]> git.proxmox.com Git - mirror_zfs.git/blob - lib/libzpool/kernel.c
Fix coverity defects: CID 147531 147532 147533 147535
[mirror_zfs.git] / lib / libzpool / kernel.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
24 */
25
26 #include <assert.h>
27 #include <fcntl.h>
28 #include <poll.h>
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <string.h>
32 #include <zlib.h>
33 #include <libgen.h>
34 #include <sys/signal.h>
35 #include <sys/spa.h>
36 #include <sys/stat.h>
37 #include <sys/processor.h>
38 #include <sys/zfs_context.h>
39 #include <sys/rrwlock.h>
40 #include <sys/utsname.h>
41 #include <sys/time.h>
42 #include <sys/systeminfo.h>
43 #include <zfs_fletcher.h>
44 #include <sys/crypto/icp.h>
45
46 /*
47 * Emulation of kernel services in userland.
48 */
49
50 int aok;
51 uint64_t physmem;
52 vnode_t *rootdir = (vnode_t *)0xabcd1234;
53 char hw_serial[HW_HOSTID_LEN];
54 struct utsname hw_utsname;
55 vmem_t *zio_arena = NULL;
56
57 /* If set, all blocks read will be copied to the specified directory. */
58 char *vn_dumpdir = NULL;
59
60 /* this only exists to have its address taken */
61 struct proc p0;
62
63 /*
64 * =========================================================================
65 * threads
66 * =========================================================================
67 */
68
69 pthread_cond_t kthread_cond = PTHREAD_COND_INITIALIZER;
70 pthread_mutex_t kthread_lock = PTHREAD_MUTEX_INITIALIZER;
71 pthread_key_t kthread_key;
72 int kthread_nr = 0;
73
74 void
75 thread_init(void)
76 {
77 kthread_t *kt;
78
79 VERIFY3S(pthread_key_create(&kthread_key, NULL), ==, 0);
80
81 /* Create entry for primary kthread */
82 kt = umem_zalloc(sizeof (kthread_t), UMEM_NOFAIL);
83 kt->t_tid = pthread_self();
84 kt->t_func = NULL;
85
86 VERIFY3S(pthread_setspecific(kthread_key, kt), ==, 0);
87
88 /* Only the main thread should be running at the moment */
89 ASSERT3S(kthread_nr, ==, 0);
90 kthread_nr = 1;
91 }
92
93 void
94 thread_fini(void)
95 {
96 kthread_t *kt = curthread;
97
98 ASSERT(pthread_equal(kt->t_tid, pthread_self()));
99 ASSERT3P(kt->t_func, ==, NULL);
100
101 umem_free(kt, sizeof (kthread_t));
102
103 /* Wait for all threads to exit via thread_exit() */
104 VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0);
105
106 kthread_nr--; /* Main thread is exiting */
107
108 while (kthread_nr > 0)
109 VERIFY0(pthread_cond_wait(&kthread_cond, &kthread_lock));
110
111 ASSERT3S(kthread_nr, ==, 0);
112 VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0);
113
114 VERIFY3S(pthread_key_delete(kthread_key), ==, 0);
115 }
116
117 kthread_t *
118 zk_thread_current(void)
119 {
120 kthread_t *kt = pthread_getspecific(kthread_key);
121
122 ASSERT3P(kt, !=, NULL);
123
124 return (kt);
125 }
126
127 void *
128 zk_thread_helper(void *arg)
129 {
130 kthread_t *kt = (kthread_t *) arg;
131
132 VERIFY3S(pthread_setspecific(kthread_key, kt), ==, 0);
133
134 VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0);
135 kthread_nr++;
136 VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0);
137 (void) setpriority(PRIO_PROCESS, 0, kt->t_pri);
138
139 kt->t_tid = pthread_self();
140 ((thread_func_arg_t) kt->t_func)(kt->t_arg);
141
142 /* Unreachable, thread must exit with thread_exit() */
143 abort();
144
145 return (NULL);
146 }
147
148 kthread_t *
149 zk_thread_create(caddr_t stk, size_t stksize, thread_func_t func, void *arg,
150 size_t len, proc_t *pp, int state, pri_t pri, int detachstate)
151 {
152 kthread_t *kt;
153 pthread_attr_t attr;
154 char *stkstr;
155
156 ASSERT0(state & ~TS_RUN);
157
158 kt = umem_zalloc(sizeof (kthread_t), UMEM_NOFAIL);
159 kt->t_func = func;
160 kt->t_arg = arg;
161 kt->t_pri = pri;
162
163 VERIFY0(pthread_attr_init(&attr));
164 VERIFY0(pthread_attr_setdetachstate(&attr, detachstate));
165
166 /*
167 * We allow the default stack size in user space to be specified by
168 * setting the ZFS_STACK_SIZE environment variable. This allows us
169 * the convenience of observing and debugging stack overruns in
170 * user space. Explicitly specified stack sizes will be honored.
171 * The usage of ZFS_STACK_SIZE is discussed further in the
172 * ENVIRONMENT VARIABLES sections of the ztest(1) man page.
173 */
174 if (stksize == 0) {
175 stkstr = getenv("ZFS_STACK_SIZE");
176
177 if (stkstr == NULL)
178 stksize = TS_STACK_MAX;
179 else
180 stksize = MAX(atoi(stkstr), TS_STACK_MIN);
181 }
182
183 VERIFY3S(stksize, >, 0);
184 stksize = P2ROUNDUP(MAX(stksize, TS_STACK_MIN), PAGESIZE);
185 /*
186 * If this ever fails, it may be because the stack size is not a
187 * multiple of system page size.
188 */
189 VERIFY0(pthread_attr_setstacksize(&attr, stksize));
190 VERIFY0(pthread_attr_setguardsize(&attr, PAGESIZE));
191
192 VERIFY0(pthread_create(&kt->t_tid, &attr, &zk_thread_helper, kt));
193 VERIFY0(pthread_attr_destroy(&attr));
194
195 return (kt);
196 }
197
198 void
199 zk_thread_exit(void)
200 {
201 kthread_t *kt = curthread;
202
203 ASSERT(pthread_equal(kt->t_tid, pthread_self()));
204
205 umem_free(kt, sizeof (kthread_t));
206
207 VERIFY0(pthread_mutex_lock(&kthread_lock));
208 kthread_nr--;
209 VERIFY0(pthread_mutex_unlock(&kthread_lock));
210
211 VERIFY0(pthread_cond_broadcast(&kthread_cond));
212 pthread_exit((void *)TS_MAGIC);
213 }
214
215 void
216 zk_thread_join(kt_did_t tid)
217 {
218 void *ret;
219
220 pthread_join((pthread_t)tid, &ret);
221 VERIFY3P(ret, ==, (void *)TS_MAGIC);
222 }
223
224 /*
225 * =========================================================================
226 * kstats
227 * =========================================================================
228 */
229 /*ARGSUSED*/
230 kstat_t *
231 kstat_create(const char *module, int instance, const char *name,
232 const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag)
233 {
234 return (NULL);
235 }
236
237 /*ARGSUSED*/
238 void
239 kstat_install(kstat_t *ksp)
240 {}
241
242 /*ARGSUSED*/
243 void
244 kstat_delete(kstat_t *ksp)
245 {}
246
247 /*ARGSUSED*/
248 void
249 kstat_waitq_enter(kstat_io_t *kiop)
250 {}
251
252 /*ARGSUSED*/
253 void
254 kstat_waitq_exit(kstat_io_t *kiop)
255 {}
256
257 /*ARGSUSED*/
258 void
259 kstat_runq_enter(kstat_io_t *kiop)
260 {}
261
262 /*ARGSUSED*/
263 void
264 kstat_runq_exit(kstat_io_t *kiop)
265 {}
266
267 /*ARGSUSED*/
268 void
269 kstat_waitq_to_runq(kstat_io_t *kiop)
270 {}
271
272 /*ARGSUSED*/
273 void
274 kstat_runq_back_to_waitq(kstat_io_t *kiop)
275 {}
276
277 void
278 kstat_set_raw_ops(kstat_t *ksp,
279 int (*headers)(char *buf, size_t size),
280 int (*data)(char *buf, size_t size, void *data),
281 void *(*addr)(kstat_t *ksp, loff_t index))
282 {}
283
284 /*
285 * =========================================================================
286 * mutexes
287 * =========================================================================
288 */
289
290 void
291 mutex_init(kmutex_t *mp, char *name, int type, void *cookie)
292 {
293 ASSERT3S(type, ==, MUTEX_DEFAULT);
294 ASSERT3P(cookie, ==, NULL);
295 mp->m_owner = MTX_INIT;
296 mp->m_magic = MTX_MAGIC;
297 VERIFY3S(pthread_mutex_init(&mp->m_lock, NULL), ==, 0);
298 }
299
300 void
301 mutex_destroy(kmutex_t *mp)
302 {
303 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
304 ASSERT3P(mp->m_owner, ==, MTX_INIT);
305 ASSERT0(pthread_mutex_destroy(&(mp)->m_lock));
306 mp->m_owner = MTX_DEST;
307 mp->m_magic = 0;
308 }
309
310 void
311 mutex_enter(kmutex_t *mp)
312 {
313 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
314 ASSERT3P(mp->m_owner, !=, MTX_DEST);
315 ASSERT3P(mp->m_owner, !=, curthread);
316 VERIFY3S(pthread_mutex_lock(&mp->m_lock), ==, 0);
317 ASSERT3P(mp->m_owner, ==, MTX_INIT);
318 mp->m_owner = curthread;
319 }
320
321 int
322 mutex_tryenter(kmutex_t *mp)
323 {
324 int err;
325 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
326 ASSERT3P(mp->m_owner, !=, MTX_DEST);
327 if (0 == (err = pthread_mutex_trylock(&mp->m_lock))) {
328 ASSERT3P(mp->m_owner, ==, MTX_INIT);
329 mp->m_owner = curthread;
330 return (1);
331 } else {
332 VERIFY3S(err, ==, EBUSY);
333 return (0);
334 }
335 }
336
337 void
338 mutex_exit(kmutex_t *mp)
339 {
340 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
341 ASSERT3P(mutex_owner(mp), ==, curthread);
342 mp->m_owner = MTX_INIT;
343 VERIFY3S(pthread_mutex_unlock(&mp->m_lock), ==, 0);
344 }
345
346 void *
347 mutex_owner(kmutex_t *mp)
348 {
349 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
350 return (mp->m_owner);
351 }
352
353 int
354 mutex_held(kmutex_t *mp)
355 {
356 return (mp->m_owner == curthread);
357 }
358
359 /*
360 * =========================================================================
361 * rwlocks
362 * =========================================================================
363 */
364
365 void
366 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
367 {
368 ASSERT3S(type, ==, RW_DEFAULT);
369 ASSERT3P(arg, ==, NULL);
370 VERIFY3S(pthread_rwlock_init(&rwlp->rw_lock, NULL), ==, 0);
371 rwlp->rw_owner = RW_INIT;
372 rwlp->rw_wr_owner = RW_INIT;
373 rwlp->rw_readers = 0;
374 rwlp->rw_magic = RW_MAGIC;
375 }
376
377 void
378 rw_destroy(krwlock_t *rwlp)
379 {
380 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
381 ASSERT(rwlp->rw_readers == 0 && rwlp->rw_wr_owner == RW_INIT);
382 VERIFY3S(pthread_rwlock_destroy(&rwlp->rw_lock), ==, 0);
383 rwlp->rw_magic = 0;
384 }
385
386 void
387 rw_enter(krwlock_t *rwlp, krw_t rw)
388 {
389 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
390 ASSERT3P(rwlp->rw_owner, !=, curthread);
391 ASSERT3P(rwlp->rw_wr_owner, !=, curthread);
392
393 if (rw == RW_READER) {
394 VERIFY3S(pthread_rwlock_rdlock(&rwlp->rw_lock), ==, 0);
395 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
396
397 atomic_inc_uint(&rwlp->rw_readers);
398 } else {
399 VERIFY3S(pthread_rwlock_wrlock(&rwlp->rw_lock), ==, 0);
400 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
401 ASSERT3U(rwlp->rw_readers, ==, 0);
402
403 rwlp->rw_wr_owner = curthread;
404 }
405
406 rwlp->rw_owner = curthread;
407 }
408
409 void
410 rw_exit(krwlock_t *rwlp)
411 {
412 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
413 ASSERT(RW_LOCK_HELD(rwlp));
414
415 if (RW_READ_HELD(rwlp))
416 atomic_dec_uint(&rwlp->rw_readers);
417 else
418 rwlp->rw_wr_owner = RW_INIT;
419
420 rwlp->rw_owner = RW_INIT;
421 VERIFY3S(pthread_rwlock_unlock(&rwlp->rw_lock), ==, 0);
422 }
423
424 int
425 rw_tryenter(krwlock_t *rwlp, krw_t rw)
426 {
427 int rv;
428
429 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
430
431 if (rw == RW_READER)
432 rv = pthread_rwlock_tryrdlock(&rwlp->rw_lock);
433 else
434 rv = pthread_rwlock_trywrlock(&rwlp->rw_lock);
435
436 if (rv == 0) {
437 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
438
439 if (rw == RW_READER)
440 atomic_inc_uint(&rwlp->rw_readers);
441 else {
442 ASSERT3U(rwlp->rw_readers, ==, 0);
443 rwlp->rw_wr_owner = curthread;
444 }
445
446 rwlp->rw_owner = curthread;
447 return (1);
448 }
449
450 VERIFY3S(rv, ==, EBUSY);
451
452 return (0);
453 }
454
455 int
456 rw_tryupgrade(krwlock_t *rwlp)
457 {
458 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
459
460 return (0);
461 }
462
463 /*
464 * =========================================================================
465 * condition variables
466 * =========================================================================
467 */
468
469 void
470 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
471 {
472 ASSERT3S(type, ==, CV_DEFAULT);
473 cv->cv_magic = CV_MAGIC;
474 VERIFY0(pthread_cond_init(&cv->cv, NULL));
475 }
476
477 void
478 cv_destroy(kcondvar_t *cv)
479 {
480 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
481 VERIFY0(pthread_cond_destroy(&cv->cv));
482 cv->cv_magic = 0;
483 }
484
485 void
486 cv_wait(kcondvar_t *cv, kmutex_t *mp)
487 {
488 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
489 ASSERT3P(mutex_owner(mp), ==, curthread);
490 mp->m_owner = MTX_INIT;
491 VERIFY0(pthread_cond_wait(&cv->cv, &mp->m_lock));
492 mp->m_owner = curthread;
493 }
494
495 clock_t
496 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
497 {
498 int error;
499 struct timeval tv;
500 timestruc_t ts;
501 clock_t delta;
502
503 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
504
505 delta = abstime - ddi_get_lbolt();
506 if (delta <= 0)
507 return (-1);
508
509 VERIFY(gettimeofday(&tv, NULL) == 0);
510
511 ts.tv_sec = tv.tv_sec + delta / hz;
512 ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % hz) * (NANOSEC / hz);
513 if (ts.tv_nsec >= NANOSEC) {
514 ts.tv_sec++;
515 ts.tv_nsec -= NANOSEC;
516 }
517
518 ASSERT3P(mutex_owner(mp), ==, curthread);
519 mp->m_owner = MTX_INIT;
520 error = pthread_cond_timedwait(&cv->cv, &mp->m_lock, &ts);
521 mp->m_owner = curthread;
522
523 if (error == ETIMEDOUT)
524 return (-1);
525
526 VERIFY0(error);
527
528 return (1);
529 }
530
531 /*ARGSUSED*/
532 clock_t
533 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
534 int flag)
535 {
536 int error;
537 struct timeval tv;
538 timestruc_t ts;
539 hrtime_t delta;
540
541 ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE);
542
543 delta = tim;
544 if (flag & CALLOUT_FLAG_ABSOLUTE)
545 delta -= gethrtime();
546
547 if (delta <= 0)
548 return (-1);
549
550 VERIFY(gettimeofday(&tv, NULL) == 0);
551
552 ts.tv_sec = tv.tv_sec + delta / NANOSEC;
553 ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % NANOSEC);
554 if (ts.tv_nsec >= NANOSEC) {
555 ts.tv_sec++;
556 ts.tv_nsec -= NANOSEC;
557 }
558
559 ASSERT(mutex_owner(mp) == curthread);
560 mp->m_owner = MTX_INIT;
561 error = pthread_cond_timedwait(&cv->cv, &mp->m_lock, &ts);
562 mp->m_owner = curthread;
563
564 if (error == ETIMEDOUT)
565 return (-1);
566
567 VERIFY0(error);
568
569 return (1);
570 }
571
572 void
573 cv_signal(kcondvar_t *cv)
574 {
575 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
576 VERIFY0(pthread_cond_signal(&cv->cv));
577 }
578
579 void
580 cv_broadcast(kcondvar_t *cv)
581 {
582 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
583 VERIFY0(pthread_cond_broadcast(&cv->cv));
584 }
585
586 /*
587 * =========================================================================
588 * vnode operations
589 * =========================================================================
590 */
591 /*
592 * Note: for the xxxat() versions of these functions, we assume that the
593 * starting vp is always rootdir (which is true for spa_directory.c, the only
594 * ZFS consumer of these interfaces). We assert this is true, and then emulate
595 * them by adding '/' in front of the path.
596 */
597
598 /*ARGSUSED*/
599 int
600 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
601 {
602 int fd;
603 int dump_fd;
604 vnode_t *vp;
605 int old_umask = 0;
606 char *realpath;
607 struct stat64 st;
608 int err;
609
610 realpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
611
612 /*
613 * If we're accessing a real disk from userland, we need to use
614 * the character interface to avoid caching. This is particularly
615 * important if we're trying to look at a real in-kernel storage
616 * pool from userland, e.g. via zdb, because otherwise we won't
617 * see the changes occurring under the segmap cache.
618 * On the other hand, the stupid character device returns zero
619 * for its size. So -- gag -- we open the block device to get
620 * its size, and remember it for subsequent VOP_GETATTR().
621 */
622 #if defined(__sun__) || defined(__sun)
623 if (strncmp(path, "/dev/", 5) == 0) {
624 #else
625 if (0) {
626 #endif
627 char *dsk;
628 fd = open64(path, O_RDONLY);
629 if (fd == -1) {
630 err = errno;
631 free(realpath);
632 return (err);
633 }
634 if (fstat64(fd, &st) == -1) {
635 err = errno;
636 close(fd);
637 free(realpath);
638 return (err);
639 }
640 close(fd);
641 (void) sprintf(realpath, "%s", path);
642 dsk = strstr(path, "/dsk/");
643 if (dsk != NULL)
644 (void) sprintf(realpath + (dsk - path) + 1, "r%s",
645 dsk + 1);
646 } else {
647 (void) sprintf(realpath, "%s", path);
648 if (!(flags & FCREAT) && stat64(realpath, &st) == -1) {
649 err = errno;
650 free(realpath);
651 return (err);
652 }
653 }
654
655 if (!(flags & FCREAT) && S_ISBLK(st.st_mode)) {
656 #ifdef __linux__
657 flags |= O_DIRECT;
658 #endif
659 /* We shouldn't be writing to block devices in userspace */
660 VERIFY(!(flags & FWRITE));
661 }
662
663 if (flags & FCREAT)
664 old_umask = umask(0);
665
666 /*
667 * The construct 'flags - FREAD' conveniently maps combinations of
668 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
669 */
670 fd = open64(realpath, flags - FREAD, mode);
671 if (fd == -1) {
672 err = errno;
673 free(realpath);
674 return (err);
675 }
676
677 if (flags & FCREAT)
678 (void) umask(old_umask);
679
680 if (vn_dumpdir != NULL) {
681 char *dumppath = umem_zalloc(MAXPATHLEN, UMEM_NOFAIL);
682 (void) snprintf(dumppath, MAXPATHLEN,
683 "%s/%s", vn_dumpdir, basename(realpath));
684 dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666);
685 umem_free(dumppath, MAXPATHLEN);
686 if (dump_fd == -1) {
687 err = errno;
688 free(realpath);
689 close(fd);
690 return (err);
691 }
692 } else {
693 dump_fd = -1;
694 }
695
696 free(realpath);
697
698 if (fstat64_blk(fd, &st) == -1) {
699 err = errno;
700 close(fd);
701 return (err);
702 }
703
704 (void) fcntl(fd, F_SETFD, FD_CLOEXEC);
705
706 *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
707
708 vp->v_fd = fd;
709 vp->v_size = st.st_size;
710 vp->v_path = spa_strdup(path);
711 vp->v_dump_fd = dump_fd;
712
713 return (0);
714 }
715
716 /*ARGSUSED*/
717 int
718 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
719 int x3, vnode_t *startvp, int fd)
720 {
721 char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
722 int ret;
723
724 ASSERT(startvp == rootdir);
725 (void) sprintf(realpath, "/%s", path);
726
727 /* fd ignored for now, need if want to simulate nbmand support */
728 ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
729
730 umem_free(realpath, strlen(path) + 2);
731
732 return (ret);
733 }
734
735 /*ARGSUSED*/
736 int
737 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
738 int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
739 {
740 ssize_t rc, done = 0, split;
741
742 if (uio == UIO_READ) {
743 rc = pread64(vp->v_fd, addr, len, offset);
744 if (vp->v_dump_fd != -1 && rc != -1) {
745 int status;
746 status = pwrite64(vp->v_dump_fd, addr, rc, offset);
747 ASSERT(status != -1);
748 }
749 } else {
750 /*
751 * To simulate partial disk writes, we split writes into two
752 * system calls so that the process can be killed in between.
753 */
754 int sectors = len >> SPA_MINBLOCKSHIFT;
755 split = (sectors > 0 ? rand() % sectors : 0) <<
756 SPA_MINBLOCKSHIFT;
757 rc = pwrite64(vp->v_fd, addr, split, offset);
758 if (rc != -1) {
759 done = rc;
760 rc = pwrite64(vp->v_fd, (char *)addr + split,
761 len - split, offset + split);
762 }
763 }
764
765 #ifdef __linux__
766 if (rc == -1 && errno == EINVAL) {
767 /*
768 * Under Linux, this most likely means an alignment issue
769 * (memory or disk) due to O_DIRECT, so we abort() in order to
770 * catch the offender.
771 */
772 abort();
773 }
774 #endif
775 if (rc == -1)
776 return (errno);
777
778 done += rc;
779
780 if (residp)
781 *residp = len - done;
782 else if (done != len)
783 return (EIO);
784 return (0);
785 }
786
787 void
788 vn_close(vnode_t *vp)
789 {
790 close(vp->v_fd);
791 if (vp->v_dump_fd != -1)
792 close(vp->v_dump_fd);
793 spa_strfree(vp->v_path);
794 umem_free(vp, sizeof (vnode_t));
795 }
796
797 /*
798 * At a minimum we need to update the size since vdev_reopen()
799 * will no longer call vn_openat().
800 */
801 int
802 fop_getattr(vnode_t *vp, vattr_t *vap)
803 {
804 struct stat64 st;
805 int err;
806
807 if (fstat64_blk(vp->v_fd, &st) == -1) {
808 err = errno;
809 close(vp->v_fd);
810 return (err);
811 }
812
813 vap->va_size = st.st_size;
814 return (0);
815 }
816
817 /*
818 * =========================================================================
819 * Figure out which debugging statements to print
820 * =========================================================================
821 */
822
823 static char *dprintf_string;
824 static int dprintf_print_all;
825
826 int
827 dprintf_find_string(const char *string)
828 {
829 char *tmp_str = dprintf_string;
830 int len = strlen(string);
831
832 /*
833 * Find out if this is a string we want to print.
834 * String format: file1.c,function_name1,file2.c,file3.c
835 */
836
837 while (tmp_str != NULL) {
838 if (strncmp(tmp_str, string, len) == 0 &&
839 (tmp_str[len] == ',' || tmp_str[len] == '\0'))
840 return (1);
841 tmp_str = strchr(tmp_str, ',');
842 if (tmp_str != NULL)
843 tmp_str++; /* Get rid of , */
844 }
845 return (0);
846 }
847
848 void
849 dprintf_setup(int *argc, char **argv)
850 {
851 int i, j;
852
853 /*
854 * Debugging can be specified two ways: by setting the
855 * environment variable ZFS_DEBUG, or by including a
856 * "debug=..." argument on the command line. The command
857 * line setting overrides the environment variable.
858 */
859
860 for (i = 1; i < *argc; i++) {
861 int len = strlen("debug=");
862 /* First look for a command line argument */
863 if (strncmp("debug=", argv[i], len) == 0) {
864 dprintf_string = argv[i] + len;
865 /* Remove from args */
866 for (j = i; j < *argc; j++)
867 argv[j] = argv[j+1];
868 argv[j] = NULL;
869 (*argc)--;
870 }
871 }
872
873 if (dprintf_string == NULL) {
874 /* Look for ZFS_DEBUG environment variable */
875 dprintf_string = getenv("ZFS_DEBUG");
876 }
877
878 /*
879 * Are we just turning on all debugging?
880 */
881 if (dprintf_find_string("on"))
882 dprintf_print_all = 1;
883
884 if (dprintf_string != NULL)
885 zfs_flags |= ZFS_DEBUG_DPRINTF;
886 }
887
888 /*
889 * =========================================================================
890 * debug printfs
891 * =========================================================================
892 */
893 void
894 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
895 {
896 const char *newfile;
897 va_list adx;
898
899 /*
900 * Get rid of annoying "../common/" prefix to filename.
901 */
902 newfile = strrchr(file, '/');
903 if (newfile != NULL) {
904 newfile = newfile + 1; /* Get rid of leading / */
905 } else {
906 newfile = file;
907 }
908
909 if (dprintf_print_all ||
910 dprintf_find_string(newfile) ||
911 dprintf_find_string(func)) {
912 /* Print out just the function name if requested */
913 flockfile(stdout);
914 if (dprintf_find_string("pid"))
915 (void) printf("%d ", getpid());
916 if (dprintf_find_string("tid"))
917 (void) printf("%u ", (uint_t) pthread_self());
918 if (dprintf_find_string("cpu"))
919 (void) printf("%u ", getcpuid());
920 if (dprintf_find_string("time"))
921 (void) printf("%llu ", gethrtime());
922 if (dprintf_find_string("long"))
923 (void) printf("%s, line %d: ", newfile, line);
924 (void) printf("%s: ", func);
925 va_start(adx, fmt);
926 (void) vprintf(fmt, adx);
927 va_end(adx);
928 funlockfile(stdout);
929 }
930 }
931
932 /*
933 * =========================================================================
934 * cmn_err() and panic()
935 * =========================================================================
936 */
937 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
938 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
939
940 void
941 vpanic(const char *fmt, va_list adx)
942 {
943 (void) fprintf(stderr, "error: ");
944 (void) vfprintf(stderr, fmt, adx);
945 (void) fprintf(stderr, "\n");
946
947 abort(); /* think of it as a "user-level crash dump" */
948 }
949
950 void
951 panic(const char *fmt, ...)
952 {
953 va_list adx;
954
955 va_start(adx, fmt);
956 vpanic(fmt, adx);
957 va_end(adx);
958 }
959
960 void
961 vcmn_err(int ce, const char *fmt, va_list adx)
962 {
963 if (ce == CE_PANIC)
964 vpanic(fmt, adx);
965 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */
966 (void) fprintf(stderr, "%s", ce_prefix[ce]);
967 (void) vfprintf(stderr, fmt, adx);
968 (void) fprintf(stderr, "%s", ce_suffix[ce]);
969 }
970 }
971
972 /*PRINTFLIKE2*/
973 void
974 cmn_err(int ce, const char *fmt, ...)
975 {
976 va_list adx;
977
978 va_start(adx, fmt);
979 vcmn_err(ce, fmt, adx);
980 va_end(adx);
981 }
982
983 /*
984 * =========================================================================
985 * kobj interfaces
986 * =========================================================================
987 */
988 struct _buf *
989 kobj_open_file(char *name)
990 {
991 struct _buf *file;
992 vnode_t *vp;
993
994 /* set vp as the _fd field of the file */
995 if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
996 -1) != 0)
997 return ((void *)-1UL);
998
999 file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
1000 file->_fd = (intptr_t)vp;
1001 return (file);
1002 }
1003
1004 int
1005 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
1006 {
1007 ssize_t resid = 0;
1008
1009 if (vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
1010 UIO_SYSSPACE, 0, 0, 0, &resid) != 0)
1011 return (-1);
1012
1013 return (size - resid);
1014 }
1015
1016 void
1017 kobj_close_file(struct _buf *file)
1018 {
1019 vn_close((vnode_t *)file->_fd);
1020 umem_free(file, sizeof (struct _buf));
1021 }
1022
1023 int
1024 kobj_get_filesize(struct _buf *file, uint64_t *size)
1025 {
1026 struct stat64 st;
1027 vnode_t *vp = (vnode_t *)file->_fd;
1028
1029 if (fstat64(vp->v_fd, &st) == -1) {
1030 vn_close(vp);
1031 return (errno);
1032 }
1033 *size = st.st_size;
1034 return (0);
1035 }
1036
1037 /*
1038 * =========================================================================
1039 * misc routines
1040 * =========================================================================
1041 */
1042
1043 void
1044 delay(clock_t ticks)
1045 {
1046 poll(0, 0, ticks * (1000 / hz));
1047 }
1048
1049 /*
1050 * Find highest one bit set.
1051 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
1052 * High order bit is 31 (or 63 in _LP64 kernel).
1053 */
1054 int
1055 highbit64(uint64_t i)
1056 {
1057 register int h = 1;
1058
1059 if (i == 0)
1060 return (0);
1061 if (i & 0xffffffff00000000ULL) {
1062 h += 32; i >>= 32;
1063 }
1064 if (i & 0xffff0000) {
1065 h += 16; i >>= 16;
1066 }
1067 if (i & 0xff00) {
1068 h += 8; i >>= 8;
1069 }
1070 if (i & 0xf0) {
1071 h += 4; i >>= 4;
1072 }
1073 if (i & 0xc) {
1074 h += 2; i >>= 2;
1075 }
1076 if (i & 0x2) {
1077 h += 1;
1078 }
1079 return (h);
1080 }
1081
1082 /*
1083 * Find lowest one bit set.
1084 * Returns bit number + 1 of lowest bit that is set, otherwise returns 0.
1085 * This is basically a reimplementation of ffsll(), which is GNU specific.
1086 */
1087 int
1088 lowbit64(uint64_t i)
1089 {
1090 register int h = 64;
1091 if (i == 0)
1092 return (0);
1093
1094 if (i & 0x00000000ffffffffULL)
1095 h -= 32;
1096 else
1097 i >>= 32;
1098
1099 if (i & 0x0000ffff)
1100 h -= 16;
1101 else
1102 i >>= 16;
1103
1104 if (i & 0x00ff)
1105 h -= 8;
1106 else
1107 i >>= 8;
1108
1109 if (i & 0x0f)
1110 h -= 4;
1111 else
1112 i >>= 4;
1113
1114 if (i & 0x3)
1115 h -= 2;
1116 else
1117 i >>= 2;
1118
1119 if (i & 0x1)
1120 h -= 1;
1121
1122 return (h);
1123 }
1124
1125 /*
1126 * Find highest one bit set.
1127 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
1128 * High order bit is 31 (or 63 in _LP64 kernel).
1129 */
1130 int
1131 highbit(ulong_t i)
1132 {
1133 register int h = 1;
1134
1135 if (i == 0)
1136 return (0);
1137 #ifdef _LP64
1138 if (i & 0xffffffff00000000ul) {
1139 h += 32; i >>= 32;
1140 }
1141 #endif
1142 if (i & 0xffff0000) {
1143 h += 16; i >>= 16;
1144 }
1145 if (i & 0xff00) {
1146 h += 8; i >>= 8;
1147 }
1148 if (i & 0xf0) {
1149 h += 4; i >>= 4;
1150 }
1151 if (i & 0xc) {
1152 h += 2; i >>= 2;
1153 }
1154 if (i & 0x2) {
1155 h += 1;
1156 }
1157 return (h);
1158 }
1159
1160 /*
1161 * Find lowest one bit set.
1162 * Returns bit number + 1 of lowest bit that is set, otherwise returns 0.
1163 * Low order bit is 0.
1164 */
1165 int
1166 lowbit(ulong_t i)
1167 {
1168 register int h = 1;
1169
1170 if (i == 0)
1171 return (0);
1172
1173 #ifdef _LP64
1174 if (!(i & 0xffffffff)) {
1175 h += 32; i >>= 32;
1176 }
1177 #endif
1178 if (!(i & 0xffff)) {
1179 h += 16; i >>= 16;
1180 }
1181 if (!(i & 0xff)) {
1182 h += 8; i >>= 8;
1183 }
1184 if (!(i & 0xf)) {
1185 h += 4; i >>= 4;
1186 }
1187 if (!(i & 0x3)) {
1188 h += 2; i >>= 2;
1189 }
1190 if (!(i & 0x1)) {
1191 h += 1;
1192 }
1193 return (h);
1194 }
1195
1196 static int random_fd = -1, urandom_fd = -1;
1197
1198 void
1199 random_init(void)
1200 {
1201 VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
1202 VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
1203 }
1204
1205 void
1206 random_fini(void)
1207 {
1208 close(random_fd);
1209 close(urandom_fd);
1210
1211 random_fd = -1;
1212 urandom_fd = -1;
1213 }
1214
1215 static int
1216 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
1217 {
1218 size_t resid = len;
1219 ssize_t bytes;
1220
1221 ASSERT(fd != -1);
1222
1223 while (resid != 0) {
1224 bytes = read(fd, ptr, resid);
1225 ASSERT3S(bytes, >=, 0);
1226 ptr += bytes;
1227 resid -= bytes;
1228 }
1229
1230 return (0);
1231 }
1232
1233 int
1234 random_get_bytes(uint8_t *ptr, size_t len)
1235 {
1236 return (random_get_bytes_common(ptr, len, random_fd));
1237 }
1238
1239 int
1240 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
1241 {
1242 return (random_get_bytes_common(ptr, len, urandom_fd));
1243 }
1244
1245 int
1246 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
1247 {
1248 char *end;
1249
1250 *result = strtoul(hw_serial, &end, base);
1251 if (*result == 0)
1252 return (errno);
1253 return (0);
1254 }
1255
1256 int
1257 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
1258 {
1259 char *end;
1260
1261 *result = strtoull(str, &end, base);
1262 if (*result == 0)
1263 return (errno);
1264 return (0);
1265 }
1266
1267 utsname_t *
1268 utsname(void)
1269 {
1270 return (&hw_utsname);
1271 }
1272
1273 /*
1274 * =========================================================================
1275 * kernel emulation setup & teardown
1276 * =========================================================================
1277 */
1278 static int
1279 umem_out_of_memory(void)
1280 {
1281 char errmsg[] = "out of memory -- generating core dump\n";
1282
1283 (void) fprintf(stderr, "%s", errmsg);
1284 abort();
1285 return (0);
1286 }
1287
1288 static unsigned long
1289 get_spl_hostid(void)
1290 {
1291 FILE *f;
1292 unsigned long hostid;
1293
1294 f = fopen("/sys/module/spl/parameters/spl_hostid", "r");
1295 if (!f)
1296 return (0);
1297 if (fscanf(f, "%lu", &hostid) != 1)
1298 hostid = 0;
1299 fclose(f);
1300 return (hostid & 0xffffffff);
1301 }
1302
1303 unsigned long
1304 get_system_hostid(void)
1305 {
1306 unsigned long system_hostid = get_spl_hostid();
1307 if (system_hostid == 0)
1308 system_hostid = gethostid() & 0xffffffff;
1309 return (system_hostid);
1310 }
1311
1312 void
1313 kernel_init(int mode)
1314 {
1315 extern uint_t rrw_tsd_key;
1316
1317 umem_nofail_callback(umem_out_of_memory);
1318
1319 physmem = sysconf(_SC_PHYS_PAGES);
1320
1321 dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
1322 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
1323
1324 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
1325 (mode & FWRITE) ? get_system_hostid() : 0);
1326
1327 random_init();
1328
1329 VERIFY0(uname(&hw_utsname));
1330
1331 thread_init();
1332 system_taskq_init();
1333 icp_init();
1334
1335 spa_init(mode);
1336
1337 fletcher_4_init();
1338
1339 tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
1340 }
1341
1342 void
1343 kernel_fini(void)
1344 {
1345 fletcher_4_fini();
1346 spa_fini();
1347
1348 icp_fini();
1349 system_taskq_fini();
1350 thread_fini();
1351
1352 random_fini();
1353 }
1354
1355 uid_t
1356 crgetuid(cred_t *cr)
1357 {
1358 return (0);
1359 }
1360
1361 uid_t
1362 crgetruid(cred_t *cr)
1363 {
1364 return (0);
1365 }
1366
1367 gid_t
1368 crgetgid(cred_t *cr)
1369 {
1370 return (0);
1371 }
1372
1373 int
1374 crgetngroups(cred_t *cr)
1375 {
1376 return (0);
1377 }
1378
1379 gid_t *
1380 crgetgroups(cred_t *cr)
1381 {
1382 return (NULL);
1383 }
1384
1385 int
1386 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
1387 {
1388 return (0);
1389 }
1390
1391 int
1392 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
1393 {
1394 return (0);
1395 }
1396
1397 int
1398 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
1399 {
1400 return (0);
1401 }
1402
1403 int
1404 secpolicy_zfs(const cred_t *cr)
1405 {
1406 return (0);
1407 }
1408
1409 ksiddomain_t *
1410 ksid_lookupdomain(const char *dom)
1411 {
1412 ksiddomain_t *kd;
1413
1414 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
1415 kd->kd_name = spa_strdup(dom);
1416 return (kd);
1417 }
1418
1419 void
1420 ksiddomain_rele(ksiddomain_t *ksid)
1421 {
1422 spa_strfree(ksid->kd_name);
1423 umem_free(ksid, sizeof (ksiddomain_t));
1424 }
1425
1426 char *
1427 kmem_vasprintf(const char *fmt, va_list adx)
1428 {
1429 char *buf = NULL;
1430 va_list adx_copy;
1431
1432 va_copy(adx_copy, adx);
1433 VERIFY(vasprintf(&buf, fmt, adx_copy) != -1);
1434 va_end(adx_copy);
1435
1436 return (buf);
1437 }
1438
1439 char *
1440 kmem_asprintf(const char *fmt, ...)
1441 {
1442 char *buf = NULL;
1443 va_list adx;
1444
1445 va_start(adx, fmt);
1446 VERIFY(vasprintf(&buf, fmt, adx) != -1);
1447 va_end(adx);
1448
1449 return (buf);
1450 }
1451
1452 /* ARGSUSED */
1453 int
1454 zfs_onexit_fd_hold(int fd, minor_t *minorp)
1455 {
1456 *minorp = 0;
1457 return (0);
1458 }
1459
1460 /* ARGSUSED */
1461 void
1462 zfs_onexit_fd_rele(int fd)
1463 {
1464 }
1465
1466 /* ARGSUSED */
1467 int
1468 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
1469 uint64_t *action_handle)
1470 {
1471 return (0);
1472 }
1473
1474 /* ARGSUSED */
1475 int
1476 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire)
1477 {
1478 return (0);
1479 }
1480
1481 /* ARGSUSED */
1482 int
1483 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data)
1484 {
1485 return (0);
1486 }
1487
1488 fstrans_cookie_t
1489 spl_fstrans_mark(void)
1490 {
1491 return ((fstrans_cookie_t) 0);
1492 }
1493
1494 void
1495 spl_fstrans_unmark(fstrans_cookie_t cookie)
1496 {
1497 }
1498
1499 int
1500 spl_fstrans_check(void)
1501 {
1502 return (0);
1503 }
1504
1505 void *zvol_tag = "zvol_tag";
1506
1507 void
1508 zvol_create_minors(spa_t *spa, const char *name, boolean_t async)
1509 {
1510 }
1511
1512 void
1513 zvol_remove_minor(spa_t *spa, const char *name, boolean_t async)
1514 {
1515 }
1516
1517 void
1518 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1519 {
1520 }
1521
1522 void
1523 zvol_rename_minors(spa_t *spa, const char *oldname, const char *newname,
1524 boolean_t async)
1525 {
1526 }