]> git.proxmox.com Git - mirror_zfs.git/blob - module/lua/lopcodes.h
OpenZFS 7431 - ZFS Channel Programs
[mirror_zfs.git] / module / lua / lopcodes.h
1 /* BEGIN CSTYLED */
2 /*
3 ** $Id: lopcodes.h,v 1.142.1.2 2014/10/20 18:32:09 roberto Exp $
4 ** Opcodes for Lua virtual machine
5 ** See Copyright Notice in lua.h
6 */
7
8 #ifndef lopcodes_h
9 #define lopcodes_h
10
11 #include "llimits.h"
12
13
14 /*===========================================================================
15 We assume that instructions are unsigned numbers.
16 All instructions have an opcode in the first 6 bits.
17 Instructions can have the following fields:
18 `A' : 8 bits
19 `B' : 9 bits
20 `C' : 9 bits
21 'Ax' : 26 bits ('A', 'B', and 'C' together)
22 `Bx' : 18 bits (`B' and `C' together)
23 `sBx' : signed Bx
24
25 A signed argument is represented in excess K; that is, the number
26 value is the unsigned value minus K. K is exactly the maximum value
27 for that argument (so that -max is represented by 0, and +max is
28 represented by 2*max), which is half the maximum for the corresponding
29 unsigned argument.
30 ===========================================================================*/
31
32
33 enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */
34
35
36 /*
37 ** size and position of opcode arguments.
38 */
39 #define SIZE_C 9
40 #define SIZE_B 9
41 #define SIZE_Bx (SIZE_C + SIZE_B)
42 #define SIZE_A 8
43 #define SIZE_Ax (SIZE_C + SIZE_B + SIZE_A)
44
45 #define SIZE_OP 6
46
47 #define POS_OP 0
48 #define POS_A (POS_OP + SIZE_OP)
49 #define POS_C (POS_A + SIZE_A)
50 #define POS_B (POS_C + SIZE_C)
51 #define POS_Bx POS_C
52 #define POS_Ax POS_A
53
54
55 /*
56 ** limits for opcode arguments.
57 ** we use (signed) int to manipulate most arguments,
58 ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
59 */
60 #if SIZE_Bx < LUAI_BITSINT-1
61 #define MAXARG_Bx ((1<<SIZE_Bx)-1)
62 #define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */
63 #else
64 #define MAXARG_Bx MAX_INT
65 #define MAXARG_sBx MAX_INT
66 #endif
67
68 #if SIZE_Ax < LUAI_BITSINT-1
69 #define MAXARG_Ax ((1<<SIZE_Ax)-1)
70 #else
71 #define MAXARG_Ax MAX_INT
72 #endif
73
74
75 #define MAXARG_A ((1<<SIZE_A)-1)
76 #define MAXARG_B ((1<<SIZE_B)-1)
77 #define MAXARG_C ((1<<SIZE_C)-1)
78
79
80 /* creates a mask with `n' 1 bits at position `p' */
81 #define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p))
82
83 /* creates a mask with `n' 0 bits at position `p' */
84 #define MASK0(n,p) (~MASK1(n,p))
85
86 /*
87 ** the following macros help to manipulate instructions
88 */
89
90 #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
91 #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
92 ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
93
94 #define getarg(i,pos,size) (cast(int, ((i)>>pos) & MASK1(size,0)))
95 #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \
96 ((cast(Instruction, v)<<pos)&MASK1(size,pos))))
97
98 #define GETARG_A(i) getarg(i, POS_A, SIZE_A)
99 #define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A)
100
101 #define GETARG_B(i) getarg(i, POS_B, SIZE_B)
102 #define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B)
103
104 #define GETARG_C(i) getarg(i, POS_C, SIZE_C)
105 #define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C)
106
107 #define GETARG_Bx(i) getarg(i, POS_Bx, SIZE_Bx)
108 #define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx)
109
110 #define GETARG_Ax(i) getarg(i, POS_Ax, SIZE_Ax)
111 #define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax)
112
113 #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx)
114 #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
115
116
117 #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \
118 | (cast(Instruction, a)<<POS_A) \
119 | (cast(Instruction, b)<<POS_B) \
120 | (cast(Instruction, c)<<POS_C))
121
122 #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \
123 | (cast(Instruction, a)<<POS_A) \
124 | (cast(Instruction, bc)<<POS_Bx))
125
126 #define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \
127 | (cast(Instruction, a)<<POS_Ax))
128
129
130 /*
131 ** Macros to operate RK indices
132 */
133
134 /* this bit 1 means constant (0 means register) */
135 #define BITRK (1 << (SIZE_B - 1))
136
137 /* test whether value is a constant */
138 #define ISK(x) ((x) & BITRK)
139
140 /* gets the index of the constant */
141 #define INDEXK(r) ((int)(r) & ~BITRK)
142
143 #define MAXINDEXRK (BITRK - 1)
144
145 /* code a constant index as a RK value */
146 #define RKASK(x) ((x) | BITRK)
147
148
149 /*
150 ** invalid register that fits in 8 bits
151 */
152 #define NO_REG MAXARG_A
153
154
155 /*
156 ** R(x) - register
157 ** Kst(x) - constant (in constant table)
158 ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
159 */
160
161
162 /*
163 ** grep "ORDER OP" if you change these enums
164 */
165
166 typedef enum {
167 /*----------------------------------------------------------------------
168 name args description
169 ------------------------------------------------------------------------*/
170 OP_MOVE,/* A B R(A) := R(B) */
171 OP_LOADK,/* A Bx R(A) := Kst(Bx) */
172 OP_LOADKX,/* A R(A) := Kst(extra arg) */
173 OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */
174 OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */
175 OP_GETUPVAL,/* A B R(A) := UpValue[B] */
176
177 OP_GETTABUP,/* A B C R(A) := UpValue[B][RK(C)] */
178 OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */
179
180 OP_SETTABUP,/* A B C UpValue[A][RK(B)] := RK(C) */
181 OP_SETUPVAL,/* A B UpValue[B] := R(A) */
182 OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */
183
184 OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */
185
186 OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */
187
188 OP_ADD,/* A B C R(A) := RK(B) + RK(C) */
189 OP_SUB,/* A B C R(A) := RK(B) - RK(C) */
190 OP_MUL,/* A B C R(A) := RK(B) * RK(C) */
191 OP_DIV,/* A B C R(A) := RK(B) / RK(C) */
192 OP_MOD,/* A B C R(A) := RK(B) % RK(C) */
193 OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */
194 OP_UNM,/* A B R(A) := -R(B) */
195 OP_NOT,/* A B R(A) := not R(B) */
196 OP_LEN,/* A B R(A) := length of R(B) */
197
198 OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */
199
200 OP_JMP,/* A sBx pc+=sBx; if (A) close all upvalues >= R(A - 1) */
201 OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
202 OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
203 OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */
204
205 OP_TEST,/* A C if not (R(A) <=> C) then pc++ */
206 OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */
207
208 OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
209 OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
210 OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */
211
212 OP_FORLOOP,/* A sBx R(A)+=R(A+2);
213 if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
214 OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */
215
216 OP_TFORCALL,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */
217 OP_TFORLOOP,/* A sBx if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/
218
219 OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */
220
221 OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */
222
223 OP_VARARG,/* A B R(A), R(A+1), ..., R(A+B-2) = vararg */
224
225 OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */
226 } OpCode;
227
228
229 #define NUM_OPCODES (cast(int, OP_EXTRAARG) + 1)
230
231
232
233 /*===========================================================================
234 Notes:
235 (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then `top' is
236 set to last_result+1, so next open instruction (OP_CALL, OP_RETURN,
237 OP_SETLIST) may use `top'.
238
239 (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
240 set top (like in OP_CALL with C == 0).
241
242 (*) In OP_RETURN, if (B == 0) then return up to `top'.
243
244 (*) In OP_SETLIST, if (B == 0) then B = `top'; if (C == 0) then next
245 'instruction' is EXTRAARG(real C).
246
247 (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.
248
249 (*) For comparisons, A specifies what condition the test should accept
250 (true or false).
251
252 (*) All `skips' (pc++) assume that next instruction is a jump.
253
254 ===========================================================================*/
255
256
257 /*
258 ** masks for instruction properties. The format is:
259 ** bits 0-1: op mode
260 ** bits 2-3: C arg mode
261 ** bits 4-5: B arg mode
262 ** bit 6: instruction set register A
263 ** bit 7: operator is a test (next instruction must be a jump)
264 */
265
266 enum OpArgMask {
267 OpArgN, /* argument is not used */
268 OpArgU, /* argument is used */
269 OpArgR, /* argument is a register or a jump offset */
270 OpArgK /* argument is a constant or register/constant */
271 };
272
273 LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES];
274
275 #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3))
276 #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
277 #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
278 #define testAMode(m) (luaP_opmodes[m] & (1 << 6))
279 #define testTMode(m) (luaP_opmodes[m] & (1 << 7))
280
281
282 LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */
283
284
285 /* number of list items to accumulate before a SETLIST instruction */
286 #define LFIELDS_PER_FLUSH 50
287
288
289 #endif
290 /* END CSTYLED */