]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/linux/zfs/vdev_disk.c
Linux 5.10 compat: check_disk_change() removed
[mirror_zfs.git] / module / os / linux / zfs / vdev_disk.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/vdev_disk.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/abd.h>
35 #include <sys/fs/zfs.h>
36 #include <sys/zio.h>
37 #include <linux/blkpg.h>
38 #include <linux/msdos_fs.h>
39 #include <linux/vfs_compat.h>
40
41 typedef struct vdev_disk {
42 struct block_device *vd_bdev;
43 krwlock_t vd_lock;
44 } vdev_disk_t;
45
46 /*
47 * Unique identifier for the exclusive vdev holder.
48 */
49 static void *zfs_vdev_holder = VDEV_HOLDER;
50
51 /*
52 * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
53 * device is missing. The missing path may be transient since the links
54 * can be briefly removed and recreated in response to udev events.
55 */
56 static unsigned zfs_vdev_open_timeout_ms = 1000;
57
58 /*
59 * Size of the "reserved" partition, in blocks.
60 */
61 #define EFI_MIN_RESV_SIZE (16 * 1024)
62
63 /*
64 * Virtual device vector for disks.
65 */
66 typedef struct dio_request {
67 zio_t *dr_zio; /* Parent ZIO */
68 atomic_t dr_ref; /* References */
69 int dr_error; /* Bio error */
70 int dr_bio_count; /* Count of bio's */
71 struct bio *dr_bio[0]; /* Attached bio's */
72 } dio_request_t;
73
74 static fmode_t
75 vdev_bdev_mode(spa_mode_t spa_mode)
76 {
77 fmode_t mode = 0;
78
79 if (spa_mode & SPA_MODE_READ)
80 mode |= FMODE_READ;
81
82 if (spa_mode & SPA_MODE_WRITE)
83 mode |= FMODE_WRITE;
84
85 return (mode);
86 }
87
88 /*
89 * Returns the usable capacity (in bytes) for the partition or disk.
90 */
91 static uint64_t
92 bdev_capacity(struct block_device *bdev)
93 {
94 return (i_size_read(bdev->bd_inode));
95 }
96
97 /*
98 * Returns the maximum expansion capacity of the block device (in bytes).
99 *
100 * It is possible to expand a vdev when it has been created as a wholedisk
101 * and the containing block device has increased in capacity. Or when the
102 * partition containing the pool has been manually increased in size.
103 *
104 * This function is only responsible for calculating the potential expansion
105 * size so it can be reported by 'zpool list'. The efi_use_whole_disk() is
106 * responsible for verifying the expected partition layout in the wholedisk
107 * case, and updating the partition table if appropriate. Once the partition
108 * size has been increased the additional capacity will be visible using
109 * bdev_capacity().
110 *
111 * The returned maximum expansion capacity is always expected to be larger, or
112 * at the very least equal, to its usable capacity to prevent overestimating
113 * the pool expandsize.
114 */
115 static uint64_t
116 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
117 {
118 uint64_t psize;
119 int64_t available;
120
121 if (wholedisk && bdev->bd_part != NULL && bdev != bdev->bd_contains) {
122 /*
123 * When reporting maximum expansion capacity for a wholedisk
124 * deduct any capacity which is expected to be lost due to
125 * alignment restrictions. Over reporting this value isn't
126 * harmful and would only result in slightly less capacity
127 * than expected post expansion.
128 * The estimated available space may be slightly smaller than
129 * bdev_capacity() for devices where the number of sectors is
130 * not a multiple of the alignment size and the partition layout
131 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
132 * "reserved" EFI partition: in such cases return the device
133 * usable capacity.
134 */
135 available = i_size_read(bdev->bd_contains->bd_inode) -
136 ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
137 PARTITION_END_ALIGNMENT) << SECTOR_BITS);
138 psize = MAX(available, bdev_capacity(bdev));
139 } else {
140 psize = bdev_capacity(bdev);
141 }
142
143 return (psize);
144 }
145
146 static void
147 vdev_disk_error(zio_t *zio)
148 {
149 /*
150 * This function can be called in interrupt context, for instance while
151 * handling IRQs coming from a misbehaving disk device; use printk()
152 * which is safe from any context.
153 */
154 printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
155 "offset=%llu size=%llu flags=%x\n", spa_name(zio->io_spa),
156 zio->io_vd->vdev_path, zio->io_error, zio->io_type,
157 (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
158 zio->io_flags);
159 }
160
161 static int
162 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
163 uint64_t *logical_ashift, uint64_t *physical_ashift)
164 {
165 struct block_device *bdev;
166 fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa));
167 hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
168 vdev_disk_t *vd;
169
170 /* Must have a pathname and it must be absolute. */
171 if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
172 v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
173 vdev_dbgmsg(v, "invalid vdev_path");
174 return (SET_ERROR(EINVAL));
175 }
176
177 /*
178 * Reopen the device if it is currently open. When expanding a
179 * partition force re-scanning the partition table if userland
180 * did not take care of this already. We need to do this while closed
181 * in order to get an accurate updated block device size. Then
182 * since udev may need to recreate the device links increase the
183 * open retry timeout before reporting the device as unavailable.
184 */
185 vd = v->vdev_tsd;
186 if (vd) {
187 char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
188 boolean_t reread_part = B_FALSE;
189
190 rw_enter(&vd->vd_lock, RW_WRITER);
191 bdev = vd->vd_bdev;
192 vd->vd_bdev = NULL;
193
194 if (bdev) {
195 if (v->vdev_expanding && bdev != bdev->bd_contains) {
196 bdevname(bdev->bd_contains, disk_name + 5);
197 /*
198 * If userland has BLKPG_RESIZE_PARTITION,
199 * then it should have updated the partition
200 * table already. We can detect this by
201 * comparing our current physical size
202 * with that of the device. If they are
203 * the same, then we must not have
204 * BLKPG_RESIZE_PARTITION or it failed to
205 * update the partition table online. We
206 * fallback to rescanning the partition
207 * table from the kernel below. However,
208 * if the capacity already reflects the
209 * updated partition, then we skip
210 * rescanning the partition table here.
211 */
212 if (v->vdev_psize == bdev_capacity(bdev))
213 reread_part = B_TRUE;
214 }
215
216 blkdev_put(bdev, mode | FMODE_EXCL);
217 }
218
219 if (reread_part) {
220 bdev = blkdev_get_by_path(disk_name, mode | FMODE_EXCL,
221 zfs_vdev_holder);
222 if (!IS_ERR(bdev)) {
223 int error = vdev_bdev_reread_part(bdev);
224 blkdev_put(bdev, mode | FMODE_EXCL);
225 if (error == 0) {
226 timeout = MSEC2NSEC(
227 zfs_vdev_open_timeout_ms * 2);
228 }
229 }
230 }
231 } else {
232 vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
233
234 rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
235 rw_enter(&vd->vd_lock, RW_WRITER);
236 }
237
238 /*
239 * Devices are always opened by the path provided at configuration
240 * time. This means that if the provided path is a udev by-id path
241 * then drives may be re-cabled without an issue. If the provided
242 * path is a udev by-path path, then the physical location information
243 * will be preserved. This can be critical for more complicated
244 * configurations where drives are located in specific physical
245 * locations to maximize the systems tolerance to component failure.
246 *
247 * Alternatively, you can provide your own udev rule to flexibly map
248 * the drives as you see fit. It is not advised that you use the
249 * /dev/[hd]d devices which may be reordered due to probing order.
250 * Devices in the wrong locations will be detected by the higher
251 * level vdev validation.
252 *
253 * The specified paths may be briefly removed and recreated in
254 * response to udev events. This should be exceptionally unlikely
255 * because the zpool command makes every effort to verify these paths
256 * have already settled prior to reaching this point. Therefore,
257 * a ENOENT failure at this point is highly likely to be transient
258 * and it is reasonable to sleep and retry before giving up. In
259 * practice delays have been observed to be on the order of 100ms.
260 */
261 hrtime_t start = gethrtime();
262 bdev = ERR_PTR(-ENXIO);
263 while (IS_ERR(bdev) && ((gethrtime() - start) < timeout)) {
264 bdev = blkdev_get_by_path(v->vdev_path, mode | FMODE_EXCL,
265 zfs_vdev_holder);
266 if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
267 schedule_timeout(MSEC_TO_TICK(10));
268 } else if (IS_ERR(bdev)) {
269 break;
270 }
271 }
272
273 if (IS_ERR(bdev)) {
274 int error = -PTR_ERR(bdev);
275 vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
276 (u_longlong_t)(gethrtime() - start),
277 (u_longlong_t)timeout);
278 vd->vd_bdev = NULL;
279 v->vdev_tsd = vd;
280 rw_exit(&vd->vd_lock);
281 return (SET_ERROR(error));
282 } else {
283 vd->vd_bdev = bdev;
284 v->vdev_tsd = vd;
285 rw_exit(&vd->vd_lock);
286 }
287
288 struct request_queue *q = bdev_get_queue(vd->vd_bdev);
289
290 /* Determine the physical block size */
291 int physical_block_size = bdev_physical_block_size(vd->vd_bdev);
292
293 /* Determine the logical block size */
294 int logical_block_size = bdev_logical_block_size(vd->vd_bdev);
295
296 /* Clear the nowritecache bit, causes vdev_reopen() to try again. */
297 v->vdev_nowritecache = B_FALSE;
298
299 /* Set when device reports it supports TRIM. */
300 v->vdev_has_trim = !!blk_queue_discard(q);
301
302 /* Set when device reports it supports secure TRIM. */
303 v->vdev_has_securetrim = !!blk_queue_discard_secure(q);
304
305 /* Inform the ZIO pipeline that we are non-rotational */
306 v->vdev_nonrot = blk_queue_nonrot(q);
307
308 /* Physical volume size in bytes for the partition */
309 *psize = bdev_capacity(vd->vd_bdev);
310
311 /* Physical volume size in bytes including possible expansion space */
312 *max_psize = bdev_max_capacity(vd->vd_bdev, v->vdev_wholedisk);
313
314 /* Based on the minimum sector size set the block size */
315 *physical_ashift = highbit64(MAX(physical_block_size,
316 SPA_MINBLOCKSIZE)) - 1;
317
318 *logical_ashift = highbit64(MAX(logical_block_size,
319 SPA_MINBLOCKSIZE)) - 1;
320
321 return (0);
322 }
323
324 static void
325 vdev_disk_close(vdev_t *v)
326 {
327 vdev_disk_t *vd = v->vdev_tsd;
328
329 if (v->vdev_reopening || vd == NULL)
330 return;
331
332 if (vd->vd_bdev != NULL) {
333 blkdev_put(vd->vd_bdev,
334 vdev_bdev_mode(spa_mode(v->vdev_spa)) | FMODE_EXCL);
335 }
336
337 rw_destroy(&vd->vd_lock);
338 kmem_free(vd, sizeof (vdev_disk_t));
339 v->vdev_tsd = NULL;
340 }
341
342 static dio_request_t *
343 vdev_disk_dio_alloc(int bio_count)
344 {
345 dio_request_t *dr;
346 int i;
347
348 dr = kmem_zalloc(sizeof (dio_request_t) +
349 sizeof (struct bio *) * bio_count, KM_SLEEP);
350 if (dr) {
351 atomic_set(&dr->dr_ref, 0);
352 dr->dr_bio_count = bio_count;
353 dr->dr_error = 0;
354
355 for (i = 0; i < dr->dr_bio_count; i++)
356 dr->dr_bio[i] = NULL;
357 }
358
359 return (dr);
360 }
361
362 static void
363 vdev_disk_dio_free(dio_request_t *dr)
364 {
365 int i;
366
367 for (i = 0; i < dr->dr_bio_count; i++)
368 if (dr->dr_bio[i])
369 bio_put(dr->dr_bio[i]);
370
371 kmem_free(dr, sizeof (dio_request_t) +
372 sizeof (struct bio *) * dr->dr_bio_count);
373 }
374
375 static void
376 vdev_disk_dio_get(dio_request_t *dr)
377 {
378 atomic_inc(&dr->dr_ref);
379 }
380
381 static int
382 vdev_disk_dio_put(dio_request_t *dr)
383 {
384 int rc = atomic_dec_return(&dr->dr_ref);
385
386 /*
387 * Free the dio_request when the last reference is dropped and
388 * ensure zio_interpret is called only once with the correct zio
389 */
390 if (rc == 0) {
391 zio_t *zio = dr->dr_zio;
392 int error = dr->dr_error;
393
394 vdev_disk_dio_free(dr);
395
396 if (zio) {
397 zio->io_error = error;
398 ASSERT3S(zio->io_error, >=, 0);
399 if (zio->io_error)
400 vdev_disk_error(zio);
401
402 zio_delay_interrupt(zio);
403 }
404 }
405
406 return (rc);
407 }
408
409 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
410 {
411 dio_request_t *dr = bio->bi_private;
412 int rc;
413
414 if (dr->dr_error == 0) {
415 #ifdef HAVE_1ARG_BIO_END_IO_T
416 dr->dr_error = BIO_END_IO_ERROR(bio);
417 #else
418 if (error)
419 dr->dr_error = -(error);
420 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
421 dr->dr_error = EIO;
422 #endif
423 }
424
425 /* Drop reference acquired by __vdev_disk_physio */
426 rc = vdev_disk_dio_put(dr);
427 }
428
429 static inline void
430 vdev_submit_bio_impl(struct bio *bio)
431 {
432 #ifdef HAVE_1ARG_SUBMIT_BIO
433 submit_bio(bio);
434 #else
435 submit_bio(0, bio);
436 #endif
437 }
438
439 /*
440 * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
441 * replace it with preempt_schedule under the following condition:
442 */
443 #if defined(CONFIG_ARM64) && \
444 defined(CONFIG_PREEMPTION) && \
445 defined(CONFIG_BLK_CGROUP)
446 #define preempt_schedule_notrace(x) preempt_schedule(x)
447 #endif
448
449 #ifdef HAVE_BIO_SET_DEV
450 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
451 /*
452 * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
453 * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
454 * As a side effect the function was converted to GPL-only. Define our
455 * own version when needed which uses rcu_read_lock_sched().
456 */
457 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY)
458 static inline bool
459 vdev_blkg_tryget(struct blkcg_gq *blkg)
460 {
461 struct percpu_ref *ref = &blkg->refcnt;
462 unsigned long __percpu *count;
463 bool rc;
464
465 rcu_read_lock_sched();
466
467 if (__ref_is_percpu(ref, &count)) {
468 this_cpu_inc(*count);
469 rc = true;
470 } else {
471 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
472 rc = atomic_long_inc_not_zero(&ref->data->count);
473 #else
474 rc = atomic_long_inc_not_zero(&ref->count);
475 #endif
476 }
477
478 rcu_read_unlock_sched();
479
480 return (rc);
481 }
482 #elif defined(HAVE_BLKG_TRYGET)
483 #define vdev_blkg_tryget(bg) blkg_tryget(bg)
484 #endif
485 /*
486 * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
487 * GPL-only bio_associate_blkg() symbol thus inadvertently converting
488 * the entire macro. Provide a minimal version which always assigns the
489 * request queue's root_blkg to the bio.
490 */
491 static inline void
492 vdev_bio_associate_blkg(struct bio *bio)
493 {
494 struct request_queue *q = bio->bi_disk->queue;
495
496 ASSERT3P(q, !=, NULL);
497 ASSERT3P(bio->bi_blkg, ==, NULL);
498
499 if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
500 bio->bi_blkg = q->root_blkg;
501 }
502 #define bio_associate_blkg vdev_bio_associate_blkg
503 #endif
504 #else
505 /*
506 * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
507 */
508 static inline void
509 bio_set_dev(struct bio *bio, struct block_device *bdev)
510 {
511 bio->bi_bdev = bdev;
512 }
513 #endif /* HAVE_BIO_SET_DEV */
514
515 static inline void
516 vdev_submit_bio(struct bio *bio)
517 {
518 struct bio_list *bio_list = current->bio_list;
519 current->bio_list = NULL;
520 vdev_submit_bio_impl(bio);
521 current->bio_list = bio_list;
522 }
523
524 static int
525 __vdev_disk_physio(struct block_device *bdev, zio_t *zio,
526 size_t io_size, uint64_t io_offset, int rw, int flags)
527 {
528 dio_request_t *dr;
529 uint64_t abd_offset;
530 uint64_t bio_offset;
531 int bio_size, bio_count = 16;
532 int i = 0, error = 0;
533 struct blk_plug plug;
534
535 /*
536 * Accessing outside the block device is never allowed.
537 */
538 if (io_offset + io_size > bdev->bd_inode->i_size) {
539 vdev_dbgmsg(zio->io_vd,
540 "Illegal access %llu size %llu, device size %llu",
541 io_offset, io_size, i_size_read(bdev->bd_inode));
542 return (SET_ERROR(EIO));
543 }
544
545 retry:
546 dr = vdev_disk_dio_alloc(bio_count);
547 if (dr == NULL)
548 return (SET_ERROR(ENOMEM));
549
550 if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
551 bio_set_flags_failfast(bdev, &flags);
552
553 dr->dr_zio = zio;
554
555 /*
556 * When the IO size exceeds the maximum bio size for the request
557 * queue we are forced to break the IO in multiple bio's and wait
558 * for them all to complete. Ideally, all pool users will set
559 * their volume block size to match the maximum request size and
560 * the common case will be one bio per vdev IO request.
561 */
562
563 abd_offset = 0;
564 bio_offset = io_offset;
565 bio_size = io_size;
566 for (i = 0; i <= dr->dr_bio_count; i++) {
567
568 /* Finished constructing bio's for given buffer */
569 if (bio_size <= 0)
570 break;
571
572 /*
573 * By default only 'bio_count' bio's per dio are allowed.
574 * However, if we find ourselves in a situation where more
575 * are needed we allocate a larger dio and warn the user.
576 */
577 if (dr->dr_bio_count == i) {
578 vdev_disk_dio_free(dr);
579 bio_count *= 2;
580 goto retry;
581 }
582
583 /* bio_alloc() with __GFP_WAIT never returns NULL */
584 dr->dr_bio[i] = bio_alloc(GFP_NOIO,
585 MIN(abd_nr_pages_off(zio->io_abd, bio_size, abd_offset),
586 BIO_MAX_PAGES));
587 if (unlikely(dr->dr_bio[i] == NULL)) {
588 vdev_disk_dio_free(dr);
589 return (SET_ERROR(ENOMEM));
590 }
591
592 /* Matching put called by vdev_disk_physio_completion */
593 vdev_disk_dio_get(dr);
594
595 bio_set_dev(dr->dr_bio[i], bdev);
596 BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
597 dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
598 dr->dr_bio[i]->bi_private = dr;
599 bio_set_op_attrs(dr->dr_bio[i], rw, flags);
600
601 /* Remaining size is returned to become the new size */
602 bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
603 bio_size, abd_offset);
604
605 /* Advance in buffer and construct another bio if needed */
606 abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
607 bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
608 }
609
610 /* Extra reference to protect dio_request during vdev_submit_bio */
611 vdev_disk_dio_get(dr);
612
613 if (dr->dr_bio_count > 1)
614 blk_start_plug(&plug);
615
616 /* Submit all bio's associated with this dio */
617 for (i = 0; i < dr->dr_bio_count; i++)
618 if (dr->dr_bio[i])
619 vdev_submit_bio(dr->dr_bio[i]);
620
621 if (dr->dr_bio_count > 1)
622 blk_finish_plug(&plug);
623
624 (void) vdev_disk_dio_put(dr);
625
626 return (error);
627 }
628
629 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
630 {
631 zio_t *zio = bio->bi_private;
632 #ifdef HAVE_1ARG_BIO_END_IO_T
633 zio->io_error = BIO_END_IO_ERROR(bio);
634 #else
635 zio->io_error = -error;
636 #endif
637
638 if (zio->io_error && (zio->io_error == EOPNOTSUPP))
639 zio->io_vd->vdev_nowritecache = B_TRUE;
640
641 bio_put(bio);
642 ASSERT3S(zio->io_error, >=, 0);
643 if (zio->io_error)
644 vdev_disk_error(zio);
645 zio_interrupt(zio);
646 }
647
648 static int
649 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
650 {
651 struct request_queue *q;
652 struct bio *bio;
653
654 q = bdev_get_queue(bdev);
655 if (!q)
656 return (SET_ERROR(ENXIO));
657
658 bio = bio_alloc(GFP_NOIO, 0);
659 /* bio_alloc() with __GFP_WAIT never returns NULL */
660 if (unlikely(bio == NULL))
661 return (SET_ERROR(ENOMEM));
662
663 bio->bi_end_io = vdev_disk_io_flush_completion;
664 bio->bi_private = zio;
665 bio_set_dev(bio, bdev);
666 bio_set_flush(bio);
667 vdev_submit_bio(bio);
668 invalidate_bdev(bdev);
669
670 return (0);
671 }
672
673 static void
674 vdev_disk_io_start(zio_t *zio)
675 {
676 vdev_t *v = zio->io_vd;
677 vdev_disk_t *vd = v->vdev_tsd;
678 unsigned long trim_flags = 0;
679 int rw, error;
680
681 /*
682 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
683 * Nothing to be done here but return failure.
684 */
685 if (vd == NULL) {
686 zio->io_error = ENXIO;
687 zio_interrupt(zio);
688 return;
689 }
690
691 rw_enter(&vd->vd_lock, RW_READER);
692
693 /*
694 * If the vdev is closed, it's likely due to a failed reopen and is
695 * in the UNAVAIL state. Nothing to be done here but return failure.
696 */
697 if (vd->vd_bdev == NULL) {
698 rw_exit(&vd->vd_lock);
699 zio->io_error = ENXIO;
700 zio_interrupt(zio);
701 return;
702 }
703
704 switch (zio->io_type) {
705 case ZIO_TYPE_IOCTL:
706
707 if (!vdev_readable(v)) {
708 rw_exit(&vd->vd_lock);
709 zio->io_error = SET_ERROR(ENXIO);
710 zio_interrupt(zio);
711 return;
712 }
713
714 switch (zio->io_cmd) {
715 case DKIOCFLUSHWRITECACHE:
716
717 if (zfs_nocacheflush)
718 break;
719
720 if (v->vdev_nowritecache) {
721 zio->io_error = SET_ERROR(ENOTSUP);
722 break;
723 }
724
725 error = vdev_disk_io_flush(vd->vd_bdev, zio);
726 if (error == 0) {
727 rw_exit(&vd->vd_lock);
728 return;
729 }
730
731 zio->io_error = error;
732
733 break;
734
735 default:
736 zio->io_error = SET_ERROR(ENOTSUP);
737 }
738
739 rw_exit(&vd->vd_lock);
740 zio_execute(zio);
741 return;
742 case ZIO_TYPE_WRITE:
743 rw = WRITE;
744 break;
745
746 case ZIO_TYPE_READ:
747 rw = READ;
748 break;
749
750 case ZIO_TYPE_TRIM:
751 #if defined(BLKDEV_DISCARD_SECURE)
752 if (zio->io_trim_flags & ZIO_TRIM_SECURE)
753 trim_flags |= BLKDEV_DISCARD_SECURE;
754 #endif
755 zio->io_error = -blkdev_issue_discard(vd->vd_bdev,
756 zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS,
757 trim_flags);
758
759 rw_exit(&vd->vd_lock);
760 zio_interrupt(zio);
761 return;
762
763 default:
764 rw_exit(&vd->vd_lock);
765 zio->io_error = SET_ERROR(ENOTSUP);
766 zio_interrupt(zio);
767 return;
768 }
769
770 zio->io_target_timestamp = zio_handle_io_delay(zio);
771 error = __vdev_disk_physio(vd->vd_bdev, zio,
772 zio->io_size, zio->io_offset, rw, 0);
773 rw_exit(&vd->vd_lock);
774
775 if (error) {
776 zio->io_error = error;
777 zio_interrupt(zio);
778 return;
779 }
780 }
781
782 static void
783 vdev_disk_io_done(zio_t *zio)
784 {
785 /*
786 * If the device returned EIO, we revalidate the media. If it is
787 * determined the media has changed this triggers the asynchronous
788 * removal of the device from the configuration.
789 */
790 if (zio->io_error == EIO) {
791 vdev_t *v = zio->io_vd;
792 vdev_disk_t *vd = v->vdev_tsd;
793
794 if (zfs_check_media_change(vd->vd_bdev)) {
795 invalidate_bdev(vd->vd_bdev);
796 v->vdev_remove_wanted = B_TRUE;
797 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
798 }
799 }
800 }
801
802 static void
803 vdev_disk_hold(vdev_t *vd)
804 {
805 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
806
807 /* We must have a pathname, and it must be absolute. */
808 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
809 return;
810
811 /*
812 * Only prefetch path and devid info if the device has
813 * never been opened.
814 */
815 if (vd->vdev_tsd != NULL)
816 return;
817
818 }
819
820 static void
821 vdev_disk_rele(vdev_t *vd)
822 {
823 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
824
825 /* XXX: Implement me as a vnode rele for the device */
826 }
827
828 vdev_ops_t vdev_disk_ops = {
829 .vdev_op_open = vdev_disk_open,
830 .vdev_op_close = vdev_disk_close,
831 .vdev_op_asize = vdev_default_asize,
832 .vdev_op_io_start = vdev_disk_io_start,
833 .vdev_op_io_done = vdev_disk_io_done,
834 .vdev_op_state_change = NULL,
835 .vdev_op_need_resilver = NULL,
836 .vdev_op_hold = vdev_disk_hold,
837 .vdev_op_rele = vdev_disk_rele,
838 .vdev_op_remap = NULL,
839 .vdev_op_xlate = vdev_default_xlate,
840 .vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
841 .vdev_op_leaf = B_TRUE /* leaf vdev */
842 };
843
844 /*
845 * The zfs_vdev_scheduler module option has been deprecated. Setting this
846 * value no longer has any effect. It has not yet been entirely removed
847 * to allow the module to be loaded if this option is specified in the
848 * /etc/modprobe.d/zfs.conf file. The following warning will be logged.
849 */
850 static int
851 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
852 {
853 int error = param_set_charp(val, kp);
854 if (error == 0) {
855 printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
856 "is not supported.\n");
857 }
858
859 return (error);
860 }
861
862 char *zfs_vdev_scheduler = "unused";
863 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
864 param_get_charp, &zfs_vdev_scheduler, 0644);
865 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
866
867 int
868 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
869 {
870 uint64_t val;
871 int error;
872
873 error = kstrtoull(buf, 0, &val);
874 if (error < 0)
875 return (SET_ERROR(error));
876
877 if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
878 return (SET_ERROR(-EINVAL));
879
880 error = param_set_ulong(buf, kp);
881 if (error < 0)
882 return (SET_ERROR(error));
883
884 return (0);
885 }
886
887 int
888 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
889 {
890 uint64_t val;
891 int error;
892
893 error = kstrtoull(buf, 0, &val);
894 if (error < 0)
895 return (SET_ERROR(error));
896
897 if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
898 return (SET_ERROR(-EINVAL));
899
900 error = param_set_ulong(buf, kp);
901 if (error < 0)
902 return (SET_ERROR(error));
903
904 return (0);
905 }