]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/linux/zfs/vdev_disk.c
pool may become suspended during device expansion
[mirror_zfs.git] / module / os / linux / zfs / vdev_disk.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/vdev_disk.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/abd.h>
35 #include <sys/fs/zfs.h>
36 #include <sys/zio.h>
37 #include <linux/blkpg.h>
38 #include <linux/msdos_fs.h>
39 #include <linux/vfs_compat.h>
40
41 typedef struct vdev_disk {
42 struct block_device *vd_bdev;
43 krwlock_t vd_lock;
44 } vdev_disk_t;
45
46 /*
47 * Unique identifier for the exclusive vdev holder.
48 */
49 static void *zfs_vdev_holder = VDEV_HOLDER;
50
51 /*
52 * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
53 * device is missing. The missing path may be transient since the links
54 * can be briefly removed and recreated in response to udev events.
55 */
56 static unsigned zfs_vdev_open_timeout_ms = 1000;
57
58 /*
59 * Size of the "reserved" partition, in blocks.
60 */
61 #define EFI_MIN_RESV_SIZE (16 * 1024)
62
63 /*
64 * Virtual device vector for disks.
65 */
66 typedef struct dio_request {
67 zio_t *dr_zio; /* Parent ZIO */
68 atomic_t dr_ref; /* References */
69 int dr_error; /* Bio error */
70 int dr_bio_count; /* Count of bio's */
71 struct bio *dr_bio[0]; /* Attached bio's */
72 } dio_request_t;
73
74 static fmode_t
75 vdev_bdev_mode(spa_mode_t spa_mode)
76 {
77 fmode_t mode = 0;
78
79 if (spa_mode & SPA_MODE_READ)
80 mode |= FMODE_READ;
81
82 if (spa_mode & SPA_MODE_WRITE)
83 mode |= FMODE_WRITE;
84
85 return (mode);
86 }
87
88 /*
89 * Returns the usable capacity (in bytes) for the partition or disk.
90 */
91 static uint64_t
92 bdev_capacity(struct block_device *bdev)
93 {
94 return (i_size_read(bdev->bd_inode));
95 }
96
97 /*
98 * Returns the maximum expansion capacity of the block device (in bytes).
99 *
100 * It is possible to expand a vdev when it has been created as a wholedisk
101 * and the containing block device has increased in capacity. Or when the
102 * partition containing the pool has been manually increased in size.
103 *
104 * This function is only responsible for calculating the potential expansion
105 * size so it can be reported by 'zpool list'. The efi_use_whole_disk() is
106 * responsible for verifying the expected partition layout in the wholedisk
107 * case, and updating the partition table if appropriate. Once the partition
108 * size has been increased the additional capacity will be visible using
109 * bdev_capacity().
110 *
111 * The returned maximum expansion capacity is always expected to be larger, or
112 * at the very least equal, to its usable capacity to prevent overestimating
113 * the pool expandsize.
114 */
115 static uint64_t
116 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
117 {
118 uint64_t psize;
119 int64_t available;
120
121 if (wholedisk && bdev->bd_part != NULL && bdev != bdev->bd_contains) {
122 /*
123 * When reporting maximum expansion capacity for a wholedisk
124 * deduct any capacity which is expected to be lost due to
125 * alignment restrictions. Over reporting this value isn't
126 * harmful and would only result in slightly less capacity
127 * than expected post expansion.
128 * The estimated available space may be slightly smaller than
129 * bdev_capacity() for devices where the number of sectors is
130 * not a multiple of the alignment size and the partition layout
131 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
132 * "reserved" EFI partition: in such cases return the device
133 * usable capacity.
134 */
135 available = i_size_read(bdev->bd_contains->bd_inode) -
136 ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
137 PARTITION_END_ALIGNMENT) << SECTOR_BITS);
138 psize = MAX(available, bdev_capacity(bdev));
139 } else {
140 psize = bdev_capacity(bdev);
141 }
142
143 return (psize);
144 }
145
146 static void
147 vdev_disk_error(zio_t *zio)
148 {
149 /*
150 * This function can be called in interrupt context, for instance while
151 * handling IRQs coming from a misbehaving disk device; use printk()
152 * which is safe from any context.
153 */
154 printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
155 "offset=%llu size=%llu flags=%x\n", spa_name(zio->io_spa),
156 zio->io_vd->vdev_path, zio->io_error, zio->io_type,
157 (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
158 zio->io_flags);
159 }
160
161 static int
162 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
163 uint64_t *logical_ashift, uint64_t *physical_ashift)
164 {
165 struct block_device *bdev;
166 fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa));
167 hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
168 vdev_disk_t *vd;
169
170 /* Must have a pathname and it must be absolute. */
171 if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
172 v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
173 vdev_dbgmsg(v, "invalid vdev_path");
174 return (SET_ERROR(EINVAL));
175 }
176
177 /*
178 * Reopen the device if it is currently open. When expanding a
179 * partition force re-scanning the partition table if userland
180 * did not take care of this already. We need to do this while closed
181 * in order to get an accurate updated block device size. Then
182 * since udev may need to recreate the device links increase the
183 * open retry timeout before reporting the device as unavailable.
184 */
185 vd = v->vdev_tsd;
186 if (vd) {
187 char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
188 boolean_t reread_part = B_FALSE;
189
190 rw_enter(&vd->vd_lock, RW_WRITER);
191 bdev = vd->vd_bdev;
192 vd->vd_bdev = NULL;
193
194 if (bdev) {
195 if (v->vdev_expanding && bdev != bdev->bd_contains) {
196 bdevname(bdev->bd_contains, disk_name + 5);
197 /*
198 * If userland has BLKPG_RESIZE_PARTITION,
199 * then it should have updated the partition
200 * table already. We can detect this by
201 * comparing our current physical size
202 * with that of the device. If they are
203 * the same, then we must not have
204 * BLKPG_RESIZE_PARTITION or it failed to
205 * update the partition table online. We
206 * fallback to rescanning the partition
207 * table from the kernel below. However,
208 * if the capacity already reflects the
209 * updated partition, then we skip
210 * rescanning the partition table here.
211 */
212 if (v->vdev_psize == bdev_capacity(bdev))
213 reread_part = B_TRUE;
214 }
215
216 blkdev_put(bdev, mode | FMODE_EXCL);
217 }
218
219 if (reread_part) {
220 bdev = blkdev_get_by_path(disk_name, mode | FMODE_EXCL,
221 zfs_vdev_holder);
222 if (!IS_ERR(bdev)) {
223 int error = vdev_bdev_reread_part(bdev);
224 blkdev_put(bdev, mode | FMODE_EXCL);
225 if (error == 0) {
226 timeout = MSEC2NSEC(
227 zfs_vdev_open_timeout_ms * 2);
228 }
229 }
230 }
231 } else {
232 vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
233
234 rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
235 rw_enter(&vd->vd_lock, RW_WRITER);
236 }
237
238 /*
239 * Devices are always opened by the path provided at configuration
240 * time. This means that if the provided path is a udev by-id path
241 * then drives may be re-cabled without an issue. If the provided
242 * path is a udev by-path path, then the physical location information
243 * will be preserved. This can be critical for more complicated
244 * configurations where drives are located in specific physical
245 * locations to maximize the systems tolerance to component failure.
246 *
247 * Alternatively, you can provide your own udev rule to flexibly map
248 * the drives as you see fit. It is not advised that you use the
249 * /dev/[hd]d devices which may be reordered due to probing order.
250 * Devices in the wrong locations will be detected by the higher
251 * level vdev validation.
252 *
253 * The specified paths may be briefly removed and recreated in
254 * response to udev events. This should be exceptionally unlikely
255 * because the zpool command makes every effort to verify these paths
256 * have already settled prior to reaching this point. Therefore,
257 * a ENOENT failure at this point is highly likely to be transient
258 * and it is reasonable to sleep and retry before giving up. In
259 * practice delays have been observed to be on the order of 100ms.
260 */
261 hrtime_t start = gethrtime();
262 bdev = ERR_PTR(-ENXIO);
263 while (IS_ERR(bdev) && ((gethrtime() - start) < timeout)) {
264 bdev = blkdev_get_by_path(v->vdev_path, mode | FMODE_EXCL,
265 zfs_vdev_holder);
266 if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
267 schedule_timeout(MSEC_TO_TICK(10));
268 } else if (IS_ERR(bdev)) {
269 break;
270 }
271 }
272
273 if (IS_ERR(bdev)) {
274 int error = -PTR_ERR(bdev);
275 vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
276 (u_longlong_t)(gethrtime() - start),
277 (u_longlong_t)timeout);
278 vd->vd_bdev = NULL;
279 v->vdev_tsd = vd;
280 rw_exit(&vd->vd_lock);
281 return (SET_ERROR(error));
282 } else {
283 vd->vd_bdev = bdev;
284 v->vdev_tsd = vd;
285 rw_exit(&vd->vd_lock);
286 }
287
288 struct request_queue *q = bdev_get_queue(vd->vd_bdev);
289
290 /* Determine the physical block size */
291 int physical_block_size = bdev_physical_block_size(vd->vd_bdev);
292
293 /* Determine the logical block size */
294 int logical_block_size = bdev_logical_block_size(vd->vd_bdev);
295
296 /* Clear the nowritecache bit, causes vdev_reopen() to try again. */
297 v->vdev_nowritecache = B_FALSE;
298
299 /* Set when device reports it supports TRIM. */
300 v->vdev_has_trim = !!blk_queue_discard(q);
301
302 /* Set when device reports it supports secure TRIM. */
303 v->vdev_has_securetrim = !!blk_queue_discard_secure(q);
304
305 /* Inform the ZIO pipeline that we are non-rotational */
306 v->vdev_nonrot = blk_queue_nonrot(q);
307
308 /* Physical volume size in bytes for the partition */
309 *psize = bdev_capacity(vd->vd_bdev);
310
311 /* Physical volume size in bytes including possible expansion space */
312 *max_psize = bdev_max_capacity(vd->vd_bdev, v->vdev_wholedisk);
313
314 /* Based on the minimum sector size set the block size */
315 *physical_ashift = highbit64(MAX(physical_block_size,
316 SPA_MINBLOCKSIZE)) - 1;
317
318 *logical_ashift = highbit64(MAX(logical_block_size,
319 SPA_MINBLOCKSIZE)) - 1;
320
321 return (0);
322 }
323
324 static void
325 vdev_disk_close(vdev_t *v)
326 {
327 vdev_disk_t *vd = v->vdev_tsd;
328
329 if (v->vdev_reopening || vd == NULL)
330 return;
331
332 if (vd->vd_bdev != NULL) {
333 blkdev_put(vd->vd_bdev,
334 vdev_bdev_mode(spa_mode(v->vdev_spa)) | FMODE_EXCL);
335 }
336
337 rw_destroy(&vd->vd_lock);
338 kmem_free(vd, sizeof (vdev_disk_t));
339 v->vdev_tsd = NULL;
340 }
341
342 static dio_request_t *
343 vdev_disk_dio_alloc(int bio_count)
344 {
345 dio_request_t *dr;
346 int i;
347
348 dr = kmem_zalloc(sizeof (dio_request_t) +
349 sizeof (struct bio *) * bio_count, KM_SLEEP);
350 if (dr) {
351 atomic_set(&dr->dr_ref, 0);
352 dr->dr_bio_count = bio_count;
353 dr->dr_error = 0;
354
355 for (i = 0; i < dr->dr_bio_count; i++)
356 dr->dr_bio[i] = NULL;
357 }
358
359 return (dr);
360 }
361
362 static void
363 vdev_disk_dio_free(dio_request_t *dr)
364 {
365 int i;
366
367 for (i = 0; i < dr->dr_bio_count; i++)
368 if (dr->dr_bio[i])
369 bio_put(dr->dr_bio[i]);
370
371 kmem_free(dr, sizeof (dio_request_t) +
372 sizeof (struct bio *) * dr->dr_bio_count);
373 }
374
375 static void
376 vdev_disk_dio_get(dio_request_t *dr)
377 {
378 atomic_inc(&dr->dr_ref);
379 }
380
381 static int
382 vdev_disk_dio_put(dio_request_t *dr)
383 {
384 int rc = atomic_dec_return(&dr->dr_ref);
385
386 /*
387 * Free the dio_request when the last reference is dropped and
388 * ensure zio_interpret is called only once with the correct zio
389 */
390 if (rc == 0) {
391 zio_t *zio = dr->dr_zio;
392 int error = dr->dr_error;
393
394 vdev_disk_dio_free(dr);
395
396 if (zio) {
397 zio->io_error = error;
398 ASSERT3S(zio->io_error, >=, 0);
399 if (zio->io_error)
400 vdev_disk_error(zio);
401
402 zio_delay_interrupt(zio);
403 }
404 }
405
406 return (rc);
407 }
408
409 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
410 {
411 dio_request_t *dr = bio->bi_private;
412 int rc;
413
414 if (dr->dr_error == 0) {
415 #ifdef HAVE_1ARG_BIO_END_IO_T
416 dr->dr_error = BIO_END_IO_ERROR(bio);
417 #else
418 if (error)
419 dr->dr_error = -(error);
420 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
421 dr->dr_error = EIO;
422 #endif
423 }
424
425 /* Drop reference acquired by __vdev_disk_physio */
426 rc = vdev_disk_dio_put(dr);
427 }
428
429 static inline void
430 vdev_submit_bio_impl(struct bio *bio)
431 {
432 #ifdef HAVE_1ARG_SUBMIT_BIO
433 submit_bio(bio);
434 #else
435 submit_bio(0, bio);
436 #endif
437 }
438
439 #ifdef HAVE_BIO_SET_DEV
440 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
441 /*
442 * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
443 * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
444 * As a side effect the function was converted to GPL-only. Define our
445 * own version when needed which uses rcu_read_lock_sched().
446 */
447 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY)
448 static inline bool
449 vdev_blkg_tryget(struct blkcg_gq *blkg)
450 {
451 struct percpu_ref *ref = &blkg->refcnt;
452 unsigned long __percpu *count;
453 bool rc;
454
455 rcu_read_lock_sched();
456
457 if (__ref_is_percpu(ref, &count)) {
458 this_cpu_inc(*count);
459 rc = true;
460 } else {
461 rc = atomic_long_inc_not_zero(&ref->count);
462 }
463
464 rcu_read_unlock_sched();
465
466 return (rc);
467 }
468 #elif defined(HAVE_BLKG_TRYGET)
469 #define vdev_blkg_tryget(bg) blkg_tryget(bg)
470 #endif
471 /*
472 * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
473 * GPL-only bio_associate_blkg() symbol thus inadvertently converting
474 * the entire macro. Provide a minimal version which always assigns the
475 * request queue's root_blkg to the bio.
476 */
477 static inline void
478 vdev_bio_associate_blkg(struct bio *bio)
479 {
480 struct request_queue *q = bio->bi_disk->queue;
481
482 ASSERT3P(q, !=, NULL);
483 ASSERT3P(bio->bi_blkg, ==, NULL);
484
485 if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
486 bio->bi_blkg = q->root_blkg;
487 }
488 #define bio_associate_blkg vdev_bio_associate_blkg
489 #endif
490 #else
491 /*
492 * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
493 */
494 static inline void
495 bio_set_dev(struct bio *bio, struct block_device *bdev)
496 {
497 bio->bi_bdev = bdev;
498 }
499 #endif /* HAVE_BIO_SET_DEV */
500
501 static inline void
502 vdev_submit_bio(struct bio *bio)
503 {
504 struct bio_list *bio_list = current->bio_list;
505 current->bio_list = NULL;
506 vdev_submit_bio_impl(bio);
507 current->bio_list = bio_list;
508 }
509
510 static int
511 __vdev_disk_physio(struct block_device *bdev, zio_t *zio,
512 size_t io_size, uint64_t io_offset, int rw, int flags)
513 {
514 dio_request_t *dr;
515 uint64_t abd_offset;
516 uint64_t bio_offset;
517 int bio_size, bio_count = 16;
518 int i = 0, error = 0;
519 struct blk_plug plug;
520
521 /*
522 * Accessing outside the block device is never allowed.
523 */
524 if (io_offset + io_size > bdev->bd_inode->i_size) {
525 vdev_dbgmsg(zio->io_vd,
526 "Illegal access %llu size %llu, device size %llu",
527 io_offset, io_size, i_size_read(bdev->bd_inode));
528 return (SET_ERROR(EIO));
529 }
530
531 retry:
532 dr = vdev_disk_dio_alloc(bio_count);
533 if (dr == NULL)
534 return (SET_ERROR(ENOMEM));
535
536 if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
537 bio_set_flags_failfast(bdev, &flags);
538
539 dr->dr_zio = zio;
540
541 /*
542 * When the IO size exceeds the maximum bio size for the request
543 * queue we are forced to break the IO in multiple bio's and wait
544 * for them all to complete. Ideally, all pool users will set
545 * their volume block size to match the maximum request size and
546 * the common case will be one bio per vdev IO request.
547 */
548
549 abd_offset = 0;
550 bio_offset = io_offset;
551 bio_size = io_size;
552 for (i = 0; i <= dr->dr_bio_count; i++) {
553
554 /* Finished constructing bio's for given buffer */
555 if (bio_size <= 0)
556 break;
557
558 /*
559 * By default only 'bio_count' bio's per dio are allowed.
560 * However, if we find ourselves in a situation where more
561 * are needed we allocate a larger dio and warn the user.
562 */
563 if (dr->dr_bio_count == i) {
564 vdev_disk_dio_free(dr);
565 bio_count *= 2;
566 goto retry;
567 }
568
569 /* bio_alloc() with __GFP_WAIT never returns NULL */
570 dr->dr_bio[i] = bio_alloc(GFP_NOIO,
571 MIN(abd_nr_pages_off(zio->io_abd, bio_size, abd_offset),
572 BIO_MAX_PAGES));
573 if (unlikely(dr->dr_bio[i] == NULL)) {
574 vdev_disk_dio_free(dr);
575 return (SET_ERROR(ENOMEM));
576 }
577
578 /* Matching put called by vdev_disk_physio_completion */
579 vdev_disk_dio_get(dr);
580
581 bio_set_dev(dr->dr_bio[i], bdev);
582 BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
583 dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
584 dr->dr_bio[i]->bi_private = dr;
585 bio_set_op_attrs(dr->dr_bio[i], rw, flags);
586
587 /* Remaining size is returned to become the new size */
588 bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
589 bio_size, abd_offset);
590
591 /* Advance in buffer and construct another bio if needed */
592 abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
593 bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
594 }
595
596 /* Extra reference to protect dio_request during vdev_submit_bio */
597 vdev_disk_dio_get(dr);
598
599 if (dr->dr_bio_count > 1)
600 blk_start_plug(&plug);
601
602 /* Submit all bio's associated with this dio */
603 for (i = 0; i < dr->dr_bio_count; i++)
604 if (dr->dr_bio[i])
605 vdev_submit_bio(dr->dr_bio[i]);
606
607 if (dr->dr_bio_count > 1)
608 blk_finish_plug(&plug);
609
610 (void) vdev_disk_dio_put(dr);
611
612 return (error);
613 }
614
615 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
616 {
617 zio_t *zio = bio->bi_private;
618 #ifdef HAVE_1ARG_BIO_END_IO_T
619 zio->io_error = BIO_END_IO_ERROR(bio);
620 #else
621 zio->io_error = -error;
622 #endif
623
624 if (zio->io_error && (zio->io_error == EOPNOTSUPP))
625 zio->io_vd->vdev_nowritecache = B_TRUE;
626
627 bio_put(bio);
628 ASSERT3S(zio->io_error, >=, 0);
629 if (zio->io_error)
630 vdev_disk_error(zio);
631 zio_interrupt(zio);
632 }
633
634 static int
635 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
636 {
637 struct request_queue *q;
638 struct bio *bio;
639
640 q = bdev_get_queue(bdev);
641 if (!q)
642 return (SET_ERROR(ENXIO));
643
644 bio = bio_alloc(GFP_NOIO, 0);
645 /* bio_alloc() with __GFP_WAIT never returns NULL */
646 if (unlikely(bio == NULL))
647 return (SET_ERROR(ENOMEM));
648
649 bio->bi_end_io = vdev_disk_io_flush_completion;
650 bio->bi_private = zio;
651 bio_set_dev(bio, bdev);
652 bio_set_flush(bio);
653 vdev_submit_bio(bio);
654 invalidate_bdev(bdev);
655
656 return (0);
657 }
658
659 static void
660 vdev_disk_io_start(zio_t *zio)
661 {
662 vdev_t *v = zio->io_vd;
663 vdev_disk_t *vd = v->vdev_tsd;
664 unsigned long trim_flags = 0;
665 int rw, error;
666
667 /*
668 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
669 * Nothing to be done here but return failure.
670 */
671 if (vd == NULL) {
672 zio->io_error = ENXIO;
673 zio_interrupt(zio);
674 return;
675 }
676
677 rw_enter(&vd->vd_lock, RW_READER);
678
679 /*
680 * If the vdev is closed, it's likely due to a failed reopen and is
681 * in the UNAVAIL state. Nothing to be done here but return failure.
682 */
683 if (vd->vd_bdev == NULL) {
684 rw_exit(&vd->vd_lock);
685 zio->io_error = ENXIO;
686 zio_interrupt(zio);
687 return;
688 }
689
690 switch (zio->io_type) {
691 case ZIO_TYPE_IOCTL:
692
693 if (!vdev_readable(v)) {
694 rw_exit(&vd->vd_lock);
695 zio->io_error = SET_ERROR(ENXIO);
696 zio_interrupt(zio);
697 return;
698 }
699
700 switch (zio->io_cmd) {
701 case DKIOCFLUSHWRITECACHE:
702
703 if (zfs_nocacheflush)
704 break;
705
706 if (v->vdev_nowritecache) {
707 zio->io_error = SET_ERROR(ENOTSUP);
708 break;
709 }
710
711 error = vdev_disk_io_flush(vd->vd_bdev, zio);
712 if (error == 0) {
713 rw_exit(&vd->vd_lock);
714 return;
715 }
716
717 zio->io_error = error;
718
719 break;
720
721 default:
722 zio->io_error = SET_ERROR(ENOTSUP);
723 }
724
725 rw_exit(&vd->vd_lock);
726 zio_execute(zio);
727 return;
728 case ZIO_TYPE_WRITE:
729 rw = WRITE;
730 break;
731
732 case ZIO_TYPE_READ:
733 rw = READ;
734 break;
735
736 case ZIO_TYPE_TRIM:
737 #if defined(BLKDEV_DISCARD_SECURE)
738 if (zio->io_trim_flags & ZIO_TRIM_SECURE)
739 trim_flags |= BLKDEV_DISCARD_SECURE;
740 #endif
741 zio->io_error = -blkdev_issue_discard(vd->vd_bdev,
742 zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS,
743 trim_flags);
744
745 rw_exit(&vd->vd_lock);
746 zio_interrupt(zio);
747 return;
748
749 default:
750 rw_exit(&vd->vd_lock);
751 zio->io_error = SET_ERROR(ENOTSUP);
752 zio_interrupt(zio);
753 return;
754 }
755
756 zio->io_target_timestamp = zio_handle_io_delay(zio);
757 error = __vdev_disk_physio(vd->vd_bdev, zio,
758 zio->io_size, zio->io_offset, rw, 0);
759 rw_exit(&vd->vd_lock);
760
761 if (error) {
762 zio->io_error = error;
763 zio_interrupt(zio);
764 return;
765 }
766 }
767
768 static void
769 vdev_disk_io_done(zio_t *zio)
770 {
771 /*
772 * If the device returned EIO, we revalidate the media. If it is
773 * determined the media has changed this triggers the asynchronous
774 * removal of the device from the configuration.
775 */
776 if (zio->io_error == EIO) {
777 vdev_t *v = zio->io_vd;
778 vdev_disk_t *vd = v->vdev_tsd;
779
780 if (check_disk_change(vd->vd_bdev)) {
781 invalidate_bdev(vd->vd_bdev);
782 v->vdev_remove_wanted = B_TRUE;
783 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
784 }
785 }
786 }
787
788 static void
789 vdev_disk_hold(vdev_t *vd)
790 {
791 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
792
793 /* We must have a pathname, and it must be absolute. */
794 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
795 return;
796
797 /*
798 * Only prefetch path and devid info if the device has
799 * never been opened.
800 */
801 if (vd->vdev_tsd != NULL)
802 return;
803
804 }
805
806 static void
807 vdev_disk_rele(vdev_t *vd)
808 {
809 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
810
811 /* XXX: Implement me as a vnode rele for the device */
812 }
813
814 vdev_ops_t vdev_disk_ops = {
815 .vdev_op_open = vdev_disk_open,
816 .vdev_op_close = vdev_disk_close,
817 .vdev_op_asize = vdev_default_asize,
818 .vdev_op_io_start = vdev_disk_io_start,
819 .vdev_op_io_done = vdev_disk_io_done,
820 .vdev_op_state_change = NULL,
821 .vdev_op_need_resilver = NULL,
822 .vdev_op_hold = vdev_disk_hold,
823 .vdev_op_rele = vdev_disk_rele,
824 .vdev_op_remap = NULL,
825 .vdev_op_xlate = vdev_default_xlate,
826 .vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
827 .vdev_op_leaf = B_TRUE /* leaf vdev */
828 };
829
830 /*
831 * The zfs_vdev_scheduler module option has been deprecated. Setting this
832 * value no longer has any effect. It has not yet been entirely removed
833 * to allow the module to be loaded if this option is specified in the
834 * /etc/modprobe.d/zfs.conf file. The following warning will be logged.
835 */
836 static int
837 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
838 {
839 int error = param_set_charp(val, kp);
840 if (error == 0) {
841 printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
842 "is not supported.\n");
843 }
844
845 return (error);
846 }
847
848 char *zfs_vdev_scheduler = "unused";
849 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
850 param_get_charp, &zfs_vdev_scheduler, 0644);
851 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
852
853 int
854 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
855 {
856 uint64_t val;
857 int error;
858
859 error = kstrtoull(buf, 0, &val);
860 if (error < 0)
861 return (SET_ERROR(error));
862
863 if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
864 return (SET_ERROR(-EINVAL));
865
866 error = param_set_ulong(buf, kp);
867 if (error < 0)
868 return (SET_ERROR(error));
869
870 return (0);
871 }
872
873 int
874 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
875 {
876 uint64_t val;
877 int error;
878
879 error = kstrtoull(buf, 0, &val);
880 if (error < 0)
881 return (SET_ERROR(error));
882
883 if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
884 return (SET_ERROR(-EINVAL));
885
886 error = param_set_ulong(buf, kp);
887 if (error < 0)
888 return (SET_ERROR(error));
889
890 return (0);
891 }