]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/linux/zfs/zfs_acl.c
acl: use uintptr_t for ace walker cookies
[mirror_zfs.git] / module / os / linux / zfs / zfs_acl.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
25 */
26
27
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/sysmacros.h>
32 #include <sys/vfs.h>
33 #include <sys/vnode.h>
34 #include <sys/sid.h>
35 #include <sys/file.h>
36 #include <sys/stat.h>
37 #include <sys/kmem.h>
38 #include <sys/cmn_err.h>
39 #include <sys/errno.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/policy.h>
42 #include <sys/zfs_znode.h>
43 #include <sys/zfs_fuid.h>
44 #include <sys/zfs_acl.h>
45 #include <sys/zfs_dir.h>
46 #include <sys/zfs_quota.h>
47 #include <sys/zfs_vfsops.h>
48 #include <sys/dmu.h>
49 #include <sys/dnode.h>
50 #include <sys/zap.h>
51 #include <sys/sa.h>
52 #include <sys/trace_acl.h>
53 #include <sys/zpl.h>
54
55 #define ALLOW ACE_ACCESS_ALLOWED_ACE_TYPE
56 #define DENY ACE_ACCESS_DENIED_ACE_TYPE
57 #define MAX_ACE_TYPE ACE_SYSTEM_ALARM_CALLBACK_OBJECT_ACE_TYPE
58 #define MIN_ACE_TYPE ALLOW
59
60 #define OWNING_GROUP (ACE_GROUP|ACE_IDENTIFIER_GROUP)
61 #define EVERYONE_ALLOW_MASK (ACE_READ_ACL|ACE_READ_ATTRIBUTES | \
62 ACE_READ_NAMED_ATTRS|ACE_SYNCHRONIZE)
63 #define EVERYONE_DENY_MASK (ACE_WRITE_ACL|ACE_WRITE_OWNER | \
64 ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
65 #define OWNER_ALLOW_MASK (ACE_WRITE_ACL | ACE_WRITE_OWNER | \
66 ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
67
68 #define ZFS_CHECKED_MASKS (ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_READ_DATA| \
69 ACE_READ_NAMED_ATTRS|ACE_WRITE_DATA|ACE_WRITE_ATTRIBUTES| \
70 ACE_WRITE_NAMED_ATTRS|ACE_APPEND_DATA|ACE_EXECUTE|ACE_WRITE_OWNER| \
71 ACE_WRITE_ACL|ACE_DELETE|ACE_DELETE_CHILD|ACE_SYNCHRONIZE)
72
73 #define WRITE_MASK_DATA (ACE_WRITE_DATA|ACE_APPEND_DATA|ACE_WRITE_NAMED_ATTRS)
74 #define WRITE_MASK_ATTRS (ACE_WRITE_ACL|ACE_WRITE_OWNER|ACE_WRITE_ATTRIBUTES| \
75 ACE_DELETE|ACE_DELETE_CHILD)
76 #define WRITE_MASK (WRITE_MASK_DATA|WRITE_MASK_ATTRS)
77
78 #define OGE_CLEAR (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
79 ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
80
81 #define OKAY_MASK_BITS (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
82 ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
83
84 #define ALL_INHERIT (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE | \
85 ACE_NO_PROPAGATE_INHERIT_ACE|ACE_INHERIT_ONLY_ACE|ACE_INHERITED_ACE)
86
87 #define RESTRICTED_CLEAR (ACE_WRITE_ACL|ACE_WRITE_OWNER)
88
89 #define V4_ACL_WIDE_FLAGS (ZFS_ACL_AUTO_INHERIT|ZFS_ACL_DEFAULTED|\
90 ZFS_ACL_PROTECTED)
91
92 #define ZFS_ACL_WIDE_FLAGS (V4_ACL_WIDE_FLAGS|ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|\
93 ZFS_ACL_OBJ_ACE)
94
95 #define ALL_MODE_EXECS (S_IXUSR | S_IXGRP | S_IXOTH)
96
97 #define IDMAP_WK_CREATOR_OWNER_UID 2147483648U
98
99 static uint16_t
100 zfs_ace_v0_get_type(void *acep)
101 {
102 return (((zfs_oldace_t *)acep)->z_type);
103 }
104
105 static uint16_t
106 zfs_ace_v0_get_flags(void *acep)
107 {
108 return (((zfs_oldace_t *)acep)->z_flags);
109 }
110
111 static uint32_t
112 zfs_ace_v0_get_mask(void *acep)
113 {
114 return (((zfs_oldace_t *)acep)->z_access_mask);
115 }
116
117 static uint64_t
118 zfs_ace_v0_get_who(void *acep)
119 {
120 return (((zfs_oldace_t *)acep)->z_fuid);
121 }
122
123 static void
124 zfs_ace_v0_set_type(void *acep, uint16_t type)
125 {
126 ((zfs_oldace_t *)acep)->z_type = type;
127 }
128
129 static void
130 zfs_ace_v0_set_flags(void *acep, uint16_t flags)
131 {
132 ((zfs_oldace_t *)acep)->z_flags = flags;
133 }
134
135 static void
136 zfs_ace_v0_set_mask(void *acep, uint32_t mask)
137 {
138 ((zfs_oldace_t *)acep)->z_access_mask = mask;
139 }
140
141 static void
142 zfs_ace_v0_set_who(void *acep, uint64_t who)
143 {
144 ((zfs_oldace_t *)acep)->z_fuid = who;
145 }
146
147 static size_t
148 zfs_ace_v0_size(void *acep)
149 {
150 (void) acep;
151 return (sizeof (zfs_oldace_t));
152 }
153
154 static size_t
155 zfs_ace_v0_abstract_size(void)
156 {
157 return (sizeof (zfs_oldace_t));
158 }
159
160 static int
161 zfs_ace_v0_mask_off(void)
162 {
163 return (offsetof(zfs_oldace_t, z_access_mask));
164 }
165
166 static int
167 zfs_ace_v0_data(void *acep, void **datap)
168 {
169 (void) acep;
170 *datap = NULL;
171 return (0);
172 }
173
174 static const acl_ops_t zfs_acl_v0_ops = {
175 .ace_mask_get = zfs_ace_v0_get_mask,
176 .ace_mask_set = zfs_ace_v0_set_mask,
177 .ace_flags_get = zfs_ace_v0_get_flags,
178 .ace_flags_set = zfs_ace_v0_set_flags,
179 .ace_type_get = zfs_ace_v0_get_type,
180 .ace_type_set = zfs_ace_v0_set_type,
181 .ace_who_get = zfs_ace_v0_get_who,
182 .ace_who_set = zfs_ace_v0_set_who,
183 .ace_size = zfs_ace_v0_size,
184 .ace_abstract_size = zfs_ace_v0_abstract_size,
185 .ace_mask_off = zfs_ace_v0_mask_off,
186 .ace_data = zfs_ace_v0_data
187 };
188
189 static uint16_t
190 zfs_ace_fuid_get_type(void *acep)
191 {
192 return (((zfs_ace_hdr_t *)acep)->z_type);
193 }
194
195 static uint16_t
196 zfs_ace_fuid_get_flags(void *acep)
197 {
198 return (((zfs_ace_hdr_t *)acep)->z_flags);
199 }
200
201 static uint32_t
202 zfs_ace_fuid_get_mask(void *acep)
203 {
204 return (((zfs_ace_hdr_t *)acep)->z_access_mask);
205 }
206
207 static uint64_t
208 zfs_ace_fuid_get_who(void *args)
209 {
210 uint16_t entry_type;
211 zfs_ace_t *acep = args;
212
213 entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS;
214
215 if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP ||
216 entry_type == ACE_EVERYONE)
217 return (-1);
218 return (((zfs_ace_t *)acep)->z_fuid);
219 }
220
221 static void
222 zfs_ace_fuid_set_type(void *acep, uint16_t type)
223 {
224 ((zfs_ace_hdr_t *)acep)->z_type = type;
225 }
226
227 static void
228 zfs_ace_fuid_set_flags(void *acep, uint16_t flags)
229 {
230 ((zfs_ace_hdr_t *)acep)->z_flags = flags;
231 }
232
233 static void
234 zfs_ace_fuid_set_mask(void *acep, uint32_t mask)
235 {
236 ((zfs_ace_hdr_t *)acep)->z_access_mask = mask;
237 }
238
239 static void
240 zfs_ace_fuid_set_who(void *arg, uint64_t who)
241 {
242 zfs_ace_t *acep = arg;
243
244 uint16_t entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS;
245
246 if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP ||
247 entry_type == ACE_EVERYONE)
248 return;
249 acep->z_fuid = who;
250 }
251
252 static size_t
253 zfs_ace_fuid_size(void *acep)
254 {
255 zfs_ace_hdr_t *zacep = acep;
256 uint16_t entry_type;
257
258 switch (zacep->z_type) {
259 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
260 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
261 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
262 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
263 return (sizeof (zfs_object_ace_t));
264 case ALLOW:
265 case DENY:
266 entry_type =
267 (((zfs_ace_hdr_t *)acep)->z_flags & ACE_TYPE_FLAGS);
268 if (entry_type == ACE_OWNER ||
269 entry_type == OWNING_GROUP ||
270 entry_type == ACE_EVERYONE)
271 return (sizeof (zfs_ace_hdr_t));
272 zfs_fallthrough;
273 default:
274 return (sizeof (zfs_ace_t));
275 }
276 }
277
278 static size_t
279 zfs_ace_fuid_abstract_size(void)
280 {
281 return (sizeof (zfs_ace_hdr_t));
282 }
283
284 static int
285 zfs_ace_fuid_mask_off(void)
286 {
287 return (offsetof(zfs_ace_hdr_t, z_access_mask));
288 }
289
290 static int
291 zfs_ace_fuid_data(void *acep, void **datap)
292 {
293 zfs_ace_t *zacep = acep;
294 zfs_object_ace_t *zobjp;
295
296 switch (zacep->z_hdr.z_type) {
297 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
298 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
299 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
300 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
301 zobjp = acep;
302 *datap = (caddr_t)zobjp + sizeof (zfs_ace_t);
303 return (sizeof (zfs_object_ace_t) - sizeof (zfs_ace_t));
304 default:
305 *datap = NULL;
306 return (0);
307 }
308 }
309
310 static const acl_ops_t zfs_acl_fuid_ops = {
311 .ace_mask_get = zfs_ace_fuid_get_mask,
312 .ace_mask_set = zfs_ace_fuid_set_mask,
313 .ace_flags_get = zfs_ace_fuid_get_flags,
314 .ace_flags_set = zfs_ace_fuid_set_flags,
315 .ace_type_get = zfs_ace_fuid_get_type,
316 .ace_type_set = zfs_ace_fuid_set_type,
317 .ace_who_get = zfs_ace_fuid_get_who,
318 .ace_who_set = zfs_ace_fuid_set_who,
319 .ace_size = zfs_ace_fuid_size,
320 .ace_abstract_size = zfs_ace_fuid_abstract_size,
321 .ace_mask_off = zfs_ace_fuid_mask_off,
322 .ace_data = zfs_ace_fuid_data
323 };
324
325 /*
326 * The following three functions are provided for compatibility with
327 * older ZPL version in order to determine if the file use to have
328 * an external ACL and what version of ACL previously existed on the
329 * file. Would really be nice to not need this, sigh.
330 */
331 uint64_t
332 zfs_external_acl(znode_t *zp)
333 {
334 zfs_acl_phys_t acl_phys;
335 int error;
336
337 if (zp->z_is_sa)
338 return (0);
339
340 /*
341 * Need to deal with a potential
342 * race where zfs_sa_upgrade could cause
343 * z_isa_sa to change.
344 *
345 * If the lookup fails then the state of z_is_sa should have
346 * changed.
347 */
348
349 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(ZTOZSB(zp)),
350 &acl_phys, sizeof (acl_phys))) == 0)
351 return (acl_phys.z_acl_extern_obj);
352 else {
353 /*
354 * after upgrade the SA_ZPL_ZNODE_ACL should have been
355 * removed
356 */
357 VERIFY(zp->z_is_sa && error == ENOENT);
358 return (0);
359 }
360 }
361
362 /*
363 * Determine size of ACL in bytes
364 *
365 * This is more complicated than it should be since we have to deal
366 * with old external ACLs.
367 */
368 static int
369 zfs_acl_znode_info(znode_t *zp, int *aclsize, int *aclcount,
370 zfs_acl_phys_t *aclphys)
371 {
372 zfsvfs_t *zfsvfs = ZTOZSB(zp);
373 uint64_t acl_count;
374 int size;
375 int error;
376
377 ASSERT(MUTEX_HELD(&zp->z_acl_lock));
378 if (zp->z_is_sa) {
379 if ((error = sa_size(zp->z_sa_hdl, SA_ZPL_DACL_ACES(zfsvfs),
380 &size)) != 0)
381 return (error);
382 *aclsize = size;
383 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_COUNT(zfsvfs),
384 &acl_count, sizeof (acl_count))) != 0)
385 return (error);
386 *aclcount = acl_count;
387 } else {
388 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs),
389 aclphys, sizeof (*aclphys))) != 0)
390 return (error);
391
392 if (aclphys->z_acl_version == ZFS_ACL_VERSION_INITIAL) {
393 *aclsize = ZFS_ACL_SIZE(aclphys->z_acl_size);
394 *aclcount = aclphys->z_acl_size;
395 } else {
396 *aclsize = aclphys->z_acl_size;
397 *aclcount = aclphys->z_acl_count;
398 }
399 }
400 return (0);
401 }
402
403 int
404 zfs_znode_acl_version(znode_t *zp)
405 {
406 zfs_acl_phys_t acl_phys;
407
408 if (zp->z_is_sa)
409 return (ZFS_ACL_VERSION_FUID);
410 else {
411 int error;
412
413 /*
414 * Need to deal with a potential
415 * race where zfs_sa_upgrade could cause
416 * z_isa_sa to change.
417 *
418 * If the lookup fails then the state of z_is_sa should have
419 * changed.
420 */
421 if ((error = sa_lookup(zp->z_sa_hdl,
422 SA_ZPL_ZNODE_ACL(ZTOZSB(zp)),
423 &acl_phys, sizeof (acl_phys))) == 0)
424 return (acl_phys.z_acl_version);
425 else {
426 /*
427 * After upgrade SA_ZPL_ZNODE_ACL should have
428 * been removed.
429 */
430 VERIFY(zp->z_is_sa && error == ENOENT);
431 return (ZFS_ACL_VERSION_FUID);
432 }
433 }
434 }
435
436 static int
437 zfs_acl_version(int version)
438 {
439 if (version < ZPL_VERSION_FUID)
440 return (ZFS_ACL_VERSION_INITIAL);
441 else
442 return (ZFS_ACL_VERSION_FUID);
443 }
444
445 static int
446 zfs_acl_version_zp(znode_t *zp)
447 {
448 return (zfs_acl_version(ZTOZSB(zp)->z_version));
449 }
450
451 zfs_acl_t *
452 zfs_acl_alloc(int vers)
453 {
454 zfs_acl_t *aclp;
455
456 aclp = kmem_zalloc(sizeof (zfs_acl_t), KM_SLEEP);
457 list_create(&aclp->z_acl, sizeof (zfs_acl_node_t),
458 offsetof(zfs_acl_node_t, z_next));
459 aclp->z_version = vers;
460 if (vers == ZFS_ACL_VERSION_FUID)
461 aclp->z_ops = &zfs_acl_fuid_ops;
462 else
463 aclp->z_ops = &zfs_acl_v0_ops;
464 return (aclp);
465 }
466
467 zfs_acl_node_t *
468 zfs_acl_node_alloc(size_t bytes)
469 {
470 zfs_acl_node_t *aclnode;
471
472 aclnode = kmem_zalloc(sizeof (zfs_acl_node_t), KM_SLEEP);
473 if (bytes) {
474 aclnode->z_acldata = kmem_alloc(bytes, KM_SLEEP);
475 aclnode->z_allocdata = aclnode->z_acldata;
476 aclnode->z_allocsize = bytes;
477 aclnode->z_size = bytes;
478 }
479
480 return (aclnode);
481 }
482
483 static void
484 zfs_acl_node_free(zfs_acl_node_t *aclnode)
485 {
486 if (aclnode->z_allocsize)
487 kmem_free(aclnode->z_allocdata, aclnode->z_allocsize);
488 kmem_free(aclnode, sizeof (zfs_acl_node_t));
489 }
490
491 static void
492 zfs_acl_release_nodes(zfs_acl_t *aclp)
493 {
494 zfs_acl_node_t *aclnode;
495
496 while ((aclnode = list_head(&aclp->z_acl))) {
497 list_remove(&aclp->z_acl, aclnode);
498 zfs_acl_node_free(aclnode);
499 }
500 aclp->z_acl_count = 0;
501 aclp->z_acl_bytes = 0;
502 }
503
504 void
505 zfs_acl_free(zfs_acl_t *aclp)
506 {
507 zfs_acl_release_nodes(aclp);
508 list_destroy(&aclp->z_acl);
509 kmem_free(aclp, sizeof (zfs_acl_t));
510 }
511
512 static boolean_t
513 zfs_acl_valid_ace_type(uint_t type, uint_t flags)
514 {
515 uint16_t entry_type;
516
517 switch (type) {
518 case ALLOW:
519 case DENY:
520 case ACE_SYSTEM_AUDIT_ACE_TYPE:
521 case ACE_SYSTEM_ALARM_ACE_TYPE:
522 entry_type = flags & ACE_TYPE_FLAGS;
523 return (entry_type == ACE_OWNER ||
524 entry_type == OWNING_GROUP ||
525 entry_type == ACE_EVERYONE || entry_type == 0 ||
526 entry_type == ACE_IDENTIFIER_GROUP);
527 default:
528 if (type <= MAX_ACE_TYPE)
529 return (B_TRUE);
530 }
531 return (B_FALSE);
532 }
533
534 static boolean_t
535 zfs_ace_valid(umode_t obj_mode, zfs_acl_t *aclp, uint16_t type, uint16_t iflags)
536 {
537 /*
538 * first check type of entry
539 */
540
541 if (!zfs_acl_valid_ace_type(type, iflags))
542 return (B_FALSE);
543
544 switch (type) {
545 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
546 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
547 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
548 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
549 if (aclp->z_version < ZFS_ACL_VERSION_FUID)
550 return (B_FALSE);
551 aclp->z_hints |= ZFS_ACL_OBJ_ACE;
552 }
553
554 /*
555 * next check inheritance level flags
556 */
557
558 if (S_ISDIR(obj_mode) &&
559 (iflags & (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
560 aclp->z_hints |= ZFS_INHERIT_ACE;
561
562 if (iflags & (ACE_INHERIT_ONLY_ACE|ACE_NO_PROPAGATE_INHERIT_ACE)) {
563 if ((iflags & (ACE_FILE_INHERIT_ACE|
564 ACE_DIRECTORY_INHERIT_ACE)) == 0) {
565 return (B_FALSE);
566 }
567 }
568
569 return (B_TRUE);
570 }
571
572 static void *
573 zfs_acl_next_ace(zfs_acl_t *aclp, void *start, uint64_t *who,
574 uint32_t *access_mask, uint16_t *iflags, uint16_t *type)
575 {
576 zfs_acl_node_t *aclnode;
577
578 ASSERT(aclp);
579
580 if (start == NULL) {
581 aclnode = list_head(&aclp->z_acl);
582 if (aclnode == NULL)
583 return (NULL);
584
585 aclp->z_next_ace = aclnode->z_acldata;
586 aclp->z_curr_node = aclnode;
587 aclnode->z_ace_idx = 0;
588 }
589
590 aclnode = aclp->z_curr_node;
591
592 if (aclnode == NULL)
593 return (NULL);
594
595 if (aclnode->z_ace_idx >= aclnode->z_ace_count) {
596 aclnode = list_next(&aclp->z_acl, aclnode);
597 if (aclnode == NULL)
598 return (NULL);
599 else {
600 aclp->z_curr_node = aclnode;
601 aclnode->z_ace_idx = 0;
602 aclp->z_next_ace = aclnode->z_acldata;
603 }
604 }
605
606 if (aclnode->z_ace_idx < aclnode->z_ace_count) {
607 void *acep = aclp->z_next_ace;
608 size_t ace_size;
609
610 /*
611 * Make sure we don't overstep our bounds
612 */
613 ace_size = aclp->z_ops->ace_size(acep);
614
615 if (((caddr_t)acep + ace_size) >
616 ((caddr_t)aclnode->z_acldata + aclnode->z_size)) {
617 return (NULL);
618 }
619
620 *iflags = aclp->z_ops->ace_flags_get(acep);
621 *type = aclp->z_ops->ace_type_get(acep);
622 *access_mask = aclp->z_ops->ace_mask_get(acep);
623 *who = aclp->z_ops->ace_who_get(acep);
624 aclp->z_next_ace = (caddr_t)aclp->z_next_ace + ace_size;
625 aclnode->z_ace_idx++;
626
627 return ((void *)acep);
628 }
629 return (NULL);
630 }
631
632 static uintptr_t
633 zfs_ace_walk(void *datap, uintptr_t cookie, int aclcnt,
634 uint16_t *flags, uint16_t *type, uint32_t *mask)
635 {
636 (void) aclcnt;
637 zfs_acl_t *aclp = datap;
638 zfs_ace_hdr_t *acep = (zfs_ace_hdr_t *)cookie;
639 uint64_t who;
640
641 acep = zfs_acl_next_ace(aclp, acep, &who, mask,
642 flags, type);
643 return ((uintptr_t)acep);
644 }
645
646 /*
647 * Copy ACE to internal ZFS format.
648 * While processing the ACL each ACE will be validated for correctness.
649 * ACE FUIDs will be created later.
650 */
651 static int
652 zfs_copy_ace_2_fuid(zfsvfs_t *zfsvfs, umode_t obj_mode, zfs_acl_t *aclp,
653 void *datap, zfs_ace_t *z_acl, uint64_t aclcnt, size_t *size,
654 zfs_fuid_info_t **fuidp, cred_t *cr)
655 {
656 int i;
657 uint16_t entry_type;
658 zfs_ace_t *aceptr = z_acl;
659 ace_t *acep = datap;
660 zfs_object_ace_t *zobjacep;
661 ace_object_t *aceobjp;
662
663 for (i = 0; i != aclcnt; i++) {
664 aceptr->z_hdr.z_access_mask = acep->a_access_mask;
665 aceptr->z_hdr.z_flags = acep->a_flags;
666 aceptr->z_hdr.z_type = acep->a_type;
667 entry_type = aceptr->z_hdr.z_flags & ACE_TYPE_FLAGS;
668 if (entry_type != ACE_OWNER && entry_type != OWNING_GROUP &&
669 entry_type != ACE_EVERYONE) {
670 aceptr->z_fuid = zfs_fuid_create(zfsvfs, acep->a_who,
671 cr, (entry_type == 0) ?
672 ZFS_ACE_USER : ZFS_ACE_GROUP, fuidp);
673 }
674
675 /*
676 * Make sure ACE is valid
677 */
678 if (zfs_ace_valid(obj_mode, aclp, aceptr->z_hdr.z_type,
679 aceptr->z_hdr.z_flags) != B_TRUE)
680 return (SET_ERROR(EINVAL));
681
682 switch (acep->a_type) {
683 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
684 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
685 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
686 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
687 zobjacep = (zfs_object_ace_t *)aceptr;
688 aceobjp = (ace_object_t *)acep;
689
690 memcpy(zobjacep->z_object_type, aceobjp->a_obj_type,
691 sizeof (aceobjp->a_obj_type));
692 memcpy(zobjacep->z_inherit_type,
693 aceobjp->a_inherit_obj_type,
694 sizeof (aceobjp->a_inherit_obj_type));
695 acep = (ace_t *)((caddr_t)acep + sizeof (ace_object_t));
696 break;
697 default:
698 acep = (ace_t *)((caddr_t)acep + sizeof (ace_t));
699 }
700
701 aceptr = (zfs_ace_t *)((caddr_t)aceptr +
702 aclp->z_ops->ace_size(aceptr));
703 }
704
705 *size = (caddr_t)aceptr - (caddr_t)z_acl;
706
707 return (0);
708 }
709
710 /*
711 * Copy ZFS ACEs to fixed size ace_t layout
712 */
713 static void
714 zfs_copy_fuid_2_ace(zfsvfs_t *zfsvfs, zfs_acl_t *aclp, cred_t *cr,
715 void *datap, int filter)
716 {
717 uint64_t who;
718 uint32_t access_mask;
719 uint16_t iflags, type;
720 zfs_ace_hdr_t *zacep = NULL;
721 ace_t *acep = datap;
722 ace_object_t *objacep;
723 zfs_object_ace_t *zobjacep;
724 size_t ace_size;
725 uint16_t entry_type;
726
727 while ((zacep = zfs_acl_next_ace(aclp, zacep,
728 &who, &access_mask, &iflags, &type))) {
729
730 switch (type) {
731 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
732 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
733 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
734 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
735 if (filter) {
736 continue;
737 }
738 zobjacep = (zfs_object_ace_t *)zacep;
739 objacep = (ace_object_t *)acep;
740 memcpy(objacep->a_obj_type,
741 zobjacep->z_object_type,
742 sizeof (zobjacep->z_object_type));
743 memcpy(objacep->a_inherit_obj_type,
744 zobjacep->z_inherit_type,
745 sizeof (zobjacep->z_inherit_type));
746 ace_size = sizeof (ace_object_t);
747 break;
748 default:
749 ace_size = sizeof (ace_t);
750 break;
751 }
752
753 entry_type = (iflags & ACE_TYPE_FLAGS);
754 if ((entry_type != ACE_OWNER &&
755 entry_type != OWNING_GROUP &&
756 entry_type != ACE_EVERYONE)) {
757 acep->a_who = zfs_fuid_map_id(zfsvfs, who,
758 cr, (entry_type & ACE_IDENTIFIER_GROUP) ?
759 ZFS_ACE_GROUP : ZFS_ACE_USER);
760 } else {
761 acep->a_who = (uid_t)(int64_t)who;
762 }
763 acep->a_access_mask = access_mask;
764 acep->a_flags = iflags;
765 acep->a_type = type;
766 acep = (ace_t *)((caddr_t)acep + ace_size);
767 }
768 }
769
770 static int
771 zfs_copy_ace_2_oldace(umode_t obj_mode, zfs_acl_t *aclp, ace_t *acep,
772 zfs_oldace_t *z_acl, int aclcnt, size_t *size)
773 {
774 int i;
775 zfs_oldace_t *aceptr = z_acl;
776
777 for (i = 0; i != aclcnt; i++, aceptr++) {
778 aceptr->z_access_mask = acep[i].a_access_mask;
779 aceptr->z_type = acep[i].a_type;
780 aceptr->z_flags = acep[i].a_flags;
781 aceptr->z_fuid = acep[i].a_who;
782 /*
783 * Make sure ACE is valid
784 */
785 if (zfs_ace_valid(obj_mode, aclp, aceptr->z_type,
786 aceptr->z_flags) != B_TRUE)
787 return (SET_ERROR(EINVAL));
788 }
789 *size = (caddr_t)aceptr - (caddr_t)z_acl;
790 return (0);
791 }
792
793 /*
794 * convert old ACL format to new
795 */
796 void
797 zfs_acl_xform(znode_t *zp, zfs_acl_t *aclp, cred_t *cr)
798 {
799 zfs_oldace_t *oldaclp;
800 int i;
801 uint16_t type, iflags;
802 uint32_t access_mask;
803 uint64_t who;
804 void *cookie = NULL;
805 zfs_acl_node_t *newaclnode;
806
807 ASSERT(aclp->z_version == ZFS_ACL_VERSION_INITIAL);
808 /*
809 * First create the ACE in a contiguous piece of memory
810 * for zfs_copy_ace_2_fuid().
811 *
812 * We only convert an ACL once, so this won't happen
813 * every time.
814 */
815 oldaclp = kmem_alloc(sizeof (zfs_oldace_t) * aclp->z_acl_count,
816 KM_SLEEP);
817 i = 0;
818 while ((cookie = zfs_acl_next_ace(aclp, cookie, &who,
819 &access_mask, &iflags, &type))) {
820 oldaclp[i].z_flags = iflags;
821 oldaclp[i].z_type = type;
822 oldaclp[i].z_fuid = who;
823 oldaclp[i++].z_access_mask = access_mask;
824 }
825
826 newaclnode = zfs_acl_node_alloc(aclp->z_acl_count *
827 sizeof (zfs_object_ace_t));
828 aclp->z_ops = &zfs_acl_fuid_ops;
829 VERIFY(zfs_copy_ace_2_fuid(ZTOZSB(zp), ZTOI(zp)->i_mode,
830 aclp, oldaclp, newaclnode->z_acldata, aclp->z_acl_count,
831 &newaclnode->z_size, NULL, cr) == 0);
832 newaclnode->z_ace_count = aclp->z_acl_count;
833 aclp->z_version = ZFS_ACL_VERSION;
834 kmem_free(oldaclp, aclp->z_acl_count * sizeof (zfs_oldace_t));
835
836 /*
837 * Release all previous ACL nodes
838 */
839
840 zfs_acl_release_nodes(aclp);
841
842 list_insert_head(&aclp->z_acl, newaclnode);
843
844 aclp->z_acl_bytes = newaclnode->z_size;
845 aclp->z_acl_count = newaclnode->z_ace_count;
846
847 }
848
849 /*
850 * Convert unix access mask to v4 access mask
851 */
852 static uint32_t
853 zfs_unix_to_v4(uint32_t access_mask)
854 {
855 uint32_t new_mask = 0;
856
857 if (access_mask & S_IXOTH)
858 new_mask |= ACE_EXECUTE;
859 if (access_mask & S_IWOTH)
860 new_mask |= ACE_WRITE_DATA;
861 if (access_mask & S_IROTH)
862 new_mask |= ACE_READ_DATA;
863 return (new_mask);
864 }
865
866
867 static int
868 zfs_v4_to_unix(uint32_t access_mask, int *unmapped)
869 {
870 int new_mask = 0;
871
872 *unmapped = access_mask &
873 (ACE_WRITE_OWNER | ACE_WRITE_ACL | ACE_DELETE);
874
875 if (access_mask & WRITE_MASK)
876 new_mask |= S_IWOTH;
877 if (access_mask & ACE_READ_DATA)
878 new_mask |= S_IROTH;
879 if (access_mask & ACE_EXECUTE)
880 new_mask |= S_IXOTH;
881
882 return (new_mask);
883 }
884
885
886 static void
887 zfs_set_ace(zfs_acl_t *aclp, void *acep, uint32_t access_mask,
888 uint16_t access_type, uint64_t fuid, uint16_t entry_type)
889 {
890 uint16_t type = entry_type & ACE_TYPE_FLAGS;
891
892 aclp->z_ops->ace_mask_set(acep, access_mask);
893 aclp->z_ops->ace_type_set(acep, access_type);
894 aclp->z_ops->ace_flags_set(acep, entry_type);
895 if ((type != ACE_OWNER && type != OWNING_GROUP &&
896 type != ACE_EVERYONE))
897 aclp->z_ops->ace_who_set(acep, fuid);
898 }
899
900 /*
901 * Determine mode of file based on ACL.
902 */
903 uint64_t
904 zfs_mode_compute(uint64_t fmode, zfs_acl_t *aclp,
905 uint64_t *pflags, uint64_t fuid, uint64_t fgid)
906 {
907 int entry_type;
908 mode_t mode;
909 mode_t seen = 0;
910 zfs_ace_hdr_t *acep = NULL;
911 uint64_t who;
912 uint16_t iflags, type;
913 uint32_t access_mask;
914 boolean_t an_exec_denied = B_FALSE;
915
916 mode = (fmode & (S_IFMT | S_ISUID | S_ISGID | S_ISVTX));
917
918 while ((acep = zfs_acl_next_ace(aclp, acep, &who,
919 &access_mask, &iflags, &type))) {
920
921 if (!zfs_acl_valid_ace_type(type, iflags))
922 continue;
923
924 entry_type = (iflags & ACE_TYPE_FLAGS);
925
926 /*
927 * Skip over any inherit_only ACEs
928 */
929 if (iflags & ACE_INHERIT_ONLY_ACE)
930 continue;
931
932 if (entry_type == ACE_OWNER || (entry_type == 0 &&
933 who == fuid)) {
934 if ((access_mask & ACE_READ_DATA) &&
935 (!(seen & S_IRUSR))) {
936 seen |= S_IRUSR;
937 if (type == ALLOW) {
938 mode |= S_IRUSR;
939 }
940 }
941 if ((access_mask & ACE_WRITE_DATA) &&
942 (!(seen & S_IWUSR))) {
943 seen |= S_IWUSR;
944 if (type == ALLOW) {
945 mode |= S_IWUSR;
946 }
947 }
948 if ((access_mask & ACE_EXECUTE) &&
949 (!(seen & S_IXUSR))) {
950 seen |= S_IXUSR;
951 if (type == ALLOW) {
952 mode |= S_IXUSR;
953 }
954 }
955 } else if (entry_type == OWNING_GROUP ||
956 (entry_type == ACE_IDENTIFIER_GROUP && who == fgid)) {
957 if ((access_mask & ACE_READ_DATA) &&
958 (!(seen & S_IRGRP))) {
959 seen |= S_IRGRP;
960 if (type == ALLOW) {
961 mode |= S_IRGRP;
962 }
963 }
964 if ((access_mask & ACE_WRITE_DATA) &&
965 (!(seen & S_IWGRP))) {
966 seen |= S_IWGRP;
967 if (type == ALLOW) {
968 mode |= S_IWGRP;
969 }
970 }
971 if ((access_mask & ACE_EXECUTE) &&
972 (!(seen & S_IXGRP))) {
973 seen |= S_IXGRP;
974 if (type == ALLOW) {
975 mode |= S_IXGRP;
976 }
977 }
978 } else if (entry_type == ACE_EVERYONE) {
979 if ((access_mask & ACE_READ_DATA)) {
980 if (!(seen & S_IRUSR)) {
981 seen |= S_IRUSR;
982 if (type == ALLOW) {
983 mode |= S_IRUSR;
984 }
985 }
986 if (!(seen & S_IRGRP)) {
987 seen |= S_IRGRP;
988 if (type == ALLOW) {
989 mode |= S_IRGRP;
990 }
991 }
992 if (!(seen & S_IROTH)) {
993 seen |= S_IROTH;
994 if (type == ALLOW) {
995 mode |= S_IROTH;
996 }
997 }
998 }
999 if ((access_mask & ACE_WRITE_DATA)) {
1000 if (!(seen & S_IWUSR)) {
1001 seen |= S_IWUSR;
1002 if (type == ALLOW) {
1003 mode |= S_IWUSR;
1004 }
1005 }
1006 if (!(seen & S_IWGRP)) {
1007 seen |= S_IWGRP;
1008 if (type == ALLOW) {
1009 mode |= S_IWGRP;
1010 }
1011 }
1012 if (!(seen & S_IWOTH)) {
1013 seen |= S_IWOTH;
1014 if (type == ALLOW) {
1015 mode |= S_IWOTH;
1016 }
1017 }
1018 }
1019 if ((access_mask & ACE_EXECUTE)) {
1020 if (!(seen & S_IXUSR)) {
1021 seen |= S_IXUSR;
1022 if (type == ALLOW) {
1023 mode |= S_IXUSR;
1024 }
1025 }
1026 if (!(seen & S_IXGRP)) {
1027 seen |= S_IXGRP;
1028 if (type == ALLOW) {
1029 mode |= S_IXGRP;
1030 }
1031 }
1032 if (!(seen & S_IXOTH)) {
1033 seen |= S_IXOTH;
1034 if (type == ALLOW) {
1035 mode |= S_IXOTH;
1036 }
1037 }
1038 }
1039 } else {
1040 /*
1041 * Only care if this IDENTIFIER_GROUP or
1042 * USER ACE denies execute access to someone,
1043 * mode is not affected
1044 */
1045 if ((access_mask & ACE_EXECUTE) && type == DENY)
1046 an_exec_denied = B_TRUE;
1047 }
1048 }
1049
1050 /*
1051 * Failure to allow is effectively a deny, so execute permission
1052 * is denied if it was never mentioned or if we explicitly
1053 * weren't allowed it.
1054 */
1055 if (!an_exec_denied &&
1056 ((seen & ALL_MODE_EXECS) != ALL_MODE_EXECS ||
1057 (mode & ALL_MODE_EXECS) != ALL_MODE_EXECS))
1058 an_exec_denied = B_TRUE;
1059
1060 if (an_exec_denied)
1061 *pflags &= ~ZFS_NO_EXECS_DENIED;
1062 else
1063 *pflags |= ZFS_NO_EXECS_DENIED;
1064
1065 return (mode);
1066 }
1067
1068 /*
1069 * Read an external acl object. If the intent is to modify, always
1070 * create a new acl and leave any cached acl in place.
1071 */
1072 int
1073 zfs_acl_node_read(struct znode *zp, boolean_t have_lock, zfs_acl_t **aclpp,
1074 boolean_t will_modify)
1075 {
1076 zfs_acl_t *aclp;
1077 int aclsize = 0;
1078 int acl_count = 0;
1079 zfs_acl_node_t *aclnode;
1080 zfs_acl_phys_t znode_acl;
1081 int version;
1082 int error;
1083 boolean_t drop_lock = B_FALSE;
1084
1085 ASSERT(MUTEX_HELD(&zp->z_acl_lock));
1086
1087 if (zp->z_acl_cached && !will_modify) {
1088 *aclpp = zp->z_acl_cached;
1089 return (0);
1090 }
1091
1092 /*
1093 * close race where znode could be upgrade while trying to
1094 * read the znode attributes.
1095 *
1096 * But this could only happen if the file isn't already an SA
1097 * znode
1098 */
1099 if (!zp->z_is_sa && !have_lock) {
1100 mutex_enter(&zp->z_lock);
1101 drop_lock = B_TRUE;
1102 }
1103 version = zfs_znode_acl_version(zp);
1104
1105 if ((error = zfs_acl_znode_info(zp, &aclsize,
1106 &acl_count, &znode_acl)) != 0) {
1107 goto done;
1108 }
1109
1110 aclp = zfs_acl_alloc(version);
1111
1112 aclp->z_acl_count = acl_count;
1113 aclp->z_acl_bytes = aclsize;
1114
1115 aclnode = zfs_acl_node_alloc(aclsize);
1116 aclnode->z_ace_count = aclp->z_acl_count;
1117 aclnode->z_size = aclsize;
1118
1119 if (!zp->z_is_sa) {
1120 if (znode_acl.z_acl_extern_obj) {
1121 error = dmu_read(ZTOZSB(zp)->z_os,
1122 znode_acl.z_acl_extern_obj, 0, aclnode->z_size,
1123 aclnode->z_acldata, DMU_READ_PREFETCH);
1124 } else {
1125 memcpy(aclnode->z_acldata, znode_acl.z_ace_data,
1126 aclnode->z_size);
1127 }
1128 } else {
1129 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_ACES(ZTOZSB(zp)),
1130 aclnode->z_acldata, aclnode->z_size);
1131 }
1132
1133 if (error != 0) {
1134 zfs_acl_free(aclp);
1135 zfs_acl_node_free(aclnode);
1136 /* convert checksum errors into IO errors */
1137 if (error == ECKSUM)
1138 error = SET_ERROR(EIO);
1139 goto done;
1140 }
1141
1142 list_insert_head(&aclp->z_acl, aclnode);
1143
1144 *aclpp = aclp;
1145 if (!will_modify)
1146 zp->z_acl_cached = aclp;
1147 done:
1148 if (drop_lock)
1149 mutex_exit(&zp->z_lock);
1150 return (error);
1151 }
1152
1153 void
1154 zfs_acl_data_locator(void **dataptr, uint32_t *length, uint32_t buflen,
1155 boolean_t start, void *userdata)
1156 {
1157 (void) buflen;
1158 zfs_acl_locator_cb_t *cb = (zfs_acl_locator_cb_t *)userdata;
1159
1160 if (start) {
1161 cb->cb_acl_node = list_head(&cb->cb_aclp->z_acl);
1162 } else {
1163 cb->cb_acl_node = list_next(&cb->cb_aclp->z_acl,
1164 cb->cb_acl_node);
1165 }
1166 ASSERT3P(cb->cb_acl_node, !=, NULL);
1167 *dataptr = cb->cb_acl_node->z_acldata;
1168 *length = cb->cb_acl_node->z_size;
1169 }
1170
1171 int
1172 zfs_acl_chown_setattr(znode_t *zp)
1173 {
1174 int error;
1175 zfs_acl_t *aclp;
1176
1177 if (ZTOZSB(zp)->z_acl_type == ZFS_ACLTYPE_POSIX)
1178 return (0);
1179
1180 ASSERT(MUTEX_HELD(&zp->z_lock));
1181 ASSERT(MUTEX_HELD(&zp->z_acl_lock));
1182
1183 error = zfs_acl_node_read(zp, B_TRUE, &aclp, B_FALSE);
1184 if (error == 0 && aclp->z_acl_count > 0)
1185 zp->z_mode = ZTOI(zp)->i_mode =
1186 zfs_mode_compute(zp->z_mode, aclp,
1187 &zp->z_pflags, KUID_TO_SUID(ZTOI(zp)->i_uid),
1188 KGID_TO_SGID(ZTOI(zp)->i_gid));
1189
1190 /*
1191 * Some ZFS implementations (ZEVO) create neither a ZNODE_ACL
1192 * nor a DACL_ACES SA in which case ENOENT is returned from
1193 * zfs_acl_node_read() when the SA can't be located.
1194 * Allow chown/chgrp to succeed in these cases rather than
1195 * returning an error that makes no sense in the context of
1196 * the caller.
1197 */
1198 if (error == ENOENT)
1199 return (0);
1200
1201 return (error);
1202 }
1203
1204 typedef struct trivial_acl {
1205 uint32_t allow0; /* allow mask for bits only in owner */
1206 uint32_t deny1; /* deny mask for bits not in owner */
1207 uint32_t deny2; /* deny mask for bits not in group */
1208 uint32_t owner; /* allow mask matching mode */
1209 uint32_t group; /* allow mask matching mode */
1210 uint32_t everyone; /* allow mask matching mode */
1211 } trivial_acl_t;
1212
1213 static void
1214 acl_trivial_access_masks(mode_t mode, boolean_t isdir, trivial_acl_t *masks)
1215 {
1216 uint32_t read_mask = ACE_READ_DATA;
1217 uint32_t write_mask = ACE_WRITE_DATA|ACE_APPEND_DATA;
1218 uint32_t execute_mask = ACE_EXECUTE;
1219
1220 if (isdir)
1221 write_mask |= ACE_DELETE_CHILD;
1222
1223 masks->deny1 = 0;
1224
1225 if (!(mode & S_IRUSR) && (mode & (S_IRGRP|S_IROTH)))
1226 masks->deny1 |= read_mask;
1227 if (!(mode & S_IWUSR) && (mode & (S_IWGRP|S_IWOTH)))
1228 masks->deny1 |= write_mask;
1229 if (!(mode & S_IXUSR) && (mode & (S_IXGRP|S_IXOTH)))
1230 masks->deny1 |= execute_mask;
1231
1232 masks->deny2 = 0;
1233 if (!(mode & S_IRGRP) && (mode & S_IROTH))
1234 masks->deny2 |= read_mask;
1235 if (!(mode & S_IWGRP) && (mode & S_IWOTH))
1236 masks->deny2 |= write_mask;
1237 if (!(mode & S_IXGRP) && (mode & S_IXOTH))
1238 masks->deny2 |= execute_mask;
1239
1240 masks->allow0 = 0;
1241 if ((mode & S_IRUSR) && (!(mode & S_IRGRP) && (mode & S_IROTH)))
1242 masks->allow0 |= read_mask;
1243 if ((mode & S_IWUSR) && (!(mode & S_IWGRP) && (mode & S_IWOTH)))
1244 masks->allow0 |= write_mask;
1245 if ((mode & S_IXUSR) && (!(mode & S_IXGRP) && (mode & S_IXOTH)))
1246 masks->allow0 |= execute_mask;
1247
1248 masks->owner = ACE_WRITE_ATTRIBUTES|ACE_WRITE_OWNER|ACE_WRITE_ACL|
1249 ACE_WRITE_NAMED_ATTRS|ACE_READ_ACL|ACE_READ_ATTRIBUTES|
1250 ACE_READ_NAMED_ATTRS|ACE_SYNCHRONIZE;
1251 if (mode & S_IRUSR)
1252 masks->owner |= read_mask;
1253 if (mode & S_IWUSR)
1254 masks->owner |= write_mask;
1255 if (mode & S_IXUSR)
1256 masks->owner |= execute_mask;
1257
1258 masks->group = ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_READ_NAMED_ATTRS|
1259 ACE_SYNCHRONIZE;
1260 if (mode & S_IRGRP)
1261 masks->group |= read_mask;
1262 if (mode & S_IWGRP)
1263 masks->group |= write_mask;
1264 if (mode & S_IXGRP)
1265 masks->group |= execute_mask;
1266
1267 masks->everyone = ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_READ_NAMED_ATTRS|
1268 ACE_SYNCHRONIZE;
1269 if (mode & S_IROTH)
1270 masks->everyone |= read_mask;
1271 if (mode & S_IWOTH)
1272 masks->everyone |= write_mask;
1273 if (mode & S_IXOTH)
1274 masks->everyone |= execute_mask;
1275 }
1276
1277 /*
1278 * ace_trivial:
1279 * determine whether an ace_t acl is trivial
1280 *
1281 * Trivialness implies that the acl is composed of only
1282 * owner, group, everyone entries. ACL can't
1283 * have read_acl denied, and write_owner/write_acl/write_attributes
1284 * can only be owner@ entry.
1285 */
1286 static int
1287 ace_trivial_common(void *acep, int aclcnt,
1288 uintptr_t (*walk)(void *, uintptr_t, int,
1289 uint16_t *, uint16_t *, uint32_t *))
1290 {
1291 uint16_t flags;
1292 uint32_t mask;
1293 uint16_t type;
1294 uint64_t cookie = 0;
1295
1296 while ((cookie = walk(acep, cookie, aclcnt, &flags, &type, &mask))) {
1297 switch (flags & ACE_TYPE_FLAGS) {
1298 case ACE_OWNER:
1299 case ACE_GROUP|ACE_IDENTIFIER_GROUP:
1300 case ACE_EVERYONE:
1301 break;
1302 default:
1303 return (1);
1304 }
1305
1306 if (flags & (ACE_FILE_INHERIT_ACE|
1307 ACE_DIRECTORY_INHERIT_ACE|ACE_NO_PROPAGATE_INHERIT_ACE|
1308 ACE_INHERIT_ONLY_ACE))
1309 return (1);
1310
1311 /*
1312 * Special check for some special bits
1313 *
1314 * Don't allow anybody to deny reading basic
1315 * attributes or a files ACL.
1316 */
1317 if ((mask & (ACE_READ_ACL|ACE_READ_ATTRIBUTES)) &&
1318 (type == ACE_ACCESS_DENIED_ACE_TYPE))
1319 return (1);
1320
1321 /*
1322 * Delete permission is never set by default
1323 */
1324 if (mask & ACE_DELETE)
1325 return (1);
1326
1327 /*
1328 * Child delete permission should be accompanied by write
1329 */
1330 if ((mask & ACE_DELETE_CHILD) && !(mask & ACE_WRITE_DATA))
1331 return (1);
1332
1333 /*
1334 * only allow owner@ to have
1335 * write_acl/write_owner/write_attributes/write_xattr/
1336 */
1337 if (type == ACE_ACCESS_ALLOWED_ACE_TYPE &&
1338 (!(flags & ACE_OWNER) && (mask &
1339 (ACE_WRITE_OWNER|ACE_WRITE_ACL| ACE_WRITE_ATTRIBUTES|
1340 ACE_WRITE_NAMED_ATTRS))))
1341 return (1);
1342
1343 }
1344
1345 return (0);
1346 }
1347
1348 /*
1349 * common code for setting ACLs.
1350 *
1351 * This function is called from zfs_mode_update, zfs_perm_init, and zfs_setacl.
1352 * zfs_setacl passes a non-NULL inherit pointer (ihp) to indicate that it's
1353 * already checked the acl and knows whether to inherit.
1354 */
1355 int
1356 zfs_aclset_common(znode_t *zp, zfs_acl_t *aclp, cred_t *cr, dmu_tx_t *tx)
1357 {
1358 int error;
1359 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1360 dmu_object_type_t otype;
1361 zfs_acl_locator_cb_t locate = { 0 };
1362 uint64_t mode;
1363 sa_bulk_attr_t bulk[5];
1364 uint64_t ctime[2];
1365 int count = 0;
1366 zfs_acl_phys_t acl_phys;
1367
1368 mode = zp->z_mode;
1369
1370 mode = zfs_mode_compute(mode, aclp, &zp->z_pflags,
1371 KUID_TO_SUID(ZTOI(zp)->i_uid), KGID_TO_SGID(ZTOI(zp)->i_gid));
1372
1373 zp->z_mode = ZTOI(zp)->i_mode = mode;
1374 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1375 &mode, sizeof (mode));
1376 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1377 &zp->z_pflags, sizeof (zp->z_pflags));
1378 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
1379 &ctime, sizeof (ctime));
1380
1381 if (zp->z_acl_cached) {
1382 zfs_acl_free(zp->z_acl_cached);
1383 zp->z_acl_cached = NULL;
1384 }
1385
1386 /*
1387 * Upgrade needed?
1388 */
1389 if (!zfsvfs->z_use_fuids) {
1390 otype = DMU_OT_OLDACL;
1391 } else {
1392 if ((aclp->z_version == ZFS_ACL_VERSION_INITIAL) &&
1393 (zfsvfs->z_version >= ZPL_VERSION_FUID))
1394 zfs_acl_xform(zp, aclp, cr);
1395 ASSERT(aclp->z_version >= ZFS_ACL_VERSION_FUID);
1396 otype = DMU_OT_ACL;
1397 }
1398
1399 /*
1400 * Arrgh, we have to handle old on disk format
1401 * as well as newer (preferred) SA format.
1402 */
1403
1404 if (zp->z_is_sa) { /* the easy case, just update the ACL attribute */
1405 locate.cb_aclp = aclp;
1406 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_ACES(zfsvfs),
1407 zfs_acl_data_locator, &locate, aclp->z_acl_bytes);
1408 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_COUNT(zfsvfs),
1409 NULL, &aclp->z_acl_count, sizeof (uint64_t));
1410 } else { /* Painful legacy way */
1411 zfs_acl_node_t *aclnode;
1412 uint64_t off = 0;
1413 uint64_t aoid;
1414
1415 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs),
1416 &acl_phys, sizeof (acl_phys))) != 0)
1417 return (error);
1418
1419 aoid = acl_phys.z_acl_extern_obj;
1420
1421 if (aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1422 /*
1423 * If ACL was previously external and we are now
1424 * converting to new ACL format then release old
1425 * ACL object and create a new one.
1426 */
1427 if (aoid &&
1428 aclp->z_version != acl_phys.z_acl_version) {
1429 error = dmu_object_free(zfsvfs->z_os, aoid, tx);
1430 if (error)
1431 return (error);
1432 aoid = 0;
1433 }
1434 if (aoid == 0) {
1435 aoid = dmu_object_alloc(zfsvfs->z_os,
1436 otype, aclp->z_acl_bytes,
1437 otype == DMU_OT_ACL ?
1438 DMU_OT_SYSACL : DMU_OT_NONE,
1439 otype == DMU_OT_ACL ?
1440 DN_OLD_MAX_BONUSLEN : 0, tx);
1441 } else {
1442 (void) dmu_object_set_blocksize(zfsvfs->z_os,
1443 aoid, aclp->z_acl_bytes, 0, tx);
1444 }
1445 acl_phys.z_acl_extern_obj = aoid;
1446 for (aclnode = list_head(&aclp->z_acl); aclnode;
1447 aclnode = list_next(&aclp->z_acl, aclnode)) {
1448 if (aclnode->z_ace_count == 0)
1449 continue;
1450 dmu_write(zfsvfs->z_os, aoid, off,
1451 aclnode->z_size, aclnode->z_acldata, tx);
1452 off += aclnode->z_size;
1453 }
1454 } else {
1455 void *start = acl_phys.z_ace_data;
1456 /*
1457 * Migrating back embedded?
1458 */
1459 if (acl_phys.z_acl_extern_obj) {
1460 error = dmu_object_free(zfsvfs->z_os,
1461 acl_phys.z_acl_extern_obj, tx);
1462 if (error)
1463 return (error);
1464 acl_phys.z_acl_extern_obj = 0;
1465 }
1466
1467 for (aclnode = list_head(&aclp->z_acl); aclnode;
1468 aclnode = list_next(&aclp->z_acl, aclnode)) {
1469 if (aclnode->z_ace_count == 0)
1470 continue;
1471 memcpy(start, aclnode->z_acldata,
1472 aclnode->z_size);
1473 start = (caddr_t)start + aclnode->z_size;
1474 }
1475 }
1476 /*
1477 * If Old version then swap count/bytes to match old
1478 * layout of znode_acl_phys_t.
1479 */
1480 if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) {
1481 acl_phys.z_acl_size = aclp->z_acl_count;
1482 acl_phys.z_acl_count = aclp->z_acl_bytes;
1483 } else {
1484 acl_phys.z_acl_size = aclp->z_acl_bytes;
1485 acl_phys.z_acl_count = aclp->z_acl_count;
1486 }
1487 acl_phys.z_acl_version = aclp->z_version;
1488
1489 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
1490 &acl_phys, sizeof (acl_phys));
1491 }
1492
1493 /*
1494 * Replace ACL wide bits, but first clear them.
1495 */
1496 zp->z_pflags &= ~ZFS_ACL_WIDE_FLAGS;
1497
1498 zp->z_pflags |= aclp->z_hints;
1499
1500 if (ace_trivial_common(aclp, 0, zfs_ace_walk) == 0)
1501 zp->z_pflags |= ZFS_ACL_TRIVIAL;
1502
1503 zfs_tstamp_update_setup(zp, STATE_CHANGED, NULL, ctime);
1504 return (sa_bulk_update(zp->z_sa_hdl, bulk, count, tx));
1505 }
1506
1507 static void
1508 zfs_acl_chmod(boolean_t isdir, uint64_t mode, boolean_t split, boolean_t trim,
1509 zfs_acl_t *aclp)
1510 {
1511 void *acep = NULL;
1512 uint64_t who;
1513 int new_count, new_bytes;
1514 int ace_size;
1515 int entry_type;
1516 uint16_t iflags, type;
1517 uint32_t access_mask;
1518 zfs_acl_node_t *newnode;
1519 size_t abstract_size = aclp->z_ops->ace_abstract_size();
1520 void *zacep;
1521 trivial_acl_t masks;
1522
1523 new_count = new_bytes = 0;
1524
1525 acl_trivial_access_masks((mode_t)mode, isdir, &masks);
1526
1527 newnode = zfs_acl_node_alloc((abstract_size * 6) + aclp->z_acl_bytes);
1528
1529 zacep = newnode->z_acldata;
1530 if (masks.allow0) {
1531 zfs_set_ace(aclp, zacep, masks.allow0, ALLOW, -1, ACE_OWNER);
1532 zacep = (void *)((uintptr_t)zacep + abstract_size);
1533 new_count++;
1534 new_bytes += abstract_size;
1535 }
1536 if (masks.deny1) {
1537 zfs_set_ace(aclp, zacep, masks.deny1, DENY, -1, ACE_OWNER);
1538 zacep = (void *)((uintptr_t)zacep + abstract_size);
1539 new_count++;
1540 new_bytes += abstract_size;
1541 }
1542 if (masks.deny2) {
1543 zfs_set_ace(aclp, zacep, masks.deny2, DENY, -1, OWNING_GROUP);
1544 zacep = (void *)((uintptr_t)zacep + abstract_size);
1545 new_count++;
1546 new_bytes += abstract_size;
1547 }
1548
1549 while ((acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask,
1550 &iflags, &type))) {
1551 entry_type = (iflags & ACE_TYPE_FLAGS);
1552 /*
1553 * ACEs used to represent the file mode may be divided
1554 * into an equivalent pair of inherit-only and regular
1555 * ACEs, if they are inheritable.
1556 * Skip regular ACEs, which are replaced by the new mode.
1557 */
1558 if (split && (entry_type == ACE_OWNER ||
1559 entry_type == OWNING_GROUP ||
1560 entry_type == ACE_EVERYONE)) {
1561 if (!isdir || !(iflags &
1562 (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
1563 continue;
1564 /*
1565 * We preserve owner@, group@, or @everyone
1566 * permissions, if they are inheritable, by
1567 * copying them to inherit_only ACEs. This
1568 * prevents inheritable permissions from being
1569 * altered along with the file mode.
1570 */
1571 iflags |= ACE_INHERIT_ONLY_ACE;
1572 }
1573
1574 /*
1575 * If this ACL has any inheritable ACEs, mark that in
1576 * the hints (which are later masked into the pflags)
1577 * so create knows to do inheritance.
1578 */
1579 if (isdir && (iflags &
1580 (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
1581 aclp->z_hints |= ZFS_INHERIT_ACE;
1582
1583 if ((type != ALLOW && type != DENY) ||
1584 (iflags & ACE_INHERIT_ONLY_ACE)) {
1585 switch (type) {
1586 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
1587 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
1588 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
1589 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
1590 aclp->z_hints |= ZFS_ACL_OBJ_ACE;
1591 break;
1592 }
1593 } else {
1594 /*
1595 * Limit permissions to be no greater than
1596 * group permissions.
1597 * The "aclinherit" and "aclmode" properties
1598 * affect policy for create and chmod(2),
1599 * respectively.
1600 */
1601 if ((type == ALLOW) && trim)
1602 access_mask &= masks.group;
1603 }
1604 zfs_set_ace(aclp, zacep, access_mask, type, who, iflags);
1605 ace_size = aclp->z_ops->ace_size(acep);
1606 zacep = (void *)((uintptr_t)zacep + ace_size);
1607 new_count++;
1608 new_bytes += ace_size;
1609 }
1610 zfs_set_ace(aclp, zacep, masks.owner, ALLOW, -1, ACE_OWNER);
1611 zacep = (void *)((uintptr_t)zacep + abstract_size);
1612 zfs_set_ace(aclp, zacep, masks.group, ALLOW, -1, OWNING_GROUP);
1613 zacep = (void *)((uintptr_t)zacep + abstract_size);
1614 zfs_set_ace(aclp, zacep, masks.everyone, ALLOW, -1, ACE_EVERYONE);
1615
1616 new_count += 3;
1617 new_bytes += abstract_size * 3;
1618 zfs_acl_release_nodes(aclp);
1619 aclp->z_acl_count = new_count;
1620 aclp->z_acl_bytes = new_bytes;
1621 newnode->z_ace_count = new_count;
1622 newnode->z_size = new_bytes;
1623 list_insert_tail(&aclp->z_acl, newnode);
1624 }
1625
1626 int
1627 zfs_acl_chmod_setattr(znode_t *zp, zfs_acl_t **aclp, uint64_t mode)
1628 {
1629 int error = 0;
1630
1631 mutex_enter(&zp->z_acl_lock);
1632 mutex_enter(&zp->z_lock);
1633 if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_DISCARD)
1634 *aclp = zfs_acl_alloc(zfs_acl_version_zp(zp));
1635 else
1636 error = zfs_acl_node_read(zp, B_TRUE, aclp, B_TRUE);
1637
1638 if (error == 0) {
1639 (*aclp)->z_hints = zp->z_pflags & V4_ACL_WIDE_FLAGS;
1640 zfs_acl_chmod(S_ISDIR(ZTOI(zp)->i_mode), mode, B_TRUE,
1641 (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_GROUPMASK), *aclp);
1642 }
1643 mutex_exit(&zp->z_lock);
1644 mutex_exit(&zp->z_acl_lock);
1645
1646 return (error);
1647 }
1648
1649 /*
1650 * Should ACE be inherited?
1651 */
1652 static int
1653 zfs_ace_can_use(umode_t obj_mode, uint16_t acep_flags)
1654 {
1655 int iflags = (acep_flags & 0xf);
1656
1657 if (S_ISDIR(obj_mode) && (iflags & ACE_DIRECTORY_INHERIT_ACE))
1658 return (1);
1659 else if (iflags & ACE_FILE_INHERIT_ACE)
1660 return (!(S_ISDIR(obj_mode) &&
1661 (iflags & ACE_NO_PROPAGATE_INHERIT_ACE)));
1662 return (0);
1663 }
1664
1665 /*
1666 * inherit inheritable ACEs from parent
1667 */
1668 static zfs_acl_t *
1669 zfs_acl_inherit(zfsvfs_t *zfsvfs, umode_t va_mode, zfs_acl_t *paclp,
1670 uint64_t mode, boolean_t *need_chmod)
1671 {
1672 void *pacep = NULL;
1673 void *acep;
1674 zfs_acl_node_t *aclnode;
1675 zfs_acl_t *aclp = NULL;
1676 uint64_t who;
1677 uint32_t access_mask;
1678 uint16_t iflags, newflags, type;
1679 size_t ace_size;
1680 void *data1, *data2;
1681 size_t data1sz, data2sz;
1682 uint_t aclinherit;
1683 boolean_t isdir = S_ISDIR(va_mode);
1684 boolean_t isreg = S_ISREG(va_mode);
1685
1686 *need_chmod = B_TRUE;
1687
1688 aclp = zfs_acl_alloc(paclp->z_version);
1689 aclinherit = zfsvfs->z_acl_inherit;
1690 if (aclinherit == ZFS_ACL_DISCARD || S_ISLNK(va_mode))
1691 return (aclp);
1692
1693 while ((pacep = zfs_acl_next_ace(paclp, pacep, &who,
1694 &access_mask, &iflags, &type))) {
1695
1696 /*
1697 * don't inherit bogus ACEs
1698 */
1699 if (!zfs_acl_valid_ace_type(type, iflags))
1700 continue;
1701
1702 /*
1703 * Check if ACE is inheritable by this vnode
1704 */
1705 if ((aclinherit == ZFS_ACL_NOALLOW && type == ALLOW) ||
1706 !zfs_ace_can_use(va_mode, iflags))
1707 continue;
1708
1709 /*
1710 * If owner@, group@, or everyone@ inheritable
1711 * then zfs_acl_chmod() isn't needed.
1712 */
1713 if ((aclinherit == ZFS_ACL_PASSTHROUGH ||
1714 aclinherit == ZFS_ACL_PASSTHROUGH_X) &&
1715 ((iflags & (ACE_OWNER|ACE_EVERYONE)) ||
1716 ((iflags & OWNING_GROUP) == OWNING_GROUP)) &&
1717 (isreg || (isdir && (iflags & ACE_DIRECTORY_INHERIT_ACE))))
1718 *need_chmod = B_FALSE;
1719
1720 /*
1721 * Strip inherited execute permission from file if
1722 * not in mode
1723 */
1724 if (aclinherit == ZFS_ACL_PASSTHROUGH_X && type == ALLOW &&
1725 !isdir && ((mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)) {
1726 access_mask &= ~ACE_EXECUTE;
1727 }
1728
1729 /*
1730 * Strip write_acl and write_owner from permissions
1731 * when inheriting an ACE
1732 */
1733 if (aclinherit == ZFS_ACL_RESTRICTED && type == ALLOW) {
1734 access_mask &= ~RESTRICTED_CLEAR;
1735 }
1736
1737 ace_size = aclp->z_ops->ace_size(pacep);
1738 aclnode = zfs_acl_node_alloc(ace_size);
1739 list_insert_tail(&aclp->z_acl, aclnode);
1740 acep = aclnode->z_acldata;
1741
1742 zfs_set_ace(aclp, acep, access_mask, type,
1743 who, iflags|ACE_INHERITED_ACE);
1744
1745 /*
1746 * Copy special opaque data if any
1747 */
1748 if ((data1sz = paclp->z_ops->ace_data(pacep, &data1)) != 0) {
1749 VERIFY((data2sz = aclp->z_ops->ace_data(acep,
1750 &data2)) == data1sz);
1751 memcpy(data2, data1, data2sz);
1752 }
1753
1754 aclp->z_acl_count++;
1755 aclnode->z_ace_count++;
1756 aclp->z_acl_bytes += aclnode->z_size;
1757 newflags = aclp->z_ops->ace_flags_get(acep);
1758
1759 /*
1760 * If ACE is not to be inherited further, or if the vnode is
1761 * not a directory, remove all inheritance flags
1762 */
1763 if (!isdir || (iflags & ACE_NO_PROPAGATE_INHERIT_ACE)) {
1764 newflags &= ~ALL_INHERIT;
1765 aclp->z_ops->ace_flags_set(acep,
1766 newflags|ACE_INHERITED_ACE);
1767 continue;
1768 }
1769
1770 /*
1771 * This directory has an inheritable ACE
1772 */
1773 aclp->z_hints |= ZFS_INHERIT_ACE;
1774
1775 /*
1776 * If only FILE_INHERIT is set then turn on
1777 * inherit_only
1778 */
1779 if ((iflags & (ACE_FILE_INHERIT_ACE |
1780 ACE_DIRECTORY_INHERIT_ACE)) == ACE_FILE_INHERIT_ACE) {
1781 newflags |= ACE_INHERIT_ONLY_ACE;
1782 aclp->z_ops->ace_flags_set(acep,
1783 newflags|ACE_INHERITED_ACE);
1784 } else {
1785 newflags &= ~ACE_INHERIT_ONLY_ACE;
1786 aclp->z_ops->ace_flags_set(acep,
1787 newflags|ACE_INHERITED_ACE);
1788 }
1789 }
1790 if (zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
1791 aclp->z_acl_count != 0) {
1792 *need_chmod = B_FALSE;
1793 }
1794
1795 return (aclp);
1796 }
1797
1798 /*
1799 * Create file system object initial permissions
1800 * including inheritable ACEs.
1801 * Also, create FUIDs for owner and group.
1802 */
1803 int
1804 zfs_acl_ids_create(znode_t *dzp, int flag, vattr_t *vap, cred_t *cr,
1805 vsecattr_t *vsecp, zfs_acl_ids_t *acl_ids, zuserns_t *mnt_ns)
1806 {
1807 int error;
1808 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
1809 zfs_acl_t *paclp;
1810 gid_t gid = vap->va_gid;
1811 boolean_t need_chmod = B_TRUE;
1812 boolean_t trim = B_FALSE;
1813 boolean_t inherited = B_FALSE;
1814
1815 memset(acl_ids, 0, sizeof (zfs_acl_ids_t));
1816 acl_ids->z_mode = vap->va_mode;
1817
1818 if (vsecp)
1819 if ((error = zfs_vsec_2_aclp(zfsvfs, vap->va_mode, vsecp,
1820 cr, &acl_ids->z_fuidp, &acl_ids->z_aclp)) != 0)
1821 return (error);
1822
1823 acl_ids->z_fuid = vap->va_uid;
1824 acl_ids->z_fgid = vap->va_gid;
1825 #ifdef HAVE_KSID
1826 /*
1827 * Determine uid and gid.
1828 */
1829 if ((flag & IS_ROOT_NODE) || zfsvfs->z_replay ||
1830 ((flag & IS_XATTR) && (S_ISDIR(vap->va_mode)))) {
1831 acl_ids->z_fuid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_uid,
1832 cr, ZFS_OWNER, &acl_ids->z_fuidp);
1833 acl_ids->z_fgid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
1834 cr, ZFS_GROUP, &acl_ids->z_fuidp);
1835 gid = vap->va_gid;
1836 } else {
1837 acl_ids->z_fuid = zfs_fuid_create_cred(zfsvfs, ZFS_OWNER,
1838 cr, &acl_ids->z_fuidp);
1839 acl_ids->z_fgid = 0;
1840 if (vap->va_mask & AT_GID) {
1841 acl_ids->z_fgid = zfs_fuid_create(zfsvfs,
1842 (uint64_t)vap->va_gid,
1843 cr, ZFS_GROUP, &acl_ids->z_fuidp);
1844 gid = vap->va_gid;
1845 if (acl_ids->z_fgid != KGID_TO_SGID(ZTOI(dzp)->i_gid) &&
1846 !groupmember(vap->va_gid, cr) &&
1847 secpolicy_vnode_create_gid(cr) != 0)
1848 acl_ids->z_fgid = 0;
1849 }
1850 if (acl_ids->z_fgid == 0) {
1851 if (dzp->z_mode & S_ISGID) {
1852 char *domain;
1853 uint32_t rid;
1854
1855 acl_ids->z_fgid = KGID_TO_SGID(
1856 ZTOI(dzp)->i_gid);
1857 gid = zfs_fuid_map_id(zfsvfs, acl_ids->z_fgid,
1858 cr, ZFS_GROUP);
1859
1860 if (zfsvfs->z_use_fuids &&
1861 IS_EPHEMERAL(acl_ids->z_fgid)) {
1862 domain = zfs_fuid_idx_domain(
1863 &zfsvfs->z_fuid_idx,
1864 FUID_INDEX(acl_ids->z_fgid));
1865 rid = FUID_RID(acl_ids->z_fgid);
1866 zfs_fuid_node_add(&acl_ids->z_fuidp,
1867 domain, rid,
1868 FUID_INDEX(acl_ids->z_fgid),
1869 acl_ids->z_fgid, ZFS_GROUP);
1870 }
1871 } else {
1872 acl_ids->z_fgid = zfs_fuid_create_cred(zfsvfs,
1873 ZFS_GROUP, cr, &acl_ids->z_fuidp);
1874 gid = crgetgid(cr);
1875 }
1876 }
1877 }
1878 #endif /* HAVE_KSID */
1879
1880 /*
1881 * If we're creating a directory, and the parent directory has the
1882 * set-GID bit set, set in on the new directory.
1883 * Otherwise, if the user is neither privileged nor a member of the
1884 * file's new group, clear the file's set-GID bit.
1885 */
1886
1887 if (!(flag & IS_ROOT_NODE) && (dzp->z_mode & S_ISGID) &&
1888 (S_ISDIR(vap->va_mode))) {
1889 acl_ids->z_mode |= S_ISGID;
1890 } else {
1891 if ((acl_ids->z_mode & S_ISGID) &&
1892 secpolicy_vnode_setids_setgids(cr, gid, mnt_ns) != 0) {
1893 acl_ids->z_mode &= ~S_ISGID;
1894 }
1895 }
1896
1897 if (acl_ids->z_aclp == NULL) {
1898 mutex_enter(&dzp->z_acl_lock);
1899 mutex_enter(&dzp->z_lock);
1900 if (!(flag & IS_ROOT_NODE) &&
1901 (dzp->z_pflags & ZFS_INHERIT_ACE) &&
1902 !(dzp->z_pflags & ZFS_XATTR)) {
1903 VERIFY(0 == zfs_acl_node_read(dzp, B_TRUE,
1904 &paclp, B_FALSE));
1905 acl_ids->z_aclp = zfs_acl_inherit(zfsvfs,
1906 vap->va_mode, paclp, acl_ids->z_mode, &need_chmod);
1907 inherited = B_TRUE;
1908 } else {
1909 acl_ids->z_aclp =
1910 zfs_acl_alloc(zfs_acl_version_zp(dzp));
1911 acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL;
1912 }
1913 mutex_exit(&dzp->z_lock);
1914 mutex_exit(&dzp->z_acl_lock);
1915
1916 if (need_chmod) {
1917 if (S_ISDIR(vap->va_mode))
1918 acl_ids->z_aclp->z_hints |=
1919 ZFS_ACL_AUTO_INHERIT;
1920
1921 if (zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK &&
1922 zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH &&
1923 zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH_X)
1924 trim = B_TRUE;
1925 zfs_acl_chmod(vap->va_mode, acl_ids->z_mode, B_FALSE,
1926 trim, acl_ids->z_aclp);
1927 }
1928 }
1929
1930 if (inherited || vsecp) {
1931 acl_ids->z_mode = zfs_mode_compute(acl_ids->z_mode,
1932 acl_ids->z_aclp, &acl_ids->z_aclp->z_hints,
1933 acl_ids->z_fuid, acl_ids->z_fgid);
1934 if (ace_trivial_common(acl_ids->z_aclp, 0, zfs_ace_walk) == 0)
1935 acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL;
1936 }
1937
1938 return (0);
1939 }
1940
1941 /*
1942 * Free ACL and fuid_infop, but not the acl_ids structure
1943 */
1944 void
1945 zfs_acl_ids_free(zfs_acl_ids_t *acl_ids)
1946 {
1947 if (acl_ids->z_aclp)
1948 zfs_acl_free(acl_ids->z_aclp);
1949 if (acl_ids->z_fuidp)
1950 zfs_fuid_info_free(acl_ids->z_fuidp);
1951 acl_ids->z_aclp = NULL;
1952 acl_ids->z_fuidp = NULL;
1953 }
1954
1955 boolean_t
1956 zfs_acl_ids_overquota(zfsvfs_t *zv, zfs_acl_ids_t *acl_ids, uint64_t projid)
1957 {
1958 return (zfs_id_overquota(zv, DMU_USERUSED_OBJECT, acl_ids->z_fuid) ||
1959 zfs_id_overquota(zv, DMU_GROUPUSED_OBJECT, acl_ids->z_fgid) ||
1960 (projid != ZFS_DEFAULT_PROJID && projid != ZFS_INVALID_PROJID &&
1961 zfs_id_overquota(zv, DMU_PROJECTUSED_OBJECT, projid)));
1962 }
1963
1964 /*
1965 * Retrieve a file's ACL
1966 */
1967 int
1968 zfs_getacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
1969 {
1970 zfs_acl_t *aclp;
1971 ulong_t mask;
1972 int error;
1973 int count = 0;
1974 int largeace = 0;
1975
1976 mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT |
1977 VSA_ACE_ACLFLAGS | VSA_ACE_ALLTYPES);
1978
1979 if (mask == 0)
1980 return (SET_ERROR(ENOSYS));
1981
1982 if ((error = zfs_zaccess(zp, ACE_READ_ACL, 0, skipaclchk, cr, NULL)))
1983 return (error);
1984
1985 mutex_enter(&zp->z_acl_lock);
1986
1987 error = zfs_acl_node_read(zp, B_FALSE, &aclp, B_FALSE);
1988 if (error != 0) {
1989 mutex_exit(&zp->z_acl_lock);
1990 return (error);
1991 }
1992
1993 /*
1994 * Scan ACL to determine number of ACEs
1995 */
1996 if ((zp->z_pflags & ZFS_ACL_OBJ_ACE) && !(mask & VSA_ACE_ALLTYPES)) {
1997 void *zacep = NULL;
1998 uint64_t who;
1999 uint32_t access_mask;
2000 uint16_t type, iflags;
2001
2002 while ((zacep = zfs_acl_next_ace(aclp, zacep,
2003 &who, &access_mask, &iflags, &type))) {
2004 switch (type) {
2005 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
2006 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
2007 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
2008 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
2009 largeace++;
2010 continue;
2011 default:
2012 count++;
2013 }
2014 }
2015 vsecp->vsa_aclcnt = count;
2016 } else
2017 count = (int)aclp->z_acl_count;
2018
2019 if (mask & VSA_ACECNT) {
2020 vsecp->vsa_aclcnt = count;
2021 }
2022
2023 if (mask & VSA_ACE) {
2024 size_t aclsz;
2025
2026 aclsz = count * sizeof (ace_t) +
2027 sizeof (ace_object_t) * largeace;
2028
2029 vsecp->vsa_aclentp = kmem_alloc(aclsz, KM_SLEEP);
2030 vsecp->vsa_aclentsz = aclsz;
2031
2032 if (aclp->z_version == ZFS_ACL_VERSION_FUID)
2033 zfs_copy_fuid_2_ace(ZTOZSB(zp), aclp, cr,
2034 vsecp->vsa_aclentp, !(mask & VSA_ACE_ALLTYPES));
2035 else {
2036 zfs_acl_node_t *aclnode;
2037 void *start = vsecp->vsa_aclentp;
2038
2039 for (aclnode = list_head(&aclp->z_acl); aclnode;
2040 aclnode = list_next(&aclp->z_acl, aclnode)) {
2041 memcpy(start, aclnode->z_acldata,
2042 aclnode->z_size);
2043 start = (caddr_t)start + aclnode->z_size;
2044 }
2045 ASSERT((caddr_t)start - (caddr_t)vsecp->vsa_aclentp ==
2046 aclp->z_acl_bytes);
2047 }
2048 }
2049 if (mask & VSA_ACE_ACLFLAGS) {
2050 vsecp->vsa_aclflags = 0;
2051 if (zp->z_pflags & ZFS_ACL_DEFAULTED)
2052 vsecp->vsa_aclflags |= ACL_DEFAULTED;
2053 if (zp->z_pflags & ZFS_ACL_PROTECTED)
2054 vsecp->vsa_aclflags |= ACL_PROTECTED;
2055 if (zp->z_pflags & ZFS_ACL_AUTO_INHERIT)
2056 vsecp->vsa_aclflags |= ACL_AUTO_INHERIT;
2057 }
2058
2059 mutex_exit(&zp->z_acl_lock);
2060
2061 return (0);
2062 }
2063
2064 int
2065 zfs_vsec_2_aclp(zfsvfs_t *zfsvfs, umode_t obj_mode,
2066 vsecattr_t *vsecp, cred_t *cr, zfs_fuid_info_t **fuidp, zfs_acl_t **zaclp)
2067 {
2068 zfs_acl_t *aclp;
2069 zfs_acl_node_t *aclnode;
2070 int aclcnt = vsecp->vsa_aclcnt;
2071 int error;
2072
2073 if (vsecp->vsa_aclcnt > MAX_ACL_ENTRIES || vsecp->vsa_aclcnt <= 0)
2074 return (SET_ERROR(EINVAL));
2075
2076 aclp = zfs_acl_alloc(zfs_acl_version(zfsvfs->z_version));
2077
2078 aclp->z_hints = 0;
2079 aclnode = zfs_acl_node_alloc(aclcnt * sizeof (zfs_object_ace_t));
2080 if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) {
2081 if ((error = zfs_copy_ace_2_oldace(obj_mode, aclp,
2082 (ace_t *)vsecp->vsa_aclentp, aclnode->z_acldata,
2083 aclcnt, &aclnode->z_size)) != 0) {
2084 zfs_acl_free(aclp);
2085 zfs_acl_node_free(aclnode);
2086 return (error);
2087 }
2088 } else {
2089 if ((error = zfs_copy_ace_2_fuid(zfsvfs, obj_mode, aclp,
2090 vsecp->vsa_aclentp, aclnode->z_acldata, aclcnt,
2091 &aclnode->z_size, fuidp, cr)) != 0) {
2092 zfs_acl_free(aclp);
2093 zfs_acl_node_free(aclnode);
2094 return (error);
2095 }
2096 }
2097 aclp->z_acl_bytes = aclnode->z_size;
2098 aclnode->z_ace_count = aclcnt;
2099 aclp->z_acl_count = aclcnt;
2100 list_insert_head(&aclp->z_acl, aclnode);
2101
2102 /*
2103 * If flags are being set then add them to z_hints
2104 */
2105 if (vsecp->vsa_mask & VSA_ACE_ACLFLAGS) {
2106 if (vsecp->vsa_aclflags & ACL_PROTECTED)
2107 aclp->z_hints |= ZFS_ACL_PROTECTED;
2108 if (vsecp->vsa_aclflags & ACL_DEFAULTED)
2109 aclp->z_hints |= ZFS_ACL_DEFAULTED;
2110 if (vsecp->vsa_aclflags & ACL_AUTO_INHERIT)
2111 aclp->z_hints |= ZFS_ACL_AUTO_INHERIT;
2112 }
2113
2114 *zaclp = aclp;
2115
2116 return (0);
2117 }
2118
2119 /*
2120 * Set a file's ACL
2121 */
2122 int
2123 zfs_setacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
2124 {
2125 zfsvfs_t *zfsvfs = ZTOZSB(zp);
2126 zilog_t *zilog = zfsvfs->z_log;
2127 ulong_t mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT);
2128 dmu_tx_t *tx;
2129 int error;
2130 zfs_acl_t *aclp;
2131 zfs_fuid_info_t *fuidp = NULL;
2132 boolean_t fuid_dirtied;
2133 uint64_t acl_obj;
2134
2135 if (mask == 0)
2136 return (SET_ERROR(ENOSYS));
2137
2138 if (zp->z_pflags & ZFS_IMMUTABLE)
2139 return (SET_ERROR(EPERM));
2140
2141 if ((error = zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr, NULL)))
2142 return (error);
2143
2144 error = zfs_vsec_2_aclp(zfsvfs, ZTOI(zp)->i_mode, vsecp, cr, &fuidp,
2145 &aclp);
2146 if (error)
2147 return (error);
2148
2149 /*
2150 * If ACL wide flags aren't being set then preserve any
2151 * existing flags.
2152 */
2153 if (!(vsecp->vsa_mask & VSA_ACE_ACLFLAGS)) {
2154 aclp->z_hints |=
2155 (zp->z_pflags & V4_ACL_WIDE_FLAGS);
2156 }
2157 top:
2158 mutex_enter(&zp->z_acl_lock);
2159 mutex_enter(&zp->z_lock);
2160
2161 tx = dmu_tx_create(zfsvfs->z_os);
2162
2163 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2164
2165 fuid_dirtied = zfsvfs->z_fuid_dirty;
2166 if (fuid_dirtied)
2167 zfs_fuid_txhold(zfsvfs, tx);
2168
2169 /*
2170 * If old version and ACL won't fit in bonus and we aren't
2171 * upgrading then take out necessary DMU holds
2172 */
2173
2174 if ((acl_obj = zfs_external_acl(zp)) != 0) {
2175 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2176 zfs_znode_acl_version(zp) <= ZFS_ACL_VERSION_INITIAL) {
2177 dmu_tx_hold_free(tx, acl_obj, 0,
2178 DMU_OBJECT_END);
2179 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2180 aclp->z_acl_bytes);
2181 } else {
2182 dmu_tx_hold_write(tx, acl_obj, 0, aclp->z_acl_bytes);
2183 }
2184 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2185 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes);
2186 }
2187
2188 zfs_sa_upgrade_txholds(tx, zp);
2189 error = dmu_tx_assign(tx, TXG_NOWAIT);
2190 if (error) {
2191 mutex_exit(&zp->z_acl_lock);
2192 mutex_exit(&zp->z_lock);
2193
2194 if (error == ERESTART) {
2195 dmu_tx_wait(tx);
2196 dmu_tx_abort(tx);
2197 goto top;
2198 }
2199 dmu_tx_abort(tx);
2200 zfs_acl_free(aclp);
2201 return (error);
2202 }
2203
2204 error = zfs_aclset_common(zp, aclp, cr, tx);
2205 ASSERT(error == 0);
2206 ASSERT(zp->z_acl_cached == NULL);
2207 zp->z_acl_cached = aclp;
2208
2209 if (fuid_dirtied)
2210 zfs_fuid_sync(zfsvfs, tx);
2211
2212 zfs_log_acl(zilog, tx, zp, vsecp, fuidp);
2213
2214 if (fuidp)
2215 zfs_fuid_info_free(fuidp);
2216 dmu_tx_commit(tx);
2217
2218 mutex_exit(&zp->z_lock);
2219 mutex_exit(&zp->z_acl_lock);
2220
2221 return (error);
2222 }
2223
2224 /*
2225 * Check accesses of interest (AoI) against attributes of the dataset
2226 * such as read-only. Returns zero if no AoI conflict with dataset
2227 * attributes, otherwise an appropriate errno is returned.
2228 */
2229 static int
2230 zfs_zaccess_dataset_check(znode_t *zp, uint32_t v4_mode)
2231 {
2232 if ((v4_mode & WRITE_MASK) && (zfs_is_readonly(ZTOZSB(zp))) &&
2233 (!Z_ISDEV(ZTOI(zp)->i_mode) ||
2234 (Z_ISDEV(ZTOI(zp)->i_mode) && (v4_mode & WRITE_MASK_ATTRS)))) {
2235 return (SET_ERROR(EROFS));
2236 }
2237
2238 /*
2239 * Intentionally allow ZFS_READONLY through here.
2240 * See zfs_zaccess_common().
2241 */
2242 if ((v4_mode & WRITE_MASK_DATA) &&
2243 (zp->z_pflags & ZFS_IMMUTABLE)) {
2244 return (SET_ERROR(EPERM));
2245 }
2246
2247 if ((v4_mode & (ACE_DELETE | ACE_DELETE_CHILD)) &&
2248 (zp->z_pflags & ZFS_NOUNLINK)) {
2249 return (SET_ERROR(EPERM));
2250 }
2251
2252 if (((v4_mode & (ACE_READ_DATA|ACE_EXECUTE)) &&
2253 (zp->z_pflags & ZFS_AV_QUARANTINED))) {
2254 return (SET_ERROR(EACCES));
2255 }
2256
2257 return (0);
2258 }
2259
2260 /*
2261 * The primary usage of this function is to loop through all of the
2262 * ACEs in the znode, determining what accesses of interest (AoI) to
2263 * the caller are allowed or denied. The AoI are expressed as bits in
2264 * the working_mode parameter. As each ACE is processed, bits covered
2265 * by that ACE are removed from the working_mode. This removal
2266 * facilitates two things. The first is that when the working mode is
2267 * empty (= 0), we know we've looked at all the AoI. The second is
2268 * that the ACE interpretation rules don't allow a later ACE to undo
2269 * something granted or denied by an earlier ACE. Removing the
2270 * discovered access or denial enforces this rule. At the end of
2271 * processing the ACEs, all AoI that were found to be denied are
2272 * placed into the working_mode, giving the caller a mask of denied
2273 * accesses. Returns:
2274 * 0 if all AoI granted
2275 * EACCES if the denied mask is non-zero
2276 * other error if abnormal failure (e.g., IO error)
2277 *
2278 * A secondary usage of the function is to determine if any of the
2279 * AoI are granted. If an ACE grants any access in
2280 * the working_mode, we immediately short circuit out of the function.
2281 * This mode is chosen by setting anyaccess to B_TRUE. The
2282 * working_mode is not a denied access mask upon exit if the function
2283 * is used in this manner.
2284 */
2285 static int
2286 zfs_zaccess_aces_check(znode_t *zp, uint32_t *working_mode,
2287 boolean_t anyaccess, cred_t *cr, zuserns_t *mnt_ns)
2288 {
2289 zfsvfs_t *zfsvfs = ZTOZSB(zp);
2290 zfs_acl_t *aclp;
2291 int error;
2292 uid_t uid = crgetuid(cr);
2293 uint64_t who;
2294 uint16_t type, iflags;
2295 uint16_t entry_type;
2296 uint32_t access_mask;
2297 uint32_t deny_mask = 0;
2298 zfs_ace_hdr_t *acep = NULL;
2299 boolean_t checkit;
2300 uid_t gowner;
2301 uid_t fowner;
2302
2303 if (mnt_ns) {
2304 fowner = zfs_uid_into_mnt(mnt_ns,
2305 KUID_TO_SUID(ZTOI(zp)->i_uid));
2306 gowner = zfs_gid_into_mnt(mnt_ns,
2307 KGID_TO_SGID(ZTOI(zp)->i_gid));
2308 } else
2309 zfs_fuid_map_ids(zp, cr, &fowner, &gowner);
2310
2311 mutex_enter(&zp->z_acl_lock);
2312
2313 error = zfs_acl_node_read(zp, B_FALSE, &aclp, B_FALSE);
2314 if (error != 0) {
2315 mutex_exit(&zp->z_acl_lock);
2316 return (error);
2317 }
2318
2319 ASSERT(zp->z_acl_cached);
2320
2321 while ((acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask,
2322 &iflags, &type))) {
2323 uint32_t mask_matched;
2324
2325 if (!zfs_acl_valid_ace_type(type, iflags))
2326 continue;
2327
2328 if (S_ISDIR(ZTOI(zp)->i_mode) &&
2329 (iflags & ACE_INHERIT_ONLY_ACE))
2330 continue;
2331
2332 /* Skip ACE if it does not affect any AoI */
2333 mask_matched = (access_mask & *working_mode);
2334 if (!mask_matched)
2335 continue;
2336
2337 entry_type = (iflags & ACE_TYPE_FLAGS);
2338
2339 checkit = B_FALSE;
2340
2341 switch (entry_type) {
2342 case ACE_OWNER:
2343 if (uid == fowner)
2344 checkit = B_TRUE;
2345 break;
2346 case OWNING_GROUP:
2347 who = gowner;
2348 zfs_fallthrough;
2349 case ACE_IDENTIFIER_GROUP:
2350 checkit = zfs_groupmember(zfsvfs, who, cr);
2351 break;
2352 case ACE_EVERYONE:
2353 checkit = B_TRUE;
2354 break;
2355
2356 /* USER Entry */
2357 default:
2358 if (entry_type == 0) {
2359 uid_t newid;
2360
2361 newid = zfs_fuid_map_id(zfsvfs, who, cr,
2362 ZFS_ACE_USER);
2363 if (newid != IDMAP_WK_CREATOR_OWNER_UID &&
2364 uid == newid)
2365 checkit = B_TRUE;
2366 break;
2367 } else {
2368 mutex_exit(&zp->z_acl_lock);
2369 return (SET_ERROR(EIO));
2370 }
2371 }
2372
2373 if (checkit) {
2374 if (type == DENY) {
2375 DTRACE_PROBE3(zfs__ace__denies,
2376 znode_t *, zp,
2377 zfs_ace_hdr_t *, acep,
2378 uint32_t, mask_matched);
2379 deny_mask |= mask_matched;
2380 } else {
2381 DTRACE_PROBE3(zfs__ace__allows,
2382 znode_t *, zp,
2383 zfs_ace_hdr_t *, acep,
2384 uint32_t, mask_matched);
2385 if (anyaccess) {
2386 mutex_exit(&zp->z_acl_lock);
2387 return (0);
2388 }
2389 }
2390 *working_mode &= ~mask_matched;
2391 }
2392
2393 /* Are we done? */
2394 if (*working_mode == 0)
2395 break;
2396 }
2397
2398 mutex_exit(&zp->z_acl_lock);
2399
2400 /* Put the found 'denies' back on the working mode */
2401 if (deny_mask) {
2402 *working_mode |= deny_mask;
2403 return (SET_ERROR(EACCES));
2404 } else if (*working_mode) {
2405 return (-1);
2406 }
2407
2408 return (0);
2409 }
2410
2411 /*
2412 * Return true if any access whatsoever granted, we don't actually
2413 * care what access is granted.
2414 */
2415 boolean_t
2416 zfs_has_access(znode_t *zp, cred_t *cr)
2417 {
2418 uint32_t have = ACE_ALL_PERMS;
2419
2420 if (zfs_zaccess_aces_check(zp, &have, B_TRUE, cr, NULL) != 0) {
2421 uid_t owner;
2422
2423 owner = zfs_fuid_map_id(ZTOZSB(zp),
2424 KUID_TO_SUID(ZTOI(zp)->i_uid), cr, ZFS_OWNER);
2425 return (secpolicy_vnode_any_access(cr, ZTOI(zp), owner) == 0);
2426 }
2427 return (B_TRUE);
2428 }
2429
2430 /*
2431 * Simplified access check for case where ACL is known to not contain
2432 * information beyond what is defined in the mode. In this case, we
2433 * can pass along to the kernel / vfs generic_permission() check, which
2434 * evaluates the mode and POSIX ACL.
2435 *
2436 * NFSv4 ACLs allow granting permissions that are usually relegated only
2437 * to the file owner or superuser. Examples are ACE_WRITE_OWNER (chown),
2438 * ACE_WRITE_ACL(chmod), and ACE_DELETE. ACE_DELETE requests must fail
2439 * because with conventional posix permissions, right to delete file
2440 * is determined by write bit on the parent dir.
2441 *
2442 * If unmappable perms are requested, then we must return EPERM
2443 * and include those bits in the working_mode so that the caller of
2444 * zfs_zaccess_common() can decide whether to perform additional
2445 * policy / capability checks. EACCES is used in zfs_zaccess_aces_check()
2446 * to indicate access check failed due to explicit DENY entry, and so
2447 * we want to avoid that here.
2448 */
2449 static int
2450 zfs_zaccess_trivial(znode_t *zp, uint32_t *working_mode, cred_t *cr,
2451 zuserns_t *mnt_ns)
2452 {
2453 int err, mask;
2454 int unmapped = 0;
2455
2456 ASSERT(zp->z_pflags & ZFS_ACL_TRIVIAL);
2457
2458 mask = zfs_v4_to_unix(*working_mode, &unmapped);
2459 if (mask == 0 || unmapped) {
2460 *working_mode = unmapped;
2461 return (unmapped ? SET_ERROR(EPERM) : 0);
2462 }
2463
2464 #if defined(HAVE_IOPS_PERMISSION_USERNS)
2465 if (mnt_ns)
2466 err = generic_permission(mnt_ns, ZTOI(zp), mask);
2467 else
2468 err = generic_permission(cr->user_ns, ZTOI(zp), mask);
2469 #else
2470 err = generic_permission(ZTOI(zp), mask);
2471 #endif
2472 if (err != 0) {
2473 return (SET_ERROR(EPERM));
2474 }
2475
2476 *working_mode = unmapped;
2477
2478 return (0);
2479 }
2480
2481 static int
2482 zfs_zaccess_common(znode_t *zp, uint32_t v4_mode, uint32_t *working_mode,
2483 boolean_t *check_privs, boolean_t skipaclchk, cred_t *cr, zuserns_t *mnt_ns)
2484 {
2485 zfsvfs_t *zfsvfs = ZTOZSB(zp);
2486 int err;
2487
2488 *working_mode = v4_mode;
2489 *check_privs = B_TRUE;
2490
2491 /*
2492 * Short circuit empty requests
2493 */
2494 if (v4_mode == 0 || zfsvfs->z_replay) {
2495 *working_mode = 0;
2496 return (0);
2497 }
2498
2499 if ((err = zfs_zaccess_dataset_check(zp, v4_mode)) != 0) {
2500 *check_privs = B_FALSE;
2501 return (err);
2502 }
2503
2504 /*
2505 * The caller requested that the ACL check be skipped. This
2506 * would only happen if the caller checked VOP_ACCESS() with a
2507 * 32 bit ACE mask and already had the appropriate permissions.
2508 */
2509 if (skipaclchk) {
2510 *working_mode = 0;
2511 return (0);
2512 }
2513
2514 /*
2515 * Note: ZFS_READONLY represents the "DOS R/O" attribute.
2516 * When that flag is set, we should behave as if write access
2517 * were not granted by anything in the ACL. In particular:
2518 * We _must_ allow writes after opening the file r/w, then
2519 * setting the DOS R/O attribute, and writing some more.
2520 * (Similar to how you can write after fchmod(fd, 0444).)
2521 *
2522 * Therefore ZFS_READONLY is ignored in the dataset check
2523 * above, and checked here as if part of the ACL check.
2524 * Also note: DOS R/O is ignored for directories.
2525 */
2526 if ((v4_mode & WRITE_MASK_DATA) &&
2527 S_ISDIR(ZTOI(zp)->i_mode) &&
2528 (zp->z_pflags & ZFS_READONLY)) {
2529 return (SET_ERROR(EPERM));
2530 }
2531
2532 if (zp->z_pflags & ZFS_ACL_TRIVIAL)
2533 return (zfs_zaccess_trivial(zp, working_mode, cr, mnt_ns));
2534
2535 return (zfs_zaccess_aces_check(zp, working_mode, B_FALSE, cr, mnt_ns));
2536 }
2537
2538 static int
2539 zfs_zaccess_append(znode_t *zp, uint32_t *working_mode, boolean_t *check_privs,
2540 cred_t *cr, zuserns_t *mnt_ns)
2541 {
2542 if (*working_mode != ACE_WRITE_DATA)
2543 return (SET_ERROR(EACCES));
2544
2545 return (zfs_zaccess_common(zp, ACE_APPEND_DATA, working_mode,
2546 check_privs, B_FALSE, cr, mnt_ns));
2547 }
2548
2549 int
2550 zfs_fastaccesschk_execute(znode_t *zdp, cred_t *cr)
2551 {
2552 boolean_t owner = B_FALSE;
2553 boolean_t groupmbr = B_FALSE;
2554 boolean_t is_attr;
2555 uid_t uid = crgetuid(cr);
2556 int error;
2557
2558 if (zdp->z_pflags & ZFS_AV_QUARANTINED)
2559 return (SET_ERROR(EACCES));
2560
2561 is_attr = ((zdp->z_pflags & ZFS_XATTR) &&
2562 (S_ISDIR(ZTOI(zdp)->i_mode)));
2563 if (is_attr)
2564 goto slow;
2565
2566
2567 mutex_enter(&zdp->z_acl_lock);
2568
2569 if (zdp->z_pflags & ZFS_NO_EXECS_DENIED) {
2570 mutex_exit(&zdp->z_acl_lock);
2571 return (0);
2572 }
2573
2574 if (KUID_TO_SUID(ZTOI(zdp)->i_uid) != 0 ||
2575 KGID_TO_SGID(ZTOI(zdp)->i_gid) != 0) {
2576 mutex_exit(&zdp->z_acl_lock);
2577 goto slow;
2578 }
2579
2580 if (uid == KUID_TO_SUID(ZTOI(zdp)->i_uid)) {
2581 owner = B_TRUE;
2582 if (zdp->z_mode & S_IXUSR) {
2583 mutex_exit(&zdp->z_acl_lock);
2584 return (0);
2585 } else {
2586 mutex_exit(&zdp->z_acl_lock);
2587 goto slow;
2588 }
2589 }
2590 if (groupmember(KGID_TO_SGID(ZTOI(zdp)->i_gid), cr)) {
2591 groupmbr = B_TRUE;
2592 if (zdp->z_mode & S_IXGRP) {
2593 mutex_exit(&zdp->z_acl_lock);
2594 return (0);
2595 } else {
2596 mutex_exit(&zdp->z_acl_lock);
2597 goto slow;
2598 }
2599 }
2600 if (!owner && !groupmbr) {
2601 if (zdp->z_mode & S_IXOTH) {
2602 mutex_exit(&zdp->z_acl_lock);
2603 return (0);
2604 }
2605 }
2606
2607 mutex_exit(&zdp->z_acl_lock);
2608
2609 slow:
2610 DTRACE_PROBE(zfs__fastpath__execute__access__miss);
2611 if ((error = zfs_enter(ZTOZSB(zdp), FTAG)) != 0)
2612 return (error);
2613 error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr, NULL);
2614 zfs_exit(ZTOZSB(zdp), FTAG);
2615 return (error);
2616 }
2617
2618 /*
2619 * Determine whether Access should be granted/denied.
2620 *
2621 * The least priv subsystem is always consulted as a basic privilege
2622 * can define any form of access.
2623 */
2624 int
2625 zfs_zaccess(znode_t *zp, int mode, int flags, boolean_t skipaclchk, cred_t *cr,
2626 zuserns_t *mnt_ns)
2627 {
2628 uint32_t working_mode;
2629 int error;
2630 int is_attr;
2631 boolean_t check_privs;
2632 znode_t *xzp;
2633 znode_t *check_zp = zp;
2634 mode_t needed_bits;
2635 uid_t owner;
2636
2637 is_attr = ((zp->z_pflags & ZFS_XATTR) && S_ISDIR(ZTOI(zp)->i_mode));
2638
2639 /*
2640 * If attribute then validate against base file
2641 */
2642 if (is_attr) {
2643 if ((error = zfs_zget(ZTOZSB(zp),
2644 zp->z_xattr_parent, &xzp)) != 0) {
2645 return (error);
2646 }
2647
2648 check_zp = xzp;
2649
2650 /*
2651 * fixup mode to map to xattr perms
2652 */
2653
2654 if (mode & (ACE_WRITE_DATA|ACE_APPEND_DATA)) {
2655 mode &= ~(ACE_WRITE_DATA|ACE_APPEND_DATA);
2656 mode |= ACE_WRITE_NAMED_ATTRS;
2657 }
2658
2659 if (mode & (ACE_READ_DATA|ACE_EXECUTE)) {
2660 mode &= ~(ACE_READ_DATA|ACE_EXECUTE);
2661 mode |= ACE_READ_NAMED_ATTRS;
2662 }
2663 }
2664
2665 owner = zfs_uid_into_mnt(mnt_ns, KUID_TO_SUID(ZTOI(zp)->i_uid));
2666 owner = zfs_fuid_map_id(ZTOZSB(zp), owner, cr, ZFS_OWNER);
2667
2668 /*
2669 * Map the bits required to the standard inode flags
2670 * S_IRUSR|S_IWUSR|S_IXUSR in the needed_bits. Map the bits
2671 * mapped by working_mode (currently missing) in missing_bits.
2672 * Call secpolicy_vnode_access2() with (needed_bits & ~checkmode),
2673 * needed_bits.
2674 */
2675 needed_bits = 0;
2676
2677 working_mode = mode;
2678 if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES)) &&
2679 owner == crgetuid(cr))
2680 working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);
2681
2682 if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
2683 ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
2684 needed_bits |= S_IRUSR;
2685 if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
2686 ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
2687 needed_bits |= S_IWUSR;
2688 if (working_mode & ACE_EXECUTE)
2689 needed_bits |= S_IXUSR;
2690
2691 if ((error = zfs_zaccess_common(check_zp, mode, &working_mode,
2692 &check_privs, skipaclchk, cr, mnt_ns)) == 0) {
2693 if (is_attr)
2694 zrele(xzp);
2695 return (secpolicy_vnode_access2(cr, ZTOI(zp), owner,
2696 needed_bits, needed_bits));
2697 }
2698
2699 if (error && !check_privs) {
2700 if (is_attr)
2701 zrele(xzp);
2702 return (error);
2703 }
2704
2705 if (error && (flags & V_APPEND)) {
2706 error = zfs_zaccess_append(zp, &working_mode, &check_privs, cr,
2707 mnt_ns);
2708 }
2709
2710 if (error && check_privs) {
2711 mode_t checkmode = 0;
2712
2713 /*
2714 * First check for implicit owner permission on
2715 * read_acl/read_attributes
2716 */
2717
2718 error = 0;
2719 ASSERT(working_mode != 0);
2720
2721 if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES) &&
2722 owner == crgetuid(cr)))
2723 working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);
2724
2725 if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
2726 ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
2727 checkmode |= S_IRUSR;
2728 if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
2729 ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
2730 checkmode |= S_IWUSR;
2731 if (working_mode & ACE_EXECUTE)
2732 checkmode |= S_IXUSR;
2733
2734 error = secpolicy_vnode_access2(cr, ZTOI(check_zp), owner,
2735 needed_bits & ~checkmode, needed_bits);
2736
2737 if (error == 0 && (working_mode & ACE_WRITE_OWNER))
2738 error = secpolicy_vnode_chown(cr, owner);
2739 if (error == 0 && (working_mode & ACE_WRITE_ACL))
2740 error = secpolicy_vnode_setdac(cr, owner);
2741
2742 if (error == 0 && (working_mode &
2743 (ACE_DELETE|ACE_DELETE_CHILD)))
2744 error = secpolicy_vnode_remove(cr);
2745
2746 if (error == 0 && (working_mode & ACE_SYNCHRONIZE)) {
2747 error = secpolicy_vnode_chown(cr, owner);
2748 }
2749 if (error == 0) {
2750 /*
2751 * See if any bits other than those already checked
2752 * for are still present. If so then return EACCES
2753 */
2754 if (working_mode & ~(ZFS_CHECKED_MASKS)) {
2755 error = SET_ERROR(EACCES);
2756 }
2757 }
2758 } else if (error == 0) {
2759 error = secpolicy_vnode_access2(cr, ZTOI(zp), owner,
2760 needed_bits, needed_bits);
2761 }
2762
2763 if (is_attr)
2764 zrele(xzp);
2765
2766 return (error);
2767 }
2768
2769 /*
2770 * Translate traditional unix S_IRUSR/S_IWUSR/S_IXUSR mode into
2771 * NFSv4-style ZFS ACL format and call zfs_zaccess()
2772 */
2773 int
2774 zfs_zaccess_rwx(znode_t *zp, mode_t mode, int flags, cred_t *cr,
2775 zuserns_t *mnt_ns)
2776 {
2777 return (zfs_zaccess(zp, zfs_unix_to_v4(mode >> 6), flags, B_FALSE, cr,
2778 mnt_ns));
2779 }
2780
2781 /*
2782 * Access function for secpolicy_vnode_setattr
2783 */
2784 int
2785 zfs_zaccess_unix(znode_t *zp, mode_t mode, cred_t *cr)
2786 {
2787 int v4_mode = zfs_unix_to_v4(mode >> 6);
2788
2789 return (zfs_zaccess(zp, v4_mode, 0, B_FALSE, cr, NULL));
2790 }
2791
2792 /* See zfs_zaccess_delete() */
2793 static const boolean_t zfs_write_implies_delete_child = B_TRUE;
2794
2795 /*
2796 * Determine whether delete access should be granted.
2797 *
2798 * The following chart outlines how we handle delete permissions which is
2799 * how recent versions of windows (Windows 2008) handles it. The efficiency
2800 * comes from not having to check the parent ACL where the object itself grants
2801 * delete:
2802 *
2803 * -------------------------------------------------------
2804 * | Parent Dir | Target Object Permissions |
2805 * | permissions | |
2806 * -------------------------------------------------------
2807 * | | ACL Allows | ACL Denies| Delete |
2808 * | | Delete | Delete | unspecified|
2809 * -------------------------------------------------------
2810 * | ACL Allows | Permit | Deny * | Permit |
2811 * | DELETE_CHILD | | | |
2812 * -------------------------------------------------------
2813 * | ACL Denies | Permit | Deny | Deny |
2814 * | DELETE_CHILD | | | |
2815 * -------------------------------------------------------
2816 * | ACL specifies | | | |
2817 * | only allow | Permit | Deny * | Permit |
2818 * | write and | | | |
2819 * | execute | | | |
2820 * -------------------------------------------------------
2821 * | ACL denies | | | |
2822 * | write and | Permit | Deny | Deny |
2823 * | execute | | | |
2824 * -------------------------------------------------------
2825 * ^
2826 * |
2827 * Re. execute permission on the directory: if that's missing,
2828 * the vnode lookup of the target will fail before we get here.
2829 *
2830 * Re [*] in the table above: NFSv4 would normally Permit delete for
2831 * these two cells of the matrix.
2832 * See acl.h for notes on which ACE_... flags should be checked for which
2833 * operations. Specifically, the NFSv4 committee recommendation is in
2834 * conflict with the Windows interpretation of DENY ACEs, where DENY ACEs
2835 * should take precedence ahead of ALLOW ACEs.
2836 *
2837 * This implementation always consults the target object's ACL first.
2838 * If a DENY ACE is present on the target object that specifies ACE_DELETE,
2839 * delete access is denied. If an ALLOW ACE with ACE_DELETE is present on
2840 * the target object, access is allowed. If and only if no entries with
2841 * ACE_DELETE are present in the object's ACL, check the container's ACL
2842 * for entries with ACE_DELETE_CHILD.
2843 *
2844 * A summary of the logic implemented from the table above is as follows:
2845 *
2846 * First check for DENY ACEs that apply.
2847 * If either target or container has a deny, EACCES.
2848 *
2849 * Delete access can then be summarized as follows:
2850 * 1: The object to be deleted grants ACE_DELETE, or
2851 * 2: The containing directory grants ACE_DELETE_CHILD.
2852 * In a Windows system, that would be the end of the story.
2853 * In this system, (2) has some complications...
2854 * 2a: "sticky" bit on a directory adds restrictions, and
2855 * 2b: existing ACEs from previous versions of ZFS may
2856 * not carry ACE_DELETE_CHILD where they should, so we
2857 * also allow delete when ACE_WRITE_DATA is granted.
2858 *
2859 * Note: 2b is technically a work-around for a prior bug,
2860 * which hopefully can go away some day. For those who
2861 * no longer need the work around, and for testing, this
2862 * work-around is made conditional via the tunable:
2863 * zfs_write_implies_delete_child
2864 */
2865 int
2866 zfs_zaccess_delete(znode_t *dzp, znode_t *zp, cred_t *cr, zuserns_t *mnt_ns)
2867 {
2868 uint32_t wanted_dirperms;
2869 uint32_t dzp_working_mode = 0;
2870 uint32_t zp_working_mode = 0;
2871 int dzp_error, zp_error;
2872 boolean_t dzpcheck_privs;
2873 boolean_t zpcheck_privs;
2874
2875 if (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_NOUNLINK))
2876 return (SET_ERROR(EPERM));
2877
2878 /*
2879 * Case 1:
2880 * If target object grants ACE_DELETE then we are done. This is
2881 * indicated by a return value of 0. For this case we don't worry
2882 * about the sticky bit because sticky only applies to the parent
2883 * directory and this is the child access result.
2884 *
2885 * If we encounter a DENY ACE here, we're also done (EACCES).
2886 * Note that if we hit a DENY ACE here (on the target) it should
2887 * take precedence over a DENY ACE on the container, so that when
2888 * we have more complete auditing support we will be able to
2889 * report an access failure against the specific target.
2890 * (This is part of why we're checking the target first.)
2891 */
2892 zp_error = zfs_zaccess_common(zp, ACE_DELETE, &zp_working_mode,
2893 &zpcheck_privs, B_FALSE, cr, mnt_ns);
2894 if (zp_error == EACCES) {
2895 /* We hit a DENY ACE. */
2896 if (!zpcheck_privs)
2897 return (SET_ERROR(zp_error));
2898 return (secpolicy_vnode_remove(cr));
2899
2900 }
2901 if (zp_error == 0)
2902 return (0);
2903
2904 /*
2905 * Case 2:
2906 * If the containing directory grants ACE_DELETE_CHILD,
2907 * or we're in backward compatibility mode and the
2908 * containing directory has ACE_WRITE_DATA, allow.
2909 * Case 2b is handled with wanted_dirperms.
2910 */
2911 wanted_dirperms = ACE_DELETE_CHILD;
2912 if (zfs_write_implies_delete_child)
2913 wanted_dirperms |= ACE_WRITE_DATA;
2914 dzp_error = zfs_zaccess_common(dzp, wanted_dirperms,
2915 &dzp_working_mode, &dzpcheck_privs, B_FALSE, cr, mnt_ns);
2916 if (dzp_error == EACCES) {
2917 /* We hit a DENY ACE. */
2918 if (!dzpcheck_privs)
2919 return (SET_ERROR(dzp_error));
2920 return (secpolicy_vnode_remove(cr));
2921 }
2922
2923 /*
2924 * Cases 2a, 2b (continued)
2925 *
2926 * Note: dzp_working_mode now contains any permissions
2927 * that were NOT granted. Therefore, if any of the
2928 * wanted_dirperms WERE granted, we will have:
2929 * dzp_working_mode != wanted_dirperms
2930 * We're really asking if ANY of those permissions
2931 * were granted, and if so, grant delete access.
2932 */
2933 if (dzp_working_mode != wanted_dirperms)
2934 dzp_error = 0;
2935
2936 /*
2937 * dzp_error is 0 if the container granted us permissions to "modify".
2938 * If we do not have permission via one or more ACEs, our current
2939 * privileges may still permit us to modify the container.
2940 *
2941 * dzpcheck_privs is false when i.e. the FS is read-only.
2942 * Otherwise, do privilege checks for the container.
2943 */
2944 if (dzp_error != 0 && dzpcheck_privs) {
2945 uid_t owner;
2946
2947 /*
2948 * The secpolicy call needs the requested access and
2949 * the current access mode of the container, but it
2950 * only knows about Unix-style modes (VEXEC, VWRITE),
2951 * so this must condense the fine-grained ACE bits into
2952 * Unix modes.
2953 *
2954 * The VEXEC flag is easy, because we know that has
2955 * always been checked before we get here (during the
2956 * lookup of the target vnode). The container has not
2957 * granted us permissions to "modify", so we do not set
2958 * the VWRITE flag in the current access mode.
2959 */
2960 owner = zfs_fuid_map_id(ZTOZSB(dzp),
2961 KUID_TO_SUID(ZTOI(dzp)->i_uid), cr, ZFS_OWNER);
2962 dzp_error = secpolicy_vnode_access2(cr, ZTOI(dzp),
2963 owner, S_IXUSR, S_IWUSR|S_IXUSR);
2964 }
2965 if (dzp_error != 0) {
2966 /*
2967 * Note: We may have dzp_error = -1 here (from
2968 * zfs_zacess_common). Don't return that.
2969 */
2970 return (SET_ERROR(EACCES));
2971 }
2972
2973
2974 /*
2975 * At this point, we know that the directory permissions allow
2976 * us to modify, but we still need to check for the additional
2977 * restrictions that apply when the "sticky bit" is set.
2978 *
2979 * Yes, zfs_sticky_remove_access() also checks this bit, but
2980 * checking it here and skipping the call below is nice when
2981 * you're watching all of this with dtrace.
2982 */
2983 if ((dzp->z_mode & S_ISVTX) == 0)
2984 return (0);
2985
2986 /*
2987 * zfs_sticky_remove_access will succeed if:
2988 * 1. The sticky bit is absent.
2989 * 2. We pass the sticky bit restrictions.
2990 * 3. We have privileges that always allow file removal.
2991 */
2992 return (zfs_sticky_remove_access(dzp, zp, cr));
2993 }
2994
2995 int
2996 zfs_zaccess_rename(znode_t *sdzp, znode_t *szp, znode_t *tdzp,
2997 znode_t *tzp, cred_t *cr, zuserns_t *mnt_ns)
2998 {
2999 int add_perm;
3000 int error;
3001
3002 if (szp->z_pflags & ZFS_AV_QUARANTINED)
3003 return (SET_ERROR(EACCES));
3004
3005 add_perm = S_ISDIR(ZTOI(szp)->i_mode) ?
3006 ACE_ADD_SUBDIRECTORY : ACE_ADD_FILE;
3007
3008 /*
3009 * Rename permissions are combination of delete permission +
3010 * add file/subdir permission.
3011 */
3012
3013 /*
3014 * first make sure we do the delete portion.
3015 *
3016 * If that succeeds then check for add_file/add_subdir permissions
3017 */
3018
3019 if ((error = zfs_zaccess_delete(sdzp, szp, cr, mnt_ns)))
3020 return (error);
3021
3022 /*
3023 * If we have a tzp, see if we can delete it?
3024 */
3025 if (tzp) {
3026 if ((error = zfs_zaccess_delete(tdzp, tzp, cr, mnt_ns)))
3027 return (error);
3028 }
3029
3030 /*
3031 * Now check for add permissions
3032 */
3033 error = zfs_zaccess(tdzp, add_perm, 0, B_FALSE, cr, mnt_ns);
3034
3035 return (error);
3036 }