]> git.proxmox.com Git - mirror_zfs-debian.git/blob - lib/libzpool/taskq.c
Linux 3.3 compat, sops->show_options()
[mirror_zfs-debian.git] / lib / libzpool / taskq.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30
31 int taskq_now;
32 taskq_t *system_taskq;
33
34 #define TASKQ_ACTIVE 0x00010000
35
36 struct taskq {
37 kmutex_t tq_lock;
38 krwlock_t tq_threadlock;
39 kcondvar_t tq_dispatch_cv;
40 kcondvar_t tq_wait_cv;
41 kthread_t **tq_threadlist;
42 int tq_flags;
43 int tq_active;
44 int tq_nthreads;
45 int tq_nalloc;
46 int tq_minalloc;
47 int tq_maxalloc;
48 kcondvar_t tq_maxalloc_cv;
49 int tq_maxalloc_wait;
50 taskq_ent_t *tq_freelist;
51 taskq_ent_t tq_task;
52 };
53
54 static taskq_ent_t *
55 task_alloc(taskq_t *tq, int tqflags)
56 {
57 taskq_ent_t *t;
58 int rv;
59
60 again: if ((t = tq->tq_freelist) != NULL && tq->tq_nalloc >= tq->tq_minalloc) {
61 ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
62 tq->tq_freelist = t->tqent_next;
63 } else {
64 if (tq->tq_nalloc >= tq->tq_maxalloc) {
65 if (!(tqflags & KM_SLEEP))
66 return (NULL);
67
68 /*
69 * We don't want to exceed tq_maxalloc, but we can't
70 * wait for other tasks to complete (and thus free up
71 * task structures) without risking deadlock with
72 * the caller. So, we just delay for one second
73 * to throttle the allocation rate. If we have tasks
74 * complete before one second timeout expires then
75 * taskq_ent_free will signal us and we will
76 * immediately retry the allocation.
77 */
78 tq->tq_maxalloc_wait++;
79 rv = cv_timedwait(&tq->tq_maxalloc_cv,
80 &tq->tq_lock, ddi_get_lbolt() + hz);
81 tq->tq_maxalloc_wait--;
82 if (rv > 0)
83 goto again; /* signaled */
84 }
85 mutex_exit(&tq->tq_lock);
86
87 t = kmem_alloc(sizeof (taskq_ent_t), tqflags);
88
89 mutex_enter(&tq->tq_lock);
90 if (t != NULL) {
91 /* Make sure we start without any flags */
92 t->tqent_flags = 0;
93 tq->tq_nalloc++;
94 }
95 }
96 return (t);
97 }
98
99 static void
100 task_free(taskq_t *tq, taskq_ent_t *t)
101 {
102 if (tq->tq_nalloc <= tq->tq_minalloc) {
103 t->tqent_next = tq->tq_freelist;
104 tq->tq_freelist = t;
105 } else {
106 tq->tq_nalloc--;
107 mutex_exit(&tq->tq_lock);
108 kmem_free(t, sizeof (taskq_ent_t));
109 mutex_enter(&tq->tq_lock);
110 }
111
112 if (tq->tq_maxalloc_wait)
113 cv_signal(&tq->tq_maxalloc_cv);
114 }
115
116 taskqid_t
117 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t tqflags)
118 {
119 taskq_ent_t *t;
120
121 if (taskq_now) {
122 func(arg);
123 return (1);
124 }
125
126 mutex_enter(&tq->tq_lock);
127 ASSERT(tq->tq_flags & TASKQ_ACTIVE);
128 if ((t = task_alloc(tq, tqflags)) == NULL) {
129 mutex_exit(&tq->tq_lock);
130 return (0);
131 }
132 if (tqflags & TQ_FRONT) {
133 t->tqent_next = tq->tq_task.tqent_next;
134 t->tqent_prev = &tq->tq_task;
135 } else {
136 t->tqent_next = &tq->tq_task;
137 t->tqent_prev = tq->tq_task.tqent_prev;
138 }
139 t->tqent_next->tqent_prev = t;
140 t->tqent_prev->tqent_next = t;
141 t->tqent_func = func;
142 t->tqent_arg = arg;
143
144 ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
145
146 cv_signal(&tq->tq_dispatch_cv);
147 mutex_exit(&tq->tq_lock);
148 return (1);
149 }
150
151 int
152 taskq_empty_ent(taskq_ent_t *t)
153 {
154 return t->tqent_next == NULL;
155 }
156
157 void
158 taskq_init_ent(taskq_ent_t *t)
159 {
160 t->tqent_next = NULL;
161 t->tqent_prev = NULL;
162 t->tqent_func = NULL;
163 t->tqent_arg = NULL;
164 t->tqent_flags = 0;
165 }
166
167 void
168 taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
169 taskq_ent_t *t)
170 {
171 ASSERT(func != NULL);
172 ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
173
174 /*
175 * Mark it as a prealloc'd task. This is important
176 * to ensure that we don't free it later.
177 */
178 t->tqent_flags |= TQENT_FLAG_PREALLOC;
179 /*
180 * Enqueue the task to the underlying queue.
181 */
182 mutex_enter(&tq->tq_lock);
183
184 if (flags & TQ_FRONT) {
185 t->tqent_next = tq->tq_task.tqent_next;
186 t->tqent_prev = &tq->tq_task;
187 } else {
188 t->tqent_next = &tq->tq_task;
189 t->tqent_prev = tq->tq_task.tqent_prev;
190 }
191 t->tqent_next->tqent_prev = t;
192 t->tqent_prev->tqent_next = t;
193 t->tqent_func = func;
194 t->tqent_arg = arg;
195 cv_signal(&tq->tq_dispatch_cv);
196 mutex_exit(&tq->tq_lock);
197 }
198
199 void
200 taskq_wait(taskq_t *tq)
201 {
202 mutex_enter(&tq->tq_lock);
203 while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0)
204 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
205 mutex_exit(&tq->tq_lock);
206 }
207
208 static void
209 taskq_thread(void *arg)
210 {
211 taskq_t *tq = arg;
212 taskq_ent_t *t;
213 boolean_t prealloc;
214
215 mutex_enter(&tq->tq_lock);
216 while (tq->tq_flags & TASKQ_ACTIVE) {
217 if ((t = tq->tq_task.tqent_next) == &tq->tq_task) {
218 if (--tq->tq_active == 0)
219 cv_broadcast(&tq->tq_wait_cv);
220 cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
221 tq->tq_active++;
222 continue;
223 }
224 t->tqent_prev->tqent_next = t->tqent_next;
225 t->tqent_next->tqent_prev = t->tqent_prev;
226 t->tqent_next = NULL;
227 t->tqent_prev = NULL;
228 prealloc = t->tqent_flags & TQENT_FLAG_PREALLOC;
229 mutex_exit(&tq->tq_lock);
230
231 rw_enter(&tq->tq_threadlock, RW_READER);
232 t->tqent_func(t->tqent_arg);
233 rw_exit(&tq->tq_threadlock);
234
235 mutex_enter(&tq->tq_lock);
236 if (!prealloc)
237 task_free(tq, t);
238 }
239 tq->tq_nthreads--;
240 cv_broadcast(&tq->tq_wait_cv);
241 mutex_exit(&tq->tq_lock);
242 thread_exit();
243 }
244
245 /*ARGSUSED*/
246 taskq_t *
247 taskq_create(const char *name, int nthreads, pri_t pri,
248 int minalloc, int maxalloc, uint_t flags)
249 {
250 taskq_t *tq = kmem_zalloc(sizeof (taskq_t), KM_SLEEP);
251 int t;
252
253 if (flags & TASKQ_THREADS_CPU_PCT) {
254 int pct;
255 ASSERT3S(nthreads, >=, 0);
256 ASSERT3S(nthreads, <=, 100);
257 pct = MIN(nthreads, 100);
258 pct = MAX(pct, 0);
259
260 nthreads = (sysconf(_SC_NPROCESSORS_ONLN) * pct) / 100;
261 nthreads = MAX(nthreads, 1); /* need at least 1 thread */
262 } else {
263 ASSERT3S(nthreads, >=, 1);
264 }
265
266 rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
267 mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
268 cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
269 cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
270 cv_init(&tq->tq_maxalloc_cv, NULL, CV_DEFAULT, NULL);
271 tq->tq_flags = flags | TASKQ_ACTIVE;
272 tq->tq_active = nthreads;
273 tq->tq_nthreads = nthreads;
274 tq->tq_minalloc = minalloc;
275 tq->tq_maxalloc = maxalloc;
276 tq->tq_task.tqent_next = &tq->tq_task;
277 tq->tq_task.tqent_prev = &tq->tq_task;
278 tq->tq_threadlist = kmem_alloc(nthreads*sizeof(kthread_t *), KM_SLEEP);
279
280 if (flags & TASKQ_PREPOPULATE) {
281 mutex_enter(&tq->tq_lock);
282 while (minalloc-- > 0)
283 task_free(tq, task_alloc(tq, KM_SLEEP));
284 mutex_exit(&tq->tq_lock);
285 }
286
287 for (t = 0; t < nthreads; t++)
288 VERIFY((tq->tq_threadlist[t] = thread_create(NULL, 0,
289 taskq_thread, tq, TS_RUN, NULL, 0, 0)) != NULL);
290
291 return (tq);
292 }
293
294 void
295 taskq_destroy(taskq_t *tq)
296 {
297 int nthreads = tq->tq_nthreads;
298
299 taskq_wait(tq);
300
301 mutex_enter(&tq->tq_lock);
302
303 tq->tq_flags &= ~TASKQ_ACTIVE;
304 cv_broadcast(&tq->tq_dispatch_cv);
305
306 while (tq->tq_nthreads != 0)
307 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
308
309 tq->tq_minalloc = 0;
310 while (tq->tq_nalloc != 0) {
311 ASSERT(tq->tq_freelist != NULL);
312 task_free(tq, task_alloc(tq, KM_SLEEP));
313 }
314
315 mutex_exit(&tq->tq_lock);
316
317 kmem_free(tq->tq_threadlist, nthreads * sizeof (kthread_t *));
318
319 rw_destroy(&tq->tq_threadlock);
320 mutex_destroy(&tq->tq_lock);
321 cv_destroy(&tq->tq_dispatch_cv);
322 cv_destroy(&tq->tq_wait_cv);
323 cv_destroy(&tq->tq_maxalloc_cv);
324
325 kmem_free(tq, sizeof (taskq_t));
326 }
327
328 int
329 taskq_member(taskq_t *tq, kthread_t *t)
330 {
331 int i;
332
333 if (taskq_now)
334 return (1);
335
336 for (i = 0; i < tq->tq_nthreads; i++)
337 if (tq->tq_threadlist[i] == t)
338 return (1);
339
340 return (0);
341 }
342
343 void
344 system_taskq_init(void)
345 {
346 system_taskq = taskq_create("system_taskq", 64, minclsyspri, 4, 512,
347 TASKQ_DYNAMIC | TASKQ_PREPOPULATE);
348 }
349
350 void
351 system_taskq_fini(void)
352 {
353 taskq_destroy(system_taskq);
354 system_taskq = NULL; /* defensive */
355 }