]> git.proxmox.com Git - mirror_zfs-debian.git/blob - lib/libzpool/kernel.c
Imported Upstream version 0.6.5.3
[mirror_zfs-debian.git] / lib / libzpool / kernel.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <assert.h>
26 #include <fcntl.h>
27 #include <poll.h>
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include <zlib.h>
32 #include <sys/signal.h>
33 #include <sys/spa.h>
34 #include <sys/stat.h>
35 #include <sys/processor.h>
36 #include <sys/zfs_context.h>
37 #include <sys/rrwlock.h>
38 #include <sys/utsname.h>
39 #include <sys/time.h>
40 #include <sys/systeminfo.h>
41
42 /*
43 * Emulation of kernel services in userland.
44 */
45
46 int aok;
47 uint64_t physmem;
48 vnode_t *rootdir = (vnode_t *)0xabcd1234;
49 char hw_serial[HW_HOSTID_LEN];
50 struct utsname hw_utsname;
51 vmem_t *zio_arena = NULL;
52
53 /* this only exists to have its address taken */
54 struct proc p0;
55
56 /*
57 * =========================================================================
58 * threads
59 * =========================================================================
60 */
61
62 pthread_cond_t kthread_cond = PTHREAD_COND_INITIALIZER;
63 pthread_mutex_t kthread_lock = PTHREAD_MUTEX_INITIALIZER;
64 pthread_key_t kthread_key;
65 int kthread_nr = 0;
66
67 static void
68 thread_init(void)
69 {
70 kthread_t *kt;
71
72 VERIFY3S(pthread_key_create(&kthread_key, NULL), ==, 0);
73
74 /* Create entry for primary kthread */
75 kt = umem_zalloc(sizeof (kthread_t), UMEM_NOFAIL);
76 kt->t_tid = pthread_self();
77 kt->t_func = NULL;
78
79 VERIFY3S(pthread_setspecific(kthread_key, kt), ==, 0);
80
81 /* Only the main thread should be running at the moment */
82 ASSERT3S(kthread_nr, ==, 0);
83 kthread_nr = 1;
84 }
85
86 static void
87 thread_fini(void)
88 {
89 kthread_t *kt = curthread;
90
91 ASSERT(pthread_equal(kt->t_tid, pthread_self()));
92 ASSERT3P(kt->t_func, ==, NULL);
93
94 umem_free(kt, sizeof (kthread_t));
95
96 /* Wait for all threads to exit via thread_exit() */
97 VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0);
98
99 kthread_nr--; /* Main thread is exiting */
100
101 while (kthread_nr > 0)
102 VERIFY3S(pthread_cond_wait(&kthread_cond, &kthread_lock), ==,
103 0);
104
105 ASSERT3S(kthread_nr, ==, 0);
106 VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0);
107
108 VERIFY3S(pthread_key_delete(kthread_key), ==, 0);
109 }
110
111 kthread_t *
112 zk_thread_current(void)
113 {
114 kthread_t *kt = pthread_getspecific(kthread_key);
115
116 ASSERT3P(kt, !=, NULL);
117
118 return (kt);
119 }
120
121 void *
122 zk_thread_helper(void *arg)
123 {
124 kthread_t *kt = (kthread_t *) arg;
125
126 VERIFY3S(pthread_setspecific(kthread_key, kt), ==, 0);
127
128 VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0);
129 kthread_nr++;
130 VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0);
131 (void) setpriority(PRIO_PROCESS, 0, kt->t_pri);
132
133 kt->t_tid = pthread_self();
134 ((thread_func_arg_t) kt->t_func)(kt->t_arg);
135
136 /* Unreachable, thread must exit with thread_exit() */
137 abort();
138
139 return (NULL);
140 }
141
142 kthread_t *
143 zk_thread_create(caddr_t stk, size_t stksize, thread_func_t func, void *arg,
144 size_t len, proc_t *pp, int state, pri_t pri, int detachstate)
145 {
146 kthread_t *kt;
147 pthread_attr_t attr;
148 char *stkstr;
149
150 ASSERT0(state & ~TS_RUN);
151
152 kt = umem_zalloc(sizeof (kthread_t), UMEM_NOFAIL);
153 kt->t_func = func;
154 kt->t_arg = arg;
155 kt->t_pri = pri;
156
157 VERIFY0(pthread_attr_init(&attr));
158 VERIFY0(pthread_attr_setdetachstate(&attr, detachstate));
159
160 /*
161 * We allow the default stack size in user space to be specified by
162 * setting the ZFS_STACK_SIZE environment variable. This allows us
163 * the convenience of observing and debugging stack overruns in
164 * user space. Explicitly specified stack sizes will be honored.
165 * The usage of ZFS_STACK_SIZE is discussed further in the
166 * ENVIRONMENT VARIABLES sections of the ztest(1) man page.
167 */
168 if (stksize == 0) {
169 stkstr = getenv("ZFS_STACK_SIZE");
170
171 if (stkstr == NULL)
172 stksize = TS_STACK_MAX;
173 else
174 stksize = MAX(atoi(stkstr), TS_STACK_MIN);
175 }
176
177 VERIFY3S(stksize, >, 0);
178 stksize = P2ROUNDUP(MAX(stksize, TS_STACK_MIN), PAGESIZE);
179 VERIFY0(pthread_attr_setstacksize(&attr, stksize));
180 VERIFY0(pthread_attr_setguardsize(&attr, PAGESIZE));
181
182 VERIFY0(pthread_create(&kt->t_tid, &attr, &zk_thread_helper, kt));
183 VERIFY0(pthread_attr_destroy(&attr));
184
185 return (kt);
186 }
187
188 void
189 zk_thread_exit(void)
190 {
191 kthread_t *kt = curthread;
192
193 ASSERT(pthread_equal(kt->t_tid, pthread_self()));
194
195 umem_free(kt, sizeof (kthread_t));
196
197 pthread_mutex_lock(&kthread_lock);
198 kthread_nr--;
199 pthread_mutex_unlock(&kthread_lock);
200
201 pthread_cond_broadcast(&kthread_cond);
202 pthread_exit((void *)TS_MAGIC);
203 }
204
205 void
206 zk_thread_join(kt_did_t tid)
207 {
208 void *ret;
209
210 pthread_join((pthread_t)tid, &ret);
211 VERIFY3P(ret, ==, (void *)TS_MAGIC);
212 }
213
214 /*
215 * =========================================================================
216 * kstats
217 * =========================================================================
218 */
219 /*ARGSUSED*/
220 kstat_t *
221 kstat_create(const char *module, int instance, const char *name,
222 const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag)
223 {
224 return (NULL);
225 }
226
227 /*ARGSUSED*/
228 void
229 kstat_install(kstat_t *ksp)
230 {}
231
232 /*ARGSUSED*/
233 void
234 kstat_delete(kstat_t *ksp)
235 {}
236
237 /*ARGSUSED*/
238 void
239 kstat_waitq_enter(kstat_io_t *kiop)
240 {}
241
242 /*ARGSUSED*/
243 void
244 kstat_waitq_exit(kstat_io_t *kiop)
245 {}
246
247 /*ARGSUSED*/
248 void
249 kstat_runq_enter(kstat_io_t *kiop)
250 {}
251
252 /*ARGSUSED*/
253 void
254 kstat_runq_exit(kstat_io_t *kiop)
255 {}
256
257 /*ARGSUSED*/
258 void
259 kstat_waitq_to_runq(kstat_io_t *kiop)
260 {}
261
262 /*ARGSUSED*/
263 void
264 kstat_runq_back_to_waitq(kstat_io_t *kiop)
265 {}
266
267 void
268 kstat_set_raw_ops(kstat_t *ksp,
269 int (*headers)(char *buf, size_t size),
270 int (*data)(char *buf, size_t size, void *data),
271 void *(*addr)(kstat_t *ksp, loff_t index))
272 {}
273
274 /*
275 * =========================================================================
276 * mutexes
277 * =========================================================================
278 */
279
280 void
281 mutex_init(kmutex_t *mp, char *name, int type, void *cookie)
282 {
283 ASSERT3S(type, ==, MUTEX_DEFAULT);
284 ASSERT3P(cookie, ==, NULL);
285 mp->m_owner = MTX_INIT;
286 mp->m_magic = MTX_MAGIC;
287 VERIFY3S(pthread_mutex_init(&mp->m_lock, NULL), ==, 0);
288 }
289
290 void
291 mutex_destroy(kmutex_t *mp)
292 {
293 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
294 ASSERT3P(mp->m_owner, ==, MTX_INIT);
295 ASSERT0(pthread_mutex_destroy(&(mp)->m_lock));
296 mp->m_owner = MTX_DEST;
297 mp->m_magic = 0;
298 }
299
300 void
301 mutex_enter(kmutex_t *mp)
302 {
303 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
304 ASSERT3P(mp->m_owner, !=, MTX_DEST);
305 ASSERT3P(mp->m_owner, !=, curthread);
306 VERIFY3S(pthread_mutex_lock(&mp->m_lock), ==, 0);
307 ASSERT3P(mp->m_owner, ==, MTX_INIT);
308 mp->m_owner = curthread;
309 }
310
311 int
312 mutex_tryenter(kmutex_t *mp)
313 {
314 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
315 ASSERT3P(mp->m_owner, !=, MTX_DEST);
316 if (0 == pthread_mutex_trylock(&mp->m_lock)) {
317 ASSERT3P(mp->m_owner, ==, MTX_INIT);
318 mp->m_owner = curthread;
319 return (1);
320 } else {
321 return (0);
322 }
323 }
324
325 void
326 mutex_exit(kmutex_t *mp)
327 {
328 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
329 ASSERT3P(mutex_owner(mp), ==, curthread);
330 mp->m_owner = MTX_INIT;
331 VERIFY3S(pthread_mutex_unlock(&mp->m_lock), ==, 0);
332 }
333
334 void *
335 mutex_owner(kmutex_t *mp)
336 {
337 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
338 return (mp->m_owner);
339 }
340
341 int
342 mutex_held(kmutex_t *mp)
343 {
344 return (mp->m_owner == curthread);
345 }
346
347 /*
348 * =========================================================================
349 * rwlocks
350 * =========================================================================
351 */
352
353 void
354 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
355 {
356 ASSERT3S(type, ==, RW_DEFAULT);
357 ASSERT3P(arg, ==, NULL);
358 VERIFY3S(pthread_rwlock_init(&rwlp->rw_lock, NULL), ==, 0);
359 rwlp->rw_owner = RW_INIT;
360 rwlp->rw_wr_owner = RW_INIT;
361 rwlp->rw_readers = 0;
362 rwlp->rw_magic = RW_MAGIC;
363 }
364
365 void
366 rw_destroy(krwlock_t *rwlp)
367 {
368 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
369 ASSERT(rwlp->rw_readers == 0 && rwlp->rw_wr_owner == RW_INIT);
370 VERIFY3S(pthread_rwlock_destroy(&rwlp->rw_lock), ==, 0);
371 rwlp->rw_magic = 0;
372 }
373
374 void
375 rw_enter(krwlock_t *rwlp, krw_t rw)
376 {
377 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
378 ASSERT3P(rwlp->rw_owner, !=, curthread);
379 ASSERT3P(rwlp->rw_wr_owner, !=, curthread);
380
381 if (rw == RW_READER) {
382 VERIFY3S(pthread_rwlock_rdlock(&rwlp->rw_lock), ==, 0);
383 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
384
385 atomic_inc_uint(&rwlp->rw_readers);
386 } else {
387 VERIFY3S(pthread_rwlock_wrlock(&rwlp->rw_lock), ==, 0);
388 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
389 ASSERT3U(rwlp->rw_readers, ==, 0);
390
391 rwlp->rw_wr_owner = curthread;
392 }
393
394 rwlp->rw_owner = curthread;
395 }
396
397 void
398 rw_exit(krwlock_t *rwlp)
399 {
400 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
401 ASSERT(RW_LOCK_HELD(rwlp));
402
403 if (RW_READ_HELD(rwlp))
404 atomic_dec_uint(&rwlp->rw_readers);
405 else
406 rwlp->rw_wr_owner = RW_INIT;
407
408 rwlp->rw_owner = RW_INIT;
409 VERIFY3S(pthread_rwlock_unlock(&rwlp->rw_lock), ==, 0);
410 }
411
412 int
413 rw_tryenter(krwlock_t *rwlp, krw_t rw)
414 {
415 int rv;
416
417 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
418
419 if (rw == RW_READER)
420 rv = pthread_rwlock_tryrdlock(&rwlp->rw_lock);
421 else
422 rv = pthread_rwlock_trywrlock(&rwlp->rw_lock);
423
424 if (rv == 0) {
425 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
426
427 if (rw == RW_READER)
428 atomic_inc_uint(&rwlp->rw_readers);
429 else {
430 ASSERT3U(rwlp->rw_readers, ==, 0);
431 rwlp->rw_wr_owner = curthread;
432 }
433
434 rwlp->rw_owner = curthread;
435 return (1);
436 }
437
438 VERIFY3S(rv, ==, EBUSY);
439
440 return (0);
441 }
442
443 int
444 rw_tryupgrade(krwlock_t *rwlp)
445 {
446 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
447
448 return (0);
449 }
450
451 /*
452 * =========================================================================
453 * condition variables
454 * =========================================================================
455 */
456
457 void
458 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
459 {
460 ASSERT3S(type, ==, CV_DEFAULT);
461 cv->cv_magic = CV_MAGIC;
462 VERIFY3S(pthread_cond_init(&cv->cv, NULL), ==, 0);
463 }
464
465 void
466 cv_destroy(kcondvar_t *cv)
467 {
468 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
469 VERIFY3S(pthread_cond_destroy(&cv->cv), ==, 0);
470 cv->cv_magic = 0;
471 }
472
473 void
474 cv_wait(kcondvar_t *cv, kmutex_t *mp)
475 {
476 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
477 ASSERT3P(mutex_owner(mp), ==, curthread);
478 mp->m_owner = MTX_INIT;
479 int ret = pthread_cond_wait(&cv->cv, &mp->m_lock);
480 if (ret != 0)
481 VERIFY3S(ret, ==, EINTR);
482 mp->m_owner = curthread;
483 }
484
485 clock_t
486 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
487 {
488 int error;
489 struct timeval tv;
490 timestruc_t ts;
491 clock_t delta;
492
493 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
494
495 top:
496 delta = abstime - ddi_get_lbolt();
497 if (delta <= 0)
498 return (-1);
499
500 VERIFY(gettimeofday(&tv, NULL) == 0);
501
502 ts.tv_sec = tv.tv_sec + delta / hz;
503 ts.tv_nsec = tv.tv_usec * 1000 + (delta % hz) * (NANOSEC / hz);
504 if (ts.tv_nsec >= NANOSEC) {
505 ts.tv_sec++;
506 ts.tv_nsec -= NANOSEC;
507 }
508
509 ASSERT3P(mutex_owner(mp), ==, curthread);
510 mp->m_owner = MTX_INIT;
511 error = pthread_cond_timedwait(&cv->cv, &mp->m_lock, &ts);
512 mp->m_owner = curthread;
513
514 if (error == ETIMEDOUT)
515 return (-1);
516
517 if (error == EINTR)
518 goto top;
519
520 VERIFY3S(error, ==, 0);
521
522 return (1);
523 }
524
525 /*ARGSUSED*/
526 clock_t
527 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
528 int flag)
529 {
530 int error;
531 timestruc_t ts;
532 hrtime_t delta;
533
534 ASSERT(flag == 0);
535
536 top:
537 delta = tim - gethrtime();
538 if (delta <= 0)
539 return (-1);
540
541 ts.tv_sec = delta / NANOSEC;
542 ts.tv_nsec = delta % NANOSEC;
543
544 ASSERT(mutex_owner(mp) == curthread);
545 mp->m_owner = NULL;
546 error = pthread_cond_timedwait(&cv->cv, &mp->m_lock, &ts);
547 mp->m_owner = curthread;
548
549 if (error == ETIME)
550 return (-1);
551
552 if (error == EINTR)
553 goto top;
554
555 ASSERT(error == 0);
556
557 return (1);
558 }
559
560 void
561 cv_signal(kcondvar_t *cv)
562 {
563 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
564 VERIFY3S(pthread_cond_signal(&cv->cv), ==, 0);
565 }
566
567 void
568 cv_broadcast(kcondvar_t *cv)
569 {
570 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
571 VERIFY3S(pthread_cond_broadcast(&cv->cv), ==, 0);
572 }
573
574 /*
575 * =========================================================================
576 * vnode operations
577 * =========================================================================
578 */
579 /*
580 * Note: for the xxxat() versions of these functions, we assume that the
581 * starting vp is always rootdir (which is true for spa_directory.c, the only
582 * ZFS consumer of these interfaces). We assert this is true, and then emulate
583 * them by adding '/' in front of the path.
584 */
585
586 /*ARGSUSED*/
587 int
588 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
589 {
590 int fd;
591 vnode_t *vp;
592 int old_umask = 0;
593 char *realpath;
594 struct stat64 st;
595 int err;
596
597 realpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
598
599 /*
600 * If we're accessing a real disk from userland, we need to use
601 * the character interface to avoid caching. This is particularly
602 * important if we're trying to look at a real in-kernel storage
603 * pool from userland, e.g. via zdb, because otherwise we won't
604 * see the changes occurring under the segmap cache.
605 * On the other hand, the stupid character device returns zero
606 * for its size. So -- gag -- we open the block device to get
607 * its size, and remember it for subsequent VOP_GETATTR().
608 */
609 #if defined(__sun__) || defined(__sun)
610 if (strncmp(path, "/dev/", 5) == 0) {
611 #else
612 if (0) {
613 #endif
614 char *dsk;
615 fd = open64(path, O_RDONLY);
616 if (fd == -1) {
617 err = errno;
618 free(realpath);
619 return (err);
620 }
621 if (fstat64(fd, &st) == -1) {
622 err = errno;
623 close(fd);
624 free(realpath);
625 return (err);
626 }
627 close(fd);
628 (void) sprintf(realpath, "%s", path);
629 dsk = strstr(path, "/dsk/");
630 if (dsk != NULL)
631 (void) sprintf(realpath + (dsk - path) + 1, "r%s",
632 dsk + 1);
633 } else {
634 (void) sprintf(realpath, "%s", path);
635 if (!(flags & FCREAT) && stat64(realpath, &st) == -1) {
636 err = errno;
637 free(realpath);
638 return (err);
639 }
640 }
641
642 if (!(flags & FCREAT) && S_ISBLK(st.st_mode)) {
643 #ifdef __linux__
644 flags |= O_DIRECT;
645 #endif
646 /* We shouldn't be writing to block devices in userspace */
647 VERIFY(!(flags & FWRITE));
648 }
649
650 if (flags & FCREAT)
651 old_umask = umask(0);
652
653 /*
654 * The construct 'flags - FREAD' conveniently maps combinations of
655 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
656 */
657 fd = open64(realpath, flags - FREAD, mode);
658 free(realpath);
659
660 if (flags & FCREAT)
661 (void) umask(old_umask);
662
663 if (fd == -1)
664 return (errno);
665
666 if (fstat64_blk(fd, &st) == -1) {
667 err = errno;
668 close(fd);
669 return (err);
670 }
671
672 (void) fcntl(fd, F_SETFD, FD_CLOEXEC);
673
674 *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
675
676 vp->v_fd = fd;
677 vp->v_size = st.st_size;
678 vp->v_path = spa_strdup(path);
679
680 return (0);
681 }
682
683 /*ARGSUSED*/
684 int
685 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
686 int x3, vnode_t *startvp, int fd)
687 {
688 char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
689 int ret;
690
691 ASSERT(startvp == rootdir);
692 (void) sprintf(realpath, "/%s", path);
693
694 /* fd ignored for now, need if want to simulate nbmand support */
695 ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
696
697 umem_free(realpath, strlen(path) + 2);
698
699 return (ret);
700 }
701
702 /*ARGSUSED*/
703 int
704 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
705 int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
706 {
707 ssize_t rc, done = 0, split;
708
709 if (uio == UIO_READ) {
710 rc = pread64(vp->v_fd, addr, len, offset);
711 } else {
712 /*
713 * To simulate partial disk writes, we split writes into two
714 * system calls so that the process can be killed in between.
715 */
716 int sectors = len >> SPA_MINBLOCKSHIFT;
717 split = (sectors > 0 ? rand() % sectors : 0) <<
718 SPA_MINBLOCKSHIFT;
719 rc = pwrite64(vp->v_fd, addr, split, offset);
720 if (rc != -1) {
721 done = rc;
722 rc = pwrite64(vp->v_fd, (char *)addr + split,
723 len - split, offset + split);
724 }
725 }
726
727 #ifdef __linux__
728 if (rc == -1 && errno == EINVAL) {
729 /*
730 * Under Linux, this most likely means an alignment issue
731 * (memory or disk) due to O_DIRECT, so we abort() in order to
732 * catch the offender.
733 */
734 abort();
735 }
736 #endif
737 if (rc == -1)
738 return (errno);
739
740 done += rc;
741
742 if (residp)
743 *residp = len - done;
744 else if (done != len)
745 return (EIO);
746 return (0);
747 }
748
749 void
750 vn_close(vnode_t *vp)
751 {
752 close(vp->v_fd);
753 spa_strfree(vp->v_path);
754 umem_free(vp, sizeof (vnode_t));
755 }
756
757 /*
758 * At a minimum we need to update the size since vdev_reopen()
759 * will no longer call vn_openat().
760 */
761 int
762 fop_getattr(vnode_t *vp, vattr_t *vap)
763 {
764 struct stat64 st;
765 int err;
766
767 if (fstat64_blk(vp->v_fd, &st) == -1) {
768 err = errno;
769 close(vp->v_fd);
770 return (err);
771 }
772
773 vap->va_size = st.st_size;
774 return (0);
775 }
776
777 /*
778 * =========================================================================
779 * Figure out which debugging statements to print
780 * =========================================================================
781 */
782
783 static char *dprintf_string;
784 static int dprintf_print_all;
785
786 int
787 dprintf_find_string(const char *string)
788 {
789 char *tmp_str = dprintf_string;
790 int len = strlen(string);
791
792 /*
793 * Find out if this is a string we want to print.
794 * String format: file1.c,function_name1,file2.c,file3.c
795 */
796
797 while (tmp_str != NULL) {
798 if (strncmp(tmp_str, string, len) == 0 &&
799 (tmp_str[len] == ',' || tmp_str[len] == '\0'))
800 return (1);
801 tmp_str = strchr(tmp_str, ',');
802 if (tmp_str != NULL)
803 tmp_str++; /* Get rid of , */
804 }
805 return (0);
806 }
807
808 void
809 dprintf_setup(int *argc, char **argv)
810 {
811 int i, j;
812
813 /*
814 * Debugging can be specified two ways: by setting the
815 * environment variable ZFS_DEBUG, or by including a
816 * "debug=..." argument on the command line. The command
817 * line setting overrides the environment variable.
818 */
819
820 for (i = 1; i < *argc; i++) {
821 int len = strlen("debug=");
822 /* First look for a command line argument */
823 if (strncmp("debug=", argv[i], len) == 0) {
824 dprintf_string = argv[i] + len;
825 /* Remove from args */
826 for (j = i; j < *argc; j++)
827 argv[j] = argv[j+1];
828 argv[j] = NULL;
829 (*argc)--;
830 }
831 }
832
833 if (dprintf_string == NULL) {
834 /* Look for ZFS_DEBUG environment variable */
835 dprintf_string = getenv("ZFS_DEBUG");
836 }
837
838 /*
839 * Are we just turning on all debugging?
840 */
841 if (dprintf_find_string("on"))
842 dprintf_print_all = 1;
843
844 if (dprintf_string != NULL)
845 zfs_flags |= ZFS_DEBUG_DPRINTF;
846 }
847
848 /*
849 * =========================================================================
850 * debug printfs
851 * =========================================================================
852 */
853 void
854 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
855 {
856 const char *newfile;
857 va_list adx;
858
859 /*
860 * Get rid of annoying "../common/" prefix to filename.
861 */
862 newfile = strrchr(file, '/');
863 if (newfile != NULL) {
864 newfile = newfile + 1; /* Get rid of leading / */
865 } else {
866 newfile = file;
867 }
868
869 if (dprintf_print_all ||
870 dprintf_find_string(newfile) ||
871 dprintf_find_string(func)) {
872 /* Print out just the function name if requested */
873 flockfile(stdout);
874 if (dprintf_find_string("pid"))
875 (void) printf("%d ", getpid());
876 if (dprintf_find_string("tid"))
877 (void) printf("%u ", (uint_t) pthread_self());
878 if (dprintf_find_string("cpu"))
879 (void) printf("%u ", getcpuid());
880 if (dprintf_find_string("time"))
881 (void) printf("%llu ", gethrtime());
882 if (dprintf_find_string("long"))
883 (void) printf("%s, line %d: ", newfile, line);
884 (void) printf("%s: ", func);
885 va_start(adx, fmt);
886 (void) vprintf(fmt, adx);
887 va_end(adx);
888 funlockfile(stdout);
889 }
890 }
891
892 /*
893 * =========================================================================
894 * cmn_err() and panic()
895 * =========================================================================
896 */
897 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
898 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
899
900 void
901 vpanic(const char *fmt, va_list adx)
902 {
903 (void) fprintf(stderr, "error: ");
904 (void) vfprintf(stderr, fmt, adx);
905 (void) fprintf(stderr, "\n");
906
907 abort(); /* think of it as a "user-level crash dump" */
908 }
909
910 void
911 panic(const char *fmt, ...)
912 {
913 va_list adx;
914
915 va_start(adx, fmt);
916 vpanic(fmt, adx);
917 va_end(adx);
918 }
919
920 void
921 vcmn_err(int ce, const char *fmt, va_list adx)
922 {
923 if (ce == CE_PANIC)
924 vpanic(fmt, adx);
925 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */
926 (void) fprintf(stderr, "%s", ce_prefix[ce]);
927 (void) vfprintf(stderr, fmt, adx);
928 (void) fprintf(stderr, "%s", ce_suffix[ce]);
929 }
930 }
931
932 /*PRINTFLIKE2*/
933 void
934 cmn_err(int ce, const char *fmt, ...)
935 {
936 va_list adx;
937
938 va_start(adx, fmt);
939 vcmn_err(ce, fmt, adx);
940 va_end(adx);
941 }
942
943 /*
944 * =========================================================================
945 * kobj interfaces
946 * =========================================================================
947 */
948 struct _buf *
949 kobj_open_file(char *name)
950 {
951 struct _buf *file;
952 vnode_t *vp;
953
954 /* set vp as the _fd field of the file */
955 if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
956 -1) != 0)
957 return ((void *)-1UL);
958
959 file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
960 file->_fd = (intptr_t)vp;
961 return (file);
962 }
963
964 int
965 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
966 {
967 ssize_t resid;
968
969 vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
970 UIO_SYSSPACE, 0, 0, 0, &resid);
971
972 return (size - resid);
973 }
974
975 void
976 kobj_close_file(struct _buf *file)
977 {
978 vn_close((vnode_t *)file->_fd);
979 umem_free(file, sizeof (struct _buf));
980 }
981
982 int
983 kobj_get_filesize(struct _buf *file, uint64_t *size)
984 {
985 struct stat64 st;
986 vnode_t *vp = (vnode_t *)file->_fd;
987
988 if (fstat64(vp->v_fd, &st) == -1) {
989 vn_close(vp);
990 return (errno);
991 }
992 *size = st.st_size;
993 return (0);
994 }
995
996 /*
997 * =========================================================================
998 * misc routines
999 * =========================================================================
1000 */
1001
1002 void
1003 delay(clock_t ticks)
1004 {
1005 poll(0, 0, ticks * (1000 / hz));
1006 }
1007
1008 /*
1009 * Find highest one bit set.
1010 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
1011 * High order bit is 31 (or 63 in _LP64 kernel).
1012 */
1013 int
1014 highbit64(uint64_t i)
1015 {
1016 register int h = 1;
1017
1018 if (i == 0)
1019 return (0);
1020 if (i & 0xffffffff00000000ULL) {
1021 h += 32; i >>= 32;
1022 }
1023 if (i & 0xffff0000) {
1024 h += 16; i >>= 16;
1025 }
1026 if (i & 0xff00) {
1027 h += 8; i >>= 8;
1028 }
1029 if (i & 0xf0) {
1030 h += 4; i >>= 4;
1031 }
1032 if (i & 0xc) {
1033 h += 2; i >>= 2;
1034 }
1035 if (i & 0x2) {
1036 h += 1;
1037 }
1038 return (h);
1039 }
1040
1041 static int random_fd = -1, urandom_fd = -1;
1042
1043 static int
1044 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
1045 {
1046 size_t resid = len;
1047 ssize_t bytes;
1048
1049 ASSERT(fd != -1);
1050
1051 while (resid != 0) {
1052 bytes = read(fd, ptr, resid);
1053 ASSERT3S(bytes, >=, 0);
1054 ptr += bytes;
1055 resid -= bytes;
1056 }
1057
1058 return (0);
1059 }
1060
1061 int
1062 random_get_bytes(uint8_t *ptr, size_t len)
1063 {
1064 return (random_get_bytes_common(ptr, len, random_fd));
1065 }
1066
1067 int
1068 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
1069 {
1070 return (random_get_bytes_common(ptr, len, urandom_fd));
1071 }
1072
1073 int
1074 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
1075 {
1076 char *end;
1077
1078 *result = strtoul(hw_serial, &end, base);
1079 if (*result == 0)
1080 return (errno);
1081 return (0);
1082 }
1083
1084 int
1085 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
1086 {
1087 char *end;
1088
1089 *result = strtoull(str, &end, base);
1090 if (*result == 0)
1091 return (errno);
1092 return (0);
1093 }
1094
1095 utsname_t *
1096 utsname(void)
1097 {
1098 return (&hw_utsname);
1099 }
1100
1101 /*
1102 * =========================================================================
1103 * kernel emulation setup & teardown
1104 * =========================================================================
1105 */
1106 static int
1107 umem_out_of_memory(void)
1108 {
1109 char errmsg[] = "out of memory -- generating core dump\n";
1110
1111 (void) fprintf(stderr, "%s", errmsg);
1112 abort();
1113 return (0);
1114 }
1115
1116 static unsigned long
1117 get_spl_hostid(void)
1118 {
1119 FILE *f;
1120 unsigned long hostid;
1121
1122 f = fopen("/sys/module/spl/parameters/spl_hostid", "r");
1123 if (!f)
1124 return (0);
1125 if (fscanf(f, "%lu", &hostid) != 1)
1126 hostid = 0;
1127 fclose(f);
1128 return (hostid & 0xffffffff);
1129 }
1130
1131 unsigned long
1132 get_system_hostid(void)
1133 {
1134 unsigned long system_hostid = get_spl_hostid();
1135 if (system_hostid == 0)
1136 system_hostid = gethostid() & 0xffffffff;
1137 return (system_hostid);
1138 }
1139
1140 void
1141 kernel_init(int mode)
1142 {
1143 extern uint_t rrw_tsd_key;
1144
1145 umem_nofail_callback(umem_out_of_memory);
1146
1147 physmem = sysconf(_SC_PHYS_PAGES);
1148
1149 dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
1150 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
1151
1152 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
1153 (mode & FWRITE) ? get_system_hostid() : 0);
1154
1155 VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
1156 VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
1157 VERIFY0(uname(&hw_utsname));
1158
1159 thread_init();
1160 system_taskq_init();
1161
1162 spa_init(mode);
1163
1164 tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
1165 }
1166
1167 void
1168 kernel_fini(void)
1169 {
1170 spa_fini();
1171
1172 system_taskq_fini();
1173 thread_fini();
1174
1175 close(random_fd);
1176 close(urandom_fd);
1177
1178 random_fd = -1;
1179 urandom_fd = -1;
1180 }
1181
1182 uid_t
1183 crgetuid(cred_t *cr)
1184 {
1185 return (0);
1186 }
1187
1188 uid_t
1189 crgetruid(cred_t *cr)
1190 {
1191 return (0);
1192 }
1193
1194 gid_t
1195 crgetgid(cred_t *cr)
1196 {
1197 return (0);
1198 }
1199
1200 int
1201 crgetngroups(cred_t *cr)
1202 {
1203 return (0);
1204 }
1205
1206 gid_t *
1207 crgetgroups(cred_t *cr)
1208 {
1209 return (NULL);
1210 }
1211
1212 int
1213 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
1214 {
1215 return (0);
1216 }
1217
1218 int
1219 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
1220 {
1221 return (0);
1222 }
1223
1224 int
1225 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
1226 {
1227 return (0);
1228 }
1229
1230 ksiddomain_t *
1231 ksid_lookupdomain(const char *dom)
1232 {
1233 ksiddomain_t *kd;
1234
1235 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
1236 kd->kd_name = spa_strdup(dom);
1237 return (kd);
1238 }
1239
1240 void
1241 ksiddomain_rele(ksiddomain_t *ksid)
1242 {
1243 spa_strfree(ksid->kd_name);
1244 umem_free(ksid, sizeof (ksiddomain_t));
1245 }
1246
1247 char *
1248 kmem_vasprintf(const char *fmt, va_list adx)
1249 {
1250 char *buf = NULL;
1251 va_list adx_copy;
1252
1253 va_copy(adx_copy, adx);
1254 VERIFY(vasprintf(&buf, fmt, adx_copy) != -1);
1255 va_end(adx_copy);
1256
1257 return (buf);
1258 }
1259
1260 char *
1261 kmem_asprintf(const char *fmt, ...)
1262 {
1263 char *buf = NULL;
1264 va_list adx;
1265
1266 va_start(adx, fmt);
1267 VERIFY(vasprintf(&buf, fmt, adx) != -1);
1268 va_end(adx);
1269
1270 return (buf);
1271 }
1272
1273 /* ARGSUSED */
1274 int
1275 zfs_onexit_fd_hold(int fd, minor_t *minorp)
1276 {
1277 *minorp = 0;
1278 return (0);
1279 }
1280
1281 /* ARGSUSED */
1282 void
1283 zfs_onexit_fd_rele(int fd)
1284 {
1285 }
1286
1287 /* ARGSUSED */
1288 int
1289 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
1290 uint64_t *action_handle)
1291 {
1292 return (0);
1293 }
1294
1295 /* ARGSUSED */
1296 int
1297 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire)
1298 {
1299 return (0);
1300 }
1301
1302 /* ARGSUSED */
1303 int
1304 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data)
1305 {
1306 return (0);
1307 }
1308
1309 fstrans_cookie_t
1310 spl_fstrans_mark(void)
1311 {
1312 return ((fstrans_cookie_t) 0);
1313 }
1314
1315 void
1316 spl_fstrans_unmark(fstrans_cookie_t cookie)
1317 {
1318 }
1319
1320 int
1321 spl_fstrans_check(void)
1322 {
1323 return (0);
1324 }