]> git.proxmox.com Git - mirror_zfs.git/blob - module/avl/avl.c
Update core ZFS code from build 121 to build 141.
[mirror_zfs.git] / module / avl / avl.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * AVL - generic AVL tree implementation for kernel use
28 *
29 * A complete description of AVL trees can be found in many CS textbooks.
30 *
31 * Here is a very brief overview. An AVL tree is a binary search tree that is
32 * almost perfectly balanced. By "almost" perfectly balanced, we mean that at
33 * any given node, the left and right subtrees are allowed to differ in height
34 * by at most 1 level.
35 *
36 * This relaxation from a perfectly balanced binary tree allows doing
37 * insertion and deletion relatively efficiently. Searching the tree is
38 * still a fast operation, roughly O(log(N)).
39 *
40 * The key to insertion and deletion is a set of tree maniuplations called
41 * rotations, which bring unbalanced subtrees back into the semi-balanced state.
42 *
43 * This implementation of AVL trees has the following peculiarities:
44 *
45 * - The AVL specific data structures are physically embedded as fields
46 * in the "using" data structures. To maintain generality the code
47 * must constantly translate between "avl_node_t *" and containing
48 * data structure "void *"s by adding/subracting the avl_offset.
49 *
50 * - Since the AVL data is always embedded in other structures, there is
51 * no locking or memory allocation in the AVL routines. This must be
52 * provided for by the enclosing data structure's semantics. Typically,
53 * avl_insert()/_add()/_remove()/avl_insert_here() require some kind of
54 * exclusive write lock. Other operations require a read lock.
55 *
56 * - The implementation uses iteration instead of explicit recursion,
57 * since it is intended to run on limited size kernel stacks. Since
58 * there is no recursion stack present to move "up" in the tree,
59 * there is an explicit "parent" link in the avl_node_t.
60 *
61 * - The left/right children pointers of a node are in an array.
62 * In the code, variables (instead of constants) are used to represent
63 * left and right indices. The implementation is written as if it only
64 * dealt with left handed manipulations. By changing the value assigned
65 * to "left", the code also works for right handed trees. The
66 * following variables/terms are frequently used:
67 *
68 * int left; // 0 when dealing with left children,
69 * // 1 for dealing with right children
70 *
71 * int left_heavy; // -1 when left subtree is taller at some node,
72 * // +1 when right subtree is taller
73 *
74 * int right; // will be the opposite of left (0 or 1)
75 * int right_heavy;// will be the opposite of left_heavy (-1 or 1)
76 *
77 * int direction; // 0 for "<" (ie. left child); 1 for ">" (right)
78 *
79 * Though it is a little more confusing to read the code, the approach
80 * allows using half as much code (and hence cache footprint) for tree
81 * manipulations and eliminates many conditional branches.
82 *
83 * - The avl_index_t is an opaque "cookie" used to find nodes at or
84 * adjacent to where a new value would be inserted in the tree. The value
85 * is a modified "avl_node_t *". The bottom bit (normally 0 for a
86 * pointer) is set to indicate if that the new node has a value greater
87 * than the value of the indicated "avl_node_t *".
88 */
89
90 #include <sys/types.h>
91 #include <sys/param.h>
92 #include <sys/debug.h>
93 #include <sys/avl.h>
94 #include <sys/cmn_err.h>
95
96 /*
97 * Small arrays to translate between balance (or diff) values and child indeces.
98 *
99 * Code that deals with binary tree data structures will randomly use
100 * left and right children when examining a tree. C "if()" statements
101 * which evaluate randomly suffer from very poor hardware branch prediction.
102 * In this code we avoid some of the branch mispredictions by using the
103 * following translation arrays. They replace random branches with an
104 * additional memory reference. Since the translation arrays are both very
105 * small the data should remain efficiently in cache.
106 */
107 static const int avl_child2balance[2] = {-1, 1};
108 static const int avl_balance2child[] = {0, 0, 1};
109
110
111 /*
112 * Walk from one node to the previous valued node (ie. an infix walk
113 * towards the left). At any given node we do one of 2 things:
114 *
115 * - If there is a left child, go to it, then to it's rightmost descendant.
116 *
117 * - otherwise we return thru parent nodes until we've come from a right child.
118 *
119 * Return Value:
120 * NULL - if at the end of the nodes
121 * otherwise next node
122 */
123 void *
124 avl_walk(avl_tree_t *tree, void *oldnode, int left)
125 {
126 size_t off = tree->avl_offset;
127 avl_node_t *node = AVL_DATA2NODE(oldnode, off);
128 int right = 1 - left;
129 int was_child;
130
131
132 /*
133 * nowhere to walk to if tree is empty
134 */
135 if (node == NULL)
136 return (NULL);
137
138 /*
139 * Visit the previous valued node. There are two possibilities:
140 *
141 * If this node has a left child, go down one left, then all
142 * the way right.
143 */
144 if (node->avl_child[left] != NULL) {
145 for (node = node->avl_child[left];
146 node->avl_child[right] != NULL;
147 node = node->avl_child[right])
148 ;
149 /*
150 * Otherwise, return thru left children as far as we can.
151 */
152 } else {
153 for (;;) {
154 was_child = AVL_XCHILD(node);
155 node = AVL_XPARENT(node);
156 if (node == NULL)
157 return (NULL);
158 if (was_child == right)
159 break;
160 }
161 }
162
163 return (AVL_NODE2DATA(node, off));
164 }
165
166 /*
167 * Return the lowest valued node in a tree or NULL.
168 * (leftmost child from root of tree)
169 */
170 void *
171 avl_first(avl_tree_t *tree)
172 {
173 avl_node_t *node;
174 avl_node_t *prev = NULL;
175 size_t off = tree->avl_offset;
176
177 for (node = tree->avl_root; node != NULL; node = node->avl_child[0])
178 prev = node;
179
180 if (prev != NULL)
181 return (AVL_NODE2DATA(prev, off));
182 return (NULL);
183 }
184
185 /*
186 * Return the highest valued node in a tree or NULL.
187 * (rightmost child from root of tree)
188 */
189 void *
190 avl_last(avl_tree_t *tree)
191 {
192 avl_node_t *node;
193 avl_node_t *prev = NULL;
194 size_t off = tree->avl_offset;
195
196 for (node = tree->avl_root; node != NULL; node = node->avl_child[1])
197 prev = node;
198
199 if (prev != NULL)
200 return (AVL_NODE2DATA(prev, off));
201 return (NULL);
202 }
203
204 /*
205 * Access the node immediately before or after an insertion point.
206 *
207 * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child
208 *
209 * Return value:
210 * NULL: no node in the given direction
211 * "void *" of the found tree node
212 */
213 void *
214 avl_nearest(avl_tree_t *tree, avl_index_t where, int direction)
215 {
216 int child = AVL_INDEX2CHILD(where);
217 avl_node_t *node = AVL_INDEX2NODE(where);
218 void *data;
219 size_t off = tree->avl_offset;
220
221 if (node == NULL) {
222 ASSERT(tree->avl_root == NULL);
223 return (NULL);
224 }
225 data = AVL_NODE2DATA(node, off);
226 if (child != direction)
227 return (data);
228
229 return (avl_walk(tree, data, direction));
230 }
231
232
233 /*
234 * Search for the node which contains "value". The algorithm is a
235 * simple binary tree search.
236 *
237 * return value:
238 * NULL: the value is not in the AVL tree
239 * *where (if not NULL) is set to indicate the insertion point
240 * "void *" of the found tree node
241 */
242 void *
243 avl_find(avl_tree_t *tree, const void *value, avl_index_t *where)
244 {
245 avl_node_t *node;
246 avl_node_t *prev = NULL;
247 int child = 0;
248 int diff;
249 size_t off = tree->avl_offset;
250
251 for (node = tree->avl_root; node != NULL;
252 node = node->avl_child[child]) {
253
254 prev = node;
255
256 diff = tree->avl_compar(value, AVL_NODE2DATA(node, off));
257 ASSERT(-1 <= diff && diff <= 1);
258 if (diff == 0) {
259 #ifdef DEBUG
260 if (where != NULL)
261 *where = 0;
262 #endif
263 return (AVL_NODE2DATA(node, off));
264 }
265 child = avl_balance2child[1 + diff];
266
267 }
268
269 if (where != NULL)
270 *where = AVL_MKINDEX(prev, child);
271
272 return (NULL);
273 }
274
275
276 /*
277 * Perform a rotation to restore balance at the subtree given by depth.
278 *
279 * This routine is used by both insertion and deletion. The return value
280 * indicates:
281 * 0 : subtree did not change height
282 * !0 : subtree was reduced in height
283 *
284 * The code is written as if handling left rotations, right rotations are
285 * symmetric and handled by swapping values of variables right/left[_heavy]
286 *
287 * On input balance is the "new" balance at "node". This value is either
288 * -2 or +2.
289 */
290 static int
291 avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance)
292 {
293 int left = !(balance < 0); /* when balance = -2, left will be 0 */
294 int right = 1 - left;
295 int left_heavy = balance >> 1;
296 int right_heavy = -left_heavy;
297 avl_node_t *parent = AVL_XPARENT(node);
298 avl_node_t *child = node->avl_child[left];
299 avl_node_t *cright;
300 avl_node_t *gchild;
301 avl_node_t *gright;
302 avl_node_t *gleft;
303 int which_child = AVL_XCHILD(node);
304 int child_bal = AVL_XBALANCE(child);
305
306 /* BEGIN CSTYLED */
307 /*
308 * case 1 : node is overly left heavy, the left child is balanced or
309 * also left heavy. This requires the following rotation.
310 *
311 * (node bal:-2)
312 * / \
313 * / \
314 * (child bal:0 or -1)
315 * / \
316 * / \
317 * cright
318 *
319 * becomes:
320 *
321 * (child bal:1 or 0)
322 * / \
323 * / \
324 * (node bal:-1 or 0)
325 * / \
326 * / \
327 * cright
328 *
329 * we detect this situation by noting that child's balance is not
330 * right_heavy.
331 */
332 /* END CSTYLED */
333 if (child_bal != right_heavy) {
334
335 /*
336 * compute new balance of nodes
337 *
338 * If child used to be left heavy (now balanced) we reduced
339 * the height of this sub-tree -- used in "return...;" below
340 */
341 child_bal += right_heavy; /* adjust towards right */
342
343 /*
344 * move "cright" to be node's left child
345 */
346 cright = child->avl_child[right];
347 node->avl_child[left] = cright;
348 if (cright != NULL) {
349 AVL_SETPARENT(cright, node);
350 AVL_SETCHILD(cright, left);
351 }
352
353 /*
354 * move node to be child's right child
355 */
356 child->avl_child[right] = node;
357 AVL_SETBALANCE(node, -child_bal);
358 AVL_SETCHILD(node, right);
359 AVL_SETPARENT(node, child);
360
361 /*
362 * update the pointer into this subtree
363 */
364 AVL_SETBALANCE(child, child_bal);
365 AVL_SETCHILD(child, which_child);
366 AVL_SETPARENT(child, parent);
367 if (parent != NULL)
368 parent->avl_child[which_child] = child;
369 else
370 tree->avl_root = child;
371
372 return (child_bal == 0);
373 }
374
375 /* BEGIN CSTYLED */
376 /*
377 * case 2 : When node is left heavy, but child is right heavy we use
378 * a different rotation.
379 *
380 * (node b:-2)
381 * / \
382 * / \
383 * / \
384 * (child b:+1)
385 * / \
386 * / \
387 * (gchild b: != 0)
388 * / \
389 * / \
390 * gleft gright
391 *
392 * becomes:
393 *
394 * (gchild b:0)
395 * / \
396 * / \
397 * / \
398 * (child b:?) (node b:?)
399 * / \ / \
400 * / \ / \
401 * gleft gright
402 *
403 * computing the new balances is more complicated. As an example:
404 * if gchild was right_heavy, then child is now left heavy
405 * else it is balanced
406 */
407 /* END CSTYLED */
408 gchild = child->avl_child[right];
409 gleft = gchild->avl_child[left];
410 gright = gchild->avl_child[right];
411
412 /*
413 * move gright to left child of node and
414 *
415 * move gleft to right child of node
416 */
417 node->avl_child[left] = gright;
418 if (gright != NULL) {
419 AVL_SETPARENT(gright, node);
420 AVL_SETCHILD(gright, left);
421 }
422
423 child->avl_child[right] = gleft;
424 if (gleft != NULL) {
425 AVL_SETPARENT(gleft, child);
426 AVL_SETCHILD(gleft, right);
427 }
428
429 /*
430 * move child to left child of gchild and
431 *
432 * move node to right child of gchild and
433 *
434 * fixup parent of all this to point to gchild
435 */
436 balance = AVL_XBALANCE(gchild);
437 gchild->avl_child[left] = child;
438 AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0));
439 AVL_SETPARENT(child, gchild);
440 AVL_SETCHILD(child, left);
441
442 gchild->avl_child[right] = node;
443 AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0));
444 AVL_SETPARENT(node, gchild);
445 AVL_SETCHILD(node, right);
446
447 AVL_SETBALANCE(gchild, 0);
448 AVL_SETPARENT(gchild, parent);
449 AVL_SETCHILD(gchild, which_child);
450 if (parent != NULL)
451 parent->avl_child[which_child] = gchild;
452 else
453 tree->avl_root = gchild;
454
455 return (1); /* the new tree is always shorter */
456 }
457
458
459 /*
460 * Insert a new node into an AVL tree at the specified (from avl_find()) place.
461 *
462 * Newly inserted nodes are always leaf nodes in the tree, since avl_find()
463 * searches out to the leaf positions. The avl_index_t indicates the node
464 * which will be the parent of the new node.
465 *
466 * After the node is inserted, a single rotation further up the tree may
467 * be necessary to maintain an acceptable AVL balance.
468 */
469 void
470 avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where)
471 {
472 avl_node_t *node;
473 avl_node_t *parent = AVL_INDEX2NODE(where);
474 int old_balance;
475 int new_balance;
476 int which_child = AVL_INDEX2CHILD(where);
477 size_t off = tree->avl_offset;
478
479 ASSERT(tree);
480 #ifdef _LP64
481 ASSERT(((uintptr_t)new_data & 0x7) == 0);
482 #endif
483
484 node = AVL_DATA2NODE(new_data, off);
485
486 /*
487 * First, add the node to the tree at the indicated position.
488 */
489 ++tree->avl_numnodes;
490
491 node->avl_child[0] = NULL;
492 node->avl_child[1] = NULL;
493
494 AVL_SETCHILD(node, which_child);
495 AVL_SETBALANCE(node, 0);
496 AVL_SETPARENT(node, parent);
497 if (parent != NULL) {
498 ASSERT(parent->avl_child[which_child] == NULL);
499 parent->avl_child[which_child] = node;
500 } else {
501 ASSERT(tree->avl_root == NULL);
502 tree->avl_root = node;
503 }
504 /*
505 * Now, back up the tree modifying the balance of all nodes above the
506 * insertion point. If we get to a highly unbalanced ancestor, we
507 * need to do a rotation. If we back out of the tree we are done.
508 * If we brought any subtree into perfect balance (0), we are also done.
509 */
510 for (;;) {
511 node = parent;
512 if (node == NULL)
513 return;
514
515 /*
516 * Compute the new balance
517 */
518 old_balance = AVL_XBALANCE(node);
519 new_balance = old_balance + avl_child2balance[which_child];
520
521 /*
522 * If we introduced equal balance, then we are done immediately
523 */
524 if (new_balance == 0) {
525 AVL_SETBALANCE(node, 0);
526 return;
527 }
528
529 /*
530 * If both old and new are not zero we went
531 * from -1 to -2 balance, do a rotation.
532 */
533 if (old_balance != 0)
534 break;
535
536 AVL_SETBALANCE(node, new_balance);
537 parent = AVL_XPARENT(node);
538 which_child = AVL_XCHILD(node);
539 }
540
541 /*
542 * perform a rotation to fix the tree and return
543 */
544 (void) avl_rotation(tree, node, new_balance);
545 }
546
547 /*
548 * Insert "new_data" in "tree" in the given "direction" either after or
549 * before (AVL_AFTER, AVL_BEFORE) the data "here".
550 *
551 * Insertions can only be done at empty leaf points in the tree, therefore
552 * if the given child of the node is already present we move to either
553 * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since
554 * every other node in the tree is a leaf, this always works.
555 *
556 * To help developers using this interface, we assert that the new node
557 * is correctly ordered at every step of the way in DEBUG kernels.
558 */
559 void
560 avl_insert_here(
561 avl_tree_t *tree,
562 void *new_data,
563 void *here,
564 int direction)
565 {
566 avl_node_t *node;
567 int child = direction; /* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */
568 #ifdef DEBUG
569 int diff;
570 #endif
571
572 ASSERT(tree != NULL);
573 ASSERT(new_data != NULL);
574 ASSERT(here != NULL);
575 ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER);
576
577 /*
578 * If corresponding child of node is not NULL, go to the neighboring
579 * node and reverse the insertion direction.
580 */
581 node = AVL_DATA2NODE(here, tree->avl_offset);
582
583 #ifdef DEBUG
584 diff = tree->avl_compar(new_data, here);
585 ASSERT(-1 <= diff && diff <= 1);
586 ASSERT(diff != 0);
587 ASSERT(diff > 0 ? child == 1 : child == 0);
588 #endif
589
590 if (node->avl_child[child] != NULL) {
591 node = node->avl_child[child];
592 child = 1 - child;
593 while (node->avl_child[child] != NULL) {
594 #ifdef DEBUG
595 diff = tree->avl_compar(new_data,
596 AVL_NODE2DATA(node, tree->avl_offset));
597 ASSERT(-1 <= diff && diff <= 1);
598 ASSERT(diff != 0);
599 ASSERT(diff > 0 ? child == 1 : child == 0);
600 #endif
601 node = node->avl_child[child];
602 }
603 #ifdef DEBUG
604 diff = tree->avl_compar(new_data,
605 AVL_NODE2DATA(node, tree->avl_offset));
606 ASSERT(-1 <= diff && diff <= 1);
607 ASSERT(diff != 0);
608 ASSERT(diff > 0 ? child == 1 : child == 0);
609 #endif
610 }
611 ASSERT(node->avl_child[child] == NULL);
612
613 avl_insert(tree, new_data, AVL_MKINDEX(node, child));
614 }
615
616 /*
617 * Add a new node to an AVL tree.
618 */
619 void
620 avl_add(avl_tree_t *tree, void *new_node)
621 {
622 avl_index_t where;
623
624 /*
625 * This is unfortunate. We want to call panic() here, even for
626 * non-DEBUG kernels. In userland, however, we can't depend on anything
627 * in libc or else the rtld build process gets confused. So, all we can
628 * do in userland is resort to a normal ASSERT().
629 */
630 if (avl_find(tree, new_node, &where) != NULL)
631 #ifdef _KERNEL
632 panic("avl_find() succeeded inside avl_add()");
633 #else
634 ASSERT(0);
635 #endif
636 avl_insert(tree, new_node, where);
637 }
638
639 /*
640 * Delete a node from the AVL tree. Deletion is similar to insertion, but
641 * with 2 complications.
642 *
643 * First, we may be deleting an interior node. Consider the following subtree:
644 *
645 * d c c
646 * / \ / \ / \
647 * b e b e b e
648 * / \ / \ /
649 * a c a a
650 *
651 * When we are deleting node (d), we find and bring up an adjacent valued leaf
652 * node, say (c), to take the interior node's place. In the code this is
653 * handled by temporarily swapping (d) and (c) in the tree and then using
654 * common code to delete (d) from the leaf position.
655 *
656 * Secondly, an interior deletion from a deep tree may require more than one
657 * rotation to fix the balance. This is handled by moving up the tree through
658 * parents and applying rotations as needed. The return value from
659 * avl_rotation() is used to detect when a subtree did not change overall
660 * height due to a rotation.
661 */
662 void
663 avl_remove(avl_tree_t *tree, void *data)
664 {
665 avl_node_t *delete;
666 avl_node_t *parent;
667 avl_node_t *node;
668 avl_node_t tmp;
669 int old_balance;
670 int new_balance;
671 int left;
672 int right;
673 int which_child;
674 size_t off = tree->avl_offset;
675
676 ASSERT(tree);
677
678 delete = AVL_DATA2NODE(data, off);
679
680 /*
681 * Deletion is easiest with a node that has at most 1 child.
682 * We swap a node with 2 children with a sequentially valued
683 * neighbor node. That node will have at most 1 child. Note this
684 * has no effect on the ordering of the remaining nodes.
685 *
686 * As an optimization, we choose the greater neighbor if the tree
687 * is right heavy, otherwise the left neighbor. This reduces the
688 * number of rotations needed.
689 */
690 if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) {
691
692 /*
693 * choose node to swap from whichever side is taller
694 */
695 old_balance = AVL_XBALANCE(delete);
696 left = avl_balance2child[old_balance + 1];
697 right = 1 - left;
698
699 /*
700 * get to the previous value'd node
701 * (down 1 left, as far as possible right)
702 */
703 for (node = delete->avl_child[left];
704 node->avl_child[right] != NULL;
705 node = node->avl_child[right])
706 ;
707
708 /*
709 * create a temp placeholder for 'node'
710 * move 'node' to delete's spot in the tree
711 */
712 tmp = *node;
713
714 *node = *delete;
715 if (node->avl_child[left] == node)
716 node->avl_child[left] = &tmp;
717
718 parent = AVL_XPARENT(node);
719 if (parent != NULL)
720 parent->avl_child[AVL_XCHILD(node)] = node;
721 else
722 tree->avl_root = node;
723 AVL_SETPARENT(node->avl_child[left], node);
724 AVL_SETPARENT(node->avl_child[right], node);
725
726 /*
727 * Put tmp where node used to be (just temporary).
728 * It always has a parent and at most 1 child.
729 */
730 delete = &tmp;
731 parent = AVL_XPARENT(delete);
732 parent->avl_child[AVL_XCHILD(delete)] = delete;
733 which_child = (delete->avl_child[1] != 0);
734 if (delete->avl_child[which_child] != NULL)
735 AVL_SETPARENT(delete->avl_child[which_child], delete);
736 }
737
738
739 /*
740 * Here we know "delete" is at least partially a leaf node. It can
741 * be easily removed from the tree.
742 */
743 ASSERT(tree->avl_numnodes > 0);
744 --tree->avl_numnodes;
745 parent = AVL_XPARENT(delete);
746 which_child = AVL_XCHILD(delete);
747 if (delete->avl_child[0] != NULL)
748 node = delete->avl_child[0];
749 else
750 node = delete->avl_child[1];
751
752 /*
753 * Connect parent directly to node (leaving out delete).
754 */
755 if (node != NULL) {
756 AVL_SETPARENT(node, parent);
757 AVL_SETCHILD(node, which_child);
758 }
759 if (parent == NULL) {
760 tree->avl_root = node;
761 return;
762 }
763 parent->avl_child[which_child] = node;
764
765
766 /*
767 * Since the subtree is now shorter, begin adjusting parent balances
768 * and performing any needed rotations.
769 */
770 do {
771
772 /*
773 * Move up the tree and adjust the balance
774 *
775 * Capture the parent and which_child values for the next
776 * iteration before any rotations occur.
777 */
778 node = parent;
779 old_balance = AVL_XBALANCE(node);
780 new_balance = old_balance - avl_child2balance[which_child];
781 parent = AVL_XPARENT(node);
782 which_child = AVL_XCHILD(node);
783
784 /*
785 * If a node was in perfect balance but isn't anymore then
786 * we can stop, since the height didn't change above this point
787 * due to a deletion.
788 */
789 if (old_balance == 0) {
790 AVL_SETBALANCE(node, new_balance);
791 break;
792 }
793
794 /*
795 * If the new balance is zero, we don't need to rotate
796 * else
797 * need a rotation to fix the balance.
798 * If the rotation doesn't change the height
799 * of the sub-tree we have finished adjusting.
800 */
801 if (new_balance == 0)
802 AVL_SETBALANCE(node, new_balance);
803 else if (!avl_rotation(tree, node, new_balance))
804 break;
805 } while (parent != NULL);
806 }
807
808 #define AVL_REINSERT(tree, obj) \
809 avl_remove((tree), (obj)); \
810 avl_add((tree), (obj))
811
812 boolean_t
813 avl_update_lt(avl_tree_t *t, void *obj)
814 {
815 void *neighbor;
816
817 ASSERT(((neighbor = AVL_NEXT(t, obj)) == NULL) ||
818 (t->avl_compar(obj, neighbor) <= 0));
819
820 neighbor = AVL_PREV(t, obj);
821 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
822 AVL_REINSERT(t, obj);
823 return (B_TRUE);
824 }
825
826 return (B_FALSE);
827 }
828
829 boolean_t
830 avl_update_gt(avl_tree_t *t, void *obj)
831 {
832 void *neighbor;
833
834 ASSERT(((neighbor = AVL_PREV(t, obj)) == NULL) ||
835 (t->avl_compar(obj, neighbor) >= 0));
836
837 neighbor = AVL_NEXT(t, obj);
838 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
839 AVL_REINSERT(t, obj);
840 return (B_TRUE);
841 }
842
843 return (B_FALSE);
844 }
845
846 boolean_t
847 avl_update(avl_tree_t *t, void *obj)
848 {
849 void *neighbor;
850
851 neighbor = AVL_PREV(t, obj);
852 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
853 AVL_REINSERT(t, obj);
854 return (B_TRUE);
855 }
856
857 neighbor = AVL_NEXT(t, obj);
858 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
859 AVL_REINSERT(t, obj);
860 return (B_TRUE);
861 }
862
863 return (B_FALSE);
864 }
865
866 /*
867 * initialize a new AVL tree
868 */
869 void
870 avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *),
871 size_t size, size_t offset)
872 {
873 ASSERT(tree);
874 ASSERT(compar);
875 ASSERT(size > 0);
876 ASSERT(size >= offset + sizeof (avl_node_t));
877 #ifdef _LP64
878 ASSERT((offset & 0x7) == 0);
879 #endif
880
881 tree->avl_compar = compar;
882 tree->avl_root = NULL;
883 tree->avl_numnodes = 0;
884 tree->avl_size = size;
885 tree->avl_offset = offset;
886 }
887
888 /*
889 * Delete a tree.
890 */
891 /* ARGSUSED */
892 void
893 avl_destroy(avl_tree_t *tree)
894 {
895 ASSERT(tree);
896 ASSERT(tree->avl_numnodes == 0);
897 ASSERT(tree->avl_root == NULL);
898 }
899
900
901 /*
902 * Return the number of nodes in an AVL tree.
903 */
904 ulong_t
905 avl_numnodes(avl_tree_t *tree)
906 {
907 ASSERT(tree);
908 return (tree->avl_numnodes);
909 }
910
911 boolean_t
912 avl_is_empty(avl_tree_t *tree)
913 {
914 ASSERT(tree);
915 return (tree->avl_numnodes == 0);
916 }
917
918 #define CHILDBIT (1L)
919
920 /*
921 * Post-order tree walk used to visit all tree nodes and destroy the tree
922 * in post order. This is used for destroying a tree w/o paying any cost
923 * for rebalancing it.
924 *
925 * example:
926 *
927 * void *cookie = NULL;
928 * my_data_t *node;
929 *
930 * while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
931 * free(node);
932 * avl_destroy(tree);
933 *
934 * The cookie is really an avl_node_t to the current node's parent and
935 * an indication of which child you looked at last.
936 *
937 * On input, a cookie value of CHILDBIT indicates the tree is done.
938 */
939 void *
940 avl_destroy_nodes(avl_tree_t *tree, void **cookie)
941 {
942 avl_node_t *node;
943 avl_node_t *parent;
944 int child;
945 void *first;
946 size_t off = tree->avl_offset;
947
948 /*
949 * Initial calls go to the first node or it's right descendant.
950 */
951 if (*cookie == NULL) {
952 first = avl_first(tree);
953
954 /*
955 * deal with an empty tree
956 */
957 if (first == NULL) {
958 *cookie = (void *)CHILDBIT;
959 return (NULL);
960 }
961
962 node = AVL_DATA2NODE(first, off);
963 parent = AVL_XPARENT(node);
964 goto check_right_side;
965 }
966
967 /*
968 * If there is no parent to return to we are done.
969 */
970 parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT);
971 if (parent == NULL) {
972 if (tree->avl_root != NULL) {
973 ASSERT(tree->avl_numnodes == 1);
974 tree->avl_root = NULL;
975 tree->avl_numnodes = 0;
976 }
977 return (NULL);
978 }
979
980 /*
981 * Remove the child pointer we just visited from the parent and tree.
982 */
983 child = (uintptr_t)(*cookie) & CHILDBIT;
984 parent->avl_child[child] = NULL;
985 ASSERT(tree->avl_numnodes > 1);
986 --tree->avl_numnodes;
987
988 /*
989 * If we just did a right child or there isn't one, go up to parent.
990 */
991 if (child == 1 || parent->avl_child[1] == NULL) {
992 node = parent;
993 parent = AVL_XPARENT(parent);
994 goto done;
995 }
996
997 /*
998 * Do parent's right child, then leftmost descendent.
999 */
1000 node = parent->avl_child[1];
1001 while (node->avl_child[0] != NULL) {
1002 parent = node;
1003 node = node->avl_child[0];
1004 }
1005
1006 /*
1007 * If here, we moved to a left child. It may have one
1008 * child on the right (when balance == +1).
1009 */
1010 check_right_side:
1011 if (node->avl_child[1] != NULL) {
1012 ASSERT(AVL_XBALANCE(node) == 1);
1013 parent = node;
1014 node = node->avl_child[1];
1015 ASSERT(node->avl_child[0] == NULL &&
1016 node->avl_child[1] == NULL);
1017 } else {
1018 ASSERT(AVL_XBALANCE(node) <= 0);
1019 }
1020
1021 done:
1022 if (parent == NULL) {
1023 *cookie = (void *)CHILDBIT;
1024 ASSERT(node == tree->avl_root);
1025 } else {
1026 *cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node));
1027 }
1028
1029 return (AVL_NODE2DATA(node, off));
1030 }