]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/linux/spl/spl-kmem-cache.c
Replace ZFS on Linux references with OpenZFS
[mirror_zfs.git] / module / os / linux / spl / spl-kmem-cache.c
1 /*
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 *
10 * The SPL is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * The SPL is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
22 */
23
24 #include <linux/percpu_compat.h>
25 #include <sys/kmem.h>
26 #include <sys/kmem_cache.h>
27 #include <sys/taskq.h>
28 #include <sys/timer.h>
29 #include <sys/vmem.h>
30 #include <sys/wait.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/prefetch.h>
34
35 /*
36 * Within the scope of spl-kmem.c file the kmem_cache_* definitions
37 * are removed to allow access to the real Linux slab allocator.
38 */
39 #undef kmem_cache_destroy
40 #undef kmem_cache_create
41 #undef kmem_cache_alloc
42 #undef kmem_cache_free
43
44
45 /*
46 * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
47 * with smp_mb__{before,after}_atomic() because they were redundant. This is
48 * only used inside our SLAB allocator, so we implement an internal wrapper
49 * here to give us smp_mb__{before,after}_atomic() on older kernels.
50 */
51 #ifndef smp_mb__before_atomic
52 #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
53 #endif
54
55 #ifndef smp_mb__after_atomic
56 #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
57 #endif
58
59 /* BEGIN CSTYLED */
60
61 /*
62 * Cache magazines are an optimization designed to minimize the cost of
63 * allocating memory. They do this by keeping a per-cpu cache of recently
64 * freed objects, which can then be reallocated without taking a lock. This
65 * can improve performance on highly contended caches. However, because
66 * objects in magazines will prevent otherwise empty slabs from being
67 * immediately released this may not be ideal for low memory machines.
68 *
69 * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
70 * magazine size. When this value is set to 0 the magazine size will be
71 * automatically determined based on the object size. Otherwise magazines
72 * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines
73 * may never be entirely disabled in this implementation.
74 */
75 unsigned int spl_kmem_cache_magazine_size = 0;
76 module_param(spl_kmem_cache_magazine_size, uint, 0444);
77 MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
78 "Default magazine size (2-256), set automatically (0)");
79
80 /*
81 * The default behavior is to report the number of objects remaining in the
82 * cache. This allows the Linux VM to repeatedly reclaim objects from the
83 * cache when memory is low satisfy other memory allocations. Alternately,
84 * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache
85 * is reclaimed. This may increase the likelihood of out of memory events.
86 */
87 unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */;
88 module_param(spl_kmem_cache_reclaim, uint, 0644);
89 MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)");
90
91 unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
92 module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
93 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
94
95 unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
96 module_param(spl_kmem_cache_max_size, uint, 0644);
97 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
98
99 /*
100 * For small objects the Linux slab allocator should be used to make the most
101 * efficient use of the memory. However, large objects are not supported by
102 * the Linux slab and therefore the SPL implementation is preferred. A cutoff
103 * of 16K was determined to be optimal for architectures using 4K pages.
104 */
105 #if PAGE_SIZE == 4096
106 unsigned int spl_kmem_cache_slab_limit = 16384;
107 #else
108 unsigned int spl_kmem_cache_slab_limit = 0;
109 #endif
110 module_param(spl_kmem_cache_slab_limit, uint, 0644);
111 MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
112 "Objects less than N bytes use the Linux slab");
113
114 /*
115 * The number of threads available to allocate new slabs for caches. This
116 * should not need to be tuned but it is available for performance analysis.
117 */
118 unsigned int spl_kmem_cache_kmem_threads = 4;
119 module_param(spl_kmem_cache_kmem_threads, uint, 0444);
120 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
121 "Number of spl_kmem_cache threads");
122 /* END CSTYLED */
123
124 /*
125 * Slab allocation interfaces
126 *
127 * While the Linux slab implementation was inspired by the Solaris
128 * implementation I cannot use it to emulate the Solaris APIs. I
129 * require two features which are not provided by the Linux slab.
130 *
131 * 1) Constructors AND destructors. Recent versions of the Linux
132 * kernel have removed support for destructors. This is a deal
133 * breaker for the SPL which contains particularly expensive
134 * initializers for mutex's, condition variables, etc. We also
135 * require a minimal level of cleanup for these data types unlike
136 * many Linux data types which do need to be explicitly destroyed.
137 *
138 * 2) Virtual address space backed slab. Callers of the Solaris slab
139 * expect it to work well for both small are very large allocations.
140 * Because of memory fragmentation the Linux slab which is backed
141 * by kmalloc'ed memory performs very badly when confronted with
142 * large numbers of large allocations. Basing the slab on the
143 * virtual address space removes the need for contiguous pages
144 * and greatly improve performance for large allocations.
145 *
146 * For these reasons, the SPL has its own slab implementation with
147 * the needed features. It is not as highly optimized as either the
148 * Solaris or Linux slabs, but it should get me most of what is
149 * needed until it can be optimized or obsoleted by another approach.
150 *
151 * One serious concern I do have about this method is the relatively
152 * small virtual address space on 32bit arches. This will seriously
153 * constrain the size of the slab caches and their performance.
154 */
155
156 struct list_head spl_kmem_cache_list; /* List of caches */
157 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
158 taskq_t *spl_kmem_cache_taskq; /* Task queue for aging / reclaim */
159
160 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
161
162 static void *
163 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
164 {
165 gfp_t lflags = kmem_flags_convert(flags);
166 void *ptr;
167
168 ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM);
169
170 /* Resulting allocated memory will be page aligned */
171 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
172
173 return (ptr);
174 }
175
176 static void
177 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
178 {
179 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
180
181 /*
182 * The Linux direct reclaim path uses this out of band value to
183 * determine if forward progress is being made. Normally this is
184 * incremented by kmem_freepages() which is part of the various
185 * Linux slab implementations. However, since we are using none
186 * of that infrastructure we are responsible for incrementing it.
187 */
188 if (current->reclaim_state)
189 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
190
191 vfree(ptr);
192 }
193
194 /*
195 * Required space for each aligned sks.
196 */
197 static inline uint32_t
198 spl_sks_size(spl_kmem_cache_t *skc)
199 {
200 return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
201 skc->skc_obj_align, uint32_t));
202 }
203
204 /*
205 * Required space for each aligned object.
206 */
207 static inline uint32_t
208 spl_obj_size(spl_kmem_cache_t *skc)
209 {
210 uint32_t align = skc->skc_obj_align;
211
212 return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
213 P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
214 }
215
216 uint64_t
217 spl_kmem_cache_inuse(kmem_cache_t *cache)
218 {
219 return (cache->skc_obj_total);
220 }
221 EXPORT_SYMBOL(spl_kmem_cache_inuse);
222
223 uint64_t
224 spl_kmem_cache_entry_size(kmem_cache_t *cache)
225 {
226 return (cache->skc_obj_size);
227 }
228 EXPORT_SYMBOL(spl_kmem_cache_entry_size);
229
230 /*
231 * Lookup the spl_kmem_object_t for an object given that object.
232 */
233 static inline spl_kmem_obj_t *
234 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
235 {
236 return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
237 skc->skc_obj_align, uint32_t));
238 }
239
240 /*
241 * It's important that we pack the spl_kmem_obj_t structure and the
242 * actual objects in to one large address space to minimize the number
243 * of calls to the allocator. It is far better to do a few large
244 * allocations and then subdivide it ourselves. Now which allocator
245 * we use requires balancing a few trade offs.
246 *
247 * For small objects we use kmem_alloc() because as long as you are
248 * only requesting a small number of pages (ideally just one) its cheap.
249 * However, when you start requesting multiple pages with kmem_alloc()
250 * it gets increasingly expensive since it requires contiguous pages.
251 * For this reason we shift to vmem_alloc() for slabs of large objects
252 * which removes the need for contiguous pages. We do not use
253 * vmem_alloc() in all cases because there is significant locking
254 * overhead in __get_vm_area_node(). This function takes a single
255 * global lock when acquiring an available virtual address range which
256 * serializes all vmem_alloc()'s for all slab caches. Using slightly
257 * different allocation functions for small and large objects should
258 * give us the best of both worlds.
259 *
260 * +------------------------+
261 * | spl_kmem_slab_t --+-+ |
262 * | skc_obj_size <-+ | |
263 * | spl_kmem_obj_t | |
264 * | skc_obj_size <---+ |
265 * | spl_kmem_obj_t | |
266 * | ... v |
267 * +------------------------+
268 */
269 static spl_kmem_slab_t *
270 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
271 {
272 spl_kmem_slab_t *sks;
273 void *base;
274 uint32_t obj_size;
275
276 base = kv_alloc(skc, skc->skc_slab_size, flags);
277 if (base == NULL)
278 return (NULL);
279
280 sks = (spl_kmem_slab_t *)base;
281 sks->sks_magic = SKS_MAGIC;
282 sks->sks_objs = skc->skc_slab_objs;
283 sks->sks_age = jiffies;
284 sks->sks_cache = skc;
285 INIT_LIST_HEAD(&sks->sks_list);
286 INIT_LIST_HEAD(&sks->sks_free_list);
287 sks->sks_ref = 0;
288 obj_size = spl_obj_size(skc);
289
290 for (int i = 0; i < sks->sks_objs; i++) {
291 void *obj = base + spl_sks_size(skc) + (i * obj_size);
292
293 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
294 spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj);
295 sko->sko_addr = obj;
296 sko->sko_magic = SKO_MAGIC;
297 sko->sko_slab = sks;
298 INIT_LIST_HEAD(&sko->sko_list);
299 list_add_tail(&sko->sko_list, &sks->sks_free_list);
300 }
301
302 return (sks);
303 }
304
305 /*
306 * Remove a slab from complete or partial list, it must be called with
307 * the 'skc->skc_lock' held but the actual free must be performed
308 * outside the lock to prevent deadlocking on vmem addresses.
309 */
310 static void
311 spl_slab_free(spl_kmem_slab_t *sks,
312 struct list_head *sks_list, struct list_head *sko_list)
313 {
314 spl_kmem_cache_t *skc;
315
316 ASSERT(sks->sks_magic == SKS_MAGIC);
317 ASSERT(sks->sks_ref == 0);
318
319 skc = sks->sks_cache;
320 ASSERT(skc->skc_magic == SKC_MAGIC);
321
322 /*
323 * Update slab/objects counters in the cache, then remove the
324 * slab from the skc->skc_partial_list. Finally add the slab
325 * and all its objects in to the private work lists where the
326 * destructors will be called and the memory freed to the system.
327 */
328 skc->skc_obj_total -= sks->sks_objs;
329 skc->skc_slab_total--;
330 list_del(&sks->sks_list);
331 list_add(&sks->sks_list, sks_list);
332 list_splice_init(&sks->sks_free_list, sko_list);
333 }
334
335 /*
336 * Reclaim empty slabs at the end of the partial list.
337 */
338 static void
339 spl_slab_reclaim(spl_kmem_cache_t *skc)
340 {
341 spl_kmem_slab_t *sks = NULL, *m = NULL;
342 spl_kmem_obj_t *sko = NULL, *n = NULL;
343 LIST_HEAD(sks_list);
344 LIST_HEAD(sko_list);
345
346 /*
347 * Empty slabs and objects must be moved to a private list so they
348 * can be safely freed outside the spin lock. All empty slabs are
349 * at the end of skc->skc_partial_list, therefore once a non-empty
350 * slab is found we can stop scanning.
351 */
352 spin_lock(&skc->skc_lock);
353 list_for_each_entry_safe_reverse(sks, m,
354 &skc->skc_partial_list, sks_list) {
355
356 if (sks->sks_ref > 0)
357 break;
358
359 spl_slab_free(sks, &sks_list, &sko_list);
360 }
361 spin_unlock(&skc->skc_lock);
362
363 /*
364 * The following two loops ensure all the object destructors are run,
365 * and the slabs themselves are freed. This is all done outside the
366 * skc->skc_lock since this allows the destructor to sleep, and
367 * allows us to perform a conditional reschedule when a freeing a
368 * large number of objects and slabs back to the system.
369 */
370
371 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
372 ASSERT(sko->sko_magic == SKO_MAGIC);
373 }
374
375 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
376 ASSERT(sks->sks_magic == SKS_MAGIC);
377 kv_free(skc, sks, skc->skc_slab_size);
378 }
379 }
380
381 static spl_kmem_emergency_t *
382 spl_emergency_search(struct rb_root *root, void *obj)
383 {
384 struct rb_node *node = root->rb_node;
385 spl_kmem_emergency_t *ske;
386 unsigned long address = (unsigned long)obj;
387
388 while (node) {
389 ske = container_of(node, spl_kmem_emergency_t, ske_node);
390
391 if (address < ske->ske_obj)
392 node = node->rb_left;
393 else if (address > ske->ske_obj)
394 node = node->rb_right;
395 else
396 return (ske);
397 }
398
399 return (NULL);
400 }
401
402 static int
403 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
404 {
405 struct rb_node **new = &(root->rb_node), *parent = NULL;
406 spl_kmem_emergency_t *ske_tmp;
407 unsigned long address = ske->ske_obj;
408
409 while (*new) {
410 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
411
412 parent = *new;
413 if (address < ske_tmp->ske_obj)
414 new = &((*new)->rb_left);
415 else if (address > ske_tmp->ske_obj)
416 new = &((*new)->rb_right);
417 else
418 return (0);
419 }
420
421 rb_link_node(&ske->ske_node, parent, new);
422 rb_insert_color(&ske->ske_node, root);
423
424 return (1);
425 }
426
427 /*
428 * Allocate a single emergency object and track it in a red black tree.
429 */
430 static int
431 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
432 {
433 gfp_t lflags = kmem_flags_convert(flags);
434 spl_kmem_emergency_t *ske;
435 int order = get_order(skc->skc_obj_size);
436 int empty;
437
438 /* Last chance use a partial slab if one now exists */
439 spin_lock(&skc->skc_lock);
440 empty = list_empty(&skc->skc_partial_list);
441 spin_unlock(&skc->skc_lock);
442 if (!empty)
443 return (-EEXIST);
444
445 ske = kmalloc(sizeof (*ske), lflags);
446 if (ske == NULL)
447 return (-ENOMEM);
448
449 ske->ske_obj = __get_free_pages(lflags, order);
450 if (ske->ske_obj == 0) {
451 kfree(ske);
452 return (-ENOMEM);
453 }
454
455 spin_lock(&skc->skc_lock);
456 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
457 if (likely(empty)) {
458 skc->skc_obj_total++;
459 skc->skc_obj_emergency++;
460 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
461 skc->skc_obj_emergency_max = skc->skc_obj_emergency;
462 }
463 spin_unlock(&skc->skc_lock);
464
465 if (unlikely(!empty)) {
466 free_pages(ske->ske_obj, order);
467 kfree(ske);
468 return (-EINVAL);
469 }
470
471 *obj = (void *)ske->ske_obj;
472
473 return (0);
474 }
475
476 /*
477 * Locate the passed object in the red black tree and free it.
478 */
479 static int
480 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
481 {
482 spl_kmem_emergency_t *ske;
483 int order = get_order(skc->skc_obj_size);
484
485 spin_lock(&skc->skc_lock);
486 ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
487 if (ske) {
488 rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
489 skc->skc_obj_emergency--;
490 skc->skc_obj_total--;
491 }
492 spin_unlock(&skc->skc_lock);
493
494 if (ske == NULL)
495 return (-ENOENT);
496
497 free_pages(ske->ske_obj, order);
498 kfree(ske);
499
500 return (0);
501 }
502
503 /*
504 * Release objects from the per-cpu magazine back to their slab. The flush
505 * argument contains the max number of entries to remove from the magazine.
506 */
507 static void
508 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
509 {
510 spin_lock(&skc->skc_lock);
511
512 ASSERT(skc->skc_magic == SKC_MAGIC);
513 ASSERT(skm->skm_magic == SKM_MAGIC);
514
515 int count = MIN(flush, skm->skm_avail);
516 for (int i = 0; i < count; i++)
517 spl_cache_shrink(skc, skm->skm_objs[i]);
518
519 skm->skm_avail -= count;
520 memmove(skm->skm_objs, &(skm->skm_objs[count]),
521 sizeof (void *) * skm->skm_avail);
522
523 spin_unlock(&skc->skc_lock);
524 }
525
526 /*
527 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
528 * When on-slab we want to target spl_kmem_cache_obj_per_slab. However,
529 * for very small objects we may end up with more than this so as not
530 * to waste space in the minimal allocation of a single page. Also for
531 * very large objects we may use as few as spl_kmem_cache_obj_per_slab_min,
532 * lower than this and we will fail.
533 */
534 static int
535 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
536 {
537 uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
538
539 sks_size = spl_sks_size(skc);
540 obj_size = spl_obj_size(skc);
541 max_size = (spl_kmem_cache_max_size * 1024 * 1024);
542 tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
543
544 if (tgt_size <= max_size) {
545 tgt_objs = (tgt_size - sks_size) / obj_size;
546 } else {
547 tgt_objs = (max_size - sks_size) / obj_size;
548 tgt_size = (tgt_objs * obj_size) + sks_size;
549 }
550
551 if (tgt_objs == 0)
552 return (-ENOSPC);
553
554 *objs = tgt_objs;
555 *size = tgt_size;
556
557 return (0);
558 }
559
560 /*
561 * Make a guess at reasonable per-cpu magazine size based on the size of
562 * each object and the cost of caching N of them in each magazine. Long
563 * term this should really adapt based on an observed usage heuristic.
564 */
565 static int
566 spl_magazine_size(spl_kmem_cache_t *skc)
567 {
568 uint32_t obj_size = spl_obj_size(skc);
569 int size;
570
571 if (spl_kmem_cache_magazine_size > 0)
572 return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
573
574 /* Per-magazine sizes below assume a 4Kib page size */
575 if (obj_size > (PAGE_SIZE * 256))
576 size = 4; /* Minimum 4Mib per-magazine */
577 else if (obj_size > (PAGE_SIZE * 32))
578 size = 16; /* Minimum 2Mib per-magazine */
579 else if (obj_size > (PAGE_SIZE))
580 size = 64; /* Minimum 256Kib per-magazine */
581 else if (obj_size > (PAGE_SIZE / 4))
582 size = 128; /* Minimum 128Kib per-magazine */
583 else
584 size = 256;
585
586 return (size);
587 }
588
589 /*
590 * Allocate a per-cpu magazine to associate with a specific core.
591 */
592 static spl_kmem_magazine_t *
593 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
594 {
595 spl_kmem_magazine_t *skm;
596 int size = sizeof (spl_kmem_magazine_t) +
597 sizeof (void *) * skc->skc_mag_size;
598
599 skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
600 if (skm) {
601 skm->skm_magic = SKM_MAGIC;
602 skm->skm_avail = 0;
603 skm->skm_size = skc->skc_mag_size;
604 skm->skm_refill = skc->skc_mag_refill;
605 skm->skm_cache = skc;
606 skm->skm_cpu = cpu;
607 }
608
609 return (skm);
610 }
611
612 /*
613 * Free a per-cpu magazine associated with a specific core.
614 */
615 static void
616 spl_magazine_free(spl_kmem_magazine_t *skm)
617 {
618 ASSERT(skm->skm_magic == SKM_MAGIC);
619 ASSERT(skm->skm_avail == 0);
620 kfree(skm);
621 }
622
623 /*
624 * Create all pre-cpu magazines of reasonable sizes.
625 */
626 static int
627 spl_magazine_create(spl_kmem_cache_t *skc)
628 {
629 int i = 0;
630
631 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
632
633 skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
634 num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
635 skc->skc_mag_size = spl_magazine_size(skc);
636 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
637
638 for_each_possible_cpu(i) {
639 skc->skc_mag[i] = spl_magazine_alloc(skc, i);
640 if (!skc->skc_mag[i]) {
641 for (i--; i >= 0; i--)
642 spl_magazine_free(skc->skc_mag[i]);
643
644 kfree(skc->skc_mag);
645 return (-ENOMEM);
646 }
647 }
648
649 return (0);
650 }
651
652 /*
653 * Destroy all pre-cpu magazines.
654 */
655 static void
656 spl_magazine_destroy(spl_kmem_cache_t *skc)
657 {
658 spl_kmem_magazine_t *skm;
659 int i = 0;
660
661 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
662
663 for_each_possible_cpu(i) {
664 skm = skc->skc_mag[i];
665 spl_cache_flush(skc, skm, skm->skm_avail);
666 spl_magazine_free(skm);
667 }
668
669 kfree(skc->skc_mag);
670 }
671
672 /*
673 * Create a object cache based on the following arguments:
674 * name cache name
675 * size cache object size
676 * align cache object alignment
677 * ctor cache object constructor
678 * dtor cache object destructor
679 * reclaim cache object reclaim
680 * priv cache private data for ctor/dtor/reclaim
681 * vmp unused must be NULL
682 * flags
683 * KMC_KVMEM Force kvmem backed SPL cache
684 * KMC_SLAB Force Linux slab backed cache
685 * KMC_NODEBUG Disable debugging (unsupported)
686 */
687 spl_kmem_cache_t *
688 spl_kmem_cache_create(char *name, size_t size, size_t align,
689 spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim,
690 void *priv, void *vmp, int flags)
691 {
692 gfp_t lflags = kmem_flags_convert(KM_SLEEP);
693 spl_kmem_cache_t *skc;
694 int rc;
695
696 /*
697 * Unsupported flags
698 */
699 ASSERT(vmp == NULL);
700 ASSERT(reclaim == NULL);
701
702 might_sleep();
703
704 skc = kzalloc(sizeof (*skc), lflags);
705 if (skc == NULL)
706 return (NULL);
707
708 skc->skc_magic = SKC_MAGIC;
709 skc->skc_name_size = strlen(name) + 1;
710 skc->skc_name = (char *)kmalloc(skc->skc_name_size, lflags);
711 if (skc->skc_name == NULL) {
712 kfree(skc);
713 return (NULL);
714 }
715 strncpy(skc->skc_name, name, skc->skc_name_size);
716
717 skc->skc_ctor = ctor;
718 skc->skc_dtor = dtor;
719 skc->skc_private = priv;
720 skc->skc_vmp = vmp;
721 skc->skc_linux_cache = NULL;
722 skc->skc_flags = flags;
723 skc->skc_obj_size = size;
724 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
725 atomic_set(&skc->skc_ref, 0);
726
727 INIT_LIST_HEAD(&skc->skc_list);
728 INIT_LIST_HEAD(&skc->skc_complete_list);
729 INIT_LIST_HEAD(&skc->skc_partial_list);
730 skc->skc_emergency_tree = RB_ROOT;
731 spin_lock_init(&skc->skc_lock);
732 init_waitqueue_head(&skc->skc_waitq);
733 skc->skc_slab_fail = 0;
734 skc->skc_slab_create = 0;
735 skc->skc_slab_destroy = 0;
736 skc->skc_slab_total = 0;
737 skc->skc_slab_alloc = 0;
738 skc->skc_slab_max = 0;
739 skc->skc_obj_total = 0;
740 skc->skc_obj_alloc = 0;
741 skc->skc_obj_max = 0;
742 skc->skc_obj_deadlock = 0;
743 skc->skc_obj_emergency = 0;
744 skc->skc_obj_emergency_max = 0;
745
746 rc = percpu_counter_init_common(&skc->skc_linux_alloc, 0,
747 GFP_KERNEL);
748 if (rc != 0) {
749 kfree(skc);
750 return (NULL);
751 }
752
753 /*
754 * Verify the requested alignment restriction is sane.
755 */
756 if (align) {
757 VERIFY(ISP2(align));
758 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
759 VERIFY3U(align, <=, PAGE_SIZE);
760 skc->skc_obj_align = align;
761 }
762
763 /*
764 * When no specific type of slab is requested (kmem, vmem, or
765 * linuxslab) then select a cache type based on the object size
766 * and default tunables.
767 */
768 if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) {
769 if (spl_kmem_cache_slab_limit &&
770 size <= (size_t)spl_kmem_cache_slab_limit) {
771 /*
772 * Objects smaller than spl_kmem_cache_slab_limit can
773 * use the Linux slab for better space-efficiency.
774 */
775 skc->skc_flags |= KMC_SLAB;
776 } else {
777 /*
778 * All other objects are considered large and are
779 * placed on kvmem backed slabs.
780 */
781 skc->skc_flags |= KMC_KVMEM;
782 }
783 }
784
785 /*
786 * Given the type of slab allocate the required resources.
787 */
788 if (skc->skc_flags & KMC_KVMEM) {
789 rc = spl_slab_size(skc,
790 &skc->skc_slab_objs, &skc->skc_slab_size);
791 if (rc)
792 goto out;
793
794 rc = spl_magazine_create(skc);
795 if (rc)
796 goto out;
797 } else {
798 unsigned long slabflags = 0;
799
800 if (size > (SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE)) {
801 rc = EINVAL;
802 goto out;
803 }
804
805 #if defined(SLAB_USERCOPY)
806 /*
807 * Required for PAX-enabled kernels if the slab is to be
808 * used for copying between user and kernel space.
809 */
810 slabflags |= SLAB_USERCOPY;
811 #endif
812
813 #if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY)
814 /*
815 * Newer grsec patchset uses kmem_cache_create_usercopy()
816 * instead of SLAB_USERCOPY flag
817 */
818 skc->skc_linux_cache = kmem_cache_create_usercopy(
819 skc->skc_name, size, align, slabflags, 0, size, NULL);
820 #else
821 skc->skc_linux_cache = kmem_cache_create(
822 skc->skc_name, size, align, slabflags, NULL);
823 #endif
824 if (skc->skc_linux_cache == NULL) {
825 rc = ENOMEM;
826 goto out;
827 }
828 }
829
830 down_write(&spl_kmem_cache_sem);
831 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
832 up_write(&spl_kmem_cache_sem);
833
834 return (skc);
835 out:
836 kfree(skc->skc_name);
837 percpu_counter_destroy(&skc->skc_linux_alloc);
838 kfree(skc);
839 return (NULL);
840 }
841 EXPORT_SYMBOL(spl_kmem_cache_create);
842
843 /*
844 * Register a move callback for cache defragmentation.
845 * XXX: Unimplemented but harmless to stub out for now.
846 */
847 void
848 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
849 kmem_cbrc_t (move)(void *, void *, size_t, void *))
850 {
851 ASSERT(move != NULL);
852 }
853 EXPORT_SYMBOL(spl_kmem_cache_set_move);
854
855 /*
856 * Destroy a cache and all objects associated with the cache.
857 */
858 void
859 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
860 {
861 DECLARE_WAIT_QUEUE_HEAD(wq);
862 taskqid_t id;
863
864 ASSERT(skc->skc_magic == SKC_MAGIC);
865 ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB));
866
867 down_write(&spl_kmem_cache_sem);
868 list_del_init(&skc->skc_list);
869 up_write(&spl_kmem_cache_sem);
870
871 /* Cancel any and wait for any pending delayed tasks */
872 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
873
874 spin_lock(&skc->skc_lock);
875 id = skc->skc_taskqid;
876 spin_unlock(&skc->skc_lock);
877
878 taskq_cancel_id(spl_kmem_cache_taskq, id);
879
880 /*
881 * Wait until all current callers complete, this is mainly
882 * to catch the case where a low memory situation triggers a
883 * cache reaping action which races with this destroy.
884 */
885 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
886
887 if (skc->skc_flags & KMC_KVMEM) {
888 spl_magazine_destroy(skc);
889 spl_slab_reclaim(skc);
890 } else {
891 ASSERT(skc->skc_flags & KMC_SLAB);
892 kmem_cache_destroy(skc->skc_linux_cache);
893 }
894
895 spin_lock(&skc->skc_lock);
896
897 /*
898 * Validate there are no objects in use and free all the
899 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
900 */
901 ASSERT3U(skc->skc_slab_alloc, ==, 0);
902 ASSERT3U(skc->skc_obj_alloc, ==, 0);
903 ASSERT3U(skc->skc_slab_total, ==, 0);
904 ASSERT3U(skc->skc_obj_total, ==, 0);
905 ASSERT3U(skc->skc_obj_emergency, ==, 0);
906 ASSERT(list_empty(&skc->skc_complete_list));
907
908 ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0);
909 percpu_counter_destroy(&skc->skc_linux_alloc);
910
911 spin_unlock(&skc->skc_lock);
912
913 kfree(skc->skc_name);
914 kfree(skc);
915 }
916 EXPORT_SYMBOL(spl_kmem_cache_destroy);
917
918 /*
919 * Allocate an object from a slab attached to the cache. This is used to
920 * repopulate the per-cpu magazine caches in batches when they run low.
921 */
922 static void *
923 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
924 {
925 spl_kmem_obj_t *sko;
926
927 ASSERT(skc->skc_magic == SKC_MAGIC);
928 ASSERT(sks->sks_magic == SKS_MAGIC);
929
930 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
931 ASSERT(sko->sko_magic == SKO_MAGIC);
932 ASSERT(sko->sko_addr != NULL);
933
934 /* Remove from sks_free_list */
935 list_del_init(&sko->sko_list);
936
937 sks->sks_age = jiffies;
938 sks->sks_ref++;
939 skc->skc_obj_alloc++;
940
941 /* Track max obj usage statistics */
942 if (skc->skc_obj_alloc > skc->skc_obj_max)
943 skc->skc_obj_max = skc->skc_obj_alloc;
944
945 /* Track max slab usage statistics */
946 if (sks->sks_ref == 1) {
947 skc->skc_slab_alloc++;
948
949 if (skc->skc_slab_alloc > skc->skc_slab_max)
950 skc->skc_slab_max = skc->skc_slab_alloc;
951 }
952
953 return (sko->sko_addr);
954 }
955
956 /*
957 * Generic slab allocation function to run by the global work queues.
958 * It is responsible for allocating a new slab, linking it in to the list
959 * of partial slabs, and then waking any waiters.
960 */
961 static int
962 __spl_cache_grow(spl_kmem_cache_t *skc, int flags)
963 {
964 spl_kmem_slab_t *sks;
965
966 fstrans_cookie_t cookie = spl_fstrans_mark();
967 sks = spl_slab_alloc(skc, flags);
968 spl_fstrans_unmark(cookie);
969
970 spin_lock(&skc->skc_lock);
971 if (sks) {
972 skc->skc_slab_total++;
973 skc->skc_obj_total += sks->sks_objs;
974 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
975
976 smp_mb__before_atomic();
977 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
978 smp_mb__after_atomic();
979 }
980 spin_unlock(&skc->skc_lock);
981
982 return (sks == NULL ? -ENOMEM : 0);
983 }
984
985 static void
986 spl_cache_grow_work(void *data)
987 {
988 spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
989 spl_kmem_cache_t *skc = ska->ska_cache;
990
991 int error = __spl_cache_grow(skc, ska->ska_flags);
992
993 atomic_dec(&skc->skc_ref);
994 smp_mb__before_atomic();
995 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
996 smp_mb__after_atomic();
997 if (error == 0)
998 wake_up_all(&skc->skc_waitq);
999
1000 kfree(ska);
1001 }
1002
1003 /*
1004 * Returns non-zero when a new slab should be available.
1005 */
1006 static int
1007 spl_cache_grow_wait(spl_kmem_cache_t *skc)
1008 {
1009 return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
1010 }
1011
1012 /*
1013 * No available objects on any slabs, create a new slab. Note that this
1014 * functionality is disabled for KMC_SLAB caches which are backed by the
1015 * Linux slab.
1016 */
1017 static int
1018 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1019 {
1020 int remaining, rc = 0;
1021
1022 ASSERT0(flags & ~KM_PUBLIC_MASK);
1023 ASSERT(skc->skc_magic == SKC_MAGIC);
1024 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
1025 might_sleep();
1026 *obj = NULL;
1027
1028 /*
1029 * Before allocating a new slab wait for any reaping to complete and
1030 * then return so the local magazine can be rechecked for new objects.
1031 */
1032 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1033 rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1034 TASK_UNINTERRUPTIBLE);
1035 return (rc ? rc : -EAGAIN);
1036 }
1037
1038 /*
1039 * Note: It would be nice to reduce the overhead of context switch
1040 * and improve NUMA locality, by trying to allocate a new slab in the
1041 * current process context with KM_NOSLEEP flag.
1042 *
1043 * However, this can't be applied to vmem/kvmem due to a bug that
1044 * spl_vmalloc() doesn't honor gfp flags in page table allocation.
1045 */
1046
1047 /*
1048 * This is handled by dispatching a work request to the global work
1049 * queue. This allows us to asynchronously allocate a new slab while
1050 * retaining the ability to safely fall back to a smaller synchronous
1051 * allocations to ensure forward progress is always maintained.
1052 */
1053 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1054 spl_kmem_alloc_t *ska;
1055
1056 ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
1057 if (ska == NULL) {
1058 clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
1059 smp_mb__after_atomic();
1060 wake_up_all(&skc->skc_waitq);
1061 return (-ENOMEM);
1062 }
1063
1064 atomic_inc(&skc->skc_ref);
1065 ska->ska_cache = skc;
1066 ska->ska_flags = flags;
1067 taskq_init_ent(&ska->ska_tqe);
1068 taskq_dispatch_ent(spl_kmem_cache_taskq,
1069 spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1070 }
1071
1072 /*
1073 * The goal here is to only detect the rare case where a virtual slab
1074 * allocation has deadlocked. We must be careful to minimize the use
1075 * of emergency objects which are more expensive to track. Therefore,
1076 * we set a very long timeout for the asynchronous allocation and if
1077 * the timeout is reached the cache is flagged as deadlocked. From
1078 * this point only new emergency objects will be allocated until the
1079 * asynchronous allocation completes and clears the deadlocked flag.
1080 */
1081 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1082 rc = spl_emergency_alloc(skc, flags, obj);
1083 } else {
1084 remaining = wait_event_timeout(skc->skc_waitq,
1085 spl_cache_grow_wait(skc), HZ / 10);
1086
1087 if (!remaining) {
1088 spin_lock(&skc->skc_lock);
1089 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1090 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1091 skc->skc_obj_deadlock++;
1092 }
1093 spin_unlock(&skc->skc_lock);
1094 }
1095
1096 rc = -ENOMEM;
1097 }
1098
1099 return (rc);
1100 }
1101
1102 /*
1103 * Refill a per-cpu magazine with objects from the slabs for this cache.
1104 * Ideally the magazine can be repopulated using existing objects which have
1105 * been released, however if we are unable to locate enough free objects new
1106 * slabs of objects will be created. On success NULL is returned, otherwise
1107 * the address of a single emergency object is returned for use by the caller.
1108 */
1109 static void *
1110 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1111 {
1112 spl_kmem_slab_t *sks;
1113 int count = 0, rc, refill;
1114 void *obj = NULL;
1115
1116 ASSERT(skc->skc_magic == SKC_MAGIC);
1117 ASSERT(skm->skm_magic == SKM_MAGIC);
1118
1119 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1120 spin_lock(&skc->skc_lock);
1121
1122 while (refill > 0) {
1123 /* No slabs available we may need to grow the cache */
1124 if (list_empty(&skc->skc_partial_list)) {
1125 spin_unlock(&skc->skc_lock);
1126
1127 local_irq_enable();
1128 rc = spl_cache_grow(skc, flags, &obj);
1129 local_irq_disable();
1130
1131 /* Emergency object for immediate use by caller */
1132 if (rc == 0 && obj != NULL)
1133 return (obj);
1134
1135 if (rc)
1136 goto out;
1137
1138 /* Rescheduled to different CPU skm is not local */
1139 if (skm != skc->skc_mag[smp_processor_id()])
1140 goto out;
1141
1142 /*
1143 * Potentially rescheduled to the same CPU but
1144 * allocations may have occurred from this CPU while
1145 * we were sleeping so recalculate max refill.
1146 */
1147 refill = MIN(refill, skm->skm_size - skm->skm_avail);
1148
1149 spin_lock(&skc->skc_lock);
1150 continue;
1151 }
1152
1153 /* Grab the next available slab */
1154 sks = list_entry((&skc->skc_partial_list)->next,
1155 spl_kmem_slab_t, sks_list);
1156 ASSERT(sks->sks_magic == SKS_MAGIC);
1157 ASSERT(sks->sks_ref < sks->sks_objs);
1158 ASSERT(!list_empty(&sks->sks_free_list));
1159
1160 /*
1161 * Consume as many objects as needed to refill the requested
1162 * cache. We must also be careful not to overfill it.
1163 */
1164 while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1165 ++count) {
1166 ASSERT(skm->skm_avail < skm->skm_size);
1167 ASSERT(count < skm->skm_size);
1168 skm->skm_objs[skm->skm_avail++] =
1169 spl_cache_obj(skc, sks);
1170 }
1171
1172 /* Move slab to skc_complete_list when full */
1173 if (sks->sks_ref == sks->sks_objs) {
1174 list_del(&sks->sks_list);
1175 list_add(&sks->sks_list, &skc->skc_complete_list);
1176 }
1177 }
1178
1179 spin_unlock(&skc->skc_lock);
1180 out:
1181 return (NULL);
1182 }
1183
1184 /*
1185 * Release an object back to the slab from which it came.
1186 */
1187 static void
1188 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1189 {
1190 spl_kmem_slab_t *sks = NULL;
1191 spl_kmem_obj_t *sko = NULL;
1192
1193 ASSERT(skc->skc_magic == SKC_MAGIC);
1194
1195 sko = spl_sko_from_obj(skc, obj);
1196 ASSERT(sko->sko_magic == SKO_MAGIC);
1197 sks = sko->sko_slab;
1198 ASSERT(sks->sks_magic == SKS_MAGIC);
1199 ASSERT(sks->sks_cache == skc);
1200 list_add(&sko->sko_list, &sks->sks_free_list);
1201
1202 sks->sks_age = jiffies;
1203 sks->sks_ref--;
1204 skc->skc_obj_alloc--;
1205
1206 /*
1207 * Move slab to skc_partial_list when no longer full. Slabs
1208 * are added to the head to keep the partial list is quasi-full
1209 * sorted order. Fuller at the head, emptier at the tail.
1210 */
1211 if (sks->sks_ref == (sks->sks_objs - 1)) {
1212 list_del(&sks->sks_list);
1213 list_add(&sks->sks_list, &skc->skc_partial_list);
1214 }
1215
1216 /*
1217 * Move empty slabs to the end of the partial list so
1218 * they can be easily found and freed during reclamation.
1219 */
1220 if (sks->sks_ref == 0) {
1221 list_del(&sks->sks_list);
1222 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1223 skc->skc_slab_alloc--;
1224 }
1225 }
1226
1227 /*
1228 * Allocate an object from the per-cpu magazine, or if the magazine
1229 * is empty directly allocate from a slab and repopulate the magazine.
1230 */
1231 void *
1232 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1233 {
1234 spl_kmem_magazine_t *skm;
1235 void *obj = NULL;
1236
1237 ASSERT0(flags & ~KM_PUBLIC_MASK);
1238 ASSERT(skc->skc_magic == SKC_MAGIC);
1239 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1240
1241 /*
1242 * Allocate directly from a Linux slab. All optimizations are left
1243 * to the underlying cache we only need to guarantee that KM_SLEEP
1244 * callers will never fail.
1245 */
1246 if (skc->skc_flags & KMC_SLAB) {
1247 struct kmem_cache *slc = skc->skc_linux_cache;
1248 do {
1249 obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
1250 } while ((obj == NULL) && !(flags & KM_NOSLEEP));
1251
1252 if (obj != NULL) {
1253 /*
1254 * Even though we leave everything up to the
1255 * underlying cache we still keep track of
1256 * how many objects we've allocated in it for
1257 * better debuggability.
1258 */
1259 percpu_counter_inc(&skc->skc_linux_alloc);
1260 }
1261 goto ret;
1262 }
1263
1264 local_irq_disable();
1265
1266 restart:
1267 /*
1268 * Safe to update per-cpu structure without lock, but
1269 * in the restart case we must be careful to reacquire
1270 * the local magazine since this may have changed
1271 * when we need to grow the cache.
1272 */
1273 skm = skc->skc_mag[smp_processor_id()];
1274 ASSERT(skm->skm_magic == SKM_MAGIC);
1275
1276 if (likely(skm->skm_avail)) {
1277 /* Object available in CPU cache, use it */
1278 obj = skm->skm_objs[--skm->skm_avail];
1279 } else {
1280 obj = spl_cache_refill(skc, skm, flags);
1281 if ((obj == NULL) && !(flags & KM_NOSLEEP))
1282 goto restart;
1283
1284 local_irq_enable();
1285 goto ret;
1286 }
1287
1288 local_irq_enable();
1289 ASSERT(obj);
1290 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1291
1292 ret:
1293 /* Pre-emptively migrate object to CPU L1 cache */
1294 if (obj) {
1295 if (obj && skc->skc_ctor)
1296 skc->skc_ctor(obj, skc->skc_private, flags);
1297 else
1298 prefetchw(obj);
1299 }
1300
1301 return (obj);
1302 }
1303 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1304
1305 /*
1306 * Free an object back to the local per-cpu magazine, there is no
1307 * guarantee that this is the same magazine the object was originally
1308 * allocated from. We may need to flush entire from the magazine
1309 * back to the slabs to make space.
1310 */
1311 void
1312 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1313 {
1314 spl_kmem_magazine_t *skm;
1315 unsigned long flags;
1316 int do_reclaim = 0;
1317 int do_emergency = 0;
1318
1319 ASSERT(skc->skc_magic == SKC_MAGIC);
1320 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1321
1322 /*
1323 * Run the destructor
1324 */
1325 if (skc->skc_dtor)
1326 skc->skc_dtor(obj, skc->skc_private);
1327
1328 /*
1329 * Free the object from the Linux underlying Linux slab.
1330 */
1331 if (skc->skc_flags & KMC_SLAB) {
1332 kmem_cache_free(skc->skc_linux_cache, obj);
1333 percpu_counter_dec(&skc->skc_linux_alloc);
1334 return;
1335 }
1336
1337 /*
1338 * While a cache has outstanding emergency objects all freed objects
1339 * must be checked. However, since emergency objects will never use
1340 * a virtual address these objects can be safely excluded as an
1341 * optimization.
1342 */
1343 if (!is_vmalloc_addr(obj)) {
1344 spin_lock(&skc->skc_lock);
1345 do_emergency = (skc->skc_obj_emergency > 0);
1346 spin_unlock(&skc->skc_lock);
1347
1348 if (do_emergency && (spl_emergency_free(skc, obj) == 0))
1349 return;
1350 }
1351
1352 local_irq_save(flags);
1353
1354 /*
1355 * Safe to update per-cpu structure without lock, but
1356 * no remote memory allocation tracking is being performed
1357 * it is entirely possible to allocate an object from one
1358 * CPU cache and return it to another.
1359 */
1360 skm = skc->skc_mag[smp_processor_id()];
1361 ASSERT(skm->skm_magic == SKM_MAGIC);
1362
1363 /*
1364 * Per-CPU cache full, flush it to make space for this object,
1365 * this may result in an empty slab which can be reclaimed once
1366 * interrupts are re-enabled.
1367 */
1368 if (unlikely(skm->skm_avail >= skm->skm_size)) {
1369 spl_cache_flush(skc, skm, skm->skm_refill);
1370 do_reclaim = 1;
1371 }
1372
1373 /* Available space in cache, use it */
1374 skm->skm_objs[skm->skm_avail++] = obj;
1375
1376 local_irq_restore(flags);
1377
1378 if (do_reclaim)
1379 spl_slab_reclaim(skc);
1380 }
1381 EXPORT_SYMBOL(spl_kmem_cache_free);
1382
1383 /*
1384 * Depending on how many and which objects are released it may simply
1385 * repopulate the local magazine which will then need to age-out. Objects
1386 * which cannot fit in the magazine will be released back to their slabs
1387 * which will also need to age out before being released. This is all just
1388 * best effort and we do not want to thrash creating and destroying slabs.
1389 */
1390 void
1391 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
1392 {
1393 ASSERT(skc->skc_magic == SKC_MAGIC);
1394 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1395
1396 if (skc->skc_flags & KMC_SLAB)
1397 return;
1398
1399 atomic_inc(&skc->skc_ref);
1400
1401 /*
1402 * Prevent concurrent cache reaping when contended.
1403 */
1404 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1405 goto out;
1406
1407 /* Reclaim from the magazine and free all now empty slabs. */
1408 unsigned long irq_flags;
1409 local_irq_save(irq_flags);
1410 spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
1411 spl_cache_flush(skc, skm, skm->skm_avail);
1412 local_irq_restore(irq_flags);
1413
1414 spl_slab_reclaim(skc);
1415 clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
1416 smp_mb__after_atomic();
1417 wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1418 out:
1419 atomic_dec(&skc->skc_ref);
1420 }
1421 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1422
1423 /*
1424 * This is stubbed out for code consistency with other platforms. There
1425 * is existing logic to prevent concurrent reaping so while this is ugly
1426 * it should do no harm.
1427 */
1428 int
1429 spl_kmem_cache_reap_active()
1430 {
1431 return (0);
1432 }
1433 EXPORT_SYMBOL(spl_kmem_cache_reap_active);
1434
1435 /*
1436 * Reap all free slabs from all registered caches.
1437 */
1438 void
1439 spl_kmem_reap(void)
1440 {
1441 spl_kmem_cache_t *skc = NULL;
1442
1443 down_read(&spl_kmem_cache_sem);
1444 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1445 spl_kmem_cache_reap_now(skc);
1446 }
1447 up_read(&spl_kmem_cache_sem);
1448 }
1449 EXPORT_SYMBOL(spl_kmem_reap);
1450
1451 int
1452 spl_kmem_cache_init(void)
1453 {
1454 init_rwsem(&spl_kmem_cache_sem);
1455 INIT_LIST_HEAD(&spl_kmem_cache_list);
1456 spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1457 spl_kmem_cache_kmem_threads, maxclsyspri,
1458 spl_kmem_cache_kmem_threads * 8, INT_MAX,
1459 TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1460
1461 return (0);
1462 }
1463
1464 void
1465 spl_kmem_cache_fini(void)
1466 {
1467 taskq_destroy(spl_kmem_cache_taskq);
1468 }