]> git.proxmox.com Git - mirror_zfs-debian.git/blob - lib/libzfs/libzfs_import.c
Illumos #1693: persistent 'comment' field for a zpool
[mirror_zfs-debian.git] / lib / libzfs / libzfs_import.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011 by Delphix. All rights reserved.
25 */
26
27 /*
28 * Pool import support functions.
29 *
30 * To import a pool, we rely on reading the configuration information from the
31 * ZFS label of each device. If we successfully read the label, then we
32 * organize the configuration information in the following hierarchy:
33 *
34 * pool guid -> toplevel vdev guid -> label txg
35 *
36 * Duplicate entries matching this same tuple will be discarded. Once we have
37 * examined every device, we pick the best label txg config for each toplevel
38 * vdev. We then arrange these toplevel vdevs into a complete pool config, and
39 * update any paths that have changed. Finally, we attempt to import the pool
40 * using our derived config, and record the results.
41 */
42
43 #include <ctype.h>
44 #include <devid.h>
45 #include <dirent.h>
46 #include <errno.h>
47 #include <libintl.h>
48 #include <stddef.h>
49 #include <stdlib.h>
50 #include <string.h>
51 #include <sys/stat.h>
52 #include <unistd.h>
53 #include <fcntl.h>
54 #include <sys/vtoc.h>
55 #include <sys/dktp/fdisk.h>
56 #include <sys/efi_partition.h>
57
58 #include <sys/vdev_impl.h>
59 #ifdef HAVE_LIBBLKID
60 #include <blkid/blkid.h>
61 #endif
62
63 #include "libzfs.h"
64 #include "libzfs_impl.h"
65
66 /*
67 * Intermediate structures used to gather configuration information.
68 */
69 typedef struct config_entry {
70 uint64_t ce_txg;
71 nvlist_t *ce_config;
72 struct config_entry *ce_next;
73 } config_entry_t;
74
75 typedef struct vdev_entry {
76 uint64_t ve_guid;
77 config_entry_t *ve_configs;
78 struct vdev_entry *ve_next;
79 } vdev_entry_t;
80
81 typedef struct pool_entry {
82 uint64_t pe_guid;
83 vdev_entry_t *pe_vdevs;
84 struct pool_entry *pe_next;
85 } pool_entry_t;
86
87 typedef struct name_entry {
88 char *ne_name;
89 uint64_t ne_guid;
90 struct name_entry *ne_next;
91 } name_entry_t;
92
93 typedef struct pool_list {
94 pool_entry_t *pools;
95 name_entry_t *names;
96 } pool_list_t;
97
98 static char *
99 get_devid(const char *path)
100 {
101 int fd;
102 ddi_devid_t devid;
103 char *minor, *ret;
104
105 if ((fd = open(path, O_RDONLY)) < 0)
106 return (NULL);
107
108 minor = NULL;
109 ret = NULL;
110 if (devid_get(fd, &devid) == 0) {
111 if (devid_get_minor_name(fd, &minor) == 0)
112 ret = devid_str_encode(devid, minor);
113 if (minor != NULL)
114 devid_str_free(minor);
115 devid_free(devid);
116 }
117 (void) close(fd);
118
119 return (ret);
120 }
121
122
123 /*
124 * Go through and fix up any path and/or devid information for the given vdev
125 * configuration.
126 */
127 static int
128 fix_paths(nvlist_t *nv, name_entry_t *names)
129 {
130 nvlist_t **child;
131 uint_t c, children;
132 uint64_t guid;
133 name_entry_t *ne, *best;
134 char *path, *devid;
135 int matched;
136
137 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
138 &child, &children) == 0) {
139 for (c = 0; c < children; c++)
140 if (fix_paths(child[c], names) != 0)
141 return (-1);
142 return (0);
143 }
144
145 /*
146 * This is a leaf (file or disk) vdev. In either case, go through
147 * the name list and see if we find a matching guid. If so, replace
148 * the path and see if we can calculate a new devid.
149 *
150 * There may be multiple names associated with a particular guid, in
151 * which case we have overlapping slices or multiple paths to the same
152 * disk. If this is the case, then we want to pick the path that is
153 * the most similar to the original, where "most similar" is the number
154 * of matching characters starting from the end of the path. This will
155 * preserve slice numbers even if the disks have been reorganized, and
156 * will also catch preferred disk names if multiple paths exist.
157 */
158 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
159 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
160 path = NULL;
161
162 matched = 0;
163 best = NULL;
164 for (ne = names; ne != NULL; ne = ne->ne_next) {
165 if (ne->ne_guid == guid) {
166 const char *src, *dst;
167 int count;
168
169 if (path == NULL) {
170 best = ne;
171 break;
172 }
173
174 src = ne->ne_name + strlen(ne->ne_name) - 1;
175 dst = path + strlen(path) - 1;
176 for (count = 0; src >= ne->ne_name && dst >= path;
177 src--, dst--, count++)
178 if (*src != *dst)
179 break;
180
181 /*
182 * At this point, 'count' is the number of characters
183 * matched from the end.
184 */
185 if (count > matched || best == NULL) {
186 best = ne;
187 matched = count;
188 }
189 }
190 }
191
192 if (best == NULL)
193 return (0);
194
195 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
196 return (-1);
197
198 if ((devid = get_devid(best->ne_name)) == NULL) {
199 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
200 } else {
201 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
202 return (-1);
203 devid_str_free(devid);
204 }
205
206 return (0);
207 }
208
209 /*
210 * Add the given configuration to the list of known devices.
211 */
212 static int
213 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
214 nvlist_t *config)
215 {
216 uint64_t pool_guid, vdev_guid, top_guid, txg, state;
217 pool_entry_t *pe;
218 vdev_entry_t *ve;
219 config_entry_t *ce;
220 name_entry_t *ne;
221
222 /*
223 * If this is a hot spare not currently in use or level 2 cache
224 * device, add it to the list of names to translate, but don't do
225 * anything else.
226 */
227 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
228 &state) == 0 &&
229 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
230 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
231 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
232 return (-1);
233
234 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
235 free(ne);
236 return (-1);
237 }
238 ne->ne_guid = vdev_guid;
239 ne->ne_next = pl->names;
240 pl->names = ne;
241 return (0);
242 }
243
244 /*
245 * If we have a valid config but cannot read any of these fields, then
246 * it means we have a half-initialized label. In vdev_label_init()
247 * we write a label with txg == 0 so that we can identify the device
248 * in case the user refers to the same disk later on. If we fail to
249 * create the pool, we'll be left with a label in this state
250 * which should not be considered part of a valid pool.
251 */
252 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
253 &pool_guid) != 0 ||
254 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
255 &vdev_guid) != 0 ||
256 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
257 &top_guid) != 0 ||
258 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
259 &txg) != 0 || txg == 0) {
260 nvlist_free(config);
261 return (0);
262 }
263
264 /*
265 * First, see if we know about this pool. If not, then add it to the
266 * list of known pools.
267 */
268 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
269 if (pe->pe_guid == pool_guid)
270 break;
271 }
272
273 if (pe == NULL) {
274 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
275 nvlist_free(config);
276 return (-1);
277 }
278 pe->pe_guid = pool_guid;
279 pe->pe_next = pl->pools;
280 pl->pools = pe;
281 }
282
283 /*
284 * Second, see if we know about this toplevel vdev. Add it if its
285 * missing.
286 */
287 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
288 if (ve->ve_guid == top_guid)
289 break;
290 }
291
292 if (ve == NULL) {
293 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
294 nvlist_free(config);
295 return (-1);
296 }
297 ve->ve_guid = top_guid;
298 ve->ve_next = pe->pe_vdevs;
299 pe->pe_vdevs = ve;
300 }
301
302 /*
303 * Third, see if we have a config with a matching transaction group. If
304 * so, then we do nothing. Otherwise, add it to the list of known
305 * configs.
306 */
307 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
308 if (ce->ce_txg == txg)
309 break;
310 }
311
312 if (ce == NULL) {
313 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
314 nvlist_free(config);
315 return (-1);
316 }
317 ce->ce_txg = txg;
318 ce->ce_config = config;
319 ce->ce_next = ve->ve_configs;
320 ve->ve_configs = ce;
321 } else {
322 nvlist_free(config);
323 }
324
325 /*
326 * At this point we've successfully added our config to the list of
327 * known configs. The last thing to do is add the vdev guid -> path
328 * mappings so that we can fix up the configuration as necessary before
329 * doing the import.
330 */
331 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
332 return (-1);
333
334 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
335 free(ne);
336 return (-1);
337 }
338
339 ne->ne_guid = vdev_guid;
340 ne->ne_next = pl->names;
341 pl->names = ne;
342
343 return (0);
344 }
345
346 /*
347 * Returns true if the named pool matches the given GUID.
348 */
349 static int
350 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
351 boolean_t *isactive)
352 {
353 zpool_handle_t *zhp;
354 uint64_t theguid;
355
356 if (zpool_open_silent(hdl, name, &zhp) != 0)
357 return (-1);
358
359 if (zhp == NULL) {
360 *isactive = B_FALSE;
361 return (0);
362 }
363
364 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
365 &theguid) == 0);
366
367 zpool_close(zhp);
368
369 *isactive = (theguid == guid);
370 return (0);
371 }
372
373 static nvlist_t *
374 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
375 {
376 nvlist_t *nvl;
377 zfs_cmd_t zc = { "\0", "\0", "\0", "\0", 0 };
378 int err;
379
380 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
381 return (NULL);
382
383 if (zcmd_alloc_dst_nvlist(hdl, &zc,
384 zc.zc_nvlist_conf_size * 2) != 0) {
385 zcmd_free_nvlists(&zc);
386 return (NULL);
387 }
388
389 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
390 &zc)) != 0 && errno == ENOMEM) {
391 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
392 zcmd_free_nvlists(&zc);
393 return (NULL);
394 }
395 }
396
397 if (err) {
398 zcmd_free_nvlists(&zc);
399 return (NULL);
400 }
401
402 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
403 zcmd_free_nvlists(&zc);
404 return (NULL);
405 }
406
407 zcmd_free_nvlists(&zc);
408 return (nvl);
409 }
410
411 /*
412 * Determine if the vdev id is a hole in the namespace.
413 */
414 boolean_t
415 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
416 {
417 int c;
418
419 for (c = 0; c < holes; c++) {
420
421 /* Top-level is a hole */
422 if (hole_array[c] == id)
423 return (B_TRUE);
424 }
425 return (B_FALSE);
426 }
427
428 /*
429 * Convert our list of pools into the definitive set of configurations. We
430 * start by picking the best config for each toplevel vdev. Once that's done,
431 * we assemble the toplevel vdevs into a full config for the pool. We make a
432 * pass to fix up any incorrect paths, and then add it to the main list to
433 * return to the user.
434 */
435 static nvlist_t *
436 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
437 {
438 pool_entry_t *pe;
439 vdev_entry_t *ve;
440 config_entry_t *ce;
441 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
442 nvlist_t **spares, **l2cache;
443 uint_t i, nspares, nl2cache;
444 boolean_t config_seen;
445 uint64_t best_txg;
446 char *name, *hostname, *comment;
447 uint64_t version, guid;
448 uint_t children = 0;
449 nvlist_t **child = NULL;
450 uint_t holes;
451 uint64_t *hole_array, max_id;
452 uint_t c;
453 boolean_t isactive;
454 uint64_t hostid;
455 nvlist_t *nvl;
456 boolean_t found_one = B_FALSE;
457 boolean_t valid_top_config = B_FALSE;
458
459 if (nvlist_alloc(&ret, 0, 0) != 0)
460 goto nomem;
461
462 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
463 uint64_t id, max_txg = 0;
464
465 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
466 goto nomem;
467 config_seen = B_FALSE;
468
469 /*
470 * Iterate over all toplevel vdevs. Grab the pool configuration
471 * from the first one we find, and then go through the rest and
472 * add them as necessary to the 'vdevs' member of the config.
473 */
474 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
475
476 /*
477 * Determine the best configuration for this vdev by
478 * selecting the config with the latest transaction
479 * group.
480 */
481 best_txg = 0;
482 for (ce = ve->ve_configs; ce != NULL;
483 ce = ce->ce_next) {
484
485 if (ce->ce_txg > best_txg) {
486 tmp = ce->ce_config;
487 best_txg = ce->ce_txg;
488 }
489 }
490
491 /*
492 * We rely on the fact that the max txg for the
493 * pool will contain the most up-to-date information
494 * about the valid top-levels in the vdev namespace.
495 */
496 if (best_txg > max_txg) {
497 (void) nvlist_remove(config,
498 ZPOOL_CONFIG_VDEV_CHILDREN,
499 DATA_TYPE_UINT64);
500 (void) nvlist_remove(config,
501 ZPOOL_CONFIG_HOLE_ARRAY,
502 DATA_TYPE_UINT64_ARRAY);
503
504 max_txg = best_txg;
505 hole_array = NULL;
506 holes = 0;
507 max_id = 0;
508 valid_top_config = B_FALSE;
509
510 if (nvlist_lookup_uint64(tmp,
511 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
512 verify(nvlist_add_uint64(config,
513 ZPOOL_CONFIG_VDEV_CHILDREN,
514 max_id) == 0);
515 valid_top_config = B_TRUE;
516 }
517
518 if (nvlist_lookup_uint64_array(tmp,
519 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
520 &holes) == 0) {
521 verify(nvlist_add_uint64_array(config,
522 ZPOOL_CONFIG_HOLE_ARRAY,
523 hole_array, holes) == 0);
524 }
525 }
526
527 if (!config_seen) {
528 /*
529 * Copy the relevant pieces of data to the pool
530 * configuration:
531 *
532 * version
533 * pool guid
534 * name
535 * comment (if available)
536 * pool state
537 * hostid (if available)
538 * hostname (if available)
539 */
540 uint64_t state;
541
542 verify(nvlist_lookup_uint64(tmp,
543 ZPOOL_CONFIG_VERSION, &version) == 0);
544 if (nvlist_add_uint64(config,
545 ZPOOL_CONFIG_VERSION, version) != 0)
546 goto nomem;
547 verify(nvlist_lookup_uint64(tmp,
548 ZPOOL_CONFIG_POOL_GUID, &guid) == 0);
549 if (nvlist_add_uint64(config,
550 ZPOOL_CONFIG_POOL_GUID, guid) != 0)
551 goto nomem;
552 verify(nvlist_lookup_string(tmp,
553 ZPOOL_CONFIG_POOL_NAME, &name) == 0);
554 if (nvlist_add_string(config,
555 ZPOOL_CONFIG_POOL_NAME, name) != 0)
556 goto nomem;
557
558 /*
559 * COMMENT is optional, don't bail if it's not
560 * there, instead, set it to NULL.
561 */
562 if (nvlist_lookup_string(tmp,
563 ZPOOL_CONFIG_COMMENT, &comment) != 0)
564 comment = NULL;
565 else if (nvlist_add_string(config,
566 ZPOOL_CONFIG_COMMENT, comment) != 0)
567 goto nomem;
568
569 verify(nvlist_lookup_uint64(tmp,
570 ZPOOL_CONFIG_POOL_STATE, &state) == 0);
571 if (nvlist_add_uint64(config,
572 ZPOOL_CONFIG_POOL_STATE, state) != 0)
573 goto nomem;
574
575 hostid = 0;
576 if (nvlist_lookup_uint64(tmp,
577 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
578 if (nvlist_add_uint64(config,
579 ZPOOL_CONFIG_HOSTID, hostid) != 0)
580 goto nomem;
581 verify(nvlist_lookup_string(tmp,
582 ZPOOL_CONFIG_HOSTNAME,
583 &hostname) == 0);
584 if (nvlist_add_string(config,
585 ZPOOL_CONFIG_HOSTNAME,
586 hostname) != 0)
587 goto nomem;
588 }
589
590 config_seen = B_TRUE;
591 }
592
593 /*
594 * Add this top-level vdev to the child array.
595 */
596 verify(nvlist_lookup_nvlist(tmp,
597 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
598 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
599 &id) == 0);
600
601 if (id >= children) {
602 nvlist_t **newchild;
603
604 newchild = zfs_alloc(hdl, (id + 1) *
605 sizeof (nvlist_t *));
606 if (newchild == NULL)
607 goto nomem;
608
609 for (c = 0; c < children; c++)
610 newchild[c] = child[c];
611
612 free(child);
613 child = newchild;
614 children = id + 1;
615 }
616 if (nvlist_dup(nvtop, &child[id], 0) != 0)
617 goto nomem;
618
619 }
620
621 /*
622 * If we have information about all the top-levels then
623 * clean up the nvlist which we've constructed. This
624 * means removing any extraneous devices that are
625 * beyond the valid range or adding devices to the end
626 * of our array which appear to be missing.
627 */
628 if (valid_top_config) {
629 if (max_id < children) {
630 for (c = max_id; c < children; c++)
631 nvlist_free(child[c]);
632 children = max_id;
633 } else if (max_id > children) {
634 nvlist_t **newchild;
635
636 newchild = zfs_alloc(hdl, (max_id) *
637 sizeof (nvlist_t *));
638 if (newchild == NULL)
639 goto nomem;
640
641 for (c = 0; c < children; c++)
642 newchild[c] = child[c];
643
644 free(child);
645 child = newchild;
646 children = max_id;
647 }
648 }
649
650 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
651 &guid) == 0);
652
653 /*
654 * The vdev namespace may contain holes as a result of
655 * device removal. We must add them back into the vdev
656 * tree before we process any missing devices.
657 */
658 if (holes > 0) {
659 ASSERT(valid_top_config);
660
661 for (c = 0; c < children; c++) {
662 nvlist_t *holey;
663
664 if (child[c] != NULL ||
665 !vdev_is_hole(hole_array, holes, c))
666 continue;
667
668 if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
669 0) != 0)
670 goto nomem;
671
672 /*
673 * Holes in the namespace are treated as
674 * "hole" top-level vdevs and have a
675 * special flag set on them.
676 */
677 if (nvlist_add_string(holey,
678 ZPOOL_CONFIG_TYPE,
679 VDEV_TYPE_HOLE) != 0 ||
680 nvlist_add_uint64(holey,
681 ZPOOL_CONFIG_ID, c) != 0 ||
682 nvlist_add_uint64(holey,
683 ZPOOL_CONFIG_GUID, 0ULL) != 0)
684 goto nomem;
685 child[c] = holey;
686 }
687 }
688
689 /*
690 * Look for any missing top-level vdevs. If this is the case,
691 * create a faked up 'missing' vdev as a placeholder. We cannot
692 * simply compress the child array, because the kernel performs
693 * certain checks to make sure the vdev IDs match their location
694 * in the configuration.
695 */
696 for (c = 0; c < children; c++) {
697 if (child[c] == NULL) {
698 nvlist_t *missing;
699 if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
700 0) != 0)
701 goto nomem;
702 if (nvlist_add_string(missing,
703 ZPOOL_CONFIG_TYPE,
704 VDEV_TYPE_MISSING) != 0 ||
705 nvlist_add_uint64(missing,
706 ZPOOL_CONFIG_ID, c) != 0 ||
707 nvlist_add_uint64(missing,
708 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
709 nvlist_free(missing);
710 goto nomem;
711 }
712 child[c] = missing;
713 }
714 }
715
716 /*
717 * Put all of this pool's top-level vdevs into a root vdev.
718 */
719 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
720 goto nomem;
721 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
722 VDEV_TYPE_ROOT) != 0 ||
723 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
724 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
725 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
726 child, children) != 0) {
727 nvlist_free(nvroot);
728 goto nomem;
729 }
730
731 for (c = 0; c < children; c++)
732 nvlist_free(child[c]);
733 free(child);
734 children = 0;
735 child = NULL;
736
737 /*
738 * Go through and fix up any paths and/or devids based on our
739 * known list of vdev GUID -> path mappings.
740 */
741 if (fix_paths(nvroot, pl->names) != 0) {
742 nvlist_free(nvroot);
743 goto nomem;
744 }
745
746 /*
747 * Add the root vdev to this pool's configuration.
748 */
749 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
750 nvroot) != 0) {
751 nvlist_free(nvroot);
752 goto nomem;
753 }
754 nvlist_free(nvroot);
755
756 /*
757 * zdb uses this path to report on active pools that were
758 * imported or created using -R.
759 */
760 if (active_ok)
761 goto add_pool;
762
763 /*
764 * Determine if this pool is currently active, in which case we
765 * can't actually import it.
766 */
767 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
768 &name) == 0);
769 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
770 &guid) == 0);
771
772 if (pool_active(hdl, name, guid, &isactive) != 0)
773 goto error;
774
775 if (isactive) {
776 nvlist_free(config);
777 config = NULL;
778 continue;
779 }
780
781 if ((nvl = refresh_config(hdl, config)) == NULL) {
782 nvlist_free(config);
783 config = NULL;
784 continue;
785 }
786
787 nvlist_free(config);
788 config = nvl;
789
790 /*
791 * Go through and update the paths for spares, now that we have
792 * them.
793 */
794 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
795 &nvroot) == 0);
796 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
797 &spares, &nspares) == 0) {
798 for (i = 0; i < nspares; i++) {
799 if (fix_paths(spares[i], pl->names) != 0)
800 goto nomem;
801 }
802 }
803
804 /*
805 * Update the paths for l2cache devices.
806 */
807 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
808 &l2cache, &nl2cache) == 0) {
809 for (i = 0; i < nl2cache; i++) {
810 if (fix_paths(l2cache[i], pl->names) != 0)
811 goto nomem;
812 }
813 }
814
815 /*
816 * Restore the original information read from the actual label.
817 */
818 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
819 DATA_TYPE_UINT64);
820 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
821 DATA_TYPE_STRING);
822 if (hostid != 0) {
823 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
824 hostid) == 0);
825 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
826 hostname) == 0);
827 }
828
829 add_pool:
830 /*
831 * Add this pool to the list of configs.
832 */
833 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
834 &name) == 0);
835 if (nvlist_add_nvlist(ret, name, config) != 0)
836 goto nomem;
837
838 found_one = B_TRUE;
839 nvlist_free(config);
840 config = NULL;
841 }
842
843 if (!found_one) {
844 nvlist_free(ret);
845 ret = NULL;
846 }
847
848 return (ret);
849
850 nomem:
851 (void) no_memory(hdl);
852 error:
853 nvlist_free(config);
854 nvlist_free(ret);
855 for (c = 0; c < children; c++)
856 nvlist_free(child[c]);
857 free(child);
858
859 return (NULL);
860 }
861
862 /*
863 * Return the offset of the given label.
864 */
865 static uint64_t
866 label_offset(uint64_t size, int l)
867 {
868 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
869 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
870 0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
871 }
872
873 /*
874 * Given a file descriptor, read the label information and return an nvlist
875 * describing the configuration, if there is one.
876 */
877 int
878 zpool_read_label(int fd, nvlist_t **config)
879 {
880 struct stat64 statbuf;
881 int l;
882 vdev_label_t *label;
883 uint64_t state, txg, size;
884
885 *config = NULL;
886
887 if (fstat64(fd, &statbuf) == -1)
888 return (0);
889 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
890
891 if ((label = malloc(sizeof (vdev_label_t))) == NULL)
892 return (-1);
893
894 for (l = 0; l < VDEV_LABELS; l++) {
895 if (pread64(fd, label, sizeof (vdev_label_t),
896 label_offset(size, l)) != sizeof (vdev_label_t))
897 continue;
898
899 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
900 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
901 continue;
902
903 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
904 &state) != 0 || state > POOL_STATE_L2CACHE) {
905 nvlist_free(*config);
906 continue;
907 }
908
909 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
910 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
911 &txg) != 0 || txg == 0)) {
912 nvlist_free(*config);
913 continue;
914 }
915
916 free(label);
917 return (0);
918 }
919
920 free(label);
921 *config = NULL;
922 return (0);
923 }
924
925 #ifdef HAVE_LIBBLKID
926 /*
927 * Use libblkid to quickly search for zfs devices
928 */
929 static int
930 zpool_find_import_blkid(libzfs_handle_t *hdl, pool_list_t *pools)
931 {
932 blkid_cache cache;
933 blkid_dev_iterate iter;
934 blkid_dev dev;
935 const char *devname;
936 nvlist_t *config;
937 int fd, err;
938
939 err = blkid_get_cache(&cache, NULL);
940 if (err != 0) {
941 (void) zfs_error_fmt(hdl, EZFS_BADCACHE,
942 dgettext(TEXT_DOMAIN, "blkid_get_cache() %d"), err);
943 goto err_blkid1;
944 }
945
946 err = blkid_probe_all(cache);
947 if (err != 0) {
948 (void) zfs_error_fmt(hdl, EZFS_BADCACHE,
949 dgettext(TEXT_DOMAIN, "blkid_probe_all() %d"), err);
950 goto err_blkid2;
951 }
952
953 iter = blkid_dev_iterate_begin(cache);
954 if (iter == NULL) {
955 (void) zfs_error_fmt(hdl, EZFS_BADCACHE,
956 dgettext(TEXT_DOMAIN, "blkid_dev_iterate_begin()"));
957 goto err_blkid2;
958 }
959
960 err = blkid_dev_set_search(iter, "TYPE", "zfs");
961 if (err != 0) {
962 (void) zfs_error_fmt(hdl, EZFS_BADCACHE,
963 dgettext(TEXT_DOMAIN, "blkid_dev_set_search() %d"), err);
964 goto err_blkid3;
965 }
966
967 while (blkid_dev_next(iter, &dev) == 0) {
968 devname = blkid_dev_devname(dev);
969 if ((fd = open64(devname, O_RDONLY)) < 0)
970 continue;
971
972 err = zpool_read_label(fd, &config);
973 (void) close(fd);
974
975 if (err != 0) {
976 (void) no_memory(hdl);
977 goto err_blkid3;
978 }
979
980 if (config != NULL) {
981 err = add_config(hdl, pools, devname, config);
982 if (err != 0)
983 goto err_blkid3;
984 }
985 }
986
987 err_blkid3:
988 blkid_dev_iterate_end(iter);
989 err_blkid2:
990 blkid_put_cache(cache);
991 err_blkid1:
992 return err;
993 }
994 #endif /* HAVE_LIBBLKID */
995
996 /*
997 * Given a list of directories to search, find all pools stored on disk. This
998 * includes partial pools which are not available to import. If no args are
999 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1000 * poolname or guid (but not both) are provided by the caller when trying
1001 * to import a specific pool.
1002 */
1003 static nvlist_t *
1004 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1005 {
1006 int i, dirs = iarg->paths;
1007 DIR *dirp = NULL;
1008 struct dirent64 *dp;
1009 char path[MAXPATHLEN];
1010 char *end, **dir = iarg->path;
1011 size_t pathleft;
1012 struct stat64 statbuf;
1013 nvlist_t *ret = NULL, *config;
1014 static char *default_dir = DISK_ROOT;
1015 int fd;
1016 pool_list_t pools = { 0 };
1017 pool_entry_t *pe, *penext;
1018 vdev_entry_t *ve, *venext;
1019 config_entry_t *ce, *cenext;
1020 name_entry_t *ne, *nenext;
1021
1022 verify(iarg->poolname == NULL || iarg->guid == 0);
1023
1024 if (dirs == 0) {
1025 #ifdef HAVE_LIBBLKID
1026 /* Use libblkid to scan all device for their type */
1027 if (zpool_find_import_blkid(hdl, &pools) == 0)
1028 goto skip_scanning;
1029
1030 (void) zfs_error_fmt(hdl, EZFS_BADCACHE,
1031 dgettext(TEXT_DOMAIN, "blkid failure falling back "
1032 "to manual probing"));
1033 #endif /* HAVE_LIBBLKID */
1034 dirs = 1;
1035 dir = &default_dir;
1036 }
1037
1038 /*
1039 * Go through and read the label configuration information from every
1040 * possible device, organizing the information according to pool GUID
1041 * and toplevel GUID.
1042 */
1043 for (i = 0; i < dirs; i++) {
1044 char *rdsk;
1045 int dfd;
1046
1047 /* use realpath to normalize the path */
1048 if (realpath(dir[i], path) == 0) {
1049 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1050 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1051 goto error;
1052 }
1053 end = &path[strlen(path)];
1054 *end++ = '/';
1055 *end = 0;
1056 pathleft = &path[sizeof (path)] - end;
1057
1058 /*
1059 * Using raw devices instead of block devices when we're
1060 * reading the labels skips a bunch of slow operations during
1061 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1062 */
1063 if (strcmp(path, "/dev/dsk/") == 0)
1064 rdsk = "/dev/rdsk/";
1065 else
1066 rdsk = path;
1067
1068 if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1069 (dirp = fdopendir(dfd)) == NULL) {
1070 zfs_error_aux(hdl, strerror(errno));
1071 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1072 dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1073 rdsk);
1074 goto error;
1075 }
1076
1077 /*
1078 * This is not MT-safe, but we have no MT consumers of libzfs
1079 */
1080 while ((dp = readdir64(dirp)) != NULL) {
1081 const char *name = dp->d_name;
1082 if (name[0] == '.' &&
1083 (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1084 continue;
1085
1086 /*
1087 * Skip checking devices with well known prefixes:
1088 * watchdog - A special close is required to avoid
1089 * triggering it and resetting the system.
1090 * fuse - Fuse control device.
1091 * ppp - Generic PPP driver.
1092 * tty* - Generic serial interface.
1093 * vcs* - Virtual console memory.
1094 * parport* - Parallel port interface.
1095 * lp* - Printer interface.
1096 * fd* - Floppy interface.
1097 * hpet - High Precision Event Timer, crashes qemu
1098 * when accessed from a virtual machine.
1099 * core - Symlink to /proc/kcore, causes a crash
1100 * when access from Xen dom0.
1101 */
1102 if ((strncmp(name, "watchdog", 8) == 0) ||
1103 (strncmp(name, "fuse", 4) == 0) ||
1104 (strncmp(name, "ppp", 3) == 0) ||
1105 (strncmp(name, "tty", 3) == 0) ||
1106 (strncmp(name, "vcs", 3) == 0) ||
1107 (strncmp(name, "parport", 7) == 0) ||
1108 (strncmp(name, "lp", 2) == 0) ||
1109 (strncmp(name, "fd", 2) == 0) ||
1110 (strncmp(name, "hpet", 4) == 0) ||
1111 (strncmp(name, "core", 4) == 0))
1112 continue;
1113
1114 /*
1115 * Ignore failed stats. We only want regular
1116 * files and block devices.
1117 */
1118 if ((fstatat64(dfd, name, &statbuf, 0) != 0) ||
1119 (!S_ISREG(statbuf.st_mode) &&
1120 !S_ISBLK(statbuf.st_mode)))
1121 continue;
1122
1123 if ((fd = openat64(dfd, name, O_RDONLY)) < 0)
1124 continue;
1125
1126 if ((zpool_read_label(fd, &config)) != 0) {
1127 (void) close(fd);
1128 (void) no_memory(hdl);
1129 goto error;
1130 }
1131
1132 (void) close(fd);
1133
1134 if (config != NULL) {
1135 boolean_t matched = B_TRUE;
1136
1137 if (iarg->poolname != NULL) {
1138 char *pname;
1139
1140 matched = nvlist_lookup_string(config,
1141 ZPOOL_CONFIG_POOL_NAME,
1142 &pname) == 0 &&
1143 strcmp(iarg->poolname, pname) == 0;
1144 } else if (iarg->guid != 0) {
1145 uint64_t this_guid;
1146
1147 matched = nvlist_lookup_uint64(config,
1148 ZPOOL_CONFIG_POOL_GUID,
1149 &this_guid) == 0 &&
1150 iarg->guid == this_guid;
1151 }
1152 if (!matched) {
1153 nvlist_free(config);
1154 config = NULL;
1155 continue;
1156 }
1157 /* use the non-raw path for the config */
1158 (void) strlcpy(end, name, pathleft);
1159 if (add_config(hdl, &pools, path, config) != 0)
1160 goto error;
1161 }
1162 }
1163
1164 (void) closedir(dirp);
1165 dirp = NULL;
1166 }
1167
1168 #ifdef HAVE_LIBBLKID
1169 skip_scanning:
1170 #endif
1171 ret = get_configs(hdl, &pools, iarg->can_be_active);
1172
1173 error:
1174 for (pe = pools.pools; pe != NULL; pe = penext) {
1175 penext = pe->pe_next;
1176 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1177 venext = ve->ve_next;
1178 for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1179 cenext = ce->ce_next;
1180 if (ce->ce_config)
1181 nvlist_free(ce->ce_config);
1182 free(ce);
1183 }
1184 free(ve);
1185 }
1186 free(pe);
1187 }
1188
1189 for (ne = pools.names; ne != NULL; ne = nenext) {
1190 nenext = ne->ne_next;
1191 if (ne->ne_name)
1192 free(ne->ne_name);
1193 free(ne);
1194 }
1195
1196 if (dirp)
1197 (void) closedir(dirp);
1198
1199 return (ret);
1200 }
1201
1202 nvlist_t *
1203 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1204 {
1205 importargs_t iarg = { 0 };
1206
1207 iarg.paths = argc;
1208 iarg.path = argv;
1209
1210 return (zpool_find_import_impl(hdl, &iarg));
1211 }
1212
1213 /*
1214 * Given a cache file, return the contents as a list of importable pools.
1215 * poolname or guid (but not both) are provided by the caller when trying
1216 * to import a specific pool.
1217 */
1218 nvlist_t *
1219 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1220 char *poolname, uint64_t guid)
1221 {
1222 char *buf;
1223 int fd;
1224 struct stat64 statbuf;
1225 nvlist_t *raw, *src, *dst;
1226 nvlist_t *pools;
1227 nvpair_t *elem;
1228 char *name;
1229 uint64_t this_guid;
1230 boolean_t active;
1231
1232 verify(poolname == NULL || guid == 0);
1233
1234 if ((fd = open(cachefile, O_RDONLY)) < 0) {
1235 zfs_error_aux(hdl, "%s", strerror(errno));
1236 (void) zfs_error(hdl, EZFS_BADCACHE,
1237 dgettext(TEXT_DOMAIN, "failed to open cache file"));
1238 return (NULL);
1239 }
1240
1241 if (fstat64(fd, &statbuf) != 0) {
1242 zfs_error_aux(hdl, "%s", strerror(errno));
1243 (void) close(fd);
1244 (void) zfs_error(hdl, EZFS_BADCACHE,
1245 dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1246 return (NULL);
1247 }
1248
1249 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1250 (void) close(fd);
1251 return (NULL);
1252 }
1253
1254 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1255 (void) close(fd);
1256 free(buf);
1257 (void) zfs_error(hdl, EZFS_BADCACHE,
1258 dgettext(TEXT_DOMAIN,
1259 "failed to read cache file contents"));
1260 return (NULL);
1261 }
1262
1263 (void) close(fd);
1264
1265 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1266 free(buf);
1267 (void) zfs_error(hdl, EZFS_BADCACHE,
1268 dgettext(TEXT_DOMAIN,
1269 "invalid or corrupt cache file contents"));
1270 return (NULL);
1271 }
1272
1273 free(buf);
1274
1275 /*
1276 * Go through and get the current state of the pools and refresh their
1277 * state.
1278 */
1279 if (nvlist_alloc(&pools, 0, 0) != 0) {
1280 (void) no_memory(hdl);
1281 nvlist_free(raw);
1282 return (NULL);
1283 }
1284
1285 elem = NULL;
1286 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1287 verify(nvpair_value_nvlist(elem, &src) == 0);
1288
1289 verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME,
1290 &name) == 0);
1291 if (poolname != NULL && strcmp(poolname, name) != 0)
1292 continue;
1293
1294 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1295 &this_guid) == 0);
1296 if (guid != 0) {
1297 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1298 &this_guid) == 0);
1299 if (guid != this_guid)
1300 continue;
1301 }
1302
1303 if (pool_active(hdl, name, this_guid, &active) != 0) {
1304 nvlist_free(raw);
1305 nvlist_free(pools);
1306 return (NULL);
1307 }
1308
1309 if (active)
1310 continue;
1311
1312 if ((dst = refresh_config(hdl, src)) == NULL) {
1313 nvlist_free(raw);
1314 nvlist_free(pools);
1315 return (NULL);
1316 }
1317
1318 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1319 (void) no_memory(hdl);
1320 nvlist_free(dst);
1321 nvlist_free(raw);
1322 nvlist_free(pools);
1323 return (NULL);
1324 }
1325 nvlist_free(dst);
1326 }
1327
1328 nvlist_free(raw);
1329 return (pools);
1330 }
1331
1332 static int
1333 name_or_guid_exists(zpool_handle_t *zhp, void *data)
1334 {
1335 importargs_t *import = data;
1336 int found = 0;
1337
1338 if (import->poolname != NULL) {
1339 char *pool_name;
1340
1341 verify(nvlist_lookup_string(zhp->zpool_config,
1342 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1343 if (strcmp(pool_name, import->poolname) == 0)
1344 found = 1;
1345 } else {
1346 uint64_t pool_guid;
1347
1348 verify(nvlist_lookup_uint64(zhp->zpool_config,
1349 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1350 if (pool_guid == import->guid)
1351 found = 1;
1352 }
1353
1354 zpool_close(zhp);
1355 return (found);
1356 }
1357
1358 nvlist_t *
1359 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1360 {
1361 verify(import->poolname == NULL || import->guid == 0);
1362
1363 if (import->unique)
1364 import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1365
1366 if (import->cachefile != NULL)
1367 return (zpool_find_import_cached(hdl, import->cachefile,
1368 import->poolname, import->guid));
1369
1370 return (zpool_find_import_impl(hdl, import));
1371 }
1372
1373 boolean_t
1374 find_guid(nvlist_t *nv, uint64_t guid)
1375 {
1376 uint64_t tmp;
1377 nvlist_t **child;
1378 uint_t c, children;
1379
1380 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1381 if (tmp == guid)
1382 return (B_TRUE);
1383
1384 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1385 &child, &children) == 0) {
1386 for (c = 0; c < children; c++)
1387 if (find_guid(child[c], guid))
1388 return (B_TRUE);
1389 }
1390
1391 return (B_FALSE);
1392 }
1393
1394 typedef struct aux_cbdata {
1395 const char *cb_type;
1396 uint64_t cb_guid;
1397 zpool_handle_t *cb_zhp;
1398 } aux_cbdata_t;
1399
1400 static int
1401 find_aux(zpool_handle_t *zhp, void *data)
1402 {
1403 aux_cbdata_t *cbp = data;
1404 nvlist_t **list;
1405 uint_t i, count;
1406 uint64_t guid;
1407 nvlist_t *nvroot;
1408
1409 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1410 &nvroot) == 0);
1411
1412 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1413 &list, &count) == 0) {
1414 for (i = 0; i < count; i++) {
1415 verify(nvlist_lookup_uint64(list[i],
1416 ZPOOL_CONFIG_GUID, &guid) == 0);
1417 if (guid == cbp->cb_guid) {
1418 cbp->cb_zhp = zhp;
1419 return (1);
1420 }
1421 }
1422 }
1423
1424 zpool_close(zhp);
1425 return (0);
1426 }
1427
1428 /*
1429 * Determines if the pool is in use. If so, it returns true and the state of
1430 * the pool as well as the name of the pool. Both strings are allocated and
1431 * must be freed by the caller.
1432 */
1433 int
1434 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1435 boolean_t *inuse)
1436 {
1437 nvlist_t *config;
1438 char *name;
1439 boolean_t ret;
1440 uint64_t guid, vdev_guid;
1441 zpool_handle_t *zhp;
1442 nvlist_t *pool_config;
1443 uint64_t stateval, isspare;
1444 aux_cbdata_t cb = { 0 };
1445 boolean_t isactive;
1446
1447 *inuse = B_FALSE;
1448
1449 if (zpool_read_label(fd, &config) != 0) {
1450 (void) no_memory(hdl);
1451 return (-1);
1452 }
1453
1454 if (config == NULL)
1455 return (0);
1456
1457 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1458 &stateval) == 0);
1459 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1460 &vdev_guid) == 0);
1461
1462 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1463 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1464 &name) == 0);
1465 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1466 &guid) == 0);
1467 }
1468
1469 switch (stateval) {
1470 case POOL_STATE_EXPORTED:
1471 /*
1472 * A pool with an exported state may in fact be imported
1473 * read-only, so check the in-core state to see if it's
1474 * active and imported read-only. If it is, set
1475 * its state to active.
1476 */
1477 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1478 (zhp = zpool_open_canfail(hdl, name)) != NULL &&
1479 zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1480 stateval = POOL_STATE_ACTIVE;
1481
1482 ret = B_TRUE;
1483 break;
1484
1485 case POOL_STATE_ACTIVE:
1486 /*
1487 * For an active pool, we have to determine if it's really part
1488 * of a currently active pool (in which case the pool will exist
1489 * and the guid will be the same), or whether it's part of an
1490 * active pool that was disconnected without being explicitly
1491 * exported.
1492 */
1493 if (pool_active(hdl, name, guid, &isactive) != 0) {
1494 nvlist_free(config);
1495 return (-1);
1496 }
1497
1498 if (isactive) {
1499 /*
1500 * Because the device may have been removed while
1501 * offlined, we only report it as active if the vdev is
1502 * still present in the config. Otherwise, pretend like
1503 * it's not in use.
1504 */
1505 if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1506 (pool_config = zpool_get_config(zhp, NULL))
1507 != NULL) {
1508 nvlist_t *nvroot;
1509
1510 verify(nvlist_lookup_nvlist(pool_config,
1511 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1512 ret = find_guid(nvroot, vdev_guid);
1513 } else {
1514 ret = B_FALSE;
1515 }
1516
1517 /*
1518 * If this is an active spare within another pool, we
1519 * treat it like an unused hot spare. This allows the
1520 * user to create a pool with a hot spare that currently
1521 * in use within another pool. Since we return B_TRUE,
1522 * libdiskmgt will continue to prevent generic consumers
1523 * from using the device.
1524 */
1525 if (ret && nvlist_lookup_uint64(config,
1526 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1527 stateval = POOL_STATE_SPARE;
1528
1529 if (zhp != NULL)
1530 zpool_close(zhp);
1531 } else {
1532 stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1533 ret = B_TRUE;
1534 }
1535 break;
1536
1537 case POOL_STATE_SPARE:
1538 /*
1539 * For a hot spare, it can be either definitively in use, or
1540 * potentially active. To determine if it's in use, we iterate
1541 * over all pools in the system and search for one with a spare
1542 * with a matching guid.
1543 *
1544 * Due to the shared nature of spares, we don't actually report
1545 * the potentially active case as in use. This means the user
1546 * can freely create pools on the hot spares of exported pools,
1547 * but to do otherwise makes the resulting code complicated, and
1548 * we end up having to deal with this case anyway.
1549 */
1550 cb.cb_zhp = NULL;
1551 cb.cb_guid = vdev_guid;
1552 cb.cb_type = ZPOOL_CONFIG_SPARES;
1553 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1554 name = (char *)zpool_get_name(cb.cb_zhp);
1555 ret = TRUE;
1556 } else {
1557 ret = FALSE;
1558 }
1559 break;
1560
1561 case POOL_STATE_L2CACHE:
1562
1563 /*
1564 * Check if any pool is currently using this l2cache device.
1565 */
1566 cb.cb_zhp = NULL;
1567 cb.cb_guid = vdev_guid;
1568 cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1569 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1570 name = (char *)zpool_get_name(cb.cb_zhp);
1571 ret = TRUE;
1572 } else {
1573 ret = FALSE;
1574 }
1575 break;
1576
1577 default:
1578 ret = B_FALSE;
1579 }
1580
1581
1582 if (ret) {
1583 if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1584 if (cb.cb_zhp)
1585 zpool_close(cb.cb_zhp);
1586 nvlist_free(config);
1587 return (-1);
1588 }
1589 *state = (pool_state_t)stateval;
1590 }
1591
1592 if (cb.cb_zhp)
1593 zpool_close(cb.cb_zhp);
1594
1595 nvlist_free(config);
1596 *inuse = ret;
1597 return (0);
1598 }