]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/linux/zfs/arc_os.c
Revise ARC shrinker algorithm
[mirror_zfs.git] / module / os / linux / zfs / arc_os.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2018, Joyent, Inc.
24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 #include <sys/spa.h>
30 #include <sys/zio.h>
31 #include <sys/spa_impl.h>
32 #include <sys/zio_compress.h>
33 #include <sys/zio_checksum.h>
34 #include <sys/zfs_context.h>
35 #include <sys/arc.h>
36 #include <sys/zfs_refcount.h>
37 #include <sys/vdev.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/multilist.h>
43 #include <sys/abd.h>
44 #include <sys/zil.h>
45 #include <sys/fm/fs/zfs.h>
46 #ifdef _KERNEL
47 #include <sys/shrinker.h>
48 #include <sys/vmsystm.h>
49 #include <sys/zpl.h>
50 #include <linux/page_compat.h>
51 #endif
52 #include <sys/callb.h>
53 #include <sys/kstat.h>
54 #include <sys/zthr.h>
55 #include <zfs_fletcher.h>
56 #include <sys/arc_impl.h>
57 #include <sys/trace_zfs.h>
58 #include <sys/aggsum.h>
59
60 /*
61 * This is a limit on how many pages the ARC shrinker makes available for
62 * eviction in response to one page allocation attempt. Note that in
63 * practice, the kernel's shrinker can ask us to evict up to about 4x this
64 * for one allocation attempt.
65 *
66 * The default limit of 10,000 (in practice, 160MB per allocation attempt
67 * with 4K pages) limits the amount of time spent attempting to reclaim ARC
68 * memory to less than 100ms per allocation attempt, even with a small
69 * average compressed block size of ~8KB.
70 *
71 * See also the comment in arc_shrinker_count().
72 * Set to 0 to disable limit.
73 */
74 int zfs_arc_shrinker_limit = 10000;
75
76
77 /*
78 * Return a default max arc size based on the amount of physical memory.
79 */
80 uint64_t
81 arc_default_max(uint64_t min, uint64_t allmem)
82 {
83 /* Default to 1/2 of all memory. */
84 return (MAX(allmem / 2, min));
85 }
86
87 #ifdef _KERNEL
88 /*
89 * Return maximum amount of memory that we could possibly use. Reduced
90 * to half of all memory in user space which is primarily used for testing.
91 */
92 uint64_t
93 arc_all_memory(void)
94 {
95 #ifdef CONFIG_HIGHMEM
96 return (ptob(zfs_totalram_pages - zfs_totalhigh_pages));
97 #else
98 return (ptob(zfs_totalram_pages));
99 #endif /* CONFIG_HIGHMEM */
100 }
101
102 /*
103 * Return the amount of memory that is considered free. In user space
104 * which is primarily used for testing we pretend that free memory ranges
105 * from 0-20% of all memory.
106 */
107 uint64_t
108 arc_free_memory(void)
109 {
110 #ifdef CONFIG_HIGHMEM
111 struct sysinfo si;
112 si_meminfo(&si);
113 return (ptob(si.freeram - si.freehigh));
114 #else
115 return (ptob(nr_free_pages() +
116 nr_inactive_file_pages() +
117 nr_slab_reclaimable_pages()));
118 #endif /* CONFIG_HIGHMEM */
119 }
120
121 /*
122 * Return the amount of memory that can be consumed before reclaim will be
123 * needed. Positive if there is sufficient free memory, negative indicates
124 * the amount of memory that needs to be freed up.
125 */
126 int64_t
127 arc_available_memory(void)
128 {
129 return (arc_free_memory() - arc_sys_free);
130 }
131
132 static uint64_t
133 arc_evictable_memory(void)
134 {
135 int64_t asize = aggsum_value(&arc_size);
136 uint64_t arc_clean =
137 zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
138 zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
139 zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
140 zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
141 uint64_t arc_dirty = MAX((int64_t)asize - (int64_t)arc_clean, 0);
142
143 /*
144 * Scale reported evictable memory in proportion to page cache, cap
145 * at specified min/max.
146 */
147 uint64_t min = (ptob(nr_file_pages()) / 100) * zfs_arc_pc_percent;
148 min = MAX(arc_c_min, MIN(arc_c_max, min));
149
150 if (arc_dirty >= min)
151 return (arc_clean);
152
153 return (MAX((int64_t)asize - (int64_t)min, 0));
154 }
155
156 /*
157 * The _count() function returns the number of free-able objects.
158 * The _scan() function returns the number of objects that were freed.
159 */
160 static unsigned long
161 arc_shrinker_count(struct shrinker *shrink, struct shrink_control *sc)
162 {
163 /*
164 * __GFP_FS won't be set if we are called from ZFS code (see
165 * kmem_flags_convert(), which removes it). To avoid a deadlock, we
166 * don't allow evicting in this case. We return 0 rather than
167 * SHRINK_STOP so that the shrinker logic doesn't accumulate a
168 * deficit against us.
169 */
170 if (!(sc->gfp_mask & __GFP_FS)) {
171 return (0);
172 }
173
174 /*
175 * This code is reached in the "direct reclaim" case, where the
176 * kernel (outside ZFS) is trying to allocate a page, and the system
177 * is low on memory.
178 *
179 * The kernel's shrinker code doesn't understand how many pages the
180 * ARC's callback actually frees, so it may ask the ARC to shrink a
181 * lot for one page allocation. This is problematic because it may
182 * take a long time, thus delaying the page allocation, and because
183 * it may force the ARC to unnecessarily shrink very small.
184 *
185 * Therefore, we limit the amount of data that we say is evictable,
186 * which limits the amount that the shrinker will ask us to evict for
187 * one page allocation attempt.
188 *
189 * In practice, we may be asked to shrink 4x the limit to satisfy one
190 * page allocation, before the kernel's shrinker code gives up on us.
191 * When that happens, we rely on the kernel code to find the pages
192 * that we freed before invoking the OOM killer. This happens in
193 * __alloc_pages_slowpath(), which retries and finds the pages we
194 * freed when it calls get_page_from_freelist().
195 *
196 * See also the comment above zfs_arc_shrinker_limit.
197 */
198 int64_t limit = zfs_arc_shrinker_limit != 0 ?
199 zfs_arc_shrinker_limit : INT64_MAX;
200 return (MIN(limit, btop((int64_t)arc_evictable_memory())));
201 }
202
203 static unsigned long
204 arc_shrinker_scan(struct shrinker *shrink, struct shrink_control *sc)
205 {
206 ASSERT((sc->gfp_mask & __GFP_FS) != 0);
207
208 /* The arc is considered warm once reclaim has occurred */
209 if (unlikely(arc_warm == B_FALSE))
210 arc_warm = B_TRUE;
211
212 /*
213 * Evict the requested number of pages by reducing arc_c and waiting
214 * for the requested amount of data to be evicted.
215 */
216 arc_reduce_target_size(ptob(sc->nr_to_scan));
217 arc_wait_for_eviction(ptob(sc->nr_to_scan));
218 if (current->reclaim_state != NULL)
219 current->reclaim_state->reclaimed_slab += sc->nr_to_scan;
220
221 /*
222 * We are experiencing memory pressure which the arc_evict_zthr was
223 * unable to keep up with. Set arc_no_grow to briefly pause arc
224 * growth to avoid compounding the memory pressure.
225 */
226 arc_no_grow = B_TRUE;
227
228 /*
229 * When direct reclaim is observed it usually indicates a rapid
230 * increase in memory pressure. This occurs because the kswapd
231 * threads were unable to asynchronously keep enough free memory
232 * available.
233 */
234 if (current_is_kswapd()) {
235 ARCSTAT_BUMP(arcstat_memory_indirect_count);
236 } else {
237 ARCSTAT_BUMP(arcstat_memory_direct_count);
238 }
239
240 return (sc->nr_to_scan);
241 }
242
243 SPL_SHRINKER_DECLARE(arc_shrinker,
244 arc_shrinker_count, arc_shrinker_scan, DEFAULT_SEEKS);
245
246 int
247 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
248 {
249 uint64_t free_memory = arc_free_memory();
250
251 if (free_memory > arc_all_memory() * arc_lotsfree_percent / 100)
252 return (0);
253
254 if (txg > spa->spa_lowmem_last_txg) {
255 spa->spa_lowmem_last_txg = txg;
256 spa->spa_lowmem_page_load = 0;
257 }
258 /*
259 * If we are in pageout, we know that memory is already tight,
260 * the arc is already going to be evicting, so we just want to
261 * continue to let page writes occur as quickly as possible.
262 */
263 if (current_is_kswapd()) {
264 if (spa->spa_lowmem_page_load >
265 MAX(arc_sys_free / 4, free_memory) / 4) {
266 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
267 return (SET_ERROR(ERESTART));
268 }
269 /* Note: reserve is inflated, so we deflate */
270 atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
271 return (0);
272 } else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
273 /* memory is low, delay before restarting */
274 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
275 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
276 return (SET_ERROR(EAGAIN));
277 }
278 spa->spa_lowmem_page_load = 0;
279 return (0);
280 }
281
282 void
283 arc_lowmem_init(void)
284 {
285 uint64_t allmem = arc_all_memory();
286
287 /*
288 * Register a shrinker to support synchronous (direct) memory
289 * reclaim from the arc. This is done to prevent kswapd from
290 * swapping out pages when it is preferable to shrink the arc.
291 */
292 spl_register_shrinker(&arc_shrinker);
293
294 /*
295 * The ARC tries to keep at least this much memory available for the
296 * system. This gives the ARC time to shrink in response to memory
297 * pressure, before running completely out of memory and invoking the
298 * direct-reclaim ARC shrinker.
299 *
300 * This should be more than twice high_wmark_pages(), so that
301 * arc_wait_for_eviction() will wait until at least the
302 * high_wmark_pages() are free (see arc_evict_state_impl()).
303 *
304 * Note: Even when the system is very low on memory, the kernel's
305 * shrinker code may only ask for one "batch" of pages (512KB) to be
306 * evicted. If concurrent allocations consume these pages, there may
307 * still be insufficient free pages, and the OOM killer takes action.
308 *
309 * By setting arc_sys_free large enough, and having
310 * arc_wait_for_eviction() wait until there is at least arc_sys_free/2
311 * free memory, it is much less likely that concurrent allocations can
312 * consume all the memory that was evicted before checking for
313 * OOM.
314 *
315 * It's hard to iterate the zones from a linux kernel module, which
316 * makes it difficult to determine the watermark dynamically. Instead
317 * we compute the maximum high watermark for this system, based
318 * on the amount of memory, assuming default parameters on Linux kernel
319 * 5.3.
320 */
321
322 /*
323 * Base wmark_low is 4 * the square root of Kbytes of RAM.
324 */
325 long wmark = 4 * int_sqrt(allmem/1024) * 1024;
326
327 /*
328 * Clamp to between 128K and 64MB.
329 */
330 wmark = MAX(wmark, 128 * 1024);
331 wmark = MIN(wmark, 64 * 1024 * 1024);
332
333 /*
334 * watermark_boost can increase the wmark by up to 150%.
335 */
336 wmark += wmark * 150 / 100;
337
338 /*
339 * arc_sys_free needs to be more than 2x the watermark, because
340 * arc_wait_for_eviction() waits for half of arc_sys_free. Bump this up
341 * to 3x to ensure we're above it.
342 */
343 arc_sys_free = wmark * 3 + allmem / 32;
344 }
345
346 void
347 arc_lowmem_fini(void)
348 {
349 spl_unregister_shrinker(&arc_shrinker);
350 }
351
352 int
353 param_set_arc_long(const char *buf, zfs_kernel_param_t *kp)
354 {
355 int error;
356
357 error = param_set_long(buf, kp);
358 if (error < 0)
359 return (SET_ERROR(error));
360
361 arc_tuning_update(B_TRUE);
362
363 return (0);
364 }
365
366 int
367 param_set_arc_int(const char *buf, zfs_kernel_param_t *kp)
368 {
369 int error;
370
371 error = param_set_int(buf, kp);
372 if (error < 0)
373 return (SET_ERROR(error));
374
375 arc_tuning_update(B_TRUE);
376
377 return (0);
378 }
379 #else /* _KERNEL */
380 int64_t
381 arc_available_memory(void)
382 {
383 int64_t lowest = INT64_MAX;
384
385 /* Every 100 calls, free a small amount */
386 if (spa_get_random(100) == 0)
387 lowest = -1024;
388
389 return (lowest);
390 }
391
392 int
393 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
394 {
395 return (0);
396 }
397
398 uint64_t
399 arc_all_memory(void)
400 {
401 return (ptob(physmem) / 2);
402 }
403
404 uint64_t
405 arc_free_memory(void)
406 {
407 return (spa_get_random(arc_all_memory() * 20 / 100));
408 }
409 #endif /* _KERNEL */
410
411 /*
412 * Helper function for arc_prune_async() it is responsible for safely
413 * handling the execution of a registered arc_prune_func_t.
414 */
415 static void
416 arc_prune_task(void *ptr)
417 {
418 arc_prune_t *ap = (arc_prune_t *)ptr;
419 arc_prune_func_t *func = ap->p_pfunc;
420
421 if (func != NULL)
422 func(ap->p_adjust, ap->p_private);
423
424 zfs_refcount_remove(&ap->p_refcnt, func);
425 }
426
427 /*
428 * Notify registered consumers they must drop holds on a portion of the ARC
429 * buffered they reference. This provides a mechanism to ensure the ARC can
430 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
431 * is analogous to dnlc_reduce_cache() but more generic.
432 *
433 * This operation is performed asynchronously so it may be safely called
434 * in the context of the arc_reclaim_thread(). A reference is taken here
435 * for each registered arc_prune_t and the arc_prune_task() is responsible
436 * for releasing it once the registered arc_prune_func_t has completed.
437 */
438 void
439 arc_prune_async(int64_t adjust)
440 {
441 arc_prune_t *ap;
442
443 mutex_enter(&arc_prune_mtx);
444 for (ap = list_head(&arc_prune_list); ap != NULL;
445 ap = list_next(&arc_prune_list, ap)) {
446
447 if (zfs_refcount_count(&ap->p_refcnt) >= 2)
448 continue;
449
450 zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc);
451 ap->p_adjust = adjust;
452 if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
453 ap, TQ_SLEEP) == TASKQID_INVALID) {
454 zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc);
455 continue;
456 }
457 ARCSTAT_BUMP(arcstat_prune);
458 }
459 mutex_exit(&arc_prune_mtx);
460 }
461
462 /* BEGIN CSTYLED */
463 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, shrinker_limit, INT, ZMOD_RW,
464 "Limit on number of pages that ARC shrinker can reclaim at once");
465 /* END CSTYLED */