]> git.proxmox.com Git - mirror_zfs.git/blob - lib/libzfs/libzfs_util.c
OpenZFS 7431 - ZFS Channel Programs
[mirror_zfs.git] / lib / libzfs / libzfs_util.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
27 * Copyright (c) 2017 Datto Inc.
28 */
29
30 /*
31 * Internal utility routines for the ZFS library.
32 */
33
34 #include <errno.h>
35 #include <fcntl.h>
36 #include <libintl.h>
37 #include <stdarg.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <strings.h>
41 #include <unistd.h>
42 #include <ctype.h>
43 #include <math.h>
44 #include <sys/stat.h>
45 #include <sys/mnttab.h>
46 #include <sys/mntent.h>
47 #include <sys/types.h>
48 #include <sys/wait.h>
49
50 #include <libzfs.h>
51 #include <libzfs_core.h>
52
53 #include "libzfs_impl.h"
54 #include "zfs_prop.h"
55 #include "zfeature_common.h"
56 #include <zfs_fletcher.h>
57
58 int
59 libzfs_errno(libzfs_handle_t *hdl)
60 {
61 return (hdl->libzfs_error);
62 }
63
64 const char *
65 libzfs_error_init(int error)
66 {
67 switch (error) {
68 case ENXIO:
69 return (dgettext(TEXT_DOMAIN, "The ZFS modules are not "
70 "loaded.\nTry running '/sbin/modprobe zfs' as root "
71 "to load them.\n"));
72 case ENOENT:
73 return (dgettext(TEXT_DOMAIN, "/dev/zfs and /proc/self/mounts "
74 "are required.\nTry running 'udevadm trigger' and 'mount "
75 "-t proc proc /proc' as root.\n"));
76 case ENOEXEC:
77 return (dgettext(TEXT_DOMAIN, "The ZFS modules cannot be "
78 "auto-loaded.\nTry running '/sbin/modprobe zfs' as "
79 "root to manually load them.\n"));
80 case EACCES:
81 return (dgettext(TEXT_DOMAIN, "Permission denied the "
82 "ZFS utilities must be run as root.\n"));
83 default:
84 return (dgettext(TEXT_DOMAIN, "Failed to initialize the "
85 "libzfs library.\n"));
86 }
87 }
88
89 const char *
90 libzfs_error_action(libzfs_handle_t *hdl)
91 {
92 return (hdl->libzfs_action);
93 }
94
95 const char *
96 libzfs_error_description(libzfs_handle_t *hdl)
97 {
98 if (hdl->libzfs_desc[0] != '\0')
99 return (hdl->libzfs_desc);
100
101 switch (hdl->libzfs_error) {
102 case EZFS_NOMEM:
103 return (dgettext(TEXT_DOMAIN, "out of memory"));
104 case EZFS_BADPROP:
105 return (dgettext(TEXT_DOMAIN, "invalid property value"));
106 case EZFS_PROPREADONLY:
107 return (dgettext(TEXT_DOMAIN, "read-only property"));
108 case EZFS_PROPTYPE:
109 return (dgettext(TEXT_DOMAIN, "property doesn't apply to "
110 "datasets of this type"));
111 case EZFS_PROPNONINHERIT:
112 return (dgettext(TEXT_DOMAIN, "property cannot be inherited"));
113 case EZFS_PROPSPACE:
114 return (dgettext(TEXT_DOMAIN, "invalid quota or reservation"));
115 case EZFS_BADTYPE:
116 return (dgettext(TEXT_DOMAIN, "operation not applicable to "
117 "datasets of this type"));
118 case EZFS_BUSY:
119 return (dgettext(TEXT_DOMAIN, "pool or dataset is busy"));
120 case EZFS_EXISTS:
121 return (dgettext(TEXT_DOMAIN, "pool or dataset exists"));
122 case EZFS_NOENT:
123 return (dgettext(TEXT_DOMAIN, "no such pool or dataset"));
124 case EZFS_BADSTREAM:
125 return (dgettext(TEXT_DOMAIN, "invalid backup stream"));
126 case EZFS_DSREADONLY:
127 return (dgettext(TEXT_DOMAIN, "dataset is read-only"));
128 case EZFS_VOLTOOBIG:
129 return (dgettext(TEXT_DOMAIN, "volume size exceeds limit for "
130 "this system"));
131 case EZFS_INVALIDNAME:
132 return (dgettext(TEXT_DOMAIN, "invalid name"));
133 case EZFS_BADRESTORE:
134 return (dgettext(TEXT_DOMAIN, "unable to restore to "
135 "destination"));
136 case EZFS_BADBACKUP:
137 return (dgettext(TEXT_DOMAIN, "backup failed"));
138 case EZFS_BADTARGET:
139 return (dgettext(TEXT_DOMAIN, "invalid target vdev"));
140 case EZFS_NODEVICE:
141 return (dgettext(TEXT_DOMAIN, "no such device in pool"));
142 case EZFS_BADDEV:
143 return (dgettext(TEXT_DOMAIN, "invalid device"));
144 case EZFS_NOREPLICAS:
145 return (dgettext(TEXT_DOMAIN, "no valid replicas"));
146 case EZFS_RESILVERING:
147 return (dgettext(TEXT_DOMAIN, "currently resilvering"));
148 case EZFS_BADVERSION:
149 return (dgettext(TEXT_DOMAIN, "unsupported version or "
150 "feature"));
151 case EZFS_POOLUNAVAIL:
152 return (dgettext(TEXT_DOMAIN, "pool is unavailable"));
153 case EZFS_DEVOVERFLOW:
154 return (dgettext(TEXT_DOMAIN, "too many devices in one vdev"));
155 case EZFS_BADPATH:
156 return (dgettext(TEXT_DOMAIN, "must be an absolute path"));
157 case EZFS_CROSSTARGET:
158 return (dgettext(TEXT_DOMAIN, "operation crosses datasets or "
159 "pools"));
160 case EZFS_ZONED:
161 return (dgettext(TEXT_DOMAIN, "dataset in use by local zone"));
162 case EZFS_MOUNTFAILED:
163 return (dgettext(TEXT_DOMAIN, "mount failed"));
164 case EZFS_UMOUNTFAILED:
165 return (dgettext(TEXT_DOMAIN, "umount failed"));
166 case EZFS_UNSHARENFSFAILED:
167 return (dgettext(TEXT_DOMAIN, "unshare(1M) failed"));
168 case EZFS_SHARENFSFAILED:
169 return (dgettext(TEXT_DOMAIN, "share(1M) failed"));
170 case EZFS_UNSHARESMBFAILED:
171 return (dgettext(TEXT_DOMAIN, "smb remove share failed"));
172 case EZFS_SHARESMBFAILED:
173 return (dgettext(TEXT_DOMAIN, "smb add share failed"));
174 case EZFS_PERM:
175 return (dgettext(TEXT_DOMAIN, "permission denied"));
176 case EZFS_NOSPC:
177 return (dgettext(TEXT_DOMAIN, "out of space"));
178 case EZFS_FAULT:
179 return (dgettext(TEXT_DOMAIN, "bad address"));
180 case EZFS_IO:
181 return (dgettext(TEXT_DOMAIN, "I/O error"));
182 case EZFS_INTR:
183 return (dgettext(TEXT_DOMAIN, "signal received"));
184 case EZFS_ISSPARE:
185 return (dgettext(TEXT_DOMAIN, "device is reserved as a hot "
186 "spare"));
187 case EZFS_INVALCONFIG:
188 return (dgettext(TEXT_DOMAIN, "invalid vdev configuration"));
189 case EZFS_RECURSIVE:
190 return (dgettext(TEXT_DOMAIN, "recursive dataset dependency"));
191 case EZFS_NOHISTORY:
192 return (dgettext(TEXT_DOMAIN, "no history available"));
193 case EZFS_POOLPROPS:
194 return (dgettext(TEXT_DOMAIN, "failed to retrieve "
195 "pool properties"));
196 case EZFS_POOL_NOTSUP:
197 return (dgettext(TEXT_DOMAIN, "operation not supported "
198 "on this type of pool"));
199 case EZFS_POOL_INVALARG:
200 return (dgettext(TEXT_DOMAIN, "invalid argument for "
201 "this pool operation"));
202 case EZFS_NAMETOOLONG:
203 return (dgettext(TEXT_DOMAIN, "dataset name is too long"));
204 case EZFS_OPENFAILED:
205 return (dgettext(TEXT_DOMAIN, "open failed"));
206 case EZFS_NOCAP:
207 return (dgettext(TEXT_DOMAIN,
208 "disk capacity information could not be retrieved"));
209 case EZFS_LABELFAILED:
210 return (dgettext(TEXT_DOMAIN, "write of label failed"));
211 case EZFS_BADWHO:
212 return (dgettext(TEXT_DOMAIN, "invalid user/group"));
213 case EZFS_BADPERM:
214 return (dgettext(TEXT_DOMAIN, "invalid permission"));
215 case EZFS_BADPERMSET:
216 return (dgettext(TEXT_DOMAIN, "invalid permission set name"));
217 case EZFS_NODELEGATION:
218 return (dgettext(TEXT_DOMAIN, "delegated administration is "
219 "disabled on pool"));
220 case EZFS_BADCACHE:
221 return (dgettext(TEXT_DOMAIN, "invalid or missing cache file"));
222 case EZFS_ISL2CACHE:
223 return (dgettext(TEXT_DOMAIN, "device is in use as a cache"));
224 case EZFS_VDEVNOTSUP:
225 return (dgettext(TEXT_DOMAIN, "vdev specification is not "
226 "supported"));
227 case EZFS_NOTSUP:
228 return (dgettext(TEXT_DOMAIN, "operation not supported "
229 "on this dataset"));
230 case EZFS_ACTIVE_SPARE:
231 return (dgettext(TEXT_DOMAIN, "pool has active shared spare "
232 "device"));
233 case EZFS_UNPLAYED_LOGS:
234 return (dgettext(TEXT_DOMAIN, "log device has unplayed intent "
235 "logs"));
236 case EZFS_REFTAG_RELE:
237 return (dgettext(TEXT_DOMAIN, "no such tag on this dataset"));
238 case EZFS_REFTAG_HOLD:
239 return (dgettext(TEXT_DOMAIN, "tag already exists on this "
240 "dataset"));
241 case EZFS_TAGTOOLONG:
242 return (dgettext(TEXT_DOMAIN, "tag too long"));
243 case EZFS_PIPEFAILED:
244 return (dgettext(TEXT_DOMAIN, "pipe create failed"));
245 case EZFS_THREADCREATEFAILED:
246 return (dgettext(TEXT_DOMAIN, "thread create failed"));
247 case EZFS_POSTSPLIT_ONLINE:
248 return (dgettext(TEXT_DOMAIN, "disk was split from this pool "
249 "into a new one"));
250 case EZFS_SCRUB_PAUSED:
251 return (dgettext(TEXT_DOMAIN, "scrub is paused; "
252 "use 'zpool scrub' to resume"));
253 case EZFS_SCRUBBING:
254 return (dgettext(TEXT_DOMAIN, "currently scrubbing; "
255 "use 'zpool scrub -s' to cancel current scrub"));
256 case EZFS_NO_SCRUB:
257 return (dgettext(TEXT_DOMAIN, "there is no active scrub"));
258 case EZFS_DIFF:
259 return (dgettext(TEXT_DOMAIN, "unable to generate diffs"));
260 case EZFS_DIFFDATA:
261 return (dgettext(TEXT_DOMAIN, "invalid diff data"));
262 case EZFS_POOLREADONLY:
263 return (dgettext(TEXT_DOMAIN, "pool is read-only"));
264 case EZFS_ACTIVE_POOL:
265 return (dgettext(TEXT_DOMAIN, "pool is imported on a "
266 "different host"));
267 case EZFS_CRYPTOFAILED:
268 return (dgettext(TEXT_DOMAIN, "encryption failure"));
269 case EZFS_UNKNOWN:
270 return (dgettext(TEXT_DOMAIN, "unknown error"));
271 default:
272 assert(hdl->libzfs_error == 0);
273 return (dgettext(TEXT_DOMAIN, "no error"));
274 }
275 }
276
277 /*PRINTFLIKE2*/
278 void
279 zfs_error_aux(libzfs_handle_t *hdl, const char *fmt, ...)
280 {
281 va_list ap;
282
283 va_start(ap, fmt);
284
285 (void) vsnprintf(hdl->libzfs_desc, sizeof (hdl->libzfs_desc),
286 fmt, ap);
287 hdl->libzfs_desc_active = 1;
288
289 va_end(ap);
290 }
291
292 static void
293 zfs_verror(libzfs_handle_t *hdl, int error, const char *fmt, va_list ap)
294 {
295 (void) vsnprintf(hdl->libzfs_action, sizeof (hdl->libzfs_action),
296 fmt, ap);
297 hdl->libzfs_error = error;
298
299 if (hdl->libzfs_desc_active)
300 hdl->libzfs_desc_active = 0;
301 else
302 hdl->libzfs_desc[0] = '\0';
303
304 if (hdl->libzfs_printerr) {
305 if (error == EZFS_UNKNOWN) {
306 (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "internal "
307 "error: %s\n"), libzfs_error_description(hdl));
308 abort();
309 }
310
311 (void) fprintf(stderr, "%s: %s\n", hdl->libzfs_action,
312 libzfs_error_description(hdl));
313 if (error == EZFS_NOMEM)
314 exit(1);
315 }
316 }
317
318 int
319 zfs_error(libzfs_handle_t *hdl, int error, const char *msg)
320 {
321 return (zfs_error_fmt(hdl, error, "%s", msg));
322 }
323
324 /*PRINTFLIKE3*/
325 int
326 zfs_error_fmt(libzfs_handle_t *hdl, int error, const char *fmt, ...)
327 {
328 va_list ap;
329
330 va_start(ap, fmt);
331
332 zfs_verror(hdl, error, fmt, ap);
333
334 va_end(ap);
335
336 return (-1);
337 }
338
339 static int
340 zfs_common_error(libzfs_handle_t *hdl, int error, const char *fmt,
341 va_list ap)
342 {
343 switch (error) {
344 case EPERM:
345 case EACCES:
346 zfs_verror(hdl, EZFS_PERM, fmt, ap);
347 return (-1);
348
349 case ECANCELED:
350 zfs_verror(hdl, EZFS_NODELEGATION, fmt, ap);
351 return (-1);
352
353 case EIO:
354 zfs_verror(hdl, EZFS_IO, fmt, ap);
355 return (-1);
356
357 case EFAULT:
358 zfs_verror(hdl, EZFS_FAULT, fmt, ap);
359 return (-1);
360
361 case EINTR:
362 zfs_verror(hdl, EZFS_INTR, fmt, ap);
363 return (-1);
364 }
365
366 return (0);
367 }
368
369 int
370 zfs_standard_error(libzfs_handle_t *hdl, int error, const char *msg)
371 {
372 return (zfs_standard_error_fmt(hdl, error, "%s", msg));
373 }
374
375 /*PRINTFLIKE3*/
376 int
377 zfs_standard_error_fmt(libzfs_handle_t *hdl, int error, const char *fmt, ...)
378 {
379 va_list ap;
380
381 va_start(ap, fmt);
382
383 if (zfs_common_error(hdl, error, fmt, ap) != 0) {
384 va_end(ap);
385 return (-1);
386 }
387
388 switch (error) {
389 case ENXIO:
390 case ENODEV:
391 case EPIPE:
392 zfs_verror(hdl, EZFS_IO, fmt, ap);
393 break;
394
395 case ENOENT:
396 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
397 "dataset does not exist"));
398 zfs_verror(hdl, EZFS_NOENT, fmt, ap);
399 break;
400
401 case ENOSPC:
402 case EDQUOT:
403 zfs_verror(hdl, EZFS_NOSPC, fmt, ap);
404 break;
405
406 case EEXIST:
407 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
408 "dataset already exists"));
409 zfs_verror(hdl, EZFS_EXISTS, fmt, ap);
410 break;
411
412 case EBUSY:
413 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
414 "dataset is busy"));
415 zfs_verror(hdl, EZFS_BUSY, fmt, ap);
416 break;
417 case EROFS:
418 zfs_verror(hdl, EZFS_POOLREADONLY, fmt, ap);
419 break;
420 case ENAMETOOLONG:
421 zfs_verror(hdl, EZFS_NAMETOOLONG, fmt, ap);
422 break;
423 case ENOTSUP:
424 zfs_verror(hdl, EZFS_BADVERSION, fmt, ap);
425 break;
426 case EAGAIN:
427 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
428 "pool I/O is currently suspended"));
429 zfs_verror(hdl, EZFS_POOLUNAVAIL, fmt, ap);
430 break;
431 case EREMOTEIO:
432 zfs_verror(hdl, EZFS_ACTIVE_POOL, fmt, ap);
433 break;
434 default:
435 zfs_error_aux(hdl, strerror(error));
436 zfs_verror(hdl, EZFS_UNKNOWN, fmt, ap);
437 break;
438 }
439
440 va_end(ap);
441 return (-1);
442 }
443
444 int
445 zpool_standard_error(libzfs_handle_t *hdl, int error, const char *msg)
446 {
447 return (zpool_standard_error_fmt(hdl, error, "%s", msg));
448 }
449
450 /*PRINTFLIKE3*/
451 int
452 zpool_standard_error_fmt(libzfs_handle_t *hdl, int error, const char *fmt, ...)
453 {
454 va_list ap;
455
456 va_start(ap, fmt);
457
458 if (zfs_common_error(hdl, error, fmt, ap) != 0) {
459 va_end(ap);
460 return (-1);
461 }
462
463 switch (error) {
464 case ENODEV:
465 zfs_verror(hdl, EZFS_NODEVICE, fmt, ap);
466 break;
467
468 case ENOENT:
469 zfs_error_aux(hdl,
470 dgettext(TEXT_DOMAIN, "no such pool or dataset"));
471 zfs_verror(hdl, EZFS_NOENT, fmt, ap);
472 break;
473
474 case EEXIST:
475 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
476 "pool already exists"));
477 zfs_verror(hdl, EZFS_EXISTS, fmt, ap);
478 break;
479
480 case EBUSY:
481 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool is busy"));
482 zfs_verror(hdl, EZFS_BUSY, fmt, ap);
483 break;
484
485 case ENXIO:
486 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
487 "one or more devices is currently unavailable"));
488 zfs_verror(hdl, EZFS_BADDEV, fmt, ap);
489 break;
490
491 case ENAMETOOLONG:
492 zfs_verror(hdl, EZFS_DEVOVERFLOW, fmt, ap);
493 break;
494
495 case ENOTSUP:
496 zfs_verror(hdl, EZFS_POOL_NOTSUP, fmt, ap);
497 break;
498
499 case EINVAL:
500 zfs_verror(hdl, EZFS_POOL_INVALARG, fmt, ap);
501 break;
502
503 case ENOSPC:
504 case EDQUOT:
505 zfs_verror(hdl, EZFS_NOSPC, fmt, ap);
506 return (-1);
507
508 case EAGAIN:
509 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
510 "pool I/O is currently suspended"));
511 zfs_verror(hdl, EZFS_POOLUNAVAIL, fmt, ap);
512 break;
513
514 case EROFS:
515 zfs_verror(hdl, EZFS_POOLREADONLY, fmt, ap);
516 break;
517 case EDOM:
518 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
519 "block size out of range or does not match"));
520 zfs_verror(hdl, EZFS_BADPROP, fmt, ap);
521 break;
522 case EREMOTEIO:
523 zfs_verror(hdl, EZFS_ACTIVE_POOL, fmt, ap);
524 break;
525
526 default:
527 zfs_error_aux(hdl, strerror(error));
528 zfs_verror(hdl, EZFS_UNKNOWN, fmt, ap);
529 }
530
531 va_end(ap);
532 return (-1);
533 }
534
535 /*
536 * Display an out of memory error message and abort the current program.
537 */
538 int
539 no_memory(libzfs_handle_t *hdl)
540 {
541 return (zfs_error(hdl, EZFS_NOMEM, "internal error"));
542 }
543
544 /*
545 * A safe form of malloc() which will die if the allocation fails.
546 */
547 void *
548 zfs_alloc(libzfs_handle_t *hdl, size_t size)
549 {
550 void *data;
551
552 if ((data = calloc(1, size)) == NULL)
553 (void) no_memory(hdl);
554
555 return (data);
556 }
557
558 /*
559 * A safe form of asprintf() which will die if the allocation fails.
560 */
561 /*PRINTFLIKE2*/
562 char *
563 zfs_asprintf(libzfs_handle_t *hdl, const char *fmt, ...)
564 {
565 va_list ap;
566 char *ret;
567 int err;
568
569 va_start(ap, fmt);
570
571 err = vasprintf(&ret, fmt, ap);
572
573 va_end(ap);
574
575 if (err < 0)
576 (void) no_memory(hdl);
577
578 return (ret);
579 }
580
581 /*
582 * A safe form of realloc(), which also zeroes newly allocated space.
583 */
584 void *
585 zfs_realloc(libzfs_handle_t *hdl, void *ptr, size_t oldsize, size_t newsize)
586 {
587 void *ret;
588
589 if ((ret = realloc(ptr, newsize)) == NULL) {
590 (void) no_memory(hdl);
591 return (NULL);
592 }
593
594 bzero((char *)ret + oldsize, (newsize - oldsize));
595 return (ret);
596 }
597
598 /*
599 * A safe form of strdup() which will die if the allocation fails.
600 */
601 char *
602 zfs_strdup(libzfs_handle_t *hdl, const char *str)
603 {
604 char *ret;
605
606 if ((ret = strdup(str)) == NULL)
607 (void) no_memory(hdl);
608
609 return (ret);
610 }
611
612 /*
613 * Convert a number to an appropriately human-readable output.
614 */
615 void
616 zfs_nicenum_format(uint64_t num, char *buf, size_t buflen,
617 enum zfs_nicenum_format format)
618 {
619 uint64_t n = num;
620 int index = 0;
621 const char *u;
622 const char *units[3][7] = {
623 [ZFS_NICENUM_1024] = {"", "K", "M", "G", "T", "P", "E"},
624 [ZFS_NICENUM_BYTES] = {"B", "K", "M", "G", "T", "P", "E"},
625 [ZFS_NICENUM_TIME] = {"ns", "us", "ms", "s", "?", "?", "?"}
626 };
627
628 const int units_len[] = {[ZFS_NICENUM_1024] = 6,
629 [ZFS_NICENUM_BYTES] = 6,
630 [ZFS_NICENUM_TIME] = 4};
631
632 const int k_unit[] = { [ZFS_NICENUM_1024] = 1024,
633 [ZFS_NICENUM_BYTES] = 1024,
634 [ZFS_NICENUM_TIME] = 1000};
635
636 double val;
637
638 if (format == ZFS_NICENUM_RAW) {
639 snprintf(buf, buflen, "%llu", (u_longlong_t)num);
640 return;
641 } else if (format == ZFS_NICENUM_RAWTIME && num > 0) {
642 snprintf(buf, buflen, "%llu", (u_longlong_t)num);
643 return;
644 } else if (format == ZFS_NICENUM_RAWTIME && num == 0) {
645 snprintf(buf, buflen, "%s", "-");
646 return;
647 }
648
649 while (n >= k_unit[format] && index < units_len[format]) {
650 n /= k_unit[format];
651 index++;
652 }
653
654 u = units[format][index];
655
656 /* Don't print zero latencies since they're invalid */
657 if ((format == ZFS_NICENUM_TIME) && (num == 0)) {
658 (void) snprintf(buf, buflen, "-");
659 } else if ((index == 0) || ((num %
660 (uint64_t)powl(k_unit[format], index)) == 0)) {
661 /*
662 * If this is an even multiple of the base, always display
663 * without any decimal precision.
664 */
665 (void) snprintf(buf, buflen, "%llu%s", (u_longlong_t)n, u);
666
667 } else {
668 /*
669 * We want to choose a precision that reflects the best choice
670 * for fitting in 5 characters. This can get rather tricky when
671 * we have numbers that are very close to an order of magnitude.
672 * For example, when displaying 10239 (which is really 9.999K),
673 * we want only a single place of precision for 10.0K. We could
674 * develop some complex heuristics for this, but it's much
675 * easier just to try each combination in turn.
676 */
677 int i;
678 for (i = 2; i >= 0; i--) {
679 val = (double)num /
680 (uint64_t)powl(k_unit[format], index);
681
682 /*
683 * Don't print floating point values for time. Note,
684 * we use floor() instead of round() here, since
685 * round can result in undesirable results. For
686 * example, if "num" is in the range of
687 * 999500-999999, it will print out "1000us". This
688 * doesn't happen if we use floor().
689 */
690 if (format == ZFS_NICENUM_TIME) {
691 if (snprintf(buf, buflen, "%d%s",
692 (unsigned int) floor(val), u) <= 5)
693 break;
694
695 } else {
696 if (snprintf(buf, buflen, "%.*f%s", i,
697 val, u) <= 5)
698 break;
699 }
700 }
701 }
702 }
703
704 /*
705 * Convert a number to an appropriately human-readable output.
706 */
707 void
708 zfs_nicenum(uint64_t num, char *buf, size_t buflen)
709 {
710 zfs_nicenum_format(num, buf, buflen, ZFS_NICENUM_1024);
711 }
712
713 /*
714 * Convert a time to an appropriately human-readable output.
715 * @num: Time in nanoseconds
716 */
717 void
718 zfs_nicetime(uint64_t num, char *buf, size_t buflen)
719 {
720 zfs_nicenum_format(num, buf, buflen, ZFS_NICENUM_TIME);
721 }
722
723 /*
724 * Print out a raw number with correct column spacing
725 */
726 void
727 zfs_niceraw(uint64_t num, char *buf, size_t buflen)
728 {
729 zfs_nicenum_format(num, buf, buflen, ZFS_NICENUM_RAW);
730 }
731
732 /*
733 * Convert a number of bytes to an appropriately human-readable output.
734 */
735 void
736 zfs_nicebytes(uint64_t num, char *buf, size_t buflen)
737 {
738 zfs_nicenum_format(num, buf, buflen, ZFS_NICENUM_BYTES);
739 }
740
741 void
742 libzfs_print_on_error(libzfs_handle_t *hdl, boolean_t printerr)
743 {
744 hdl->libzfs_printerr = printerr;
745 }
746
747 static int
748 libzfs_module_loaded(const char *module)
749 {
750 const char path_prefix[] = "/sys/module/";
751 char path[256];
752
753 memcpy(path, path_prefix, sizeof (path_prefix) - 1);
754 strcpy(path + sizeof (path_prefix) - 1, module);
755
756 return (access(path, F_OK) == 0);
757 }
758
759
760 /*
761 * Read lines from an open file descriptor and store them in an array of
762 * strings until EOF. lines[] will be allocated and populated with all the
763 * lines read. All newlines are replaced with NULL terminators for
764 * convenience. lines[] must be freed after use with libzfs_free_str_array().
765 *
766 * Returns the number of lines read.
767 */
768 static int
769 libzfs_read_stdout_from_fd(int fd, char **lines[])
770 {
771
772 FILE *fp;
773 int lines_cnt = 0;
774 size_t len = 0;
775 char *line = NULL;
776 char **tmp_lines = NULL, **tmp;
777 char *nl = NULL;
778 int rc;
779
780 fp = fdopen(fd, "r");
781 if (fp == NULL)
782 return (0);
783 while (1) {
784 rc = getline(&line, &len, fp);
785 if (rc == -1)
786 break;
787
788 tmp = realloc(tmp_lines, sizeof (*tmp_lines) * (lines_cnt + 1));
789 if (tmp == NULL) {
790 /* Return the lines we were able to process */
791 break;
792 }
793 tmp_lines = tmp;
794
795 /* Terminate newlines */
796 if ((nl = strchr(line, '\n')) != NULL)
797 *nl = '\0';
798 tmp_lines[lines_cnt] = line;
799 lines_cnt++;
800 line = NULL;
801 }
802 fclose(fp);
803 *lines = tmp_lines;
804 return (lines_cnt);
805 }
806
807 static int
808 libzfs_run_process_impl(const char *path, char *argv[], char *env[], int flags,
809 char **lines[], int *lines_cnt)
810 {
811 pid_t pid;
812 int error, devnull_fd;
813 int link[2];
814
815 /*
816 * Setup a pipe between our child and parent process if we're
817 * reading stdout.
818 */
819 if ((lines != NULL) && pipe(link) == -1)
820 return (-ESTRPIPE);
821
822 pid = vfork();
823 if (pid == 0) {
824 /* Child process */
825 devnull_fd = open("/dev/null", O_WRONLY);
826
827 if (devnull_fd < 0)
828 _exit(-1);
829
830 if (!(flags & STDOUT_VERBOSE) && (lines == NULL))
831 (void) dup2(devnull_fd, STDOUT_FILENO);
832 else if (lines != NULL) {
833 /* Save the output to lines[] */
834 dup2(link[1], STDOUT_FILENO);
835 close(link[0]);
836 close(link[1]);
837 }
838
839 if (!(flags & STDERR_VERBOSE))
840 (void) dup2(devnull_fd, STDERR_FILENO);
841
842 close(devnull_fd);
843
844 if (flags & NO_DEFAULT_PATH) {
845 if (env == NULL)
846 execv(path, argv);
847 else
848 execve(path, argv, env);
849 } else {
850 if (env == NULL)
851 execvp(path, argv);
852 else
853 execvpe(path, argv, env);
854 }
855
856 _exit(-1);
857 } else if (pid > 0) {
858 /* Parent process */
859 int status;
860
861 while ((error = waitpid(pid, &status, 0)) == -1 &&
862 errno == EINTR) { }
863 if (error < 0 || !WIFEXITED(status))
864 return (-1);
865
866 if (lines != NULL) {
867 close(link[1]);
868 *lines_cnt = libzfs_read_stdout_from_fd(link[0], lines);
869 }
870 return (WEXITSTATUS(status));
871 }
872
873 return (-1);
874 }
875
876 int
877 libzfs_run_process(const char *path, char *argv[], int flags)
878 {
879 return (libzfs_run_process_impl(path, argv, NULL, flags, NULL, NULL));
880 }
881
882 /*
883 * Run a command and store its stdout lines in an array of strings (lines[]).
884 * lines[] is allocated and populated for you, and the number of lines is set in
885 * lines_cnt. lines[] must be freed after use with libzfs_free_str_array().
886 * All newlines (\n) in lines[] are terminated for convenience.
887 */
888 int
889 libzfs_run_process_get_stdout(const char *path, char *argv[], char *env[],
890 char **lines[], int *lines_cnt)
891 {
892 return (libzfs_run_process_impl(path, argv, env, 0, lines, lines_cnt));
893 }
894
895 /*
896 * Same as libzfs_run_process_get_stdout(), but run without $PATH set. This
897 * means that *path needs to be the full path to the executable.
898 */
899 int
900 libzfs_run_process_get_stdout_nopath(const char *path, char *argv[],
901 char *env[], char **lines[], int *lines_cnt)
902 {
903 return (libzfs_run_process_impl(path, argv, env, NO_DEFAULT_PATH,
904 lines, lines_cnt));
905 }
906
907 /*
908 * Free an array of strings. Free both the strings contained in the array and
909 * the array itself.
910 */
911 void
912 libzfs_free_str_array(char **strs, int count)
913 {
914 while (--count >= 0)
915 free(strs[count]);
916
917 free(strs);
918 }
919
920 /*
921 * Returns 1 if environment variable is set to "YES", "yes", "ON", "on", or
922 * a non-zero number.
923 *
924 * Returns 0 otherwise.
925 */
926 int
927 libzfs_envvar_is_set(char *envvar)
928 {
929 char *env = getenv(envvar);
930 if (env && (strtoul(env, NULL, 0) > 0 ||
931 (!strncasecmp(env, "YES", 3) && strnlen(env, 4) == 3) ||
932 (!strncasecmp(env, "ON", 2) && strnlen(env, 3) == 2)))
933 return (1);
934
935 return (0);
936 }
937
938 /*
939 * Verify the required ZFS_DEV device is available and optionally attempt
940 * to load the ZFS modules. Under normal circumstances the modules
941 * should already have been loaded by some external mechanism.
942 *
943 * Environment variables:
944 * - ZFS_MODULE_LOADING="YES|yes|ON|on" - Attempt to load modules.
945 * - ZFS_MODULE_TIMEOUT="<seconds>" - Seconds to wait for ZFS_DEV
946 */
947 static int
948 libzfs_load_module(const char *module)
949 {
950 char *argv[4] = {"/sbin/modprobe", "-q", (char *)module, (char *)0};
951 char *load_str, *timeout_str;
952 long timeout = 10; /* seconds */
953 long busy_timeout = 10; /* milliseconds */
954 int load = 0, fd;
955 hrtime_t start;
956
957 /* Optionally request module loading */
958 if (!libzfs_module_loaded(module)) {
959 load_str = getenv("ZFS_MODULE_LOADING");
960 if (load_str) {
961 if (!strncasecmp(load_str, "YES", strlen("YES")) ||
962 !strncasecmp(load_str, "ON", strlen("ON")))
963 load = 1;
964 else
965 load = 0;
966 }
967
968 if (load && libzfs_run_process("/sbin/modprobe", argv, 0))
969 return (ENOEXEC);
970 }
971
972 /* Module loading is synchronous it must be available */
973 if (!libzfs_module_loaded(module))
974 return (ENXIO);
975
976 /*
977 * Device creation by udev is asynchronous and waiting may be
978 * required. Busy wait for 10ms and then fall back to polling every
979 * 10ms for the allowed timeout (default 10s, max 10m). This is
980 * done to optimize for the common case where the device is
981 * immediately available and to avoid penalizing the possible
982 * case where udev is slow or unable to create the device.
983 */
984 timeout_str = getenv("ZFS_MODULE_TIMEOUT");
985 if (timeout_str) {
986 timeout = strtol(timeout_str, NULL, 0);
987 timeout = MAX(MIN(timeout, (10 * 60)), 0); /* 0 <= N <= 600 */
988 }
989
990 start = gethrtime();
991 do {
992 fd = open(ZFS_DEV, O_RDWR);
993 if (fd >= 0) {
994 (void) close(fd);
995 return (0);
996 } else if (errno != ENOENT) {
997 return (errno);
998 } else if (NSEC2MSEC(gethrtime() - start) < busy_timeout) {
999 sched_yield();
1000 } else {
1001 usleep(10 * MILLISEC);
1002 }
1003 } while (NSEC2MSEC(gethrtime() - start) < (timeout * MILLISEC));
1004
1005 return (ENOENT);
1006 }
1007
1008 libzfs_handle_t *
1009 libzfs_init(void)
1010 {
1011 libzfs_handle_t *hdl;
1012 int error;
1013
1014 error = libzfs_load_module(ZFS_DRIVER);
1015 if (error) {
1016 errno = error;
1017 return (NULL);
1018 }
1019
1020 if ((hdl = calloc(1, sizeof (libzfs_handle_t))) == NULL) {
1021 return (NULL);
1022 }
1023
1024 if ((hdl->libzfs_fd = open(ZFS_DEV, O_RDWR)) < 0) {
1025 free(hdl);
1026 return (NULL);
1027 }
1028
1029 #ifdef HAVE_SETMNTENT
1030 if ((hdl->libzfs_mnttab = setmntent(MNTTAB, "r")) == NULL) {
1031 #else
1032 if ((hdl->libzfs_mnttab = fopen(MNTTAB, "r")) == NULL) {
1033 #endif
1034 (void) close(hdl->libzfs_fd);
1035 free(hdl);
1036 return (NULL);
1037 }
1038
1039 hdl->libzfs_sharetab = fopen(ZFS_SHARETAB, "r");
1040
1041 if (libzfs_core_init() != 0) {
1042 (void) close(hdl->libzfs_fd);
1043 (void) fclose(hdl->libzfs_mnttab);
1044 if (hdl->libzfs_sharetab)
1045 (void) fclose(hdl->libzfs_sharetab);
1046 free(hdl);
1047 return (NULL);
1048 }
1049
1050 zfs_prop_init();
1051 zpool_prop_init();
1052 zpool_feature_init();
1053 libzfs_mnttab_init(hdl);
1054 fletcher_4_init();
1055
1056 if (getenv("ZFS_PROP_DEBUG") != NULL) {
1057 hdl->libzfs_prop_debug = B_TRUE;
1058 }
1059
1060 return (hdl);
1061 }
1062
1063 void
1064 libzfs_fini(libzfs_handle_t *hdl)
1065 {
1066 (void) close(hdl->libzfs_fd);
1067 if (hdl->libzfs_mnttab)
1068 #ifdef HAVE_SETMNTENT
1069 (void) endmntent(hdl->libzfs_mnttab);
1070 #else
1071 (void) fclose(hdl->libzfs_mnttab);
1072 #endif
1073 if (hdl->libzfs_sharetab)
1074 (void) fclose(hdl->libzfs_sharetab);
1075 zfs_uninit_libshare(hdl);
1076 zpool_free_handles(hdl);
1077 namespace_clear(hdl);
1078 libzfs_mnttab_fini(hdl);
1079 libzfs_core_fini();
1080 fletcher_4_fini();
1081 free(hdl);
1082 }
1083
1084 libzfs_handle_t *
1085 zpool_get_handle(zpool_handle_t *zhp)
1086 {
1087 return (zhp->zpool_hdl);
1088 }
1089
1090 libzfs_handle_t *
1091 zfs_get_handle(zfs_handle_t *zhp)
1092 {
1093 return (zhp->zfs_hdl);
1094 }
1095
1096 zpool_handle_t *
1097 zfs_get_pool_handle(const zfs_handle_t *zhp)
1098 {
1099 return (zhp->zpool_hdl);
1100 }
1101
1102 /*
1103 * Given a name, determine whether or not it's a valid path
1104 * (starts with '/' or "./"). If so, walk the mnttab trying
1105 * to match the device number. If not, treat the path as an
1106 * fs/vol/snap/bkmark name.
1107 */
1108 zfs_handle_t *
1109 zfs_path_to_zhandle(libzfs_handle_t *hdl, char *path, zfs_type_t argtype)
1110 {
1111 struct stat64 statbuf;
1112 struct extmnttab entry;
1113 int ret;
1114
1115 if (path[0] != '/' && strncmp(path, "./", strlen("./")) != 0) {
1116 /*
1117 * It's not a valid path, assume it's a name of type 'argtype'.
1118 */
1119 return (zfs_open(hdl, path, argtype));
1120 }
1121
1122 if (stat64(path, &statbuf) != 0) {
1123 (void) fprintf(stderr, "%s: %s\n", path, strerror(errno));
1124 return (NULL);
1125 }
1126
1127 /* Reopen MNTTAB to prevent reading stale data from open file */
1128 if (freopen(MNTTAB, "r", hdl->libzfs_mnttab) == NULL)
1129 return (NULL);
1130
1131 while ((ret = getextmntent(hdl->libzfs_mnttab, &entry, 0)) == 0) {
1132 if (makedevice(entry.mnt_major, entry.mnt_minor) ==
1133 statbuf.st_dev) {
1134 break;
1135 }
1136 }
1137 if (ret != 0) {
1138 return (NULL);
1139 }
1140
1141 if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) {
1142 (void) fprintf(stderr, gettext("'%s': not a ZFS filesystem\n"),
1143 path);
1144 return (NULL);
1145 }
1146
1147 return (zfs_open(hdl, entry.mnt_special, ZFS_TYPE_FILESYSTEM));
1148 }
1149
1150 /*
1151 * Append partition suffix to an otherwise fully qualified device path.
1152 * This is used to generate the name the full path as its stored in
1153 * ZPOOL_CONFIG_PATH for whole disk devices. On success the new length
1154 * of 'path' will be returned on error a negative value is returned.
1155 */
1156 int
1157 zfs_append_partition(char *path, size_t max_len)
1158 {
1159 int len = strlen(path);
1160
1161 if ((strncmp(path, UDISK_ROOT, strlen(UDISK_ROOT)) == 0) ||
1162 (strncmp(path, ZVOL_ROOT, strlen(ZVOL_ROOT)) == 0)) {
1163 if (len + 6 >= max_len)
1164 return (-1);
1165
1166 (void) strcat(path, "-part1");
1167 len += 6;
1168 } else {
1169 if (len + 2 >= max_len)
1170 return (-1);
1171
1172 if (isdigit(path[len-1])) {
1173 (void) strcat(path, "p1");
1174 len += 2;
1175 } else {
1176 (void) strcat(path, "1");
1177 len += 1;
1178 }
1179 }
1180
1181 return (len);
1182 }
1183
1184 /*
1185 * Given a shorthand device name check if a file by that name exists in any
1186 * of the 'zpool_default_import_path' or ZPOOL_IMPORT_PATH directories. If
1187 * one is found, store its fully qualified path in the 'path' buffer passed
1188 * by the caller and return 0, otherwise return an error.
1189 */
1190 int
1191 zfs_resolve_shortname(const char *name, char *path, size_t len)
1192 {
1193 int i, error = -1;
1194 char *dir, *env, *envdup;
1195
1196 env = getenv("ZPOOL_IMPORT_PATH");
1197 errno = ENOENT;
1198
1199 if (env) {
1200 envdup = strdup(env);
1201 dir = strtok(envdup, ":");
1202 while (dir && error) {
1203 (void) snprintf(path, len, "%s/%s", dir, name);
1204 error = access(path, F_OK);
1205 dir = strtok(NULL, ":");
1206 }
1207 free(envdup);
1208 } else {
1209 for (i = 0; i < DEFAULT_IMPORT_PATH_SIZE && error < 0; i++) {
1210 (void) snprintf(path, len, "%s/%s",
1211 zpool_default_import_path[i], name);
1212 error = access(path, F_OK);
1213 }
1214 }
1215
1216 return (error ? ENOENT : 0);
1217 }
1218
1219 /*
1220 * Given a shorthand device name look for a match against 'cmp_name'. This
1221 * is done by checking all prefix expansions using either the default
1222 * 'zpool_default_import_paths' or the ZPOOL_IMPORT_PATH environment
1223 * variable. Proper partition suffixes will be appended if this is a
1224 * whole disk. When a match is found 0 is returned otherwise ENOENT.
1225 */
1226 static int
1227 zfs_strcmp_shortname(char *name, char *cmp_name, int wholedisk)
1228 {
1229 int path_len, cmp_len, i = 0, error = ENOENT;
1230 char *dir, *env, *envdup = NULL;
1231 char path_name[MAXPATHLEN];
1232
1233 cmp_len = strlen(cmp_name);
1234 env = getenv("ZPOOL_IMPORT_PATH");
1235
1236 if (env) {
1237 envdup = strdup(env);
1238 dir = strtok(envdup, ":");
1239 } else {
1240 dir = zpool_default_import_path[i];
1241 }
1242
1243 while (dir) {
1244 /* Trim trailing directory slashes from ZPOOL_IMPORT_PATH */
1245 while (dir[strlen(dir)-1] == '/')
1246 dir[strlen(dir)-1] = '\0';
1247
1248 path_len = snprintf(path_name, MAXPATHLEN, "%s/%s", dir, name);
1249 if (wholedisk)
1250 path_len = zfs_append_partition(path_name, MAXPATHLEN);
1251
1252 if ((path_len == cmp_len) && strcmp(path_name, cmp_name) == 0) {
1253 error = 0;
1254 break;
1255 }
1256
1257 if (env) {
1258 dir = strtok(NULL, ":");
1259 } else if (++i < DEFAULT_IMPORT_PATH_SIZE) {
1260 dir = zpool_default_import_path[i];
1261 } else {
1262 dir = NULL;
1263 }
1264 }
1265
1266 if (env)
1267 free(envdup);
1268
1269 return (error);
1270 }
1271
1272 /*
1273 * Given either a shorthand or fully qualified path name look for a match
1274 * against 'cmp'. The passed name will be expanded as needed for comparison
1275 * purposes and redundant slashes stripped to ensure an accurate match.
1276 */
1277 int
1278 zfs_strcmp_pathname(char *name, char *cmp, int wholedisk)
1279 {
1280 int path_len, cmp_len;
1281 char path_name[MAXPATHLEN];
1282 char cmp_name[MAXPATHLEN];
1283 char *dir, *dup;
1284
1285 /* Strip redundant slashes if one exists due to ZPOOL_IMPORT_PATH */
1286 memset(cmp_name, 0, MAXPATHLEN);
1287 dup = strdup(cmp);
1288 dir = strtok(dup, "/");
1289 while (dir) {
1290 strlcat(cmp_name, "/", sizeof (cmp_name));
1291 strlcat(cmp_name, dir, sizeof (cmp_name));
1292 dir = strtok(NULL, "/");
1293 }
1294 free(dup);
1295
1296 if (name[0] != '/')
1297 return (zfs_strcmp_shortname(name, cmp_name, wholedisk));
1298
1299 (void) strlcpy(path_name, name, MAXPATHLEN);
1300 path_len = strlen(path_name);
1301 cmp_len = strlen(cmp_name);
1302
1303 if (wholedisk) {
1304 path_len = zfs_append_partition(path_name, MAXPATHLEN);
1305 if (path_len == -1)
1306 return (ENOMEM);
1307 }
1308
1309 if ((path_len != cmp_len) || strcmp(path_name, cmp_name))
1310 return (ENOENT);
1311
1312 return (0);
1313 }
1314
1315 /*
1316 * Given a full path to a device determine if that device appears in the
1317 * import search path. If it does return the first match and store the
1318 * index in the passed 'order' variable, otherwise return an error.
1319 */
1320 int
1321 zfs_path_order(char *name, int *order)
1322 {
1323 int i = 0, error = ENOENT;
1324 char *dir, *env, *envdup;
1325
1326 env = getenv("ZPOOL_IMPORT_PATH");
1327 if (env) {
1328 envdup = strdup(env);
1329 dir = strtok(envdup, ":");
1330 while (dir) {
1331 if (strncmp(name, dir, strlen(dir)) == 0) {
1332 *order = i;
1333 error = 0;
1334 break;
1335 }
1336 dir = strtok(NULL, ":");
1337 i++;
1338 }
1339 free(envdup);
1340 } else {
1341 for (i = 0; i < DEFAULT_IMPORT_PATH_SIZE; i++) {
1342 if (strncmp(name, zpool_default_import_path[i],
1343 strlen(zpool_default_import_path[i])) == 0) {
1344 *order = i;
1345 error = 0;
1346 break;
1347 }
1348 }
1349 }
1350
1351 return (error);
1352 }
1353
1354 /*
1355 * Initialize the zc_nvlist_dst member to prepare for receiving an nvlist from
1356 * an ioctl().
1357 */
1358 int
1359 zcmd_alloc_dst_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, size_t len)
1360 {
1361 if (len == 0)
1362 len = 16 * 1024;
1363 zc->zc_nvlist_dst_size = len;
1364 zc->zc_nvlist_dst =
1365 (uint64_t)(uintptr_t)zfs_alloc(hdl, zc->zc_nvlist_dst_size);
1366 if (zc->zc_nvlist_dst == 0)
1367 return (-1);
1368
1369 return (0);
1370 }
1371
1372 /*
1373 * Called when an ioctl() which returns an nvlist fails with ENOMEM. This will
1374 * expand the nvlist to the size specified in 'zc_nvlist_dst_size', which was
1375 * filled in by the kernel to indicate the actual required size.
1376 */
1377 int
1378 zcmd_expand_dst_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc)
1379 {
1380 free((void *)(uintptr_t)zc->zc_nvlist_dst);
1381 zc->zc_nvlist_dst =
1382 (uint64_t)(uintptr_t)zfs_alloc(hdl, zc->zc_nvlist_dst_size);
1383 if (zc->zc_nvlist_dst == 0)
1384 return (-1);
1385
1386 return (0);
1387 }
1388
1389 /*
1390 * Called to free the src and dst nvlists stored in the command structure.
1391 */
1392 void
1393 zcmd_free_nvlists(zfs_cmd_t *zc)
1394 {
1395 free((void *)(uintptr_t)zc->zc_nvlist_conf);
1396 free((void *)(uintptr_t)zc->zc_nvlist_src);
1397 free((void *)(uintptr_t)zc->zc_nvlist_dst);
1398 zc->zc_nvlist_conf = 0;
1399 zc->zc_nvlist_src = 0;
1400 zc->zc_nvlist_dst = 0;
1401 }
1402
1403 static int
1404 zcmd_write_nvlist_com(libzfs_handle_t *hdl, uint64_t *outnv, uint64_t *outlen,
1405 nvlist_t *nvl)
1406 {
1407 char *packed;
1408 size_t len;
1409
1410 verify(nvlist_size(nvl, &len, NV_ENCODE_NATIVE) == 0);
1411
1412 if ((packed = zfs_alloc(hdl, len)) == NULL)
1413 return (-1);
1414
1415 verify(nvlist_pack(nvl, &packed, &len, NV_ENCODE_NATIVE, 0) == 0);
1416
1417 *outnv = (uint64_t)(uintptr_t)packed;
1418 *outlen = len;
1419
1420 return (0);
1421 }
1422
1423 int
1424 zcmd_write_conf_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, nvlist_t *nvl)
1425 {
1426 return (zcmd_write_nvlist_com(hdl, &zc->zc_nvlist_conf,
1427 &zc->zc_nvlist_conf_size, nvl));
1428 }
1429
1430 int
1431 zcmd_write_src_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, nvlist_t *nvl)
1432 {
1433 return (zcmd_write_nvlist_com(hdl, &zc->zc_nvlist_src,
1434 &zc->zc_nvlist_src_size, nvl));
1435 }
1436
1437 /*
1438 * Unpacks an nvlist from the ZFS ioctl command structure.
1439 */
1440 int
1441 zcmd_read_dst_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, nvlist_t **nvlp)
1442 {
1443 if (nvlist_unpack((void *)(uintptr_t)zc->zc_nvlist_dst,
1444 zc->zc_nvlist_dst_size, nvlp, 0) != 0)
1445 return (no_memory(hdl));
1446
1447 return (0);
1448 }
1449
1450 int
1451 zfs_ioctl(libzfs_handle_t *hdl, int request, zfs_cmd_t *zc)
1452 {
1453 return (ioctl(hdl->libzfs_fd, request, zc));
1454 }
1455
1456 /*
1457 * ================================================================
1458 * API shared by zfs and zpool property management
1459 * ================================================================
1460 */
1461
1462 static void
1463 zprop_print_headers(zprop_get_cbdata_t *cbp, zfs_type_t type)
1464 {
1465 zprop_list_t *pl = cbp->cb_proplist;
1466 int i;
1467 char *title;
1468 size_t len;
1469
1470 cbp->cb_first = B_FALSE;
1471 if (cbp->cb_scripted)
1472 return;
1473
1474 /*
1475 * Start with the length of the column headers.
1476 */
1477 cbp->cb_colwidths[GET_COL_NAME] = strlen(dgettext(TEXT_DOMAIN, "NAME"));
1478 cbp->cb_colwidths[GET_COL_PROPERTY] = strlen(dgettext(TEXT_DOMAIN,
1479 "PROPERTY"));
1480 cbp->cb_colwidths[GET_COL_VALUE] = strlen(dgettext(TEXT_DOMAIN,
1481 "VALUE"));
1482 cbp->cb_colwidths[GET_COL_RECVD] = strlen(dgettext(TEXT_DOMAIN,
1483 "RECEIVED"));
1484 cbp->cb_colwidths[GET_COL_SOURCE] = strlen(dgettext(TEXT_DOMAIN,
1485 "SOURCE"));
1486
1487 /* first property is always NAME */
1488 assert(cbp->cb_proplist->pl_prop ==
1489 ((type == ZFS_TYPE_POOL) ? ZPOOL_PROP_NAME : ZFS_PROP_NAME));
1490
1491 /*
1492 * Go through and calculate the widths for each column. For the
1493 * 'source' column, we kludge it up by taking the worst-case scenario of
1494 * inheriting from the longest name. This is acceptable because in the
1495 * majority of cases 'SOURCE' is the last column displayed, and we don't
1496 * use the width anyway. Note that the 'VALUE' column can be oversized,
1497 * if the name of the property is much longer than any values we find.
1498 */
1499 for (pl = cbp->cb_proplist; pl != NULL; pl = pl->pl_next) {
1500 /*
1501 * 'PROPERTY' column
1502 */
1503 if (pl->pl_prop != ZPROP_INVAL) {
1504 const char *propname = (type == ZFS_TYPE_POOL) ?
1505 zpool_prop_to_name(pl->pl_prop) :
1506 zfs_prop_to_name(pl->pl_prop);
1507
1508 len = strlen(propname);
1509 if (len > cbp->cb_colwidths[GET_COL_PROPERTY])
1510 cbp->cb_colwidths[GET_COL_PROPERTY] = len;
1511 } else {
1512 len = strlen(pl->pl_user_prop);
1513 if (len > cbp->cb_colwidths[GET_COL_PROPERTY])
1514 cbp->cb_colwidths[GET_COL_PROPERTY] = len;
1515 }
1516
1517 /*
1518 * 'VALUE' column. The first property is always the 'name'
1519 * property that was tacked on either by /sbin/zfs's
1520 * zfs_do_get() or when calling zprop_expand_list(), so we
1521 * ignore its width. If the user specified the name property
1522 * to display, then it will be later in the list in any case.
1523 */
1524 if (pl != cbp->cb_proplist &&
1525 pl->pl_width > cbp->cb_colwidths[GET_COL_VALUE])
1526 cbp->cb_colwidths[GET_COL_VALUE] = pl->pl_width;
1527
1528 /* 'RECEIVED' column. */
1529 if (pl != cbp->cb_proplist &&
1530 pl->pl_recvd_width > cbp->cb_colwidths[GET_COL_RECVD])
1531 cbp->cb_colwidths[GET_COL_RECVD] = pl->pl_recvd_width;
1532
1533 /*
1534 * 'NAME' and 'SOURCE' columns
1535 */
1536 if (pl->pl_prop == (type == ZFS_TYPE_POOL ? ZPOOL_PROP_NAME :
1537 ZFS_PROP_NAME) &&
1538 pl->pl_width > cbp->cb_colwidths[GET_COL_NAME]) {
1539 cbp->cb_colwidths[GET_COL_NAME] = pl->pl_width;
1540 cbp->cb_colwidths[GET_COL_SOURCE] = pl->pl_width +
1541 strlen(dgettext(TEXT_DOMAIN, "inherited from"));
1542 }
1543 }
1544
1545 /*
1546 * Now go through and print the headers.
1547 */
1548 for (i = 0; i < ZFS_GET_NCOLS; i++) {
1549 switch (cbp->cb_columns[i]) {
1550 case GET_COL_NAME:
1551 title = dgettext(TEXT_DOMAIN, "NAME");
1552 break;
1553 case GET_COL_PROPERTY:
1554 title = dgettext(TEXT_DOMAIN, "PROPERTY");
1555 break;
1556 case GET_COL_VALUE:
1557 title = dgettext(TEXT_DOMAIN, "VALUE");
1558 break;
1559 case GET_COL_RECVD:
1560 title = dgettext(TEXT_DOMAIN, "RECEIVED");
1561 break;
1562 case GET_COL_SOURCE:
1563 title = dgettext(TEXT_DOMAIN, "SOURCE");
1564 break;
1565 default:
1566 title = NULL;
1567 }
1568
1569 if (title != NULL) {
1570 if (i == (ZFS_GET_NCOLS - 1) ||
1571 cbp->cb_columns[i + 1] == GET_COL_NONE)
1572 (void) printf("%s", title);
1573 else
1574 (void) printf("%-*s ",
1575 cbp->cb_colwidths[cbp->cb_columns[i]],
1576 title);
1577 }
1578 }
1579 (void) printf("\n");
1580 }
1581
1582 /*
1583 * Display a single line of output, according to the settings in the callback
1584 * structure.
1585 */
1586 void
1587 zprop_print_one_property(const char *name, zprop_get_cbdata_t *cbp,
1588 const char *propname, const char *value, zprop_source_t sourcetype,
1589 const char *source, const char *recvd_value)
1590 {
1591 int i;
1592 const char *str = NULL;
1593 char buf[128];
1594
1595 /*
1596 * Ignore those source types that the user has chosen to ignore.
1597 */
1598 if ((sourcetype & cbp->cb_sources) == 0)
1599 return;
1600
1601 if (cbp->cb_first)
1602 zprop_print_headers(cbp, cbp->cb_type);
1603
1604 for (i = 0; i < ZFS_GET_NCOLS; i++) {
1605 switch (cbp->cb_columns[i]) {
1606 case GET_COL_NAME:
1607 str = name;
1608 break;
1609
1610 case GET_COL_PROPERTY:
1611 str = propname;
1612 break;
1613
1614 case GET_COL_VALUE:
1615 str = value;
1616 break;
1617
1618 case GET_COL_SOURCE:
1619 switch (sourcetype) {
1620 case ZPROP_SRC_NONE:
1621 str = "-";
1622 break;
1623
1624 case ZPROP_SRC_DEFAULT:
1625 str = "default";
1626 break;
1627
1628 case ZPROP_SRC_LOCAL:
1629 str = "local";
1630 break;
1631
1632 case ZPROP_SRC_TEMPORARY:
1633 str = "temporary";
1634 break;
1635
1636 case ZPROP_SRC_INHERITED:
1637 (void) snprintf(buf, sizeof (buf),
1638 "inherited from %s", source);
1639 str = buf;
1640 break;
1641 case ZPROP_SRC_RECEIVED:
1642 str = "received";
1643 break;
1644
1645 default:
1646 str = NULL;
1647 assert(!"unhandled zprop_source_t");
1648 }
1649 break;
1650
1651 case GET_COL_RECVD:
1652 str = (recvd_value == NULL ? "-" : recvd_value);
1653 break;
1654
1655 default:
1656 continue;
1657 }
1658
1659 if (i == (ZFS_GET_NCOLS - 1) ||
1660 cbp->cb_columns[i + 1] == GET_COL_NONE)
1661 (void) printf("%s", str);
1662 else if (cbp->cb_scripted)
1663 (void) printf("%s\t", str);
1664 else
1665 (void) printf("%-*s ",
1666 cbp->cb_colwidths[cbp->cb_columns[i]],
1667 str);
1668 }
1669
1670 (void) printf("\n");
1671 }
1672
1673 /*
1674 * Given a numeric suffix, convert the value into a number of bits that the
1675 * resulting value must be shifted.
1676 */
1677 static int
1678 str2shift(libzfs_handle_t *hdl, const char *buf)
1679 {
1680 const char *ends = "BKMGTPEZ";
1681 int i;
1682
1683 if (buf[0] == '\0')
1684 return (0);
1685 for (i = 0; i < strlen(ends); i++) {
1686 if (toupper(buf[0]) == ends[i])
1687 break;
1688 }
1689 if (i == strlen(ends)) {
1690 if (hdl)
1691 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1692 "invalid numeric suffix '%s'"), buf);
1693 return (-1);
1694 }
1695
1696 /*
1697 * Allow 'G' = 'GB' = 'GiB', case-insensitively.
1698 * However, 'BB' and 'BiB' are disallowed.
1699 */
1700 if (buf[1] == '\0' ||
1701 (toupper(buf[0]) != 'B' &&
1702 ((toupper(buf[1]) == 'B' && buf[2] == '\0') ||
1703 (toupper(buf[1]) == 'I' && toupper(buf[2]) == 'B' &&
1704 buf[3] == '\0'))))
1705 return (10 * i);
1706
1707 if (hdl)
1708 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1709 "invalid numeric suffix '%s'"), buf);
1710 return (-1);
1711 }
1712
1713 /*
1714 * Convert a string of the form '100G' into a real number. Used when setting
1715 * properties or creating a volume. 'buf' is used to place an extended error
1716 * message for the caller to use.
1717 */
1718 int
1719 zfs_nicestrtonum(libzfs_handle_t *hdl, const char *value, uint64_t *num)
1720 {
1721 char *end;
1722 int shift;
1723
1724 *num = 0;
1725
1726 /* Check to see if this looks like a number. */
1727 if ((value[0] < '0' || value[0] > '9') && value[0] != '.') {
1728 if (hdl)
1729 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1730 "bad numeric value '%s'"), value);
1731 return (-1);
1732 }
1733
1734 /* Rely on strtoull() to process the numeric portion. */
1735 errno = 0;
1736 *num = strtoull(value, &end, 10);
1737
1738 /*
1739 * Check for ERANGE, which indicates that the value is too large to fit
1740 * in a 64-bit value.
1741 */
1742 if (errno == ERANGE) {
1743 if (hdl)
1744 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1745 "numeric value is too large"));
1746 return (-1);
1747 }
1748
1749 /*
1750 * If we have a decimal value, then do the computation with floating
1751 * point arithmetic. Otherwise, use standard arithmetic.
1752 */
1753 if (*end == '.') {
1754 double fval = strtod(value, &end);
1755
1756 if ((shift = str2shift(hdl, end)) == -1)
1757 return (-1);
1758
1759 fval *= pow(2, shift);
1760
1761 if (fval > UINT64_MAX) {
1762 if (hdl)
1763 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1764 "numeric value is too large"));
1765 return (-1);
1766 }
1767
1768 *num = (uint64_t)fval;
1769 } else {
1770 if ((shift = str2shift(hdl, end)) == -1)
1771 return (-1);
1772
1773 /* Check for overflow */
1774 if (shift >= 64 || (*num << shift) >> shift != *num) {
1775 if (hdl)
1776 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1777 "numeric value is too large"));
1778 return (-1);
1779 }
1780
1781 *num <<= shift;
1782 }
1783
1784 return (0);
1785 }
1786
1787 /*
1788 * Given a propname=value nvpair to set, parse any numeric properties
1789 * (index, boolean, etc) if they are specified as strings and add the
1790 * resulting nvpair to the returned nvlist.
1791 *
1792 * At the DSL layer, all properties are either 64-bit numbers or strings.
1793 * We want the user to be able to ignore this fact and specify properties
1794 * as native values (numbers, for example) or as strings (to simplify
1795 * command line utilities). This also handles converting index types
1796 * (compression, checksum, etc) from strings to their on-disk index.
1797 */
1798 int
1799 zprop_parse_value(libzfs_handle_t *hdl, nvpair_t *elem, int prop,
1800 zfs_type_t type, nvlist_t *ret, char **svalp, uint64_t *ivalp,
1801 const char *errbuf)
1802 {
1803 data_type_t datatype = nvpair_type(elem);
1804 zprop_type_t proptype;
1805 const char *propname;
1806 char *value;
1807 boolean_t isnone = B_FALSE;
1808 int err = 0;
1809
1810 if (type == ZFS_TYPE_POOL) {
1811 proptype = zpool_prop_get_type(prop);
1812 propname = zpool_prop_to_name(prop);
1813 } else {
1814 proptype = zfs_prop_get_type(prop);
1815 propname = zfs_prop_to_name(prop);
1816 }
1817
1818 /*
1819 * Convert any properties to the internal DSL value types.
1820 */
1821 *svalp = NULL;
1822 *ivalp = 0;
1823
1824 switch (proptype) {
1825 case PROP_TYPE_STRING:
1826 if (datatype != DATA_TYPE_STRING) {
1827 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1828 "'%s' must be a string"), nvpair_name(elem));
1829 goto error;
1830 }
1831 err = nvpair_value_string(elem, svalp);
1832 if (err != 0) {
1833 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1834 "'%s' is invalid"), nvpair_name(elem));
1835 goto error;
1836 }
1837 if (strlen(*svalp) >= ZFS_MAXPROPLEN) {
1838 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1839 "'%s' is too long"), nvpair_name(elem));
1840 goto error;
1841 }
1842 break;
1843
1844 case PROP_TYPE_NUMBER:
1845 if (datatype == DATA_TYPE_STRING) {
1846 (void) nvpair_value_string(elem, &value);
1847 if (strcmp(value, "none") == 0) {
1848 isnone = B_TRUE;
1849 } else if (zfs_nicestrtonum(hdl, value, ivalp)
1850 != 0) {
1851 goto error;
1852 }
1853 } else if (datatype == DATA_TYPE_UINT64) {
1854 (void) nvpair_value_uint64(elem, ivalp);
1855 } else {
1856 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1857 "'%s' must be a number"), nvpair_name(elem));
1858 goto error;
1859 }
1860
1861 /*
1862 * Quota special: force 'none' and don't allow 0.
1863 */
1864 if ((type & ZFS_TYPE_DATASET) && *ivalp == 0 && !isnone &&
1865 (prop == ZFS_PROP_QUOTA || prop == ZFS_PROP_REFQUOTA)) {
1866 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1867 "use 'none' to disable quota/refquota"));
1868 goto error;
1869 }
1870
1871 /*
1872 * Special handling for "*_limit=none". In this case it's not
1873 * 0 but UINT64_MAX.
1874 */
1875 if ((type & ZFS_TYPE_DATASET) && isnone &&
1876 (prop == ZFS_PROP_FILESYSTEM_LIMIT ||
1877 prop == ZFS_PROP_SNAPSHOT_LIMIT)) {
1878 *ivalp = UINT64_MAX;
1879 }
1880 break;
1881
1882 case PROP_TYPE_INDEX:
1883 if (datatype != DATA_TYPE_STRING) {
1884 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1885 "'%s' must be a string"), nvpair_name(elem));
1886 goto error;
1887 }
1888
1889 (void) nvpair_value_string(elem, &value);
1890
1891 if (zprop_string_to_index(prop, value, ivalp, type) != 0) {
1892 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1893 "'%s' must be one of '%s'"), propname,
1894 zprop_values(prop, type));
1895 goto error;
1896 }
1897 break;
1898
1899 default:
1900 abort();
1901 }
1902
1903 /*
1904 * Add the result to our return set of properties.
1905 */
1906 if (*svalp != NULL) {
1907 if (nvlist_add_string(ret, propname, *svalp) != 0) {
1908 (void) no_memory(hdl);
1909 return (-1);
1910 }
1911 } else {
1912 if (nvlist_add_uint64(ret, propname, *ivalp) != 0) {
1913 (void) no_memory(hdl);
1914 return (-1);
1915 }
1916 }
1917
1918 return (0);
1919 error:
1920 (void) zfs_error(hdl, EZFS_BADPROP, errbuf);
1921 return (-1);
1922 }
1923
1924 static int
1925 addlist(libzfs_handle_t *hdl, char *propname, zprop_list_t **listp,
1926 zfs_type_t type)
1927 {
1928 int prop;
1929 zprop_list_t *entry;
1930
1931 prop = zprop_name_to_prop(propname, type);
1932
1933 if (prop != ZPROP_INVAL && !zprop_valid_for_type(prop, type, B_FALSE))
1934 prop = ZPROP_INVAL;
1935
1936 /*
1937 * When no property table entry can be found, return failure if
1938 * this is a pool property or if this isn't a user-defined
1939 * dataset property,
1940 */
1941 if (prop == ZPROP_INVAL && ((type == ZFS_TYPE_POOL &&
1942 !zpool_prop_feature(propname) &&
1943 !zpool_prop_unsupported(propname)) ||
1944 (type == ZFS_TYPE_DATASET && !zfs_prop_user(propname) &&
1945 !zfs_prop_userquota(propname) && !zfs_prop_written(propname)))) {
1946 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1947 "invalid property '%s'"), propname);
1948 return (zfs_error(hdl, EZFS_BADPROP,
1949 dgettext(TEXT_DOMAIN, "bad property list")));
1950 }
1951
1952 if ((entry = zfs_alloc(hdl, sizeof (zprop_list_t))) == NULL)
1953 return (-1);
1954
1955 entry->pl_prop = prop;
1956 if (prop == ZPROP_INVAL) {
1957 if ((entry->pl_user_prop = zfs_strdup(hdl, propname)) ==
1958 NULL) {
1959 free(entry);
1960 return (-1);
1961 }
1962 entry->pl_width = strlen(propname);
1963 } else {
1964 entry->pl_width = zprop_width(prop, &entry->pl_fixed,
1965 type);
1966 }
1967
1968 *listp = entry;
1969
1970 return (0);
1971 }
1972
1973 /*
1974 * Given a comma-separated list of properties, construct a property list
1975 * containing both user-defined and native properties. This function will
1976 * return a NULL list if 'all' is specified, which can later be expanded
1977 * by zprop_expand_list().
1978 */
1979 int
1980 zprop_get_list(libzfs_handle_t *hdl, char *props, zprop_list_t **listp,
1981 zfs_type_t type)
1982 {
1983 *listp = NULL;
1984
1985 /*
1986 * If 'all' is specified, return a NULL list.
1987 */
1988 if (strcmp(props, "all") == 0)
1989 return (0);
1990
1991 /*
1992 * If no props were specified, return an error.
1993 */
1994 if (props[0] == '\0') {
1995 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1996 "no properties specified"));
1997 return (zfs_error(hdl, EZFS_BADPROP, dgettext(TEXT_DOMAIN,
1998 "bad property list")));
1999 }
2000
2001 /*
2002 * It would be nice to use getsubopt() here, but the inclusion of column
2003 * aliases makes this more effort than it's worth.
2004 */
2005 while (*props != '\0') {
2006 size_t len;
2007 char *p;
2008 char c;
2009
2010 if ((p = strchr(props, ',')) == NULL) {
2011 len = strlen(props);
2012 p = props + len;
2013 } else {
2014 len = p - props;
2015 }
2016
2017 /*
2018 * Check for empty options.
2019 */
2020 if (len == 0) {
2021 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
2022 "empty property name"));
2023 return (zfs_error(hdl, EZFS_BADPROP,
2024 dgettext(TEXT_DOMAIN, "bad property list")));
2025 }
2026
2027 /*
2028 * Check all regular property names.
2029 */
2030 c = props[len];
2031 props[len] = '\0';
2032
2033 if (strcmp(props, "space") == 0) {
2034 static char *spaceprops[] = {
2035 "name", "avail", "used", "usedbysnapshots",
2036 "usedbydataset", "usedbyrefreservation",
2037 "usedbychildren", NULL
2038 };
2039 int i;
2040
2041 for (i = 0; spaceprops[i]; i++) {
2042 if (addlist(hdl, spaceprops[i], listp, type))
2043 return (-1);
2044 listp = &(*listp)->pl_next;
2045 }
2046 } else {
2047 if (addlist(hdl, props, listp, type))
2048 return (-1);
2049 listp = &(*listp)->pl_next;
2050 }
2051
2052 props = p;
2053 if (c == ',')
2054 props++;
2055 }
2056
2057 return (0);
2058 }
2059
2060 void
2061 zprop_free_list(zprop_list_t *pl)
2062 {
2063 zprop_list_t *next;
2064
2065 while (pl != NULL) {
2066 next = pl->pl_next;
2067 free(pl->pl_user_prop);
2068 free(pl);
2069 pl = next;
2070 }
2071 }
2072
2073 typedef struct expand_data {
2074 zprop_list_t **last;
2075 libzfs_handle_t *hdl;
2076 zfs_type_t type;
2077 } expand_data_t;
2078
2079 int
2080 zprop_expand_list_cb(int prop, void *cb)
2081 {
2082 zprop_list_t *entry;
2083 expand_data_t *edp = cb;
2084
2085 if ((entry = zfs_alloc(edp->hdl, sizeof (zprop_list_t))) == NULL)
2086 return (ZPROP_INVAL);
2087
2088 entry->pl_prop = prop;
2089 entry->pl_width = zprop_width(prop, &entry->pl_fixed, edp->type);
2090 entry->pl_all = B_TRUE;
2091
2092 *(edp->last) = entry;
2093 edp->last = &entry->pl_next;
2094
2095 return (ZPROP_CONT);
2096 }
2097
2098 int
2099 zprop_expand_list(libzfs_handle_t *hdl, zprop_list_t **plp, zfs_type_t type)
2100 {
2101 zprop_list_t *entry;
2102 zprop_list_t **last;
2103 expand_data_t exp;
2104
2105 if (*plp == NULL) {
2106 /*
2107 * If this is the very first time we've been called for an 'all'
2108 * specification, expand the list to include all native
2109 * properties.
2110 */
2111 last = plp;
2112
2113 exp.last = last;
2114 exp.hdl = hdl;
2115 exp.type = type;
2116
2117 if (zprop_iter_common(zprop_expand_list_cb, &exp, B_FALSE,
2118 B_FALSE, type) == ZPROP_INVAL)
2119 return (-1);
2120
2121 /*
2122 * Add 'name' to the beginning of the list, which is handled
2123 * specially.
2124 */
2125 if ((entry = zfs_alloc(hdl, sizeof (zprop_list_t))) == NULL)
2126 return (-1);
2127
2128 entry->pl_prop = (type == ZFS_TYPE_POOL) ? ZPOOL_PROP_NAME :
2129 ZFS_PROP_NAME;
2130 entry->pl_width = zprop_width(entry->pl_prop,
2131 &entry->pl_fixed, type);
2132 entry->pl_all = B_TRUE;
2133 entry->pl_next = *plp;
2134 *plp = entry;
2135 }
2136 return (0);
2137 }
2138
2139 int
2140 zprop_iter(zprop_func func, void *cb, boolean_t show_all, boolean_t ordered,
2141 zfs_type_t type)
2142 {
2143 return (zprop_iter_common(func, cb, show_all, ordered, type));
2144 }