]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/linux/zfs/vdev_disk.c
Linux 6.5 compat: blkdev changes
[mirror_zfs.git] / module / os / linux / zfs / vdev_disk.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/vdev_disk.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/abd.h>
35 #include <sys/fs/zfs.h>
36 #include <sys/zio.h>
37 #include <linux/blkpg.h>
38 #include <linux/msdos_fs.h>
39 #include <linux/vfs_compat.h>
40 #ifdef HAVE_LINUX_BLK_CGROUP_HEADER
41 #include <linux/blk-cgroup.h>
42 #endif
43
44 typedef struct vdev_disk {
45 struct block_device *vd_bdev;
46 krwlock_t vd_lock;
47 } vdev_disk_t;
48
49 /*
50 * Unique identifier for the exclusive vdev holder.
51 */
52 static void *zfs_vdev_holder = VDEV_HOLDER;
53
54 /*
55 * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
56 * device is missing. The missing path may be transient since the links
57 * can be briefly removed and recreated in response to udev events.
58 */
59 static uint_t zfs_vdev_open_timeout_ms = 1000;
60
61 /*
62 * Size of the "reserved" partition, in blocks.
63 */
64 #define EFI_MIN_RESV_SIZE (16 * 1024)
65
66 /*
67 * Virtual device vector for disks.
68 */
69 typedef struct dio_request {
70 zio_t *dr_zio; /* Parent ZIO */
71 atomic_t dr_ref; /* References */
72 int dr_error; /* Bio error */
73 int dr_bio_count; /* Count of bio's */
74 struct bio *dr_bio[]; /* Attached bio's */
75 } dio_request_t;
76
77 /*
78 * BIO request failfast mask.
79 */
80
81 static unsigned int zfs_vdev_failfast_mask = 1;
82
83 #ifdef HAVE_BLK_MODE_T
84 static blk_mode_t
85 #else
86 static fmode_t
87 #endif
88 vdev_bdev_mode(spa_mode_t spa_mode)
89 {
90 #ifdef HAVE_BLK_MODE_T
91 blk_mode_t mode = 0;
92
93 if (spa_mode & SPA_MODE_READ)
94 mode |= BLK_OPEN_READ;
95
96 if (spa_mode & SPA_MODE_WRITE)
97 mode |= BLK_OPEN_WRITE;
98 #else
99 fmode_t mode = 0;
100
101 if (spa_mode & SPA_MODE_READ)
102 mode |= FMODE_READ;
103
104 if (spa_mode & SPA_MODE_WRITE)
105 mode |= FMODE_WRITE;
106 #endif
107
108 return (mode);
109 }
110
111 /*
112 * Returns the usable capacity (in bytes) for the partition or disk.
113 */
114 static uint64_t
115 bdev_capacity(struct block_device *bdev)
116 {
117 return (i_size_read(bdev->bd_inode));
118 }
119
120 #if !defined(HAVE_BDEV_WHOLE)
121 static inline struct block_device *
122 bdev_whole(struct block_device *bdev)
123 {
124 return (bdev->bd_contains);
125 }
126 #endif
127
128 #if defined(HAVE_BDEVNAME)
129 #define vdev_bdevname(bdev, name) bdevname(bdev, name)
130 #else
131 static inline void
132 vdev_bdevname(struct block_device *bdev, char *name)
133 {
134 snprintf(name, BDEVNAME_SIZE, "%pg", bdev);
135 }
136 #endif
137
138 /*
139 * Returns the maximum expansion capacity of the block device (in bytes).
140 *
141 * It is possible to expand a vdev when it has been created as a wholedisk
142 * and the containing block device has increased in capacity. Or when the
143 * partition containing the pool has been manually increased in size.
144 *
145 * This function is only responsible for calculating the potential expansion
146 * size so it can be reported by 'zpool list'. The efi_use_whole_disk() is
147 * responsible for verifying the expected partition layout in the wholedisk
148 * case, and updating the partition table if appropriate. Once the partition
149 * size has been increased the additional capacity will be visible using
150 * bdev_capacity().
151 *
152 * The returned maximum expansion capacity is always expected to be larger, or
153 * at the very least equal, to its usable capacity to prevent overestimating
154 * the pool expandsize.
155 */
156 static uint64_t
157 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
158 {
159 uint64_t psize;
160 int64_t available;
161
162 if (wholedisk && bdev != bdev_whole(bdev)) {
163 /*
164 * When reporting maximum expansion capacity for a wholedisk
165 * deduct any capacity which is expected to be lost due to
166 * alignment restrictions. Over reporting this value isn't
167 * harmful and would only result in slightly less capacity
168 * than expected post expansion.
169 * The estimated available space may be slightly smaller than
170 * bdev_capacity() for devices where the number of sectors is
171 * not a multiple of the alignment size and the partition layout
172 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
173 * "reserved" EFI partition: in such cases return the device
174 * usable capacity.
175 */
176 available = i_size_read(bdev_whole(bdev)->bd_inode) -
177 ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
178 PARTITION_END_ALIGNMENT) << SECTOR_BITS);
179 psize = MAX(available, bdev_capacity(bdev));
180 } else {
181 psize = bdev_capacity(bdev);
182 }
183
184 return (psize);
185 }
186
187 static void
188 vdev_disk_error(zio_t *zio)
189 {
190 /*
191 * This function can be called in interrupt context, for instance while
192 * handling IRQs coming from a misbehaving disk device; use printk()
193 * which is safe from any context.
194 */
195 printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
196 "offset=%llu size=%llu flags=%llu\n", spa_name(zio->io_spa),
197 zio->io_vd->vdev_path, zio->io_error, zio->io_type,
198 (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
199 zio->io_flags);
200 }
201
202 static void
203 vdev_disk_kobj_evt_post(vdev_t *v)
204 {
205 vdev_disk_t *vd = v->vdev_tsd;
206 if (vd && vd->vd_bdev) {
207 spl_signal_kobj_evt(vd->vd_bdev);
208 } else {
209 vdev_dbgmsg(v, "vdev_disk_t is NULL for VDEV:%s\n",
210 v->vdev_path);
211 }
212 }
213
214 #if !defined(HAVE_BLKDEV_GET_BY_PATH_4ARG)
215 /*
216 * Define a dummy struct blk_holder_ops for kernel versions
217 * prior to 6.5.
218 */
219 struct blk_holder_ops {};
220 #endif
221
222 static struct block_device *
223 vdev_blkdev_get_by_path(const char *path, spa_mode_t mode, void *holder,
224 const struct blk_holder_ops *hops)
225 {
226 #ifdef HAVE_BLKDEV_GET_BY_PATH_4ARG
227 return (blkdev_get_by_path(path,
228 vdev_bdev_mode(mode) | BLK_OPEN_EXCL, holder, hops));
229 #else
230 return (blkdev_get_by_path(path,
231 vdev_bdev_mode(mode) | FMODE_EXCL, holder));
232 #endif
233 }
234
235 static void
236 vdev_blkdev_put(struct block_device *bdev, spa_mode_t mode, void *holder)
237 {
238 #ifdef HAVE_BLKDEV_PUT_HOLDER
239 return (blkdev_put(bdev, holder));
240 #else
241 return (blkdev_put(bdev, vdev_bdev_mode(mode) | FMODE_EXCL));
242 #endif
243 }
244
245 static int
246 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
247 uint64_t *logical_ashift, uint64_t *physical_ashift)
248 {
249 struct block_device *bdev;
250 #ifdef HAVE_BLK_MODE_T
251 blk_mode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa));
252 #else
253 fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa));
254 #endif
255 hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
256 vdev_disk_t *vd;
257
258 /* Must have a pathname and it must be absolute. */
259 if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
260 v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
261 vdev_dbgmsg(v, "invalid vdev_path");
262 return (SET_ERROR(EINVAL));
263 }
264
265 /*
266 * Reopen the device if it is currently open. When expanding a
267 * partition force re-scanning the partition table if userland
268 * did not take care of this already. We need to do this while closed
269 * in order to get an accurate updated block device size. Then
270 * since udev may need to recreate the device links increase the
271 * open retry timeout before reporting the device as unavailable.
272 */
273 vd = v->vdev_tsd;
274 if (vd) {
275 char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
276 boolean_t reread_part = B_FALSE;
277
278 rw_enter(&vd->vd_lock, RW_WRITER);
279 bdev = vd->vd_bdev;
280 vd->vd_bdev = NULL;
281
282 if (bdev) {
283 if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
284 vdev_bdevname(bdev_whole(bdev), disk_name + 5);
285 /*
286 * If userland has BLKPG_RESIZE_PARTITION,
287 * then it should have updated the partition
288 * table already. We can detect this by
289 * comparing our current physical size
290 * with that of the device. If they are
291 * the same, then we must not have
292 * BLKPG_RESIZE_PARTITION or it failed to
293 * update the partition table online. We
294 * fallback to rescanning the partition
295 * table from the kernel below. However,
296 * if the capacity already reflects the
297 * updated partition, then we skip
298 * rescanning the partition table here.
299 */
300 if (v->vdev_psize == bdev_capacity(bdev))
301 reread_part = B_TRUE;
302 }
303
304 vdev_blkdev_put(bdev, mode, zfs_vdev_holder);
305 }
306
307 if (reread_part) {
308 bdev = vdev_blkdev_get_by_path(disk_name, mode,
309 zfs_vdev_holder, NULL);
310 if (!IS_ERR(bdev)) {
311 int error = vdev_bdev_reread_part(bdev);
312 vdev_blkdev_put(bdev, mode, zfs_vdev_holder);
313 if (error == 0) {
314 timeout = MSEC2NSEC(
315 zfs_vdev_open_timeout_ms * 2);
316 }
317 }
318 }
319 } else {
320 vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
321
322 rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
323 rw_enter(&vd->vd_lock, RW_WRITER);
324 }
325
326 /*
327 * Devices are always opened by the path provided at configuration
328 * time. This means that if the provided path is a udev by-id path
329 * then drives may be re-cabled without an issue. If the provided
330 * path is a udev by-path path, then the physical location information
331 * will be preserved. This can be critical for more complicated
332 * configurations where drives are located in specific physical
333 * locations to maximize the systems tolerance to component failure.
334 *
335 * Alternatively, you can provide your own udev rule to flexibly map
336 * the drives as you see fit. It is not advised that you use the
337 * /dev/[hd]d devices which may be reordered due to probing order.
338 * Devices in the wrong locations will be detected by the higher
339 * level vdev validation.
340 *
341 * The specified paths may be briefly removed and recreated in
342 * response to udev events. This should be exceptionally unlikely
343 * because the zpool command makes every effort to verify these paths
344 * have already settled prior to reaching this point. Therefore,
345 * a ENOENT failure at this point is highly likely to be transient
346 * and it is reasonable to sleep and retry before giving up. In
347 * practice delays have been observed to be on the order of 100ms.
348 *
349 * When ERESTARTSYS is returned it indicates the block device is
350 * a zvol which could not be opened due to the deadlock detection
351 * logic in zvol_open(). Extend the timeout and retry the open
352 * subsequent attempts are expected to eventually succeed.
353 */
354 hrtime_t start = gethrtime();
355 bdev = ERR_PTR(-ENXIO);
356 while (IS_ERR(bdev) && ((gethrtime() - start) < timeout)) {
357 bdev = vdev_blkdev_get_by_path(v->vdev_path, mode,
358 zfs_vdev_holder, NULL);
359 if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
360 /*
361 * There is no point of waiting since device is removed
362 * explicitly
363 */
364 if (v->vdev_removed)
365 break;
366
367 schedule_timeout(MSEC_TO_TICK(10));
368 } else if (unlikely(PTR_ERR(bdev) == -ERESTARTSYS)) {
369 timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
370 continue;
371 } else if (IS_ERR(bdev)) {
372 break;
373 }
374 }
375
376 if (IS_ERR(bdev)) {
377 int error = -PTR_ERR(bdev);
378 vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
379 (u_longlong_t)(gethrtime() - start),
380 (u_longlong_t)timeout);
381 vd->vd_bdev = NULL;
382 v->vdev_tsd = vd;
383 rw_exit(&vd->vd_lock);
384 return (SET_ERROR(error));
385 } else {
386 vd->vd_bdev = bdev;
387 v->vdev_tsd = vd;
388 rw_exit(&vd->vd_lock);
389 }
390
391 /* Determine the physical block size */
392 int physical_block_size = bdev_physical_block_size(vd->vd_bdev);
393
394 /* Determine the logical block size */
395 int logical_block_size = bdev_logical_block_size(vd->vd_bdev);
396
397 /* Clear the nowritecache bit, causes vdev_reopen() to try again. */
398 v->vdev_nowritecache = B_FALSE;
399
400 /* Set when device reports it supports TRIM. */
401 v->vdev_has_trim = bdev_discard_supported(vd->vd_bdev);
402
403 /* Set when device reports it supports secure TRIM. */
404 v->vdev_has_securetrim = bdev_secure_discard_supported(vd->vd_bdev);
405
406 /* Inform the ZIO pipeline that we are non-rotational */
407 v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(vd->vd_bdev));
408
409 /* Physical volume size in bytes for the partition */
410 *psize = bdev_capacity(vd->vd_bdev);
411
412 /* Physical volume size in bytes including possible expansion space */
413 *max_psize = bdev_max_capacity(vd->vd_bdev, v->vdev_wholedisk);
414
415 /* Based on the minimum sector size set the block size */
416 *physical_ashift = highbit64(MAX(physical_block_size,
417 SPA_MINBLOCKSIZE)) - 1;
418
419 *logical_ashift = highbit64(MAX(logical_block_size,
420 SPA_MINBLOCKSIZE)) - 1;
421
422 return (0);
423 }
424
425 static void
426 vdev_disk_close(vdev_t *v)
427 {
428 vdev_disk_t *vd = v->vdev_tsd;
429
430 if (v->vdev_reopening || vd == NULL)
431 return;
432
433 if (vd->vd_bdev != NULL) {
434 vdev_blkdev_put(vd->vd_bdev, spa_mode(v->vdev_spa),
435 zfs_vdev_holder);
436 }
437
438 rw_destroy(&vd->vd_lock);
439 kmem_free(vd, sizeof (vdev_disk_t));
440 v->vdev_tsd = NULL;
441 }
442
443 static dio_request_t *
444 vdev_disk_dio_alloc(int bio_count)
445 {
446 dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
447 sizeof (struct bio *) * bio_count, KM_SLEEP);
448 atomic_set(&dr->dr_ref, 0);
449 dr->dr_bio_count = bio_count;
450 dr->dr_error = 0;
451
452 for (int i = 0; i < dr->dr_bio_count; i++)
453 dr->dr_bio[i] = NULL;
454
455 return (dr);
456 }
457
458 static void
459 vdev_disk_dio_free(dio_request_t *dr)
460 {
461 int i;
462
463 for (i = 0; i < dr->dr_bio_count; i++)
464 if (dr->dr_bio[i])
465 bio_put(dr->dr_bio[i]);
466
467 kmem_free(dr, sizeof (dio_request_t) +
468 sizeof (struct bio *) * dr->dr_bio_count);
469 }
470
471 static void
472 vdev_disk_dio_get(dio_request_t *dr)
473 {
474 atomic_inc(&dr->dr_ref);
475 }
476
477 static void
478 vdev_disk_dio_put(dio_request_t *dr)
479 {
480 int rc = atomic_dec_return(&dr->dr_ref);
481
482 /*
483 * Free the dio_request when the last reference is dropped and
484 * ensure zio_interpret is called only once with the correct zio
485 */
486 if (rc == 0) {
487 zio_t *zio = dr->dr_zio;
488 int error = dr->dr_error;
489
490 vdev_disk_dio_free(dr);
491
492 if (zio) {
493 zio->io_error = error;
494 ASSERT3S(zio->io_error, >=, 0);
495 if (zio->io_error)
496 vdev_disk_error(zio);
497
498 zio_delay_interrupt(zio);
499 }
500 }
501 }
502
503 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
504 {
505 dio_request_t *dr = bio->bi_private;
506
507 if (dr->dr_error == 0) {
508 #ifdef HAVE_1ARG_BIO_END_IO_T
509 dr->dr_error = BIO_END_IO_ERROR(bio);
510 #else
511 if (error)
512 dr->dr_error = -(error);
513 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
514 dr->dr_error = EIO;
515 #endif
516 }
517
518 /* Drop reference acquired by __vdev_disk_physio */
519 vdev_disk_dio_put(dr);
520 }
521
522 static inline void
523 vdev_submit_bio_impl(struct bio *bio)
524 {
525 #ifdef HAVE_1ARG_SUBMIT_BIO
526 (void) submit_bio(bio);
527 #else
528 (void) submit_bio(bio_data_dir(bio), bio);
529 #endif
530 }
531
532 /*
533 * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
534 * replace it with preempt_schedule under the following condition:
535 */
536 #if defined(CONFIG_ARM64) && \
537 defined(CONFIG_PREEMPTION) && \
538 defined(CONFIG_BLK_CGROUP)
539 #define preempt_schedule_notrace(x) preempt_schedule(x)
540 #endif
541
542 /*
543 * As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
544 * as an argument removing the need to set it with bio_set_dev(). This
545 * removes the need for all of the following compatibility code.
546 */
547 #if !defined(HAVE_BIO_ALLOC_4ARG)
548
549 #ifdef HAVE_BIO_SET_DEV
550 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
551 /*
552 * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
553 * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
554 * As a side effect the function was converted to GPL-only. Define our
555 * own version when needed which uses rcu_read_lock_sched().
556 *
557 * The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
558 * part, moving blkg_tryget into the private one. Define our own version.
559 */
560 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
561 static inline bool
562 vdev_blkg_tryget(struct blkcg_gq *blkg)
563 {
564 struct percpu_ref *ref = &blkg->refcnt;
565 unsigned long __percpu *count;
566 bool rc;
567
568 rcu_read_lock_sched();
569
570 if (__ref_is_percpu(ref, &count)) {
571 this_cpu_inc(*count);
572 rc = true;
573 } else {
574 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
575 rc = atomic_long_inc_not_zero(&ref->data->count);
576 #else
577 rc = atomic_long_inc_not_zero(&ref->count);
578 #endif
579 }
580
581 rcu_read_unlock_sched();
582
583 return (rc);
584 }
585 #else
586 #define vdev_blkg_tryget(bg) blkg_tryget(bg)
587 #endif
588 #ifdef HAVE_BIO_SET_DEV_MACRO
589 /*
590 * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
591 * GPL-only bio_associate_blkg() symbol thus inadvertently converting
592 * the entire macro. Provide a minimal version which always assigns the
593 * request queue's root_blkg to the bio.
594 */
595 static inline void
596 vdev_bio_associate_blkg(struct bio *bio)
597 {
598 #if defined(HAVE_BIO_BDEV_DISK)
599 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
600 #else
601 struct request_queue *q = bio->bi_disk->queue;
602 #endif
603
604 ASSERT3P(q, !=, NULL);
605 ASSERT3P(bio->bi_blkg, ==, NULL);
606
607 if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
608 bio->bi_blkg = q->root_blkg;
609 }
610
611 #define bio_associate_blkg vdev_bio_associate_blkg
612 #else
613 static inline void
614 vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
615 {
616 #if defined(HAVE_BIO_BDEV_DISK)
617 struct request_queue *q = bdev->bd_disk->queue;
618 #else
619 struct request_queue *q = bio->bi_disk->queue;
620 #endif
621 bio_clear_flag(bio, BIO_REMAPPED);
622 if (bio->bi_bdev != bdev)
623 bio_clear_flag(bio, BIO_THROTTLED);
624 bio->bi_bdev = bdev;
625
626 ASSERT3P(q, !=, NULL);
627 ASSERT3P(bio->bi_blkg, ==, NULL);
628
629 if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
630 bio->bi_blkg = q->root_blkg;
631 }
632 #define bio_set_dev vdev_bio_set_dev
633 #endif
634 #endif
635 #else
636 /*
637 * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
638 */
639 static inline void
640 bio_set_dev(struct bio *bio, struct block_device *bdev)
641 {
642 bio->bi_bdev = bdev;
643 }
644 #endif /* HAVE_BIO_SET_DEV */
645 #endif /* !HAVE_BIO_ALLOC_4ARG */
646
647 static inline void
648 vdev_submit_bio(struct bio *bio)
649 {
650 struct bio_list *bio_list = current->bio_list;
651 current->bio_list = NULL;
652 vdev_submit_bio_impl(bio);
653 current->bio_list = bio_list;
654 }
655
656 static inline struct bio *
657 vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
658 unsigned short nr_vecs)
659 {
660 struct bio *bio;
661
662 #ifdef HAVE_BIO_ALLOC_4ARG
663 bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
664 #else
665 bio = bio_alloc(gfp_mask, nr_vecs);
666 if (likely(bio != NULL))
667 bio_set_dev(bio, bdev);
668 #endif
669
670 return (bio);
671 }
672
673 static inline unsigned int
674 vdev_bio_max_segs(zio_t *zio, int bio_size, uint64_t abd_offset)
675 {
676 unsigned long nr_segs = abd_nr_pages_off(zio->io_abd,
677 bio_size, abd_offset);
678
679 #ifdef HAVE_BIO_MAX_SEGS
680 return (bio_max_segs(nr_segs));
681 #else
682 return (MIN(nr_segs, BIO_MAX_PAGES));
683 #endif
684 }
685
686 static int
687 __vdev_disk_physio(struct block_device *bdev, zio_t *zio,
688 size_t io_size, uint64_t io_offset, int rw, int flags)
689 {
690 dio_request_t *dr;
691 uint64_t abd_offset;
692 uint64_t bio_offset;
693 int bio_size;
694 int bio_count = 16;
695 int error = 0;
696 struct blk_plug plug;
697 unsigned short nr_vecs;
698
699 /*
700 * Accessing outside the block device is never allowed.
701 */
702 if (io_offset + io_size > bdev->bd_inode->i_size) {
703 vdev_dbgmsg(zio->io_vd,
704 "Illegal access %llu size %llu, device size %llu",
705 (u_longlong_t)io_offset,
706 (u_longlong_t)io_size,
707 (u_longlong_t)i_size_read(bdev->bd_inode));
708 return (SET_ERROR(EIO));
709 }
710
711 retry:
712 dr = vdev_disk_dio_alloc(bio_count);
713
714 if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
715 zio->io_vd->vdev_failfast == B_TRUE) {
716 bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
717 zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
718 }
719
720 dr->dr_zio = zio;
721
722 /*
723 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
724 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
725 * can cover at least 128KB and at most 1MB. When the required number
726 * of iovec's exceeds this, we are forced to break the IO in multiple
727 * bio's and wait for them all to complete. This is likely if the
728 * recordsize property is increased beyond 1MB. The default
729 * bio_count=16 should typically accommodate the maximum-size zio of
730 * 16MB.
731 */
732
733 abd_offset = 0;
734 bio_offset = io_offset;
735 bio_size = io_size;
736 for (int i = 0; i <= dr->dr_bio_count; i++) {
737
738 /* Finished constructing bio's for given buffer */
739 if (bio_size <= 0)
740 break;
741
742 /*
743 * If additional bio's are required, we have to retry, but
744 * this should be rare - see the comment above.
745 */
746 if (dr->dr_bio_count == i) {
747 vdev_disk_dio_free(dr);
748 bio_count *= 2;
749 goto retry;
750 }
751
752 nr_vecs = vdev_bio_max_segs(zio, bio_size, abd_offset);
753 dr->dr_bio[i] = vdev_bio_alloc(bdev, GFP_NOIO, nr_vecs);
754 if (unlikely(dr->dr_bio[i] == NULL)) {
755 vdev_disk_dio_free(dr);
756 return (SET_ERROR(ENOMEM));
757 }
758
759 /* Matching put called by vdev_disk_physio_completion */
760 vdev_disk_dio_get(dr);
761
762 BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
763 dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
764 dr->dr_bio[i]->bi_private = dr;
765 bio_set_op_attrs(dr->dr_bio[i], rw, flags);
766
767 /* Remaining size is returned to become the new size */
768 bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
769 bio_size, abd_offset);
770
771 /* Advance in buffer and construct another bio if needed */
772 abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
773 bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
774 }
775
776 /* Extra reference to protect dio_request during vdev_submit_bio */
777 vdev_disk_dio_get(dr);
778
779 if (dr->dr_bio_count > 1)
780 blk_start_plug(&plug);
781
782 /* Submit all bio's associated with this dio */
783 for (int i = 0; i < dr->dr_bio_count; i++) {
784 if (dr->dr_bio[i])
785 vdev_submit_bio(dr->dr_bio[i]);
786 }
787
788 if (dr->dr_bio_count > 1)
789 blk_finish_plug(&plug);
790
791 vdev_disk_dio_put(dr);
792
793 return (error);
794 }
795
796 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
797 {
798 zio_t *zio = bio->bi_private;
799 #ifdef HAVE_1ARG_BIO_END_IO_T
800 zio->io_error = BIO_END_IO_ERROR(bio);
801 #else
802 zio->io_error = -error;
803 #endif
804
805 if (zio->io_error && (zio->io_error == EOPNOTSUPP))
806 zio->io_vd->vdev_nowritecache = B_TRUE;
807
808 bio_put(bio);
809 ASSERT3S(zio->io_error, >=, 0);
810 if (zio->io_error)
811 vdev_disk_error(zio);
812 zio_interrupt(zio);
813 }
814
815 static int
816 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
817 {
818 struct request_queue *q;
819 struct bio *bio;
820
821 q = bdev_get_queue(bdev);
822 if (!q)
823 return (SET_ERROR(ENXIO));
824
825 bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
826 if (unlikely(bio == NULL))
827 return (SET_ERROR(ENOMEM));
828
829 bio->bi_end_io = vdev_disk_io_flush_completion;
830 bio->bi_private = zio;
831 bio_set_flush(bio);
832 vdev_submit_bio(bio);
833 invalidate_bdev(bdev);
834
835 return (0);
836 }
837
838 static int
839 vdev_disk_io_trim(zio_t *zio)
840 {
841 vdev_t *v = zio->io_vd;
842 vdev_disk_t *vd = v->vdev_tsd;
843
844 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
845 if (zio->io_trim_flags & ZIO_TRIM_SECURE) {
846 return (-blkdev_issue_secure_erase(vd->vd_bdev,
847 zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS));
848 } else {
849 return (-blkdev_issue_discard(vd->vd_bdev,
850 zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS));
851 }
852 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD)
853 unsigned long trim_flags = 0;
854 #if defined(BLKDEV_DISCARD_SECURE)
855 if (zio->io_trim_flags & ZIO_TRIM_SECURE)
856 trim_flags |= BLKDEV_DISCARD_SECURE;
857 #endif
858 return (-blkdev_issue_discard(vd->vd_bdev,
859 zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, trim_flags));
860 #else
861 #error "Unsupported kernel"
862 #endif
863 }
864
865 static void
866 vdev_disk_io_start(zio_t *zio)
867 {
868 vdev_t *v = zio->io_vd;
869 vdev_disk_t *vd = v->vdev_tsd;
870 int rw, error;
871
872 /*
873 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
874 * Nothing to be done here but return failure.
875 */
876 if (vd == NULL) {
877 zio->io_error = ENXIO;
878 zio_interrupt(zio);
879 return;
880 }
881
882 rw_enter(&vd->vd_lock, RW_READER);
883
884 /*
885 * If the vdev is closed, it's likely due to a failed reopen and is
886 * in the UNAVAIL state. Nothing to be done here but return failure.
887 */
888 if (vd->vd_bdev == NULL) {
889 rw_exit(&vd->vd_lock);
890 zio->io_error = ENXIO;
891 zio_interrupt(zio);
892 return;
893 }
894
895 switch (zio->io_type) {
896 case ZIO_TYPE_IOCTL:
897
898 if (!vdev_readable(v)) {
899 rw_exit(&vd->vd_lock);
900 zio->io_error = SET_ERROR(ENXIO);
901 zio_interrupt(zio);
902 return;
903 }
904
905 switch (zio->io_cmd) {
906 case DKIOCFLUSHWRITECACHE:
907
908 if (zfs_nocacheflush)
909 break;
910
911 if (v->vdev_nowritecache) {
912 zio->io_error = SET_ERROR(ENOTSUP);
913 break;
914 }
915
916 error = vdev_disk_io_flush(vd->vd_bdev, zio);
917 if (error == 0) {
918 rw_exit(&vd->vd_lock);
919 return;
920 }
921
922 zio->io_error = error;
923
924 break;
925
926 default:
927 zio->io_error = SET_ERROR(ENOTSUP);
928 }
929
930 rw_exit(&vd->vd_lock);
931 zio_execute(zio);
932 return;
933 case ZIO_TYPE_WRITE:
934 rw = WRITE;
935 break;
936
937 case ZIO_TYPE_READ:
938 rw = READ;
939 break;
940
941 case ZIO_TYPE_TRIM:
942 zio->io_error = vdev_disk_io_trim(zio);
943 rw_exit(&vd->vd_lock);
944 zio_interrupt(zio);
945 return;
946
947 default:
948 rw_exit(&vd->vd_lock);
949 zio->io_error = SET_ERROR(ENOTSUP);
950 zio_interrupt(zio);
951 return;
952 }
953
954 zio->io_target_timestamp = zio_handle_io_delay(zio);
955 error = __vdev_disk_physio(vd->vd_bdev, zio,
956 zio->io_size, zio->io_offset, rw, 0);
957 rw_exit(&vd->vd_lock);
958
959 if (error) {
960 zio->io_error = error;
961 zio_interrupt(zio);
962 return;
963 }
964 }
965
966 static void
967 vdev_disk_io_done(zio_t *zio)
968 {
969 /*
970 * If the device returned EIO, we revalidate the media. If it is
971 * determined the media has changed this triggers the asynchronous
972 * removal of the device from the configuration.
973 */
974 if (zio->io_error == EIO) {
975 vdev_t *v = zio->io_vd;
976 vdev_disk_t *vd = v->vdev_tsd;
977
978 if (!zfs_check_disk_status(vd->vd_bdev)) {
979 invalidate_bdev(vd->vd_bdev);
980 v->vdev_remove_wanted = B_TRUE;
981 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
982 }
983 }
984 }
985
986 static void
987 vdev_disk_hold(vdev_t *vd)
988 {
989 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
990
991 /* We must have a pathname, and it must be absolute. */
992 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
993 return;
994
995 /*
996 * Only prefetch path and devid info if the device has
997 * never been opened.
998 */
999 if (vd->vdev_tsd != NULL)
1000 return;
1001
1002 }
1003
1004 static void
1005 vdev_disk_rele(vdev_t *vd)
1006 {
1007 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1008
1009 /* XXX: Implement me as a vnode rele for the device */
1010 }
1011
1012 vdev_ops_t vdev_disk_ops = {
1013 .vdev_op_init = NULL,
1014 .vdev_op_fini = NULL,
1015 .vdev_op_open = vdev_disk_open,
1016 .vdev_op_close = vdev_disk_close,
1017 .vdev_op_asize = vdev_default_asize,
1018 .vdev_op_min_asize = vdev_default_min_asize,
1019 .vdev_op_min_alloc = NULL,
1020 .vdev_op_io_start = vdev_disk_io_start,
1021 .vdev_op_io_done = vdev_disk_io_done,
1022 .vdev_op_state_change = NULL,
1023 .vdev_op_need_resilver = NULL,
1024 .vdev_op_hold = vdev_disk_hold,
1025 .vdev_op_rele = vdev_disk_rele,
1026 .vdev_op_remap = NULL,
1027 .vdev_op_xlate = vdev_default_xlate,
1028 .vdev_op_rebuild_asize = NULL,
1029 .vdev_op_metaslab_init = NULL,
1030 .vdev_op_config_generate = NULL,
1031 .vdev_op_nparity = NULL,
1032 .vdev_op_ndisks = NULL,
1033 .vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
1034 .vdev_op_leaf = B_TRUE, /* leaf vdev */
1035 .vdev_op_kobj_evt_post = vdev_disk_kobj_evt_post
1036 };
1037
1038 /*
1039 * The zfs_vdev_scheduler module option has been deprecated. Setting this
1040 * value no longer has any effect. It has not yet been entirely removed
1041 * to allow the module to be loaded if this option is specified in the
1042 * /etc/modprobe.d/zfs.conf file. The following warning will be logged.
1043 */
1044 static int
1045 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
1046 {
1047 int error = param_set_charp(val, kp);
1048 if (error == 0) {
1049 printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
1050 "is not supported.\n");
1051 }
1052
1053 return (error);
1054 }
1055
1056 static const char *zfs_vdev_scheduler = "unused";
1057 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
1058 param_get_charp, &zfs_vdev_scheduler, 0644);
1059 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
1060
1061 int
1062 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1063 {
1064 uint_t val;
1065 int error;
1066
1067 error = kstrtouint(buf, 0, &val);
1068 if (error < 0)
1069 return (SET_ERROR(error));
1070
1071 if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
1072 return (SET_ERROR(-EINVAL));
1073
1074 error = param_set_uint(buf, kp);
1075 if (error < 0)
1076 return (SET_ERROR(error));
1077
1078 return (0);
1079 }
1080
1081 int
1082 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1083 {
1084 uint_t val;
1085 int error;
1086
1087 error = kstrtouint(buf, 0, &val);
1088 if (error < 0)
1089 return (SET_ERROR(error));
1090
1091 if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
1092 return (SET_ERROR(-EINVAL));
1093
1094 error = param_set_uint(buf, kp);
1095 if (error < 0)
1096 return (SET_ERROR(error));
1097
1098 return (0);
1099 }
1100
1101 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, open_timeout_ms, UINT, ZMOD_RW,
1102 "Timeout before determining that a device is missing");
1103
1104 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, failfast_mask, UINT, ZMOD_RW,
1105 "Defines failfast mask: 1 - device, 2 - transport, 4 - driver");