]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/linux/zfs/abd_os.c
Fix abd leak, kmem_free correct size of abd_t
[mirror_zfs.git] / module / os / linux / zfs / abd_os.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
23 * Copyright (c) 2019 by Delphix. All rights reserved.
24 */
25
26 /*
27 * See abd.c for a general overview of the arc buffered data (ABD).
28 *
29 * Linear buffers act exactly like normal buffers and are always mapped into the
30 * kernel's virtual memory space, while scattered ABD data chunks are allocated
31 * as physical pages and then mapped in only while they are actually being
32 * accessed through one of the abd_* library functions. Using scattered ABDs
33 * provides several benefits:
34 *
35 * (1) They avoid use of kmem_*, preventing performance problems where running
36 * kmem_reap on very large memory systems never finishes and causes
37 * constant TLB shootdowns.
38 *
39 * (2) Fragmentation is less of an issue since when we are at the limit of
40 * allocatable space, we won't have to search around for a long free
41 * hole in the VA space for large ARC allocations. Each chunk is mapped in
42 * individually, so even if we are using HIGHMEM (see next point) we
43 * wouldn't need to worry about finding a contiguous address range.
44 *
45 * (3) If we are not using HIGHMEM, then all physical memory is always
46 * mapped into the kernel's address space, so we also avoid the map /
47 * unmap costs on each ABD access.
48 *
49 * If we are not using HIGHMEM, scattered buffers which have only one chunk
50 * can be treated as linear buffers, because they are contiguous in the
51 * kernel's virtual address space. See abd_alloc_chunks() for details.
52 */
53
54 #include <sys/abd_impl.h>
55 #include <sys/param.h>
56 #include <sys/zio.h>
57 #include <sys/arc.h>
58 #include <sys/zfs_context.h>
59 #include <sys/zfs_znode.h>
60 #ifdef _KERNEL
61 #include <linux/kmap_compat.h>
62 #include <linux/scatterlist.h>
63 #else
64 #define MAX_ORDER 1
65 #endif
66
67 typedef struct abd_stats {
68 kstat_named_t abdstat_struct_size;
69 kstat_named_t abdstat_linear_cnt;
70 kstat_named_t abdstat_linear_data_size;
71 kstat_named_t abdstat_scatter_cnt;
72 kstat_named_t abdstat_scatter_data_size;
73 kstat_named_t abdstat_scatter_chunk_waste;
74 kstat_named_t abdstat_scatter_orders[MAX_ORDER];
75 kstat_named_t abdstat_scatter_page_multi_chunk;
76 kstat_named_t abdstat_scatter_page_multi_zone;
77 kstat_named_t abdstat_scatter_page_alloc_retry;
78 kstat_named_t abdstat_scatter_sg_table_retry;
79 } abd_stats_t;
80
81 static abd_stats_t abd_stats = {
82 /* Amount of memory occupied by all of the abd_t struct allocations */
83 { "struct_size", KSTAT_DATA_UINT64 },
84 /*
85 * The number of linear ABDs which are currently allocated, excluding
86 * ABDs which don't own their data (for instance the ones which were
87 * allocated through abd_get_offset() and abd_get_from_buf()). If an
88 * ABD takes ownership of its buf then it will become tracked.
89 */
90 { "linear_cnt", KSTAT_DATA_UINT64 },
91 /* Amount of data stored in all linear ABDs tracked by linear_cnt */
92 { "linear_data_size", KSTAT_DATA_UINT64 },
93 /*
94 * The number of scatter ABDs which are currently allocated, excluding
95 * ABDs which don't own their data (for instance the ones which were
96 * allocated through abd_get_offset()).
97 */
98 { "scatter_cnt", KSTAT_DATA_UINT64 },
99 /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
100 { "scatter_data_size", KSTAT_DATA_UINT64 },
101 /*
102 * The amount of space wasted at the end of the last chunk across all
103 * scatter ABDs tracked by scatter_cnt.
104 */
105 { "scatter_chunk_waste", KSTAT_DATA_UINT64 },
106 /*
107 * The number of compound allocations of a given order. These
108 * allocations are spread over all currently allocated ABDs, and
109 * act as a measure of memory fragmentation.
110 */
111 { { "scatter_order_N", KSTAT_DATA_UINT64 } },
112 /*
113 * The number of scatter ABDs which contain multiple chunks.
114 * ABDs are preferentially allocated from the minimum number of
115 * contiguous multi-page chunks, a single chunk is optimal.
116 */
117 { "scatter_page_multi_chunk", KSTAT_DATA_UINT64 },
118 /*
119 * The number of scatter ABDs which are split across memory zones.
120 * ABDs are preferentially allocated using pages from a single zone.
121 */
122 { "scatter_page_multi_zone", KSTAT_DATA_UINT64 },
123 /*
124 * The total number of retries encountered when attempting to
125 * allocate the pages to populate the scatter ABD.
126 */
127 { "scatter_page_alloc_retry", KSTAT_DATA_UINT64 },
128 /*
129 * The total number of retries encountered when attempting to
130 * allocate the sg table for an ABD.
131 */
132 { "scatter_sg_table_retry", KSTAT_DATA_UINT64 },
133 };
134
135 struct {
136 wmsum_t abdstat_struct_size;
137 wmsum_t abdstat_linear_cnt;
138 wmsum_t abdstat_linear_data_size;
139 wmsum_t abdstat_scatter_cnt;
140 wmsum_t abdstat_scatter_data_size;
141 wmsum_t abdstat_scatter_chunk_waste;
142 wmsum_t abdstat_scatter_orders[MAX_ORDER];
143 wmsum_t abdstat_scatter_page_multi_chunk;
144 wmsum_t abdstat_scatter_page_multi_zone;
145 wmsum_t abdstat_scatter_page_alloc_retry;
146 wmsum_t abdstat_scatter_sg_table_retry;
147 } abd_sums;
148
149 #define abd_for_each_sg(abd, sg, n, i) \
150 for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i)
151
152 unsigned zfs_abd_scatter_max_order = MAX_ORDER - 1;
153
154 /*
155 * zfs_abd_scatter_min_size is the minimum allocation size to use scatter
156 * ABD's. Smaller allocations will use linear ABD's which uses
157 * zio_[data_]buf_alloc().
158 *
159 * Scatter ABD's use at least one page each, so sub-page allocations waste
160 * some space when allocated as scatter (e.g. 2KB scatter allocation wastes
161 * half of each page). Using linear ABD's for small allocations means that
162 * they will be put on slabs which contain many allocations. This can
163 * improve memory efficiency, but it also makes it much harder for ARC
164 * evictions to actually free pages, because all the buffers on one slab need
165 * to be freed in order for the slab (and underlying pages) to be freed.
166 * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
167 * possible for them to actually waste more memory than scatter (one page per
168 * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
169 *
170 * Spill blocks are typically 512B and are heavily used on systems running
171 * selinux with the default dnode size and the `xattr=sa` property set.
172 *
173 * By default we use linear allocations for 512B and 1KB, and scatter
174 * allocations for larger (1.5KB and up).
175 */
176 int zfs_abd_scatter_min_size = 512 * 3;
177
178 /*
179 * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are
180 * just a single zero'd page. This allows us to conserve memory by
181 * only using a single zero page for the scatterlist.
182 */
183 abd_t *abd_zero_scatter = NULL;
184
185 struct page;
186 /*
187 * abd_zero_page we will be an allocated zero'd PAGESIZE buffer, which is
188 * assigned to set each of the pages of abd_zero_scatter.
189 */
190 static struct page *abd_zero_page = NULL;
191
192 static kmem_cache_t *abd_cache = NULL;
193 static kstat_t *abd_ksp;
194
195 static uint_t
196 abd_chunkcnt_for_bytes(size_t size)
197 {
198 return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE);
199 }
200
201 abd_t *
202 abd_alloc_struct_impl(size_t size)
203 {
204 /*
205 * In Linux we do not use the size passed in during ABD
206 * allocation, so we just ignore it.
207 */
208 abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE);
209 ASSERT3P(abd, !=, NULL);
210 ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t));
211
212 return (abd);
213 }
214
215 void
216 abd_free_struct_impl(abd_t *abd)
217 {
218 kmem_cache_free(abd_cache, abd);
219 ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t));
220 }
221
222 #ifdef _KERNEL
223 /*
224 * Mark zfs data pages so they can be excluded from kernel crash dumps
225 */
226 #ifdef _LP64
227 #define ABD_FILE_CACHE_PAGE 0x2F5ABDF11ECAC4E
228
229 static inline void
230 abd_mark_zfs_page(struct page *page)
231 {
232 get_page(page);
233 SetPagePrivate(page);
234 set_page_private(page, ABD_FILE_CACHE_PAGE);
235 }
236
237 static inline void
238 abd_unmark_zfs_page(struct page *page)
239 {
240 set_page_private(page, 0UL);
241 ClearPagePrivate(page);
242 put_page(page);
243 }
244 #else
245 #define abd_mark_zfs_page(page)
246 #define abd_unmark_zfs_page(page)
247 #endif /* _LP64 */
248
249 #ifndef CONFIG_HIGHMEM
250
251 #ifndef __GFP_RECLAIM
252 #define __GFP_RECLAIM __GFP_WAIT
253 #endif
254
255 /*
256 * The goal is to minimize fragmentation by preferentially populating ABDs
257 * with higher order compound pages from a single zone. Allocation size is
258 * progressively decreased until it can be satisfied without performing
259 * reclaim or compaction. When necessary this function will degenerate to
260 * allocating individual pages and allowing reclaim to satisfy allocations.
261 */
262 void
263 abd_alloc_chunks(abd_t *abd, size_t size)
264 {
265 struct list_head pages;
266 struct sg_table table;
267 struct scatterlist *sg;
268 struct page *page, *tmp_page = NULL;
269 gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
270 gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM;
271 int max_order = MIN(zfs_abd_scatter_max_order, MAX_ORDER - 1);
272 int nr_pages = abd_chunkcnt_for_bytes(size);
273 int chunks = 0, zones = 0;
274 size_t remaining_size;
275 int nid = NUMA_NO_NODE;
276 int alloc_pages = 0;
277
278 INIT_LIST_HEAD(&pages);
279
280 while (alloc_pages < nr_pages) {
281 unsigned chunk_pages;
282 int order;
283
284 order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order);
285 chunk_pages = (1U << order);
286
287 page = alloc_pages_node(nid, order ? gfp_comp : gfp, order);
288 if (page == NULL) {
289 if (order == 0) {
290 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
291 schedule_timeout_interruptible(1);
292 } else {
293 max_order = MAX(0, order - 1);
294 }
295 continue;
296 }
297
298 list_add_tail(&page->lru, &pages);
299
300 if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid))
301 zones++;
302
303 nid = page_to_nid(page);
304 ABDSTAT_BUMP(abdstat_scatter_orders[order]);
305 chunks++;
306 alloc_pages += chunk_pages;
307 }
308
309 ASSERT3S(alloc_pages, ==, nr_pages);
310
311 while (sg_alloc_table(&table, chunks, gfp)) {
312 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
313 schedule_timeout_interruptible(1);
314 }
315
316 sg = table.sgl;
317 remaining_size = size;
318 list_for_each_entry_safe(page, tmp_page, &pages, lru) {
319 size_t sg_size = MIN(PAGESIZE << compound_order(page),
320 remaining_size);
321 sg_set_page(sg, page, sg_size, 0);
322 abd_mark_zfs_page(page);
323 remaining_size -= sg_size;
324
325 sg = sg_next(sg);
326 list_del(&page->lru);
327 }
328
329 /*
330 * These conditions ensure that a possible transformation to a linear
331 * ABD would be valid.
332 */
333 ASSERT(!PageHighMem(sg_page(table.sgl)));
334 ASSERT0(ABD_SCATTER(abd).abd_offset);
335
336 if (table.nents == 1) {
337 /*
338 * Since there is only one entry, this ABD can be represented
339 * as a linear buffer. All single-page (4K) ABD's can be
340 * represented this way. Some multi-page ABD's can also be
341 * represented this way, if we were able to allocate a single
342 * "chunk" (higher-order "page" which represents a power-of-2
343 * series of physically-contiguous pages). This is often the
344 * case for 2-page (8K) ABD's.
345 *
346 * Representing a single-entry scatter ABD as a linear ABD
347 * has the performance advantage of avoiding the copy (and
348 * allocation) in abd_borrow_buf_copy / abd_return_buf_copy.
349 * A performance increase of around 5% has been observed for
350 * ARC-cached reads (of small blocks which can take advantage
351 * of this).
352 *
353 * Note that this optimization is only possible because the
354 * pages are always mapped into the kernel's address space.
355 * This is not the case for highmem pages, so the
356 * optimization can not be made there.
357 */
358 abd->abd_flags |= ABD_FLAG_LINEAR;
359 abd->abd_flags |= ABD_FLAG_LINEAR_PAGE;
360 abd->abd_u.abd_linear.abd_sgl = table.sgl;
361 ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl));
362 } else if (table.nents > 1) {
363 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
364 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
365
366 if (zones) {
367 ABDSTAT_BUMP(abdstat_scatter_page_multi_zone);
368 abd->abd_flags |= ABD_FLAG_MULTI_ZONE;
369 }
370
371 ABD_SCATTER(abd).abd_sgl = table.sgl;
372 ABD_SCATTER(abd).abd_nents = table.nents;
373 }
374 }
375 #else
376
377 /*
378 * Allocate N individual pages to construct a scatter ABD. This function
379 * makes no attempt to request contiguous pages and requires the minimal
380 * number of kernel interfaces. It's designed for maximum compatibility.
381 */
382 void
383 abd_alloc_chunks(abd_t *abd, size_t size)
384 {
385 struct scatterlist *sg = NULL;
386 struct sg_table table;
387 struct page *page;
388 gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
389 int nr_pages = abd_chunkcnt_for_bytes(size);
390 int i = 0;
391
392 while (sg_alloc_table(&table, nr_pages, gfp)) {
393 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
394 schedule_timeout_interruptible(1);
395 }
396
397 ASSERT3U(table.nents, ==, nr_pages);
398 ABD_SCATTER(abd).abd_sgl = table.sgl;
399 ABD_SCATTER(abd).abd_nents = nr_pages;
400
401 abd_for_each_sg(abd, sg, nr_pages, i) {
402 while ((page = __page_cache_alloc(gfp)) == NULL) {
403 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
404 schedule_timeout_interruptible(1);
405 }
406
407 ABDSTAT_BUMP(abdstat_scatter_orders[0]);
408 sg_set_page(sg, page, PAGESIZE, 0);
409 abd_mark_zfs_page(page);
410 }
411
412 if (nr_pages > 1) {
413 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
414 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
415 }
416 }
417 #endif /* !CONFIG_HIGHMEM */
418
419 /*
420 * This must be called if any of the sg_table allocation functions
421 * are called.
422 */
423 static void
424 abd_free_sg_table(abd_t *abd)
425 {
426 struct sg_table table;
427
428 table.sgl = ABD_SCATTER(abd).abd_sgl;
429 table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents;
430 sg_free_table(&table);
431 }
432
433 void
434 abd_free_chunks(abd_t *abd)
435 {
436 struct scatterlist *sg = NULL;
437 struct page *page;
438 int nr_pages = ABD_SCATTER(abd).abd_nents;
439 int order, i = 0;
440
441 if (abd->abd_flags & ABD_FLAG_MULTI_ZONE)
442 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone);
443
444 if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK)
445 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
446
447 abd_for_each_sg(abd, sg, nr_pages, i) {
448 page = sg_page(sg);
449 abd_unmark_zfs_page(page);
450 order = compound_order(page);
451 __free_pages(page, order);
452 ASSERT3U(sg->length, <=, PAGE_SIZE << order);
453 ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]);
454 }
455 abd_free_sg_table(abd);
456 }
457
458 /*
459 * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in
460 * the scatterlist will be set to the zero'd out buffer abd_zero_page.
461 */
462 static void
463 abd_alloc_zero_scatter(void)
464 {
465 struct scatterlist *sg = NULL;
466 struct sg_table table;
467 gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
468 gfp_t gfp_zero_page = gfp | __GFP_ZERO;
469 int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
470 int i = 0;
471
472 while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) {
473 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
474 schedule_timeout_interruptible(1);
475 }
476 abd_mark_zfs_page(abd_zero_page);
477
478 while (sg_alloc_table(&table, nr_pages, gfp)) {
479 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
480 schedule_timeout_interruptible(1);
481 }
482 ASSERT3U(table.nents, ==, nr_pages);
483
484 abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
485 abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
486 ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
487 ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl;
488 ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
489 abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
490 abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
491
492 abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
493 sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
494 }
495
496 ABDSTAT_BUMP(abdstat_scatter_cnt);
497 ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
498 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
499 }
500
501 #else /* _KERNEL */
502
503 #ifndef PAGE_SHIFT
504 #define PAGE_SHIFT (highbit64(PAGESIZE)-1)
505 #endif
506
507 #define zfs_kmap_atomic(chunk) ((void *)chunk)
508 #define zfs_kunmap_atomic(addr) do { (void)(addr); } while (0)
509 #define local_irq_save(flags) do { (void)(flags); } while (0)
510 #define local_irq_restore(flags) do { (void)(flags); } while (0)
511 #define nth_page(pg, i) \
512 ((struct page *)((void *)(pg) + (i) * PAGESIZE))
513
514 struct scatterlist {
515 struct page *page;
516 int length;
517 int end;
518 };
519
520 static void
521 sg_init_table(struct scatterlist *sg, int nr)
522 {
523 memset(sg, 0, nr * sizeof (struct scatterlist));
524 sg[nr - 1].end = 1;
525 }
526
527 /*
528 * This must be called if any of the sg_table allocation functions
529 * are called.
530 */
531 static void
532 abd_free_sg_table(abd_t *abd)
533 {
534 int nents = ABD_SCATTER(abd).abd_nents;
535 vmem_free(ABD_SCATTER(abd).abd_sgl,
536 nents * sizeof (struct scatterlist));
537 }
538
539 #define for_each_sg(sgl, sg, nr, i) \
540 for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg))
541
542 static inline void
543 sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len,
544 unsigned int offset)
545 {
546 /* currently we don't use offset */
547 ASSERT(offset == 0);
548 sg->page = page;
549 sg->length = len;
550 }
551
552 static inline struct page *
553 sg_page(struct scatterlist *sg)
554 {
555 return (sg->page);
556 }
557
558 static inline struct scatterlist *
559 sg_next(struct scatterlist *sg)
560 {
561 if (sg->end)
562 return (NULL);
563
564 return (sg + 1);
565 }
566
567 void
568 abd_alloc_chunks(abd_t *abd, size_t size)
569 {
570 unsigned nr_pages = abd_chunkcnt_for_bytes(size);
571 struct scatterlist *sg;
572 int i;
573
574 ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages *
575 sizeof (struct scatterlist), KM_SLEEP);
576 sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages);
577
578 abd_for_each_sg(abd, sg, nr_pages, i) {
579 struct page *p = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
580 sg_set_page(sg, p, PAGESIZE, 0);
581 }
582 ABD_SCATTER(abd).abd_nents = nr_pages;
583 }
584
585 void
586 abd_free_chunks(abd_t *abd)
587 {
588 int i, n = ABD_SCATTER(abd).abd_nents;
589 struct scatterlist *sg;
590
591 abd_for_each_sg(abd, sg, n, i) {
592 for (int j = 0; j < sg->length; j += PAGESIZE) {
593 struct page *p = nth_page(sg_page(sg), j >> PAGE_SHIFT);
594 umem_free(p, PAGESIZE);
595 }
596 }
597 abd_free_sg_table(abd);
598 }
599
600 static void
601 abd_alloc_zero_scatter(void)
602 {
603 unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
604 struct scatterlist *sg;
605 int i;
606
607 abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
608 memset(abd_zero_page, 0, PAGESIZE);
609 abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
610 abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
611 abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
612 ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
613 ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
614 abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
615 zfs_refcount_create(&abd_zero_scatter->abd_children);
616 ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages *
617 sizeof (struct scatterlist), KM_SLEEP);
618
619 sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages);
620
621 abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
622 sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
623 }
624
625 ABDSTAT_BUMP(abdstat_scatter_cnt);
626 ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
627 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
628 }
629
630 #endif /* _KERNEL */
631
632 boolean_t
633 abd_size_alloc_linear(size_t size)
634 {
635 return (size < zfs_abd_scatter_min_size ? B_TRUE : B_FALSE);
636 }
637
638 void
639 abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op)
640 {
641 ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
642 int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size;
643 if (op == ABDSTAT_INCR) {
644 ABDSTAT_BUMP(abdstat_scatter_cnt);
645 ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size);
646 ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste);
647 arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE);
648 } else {
649 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
650 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
651 ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste);
652 arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE);
653 }
654 }
655
656 void
657 abd_update_linear_stats(abd_t *abd, abd_stats_op_t op)
658 {
659 ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
660 if (op == ABDSTAT_INCR) {
661 ABDSTAT_BUMP(abdstat_linear_cnt);
662 ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
663 } else {
664 ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
665 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
666 }
667 }
668
669 void
670 abd_verify_scatter(abd_t *abd)
671 {
672 size_t n;
673 int i = 0;
674 struct scatterlist *sg = NULL;
675
676 ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0);
677 ASSERT3U(ABD_SCATTER(abd).abd_offset, <,
678 ABD_SCATTER(abd).abd_sgl->length);
679 n = ABD_SCATTER(abd).abd_nents;
680 abd_for_each_sg(abd, sg, n, i) {
681 ASSERT3P(sg_page(sg), !=, NULL);
682 }
683 }
684
685 static void
686 abd_free_zero_scatter(void)
687 {
688 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
689 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE);
690 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
691
692 abd_free_sg_table(abd_zero_scatter);
693 abd_free_struct(abd_zero_scatter);
694 abd_zero_scatter = NULL;
695 ASSERT3P(abd_zero_page, !=, NULL);
696 #if defined(_KERNEL)
697 abd_unmark_zfs_page(abd_zero_page);
698 __free_page(abd_zero_page);
699 #else
700 umem_free(abd_zero_page, PAGESIZE);
701 #endif /* _KERNEL */
702 }
703
704 static int
705 abd_kstats_update(kstat_t *ksp, int rw)
706 {
707 abd_stats_t *as = ksp->ks_data;
708
709 if (rw == KSTAT_WRITE)
710 return (EACCES);
711 as->abdstat_struct_size.value.ui64 =
712 wmsum_value(&abd_sums.abdstat_struct_size);
713 as->abdstat_linear_cnt.value.ui64 =
714 wmsum_value(&abd_sums.abdstat_linear_cnt);
715 as->abdstat_linear_data_size.value.ui64 =
716 wmsum_value(&abd_sums.abdstat_linear_data_size);
717 as->abdstat_scatter_cnt.value.ui64 =
718 wmsum_value(&abd_sums.abdstat_scatter_cnt);
719 as->abdstat_scatter_data_size.value.ui64 =
720 wmsum_value(&abd_sums.abdstat_scatter_data_size);
721 as->abdstat_scatter_chunk_waste.value.ui64 =
722 wmsum_value(&abd_sums.abdstat_scatter_chunk_waste);
723 for (int i = 0; i < MAX_ORDER; i++) {
724 as->abdstat_scatter_orders[i].value.ui64 =
725 wmsum_value(&abd_sums.abdstat_scatter_orders[i]);
726 }
727 as->abdstat_scatter_page_multi_chunk.value.ui64 =
728 wmsum_value(&abd_sums.abdstat_scatter_page_multi_chunk);
729 as->abdstat_scatter_page_multi_zone.value.ui64 =
730 wmsum_value(&abd_sums.abdstat_scatter_page_multi_zone);
731 as->abdstat_scatter_page_alloc_retry.value.ui64 =
732 wmsum_value(&abd_sums.abdstat_scatter_page_alloc_retry);
733 as->abdstat_scatter_sg_table_retry.value.ui64 =
734 wmsum_value(&abd_sums.abdstat_scatter_sg_table_retry);
735 return (0);
736 }
737
738 void
739 abd_init(void)
740 {
741 int i;
742
743 abd_cache = kmem_cache_create("abd_t", sizeof (abd_t),
744 0, NULL, NULL, NULL, NULL, NULL, 0);
745
746 wmsum_init(&abd_sums.abdstat_struct_size, 0);
747 wmsum_init(&abd_sums.abdstat_linear_cnt, 0);
748 wmsum_init(&abd_sums.abdstat_linear_data_size, 0);
749 wmsum_init(&abd_sums.abdstat_scatter_cnt, 0);
750 wmsum_init(&abd_sums.abdstat_scatter_data_size, 0);
751 wmsum_init(&abd_sums.abdstat_scatter_chunk_waste, 0);
752 for (i = 0; i < MAX_ORDER; i++)
753 wmsum_init(&abd_sums.abdstat_scatter_orders[i], 0);
754 wmsum_init(&abd_sums.abdstat_scatter_page_multi_chunk, 0);
755 wmsum_init(&abd_sums.abdstat_scatter_page_multi_zone, 0);
756 wmsum_init(&abd_sums.abdstat_scatter_page_alloc_retry, 0);
757 wmsum_init(&abd_sums.abdstat_scatter_sg_table_retry, 0);
758
759 abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
760 sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
761 if (abd_ksp != NULL) {
762 for (i = 0; i < MAX_ORDER; i++) {
763 snprintf(abd_stats.abdstat_scatter_orders[i].name,
764 KSTAT_STRLEN, "scatter_order_%d", i);
765 abd_stats.abdstat_scatter_orders[i].data_type =
766 KSTAT_DATA_UINT64;
767 }
768 abd_ksp->ks_data = &abd_stats;
769 abd_ksp->ks_update = abd_kstats_update;
770 kstat_install(abd_ksp);
771 }
772
773 abd_alloc_zero_scatter();
774 }
775
776 void
777 abd_fini(void)
778 {
779 abd_free_zero_scatter();
780
781 if (abd_ksp != NULL) {
782 kstat_delete(abd_ksp);
783 abd_ksp = NULL;
784 }
785
786 wmsum_fini(&abd_sums.abdstat_struct_size);
787 wmsum_fini(&abd_sums.abdstat_linear_cnt);
788 wmsum_fini(&abd_sums.abdstat_linear_data_size);
789 wmsum_fini(&abd_sums.abdstat_scatter_cnt);
790 wmsum_fini(&abd_sums.abdstat_scatter_data_size);
791 wmsum_fini(&abd_sums.abdstat_scatter_chunk_waste);
792 for (int i = 0; i < MAX_ORDER; i++)
793 wmsum_fini(&abd_sums.abdstat_scatter_orders[i]);
794 wmsum_fini(&abd_sums.abdstat_scatter_page_multi_chunk);
795 wmsum_fini(&abd_sums.abdstat_scatter_page_multi_zone);
796 wmsum_fini(&abd_sums.abdstat_scatter_page_alloc_retry);
797 wmsum_fini(&abd_sums.abdstat_scatter_sg_table_retry);
798
799 if (abd_cache) {
800 kmem_cache_destroy(abd_cache);
801 abd_cache = NULL;
802 }
803 }
804
805 void
806 abd_free_linear_page(abd_t *abd)
807 {
808 /* Transform it back into a scatter ABD for freeing */
809 struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl;
810 abd->abd_flags &= ~ABD_FLAG_LINEAR;
811 abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE;
812 ABD_SCATTER(abd).abd_nents = 1;
813 ABD_SCATTER(abd).abd_offset = 0;
814 ABD_SCATTER(abd).abd_sgl = sg;
815 abd_free_chunks(abd);
816
817 abd_update_scatter_stats(abd, ABDSTAT_DECR);
818 }
819
820 /*
821 * If we're going to use this ABD for doing I/O using the block layer, the
822 * consumer of the ABD data doesn't care if it's scattered or not, and we don't
823 * plan to store this ABD in memory for a long period of time, we should
824 * allocate the ABD type that requires the least data copying to do the I/O.
825 *
826 * On Linux the optimal thing to do would be to use abd_get_offset() and
827 * construct a new ABD which shares the original pages thereby eliminating
828 * the copy. But for the moment a new linear ABD is allocated until this
829 * performance optimization can be implemented.
830 */
831 abd_t *
832 abd_alloc_for_io(size_t size, boolean_t is_metadata)
833 {
834 return (abd_alloc(size, is_metadata));
835 }
836
837 abd_t *
838 abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off,
839 size_t size)
840 {
841 int i = 0;
842 struct scatterlist *sg = NULL;
843
844 abd_verify(sabd);
845 ASSERT3U(off, <=, sabd->abd_size);
846
847 size_t new_offset = ABD_SCATTER(sabd).abd_offset + off;
848
849 if (abd == NULL)
850 abd = abd_alloc_struct(0);
851
852 /*
853 * Even if this buf is filesystem metadata, we only track that
854 * if we own the underlying data buffer, which is not true in
855 * this case. Therefore, we don't ever use ABD_FLAG_META here.
856 */
857
858 abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) {
859 if (new_offset < sg->length)
860 break;
861 new_offset -= sg->length;
862 }
863
864 ABD_SCATTER(abd).abd_sgl = sg;
865 ABD_SCATTER(abd).abd_offset = new_offset;
866 ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i;
867
868 return (abd);
869 }
870
871 /*
872 * Initialize the abd_iter.
873 */
874 void
875 abd_iter_init(struct abd_iter *aiter, abd_t *abd)
876 {
877 ASSERT(!abd_is_gang(abd));
878 abd_verify(abd);
879 aiter->iter_abd = abd;
880 aiter->iter_mapaddr = NULL;
881 aiter->iter_mapsize = 0;
882 aiter->iter_pos = 0;
883 if (abd_is_linear(abd)) {
884 aiter->iter_offset = 0;
885 aiter->iter_sg = NULL;
886 } else {
887 aiter->iter_offset = ABD_SCATTER(abd).abd_offset;
888 aiter->iter_sg = ABD_SCATTER(abd).abd_sgl;
889 }
890 }
891
892 /*
893 * This is just a helper function to see if we have exhausted the
894 * abd_iter and reached the end.
895 */
896 boolean_t
897 abd_iter_at_end(struct abd_iter *aiter)
898 {
899 return (aiter->iter_pos == aiter->iter_abd->abd_size);
900 }
901
902 /*
903 * Advance the iterator by a certain amount. Cannot be called when a chunk is
904 * in use. This can be safely called when the aiter has already exhausted, in
905 * which case this does nothing.
906 */
907 void
908 abd_iter_advance(struct abd_iter *aiter, size_t amount)
909 {
910 ASSERT3P(aiter->iter_mapaddr, ==, NULL);
911 ASSERT0(aiter->iter_mapsize);
912
913 /* There's nothing left to advance to, so do nothing */
914 if (abd_iter_at_end(aiter))
915 return;
916
917 aiter->iter_pos += amount;
918 aiter->iter_offset += amount;
919 if (!abd_is_linear(aiter->iter_abd)) {
920 while (aiter->iter_offset >= aiter->iter_sg->length) {
921 aiter->iter_offset -= aiter->iter_sg->length;
922 aiter->iter_sg = sg_next(aiter->iter_sg);
923 if (aiter->iter_sg == NULL) {
924 ASSERT0(aiter->iter_offset);
925 break;
926 }
927 }
928 }
929 }
930
931 /*
932 * Map the current chunk into aiter. This can be safely called when the aiter
933 * has already exhausted, in which case this does nothing.
934 */
935 void
936 abd_iter_map(struct abd_iter *aiter)
937 {
938 void *paddr;
939 size_t offset = 0;
940
941 ASSERT3P(aiter->iter_mapaddr, ==, NULL);
942 ASSERT0(aiter->iter_mapsize);
943
944 /* There's nothing left to iterate over, so do nothing */
945 if (abd_iter_at_end(aiter))
946 return;
947
948 if (abd_is_linear(aiter->iter_abd)) {
949 ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
950 offset = aiter->iter_offset;
951 aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
952 paddr = ABD_LINEAR_BUF(aiter->iter_abd);
953 } else {
954 offset = aiter->iter_offset;
955 aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset,
956 aiter->iter_abd->abd_size - aiter->iter_pos);
957
958 paddr = zfs_kmap_atomic(sg_page(aiter->iter_sg));
959 }
960
961 aiter->iter_mapaddr = (char *)paddr + offset;
962 }
963
964 /*
965 * Unmap the current chunk from aiter. This can be safely called when the aiter
966 * has already exhausted, in which case this does nothing.
967 */
968 void
969 abd_iter_unmap(struct abd_iter *aiter)
970 {
971 /* There's nothing left to unmap, so do nothing */
972 if (abd_iter_at_end(aiter))
973 return;
974
975 if (!abd_is_linear(aiter->iter_abd)) {
976 /* LINTED E_FUNC_SET_NOT_USED */
977 zfs_kunmap_atomic(aiter->iter_mapaddr - aiter->iter_offset);
978 }
979
980 ASSERT3P(aiter->iter_mapaddr, !=, NULL);
981 ASSERT3U(aiter->iter_mapsize, >, 0);
982
983 aiter->iter_mapaddr = NULL;
984 aiter->iter_mapsize = 0;
985 }
986
987 void
988 abd_cache_reap_now(void)
989 {
990 }
991
992 #if defined(_KERNEL)
993 /*
994 * bio_nr_pages for ABD.
995 * @off is the offset in @abd
996 */
997 unsigned long
998 abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off)
999 {
1000 unsigned long pos;
1001
1002 if (abd_is_gang(abd)) {
1003 unsigned long count = 0;
1004
1005 for (abd_t *cabd = abd_gang_get_offset(abd, &off);
1006 cabd != NULL && size != 0;
1007 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
1008 ASSERT3U(off, <, cabd->abd_size);
1009 int mysize = MIN(size, cabd->abd_size - off);
1010 count += abd_nr_pages_off(cabd, mysize, off);
1011 size -= mysize;
1012 off = 0;
1013 }
1014 return (count);
1015 }
1016
1017 if (abd_is_linear(abd))
1018 pos = (unsigned long)abd_to_buf(abd) + off;
1019 else
1020 pos = ABD_SCATTER(abd).abd_offset + off;
1021
1022 return (((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) -
1023 (pos >> PAGE_SHIFT));
1024 }
1025
1026 static unsigned int
1027 bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size)
1028 {
1029 unsigned int offset, size, i;
1030 struct page *page;
1031
1032 offset = offset_in_page(buf_ptr);
1033 for (i = 0; i < bio->bi_max_vecs; i++) {
1034 size = PAGE_SIZE - offset;
1035
1036 if (bio_size <= 0)
1037 break;
1038
1039 if (size > bio_size)
1040 size = bio_size;
1041
1042 if (is_vmalloc_addr(buf_ptr))
1043 page = vmalloc_to_page(buf_ptr);
1044 else
1045 page = virt_to_page(buf_ptr);
1046
1047 /*
1048 * Some network related block device uses tcp_sendpage, which
1049 * doesn't behave well when using 0-count page, this is a
1050 * safety net to catch them.
1051 */
1052 ASSERT3S(page_count(page), >, 0);
1053
1054 if (bio_add_page(bio, page, size, offset) != size)
1055 break;
1056
1057 buf_ptr += size;
1058 bio_size -= size;
1059 offset = 0;
1060 }
1061
1062 return (bio_size);
1063 }
1064
1065 /*
1066 * bio_map for gang ABD.
1067 */
1068 static unsigned int
1069 abd_gang_bio_map_off(struct bio *bio, abd_t *abd,
1070 unsigned int io_size, size_t off)
1071 {
1072 ASSERT(abd_is_gang(abd));
1073
1074 for (abd_t *cabd = abd_gang_get_offset(abd, &off);
1075 cabd != NULL;
1076 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
1077 ASSERT3U(off, <, cabd->abd_size);
1078 int size = MIN(io_size, cabd->abd_size - off);
1079 int remainder = abd_bio_map_off(bio, cabd, size, off);
1080 io_size -= (size - remainder);
1081 if (io_size == 0 || remainder > 0)
1082 return (io_size);
1083 off = 0;
1084 }
1085 ASSERT0(io_size);
1086 return (io_size);
1087 }
1088
1089 /*
1090 * bio_map for ABD.
1091 * @off is the offset in @abd
1092 * Remaining IO size is returned
1093 */
1094 unsigned int
1095 abd_bio_map_off(struct bio *bio, abd_t *abd,
1096 unsigned int io_size, size_t off)
1097 {
1098 struct abd_iter aiter;
1099
1100 ASSERT3U(io_size, <=, abd->abd_size - off);
1101 if (abd_is_linear(abd))
1102 return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size));
1103
1104 ASSERT(!abd_is_linear(abd));
1105 if (abd_is_gang(abd))
1106 return (abd_gang_bio_map_off(bio, abd, io_size, off));
1107
1108 abd_iter_init(&aiter, abd);
1109 abd_iter_advance(&aiter, off);
1110
1111 for (int i = 0; i < bio->bi_max_vecs; i++) {
1112 struct page *pg;
1113 size_t len, sgoff, pgoff;
1114 struct scatterlist *sg;
1115
1116 if (io_size <= 0)
1117 break;
1118
1119 sg = aiter.iter_sg;
1120 sgoff = aiter.iter_offset;
1121 pgoff = sgoff & (PAGESIZE - 1);
1122 len = MIN(io_size, PAGESIZE - pgoff);
1123 ASSERT(len > 0);
1124
1125 pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT);
1126 if (bio_add_page(bio, pg, len, pgoff) != len)
1127 break;
1128
1129 io_size -= len;
1130 abd_iter_advance(&aiter, len);
1131 }
1132
1133 return (io_size);
1134 }
1135
1136 /* Tunable Parameters */
1137 module_param(zfs_abd_scatter_enabled, int, 0644);
1138 MODULE_PARM_DESC(zfs_abd_scatter_enabled,
1139 "Toggle whether ABD allocations must be linear.");
1140 module_param(zfs_abd_scatter_min_size, int, 0644);
1141 MODULE_PARM_DESC(zfs_abd_scatter_min_size,
1142 "Minimum size of scatter allocations.");
1143 /* CSTYLED */
1144 module_param(zfs_abd_scatter_max_order, uint, 0644);
1145 MODULE_PARM_DESC(zfs_abd_scatter_max_order,
1146 "Maximum order allocation used for a scatter ABD.");
1147 #endif