]> git.proxmox.com Git - mirror_zfs.git/blob - module/icp/algs/skein/skein_block.c
codebase style improvements for OpenZFS 6459 port
[mirror_zfs.git] / module / icp / algs / skein / skein_block.c
1 /*
2 * Implementation of the Skein block functions.
3 * Source code author: Doug Whiting, 2008.
4 * This algorithm and source code is released to the public domain.
5 * Compile-time switches:
6 * SKEIN_USE_ASM -- set bits (256/512/1024) to select which
7 * versions use ASM code for block processing
8 * [default: use C for all block sizes]
9 */
10 /* Copyright 2013 Doug Whiting. This code is released to the public domain. */
11
12 #include <sys/skein.h>
13 #include "skein_impl.h"
14 #include <sys/isa_defs.h> /* for _ILP32 */
15
16 #ifndef SKEIN_USE_ASM
17 #define SKEIN_USE_ASM (0) /* default is all C code (no ASM) */
18 #endif
19
20 #ifndef SKEIN_LOOP
21 /*
22 * The low-level checksum routines use a lot of stack space. On systems where
23 * small stacks frame are enforced (like 32-bit kernel builds), do not unroll
24 * checksum calculations to save stack space.
25 *
26 * Even with no loops unrolled, we still can exceed the 1k stack frame limit
27 * in Skein1024_Process_Block() (it hits 1272 bytes on ARM32). We can
28 * safely ignore it though, since that the checksum functions will be called
29 * from a worker thread that won't be using much stack. That's why we have
30 * the #pragma here to ignore the warning.
31 */
32 #if defined(_ILP32) || defined(__powerpc) /* Assume small stack */
33 #pragma GCC diagnostic ignored "-Wframe-larger-than="
34 /*
35 * We're running on 32-bit, don't unroll loops to save stack frame space
36 *
37 * Due to the ways the calculations on SKEIN_LOOP are done in
38 * Skein_*_Process_Block(), a value of 111 disables unrolling loops
39 * in any of those functions.
40 */
41 #define SKEIN_LOOP 111
42 #else
43 /* We're compiling with large stacks */
44 #define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */
45 #endif
46 #endif
47
48 /* some useful definitions for code here */
49 #define BLK_BITS (WCNT*64)
50 #define KW_TWK_BASE (0)
51 #define KW_KEY_BASE (3)
52 #define ks (kw + KW_KEY_BASE)
53 #define ts (kw + KW_TWK_BASE)
54
55 /* no debugging in Illumos version */
56 #define DebugSaveTweak(ctx)
57
58 /* Skein_256 */
59 #if !(SKEIN_USE_ASM & 256)
60 void
61 Skein_256_Process_Block(Skein_256_Ctxt_t *ctx, const uint8_t *blkPtr,
62 size_t blkCnt, size_t byteCntAdd)
63 {
64 enum {
65 WCNT = SKEIN_256_STATE_WORDS
66 };
67 #undef RCNT
68 #define RCNT (SKEIN_256_ROUNDS_TOTAL / 8)
69
70 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
71 #define SKEIN_UNROLL_256 (((SKEIN_LOOP) / 100) % 10)
72 #else
73 #define SKEIN_UNROLL_256 (0)
74 #endif
75
76 #if SKEIN_UNROLL_256
77 #if (RCNT % SKEIN_UNROLL_256)
78 #error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */
79 #endif
80 size_t r;
81 /* key schedule words : chaining vars + tweak + "rotation" */
82 uint64_t kw[WCNT + 4 + RCNT * 2];
83 #else
84 uint64_t kw[WCNT + 4]; /* key schedule words : chaining vars + tweak */
85 #endif
86 /* local copy of context vars, for speed */
87 uint64_t X0, X1, X2, X3;
88 uint64_t w[WCNT]; /* local copy of input block */
89 #ifdef SKEIN_DEBUG
90 /* use for debugging (help compiler put Xn in registers) */
91 const uint64_t *Xptr[4];
92 Xptr[0] = &X0;
93 Xptr[1] = &X1;
94 Xptr[2] = &X2;
95 Xptr[3] = &X3;
96 #endif
97 Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
98 ts[0] = ctx->h.T[0];
99 ts[1] = ctx->h.T[1];
100 do {
101 /*
102 * this implementation only supports 2**64 input bytes
103 * (no carry out here)
104 */
105 ts[0] += byteCntAdd; /* update processed length */
106
107 /* precompute the key schedule for this block */
108 ks[0] = ctx->X[0];
109 ks[1] = ctx->X[1];
110 ks[2] = ctx->X[2];
111 ks[3] = ctx->X[3];
112 ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;
113
114 ts[2] = ts[0] ^ ts[1];
115
116 /* get input block in little-endian format */
117 Skein_Get64_LSB_First(w, blkPtr, WCNT);
118 DebugSaveTweak(ctx);
119 Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
120
121 X0 = w[0] + ks[0]; /* do the first full key injection */
122 X1 = w[1] + ks[1] + ts[0];
123 X2 = w[2] + ks[2] + ts[1];
124 X3 = w[3] + ks[3];
125
126 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
127 Xptr); /* show starting state values */
128
129 blkPtr += SKEIN_256_BLOCK_BYTES;
130
131 /* run the rounds */
132
133 #define Round256(p0, p1, p2, p3, ROT, rNum) \
134 X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \
135 X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \
136
137 #if SKEIN_UNROLL_256 == 0
138 #define R256(p0, p1, p2, p3, ROT, rNum) /* fully unrolled */ \
139 Round256(p0, p1, p2, p3, ROT, rNum) \
140 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);
141
142 #define I256(R) \
143 X0 += ks[((R) + 1) % 5]; /* inject the key schedule value */ \
144 X1 += ks[((R) + 2) % 5] + ts[((R) + 1) % 3]; \
145 X2 += ks[((R) + 3) % 5] + ts[((R) + 2) % 3]; \
146 X3 += ks[((R) + 4) % 5] + (R) + 1; \
147 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
148 #else /* looping version */
149 #define R256(p0, p1, p2, p3, ROT, rNum) \
150 Round256(p0, p1, p2, p3, ROT, rNum) \
151 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);
152
153 #define I256(R) \
154 X0 += ks[r + (R) + 0]; /* inject the key schedule value */ \
155 X1 += ks[r + (R) + 1] + ts[r + (R) + 0]; \
156 X2 += ks[r + (R) + 2] + ts[r + (R) + 1]; \
157 X3 += ks[r + (R) + 3] + r + (R); \
158 ks[r + (R) + 4] = ks[r + (R) - 1]; /* rotate key schedule */ \
159 ts[r + (R) + 2] = ts[r + (R) - 1]; \
160 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
161
162 /* loop thru it */
163 for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_256)
164 #endif
165 {
166 #define R256_8_rounds(R) \
167 R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1); \
168 R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2); \
169 R256(0, 1, 2, 3, R_256_2, 8 * (R) + 3); \
170 R256(0, 3, 2, 1, R_256_3, 8 * (R) + 4); \
171 I256(2 * (R)); \
172 R256(0, 1, 2, 3, R_256_4, 8 * (R) + 5); \
173 R256(0, 3, 2, 1, R_256_5, 8 * (R) + 6); \
174 R256(0, 1, 2, 3, R_256_6, 8 * (R) + 7); \
175 R256(0, 3, 2, 1, R_256_7, 8 * (R) + 8); \
176 I256(2 * (R) + 1);
177
178 R256_8_rounds(0);
179
180 #define R256_Unroll_R(NN) \
181 ((SKEIN_UNROLL_256 == 0 && SKEIN_256_ROUNDS_TOTAL / 8 > (NN)) || \
182 (SKEIN_UNROLL_256 > (NN)))
183
184 #if R256_Unroll_R(1)
185 R256_8_rounds(1);
186 #endif
187 #if R256_Unroll_R(2)
188 R256_8_rounds(2);
189 #endif
190 #if R256_Unroll_R(3)
191 R256_8_rounds(3);
192 #endif
193 #if R256_Unroll_R(4)
194 R256_8_rounds(4);
195 #endif
196 #if R256_Unroll_R(5)
197 R256_8_rounds(5);
198 #endif
199 #if R256_Unroll_R(6)
200 R256_8_rounds(6);
201 #endif
202 #if R256_Unroll_R(7)
203 R256_8_rounds(7);
204 #endif
205 #if R256_Unroll_R(8)
206 R256_8_rounds(8);
207 #endif
208 #if R256_Unroll_R(9)
209 R256_8_rounds(9);
210 #endif
211 #if R256_Unroll_R(10)
212 R256_8_rounds(10);
213 #endif
214 #if R256_Unroll_R(11)
215 R256_8_rounds(11);
216 #endif
217 #if R256_Unroll_R(12)
218 R256_8_rounds(12);
219 #endif
220 #if R256_Unroll_R(13)
221 R256_8_rounds(13);
222 #endif
223 #if R256_Unroll_R(14)
224 R256_8_rounds(14);
225 #endif
226 #if (SKEIN_UNROLL_256 > 14)
227 #error "need more unrolling in Skein_256_Process_Block"
228 #endif
229 }
230 /*
231 * do the final "feedforward" xor, update context chaining vars
232 */
233 ctx->X[0] = X0 ^ w[0];
234 ctx->X[1] = X1 ^ w[1];
235 ctx->X[2] = X2 ^ w[2];
236 ctx->X[3] = X3 ^ w[3];
237
238 Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
239
240 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
241 } while (--blkCnt);
242 ctx->h.T[0] = ts[0];
243 ctx->h.T[1] = ts[1];
244 }
245
246 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
247 size_t
248 Skein_256_Process_Block_CodeSize(void)
249 {
250 return ((uint8_t *)Skein_256_Process_Block_CodeSize) -
251 ((uint8_t *)Skein_256_Process_Block);
252 }
253
254 uint_t
255 Skein_256_Unroll_Cnt(void)
256 {
257 return (SKEIN_UNROLL_256);
258 }
259 #endif
260 #endif
261
262 /* Skein_512 */
263 #if !(SKEIN_USE_ASM & 512)
264 void
265 Skein_512_Process_Block(Skein_512_Ctxt_t *ctx, const uint8_t *blkPtr,
266 size_t blkCnt, size_t byteCntAdd)
267 {
268 enum {
269 WCNT = SKEIN_512_STATE_WORDS
270 };
271 #undef RCNT
272 #define RCNT (SKEIN_512_ROUNDS_TOTAL / 8)
273
274 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
275 #define SKEIN_UNROLL_512 (((SKEIN_LOOP) / 10) % 10)
276 #else
277 #define SKEIN_UNROLL_512 (0)
278 #endif
279
280 #if SKEIN_UNROLL_512
281 #if (RCNT % SKEIN_UNROLL_512)
282 #error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */
283 #endif
284 size_t r;
285 /* key schedule words : chaining vars + tweak + "rotation" */
286 uint64_t kw[WCNT + 4 + RCNT * 2];
287 #else
288 uint64_t kw[WCNT + 4]; /* key schedule words : chaining vars + tweak */
289 #endif
290 /* local copy of vars, for speed */
291 uint64_t X0, X1, X2, X3, X4, X5, X6, X7;
292 uint64_t w[WCNT]; /* local copy of input block */
293 #ifdef SKEIN_DEBUG
294 /* use for debugging (help compiler put Xn in registers) */
295 const uint64_t *Xptr[8];
296 Xptr[0] = &X0;
297 Xptr[1] = &X1;
298 Xptr[2] = &X2;
299 Xptr[3] = &X3;
300 Xptr[4] = &X4;
301 Xptr[5] = &X5;
302 Xptr[6] = &X6;
303 Xptr[7] = &X7;
304 #endif
305
306 Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
307 ts[0] = ctx->h.T[0];
308 ts[1] = ctx->h.T[1];
309 do {
310 /*
311 * this implementation only supports 2**64 input bytes
312 * (no carry out here)
313 */
314 ts[0] += byteCntAdd; /* update processed length */
315
316 /* precompute the key schedule for this block */
317 ks[0] = ctx->X[0];
318 ks[1] = ctx->X[1];
319 ks[2] = ctx->X[2];
320 ks[3] = ctx->X[3];
321 ks[4] = ctx->X[4];
322 ks[5] = ctx->X[5];
323 ks[6] = ctx->X[6];
324 ks[7] = ctx->X[7];
325 ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
326 ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
327
328 ts[2] = ts[0] ^ ts[1];
329
330 /* get input block in little-endian format */
331 Skein_Get64_LSB_First(w, blkPtr, WCNT);
332 DebugSaveTweak(ctx);
333 Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
334
335 X0 = w[0] + ks[0]; /* do the first full key injection */
336 X1 = w[1] + ks[1];
337 X2 = w[2] + ks[2];
338 X3 = w[3] + ks[3];
339 X4 = w[4] + ks[4];
340 X5 = w[5] + ks[5] + ts[0];
341 X6 = w[6] + ks[6] + ts[1];
342 X7 = w[7] + ks[7];
343
344 blkPtr += SKEIN_512_BLOCK_BYTES;
345
346 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
347 Xptr);
348 /* run the rounds */
349 #define Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
350 X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0;\
351 X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2;\
352 X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4;\
353 X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6;
354
355 #if SKEIN_UNROLL_512 == 0
356 #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) /* unrolled */ \
357 Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
358 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);
359
360 #define I512(R) \
361 X0 += ks[((R) + 1) % 9]; /* inject the key schedule value */\
362 X1 += ks[((R) + 2) % 9]; \
363 X2 += ks[((R) + 3) % 9]; \
364 X3 += ks[((R) + 4) % 9]; \
365 X4 += ks[((R) + 5) % 9]; \
366 X5 += ks[((R) + 6) % 9] + ts[((R) + 1) % 3]; \
367 X6 += ks[((R) + 7) % 9] + ts[((R) + 2) % 3]; \
368 X7 += ks[((R) + 8) % 9] + (R) + 1; \
369 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
370 #else /* looping version */
371 #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
372 Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
373 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);
374
375 #define I512(R) \
376 X0 += ks[r + (R) + 0]; /* inject the key schedule value */ \
377 X1 += ks[r + (R) + 1]; \
378 X2 += ks[r + (R) + 2]; \
379 X3 += ks[r + (R) + 3]; \
380 X4 += ks[r + (R) + 4]; \
381 X5 += ks[r + (R) + 5] + ts[r + (R) + 0]; \
382 X6 += ks[r + (R) + 6] + ts[r + (R) + 1]; \
383 X7 += ks[r + (R) + 7] + r + (R); \
384 ks[r + (R)+8] = ks[r + (R) - 1]; /* rotate key schedule */\
385 ts[r + (R)+2] = ts[r + (R) - 1]; \
386 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
387
388 /* loop thru it */
389 for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_512)
390 #endif /* end of looped code definitions */
391 {
392 #define R512_8_rounds(R) /* do 8 full rounds */ \
393 R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1); \
394 R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2); \
395 R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3); \
396 R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4); \
397 I512(2 * (R)); \
398 R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5); \
399 R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6); \
400 R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7); \
401 R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8); \
402 I512(2*(R) + 1); /* and key injection */
403
404 R512_8_rounds(0);
405
406 #define R512_Unroll_R(NN) \
407 ((SKEIN_UNROLL_512 == 0 && SKEIN_512_ROUNDS_TOTAL / 8 > (NN)) || \
408 (SKEIN_UNROLL_512 > (NN)))
409
410 #if R512_Unroll_R(1)
411 R512_8_rounds(1);
412 #endif
413 #if R512_Unroll_R(2)
414 R512_8_rounds(2);
415 #endif
416 #if R512_Unroll_R(3)
417 R512_8_rounds(3);
418 #endif
419 #if R512_Unroll_R(4)
420 R512_8_rounds(4);
421 #endif
422 #if R512_Unroll_R(5)
423 R512_8_rounds(5);
424 #endif
425 #if R512_Unroll_R(6)
426 R512_8_rounds(6);
427 #endif
428 #if R512_Unroll_R(7)
429 R512_8_rounds(7);
430 #endif
431 #if R512_Unroll_R(8)
432 R512_8_rounds(8);
433 #endif
434 #if R512_Unroll_R(9)
435 R512_8_rounds(9);
436 #endif
437 #if R512_Unroll_R(10)
438 R512_8_rounds(10);
439 #endif
440 #if R512_Unroll_R(11)
441 R512_8_rounds(11);
442 #endif
443 #if R512_Unroll_R(12)
444 R512_8_rounds(12);
445 #endif
446 #if R512_Unroll_R(13)
447 R512_8_rounds(13);
448 #endif
449 #if R512_Unroll_R(14)
450 R512_8_rounds(14);
451 #endif
452 #if (SKEIN_UNROLL_512 > 14)
453 #error "need more unrolling in Skein_512_Process_Block"
454 #endif
455 }
456
457 /*
458 * do the final "feedforward" xor, update context chaining vars
459 */
460 ctx->X[0] = X0 ^ w[0];
461 ctx->X[1] = X1 ^ w[1];
462 ctx->X[2] = X2 ^ w[2];
463 ctx->X[3] = X3 ^ w[3];
464 ctx->X[4] = X4 ^ w[4];
465 ctx->X[5] = X5 ^ w[5];
466 ctx->X[6] = X6 ^ w[6];
467 ctx->X[7] = X7 ^ w[7];
468 Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
469
470 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
471 } while (--blkCnt);
472 ctx->h.T[0] = ts[0];
473 ctx->h.T[1] = ts[1];
474 }
475
476 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
477 size_t
478 Skein_512_Process_Block_CodeSize(void)
479 {
480 return ((uint8_t *)Skein_512_Process_Block_CodeSize) -
481 ((uint8_t *)Skein_512_Process_Block);
482 }
483
484 uint_t
485 Skein_512_Unroll_Cnt(void)
486 {
487 return (SKEIN_UNROLL_512);
488 }
489 #endif
490 #endif
491
492 /* Skein1024 */
493 #if !(SKEIN_USE_ASM & 1024)
494 void
495 Skein1024_Process_Block(Skein1024_Ctxt_t *ctx, const uint8_t *blkPtr,
496 size_t blkCnt, size_t byteCntAdd)
497 {
498 /* do it in C, always looping (unrolled is bigger AND slower!) */
499 enum {
500 WCNT = SKEIN1024_STATE_WORDS
501 };
502 #undef RCNT
503 #define RCNT (SKEIN1024_ROUNDS_TOTAL/8)
504
505 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
506 #define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)
507 #else
508 #define SKEIN_UNROLL_1024 (0)
509 #endif
510
511 #if (SKEIN_UNROLL_1024 != 0)
512 #if (RCNT % SKEIN_UNROLL_1024)
513 #error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */
514 #endif
515 size_t r;
516 /* key schedule words : chaining vars + tweak + "rotation" */
517 uint64_t kw[WCNT + 4 + RCNT * 2];
518 #else
519 uint64_t kw[WCNT + 4]; /* key schedule words : chaining vars + tweak */
520 #endif
521
522 /* local copy of vars, for speed */
523 uint64_t X00, X01, X02, X03, X04, X05, X06, X07, X08, X09, X10, X11,
524 X12, X13, X14, X15;
525 uint64_t w[WCNT]; /* local copy of input block */
526 #ifdef SKEIN_DEBUG
527 /* use for debugging (help compiler put Xn in registers) */
528 const uint64_t *Xptr[16];
529 Xptr[0] = &X00;
530 Xptr[1] = &X01;
531 Xptr[2] = &X02;
532 Xptr[3] = &X03;
533 Xptr[4] = &X04;
534 Xptr[5] = &X05;
535 Xptr[6] = &X06;
536 Xptr[7] = &X07;
537 Xptr[8] = &X08;
538 Xptr[9] = &X09;
539 Xptr[10] = &X10;
540 Xptr[11] = &X11;
541 Xptr[12] = &X12;
542 Xptr[13] = &X13;
543 Xptr[14] = &X14;
544 Xptr[15] = &X15;
545 #endif
546
547 Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
548 ts[0] = ctx->h.T[0];
549 ts[1] = ctx->h.T[1];
550 do {
551 /*
552 * this implementation only supports 2**64 input bytes
553 * (no carry out here)
554 */
555 ts[0] += byteCntAdd; /* update processed length */
556
557 /* precompute the key schedule for this block */
558 ks[0] = ctx->X[0];
559 ks[1] = ctx->X[1];
560 ks[2] = ctx->X[2];
561 ks[3] = ctx->X[3];
562 ks[4] = ctx->X[4];
563 ks[5] = ctx->X[5];
564 ks[6] = ctx->X[6];
565 ks[7] = ctx->X[7];
566 ks[8] = ctx->X[8];
567 ks[9] = ctx->X[9];
568 ks[10] = ctx->X[10];
569 ks[11] = ctx->X[11];
570 ks[12] = ctx->X[12];
571 ks[13] = ctx->X[13];
572 ks[14] = ctx->X[14];
573 ks[15] = ctx->X[15];
574 ks[16] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
575 ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^
576 ks[8] ^ ks[9] ^ ks[10] ^ ks[11] ^
577 ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
578
579 ts[2] = ts[0] ^ ts[1];
580
581 /* get input block in little-endian format */
582 Skein_Get64_LSB_First(w, blkPtr, WCNT);
583 DebugSaveTweak(ctx);
584 Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
585
586 X00 = w[0] + ks[0]; /* do the first full key injection */
587 X01 = w[1] + ks[1];
588 X02 = w[2] + ks[2];
589 X03 = w[3] + ks[3];
590 X04 = w[4] + ks[4];
591 X05 = w[5] + ks[5];
592 X06 = w[6] + ks[6];
593 X07 = w[7] + ks[7];
594 X08 = w[8] + ks[8];
595 X09 = w[9] + ks[9];
596 X10 = w[10] + ks[10];
597 X11 = w[11] + ks[11];
598 X12 = w[12] + ks[12];
599 X13 = w[13] + ks[13] + ts[0];
600 X14 = w[14] + ks[14] + ts[1];
601 X15 = w[15] + ks[15];
602
603 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
604 Xptr);
605
606 #define Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, \
607 pD, pE, pF, ROT, rNum) \
608 X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0;\
609 X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2;\
610 X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4;\
611 X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6;\
612 X##p8 += X##p9; X##p9 = RotL_64(X##p9, ROT##_4); X##p9 ^= X##p8;\
613 X##pA += X##pB; X##pB = RotL_64(X##pB, ROT##_5); X##pB ^= X##pA;\
614 X##pC += X##pD; X##pD = RotL_64(X##pD, ROT##_6); X##pD ^= X##pC;\
615 X##pE += X##pF; X##pF = RotL_64(X##pF, ROT##_7); X##pF ^= X##pE;
616
617 #if SKEIN_UNROLL_1024 == 0
618 #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, \
619 pE, pF, ROT, rn) \
620 Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, \
621 pD, pE, pF, ROT, rn) \
622 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rn, Xptr);
623
624 #define I1024(R) \
625 X00 += ks[((R) + 1) % 17]; /* inject the key schedule value */\
626 X01 += ks[((R) + 2) % 17]; \
627 X02 += ks[((R) + 3) % 17]; \
628 X03 += ks[((R) + 4) % 17]; \
629 X04 += ks[((R) + 5) % 17]; \
630 X05 += ks[((R) + 6) % 17]; \
631 X06 += ks[((R) + 7) % 17]; \
632 X07 += ks[((R) + 8) % 17]; \
633 X08 += ks[((R) + 9) % 17]; \
634 X09 += ks[((R) + 10) % 17]; \
635 X10 += ks[((R) + 11) % 17]; \
636 X11 += ks[((R) + 12) % 17]; \
637 X12 += ks[((R) + 13) % 17]; \
638 X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3]; \
639 X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3]; \
640 X15 += ks[((R) + 16) % 17] + (R) +1; \
641 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
642 #else /* looping version */
643 #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, \
644 pE, pF, ROT, rn) \
645 Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, \
646 pD, pE, pF, ROT, rn) \
647 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rn, Xptr);
648
649 #define I1024(R) \
650 X00 += ks[r + (R) + 0]; /* inject the key schedule value */ \
651 X01 += ks[r + (R) + 1]; \
652 X02 += ks[r + (R) + 2]; \
653 X03 += ks[r + (R) + 3]; \
654 X04 += ks[r + (R) + 4]; \
655 X05 += ks[r + (R) + 5]; \
656 X06 += ks[r + (R) + 6]; \
657 X07 += ks[r + (R) + 7]; \
658 X08 += ks[r + (R) + 8]; \
659 X09 += ks[r + (R) + 9]; \
660 X10 += ks[r + (R) + 10]; \
661 X11 += ks[r + (R) + 11]; \
662 X12 += ks[r + (R) + 12]; \
663 X13 += ks[r + (R) + 13] + ts[r + (R) + 0]; \
664 X14 += ks[r + (R) + 14] + ts[r + (R) + 1]; \
665 X15 += ks[r + (R) + 15] + r + (R); \
666 ks[r + (R) + 16] = ks[r + (R) - 1]; /* rotate key schedule */\
667 ts[r + (R) + 2] = ts[r + (R) - 1]; \
668 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
669
670 /* loop thru it */
671 for (r = 1; r <= 2 * RCNT; r += 2 * SKEIN_UNROLL_1024)
672 #endif
673 {
674 #define R1024_8_rounds(R) /* do 8 full rounds */ \
675 R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, \
676 14, 15, R1024_0, 8 * (R) + 1); \
677 R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, \
678 08, 01, R1024_1, 8 * (R) + 2); \
679 R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, \
680 10, 09, R1024_2, 8 * (R) + 3); \
681 R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, \
682 12, 07, R1024_3, 8 * (R) + 4); \
683 I1024(2 * (R)); \
684 R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, \
685 14, 15, R1024_4, 8 * (R) + 5); \
686 R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, \
687 08, 01, R1024_5, 8 * (R) + 6); \
688 R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, \
689 10, 09, R1024_6, 8 * (R) + 7); \
690 R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, \
691 12, 07, R1024_7, 8 * (R) + 8); \
692 I1024(2 * (R) + 1);
693
694 R1024_8_rounds(0);
695
696 #define R1024_Unroll_R(NN) \
697 ((SKEIN_UNROLL_1024 == 0 && SKEIN1024_ROUNDS_TOTAL/8 > (NN)) || \
698 (SKEIN_UNROLL_1024 > (NN)))
699
700 #if R1024_Unroll_R(1)
701 R1024_8_rounds(1);
702 #endif
703 #if R1024_Unroll_R(2)
704 R1024_8_rounds(2);
705 #endif
706 #if R1024_Unroll_R(3)
707 R1024_8_rounds(3);
708 #endif
709 #if R1024_Unroll_R(4)
710 R1024_8_rounds(4);
711 #endif
712 #if R1024_Unroll_R(5)
713 R1024_8_rounds(5);
714 #endif
715 #if R1024_Unroll_R(6)
716 R1024_8_rounds(6);
717 #endif
718 #if R1024_Unroll_R(7)
719 R1024_8_rounds(7);
720 #endif
721 #if R1024_Unroll_R(8)
722 R1024_8_rounds(8);
723 #endif
724 #if R1024_Unroll_R(9)
725 R1024_8_rounds(9);
726 #endif
727 #if R1024_Unroll_R(10)
728 R1024_8_rounds(10);
729 #endif
730 #if R1024_Unroll_R(11)
731 R1024_8_rounds(11);
732 #endif
733 #if R1024_Unroll_R(12)
734 R1024_8_rounds(12);
735 #endif
736 #if R1024_Unroll_R(13)
737 R1024_8_rounds(13);
738 #endif
739 #if R1024_Unroll_R(14)
740 R1024_8_rounds(14);
741 #endif
742 #if (SKEIN_UNROLL_1024 > 14)
743 #error "need more unrolling in Skein_1024_Process_Block"
744 #endif
745 }
746 /*
747 * do the final "feedforward" xor, update context chaining vars
748 */
749
750 ctx->X[0] = X00 ^ w[0];
751 ctx->X[1] = X01 ^ w[1];
752 ctx->X[2] = X02 ^ w[2];
753 ctx->X[3] = X03 ^ w[3];
754 ctx->X[4] = X04 ^ w[4];
755 ctx->X[5] = X05 ^ w[5];
756 ctx->X[6] = X06 ^ w[6];
757 ctx->X[7] = X07 ^ w[7];
758 ctx->X[8] = X08 ^ w[8];
759 ctx->X[9] = X09 ^ w[9];
760 ctx->X[10] = X10 ^ w[10];
761 ctx->X[11] = X11 ^ w[11];
762 ctx->X[12] = X12 ^ w[12];
763 ctx->X[13] = X13 ^ w[13];
764 ctx->X[14] = X14 ^ w[14];
765 ctx->X[15] = X15 ^ w[15];
766
767 Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
768
769 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
770 blkPtr += SKEIN1024_BLOCK_BYTES;
771 } while (--blkCnt);
772 ctx->h.T[0] = ts[0];
773 ctx->h.T[1] = ts[1];
774 }
775
776 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
777 size_t
778 Skein1024_Process_Block_CodeSize(void)
779 {
780 return ((uint8_t *)Skein1024_Process_Block_CodeSize) -
781 ((uint8_t *)Skein1024_Process_Block);
782 }
783
784 uint_t
785 Skein1024_Unroll_Cnt(void)
786 {
787 return (SKEIN_UNROLL_1024);
788 }
789 #endif
790 #endif