]> git.proxmox.com Git - mirror_zfs.git/blob - lib/libzpool/kernel.c
Create threads in detached state in userspace.
[mirror_zfs.git] / lib / libzpool / kernel.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <assert.h>
26 #include <fcntl.h>
27 #include <poll.h>
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include <zlib.h>
32 #include <sys/signal.h>
33 #include <sys/spa.h>
34 #include <sys/stat.h>
35 #include <sys/processor.h>
36 #include <sys/zfs_context.h>
37 #include <sys/utsname.h>
38 #include <sys/time.h>
39 #include <sys/systeminfo.h>
40
41 /*
42 * Emulation of kernel services in userland.
43 */
44
45 int aok;
46 uint64_t physmem;
47 vnode_t *rootdir = (vnode_t *)0xabcd1234;
48 char hw_serial[HW_HOSTID_LEN];
49
50 struct utsname utsname = {
51 "userland", "libzpool", "1", "1", "na"
52 };
53
54 /* this only exists to have its address taken */
55 struct proc p0;
56
57 /*
58 * =========================================================================
59 * threads
60 * =========================================================================
61 */
62
63 pthread_cond_t kthread_cond = PTHREAD_COND_INITIALIZER;
64 pthread_mutex_t kthread_lock = PTHREAD_MUTEX_INITIALIZER;
65 pthread_key_t kthread_key;
66 int kthread_nr = 0;
67
68 static void
69 thread_init(void)
70 {
71 kthread_t *kt;
72
73 VERIFY3S(pthread_key_create(&kthread_key, NULL), ==, 0);
74
75 /* Create entry for primary kthread */
76 kt = umem_zalloc(sizeof(kthread_t), UMEM_NOFAIL);
77 kt->t_tid = pthread_self();
78 kt->t_func = NULL;
79
80 VERIFY3S(pthread_setspecific(kthread_key, kt), ==, 0);
81
82 /* Only the main thread should be running at the moment */
83 ASSERT3S(kthread_nr, ==, 0);
84 kthread_nr = 1;
85 }
86
87 static void
88 thread_fini(void)
89 {
90 kthread_t *kt = curthread;
91
92 ASSERT(pthread_equal(kt->t_tid, pthread_self()));
93 ASSERT3P(kt->t_func, ==, NULL);
94
95 umem_free(kt, sizeof(kthread_t));
96
97 /* Wait for all threads to exit via thread_exit() */
98 VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0);
99
100 kthread_nr--; /* Main thread is exiting */
101
102 while (kthread_nr > 0)
103 VERIFY3S(pthread_cond_wait(&kthread_cond, &kthread_lock), ==,
104 0);
105
106 ASSERT3S(kthread_nr, ==, 0);
107 VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0);
108
109 VERIFY3S(pthread_key_delete(kthread_key), ==, 0);
110 }
111
112 kthread_t *
113 zk_thread_current(void)
114 {
115 kthread_t *kt = pthread_getspecific(kthread_key);
116
117 ASSERT3P(kt, !=, NULL);
118
119 return kt;
120 }
121
122 void *
123 zk_thread_helper(void *arg)
124 {
125 kthread_t *kt = (kthread_t *) arg;
126
127 VERIFY3S(pthread_setspecific(kthread_key, kt), ==, 0);
128
129 VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0);
130 kthread_nr++;
131 VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0);
132
133 kt->t_tid = pthread_self();
134 ((thread_func_arg_t) kt->t_func)(kt->t_arg);
135
136 /* Unreachable, thread must exit with thread_exit() */
137 abort();
138
139 return NULL;
140 }
141
142 kthread_t *
143 zk_thread_create(caddr_t stk, size_t stksize, thread_func_t func, void *arg,
144 size_t len, proc_t *pp, int state, pri_t pri, int detachstate)
145 {
146 kthread_t *kt;
147 pthread_attr_t attr;
148 size_t stack;
149
150 ASSERT3S(state & ~TS_RUN, ==, 0);
151
152 kt = umem_zalloc(sizeof(kthread_t), UMEM_NOFAIL);
153 kt->t_func = func;
154 kt->t_arg = arg;
155
156 /*
157 * The Solaris kernel stack size is 24k for x86/x86_64.
158 * The Linux kernel stack size is 8k for x86/x86_64.
159 *
160 * We reduce the default stack size in userspace, to ensure
161 * we observe stack overruns in user space as well as in
162 * kernel space. In practice we can't set the userspace stack
163 * size to 8k because differences in stack usage between kernel
164 * space and userspace could lead to spurious stack overflows
165 * (especially when debugging is enabled). Nevertheless, we try
166 * to set it to the lowest value that works (currently 8k*4).
167 * PTHREAD_STACK_MIN is the minimum stack required for a NULL
168 * procedure in user space and is added in to the stack
169 * requirements.
170 *
171 * Some buggy NPTL threading implementations include the
172 * guard area within the stack size allocations. In
173 * this case we allocate an extra page to account for the
174 * guard area since we only have two pages of usable stack
175 * on Linux.
176 */
177
178 stack = PTHREAD_STACK_MIN + MAX(stksize, STACK_SIZE) * 4 +
179 EXTRA_GUARD_BYTES;
180
181 VERIFY3S(pthread_attr_init(&attr), ==, 0);
182 VERIFY3S(pthread_attr_setstacksize(&attr, stack), ==, 0);
183 VERIFY3S(pthread_attr_setguardsize(&attr, PAGESIZE), ==, 0);
184 VERIFY3S(pthread_attr_setdetachstate(&attr, detachstate), ==, 0);
185
186 VERIFY3S(pthread_create(&kt->t_tid, &attr, &zk_thread_helper, kt),
187 ==, 0);
188
189 VERIFY3S(pthread_attr_destroy(&attr), ==, 0);
190
191 return kt;
192 }
193
194 void
195 zk_thread_exit(void)
196 {
197 kthread_t *kt = curthread;
198
199 ASSERT(pthread_equal(kt->t_tid, pthread_self()));
200
201 umem_free(kt, sizeof(kthread_t));
202
203 pthread_mutex_lock(&kthread_lock);
204 kthread_nr--;
205 pthread_mutex_unlock(&kthread_lock);
206
207 pthread_cond_broadcast(&kthread_cond);
208 pthread_exit((void *)TS_MAGIC);
209 }
210
211 void
212 zk_thread_join(kt_did_t tid)
213 {
214 void *ret;
215
216 pthread_join((pthread_t)tid, &ret);
217 VERIFY3P(ret, ==, (void *)TS_MAGIC);
218 }
219
220 /*
221 * =========================================================================
222 * kstats
223 * =========================================================================
224 */
225 /*ARGSUSED*/
226 kstat_t *
227 kstat_create(char *module, int instance, char *name, char *class,
228 uchar_t type, ulong_t ndata, uchar_t ks_flag)
229 {
230 return (NULL);
231 }
232
233 /*ARGSUSED*/
234 void
235 kstat_install(kstat_t *ksp)
236 {}
237
238 /*ARGSUSED*/
239 void
240 kstat_delete(kstat_t *ksp)
241 {}
242
243 /*
244 * =========================================================================
245 * mutexes
246 * =========================================================================
247 */
248
249 void
250 mutex_init(kmutex_t *mp, char *name, int type, void *cookie)
251 {
252 ASSERT3S(type, ==, MUTEX_DEFAULT);
253 ASSERT3P(cookie, ==, NULL);
254 mp->m_owner = MTX_INIT;
255 mp->m_magic = MTX_MAGIC;
256 VERIFY3S(pthread_mutex_init(&mp->m_lock, NULL), ==, 0);
257 }
258
259 void
260 mutex_destroy(kmutex_t *mp)
261 {
262 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
263 ASSERT3P(mp->m_owner, ==, MTX_INIT);
264 VERIFY3S(pthread_mutex_destroy(&(mp)->m_lock), ==, 0);
265 mp->m_owner = MTX_DEST;
266 mp->m_magic = 0;
267 }
268
269 void
270 mutex_enter(kmutex_t *mp)
271 {
272 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
273 ASSERT3P(mp->m_owner, !=, MTX_DEST);
274 ASSERT3P(mp->m_owner, !=, curthread);
275 VERIFY3S(pthread_mutex_lock(&mp->m_lock), ==, 0);
276 ASSERT3P(mp->m_owner, ==, MTX_INIT);
277 mp->m_owner = curthread;
278 }
279
280 int
281 mutex_tryenter(kmutex_t *mp)
282 {
283 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
284 ASSERT3P(mp->m_owner, !=, MTX_DEST);
285 if (0 == pthread_mutex_trylock(&mp->m_lock)) {
286 ASSERT3P(mp->m_owner, ==, MTX_INIT);
287 mp->m_owner = curthread;
288 return (1);
289 } else {
290 return (0);
291 }
292 }
293
294 void
295 mutex_exit(kmutex_t *mp)
296 {
297 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
298 ASSERT3P(mutex_owner(mp), ==, curthread);
299 mp->m_owner = MTX_INIT;
300 VERIFY3S(pthread_mutex_unlock(&mp->m_lock), ==, 0);
301 }
302
303 void *
304 mutex_owner(kmutex_t *mp)
305 {
306 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
307 return (mp->m_owner);
308 }
309
310 int
311 mutex_held(kmutex_t *mp)
312 {
313 return (mp->m_owner == curthread);
314 }
315
316 /*
317 * =========================================================================
318 * rwlocks
319 * =========================================================================
320 */
321
322 void
323 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
324 {
325 ASSERT3S(type, ==, RW_DEFAULT);
326 ASSERT3P(arg, ==, NULL);
327 VERIFY3S(pthread_rwlock_init(&rwlp->rw_lock, NULL), ==, 0);
328 rwlp->rw_owner = RW_INIT;
329 rwlp->rw_wr_owner = RW_INIT;
330 rwlp->rw_readers = 0;
331 rwlp->rw_magic = RW_MAGIC;
332 }
333
334 void
335 rw_destroy(krwlock_t *rwlp)
336 {
337 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
338
339 VERIFY3S(pthread_rwlock_destroy(&rwlp->rw_lock), ==, 0);
340 rwlp->rw_magic = 0;
341 }
342
343 void
344 rw_enter(krwlock_t *rwlp, krw_t rw)
345 {
346 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
347 ASSERT3P(rwlp->rw_owner, !=, curthread);
348 ASSERT3P(rwlp->rw_wr_owner, !=, curthread);
349
350 if (rw == RW_READER) {
351 VERIFY3S(pthread_rwlock_rdlock(&rwlp->rw_lock), ==, 0);
352 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
353
354 atomic_inc_uint(&rwlp->rw_readers);
355 } else {
356 VERIFY3S(pthread_rwlock_wrlock(&rwlp->rw_lock), ==, 0);
357 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
358 ASSERT3U(rwlp->rw_readers, ==, 0);
359
360 rwlp->rw_wr_owner = curthread;
361 }
362
363 rwlp->rw_owner = curthread;
364 }
365
366 void
367 rw_exit(krwlock_t *rwlp)
368 {
369 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
370 ASSERT(RW_LOCK_HELD(rwlp));
371
372 if (RW_READ_HELD(rwlp))
373 atomic_dec_uint(&rwlp->rw_readers);
374 else
375 rwlp->rw_wr_owner = RW_INIT;
376
377 rwlp->rw_owner = RW_INIT;
378 VERIFY3S(pthread_rwlock_unlock(&rwlp->rw_lock), ==, 0);
379 }
380
381 int
382 rw_tryenter(krwlock_t *rwlp, krw_t rw)
383 {
384 int rv;
385
386 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
387
388 if (rw == RW_READER)
389 rv = pthread_rwlock_tryrdlock(&rwlp->rw_lock);
390 else
391 rv = pthread_rwlock_trywrlock(&rwlp->rw_lock);
392
393 if (rv == 0) {
394 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
395
396 if (rw == RW_READER)
397 atomic_inc_uint(&rwlp->rw_readers);
398 else {
399 ASSERT3U(rwlp->rw_readers, ==, 0);
400 rwlp->rw_wr_owner = curthread;
401 }
402
403 rwlp->rw_owner = curthread;
404 return (1);
405 }
406
407 VERIFY3S(rv, ==, EBUSY);
408
409 return (0);
410 }
411
412 int
413 rw_tryupgrade(krwlock_t *rwlp)
414 {
415 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
416
417 return (0);
418 }
419
420 /*
421 * =========================================================================
422 * condition variables
423 * =========================================================================
424 */
425
426 void
427 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
428 {
429 ASSERT3S(type, ==, CV_DEFAULT);
430 cv->cv_magic = CV_MAGIC;
431 VERIFY3S(pthread_cond_init(&cv->cv, NULL), ==, 0);
432 }
433
434 void
435 cv_destroy(kcondvar_t *cv)
436 {
437 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
438 VERIFY3S(pthread_cond_destroy(&cv->cv), ==, 0);
439 cv->cv_magic = 0;
440 }
441
442 void
443 cv_wait(kcondvar_t *cv, kmutex_t *mp)
444 {
445 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
446 ASSERT3P(mutex_owner(mp), ==, curthread);
447 mp->m_owner = MTX_INIT;
448 int ret = pthread_cond_wait(&cv->cv, &mp->m_lock);
449 if (ret != 0)
450 VERIFY3S(ret, ==, EINTR);
451 mp->m_owner = curthread;
452 }
453
454 clock_t
455 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
456 {
457 int error;
458 struct timeval tv;
459 timestruc_t ts;
460 clock_t delta;
461
462 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
463
464 top:
465 delta = abstime - ddi_get_lbolt();
466 if (delta <= 0)
467 return (-1);
468
469 VERIFY(gettimeofday(&tv, NULL) == 0);
470
471 ts.tv_sec = tv.tv_sec + delta / hz;
472 ts.tv_nsec = tv.tv_usec * 1000 + (delta % hz) * (NANOSEC / hz);
473 if (ts.tv_nsec >= NANOSEC) {
474 ts.tv_sec++;
475 ts.tv_nsec -= NANOSEC;
476 }
477
478 ASSERT3P(mutex_owner(mp), ==, curthread);
479 mp->m_owner = MTX_INIT;
480 error = pthread_cond_timedwait(&cv->cv, &mp->m_lock, &ts);
481 mp->m_owner = curthread;
482
483 if (error == ETIMEDOUT)
484 return (-1);
485
486 if (error == EINTR)
487 goto top;
488
489 VERIFY3S(error, ==, 0);
490
491 return (1);
492 }
493
494 void
495 cv_signal(kcondvar_t *cv)
496 {
497 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
498 VERIFY3S(pthread_cond_signal(&cv->cv), ==, 0);
499 }
500
501 void
502 cv_broadcast(kcondvar_t *cv)
503 {
504 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
505 VERIFY3S(pthread_cond_broadcast(&cv->cv), ==, 0);
506 }
507
508 /*
509 * =========================================================================
510 * vnode operations
511 * =========================================================================
512 */
513 /*
514 * Note: for the xxxat() versions of these functions, we assume that the
515 * starting vp is always rootdir (which is true for spa_directory.c, the only
516 * ZFS consumer of these interfaces). We assert this is true, and then emulate
517 * them by adding '/' in front of the path.
518 */
519
520 /*ARGSUSED*/
521 int
522 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
523 {
524 int fd;
525 vnode_t *vp;
526 int old_umask;
527 char *realpath;
528 struct stat64 st;
529 int err;
530
531 realpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
532
533 /*
534 * If we're accessing a real disk from userland, we need to use
535 * the character interface to avoid caching. This is particularly
536 * important if we're trying to look at a real in-kernel storage
537 * pool from userland, e.g. via zdb, because otherwise we won't
538 * see the changes occurring under the segmap cache.
539 * On the other hand, the stupid character device returns zero
540 * for its size. So -- gag -- we open the block device to get
541 * its size, and remember it for subsequent VOP_GETATTR().
542 */
543 #if defined(__sun__) || defined(__sun)
544 if (strncmp(path, "/dev/", 5) == 0) {
545 #else
546 if (0) {
547 #endif
548 char *dsk;
549 fd = open64(path, O_RDONLY);
550 if (fd == -1) {
551 err = errno;
552 free(realpath);
553 return (err);
554 }
555 if (fstat64(fd, &st) == -1) {
556 err = errno;
557 close(fd);
558 free(realpath);
559 return (err);
560 }
561 close(fd);
562 (void) sprintf(realpath, "%s", path);
563 dsk = strstr(path, "/dsk/");
564 if (dsk != NULL)
565 (void) sprintf(realpath + (dsk - path) + 1, "r%s",
566 dsk + 1);
567 } else {
568 (void) sprintf(realpath, "%s", path);
569 if (!(flags & FCREAT) && stat64(realpath, &st) == -1) {
570 err = errno;
571 free(realpath);
572 return (err);
573 }
574 }
575
576 if (!(flags & FCREAT) && S_ISBLK(st.st_mode)) {
577 #ifdef __linux__
578 flags |= O_DIRECT;
579 #endif
580 /* We shouldn't be writing to block devices in userspace */
581 VERIFY(!(flags & FWRITE));
582 }
583
584 if (flags & FCREAT)
585 old_umask = umask(0);
586
587 /*
588 * The construct 'flags - FREAD' conveniently maps combinations of
589 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
590 */
591 fd = open64(realpath, flags - FREAD, mode);
592 free(realpath);
593
594 if (flags & FCREAT)
595 (void) umask(old_umask);
596
597 if (fd == -1)
598 return (errno);
599
600 if (fstat64_blk(fd, &st) == -1) {
601 err = errno;
602 close(fd);
603 return (err);
604 }
605
606 (void) fcntl(fd, F_SETFD, FD_CLOEXEC);
607
608 *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
609
610 vp->v_fd = fd;
611 vp->v_size = st.st_size;
612 vp->v_path = spa_strdup(path);
613
614 return (0);
615 }
616
617 /*ARGSUSED*/
618 int
619 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
620 int x3, vnode_t *startvp, int fd)
621 {
622 char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
623 int ret;
624
625 ASSERT(startvp == rootdir);
626 (void) sprintf(realpath, "/%s", path);
627
628 /* fd ignored for now, need if want to simulate nbmand support */
629 ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
630
631 umem_free(realpath, strlen(path) + 2);
632
633 return (ret);
634 }
635
636 /*ARGSUSED*/
637 int
638 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
639 int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
640 {
641 ssize_t rc, done = 0, split;
642
643 if (uio == UIO_READ) {
644 rc = pread64(vp->v_fd, addr, len, offset);
645 } else {
646 /*
647 * To simulate partial disk writes, we split writes into two
648 * system calls so that the process can be killed in between.
649 */
650 split = (len > 0 ? rand() % len : 0);
651 rc = pwrite64(vp->v_fd, addr, split, offset);
652 if (rc != -1) {
653 done = rc;
654 rc = pwrite64(vp->v_fd, (char *)addr + split,
655 len - split, offset + split);
656 }
657 }
658
659 #ifdef __linux__
660 if (rc == -1 && errno == EINVAL) {
661 /*
662 * Under Linux, this most likely means an alignment issue
663 * (memory or disk) due to O_DIRECT, so we abort() in order to
664 * catch the offender.
665 */
666 abort();
667 }
668 #endif
669 if (rc == -1)
670 return (errno);
671
672 done += rc;
673
674 if (residp)
675 *residp = len - done;
676 else if (done != len)
677 return (EIO);
678 return (0);
679 }
680
681 void
682 vn_close(vnode_t *vp)
683 {
684 close(vp->v_fd);
685 spa_strfree(vp->v_path);
686 umem_free(vp, sizeof (vnode_t));
687 }
688
689 /*
690 * At a minimum we need to update the size since vdev_reopen()
691 * will no longer call vn_openat().
692 */
693 int
694 fop_getattr(vnode_t *vp, vattr_t *vap)
695 {
696 struct stat64 st;
697 int err;
698
699 if (fstat64_blk(vp->v_fd, &st) == -1) {
700 err = errno;
701 close(vp->v_fd);
702 return (err);
703 }
704
705 vap->va_size = st.st_size;
706 return (0);
707 }
708
709 /*
710 * =========================================================================
711 * Figure out which debugging statements to print
712 * =========================================================================
713 */
714
715 static char *dprintf_string;
716 static int dprintf_print_all;
717
718 int
719 dprintf_find_string(const char *string)
720 {
721 char *tmp_str = dprintf_string;
722 int len = strlen(string);
723
724 /*
725 * Find out if this is a string we want to print.
726 * String format: file1.c,function_name1,file2.c,file3.c
727 */
728
729 while (tmp_str != NULL) {
730 if (strncmp(tmp_str, string, len) == 0 &&
731 (tmp_str[len] == ',' || tmp_str[len] == '\0'))
732 return (1);
733 tmp_str = strchr(tmp_str, ',');
734 if (tmp_str != NULL)
735 tmp_str++; /* Get rid of , */
736 }
737 return (0);
738 }
739
740 void
741 dprintf_setup(int *argc, char **argv)
742 {
743 int i, j;
744
745 /*
746 * Debugging can be specified two ways: by setting the
747 * environment variable ZFS_DEBUG, or by including a
748 * "debug=..." argument on the command line. The command
749 * line setting overrides the environment variable.
750 */
751
752 for (i = 1; i < *argc; i++) {
753 int len = strlen("debug=");
754 /* First look for a command line argument */
755 if (strncmp("debug=", argv[i], len) == 0) {
756 dprintf_string = argv[i] + len;
757 /* Remove from args */
758 for (j = i; j < *argc; j++)
759 argv[j] = argv[j+1];
760 argv[j] = NULL;
761 (*argc)--;
762 }
763 }
764
765 if (dprintf_string == NULL) {
766 /* Look for ZFS_DEBUG environment variable */
767 dprintf_string = getenv("ZFS_DEBUG");
768 }
769
770 /*
771 * Are we just turning on all debugging?
772 */
773 if (dprintf_find_string("on"))
774 dprintf_print_all = 1;
775 }
776
777 /*
778 * =========================================================================
779 * debug printfs
780 * =========================================================================
781 */
782 void
783 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
784 {
785 const char *newfile;
786 va_list adx;
787
788 /*
789 * Get rid of annoying "../common/" prefix to filename.
790 */
791 newfile = strrchr(file, '/');
792 if (newfile != NULL) {
793 newfile = newfile + 1; /* Get rid of leading / */
794 } else {
795 newfile = file;
796 }
797
798 if (dprintf_print_all ||
799 dprintf_find_string(newfile) ||
800 dprintf_find_string(func)) {
801 /* Print out just the function name if requested */
802 flockfile(stdout);
803 if (dprintf_find_string("pid"))
804 (void) printf("%d ", getpid());
805 if (dprintf_find_string("tid"))
806 (void) printf("%u ", (uint_t) pthread_self());
807 if (dprintf_find_string("cpu"))
808 (void) printf("%u ", getcpuid());
809 if (dprintf_find_string("time"))
810 (void) printf("%llu ", gethrtime());
811 if (dprintf_find_string("long"))
812 (void) printf("%s, line %d: ", newfile, line);
813 (void) printf("%s: ", func);
814 va_start(adx, fmt);
815 (void) vprintf(fmt, adx);
816 va_end(adx);
817 funlockfile(stdout);
818 }
819 }
820
821 /*
822 * =========================================================================
823 * cmn_err() and panic()
824 * =========================================================================
825 */
826 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
827 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
828
829 void
830 vpanic(const char *fmt, va_list adx)
831 {
832 (void) fprintf(stderr, "error: ");
833 (void) vfprintf(stderr, fmt, adx);
834 (void) fprintf(stderr, "\n");
835
836 abort(); /* think of it as a "user-level crash dump" */
837 }
838
839 void
840 panic(const char *fmt, ...)
841 {
842 va_list adx;
843
844 va_start(adx, fmt);
845 vpanic(fmt, adx);
846 va_end(adx);
847 }
848
849 void
850 vcmn_err(int ce, const char *fmt, va_list adx)
851 {
852 if (ce == CE_PANIC)
853 vpanic(fmt, adx);
854 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */
855 (void) fprintf(stderr, "%s", ce_prefix[ce]);
856 (void) vfprintf(stderr, fmt, adx);
857 (void) fprintf(stderr, "%s", ce_suffix[ce]);
858 }
859 }
860
861 /*PRINTFLIKE2*/
862 void
863 cmn_err(int ce, const char *fmt, ...)
864 {
865 va_list adx;
866
867 va_start(adx, fmt);
868 vcmn_err(ce, fmt, adx);
869 va_end(adx);
870 }
871
872 /*
873 * =========================================================================
874 * kobj interfaces
875 * =========================================================================
876 */
877 struct _buf *
878 kobj_open_file(char *name)
879 {
880 struct _buf *file;
881 vnode_t *vp;
882
883 /* set vp as the _fd field of the file */
884 if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
885 -1) != 0)
886 return ((void *)-1UL);
887
888 file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
889 file->_fd = (intptr_t)vp;
890 return (file);
891 }
892
893 int
894 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
895 {
896 ssize_t resid;
897
898 vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
899 UIO_SYSSPACE, 0, 0, 0, &resid);
900
901 return (size - resid);
902 }
903
904 void
905 kobj_close_file(struct _buf *file)
906 {
907 vn_close((vnode_t *)file->_fd);
908 umem_free(file, sizeof (struct _buf));
909 }
910
911 int
912 kobj_get_filesize(struct _buf *file, uint64_t *size)
913 {
914 struct stat64 st;
915 vnode_t *vp = (vnode_t *)file->_fd;
916
917 if (fstat64(vp->v_fd, &st) == -1) {
918 vn_close(vp);
919 return (errno);
920 }
921 *size = st.st_size;
922 return (0);
923 }
924
925 /*
926 * =========================================================================
927 * misc routines
928 * =========================================================================
929 */
930
931 void
932 delay(clock_t ticks)
933 {
934 poll(0, 0, ticks * (1000 / hz));
935 }
936
937 /*
938 * Find highest one bit set.
939 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
940 * High order bit is 31 (or 63 in _LP64 kernel).
941 */
942 int
943 highbit(ulong_t i)
944 {
945 register int h = 1;
946
947 if (i == 0)
948 return (0);
949 #ifdef _LP64
950 if (i & 0xffffffff00000000ul) {
951 h += 32; i >>= 32;
952 }
953 #endif
954 if (i & 0xffff0000) {
955 h += 16; i >>= 16;
956 }
957 if (i & 0xff00) {
958 h += 8; i >>= 8;
959 }
960 if (i & 0xf0) {
961 h += 4; i >>= 4;
962 }
963 if (i & 0xc) {
964 h += 2; i >>= 2;
965 }
966 if (i & 0x2) {
967 h += 1;
968 }
969 return (h);
970 }
971
972 static int random_fd = -1, urandom_fd = -1;
973
974 static int
975 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
976 {
977 size_t resid = len;
978 ssize_t bytes;
979
980 ASSERT(fd != -1);
981
982 while (resid != 0) {
983 bytes = read(fd, ptr, resid);
984 ASSERT3S(bytes, >=, 0);
985 ptr += bytes;
986 resid -= bytes;
987 }
988
989 return (0);
990 }
991
992 int
993 random_get_bytes(uint8_t *ptr, size_t len)
994 {
995 return (random_get_bytes_common(ptr, len, random_fd));
996 }
997
998 int
999 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
1000 {
1001 return (random_get_bytes_common(ptr, len, urandom_fd));
1002 }
1003
1004 int
1005 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
1006 {
1007 char *end;
1008
1009 *result = strtoul(hw_serial, &end, base);
1010 if (*result == 0)
1011 return (errno);
1012 return (0);
1013 }
1014
1015 int
1016 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
1017 {
1018 char *end;
1019
1020 *result = strtoull(str, &end, base);
1021 if (*result == 0)
1022 return (errno);
1023 return (0);
1024 }
1025
1026 /*
1027 * =========================================================================
1028 * kernel emulation setup & teardown
1029 * =========================================================================
1030 */
1031 static int
1032 umem_out_of_memory(void)
1033 {
1034 char errmsg[] = "out of memory -- generating core dump\n";
1035
1036 (void) fprintf(stderr, "%s", errmsg);
1037 abort();
1038 return (0);
1039 }
1040
1041 void
1042 kernel_init(int mode)
1043 {
1044 umem_nofail_callback(umem_out_of_memory);
1045
1046 physmem = sysconf(_SC_PHYS_PAGES);
1047
1048 dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
1049 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
1050
1051 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
1052 (mode & FWRITE) ? gethostid() : 0);
1053
1054 VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
1055 VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
1056
1057 thread_init();
1058 system_taskq_init();
1059
1060 spa_init(mode);
1061 }
1062
1063 void
1064 kernel_fini(void)
1065 {
1066 spa_fini();
1067
1068 system_taskq_fini();
1069 thread_fini();
1070
1071 close(random_fd);
1072 close(urandom_fd);
1073
1074 random_fd = -1;
1075 urandom_fd = -1;
1076 }
1077
1078 uid_t
1079 crgetuid(cred_t *cr)
1080 {
1081 return (0);
1082 }
1083
1084 gid_t
1085 crgetgid(cred_t *cr)
1086 {
1087 return (0);
1088 }
1089
1090 int
1091 crgetngroups(cred_t *cr)
1092 {
1093 return (0);
1094 }
1095
1096 gid_t *
1097 crgetgroups(cred_t *cr)
1098 {
1099 return (NULL);
1100 }
1101
1102 int
1103 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
1104 {
1105 return (0);
1106 }
1107
1108 int
1109 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
1110 {
1111 return (0);
1112 }
1113
1114 int
1115 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
1116 {
1117 return (0);
1118 }
1119
1120 ksiddomain_t *
1121 ksid_lookupdomain(const char *dom)
1122 {
1123 ksiddomain_t *kd;
1124
1125 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
1126 kd->kd_name = spa_strdup(dom);
1127 return (kd);
1128 }
1129
1130 void
1131 ksiddomain_rele(ksiddomain_t *ksid)
1132 {
1133 spa_strfree(ksid->kd_name);
1134 umem_free(ksid, sizeof (ksiddomain_t));
1135 }
1136
1137 char *
1138 kmem_vasprintf(const char *fmt, va_list adx)
1139 {
1140 char *buf = NULL;
1141 va_list adx_copy;
1142
1143 va_copy(adx_copy, adx);
1144 VERIFY(vasprintf(&buf, fmt, adx_copy) != -1);
1145 va_end(adx_copy);
1146
1147 return (buf);
1148 }
1149
1150 char *
1151 kmem_asprintf(const char *fmt, ...)
1152 {
1153 char *buf = NULL;
1154 va_list adx;
1155
1156 va_start(adx, fmt);
1157 VERIFY(vasprintf(&buf, fmt, adx) != -1);
1158 va_end(adx);
1159
1160 return (buf);
1161 }
1162
1163 /* ARGSUSED */
1164 int
1165 zfs_onexit_fd_hold(int fd, minor_t *minorp)
1166 {
1167 *minorp = 0;
1168 return (0);
1169 }
1170
1171 /* ARGSUSED */
1172 void
1173 zfs_onexit_fd_rele(int fd)
1174 {
1175 }
1176
1177 /* ARGSUSED */
1178 int
1179 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
1180 uint64_t *action_handle)
1181 {
1182 return (0);
1183 }
1184
1185 /* ARGSUSED */
1186 int
1187 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire)
1188 {
1189 return (0);
1190 }
1191
1192 /* ARGSUSED */
1193 int
1194 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data)
1195 {
1196 return (0);
1197 }