]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/linux/zfs/zfs_ctldir.c
Remove zpl_revalidate: fix snapshot rollback
[mirror_zfs.git] / module / os / linux / zfs / zfs_ctldir.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 *
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (C) 2011 Lawrence Livermore National Security, LLC.
25 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
26 * LLNL-CODE-403049.
27 * Rewritten for Linux by:
28 * Rohan Puri <rohan.puri15@gmail.com>
29 * Brian Behlendorf <behlendorf1@llnl.gov>
30 * Copyright (c) 2013 by Delphix. All rights reserved.
31 * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
32 * Copyright (c) 2018 George Melikov. All Rights Reserved.
33 * Copyright (c) 2019 Datto, Inc. All rights reserved.
34 * Copyright (c) 2020 The MathWorks, Inc. All rights reserved.
35 */
36
37 /*
38 * ZFS control directory (a.k.a. ".zfs")
39 *
40 * This directory provides a common location for all ZFS meta-objects.
41 * Currently, this is only the 'snapshot' and 'shares' directory, but this may
42 * expand in the future. The elements are built dynamically, as the hierarchy
43 * does not actually exist on disk.
44 *
45 * For 'snapshot', we don't want to have all snapshots always mounted, because
46 * this would take up a huge amount of space in /etc/mnttab. We have three
47 * types of objects:
48 *
49 * ctldir ------> snapshotdir -------> snapshot
50 * |
51 * |
52 * V
53 * mounted fs
54 *
55 * The 'snapshot' node contains just enough information to lookup '..' and act
56 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we
57 * perform an automount of the underlying filesystem and return the
58 * corresponding inode.
59 *
60 * All mounts are handled automatically by an user mode helper which invokes
61 * the mount procedure. Unmounts are handled by allowing the mount
62 * point to expire so the kernel may automatically unmount it.
63 *
64 * The '.zfs', '.zfs/snapshot', and all directories created under
65 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
66 * zfsvfs_t as the head filesystem (what '.zfs' lives under).
67 *
68 * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
69 * (ie: snapshots) are complete ZFS filesystems and have their own unique
70 * zfsvfs_t. However, the fsid reported by these mounts will be the same
71 * as that used by the parent zfsvfs_t to make NFS happy.
72 */
73
74 #include <sys/types.h>
75 #include <sys/param.h>
76 #include <sys/time.h>
77 #include <sys/sysmacros.h>
78 #include <sys/pathname.h>
79 #include <sys/vfs.h>
80 #include <sys/zfs_ctldir.h>
81 #include <sys/zfs_ioctl.h>
82 #include <sys/zfs_vfsops.h>
83 #include <sys/zfs_vnops.h>
84 #include <sys/stat.h>
85 #include <sys/dmu.h>
86 #include <sys/dmu_objset.h>
87 #include <sys/dsl_destroy.h>
88 #include <sys/dsl_deleg.h>
89 #include <sys/zpl.h>
90 #include <sys/mntent.h>
91 #include "zfs_namecheck.h"
92
93 /*
94 * Two AVL trees are maintained which contain all currently automounted
95 * snapshots. Every automounted snapshots maps to a single zfs_snapentry_t
96 * entry which MUST:
97 *
98 * - be attached to both trees, and
99 * - be unique, no duplicate entries are allowed.
100 *
101 * The zfs_snapshots_by_name tree is indexed by the full dataset name
102 * while the zfs_snapshots_by_objsetid tree is indexed by the unique
103 * objsetid. This allows for fast lookups either by name or objsetid.
104 */
105 static avl_tree_t zfs_snapshots_by_name;
106 static avl_tree_t zfs_snapshots_by_objsetid;
107 static krwlock_t zfs_snapshot_lock;
108
109 /*
110 * Control Directory Tunables (.zfs)
111 */
112 int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
113 static int zfs_admin_snapshot = 0;
114
115 typedef struct {
116 char *se_name; /* full snapshot name */
117 char *se_path; /* full mount path */
118 spa_t *se_spa; /* pool spa */
119 uint64_t se_objsetid; /* snapshot objset id */
120 struct dentry *se_root_dentry; /* snapshot root dentry */
121 krwlock_t se_taskqid_lock; /* scheduled unmount taskqid lock */
122 taskqid_t se_taskqid; /* scheduled unmount taskqid */
123 avl_node_t se_node_name; /* zfs_snapshots_by_name link */
124 avl_node_t se_node_objsetid; /* zfs_snapshots_by_objsetid link */
125 zfs_refcount_t se_refcount; /* reference count */
126 } zfs_snapentry_t;
127
128 static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay);
129
130 /*
131 * Allocate a new zfs_snapentry_t being careful to make a copy of the
132 * the snapshot name and provided mount point. No reference is taken.
133 */
134 static zfs_snapentry_t *
135 zfsctl_snapshot_alloc(const char *full_name, const char *full_path, spa_t *spa,
136 uint64_t objsetid, struct dentry *root_dentry)
137 {
138 zfs_snapentry_t *se;
139
140 se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
141
142 se->se_name = kmem_strdup(full_name);
143 se->se_path = kmem_strdup(full_path);
144 se->se_spa = spa;
145 se->se_objsetid = objsetid;
146 se->se_root_dentry = root_dentry;
147 se->se_taskqid = TASKQID_INVALID;
148 rw_init(&se->se_taskqid_lock, NULL, RW_DEFAULT, NULL);
149
150 zfs_refcount_create(&se->se_refcount);
151
152 return (se);
153 }
154
155 /*
156 * Free a zfs_snapentry_t the caller must ensure there are no active
157 * references.
158 */
159 static void
160 zfsctl_snapshot_free(zfs_snapentry_t *se)
161 {
162 zfs_refcount_destroy(&se->se_refcount);
163 kmem_strfree(se->se_name);
164 kmem_strfree(se->se_path);
165 rw_destroy(&se->se_taskqid_lock);
166
167 kmem_free(se, sizeof (zfs_snapentry_t));
168 }
169
170 /*
171 * Hold a reference on the zfs_snapentry_t.
172 */
173 static void
174 zfsctl_snapshot_hold(zfs_snapentry_t *se)
175 {
176 zfs_refcount_add(&se->se_refcount, NULL);
177 }
178
179 /*
180 * Release a reference on the zfs_snapentry_t. When the number of
181 * references drops to zero the structure will be freed.
182 */
183 static void
184 zfsctl_snapshot_rele(zfs_snapentry_t *se)
185 {
186 if (zfs_refcount_remove(&se->se_refcount, NULL) == 0)
187 zfsctl_snapshot_free(se);
188 }
189
190 /*
191 * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and
192 * zfs_snapshots_by_objsetid trees. While the zfs_snapentry_t is part
193 * of the trees a reference is held.
194 */
195 static void
196 zfsctl_snapshot_add(zfs_snapentry_t *se)
197 {
198 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
199 zfsctl_snapshot_hold(se);
200 avl_add(&zfs_snapshots_by_name, se);
201 avl_add(&zfs_snapshots_by_objsetid, se);
202 }
203
204 /*
205 * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and
206 * zfs_snapshots_by_objsetid trees. Upon removal a reference is dropped,
207 * this can result in the structure being freed if that was the last
208 * remaining reference.
209 */
210 static void
211 zfsctl_snapshot_remove(zfs_snapentry_t *se)
212 {
213 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
214 avl_remove(&zfs_snapshots_by_name, se);
215 avl_remove(&zfs_snapshots_by_objsetid, se);
216 zfsctl_snapshot_rele(se);
217 }
218
219 /*
220 * Snapshot name comparison function for the zfs_snapshots_by_name.
221 */
222 static int
223 snapentry_compare_by_name(const void *a, const void *b)
224 {
225 const zfs_snapentry_t *se_a = a;
226 const zfs_snapentry_t *se_b = b;
227 int ret;
228
229 ret = strcmp(se_a->se_name, se_b->se_name);
230
231 if (ret < 0)
232 return (-1);
233 else if (ret > 0)
234 return (1);
235 else
236 return (0);
237 }
238
239 /*
240 * Snapshot name comparison function for the zfs_snapshots_by_objsetid.
241 */
242 static int
243 snapentry_compare_by_objsetid(const void *a, const void *b)
244 {
245 const zfs_snapentry_t *se_a = a;
246 const zfs_snapentry_t *se_b = b;
247
248 if (se_a->se_spa != se_b->se_spa)
249 return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1);
250
251 if (se_a->se_objsetid < se_b->se_objsetid)
252 return (-1);
253 else if (se_a->se_objsetid > se_b->se_objsetid)
254 return (1);
255 else
256 return (0);
257 }
258
259 /*
260 * Find a zfs_snapentry_t in zfs_snapshots_by_name. If the snapname
261 * is found a pointer to the zfs_snapentry_t is returned and a reference
262 * taken on the structure. The caller is responsible for dropping the
263 * reference with zfsctl_snapshot_rele(). If the snapname is not found
264 * NULL will be returned.
265 */
266 static zfs_snapentry_t *
267 zfsctl_snapshot_find_by_name(const char *snapname)
268 {
269 zfs_snapentry_t *se, search;
270
271 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
272
273 search.se_name = (char *)snapname;
274 se = avl_find(&zfs_snapshots_by_name, &search, NULL);
275 if (se)
276 zfsctl_snapshot_hold(se);
277
278 return (se);
279 }
280
281 /*
282 * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id
283 * rather than the snapname. In all other respects it behaves the same
284 * as zfsctl_snapshot_find_by_name().
285 */
286 static zfs_snapentry_t *
287 zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid)
288 {
289 zfs_snapentry_t *se, search;
290
291 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
292
293 search.se_spa = spa;
294 search.se_objsetid = objsetid;
295 se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL);
296 if (se)
297 zfsctl_snapshot_hold(se);
298
299 return (se);
300 }
301
302 /*
303 * Rename a zfs_snapentry_t in the zfs_snapshots_by_name. The structure is
304 * removed, renamed, and added back to the new correct location in the tree.
305 */
306 static int
307 zfsctl_snapshot_rename(const char *old_snapname, const char *new_snapname)
308 {
309 zfs_snapentry_t *se;
310
311 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
312
313 se = zfsctl_snapshot_find_by_name(old_snapname);
314 if (se == NULL)
315 return (SET_ERROR(ENOENT));
316
317 zfsctl_snapshot_remove(se);
318 kmem_strfree(se->se_name);
319 se->se_name = kmem_strdup(new_snapname);
320 zfsctl_snapshot_add(se);
321 zfsctl_snapshot_rele(se);
322
323 return (0);
324 }
325
326 /*
327 * Delayed task responsible for unmounting an expired automounted snapshot.
328 */
329 static void
330 snapentry_expire(void *data)
331 {
332 zfs_snapentry_t *se = (zfs_snapentry_t *)data;
333 spa_t *spa = se->se_spa;
334 uint64_t objsetid = se->se_objsetid;
335
336 if (zfs_expire_snapshot <= 0) {
337 zfsctl_snapshot_rele(se);
338 return;
339 }
340
341 rw_enter(&se->se_taskqid_lock, RW_WRITER);
342 se->se_taskqid = TASKQID_INVALID;
343 rw_exit(&se->se_taskqid_lock);
344 (void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE);
345 zfsctl_snapshot_rele(se);
346
347 /*
348 * Reschedule the unmount if the zfs_snapentry_t wasn't removed.
349 * This can occur when the snapshot is busy.
350 */
351 rw_enter(&zfs_snapshot_lock, RW_READER);
352 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
353 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
354 zfsctl_snapshot_rele(se);
355 }
356 rw_exit(&zfs_snapshot_lock);
357 }
358
359 /*
360 * Cancel an automatic unmount of a snapname. This callback is responsible
361 * for dropping the reference on the zfs_snapentry_t which was taken when
362 * during dispatch.
363 */
364 static void
365 zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se)
366 {
367 int err = 0;
368 rw_enter(&se->se_taskqid_lock, RW_WRITER);
369 err = taskq_cancel_id(system_delay_taskq, se->se_taskqid);
370 /*
371 * if we get ENOENT, the taskq couldn't be found to be
372 * canceled, so we can just mark it as invalid because
373 * it's already gone. If we got EBUSY, then we already
374 * blocked until it was gone _anyway_, so we don't care.
375 */
376 se->se_taskqid = TASKQID_INVALID;
377 rw_exit(&se->se_taskqid_lock);
378 if (err == 0) {
379 zfsctl_snapshot_rele(se);
380 }
381 }
382
383 /*
384 * Dispatch the unmount task for delayed handling with a hold protecting it.
385 */
386 static void
387 zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay)
388 {
389
390 if (delay <= 0)
391 return;
392
393 zfsctl_snapshot_hold(se);
394 rw_enter(&se->se_taskqid_lock, RW_WRITER);
395 ASSERT3S(se->se_taskqid, ==, TASKQID_INVALID);
396 se->se_taskqid = taskq_dispatch_delay(system_delay_taskq,
397 snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ);
398 rw_exit(&se->se_taskqid_lock);
399 }
400
401 /*
402 * Schedule an automatic unmount of objset id to occur in delay seconds from
403 * now. Any previous delayed unmount will be cancelled in favor of the
404 * updated deadline. A reference is taken by zfsctl_snapshot_find_by_name()
405 * and held until the outstanding task is handled or cancelled.
406 */
407 int
408 zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay)
409 {
410 zfs_snapentry_t *se;
411 int error = ENOENT;
412
413 rw_enter(&zfs_snapshot_lock, RW_READER);
414 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
415 zfsctl_snapshot_unmount_cancel(se);
416 zfsctl_snapshot_unmount_delay_impl(se, delay);
417 zfsctl_snapshot_rele(se);
418 error = 0;
419 }
420 rw_exit(&zfs_snapshot_lock);
421
422 return (error);
423 }
424
425 /*
426 * Check if snapname is currently mounted. Returned non-zero when mounted
427 * and zero when unmounted.
428 */
429 static boolean_t
430 zfsctl_snapshot_ismounted(const char *snapname)
431 {
432 zfs_snapentry_t *se;
433 boolean_t ismounted = B_FALSE;
434
435 rw_enter(&zfs_snapshot_lock, RW_READER);
436 if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) {
437 zfsctl_snapshot_rele(se);
438 ismounted = B_TRUE;
439 }
440 rw_exit(&zfs_snapshot_lock);
441
442 return (ismounted);
443 }
444
445 /*
446 * Check if the given inode is a part of the virtual .zfs directory.
447 */
448 boolean_t
449 zfsctl_is_node(struct inode *ip)
450 {
451 return (ITOZ(ip)->z_is_ctldir);
452 }
453
454 /*
455 * Check if the given inode is a .zfs/snapshots/snapname directory.
456 */
457 boolean_t
458 zfsctl_is_snapdir(struct inode *ip)
459 {
460 return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
461 }
462
463 /*
464 * Allocate a new inode with the passed id and ops.
465 */
466 static struct inode *
467 zfsctl_inode_alloc(zfsvfs_t *zfsvfs, uint64_t id,
468 const struct file_operations *fops, const struct inode_operations *ops)
469 {
470 inode_timespec_t now;
471 struct inode *ip;
472 znode_t *zp;
473
474 ip = new_inode(zfsvfs->z_sb);
475 if (ip == NULL)
476 return (NULL);
477
478 now = current_time(ip);
479 zp = ITOZ(ip);
480 ASSERT3P(zp->z_dirlocks, ==, NULL);
481 ASSERT3P(zp->z_acl_cached, ==, NULL);
482 ASSERT3P(zp->z_xattr_cached, ==, NULL);
483 zp->z_id = id;
484 zp->z_unlinked = B_FALSE;
485 zp->z_atime_dirty = B_FALSE;
486 zp->z_zn_prefetch = B_FALSE;
487 zp->z_is_sa = B_FALSE;
488 zp->z_is_mapped = B_FALSE;
489 zp->z_is_ctldir = B_TRUE;
490 zp->z_sa_hdl = NULL;
491 zp->z_blksz = 0;
492 zp->z_seq = 0;
493 zp->z_mapcnt = 0;
494 zp->z_size = 0;
495 zp->z_pflags = 0;
496 zp->z_mode = 0;
497 zp->z_sync_cnt = 0;
498 zp->z_sync_writes_cnt = 0;
499 zp->z_async_writes_cnt = 0;
500 ip->i_generation = 0;
501 ip->i_ino = id;
502 ip->i_mode = (S_IFDIR | S_IRWXUGO);
503 ip->i_uid = SUID_TO_KUID(0);
504 ip->i_gid = SGID_TO_KGID(0);
505 ip->i_blkbits = SPA_MINBLOCKSHIFT;
506 ip->i_atime = now;
507 ip->i_mtime = now;
508 ip->i_ctime = now;
509 ip->i_fop = fops;
510 ip->i_op = ops;
511 #if defined(IOP_XATTR)
512 ip->i_opflags &= ~IOP_XATTR;
513 #endif
514
515 if (insert_inode_locked(ip)) {
516 unlock_new_inode(ip);
517 iput(ip);
518 return (NULL);
519 }
520
521 mutex_enter(&zfsvfs->z_znodes_lock);
522 list_insert_tail(&zfsvfs->z_all_znodes, zp);
523 zfsvfs->z_nr_znodes++;
524 membar_producer();
525 mutex_exit(&zfsvfs->z_znodes_lock);
526
527 unlock_new_inode(ip);
528
529 return (ip);
530 }
531
532 /*
533 * Lookup the inode with given id, it will be allocated if needed.
534 */
535 static struct inode *
536 zfsctl_inode_lookup(zfsvfs_t *zfsvfs, uint64_t id,
537 const struct file_operations *fops, const struct inode_operations *ops)
538 {
539 struct inode *ip = NULL;
540
541 while (ip == NULL) {
542 ip = ilookup(zfsvfs->z_sb, (unsigned long)id);
543 if (ip)
544 break;
545
546 /* May fail due to concurrent zfsctl_inode_alloc() */
547 ip = zfsctl_inode_alloc(zfsvfs, id, fops, ops);
548 }
549
550 return (ip);
551 }
552
553 /*
554 * Create the '.zfs' directory. This directory is cached as part of the VFS
555 * structure. This results in a hold on the zfsvfs_t. The code in zfs_umount()
556 * therefore checks against a vfs_count of 2 instead of 1. This reference
557 * is removed when the ctldir is destroyed in the unmount. All other entities
558 * under the '.zfs' directory are created dynamically as needed.
559 *
560 * Because the dynamically created '.zfs' directory entries assume the use
561 * of 64-bit inode numbers this support must be disabled on 32-bit systems.
562 */
563 int
564 zfsctl_create(zfsvfs_t *zfsvfs)
565 {
566 ASSERT(zfsvfs->z_ctldir == NULL);
567
568 zfsvfs->z_ctldir = zfsctl_inode_alloc(zfsvfs, ZFSCTL_INO_ROOT,
569 &zpl_fops_root, &zpl_ops_root);
570 if (zfsvfs->z_ctldir == NULL)
571 return (SET_ERROR(ENOENT));
572
573 return (0);
574 }
575
576 /*
577 * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name.
578 * Only called when the filesystem is unmounted.
579 */
580 void
581 zfsctl_destroy(zfsvfs_t *zfsvfs)
582 {
583 if (zfsvfs->z_issnap) {
584 zfs_snapentry_t *se;
585 spa_t *spa = zfsvfs->z_os->os_spa;
586 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
587
588 rw_enter(&zfs_snapshot_lock, RW_WRITER);
589 se = zfsctl_snapshot_find_by_objsetid(spa, objsetid);
590 if (se != NULL)
591 zfsctl_snapshot_remove(se);
592 rw_exit(&zfs_snapshot_lock);
593 if (se != NULL) {
594 zfsctl_snapshot_unmount_cancel(se);
595 zfsctl_snapshot_rele(se);
596 }
597 } else if (zfsvfs->z_ctldir) {
598 iput(zfsvfs->z_ctldir);
599 zfsvfs->z_ctldir = NULL;
600 }
601 }
602
603 /*
604 * Given a root znode, retrieve the associated .zfs directory.
605 * Add a hold to the vnode and return it.
606 */
607 struct inode *
608 zfsctl_root(znode_t *zp)
609 {
610 ASSERT(zfs_has_ctldir(zp));
611 /* Must have an existing ref, so igrab() cannot return NULL */
612 VERIFY3P(igrab(ZTOZSB(zp)->z_ctldir), !=, NULL);
613 return (ZTOZSB(zp)->z_ctldir);
614 }
615
616 /*
617 * Generate a long fid to indicate a snapdir. We encode whether snapdir is
618 * already mounted in gen field. We do this because nfsd lookup will not
619 * trigger automount. Next time the nfsd does fh_to_dentry, we will notice
620 * this and do automount and return ESTALE to force nfsd revalidate and follow
621 * mount.
622 */
623 static int
624 zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp)
625 {
626 zfid_short_t *zfid = (zfid_short_t *)fidp;
627 zfid_long_t *zlfid = (zfid_long_t *)fidp;
628 uint32_t gen = 0;
629 uint64_t object;
630 uint64_t objsetid;
631 int i;
632 struct dentry *dentry;
633
634 if (fidp->fid_len < LONG_FID_LEN) {
635 fidp->fid_len = LONG_FID_LEN;
636 return (SET_ERROR(ENOSPC));
637 }
638
639 object = ip->i_ino;
640 objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino;
641 zfid->zf_len = LONG_FID_LEN;
642
643 dentry = d_obtain_alias(igrab(ip));
644 if (!IS_ERR(dentry)) {
645 gen = !!d_mountpoint(dentry);
646 dput(dentry);
647 }
648
649 for (i = 0; i < sizeof (zfid->zf_object); i++)
650 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
651
652 for (i = 0; i < sizeof (zfid->zf_gen); i++)
653 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
654
655 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
656 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
657
658 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
659 zlfid->zf_setgen[i] = 0;
660
661 return (0);
662 }
663
664 /*
665 * Generate an appropriate fid for an entry in the .zfs directory.
666 */
667 int
668 zfsctl_fid(struct inode *ip, fid_t *fidp)
669 {
670 znode_t *zp = ITOZ(ip);
671 zfsvfs_t *zfsvfs = ITOZSB(ip);
672 uint64_t object = zp->z_id;
673 zfid_short_t *zfid;
674 int i;
675 int error;
676
677 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
678 return (error);
679
680 if (zfsctl_is_snapdir(ip)) {
681 zfs_exit(zfsvfs, FTAG);
682 return (zfsctl_snapdir_fid(ip, fidp));
683 }
684
685 if (fidp->fid_len < SHORT_FID_LEN) {
686 fidp->fid_len = SHORT_FID_LEN;
687 zfs_exit(zfsvfs, FTAG);
688 return (SET_ERROR(ENOSPC));
689 }
690
691 zfid = (zfid_short_t *)fidp;
692
693 zfid->zf_len = SHORT_FID_LEN;
694
695 for (i = 0; i < sizeof (zfid->zf_object); i++)
696 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
697
698 /* .zfs znodes always have a generation number of 0 */
699 for (i = 0; i < sizeof (zfid->zf_gen); i++)
700 zfid->zf_gen[i] = 0;
701
702 zfs_exit(zfsvfs, FTAG);
703 return (0);
704 }
705
706 /*
707 * Construct a full dataset name in full_name: "pool/dataset@snap_name"
708 */
709 static int
710 zfsctl_snapshot_name(zfsvfs_t *zfsvfs, const char *snap_name, int len,
711 char *full_name)
712 {
713 objset_t *os = zfsvfs->z_os;
714
715 if (zfs_component_namecheck(snap_name, NULL, NULL) != 0)
716 return (SET_ERROR(EILSEQ));
717
718 dmu_objset_name(os, full_name);
719 if ((strlen(full_name) + 1 + strlen(snap_name)) >= len)
720 return (SET_ERROR(ENAMETOOLONG));
721
722 (void) strcat(full_name, "@");
723 (void) strcat(full_name, snap_name);
724
725 return (0);
726 }
727
728 /*
729 * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
730 */
731 static int
732 zfsctl_snapshot_path_objset(zfsvfs_t *zfsvfs, uint64_t objsetid,
733 int path_len, char *full_path)
734 {
735 objset_t *os = zfsvfs->z_os;
736 fstrans_cookie_t cookie;
737 char *snapname;
738 boolean_t case_conflict;
739 uint64_t id, pos = 0;
740 int error = 0;
741
742 if (zfsvfs->z_vfs->vfs_mntpoint == NULL)
743 return (SET_ERROR(ENOENT));
744
745 cookie = spl_fstrans_mark();
746 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
747
748 while (error == 0) {
749 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
750 error = dmu_snapshot_list_next(zfsvfs->z_os,
751 ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos,
752 &case_conflict);
753 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
754 if (error)
755 goto out;
756
757 if (id == objsetid)
758 break;
759 }
760
761 snprintf(full_path, path_len, "%s/.zfs/snapshot/%s",
762 zfsvfs->z_vfs->vfs_mntpoint, snapname);
763 out:
764 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
765 spl_fstrans_unmark(cookie);
766
767 return (error);
768 }
769
770 /*
771 * Special case the handling of "..".
772 */
773 int
774 zfsctl_root_lookup(struct inode *dip, const char *name, struct inode **ipp,
775 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
776 {
777 zfsvfs_t *zfsvfs = ITOZSB(dip);
778 int error = 0;
779
780 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
781 return (error);
782
783 if (strcmp(name, "..") == 0) {
784 *ipp = dip->i_sb->s_root->d_inode;
785 } else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
786 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIR,
787 &zpl_fops_snapdir, &zpl_ops_snapdir);
788 } else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
789 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SHARES,
790 &zpl_fops_shares, &zpl_ops_shares);
791 } else {
792 *ipp = NULL;
793 }
794
795 if (*ipp == NULL)
796 error = SET_ERROR(ENOENT);
797
798 zfs_exit(zfsvfs, FTAG);
799
800 return (error);
801 }
802
803 /*
804 * Lookup entry point for the 'snapshot' directory. Try to open the
805 * snapshot if it exist, creating the pseudo filesystem inode as necessary.
806 */
807 int
808 zfsctl_snapdir_lookup(struct inode *dip, const char *name, struct inode **ipp,
809 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
810 {
811 zfsvfs_t *zfsvfs = ITOZSB(dip);
812 uint64_t id;
813 int error;
814
815 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
816 return (error);
817
818 error = dmu_snapshot_lookup(zfsvfs->z_os, name, &id);
819 if (error) {
820 zfs_exit(zfsvfs, FTAG);
821 return (error);
822 }
823
824 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIRS - id,
825 &simple_dir_operations, &simple_dir_inode_operations);
826 if (*ipp == NULL)
827 error = SET_ERROR(ENOENT);
828
829 zfs_exit(zfsvfs, FTAG);
830
831 return (error);
832 }
833
834 /*
835 * Renaming a directory under '.zfs/snapshot' will automatically trigger
836 * a rename of the snapshot to the new given name. The rename is confined
837 * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
838 */
839 int
840 zfsctl_snapdir_rename(struct inode *sdip, const char *snm,
841 struct inode *tdip, const char *tnm, cred_t *cr, int flags)
842 {
843 zfsvfs_t *zfsvfs = ITOZSB(sdip);
844 char *to, *from, *real, *fsname;
845 int error;
846
847 if (!zfs_admin_snapshot)
848 return (SET_ERROR(EACCES));
849
850 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
851 return (error);
852
853 to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
854 from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
855 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
856 fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
857
858 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
859 error = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
860 ZFS_MAX_DATASET_NAME_LEN, NULL);
861 if (error == 0) {
862 snm = real;
863 } else if (error != ENOTSUP) {
864 goto out;
865 }
866 }
867
868 dmu_objset_name(zfsvfs->z_os, fsname);
869
870 error = zfsctl_snapshot_name(ITOZSB(sdip), snm,
871 ZFS_MAX_DATASET_NAME_LEN, from);
872 if (error == 0)
873 error = zfsctl_snapshot_name(ITOZSB(tdip), tnm,
874 ZFS_MAX_DATASET_NAME_LEN, to);
875 if (error == 0)
876 error = zfs_secpolicy_rename_perms(from, to, cr);
877 if (error != 0)
878 goto out;
879
880 /*
881 * Cannot move snapshots out of the snapdir.
882 */
883 if (sdip != tdip) {
884 error = SET_ERROR(EINVAL);
885 goto out;
886 }
887
888 /*
889 * No-op when names are identical.
890 */
891 if (strcmp(snm, tnm) == 0) {
892 error = 0;
893 goto out;
894 }
895
896 rw_enter(&zfs_snapshot_lock, RW_WRITER);
897
898 error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
899 if (error == 0)
900 (void) zfsctl_snapshot_rename(snm, tnm);
901
902 rw_exit(&zfs_snapshot_lock);
903 out:
904 kmem_free(from, ZFS_MAX_DATASET_NAME_LEN);
905 kmem_free(to, ZFS_MAX_DATASET_NAME_LEN);
906 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
907 kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
908
909 zfs_exit(zfsvfs, FTAG);
910
911 return (error);
912 }
913
914 /*
915 * Removing a directory under '.zfs/snapshot' will automatically trigger
916 * the removal of the snapshot with the given name.
917 */
918 int
919 zfsctl_snapdir_remove(struct inode *dip, const char *name, cred_t *cr,
920 int flags)
921 {
922 zfsvfs_t *zfsvfs = ITOZSB(dip);
923 char *snapname, *real;
924 int error;
925
926 if (!zfs_admin_snapshot)
927 return (SET_ERROR(EACCES));
928
929 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
930 return (error);
931
932 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
933 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
934
935 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
936 error = dmu_snapshot_realname(zfsvfs->z_os, name, real,
937 ZFS_MAX_DATASET_NAME_LEN, NULL);
938 if (error == 0) {
939 name = real;
940 } else if (error != ENOTSUP) {
941 goto out;
942 }
943 }
944
945 error = zfsctl_snapshot_name(ITOZSB(dip), name,
946 ZFS_MAX_DATASET_NAME_LEN, snapname);
947 if (error == 0)
948 error = zfs_secpolicy_destroy_perms(snapname, cr);
949 if (error != 0)
950 goto out;
951
952 error = zfsctl_snapshot_unmount(snapname, MNT_FORCE);
953 if ((error == 0) || (error == ENOENT))
954 error = dsl_destroy_snapshot(snapname, B_FALSE);
955 out:
956 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
957 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
958
959 zfs_exit(zfsvfs, FTAG);
960
961 return (error);
962 }
963
964 /*
965 * Creating a directory under '.zfs/snapshot' will automatically trigger
966 * the creation of a new snapshot with the given name.
967 */
968 int
969 zfsctl_snapdir_mkdir(struct inode *dip, const char *dirname, vattr_t *vap,
970 struct inode **ipp, cred_t *cr, int flags)
971 {
972 zfsvfs_t *zfsvfs = ITOZSB(dip);
973 char *dsname;
974 int error;
975
976 if (!zfs_admin_snapshot)
977 return (SET_ERROR(EACCES));
978
979 dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
980
981 if (zfs_component_namecheck(dirname, NULL, NULL) != 0) {
982 error = SET_ERROR(EILSEQ);
983 goto out;
984 }
985
986 dmu_objset_name(zfsvfs->z_os, dsname);
987
988 error = zfs_secpolicy_snapshot_perms(dsname, cr);
989 if (error != 0)
990 goto out;
991
992 if (error == 0) {
993 error = dmu_objset_snapshot_one(dsname, dirname);
994 if (error != 0)
995 goto out;
996
997 error = zfsctl_snapdir_lookup(dip, dirname, ipp,
998 0, cr, NULL, NULL);
999 }
1000 out:
1001 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
1002
1003 return (error);
1004 }
1005
1006 /*
1007 * Flush everything out of the kernel's export table and such.
1008 * This is needed as once the snapshot is used over NFS, its
1009 * entries in svc_export and svc_expkey caches hold reference
1010 * to the snapshot mount point. There is no known way of flushing
1011 * only the entries related to the snapshot.
1012 */
1013 static void
1014 exportfs_flush(void)
1015 {
1016 char *argv[] = { "/usr/sbin/exportfs", "-f", NULL };
1017 char *envp[] = { NULL };
1018
1019 (void) call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1020 }
1021
1022 /*
1023 * Attempt to unmount a snapshot by making a call to user space.
1024 * There is no assurance that this can or will succeed, is just a
1025 * best effort. In the case where it does fail, perhaps because
1026 * it's in use, the unmount will fail harmlessly.
1027 */
1028 int
1029 zfsctl_snapshot_unmount(const char *snapname, int flags)
1030 {
1031 char *argv[] = { "/usr/bin/env", "umount", "-t", "zfs", "-n", NULL,
1032 NULL };
1033 char *envp[] = { NULL };
1034 zfs_snapentry_t *se;
1035 int error;
1036
1037 rw_enter(&zfs_snapshot_lock, RW_READER);
1038 if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) {
1039 rw_exit(&zfs_snapshot_lock);
1040 return (SET_ERROR(ENOENT));
1041 }
1042 rw_exit(&zfs_snapshot_lock);
1043
1044 exportfs_flush();
1045
1046 if (flags & MNT_FORCE)
1047 argv[4] = "-fn";
1048 argv[5] = se->se_path;
1049 dprintf("unmount; path=%s\n", se->se_path);
1050 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1051 zfsctl_snapshot_rele(se);
1052
1053
1054 /*
1055 * The umount system utility will return 256 on error. We must
1056 * assume this error is because the file system is busy so it is
1057 * converted to the more sensible EBUSY.
1058 */
1059 if (error)
1060 error = SET_ERROR(EBUSY);
1061
1062 return (error);
1063 }
1064
1065 int
1066 zfsctl_snapshot_mount(struct path *path, int flags)
1067 {
1068 struct dentry *dentry = path->dentry;
1069 struct inode *ip = dentry->d_inode;
1070 zfsvfs_t *zfsvfs;
1071 zfsvfs_t *snap_zfsvfs;
1072 zfs_snapentry_t *se;
1073 char *full_name, *full_path;
1074 char *argv[] = { "/usr/bin/env", "mount", "-t", "zfs", "-n", NULL, NULL,
1075 NULL };
1076 char *envp[] = { NULL };
1077 int error;
1078 struct path spath;
1079
1080 if (ip == NULL)
1081 return (SET_ERROR(EISDIR));
1082
1083 zfsvfs = ITOZSB(ip);
1084 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1085 return (error);
1086
1087 full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
1088 full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1089
1090 error = zfsctl_snapshot_name(zfsvfs, dname(dentry),
1091 ZFS_MAX_DATASET_NAME_LEN, full_name);
1092 if (error)
1093 goto error;
1094
1095 /*
1096 * Construct a mount point path from sb of the ctldir inode and dirent
1097 * name, instead of from d_path(), so that chroot'd process doesn't fail
1098 * on mount.zfs(8).
1099 */
1100 snprintf(full_path, MAXPATHLEN, "%s/.zfs/snapshot/%s",
1101 zfsvfs->z_vfs->vfs_mntpoint ? zfsvfs->z_vfs->vfs_mntpoint : "",
1102 dname(dentry));
1103
1104 /*
1105 * Multiple concurrent automounts of a snapshot are never allowed.
1106 * The snapshot may be manually mounted as many times as desired.
1107 */
1108 if (zfsctl_snapshot_ismounted(full_name)) {
1109 error = 0;
1110 goto error;
1111 }
1112
1113 /*
1114 * Attempt to mount the snapshot from user space. Normally this
1115 * would be done using the vfs_kern_mount() function, however that
1116 * function is marked GPL-only and cannot be used. On error we
1117 * careful to log the real error to the console and return EISDIR
1118 * to safely abort the automount. This should be very rare.
1119 *
1120 * If the user mode helper happens to return EBUSY, a concurrent
1121 * mount is already in progress in which case the error is ignored.
1122 * Take note that if the program was executed successfully the return
1123 * value from call_usermodehelper() will be (exitcode << 8 + signal).
1124 */
1125 dprintf("mount; name=%s path=%s\n", full_name, full_path);
1126 argv[5] = full_name;
1127 argv[6] = full_path;
1128 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1129 if (error) {
1130 if (!(error & MOUNT_BUSY << 8)) {
1131 zfs_dbgmsg("Unable to automount %s error=%d",
1132 full_path, error);
1133 error = SET_ERROR(EISDIR);
1134 } else {
1135 /*
1136 * EBUSY, this could mean a concurrent mount, or the
1137 * snapshot has already been mounted at completely
1138 * different place. We return 0 so VFS will retry. For
1139 * the latter case the VFS will retry several times
1140 * and return ELOOP, which is probably not a very good
1141 * behavior.
1142 */
1143 error = 0;
1144 }
1145 goto error;
1146 }
1147
1148 /*
1149 * Follow down in to the mounted snapshot and set MNT_SHRINKABLE
1150 * to identify this as an automounted filesystem.
1151 */
1152 spath = *path;
1153 path_get(&spath);
1154 if (follow_down_one(&spath)) {
1155 snap_zfsvfs = ITOZSB(spath.dentry->d_inode);
1156 snap_zfsvfs->z_parent = zfsvfs;
1157 dentry = spath.dentry;
1158 spath.mnt->mnt_flags |= MNT_SHRINKABLE;
1159
1160 rw_enter(&zfs_snapshot_lock, RW_WRITER);
1161 se = zfsctl_snapshot_alloc(full_name, full_path,
1162 snap_zfsvfs->z_os->os_spa, dmu_objset_id(snap_zfsvfs->z_os),
1163 dentry);
1164 zfsctl_snapshot_add(se);
1165 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
1166 rw_exit(&zfs_snapshot_lock);
1167 }
1168 path_put(&spath);
1169 error:
1170 kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN);
1171 kmem_free(full_path, MAXPATHLEN);
1172
1173 zfs_exit(zfsvfs, FTAG);
1174
1175 return (error);
1176 }
1177
1178 /*
1179 * Get the snapdir inode from fid
1180 */
1181 int
1182 zfsctl_snapdir_vget(struct super_block *sb, uint64_t objsetid, int gen,
1183 struct inode **ipp)
1184 {
1185 int error;
1186 struct path path;
1187 char *mnt;
1188 struct dentry *dentry;
1189
1190 mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1191
1192 error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid,
1193 MAXPATHLEN, mnt);
1194 if (error)
1195 goto out;
1196
1197 /* Trigger automount */
1198 error = -kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path);
1199 if (error)
1200 goto out;
1201
1202 path_put(&path);
1203 /*
1204 * Get the snapdir inode. Note, we don't want to use the above
1205 * path because it contains the root of the snapshot rather
1206 * than the snapdir.
1207 */
1208 *ipp = ilookup(sb, ZFSCTL_INO_SNAPDIRS - objsetid);
1209 if (*ipp == NULL) {
1210 error = SET_ERROR(ENOENT);
1211 goto out;
1212 }
1213
1214 /* check gen, see zfsctl_snapdir_fid */
1215 dentry = d_obtain_alias(igrab(*ipp));
1216 if (gen != (!IS_ERR(dentry) && d_mountpoint(dentry))) {
1217 iput(*ipp);
1218 *ipp = NULL;
1219 error = SET_ERROR(ENOENT);
1220 }
1221 if (!IS_ERR(dentry))
1222 dput(dentry);
1223 out:
1224 kmem_free(mnt, MAXPATHLEN);
1225 return (error);
1226 }
1227
1228 int
1229 zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
1230 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
1231 {
1232 zfsvfs_t *zfsvfs = ITOZSB(dip);
1233 znode_t *zp;
1234 znode_t *dzp;
1235 int error;
1236
1237 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1238 return (error);
1239
1240 if (zfsvfs->z_shares_dir == 0) {
1241 zfs_exit(zfsvfs, FTAG);
1242 return (SET_ERROR(ENOTSUP));
1243 }
1244
1245 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1246 error = zfs_lookup(dzp, name, &zp, 0, cr, NULL, NULL);
1247 zrele(dzp);
1248 }
1249
1250 zfs_exit(zfsvfs, FTAG);
1251
1252 return (error);
1253 }
1254
1255 /*
1256 * Initialize the various pieces we'll need to create and manipulate .zfs
1257 * directories. Currently this is unused but available.
1258 */
1259 void
1260 zfsctl_init(void)
1261 {
1262 avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name,
1263 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1264 se_node_name));
1265 avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid,
1266 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1267 se_node_objsetid));
1268 rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL);
1269 }
1270
1271 /*
1272 * Cleanup the various pieces we needed for .zfs directories. In particular
1273 * ensure the expiry timer is canceled safely.
1274 */
1275 void
1276 zfsctl_fini(void)
1277 {
1278 avl_destroy(&zfs_snapshots_by_name);
1279 avl_destroy(&zfs_snapshots_by_objsetid);
1280 rw_destroy(&zfs_snapshot_lock);
1281 }
1282
1283 module_param(zfs_admin_snapshot, int, 0644);
1284 MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot");
1285
1286 module_param(zfs_expire_snapshot, int, 0644);
1287 MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");