nvlist_t **spares, **l2cache;
438 uint_t i, nspares, nl2cache;
439 boolean_t config_seen;
440 uint64_t best_txg;
441 char *name, *hostname;
442 uint64_t version, guid;
443 uint_t children = 0;
444 nvlist_t **child = NULL;
445 uint_t holes;
446 uint64_t *hole_array, max_id;
447 uint_t c;
448 boolean_t isactive;
449 uint64_t hostid;
450 nvlist_t *nvl;
451 boolean_t found_one = B_FALSE;
452 boolean_t valid_top_config = B_FALSE;
453
454 if (nvlist_alloc(&ret, 0, 0) != 0)
455 goto nomem;
456
457 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
458 uint64_t id, max_txg = 0;
459
460 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
461 goto nomem;
462 config_seen = B_FALSE;
463
464 /*
465 * Iterate over all toplevel vdevs. Grab the pool configuration
466 * from the first one we find, and then go through the rest and
467 * add them as necessary to the 'vdevs' member of the config.
468 */
469 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
470
471 /*
472 * Determine the best configuration for this vdev by
473 * selecting the config with the latest transaction
474 * group.
475 */
476 best_txg = 0;
477 for (ce = ve->ve_configs; ce != NULL;
478 ce = ce->ce_next) {
479
480 if (ce->ce_txg > best_txg) {
481 tmp = ce->ce_config;
482 best_txg = ce->ce_txg;
483 }
484 }
485
486 /*
487 * We rely on the fact that the max txg for the
488 * pool will contain the most up-to-date information
489 * about the valid top-levels in the vdev namespace.
490 */
491 if (best_txg > max_txg) {
492 (void) nvlist_remove(config,
493 ZPOOL_CONFIG_VDEV_CHILDREN,
494 DATA_TYPE_UINT64);
495 (void) nvlist_remove(config,
496 ZPOOL_CONFIG_HOLE_ARRAY,
497 DATA_TYPE_UINT64_ARRAY);
498
499 max_txg = best_txg;
500 hole_array = NULL;
501 holes = 0;
502 max_id = 0;
503 valid_top_config = B_FALSE;
504
505 if (nvlist_lookup_uint64(tmp,
506 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
507 verify(nvlist_add_uint64(config,
508 ZPOOL_CONFIG_VDEV_CHILDREN,
509 max_id) == 0);
510 valid_top_config = B_TRUE;
511 }
512
513 if (nvlist_lookup_uint64_array(tmp,
514 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
515 &holes) == 0) {
516 verify(nvlist_add_uint64_array(config,
517 ZPOOL_CONFIG_HOLE_ARRAY,
518 hole_array, holes) == 0);
519 }
520 }
521
522 if (!config_seen) {
523 /*
524 * Copy the relevant pieces of data to the pool
525 * configuration:
526 *
527 * version
528 * pool guid
529 * name
530 * pool state
531 * hostid (if available)
532 * hostname (if available)
533 */
534 uint64_t state;
535
536 verify(nvlist_lookup_uint64(tmp,
537 ZPOOL_CONFIG_VERSION, &version) == 0);
538 if (nvlist_add_uint64(config,
539 ZPOOL_CONFIG_VERSION, version) != 0)
540 goto nomem;
541 verify(nvlist_lookup_uint64(tmp,
542 ZPOOL_CONFIG_POOL_GUID, &guid) == 0);
543 if (nvlist_add_uint64(config,
544 ZPOOL_CONFIG_POOL_GUID, guid) != 0)
545 goto nomem;
546 verify(nvlist_lookup_string(tmp,
547 ZPOOL_CONFIG_POOL_NAME, &name) == 0);
548 if (nvlist_add_string(config,
549 ZPOOL_CONFIG_POOL_NAME, name) != 0)
550 goto nomem;
551 verify(nvlist_lookup_uint64(tmp,
552 ZPOOL_CONFIG_POOL_STATE, &state) == 0);
553 if (nvlist_add_uint64(config,
554 ZPOOL_CONFIG_POOL_STATE, state) != 0)
555 goto nomem;
556 hostid = 0;
557 if (nvlist_lookup_uint64(tmp,
558 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
559 if (nvlist_add_uint64(config,
560 ZPOOL_CONFIG_HOSTID, hostid) != 0)
561 goto nomem;
562 verify(nvlist_lookup_string(tmp,
563 ZPOOL_CONFIG_HOSTNAME,
564 &hostname) == 0);
565 if (nvlist_add_string(config,
566 ZPOOL_CONFIG_HOSTNAME,
567 hostname) != 0)
568 goto nomem;
569 }
570
571 config_seen = B_TRUE;
572 }
573
574 /*
575 * Add this top-level vdev to the child array.
576 */
577 verify(nvlist_lookup_nvlist(tmp,
578 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
579 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
580 &id) == 0);
581
582 if (id >= children) {
583 nvlist_t **newchild;
584
585 newchild = zfs_alloc(hdl, (id + 1) *
586 sizeof (nvlist_t *));
587 if (newchild == NULL)
588 goto nomem;
589
590 for (c = 0; c < children; c++)
591 newchild[c] = child[c];
592
593 free(child);
594 child = newchild;
595 children = id + 1;
596 }
597 if (nvlist_dup(nvtop, &child[id], 0) != 0)
598 goto nomem;
599
600 }
601
602 /*
603 * If we have information about all the top-levels then
604 * clean up the nvlist which we've constructed. This
605 * means removing any extraneous devices that are
606 * beyond the valid range or adding devices to the end
607 * of our array which appear to be missing.
608 */
609 if (valid_top_config) {
610 if (max_id < children) {
611 for (c = max_id; c < children; c++)
612 nvlist_free(child[c]);
613 children = max_id;
614 } else if (max_id > children) {
615 nvlist_t **newchild;
616
617 newchild = zfs_alloc(hdl, (max_id) *
618 sizeof (nvlist_t *));
619 if (newchild == NULL)
620 goto nomem;
621
622 for (c = 0; c < children; c++)
623 newchild[c] = child[c];
624
625 free(child);
626 child = newchild;
627 children = max_id;
628 }
629 }
630
631 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
632 &guid) == 0);
633
634 /*
635 * The vdev namespace may contain holes as a result of
636 * device removal. We must add them back into the vdev
637 * tree before we process any missing devices.
638 */
639 if (holes > 0) {
640 ASSERT(valid_top_config);
641
642 for (c = 0; c < children; c++) {
643 nvlist_t *holey;
644
645 if (child[c] != NULL ||
646 !vdev_is_hole(hole_array, holes, c))
647 continue;
648
649 if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
650 0) != 0)
651 goto nomem;
652
653 /*
654 * Holes in the namespace are treated as
655 * "hole" top-level vdevs and have a
656 * special flag set on them.
657 */
658 if (nvlist_add_string(holey,
659 ZPOOL_CONFIG_TYPE,
660 VDEV_TYPE_HOLE) != 0 ||
661 nvlist_add_uint64(holey,
662 ZPOOL_CONFIG_ID, c) != 0 ||
663 nvlist_add_uint64(holey,
664 ZPOOL_CONFIG_GUID, 0ULL) != 0)
665 goto nomem;
666 child[c] = holey;
667 }
668 }
669
670 /*
671 * Look for any missing top-level vdevs. If this is the case,
672 * create a faked up 'missing' vdev as a placeholder. We cannot
673 * simply compress the child array, because the kernel performs
674 * certain checks to make sure the vdev IDs match their location
675 * in the configuration.
676 */
677 for (c = 0; c < children; c++) {
678 if (child[c] == NULL) {
679 nvlist_t *missing;
680 if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
681 0) != 0)
682 goto nomem;
683 if (nvlist_add_string(missing,
684 ZPOOL_CONFIG_TYPE,
685 VDEV_TYPE_MISSING) != 0 ||
686 nvlist_add_uint64(missing,
687 ZPOOL_CONFIG_ID, c) != 0 ||
688 nvlist_add_uint64(missing,
689 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
690 nvlist_free(missing);
691 goto nomem;
692 }
693 child[c] = missing;
694 }
695 }
696
697 /*
698 * Put all of this pool's top-level vdevs into a root vdev.
699 */
700 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
701 goto nomem;
702 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
703 VDEV_TYPE_ROOT) != 0 ||
704 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
705 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
706 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
707 child, children) != 0) {
708 nvlist_free(nvroot);
709 goto nomem;
710 }
711
712 for (c = 0; c < children; c++)
713 nvlist_free(child[c]);
714 free(child);
715 children = 0;
716 child = NULL;
717
718 /*
719 * Go through and fix up any paths and/or devids based on our
720 * known list of vdev GUID -> path mappings.
721 */
722 if (fix_paths(nvroot, pl->names) != 0) {
723 nvlist_free(nvroot);
724 goto nomem;
725 }
726
727 /*
728 * Add the root vdev to this pool's configuration.
729 */
730 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
731 nvroot) != 0) {
732 nvlist_free(nvroot);
733 goto nomem;
734 }
735 nvlist_free(nvroot);
736
737 /*
738 * zdb uses this path to report on active pools that were
739 * imported or created using -R.
740 */
741 if (active_ok)
742 goto add_pool;
743
744 /*
745 * Determine if this pool is currently active, in which case we
746 * can't actually import it.
747 */
748 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
749 &name) == 0);
750 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
751 &guid) == 0);
752
753 if (pool_active(hdl, name, guid, &isactive) != 0)
754 goto error;
755
756 if (isactive) {
757 nvlist_free(config);
758 config = NULL;
759 continue;
760 }
761
762 if ((nvl = refresh_config(hdl, config)) == NULL) {
763 nvlist_free(config);
764 config = NULL;
765 continue;
766 }
767
768 nvlist_free(config);
769 config = nvl;
770
771 /*
772 * Go through and update the paths for spares, now that we have
773 * them.
774 */
775 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
776 &nvroot) == 0);
777 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
778 &spares, &nspares) == 0) {
779 for (i = 0; i < nspares; i++) {
780 if (fix_paths(spares[i], pl->names) != 0)
781 goto nomem;
782 }
783 }
784
785 /*
786 * Update the paths for l2cache devices.
787 */
788 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
789 &l2cache, &nl2cache) == 0) {
790 for (i = 0; i < nl2cache; i++) {
791 if (fix_paths(l2cache[i], pl->names) != 0)
792 goto nomem;
793 }
794 }
795
796 /*
797 * Restore the original information read from the actual label.
798 */
799 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
800 DATA_TYPE_UINT64);
801 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
802 DATA_TYPE_STRING);
803 if (hostid != 0) {
804 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
805 hostid) == 0);
806 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
807 hostname) == 0);
808 }
809
810 add_pool:
811 /*
812 * Add this pool to the list of configs.
813 */
814 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
815 &name) == 0);
816 if (nvlist_add_nvlist(ret, name, config) != 0)
817 goto nomem;
818
819 found_one = B_TRUE;
820 nvlist_free(config);
821 config = NULL;
822 }
823
824 if (!found_one) {
825 nvlist_free(ret);
826 ret = NULL;
827 }
828
829 return (ret);
830
831 nomem:
832 (void) no_memory(hdl);
833 error:
834 nvlist_free(config);
835 nvlist_free(ret);
836 for (c = 0; c < children; c++)
837 nvlist_free(child[c]);
838 free(child);
839
840 return (NULL);
841 }
842
843 /*
844 * Return the offset of the given label.
845 */
846 static uint64_t
847 label_offset(uint64_t size, int l)
848 {
849 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
850 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
851 0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
852 }
853
854 /*
855 * Given a file descriptor, read the label information and return an nvlist
856 * describing the configuration, if there is one.
857 */
858 int
859 zpool_read_label(int fd, nvlist_t **config)
860 {
861 struct stat64 statbuf;
862 int l;
863 vdev_label_t *label;
864 uint64_t state, txg, size;
865
866 *config = NULL;
867
868 if (fstat64(fd, &statbuf) == -1)
869 return (0);
870 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
871
872 if ((label = malloc(sizeof (vdev_label_t))) == NULL)
873 return (-1);
874
875 for (l = 0; l < VDEV_LABELS; l++) {
876 if (pread64(fd, label, sizeof (vdev_label_t),
877 label_offset(size, l)) != sizeof (vdev_label_t))
878 continue;
879
880 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
881 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
882 continue;
883
884 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
885 &state) != 0 || state > POOL_STATE_L2CACHE) {
886 nvlist_free(*config);
887 continue;
888 }
889
890 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
891 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
892 &txg) != 0 || txg == 0)) {
893 nvlist_free(*config);
894 continue;
895 }
896
897 free(label);
898 return (0);
899 }
900
901 free(label);
902 *config = NULL;
903 return (0);
904 }
905
906 typedef struct rdsk_node {
907 char *rn_name;
908 int rn_dfd;
909 libzfs_handle_t *rn_hdl;
910 nvlist_t *rn_config;
911 avl_tree_t *rn_avl;
912 avl_node_t rn_node;
913 boolean_t rn_nozpool;
914 } rdsk_node_t;
915
916 static int
917 slice_cache_compare(const void *arg1, const void *arg2)
918 {
919 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name;
920 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name;
921 char *nm1slice, *nm2slice;
922 int rv;
923
924 /*
925 * slices zero and two are the most likely to provide results,
926 * so put those first
927 */
928 nm1slice = strstr(nm1, "s0");
929 nm2slice = strstr(nm2, "s0");
930 if (nm1slice && !nm2slice) {
931 return (-1);
932 }
933 if (!nm1slice && nm2slice) {
934 return (1);
935 }
936 nm1slice = strstr(nm1, "s2");
937 nm2slice = strstr(nm2, "s2");
938 if (nm1slice && !nm2slice) {
939 return (-1);
940 }
941 if (!nm1slice && nm2slice) {
942 return (1);
943 }
944
945 rv = strcmp(nm1, nm2);
946 if (rv == 0)
947 return (0);
948 return (rv > 0 ? 1 : -1);
949 }
950
951 static void
952 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
953 diskaddr_t size, uint_t blksz)
954 {
955 rdsk_node_t tmpnode;
956 rdsk_node_t *node;
957 char sname[MAXNAMELEN];
958
959 tmpnode.rn_name = &sname[0];
960 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
961 diskname, partno);
962 /*
963 * protect against division by zero for disk labels that
964 * contain a bogus sector size
965 */
966 if (blksz == 0)
967 blksz = DEV_BSIZE;
968 /* too small to contain a zpool? */
969 if ((size < (SPA_MINDEVSIZE / blksz)) &&
970 (node = avl_find(r, &tmpnode, NULL)))
971 node->rn_nozpool = B_TRUE;
972 }
973
974 static void
975 nozpool_all_slices(avl_tree_t *r, const char *sname)
976 {
977 char diskname[MAXNAMELEN];
978 char *ptr;
979 int i;
980
981 (void) strncpy(diskname, sname, MAXNAMELEN);
982 if (((ptr = strrchr(diskname, 's')) == NULL) &&
983 ((ptr = strrchr(diskname, 'p')) == NULL))
984 return;
985 ptr[0] = 's';
986 ptr[1] = '\0';
987 for (i = 0; i < NDKMAP; i++)
988 check_one_slice(r, diskname, i, 0, 1);
989 ptr[0] = 'p';
990 for (i = 0; i <= FD_NUMPART; i++)
991 check_one_slice(r, diskname, i, 0, 1);
992 }
993
994 static void
995 check_slices(avl_tree_t *r, int fd, const char *sname)
996 {
997 struct extvtoc vtoc;
998 struct dk_gpt *gpt;
999 char diskname[MAXNAMELEN];
1000 char *ptr;
1001 int i;
1002
1003 (void) strncpy(diskname, sname, MAXNAMELEN);
1004 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1005 return;
1006 ptr[1] = '\0';
1007
1008 if (read_extvtoc(fd, &vtoc) >= 0) {
1009 for (i = 0; i < NDKMAP; i++)
1010 check_one_slice(r, diskname, i,
1011 vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1012 } else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1013 /*
1014 * on x86 we'll still have leftover links that point
1015 * to slices s[9-15], so use NDKMAP instead
1016 */
1017 for (i = 0; i < NDKMAP; i++)
1018 check_one_slice(r, diskname, i,
1019 gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1020 /* nodes p[1-4] are never used with EFI labels */
1021 ptr[0] = 'p';
1022 for (i = 1; i <= FD_NUMPART; i++)
1023 check_one_slice(r, diskname, i, 0, 1);
1024 efi_free(gpt);
1025 }
1026 }
1027
1028 static void
1029 zpool_open_func(void *arg)
1030 {
1031 rdsk_node_t *rn = arg;
1032 struct stat64 statbuf;
1033 nvlist_t *config;
1034 int fd;
1035
1036 if (rn->rn_nozpool)
1037 return;
1038 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1039 /* symlink to a device that's no longer there */
1040 if (errno == ENOENT)
1041 nozpool_all_slices(rn->rn_avl, rn->rn_name);
1042 return;
1043 }
1044 /*
1045 * Ignore failed stats. We only want regular
1046 * files, character devs and block devs.
1047 */
1048 if (fstat64(fd, &statbuf) != 0 ||
1049 (!S_ISREG(statbuf.st_mode) &&
1050 !S_ISCHR(statbuf.st_mode) &&
1051 !S_ISBLK(statbuf.st_mode))) {
1052 (void) close(fd);
1053 return;
1054 }
1055 /* this file is too small to hold a zpool */
1056 if (S_ISREG(statbuf.st_mode) &&
1057 statbuf.st_size < SPA_MINDEVSIZE) {
1058 (void) close(fd);
1059 return;
1060 } else if (!S_ISREG(statbuf.st_mode)) {
1061 /*
1062 * Try to read the disk label first so we don't have to
1063 * open a bunch of minor nodes that can't have a zpool.
1064 */
1065 check_slices(rn->rn_avl, fd, rn->rn_name);
1066 }
1067
1068 if ((zpool_read_label(fd, &config)) != 0) {
1069 (void) close(fd);
1070 (void) no_memory(rn->rn_hdl);
1071 return;
1072 }
1073 (void) close(fd);
1074
1075
1076 rn->rn_config = config;
1077 if (config != NULL) {
1078 assert(rn->rn_nozpool == B_FALSE);
1079 }
1080 }
1081
1082 /*
1083 * Given a file descriptor, clear (zero) the label information. This function
1084 * is currently only used in the appliance stack as part of the ZFS sysevent
1085 * module.
1086 */
1087 int
1088 zpool_clear_label(int fd)
1089 {
1090 struct stat64 statbuf;
1091 int l;
1092 vdev_label_t *label;
1093 uint64_t size;
1094
1095 if (fstat64(fd, &statbuf) == -1)
1096 return (0);
1097 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1098
1099 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1100 return (-1);
1101
1102 for (l = 0; l < VDEV_LABELS; l++) {
1103 if (pwrite64(fd, label, sizeof (vdev_label_t),
1104 label_offset(size, l)) != sizeof (vdev_label_t))
1105 return (-1);
1106 }
1107
1108 free(label);
1109 return (0);
1110 }
1111
1112 /*
1113 * Given a list of directories to search, find all pools stored on disk. This
1114 * includes partial pools which are not available to import. If no args are
1115 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1116 * poolname or guid (but not both) are provided by the caller when trying
1117 * to import a specific pool.
1118 */
1119 static nvlist_t *
1120 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1121 {
1122 int i, dirs = iarg->paths;
1123 DIR *dirp = NULL;
1124 struct dirent64 *dp;
1125 char path[MAXPATHLEN];
1126 char *end, **dir = iarg->path;
1127 size_t pathleft;
1128 nvlist_t *ret = NULL;
1129 static char *default_dir = "/dev/dsk";
1130 pool_list_t pools = { 0 };
1131 pool_entry_t *pe, *penext;
1132 vdev_entry_t *ve, *venext;
1133 config_entry_t *ce, *cenext;
1134 name_entry_t *ne, *nenext;
1135 avl_tree_t slice_cache;
1136 rdsk_node_t *slice;
1137 void *cookie;
1138
1139 if (dirs == 0) {
1140 dirs = 1;
1141 dir = &default_dir;
1142 }
1143
1144 /*
1145 * Go through and read the label configuration information from every
1146 * possible device, organizing the information according to pool GUID
1147 * and toplevel GUID.
1148 */
1149 for (i = 0; i < dirs; i++) {
1150 tpool_t *t;
1151 char *rdsk;
1152 int dfd;
1153
1154 /* use realpath to normalize the path */
1155 if (realpath(dir[i], path) == 0) {
1156 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1157 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1158 goto error;
1159 }
1160 end = &path[strlen(path)];
1161 *end++ = '/';
1162 *end = 0;
1163 pathleft = &path[sizeof (path)] - end;
1164
1165 /*
1166 * Using raw devices instead of block devices when we're
1167 * reading the labels skips a bunch of slow operations during
1168 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1169 */
1170 if (strcmp(path, "/dev/dsk/") == 0)
1171 rdsk = "/dev/rdsk/";
1172 else
1173 rdsk = path;
1174
1175 if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1176 (dirp = fdopendir(dfd)) == NULL) {
1177 zfs_error_aux(hdl, strerror(errno));
1178 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1179 dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1180 rdsk);
1181 goto error;
1182 }
1183
1184 avl_create(&slice_cache, slice_cache_compare,
1185 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1186 /*
1187 * This is not MT-safe, but we have no MT consumers of libzfs
1188 */
1189 while ((dp = readdir64(dirp)) != NULL) {
1190 const char *name = dp->d_name;
1191 if (name[0] == '.' &&
1192 (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1193 continue;
1194
1195 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1196 slice->rn_name = zfs_strdup(hdl, name);
1197 slice->rn_avl = &slice_cache;
1198 slice->rn_dfd = dfd;
1199 slice->rn_hdl = hdl;
1200 slice->rn_nozpool = B_FALSE;
1201 avl_add(&slice_cache, slice);
1202 }
1203 /*
1204 * create a thread pool to do all of this in parallel;
1205 * rn_nozpool is not protected, so this is racy in that
1206 * multiple tasks could decide that the same slice can
1207 * not hold a zpool, which is benign. Also choose
1208 * double the number of processors; we hold a lot of
1209 * locks in the kernel, so going beyond this doesn't
1210 * buy us much.
1211 */
1212 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1213 0, NULL);
1214 for (slice = avl_first(&slice_cache); slice;
1215 (slice = avl_walk(&slice_cache, slice,
1216 AVL_AFTER)))
1217 (void) tpool_dispatch(t, zpool_open_func, slice);
1218 tpool_wait(t);
1219 tpool_destroy(t);
1220
1221 cookie = NULL;
1222 while ((slice = avl_destroy_nodes(&slice_cache,
1223 &cookie)) != NULL) {
1224 if (slice->rn_config != NULL) {
1225 nvlist_t *config = slice->rn_config;
1226 boolean_t matched = B_TRUE;
1227
1228 if (iarg->poolname != NULL) {
1229 char *pname;
1230
1231 matched = nvlist_lookup_string(config,
1232 ZPOOL_CONFIG_POOL_NAME,
1233 &pname) == 0 &&
1234 strcmp(iarg->poolname, pname) == 0;
1235 } else if (iarg->guid != 0) {
1236 uint64_t this_guid;
1237
1238 matched = nvlist_lookup_uint64(config,
1239 ZPOOL_CONFIG_POOL_GUID,
1240 &this_guid) == 0 &&
1241 iarg->guid == this_guid;
1242 }
1243 if (!matched) {
1244 nvlist_free(config);
1245 config = NULL;
1246 continue;
1247 }
1248 /* use the non-raw path for the config */
1249 (void) strlcpy(end, slice->rn_name, pathleft);
1250 if (add_config(hdl, &pools, path, config) != 0)
1251 goto error;
1252 }
1253 free(slice->rn_name);
1254 free(slice);
1255 }
1256 avl_destroy(&slice_cache);
1257
1258 (void) closedir(dirp);
1259 dirp = NULL;
1260 }
1261
1262 ret = get_configs(hdl, &pools, iarg->can_be_active);
1263
1264 error:
1265 for (pe = pools.pools; pe != NULL; pe = penext) {
1266 penext = pe->pe_next;
1267 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1268 venext = ve->ve_next;
1269 for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1270 cenext = ce->ce_next;
1271 if (ce->ce_config)
1272 nvlist_free(ce->ce_config);
1273 free(ce);
1274 }
1275 free(ve);
1276 }
1277 free(pe);
1278 }
1279
1280 for (ne = pools.names; ne != NULL; ne = nenext) {
1281 nenext = ne->ne_next;
1282 if (ne->ne_name)
1283 free(ne->ne_name);
1284 free(ne);
1285 }
1286
1287 if (dirp)
1288 (void) closedir(dirp);
1289
1290 return (ret);
1291 }
1292
1293 nvlist_t *
1294 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1295 {
1296 importargs_t iarg = { 0 };
1297
1298 iarg.paths = argc;
1299 iarg.path = argv;
1300
1301 return (zpool_find_import_impl(hdl, &iarg));
1302 }
1303
1304 /*
1305 * Given a cache file, return the contents as a list of importable pools.
1306 * poolname or guid (but not both) are provided by the caller when trying
1307 * to import a specific pool.
1308 */
1309 nvlist_t *
1310 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1311 char *poolname, uint64_t guid)
1312 {
1313 char *buf;
1314 int fd;
1315 struct stat64 statbuf;
1316 nvlist_t *raw, *src, *dst;
1317 nvlist_t *pools;
1318 nvpair_t *elem;
1319 char *name;
1320 uint64_t this_guid;
1321 boolean_t active;
1322
1323 verify(poolname == NULL || guid == 0);
1324
1325 if ((fd = open(cachefile, O_RDONLY)) < 0) {
1326 zfs_error_aux(hdl, "%s", strerror(errno));
1327 (void) zfs_error(hdl, EZFS_BADCACHE,
1328 dgettext(TEXT_DOMAIN, "failed to open cache file"));
1329 return (NULL);
1330 }
1331
1332 if (fstat64(fd, &statbuf) != 0) {
1333 zfs_error_aux(hdl, "%s", strerror(errno));
1334 (void) close(fd);
1335 (void) zfs_error(hdl, EZFS_BADCACHE,
1336 dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1337 return (NULL);
1338 }
1339
1340 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1341 (void) close(fd);
1342 return (NULL);
1343 }
1344
1345 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1346 (void) close(fd);
1347 free(buf);
1348 (void) zfs_error(hdl, EZFS_BADCACHE,
1349 dgettext(TEXT_DOMAIN,
1350 "failed to read cache file contents"));
1351 return (NULL);
1352 }
1353
1354 (void) close(fd);
1355
1356 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1357 free(buf);
1358 (void) zfs_error(hdl, EZFS_BADCACHE,
1359 dgettext(TEXT_DOMAIN,
1360 "invalid or corrupt cache file contents"));
1361 return (NULL);
1362 }
1363
1364 free(buf);
1365
1366 /*
1367 * Go through and get the current state of the pools and refresh their
1368 * state.
1369 */
1370 if (nvlist_alloc(&pools, 0, 0) != 0) {
1371 (void) no_memory(hdl);
1372 nvlist_free(raw);
1373 return (NULL);
1374 }
1375
1376 elem = NULL;
1377 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1378 verify(nvpair_value_nvlist(elem, &src) == 0);
1379
1380 verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME,
1381 &name) == 0);
1382 if (poolname != NULL && strcmp(poolname, name) != 0)
1383 continue;
1384
1385 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1386 &this_guid) == 0);
1387 if (guid != 0) {
1388 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1389 &this_guid) == 0);
1390 if (guid != this_guid)
1391 continue;
1392 }
1393
1394 if (pool_active(hdl, name, this_guid, &active) != 0) {
1395 nvlist_free(raw);
1396 nvlist_free(pools);
1397 return (NULL);
1398 }
1399
1400 if (active)
1401 continue;
1402
1403 if ((dst = refresh_config(hdl, src)) == NULL) {
1404 nvlist_free(raw);
1405 nvlist_free(pools);
1406 return (NULL);
1407 }
1408
1409 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1410 (void) no_memory(hdl);
1411 nvlist_free(dst);
1412 nvlist_free(raw);
1413 nvlist_free(pools);
1414 return (NULL);
1415 }
1416 nvlist_free(dst);
1417 }
1418
1419 nvlist_free(raw);
1420 return (pools);
1421 }
1422
1423 static int
1424 name_or_guid_exists(zpool_handle_t *zhp, void *data)
1425 {
1426 importargs_t *import = data;
1427 int found = 0;
1428
1429 if (import->poolname != NULL) {
1430 char *pool_name;
1431
1432 verify(nvlist_lookup_string(zhp->zpool_config,
1433 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1434 if (strcmp(pool_name, import->poolname) == 0)
1435 found = 1;
1436 } else {
1437 uint64_t pool_guid;
1438
1439 verify(nvlist_lookup_uint64(zhp->zpool_config,
1440 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1441 if (pool_guid == import->guid)
1442 found = 1;
1443 }
1444
1445 zpool_close(zhp);
1446 return (found);
1447 }
1448
1449 nvlist_t *
1450 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1451 {
1452 verify(import->poolname == NULL || import->guid == 0);
1453
1454 if (import->unique)
1455 import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1456
1457 if (import->cachefile != NULL)
1458 return (zpool_find_import_cached(hdl, import->cachefile,
1459 import->poolname, import->guid));
1460
1461 return (zpool_find_import_impl(hdl, import));
1462 }
1463
1464 boolean_t
1465 find_guid(nvlist_t *nv, uint64_t guid)
1466 {
1467 uint64_t tmp;
1468 nvlist_t **child;
1469 uint_t c, children;
1470
1471 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1472 if (tmp == guid)
1473 return (B_TRUE);
1474
1475 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1476 &child, &children) == 0) {
1477 for (c = 0; c < children; c++)
1478 if (find_guid(child[c], guid))
1479 return (B_TRUE);
1480 }
1481
1482 return (B_FALSE);
1483 }
1484
1485 typedef struct aux_cbdata {
1486 const char *cb_type;
1487 uint64_t cb_guid;
1488 zpool_handle_t *cb_zhp;
1489 } aux_cbdata_t;
1490
1491 static int
1492 find_aux(zpool_handle_t *zhp, void *data)
1493 {
1494 aux_cbdata_t *cbp = data;
1495 nvlist_t **list;
1496 uint_t i, count;
1497 uint64_t guid;
1498 nvlist_t *nvroot;
1499
1500 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1501 &nvroot) == 0);
1502
1503 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1504 &list, &count) == 0) {
1505 for (i = 0; i < count; i++) {
1506 verify(nvlist_lookup_uint64(list[i],
1507 ZPOOL_CONFIG_GUID, &guid) == 0);
1508 if (guid == cbp->cb_guid) {
1509 cbp->cb_zhp = zhp;
1510 return (1);
1511 }
1512 }
1513 }
1514
1515 zpool_close(zhp);
1516 return (0);
1517 }
1518
1519 /*
1520 * Determines if the pool is in use. If so, it returns true and the state of
1521 * the pool as well as the name of the pool. Both strings are allocated and
1522 * must be freed by the caller.
1523 */
1524 int
1525 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1526 boolean_t *inuse)
1527 {
1528 nvlist_t *config;
1529 char *name;
1530 boolean_t ret;
1531 uint64_t guid, vdev_guid;
1532 zpool_handle_t *zhp;
1533 nvlist_t *pool_config;
1534 uint64_t stateval, isspare;
1535 aux_cbdata_t cb = { 0 };
1536 boolean_t isactive;
1537
1538 *inuse = B_FALSE;
1539
1540 if (zpool_read_label(fd, &config) != 0) {
1541 (void) no_memory(hdl);
1542 return (-1);
1543 }
1544
1545 if (config == NULL)
1546 return (0);
1547
1548 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1549 &stateval) == 0);
1550 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1551 &vdev_guid) == 0);
1552
1553 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1554 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1555 &name) == 0);
1556 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1557 &guid) == 0);
1558 }
1559
1560 switch (stateval) {
1561 case POOL_STATE_EXPORTED:
1562 ret = B_TRUE;
1563 break;
1564
1565 case POOL_STATE_ACTIVE:
1566 /*
1567 * For an active pool, we have to determine if it's really part
1568 * of a currently active pool (in which case the pool will exist
1569 * and the guid will be the same), or whether it's part of an
1570 * active pool that was disconnected without being explicitly
1571 * exported.
1572 */
1573 if (pool_active(hdl, name, guid, &isactive) != 0) {
1574 nvlist_free(config);
1575 return (-1);
1576 }
1577
1578 if (isactive) {
1579 /*
1580 * Because the device may have been removed while
1581 * offlined, we only report it as active if the vdev is
1582 * still present in the config. Otherwise, pretend like
1583 * it's not in use.
1584 */
1585 if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1586 (pool_config = zpool_get_config(zhp, NULL))
1587 != NULL) {
1588 nvlist_t *nvroot;
1589
1590 verify(nvlist_lookup_nvlist(pool_config,
1591 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1592 ret = find_guid(nvroot, vdev_guid);
1593 } else {
1594 ret = B_FALSE;
1595 }
1596
1597 /*
1598 * If this is an active spare within another pool, we
1599 * treat it like an unused hot spare. This allows the
1600 * user to create a pool with a hot spare that currently
1601 * in use within another pool. Since we return B_TRUE,
1602 * libdiskmgt will continue to prevent generic consumers
1603 * from using the device.
1604 */
1605 if (ret && nvlist_lookup_uint64(config,
1606 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1607 stateval = POOL_STATE_SPARE;
1608
1609 if (zhp != NULL)
1610 zpool_close(zhp);
1611 } else {
1612 stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1613 ret = B_TRUE;
1614 }
1615 break;
1616
1617 case POOL_STATE_SPARE:
1618 /*
1619 * For a hot spare, it can be either definitively in use, or
1620 * potentially active. To determine if it's in use, we iterate
1621 * over all pools in the system and search for one with a spare
1622 * with a matching guid.
1623 *
1624 * Due to the shared nature of spares, we don't actually report
1625 * the potentially active case as in use. This means the user
1626 * can freely create pools on the hot spares of exported pools,
1627 * but to do otherwise makes the resulting code complicated, and
1628 * we end up having to deal with this case anyway.
1629 */
1630 cb.cb_zhp = NULL;
1631 cb.cb_guid = vdev_guid;
1632 cb.cb_type = ZPOOL_CONFIG_SPARES;
1633 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1634 name = (char *)zpool_get_name(cb.cb_zhp);
1635 ret = TRUE;
1636 } else {
1637 ret = FALSE;
1638 }
1639 break;
1640
1641 case POOL_STATE_L2CACHE:
1642
1643 /*
1644 * Check if any pool is currently using this l2cache device.
1645 */
1646 cb.cb_zhp = NULL;
1647 cb.cb_guid = vdev_guid;
1648 cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1649 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1650 name = (char *)zpool_get_name(cb.cb_zhp);
1651 ret = TRUE;
1652 } else {
1653 ret = FALSE;
1654 }
1655 break;
1656
1657 default:
1658 ret = B_FALSE;
1659 }
1660
1661
1662 if (ret) {
1663 if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1664 if (cb.cb_zhp)
1665 zpool_close(cb.cb_zhp);
1666 nvlist_free(config);
1667 return (-1);
1668 }
1669 *state = (pool_state_t)stateval;
1670 }
1671
1672 if (cb.cb_zhp)
1673 zpool_close(cb.cb_zhp);
1674
1675 nvlist_free(config);
1676 *inuse = ret;
1677 return (0);
1678 }