]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/linux/zfs/zfs_vnops_os.c
Linux 6.5 compat: blkdev changes
[mirror_zfs.git] / module / os / linux / zfs / zfs_vnops_os.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 */
28
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/taskq.h>
42 #include <sys/uio.h>
43 #include <sys/vmsystm.h>
44 #include <sys/atomic.h>
45 #include <sys/pathname.h>
46 #include <sys/cmn_err.h>
47 #include <sys/errno.h>
48 #include <sys/zfs_dir.h>
49 #include <sys/zfs_acl.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/spa.h>
55 #include <sys/txg.h>
56 #include <sys/dbuf.h>
57 #include <sys/zap.h>
58 #include <sys/sa.h>
59 #include <sys/policy.h>
60 #include <sys/sunddi.h>
61 #include <sys/sid.h>
62 #include <sys/zfs_ctldir.h>
63 #include <sys/zfs_fuid.h>
64 #include <sys/zfs_quota.h>
65 #include <sys/zfs_sa.h>
66 #include <sys/zfs_vnops.h>
67 #include <sys/zfs_rlock.h>
68 #include <sys/cred.h>
69 #include <sys/zpl.h>
70 #include <sys/zil.h>
71 #include <sys/sa_impl.h>
72
73 /*
74 * Programming rules.
75 *
76 * Each vnode op performs some logical unit of work. To do this, the ZPL must
77 * properly lock its in-core state, create a DMU transaction, do the work,
78 * record this work in the intent log (ZIL), commit the DMU transaction,
79 * and wait for the intent log to commit if it is a synchronous operation.
80 * Moreover, the vnode ops must work in both normal and log replay context.
81 * The ordering of events is important to avoid deadlocks and references
82 * to freed memory. The example below illustrates the following Big Rules:
83 *
84 * (1) A check must be made in each zfs thread for a mounted file system.
85 * This is done avoiding races using zfs_enter(zfsvfs).
86 * A zfs_exit(zfsvfs) is needed before all returns. Any znodes
87 * must be checked with zfs_verify_zp(zp). Both of these macros
88 * can return EIO from the calling function.
89 *
90 * (2) zrele() should always be the last thing except for zil_commit() (if
91 * necessary) and zfs_exit(). This is for 3 reasons: First, if it's the
92 * last reference, the vnode/znode can be freed, so the zp may point to
93 * freed memory. Second, the last reference will call zfs_zinactive(),
94 * which may induce a lot of work -- pushing cached pages (which acquires
95 * range locks) and syncing out cached atime changes. Third,
96 * zfs_zinactive() may require a new tx, which could deadlock the system
97 * if you were already holding one. This deadlock occurs because the tx
98 * currently being operated on prevents a txg from syncing, which
99 * prevents the new tx from progressing, resulting in a deadlock. If you
100 * must call zrele() within a tx, use zfs_zrele_async(). Note that iput()
101 * is a synonym for zrele().
102 *
103 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
104 * as they can span dmu_tx_assign() calls.
105 *
106 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
107 * dmu_tx_assign(). This is critical because we don't want to block
108 * while holding locks.
109 *
110 * If no ZPL locks are held (aside from zfs_enter()), use TXG_WAIT. This
111 * reduces lock contention and CPU usage when we must wait (note that if
112 * throughput is constrained by the storage, nearly every transaction
113 * must wait).
114 *
115 * Note, in particular, that if a lock is sometimes acquired before
116 * the tx assigns, and sometimes after (e.g. z_lock), then failing
117 * to use a non-blocking assign can deadlock the system. The scenario:
118 *
119 * Thread A has grabbed a lock before calling dmu_tx_assign().
120 * Thread B is in an already-assigned tx, and blocks for this lock.
121 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
122 * forever, because the previous txg can't quiesce until B's tx commits.
123 *
124 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
125 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
126 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
127 * to indicate that this operation has already called dmu_tx_wait().
128 * This will ensure that we don't retry forever, waiting a short bit
129 * each time.
130 *
131 * (5) If the operation succeeded, generate the intent log entry for it
132 * before dropping locks. This ensures that the ordering of events
133 * in the intent log matches the order in which they actually occurred.
134 * During ZIL replay the zfs_log_* functions will update the sequence
135 * number to indicate the zil transaction has replayed.
136 *
137 * (6) At the end of each vnode op, the DMU tx must always commit,
138 * regardless of whether there were any errors.
139 *
140 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
141 * to ensure that synchronous semantics are provided when necessary.
142 *
143 * In general, this is how things should be ordered in each vnode op:
144 *
145 * zfs_enter(zfsvfs); // exit if unmounted
146 * top:
147 * zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab())
148 * rw_enter(...); // grab any other locks you need
149 * tx = dmu_tx_create(...); // get DMU tx
150 * dmu_tx_hold_*(); // hold each object you might modify
151 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
152 * if (error) {
153 * rw_exit(...); // drop locks
154 * zfs_dirent_unlock(dl); // unlock directory entry
155 * zrele(...); // release held znodes
156 * if (error == ERESTART) {
157 * waited = B_TRUE;
158 * dmu_tx_wait(tx);
159 * dmu_tx_abort(tx);
160 * goto top;
161 * }
162 * dmu_tx_abort(tx); // abort DMU tx
163 * zfs_exit(zfsvfs); // finished in zfs
164 * return (error); // really out of space
165 * }
166 * error = do_real_work(); // do whatever this VOP does
167 * if (error == 0)
168 * zfs_log_*(...); // on success, make ZIL entry
169 * dmu_tx_commit(tx); // commit DMU tx -- error or not
170 * rw_exit(...); // drop locks
171 * zfs_dirent_unlock(dl); // unlock directory entry
172 * zrele(...); // release held znodes
173 * zil_commit(zilog, foid); // synchronous when necessary
174 * zfs_exit(zfsvfs); // finished in zfs
175 * return (error); // done, report error
176 */
177 int
178 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
179 {
180 (void) cr;
181 znode_t *zp = ITOZ(ip);
182 zfsvfs_t *zfsvfs = ITOZSB(ip);
183 int error;
184
185 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
186 return (error);
187
188 /* Honor ZFS_APPENDONLY file attribute */
189 if (blk_mode_is_open_write(mode) && (zp->z_pflags & ZFS_APPENDONLY) &&
190 ((flag & O_APPEND) == 0)) {
191 zfs_exit(zfsvfs, FTAG);
192 return (SET_ERROR(EPERM));
193 }
194
195 /* Keep a count of the synchronous opens in the znode */
196 if (flag & O_SYNC)
197 atomic_inc_32(&zp->z_sync_cnt);
198
199 zfs_exit(zfsvfs, FTAG);
200 return (0);
201 }
202
203 int
204 zfs_close(struct inode *ip, int flag, cred_t *cr)
205 {
206 (void) cr;
207 znode_t *zp = ITOZ(ip);
208 zfsvfs_t *zfsvfs = ITOZSB(ip);
209 int error;
210
211 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
212 return (error);
213
214 /* Decrement the synchronous opens in the znode */
215 if (flag & O_SYNC)
216 atomic_dec_32(&zp->z_sync_cnt);
217
218 zfs_exit(zfsvfs, FTAG);
219 return (0);
220 }
221
222 #if defined(_KERNEL)
223
224 static int zfs_fillpage(struct inode *ip, struct page *pp);
225
226 /*
227 * When a file is memory mapped, we must keep the IO data synchronized
228 * between the DMU cache and the memory mapped pages. Update all mapped
229 * pages with the contents of the coresponding dmu buffer.
230 */
231 void
232 update_pages(znode_t *zp, int64_t start, int len, objset_t *os)
233 {
234 struct address_space *mp = ZTOI(zp)->i_mapping;
235 int64_t off = start & (PAGE_SIZE - 1);
236
237 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
238 uint64_t nbytes = MIN(PAGE_SIZE - off, len);
239
240 struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT);
241 if (pp) {
242 if (mapping_writably_mapped(mp))
243 flush_dcache_page(pp);
244
245 void *pb = kmap(pp);
246 int error = dmu_read(os, zp->z_id, start + off,
247 nbytes, pb + off, DMU_READ_PREFETCH);
248 kunmap(pp);
249
250 if (error) {
251 SetPageError(pp);
252 ClearPageUptodate(pp);
253 } else {
254 ClearPageError(pp);
255 SetPageUptodate(pp);
256
257 if (mapping_writably_mapped(mp))
258 flush_dcache_page(pp);
259
260 mark_page_accessed(pp);
261 }
262
263 unlock_page(pp);
264 put_page(pp);
265 }
266
267 len -= nbytes;
268 off = 0;
269 }
270 }
271
272 /*
273 * When a file is memory mapped, we must keep the I/O data synchronized
274 * between the DMU cache and the memory mapped pages. Preferentially read
275 * from memory mapped pages, otherwise fallback to reading through the dmu.
276 */
277 int
278 mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio)
279 {
280 struct inode *ip = ZTOI(zp);
281 struct address_space *mp = ip->i_mapping;
282 int64_t start = uio->uio_loffset;
283 int64_t off = start & (PAGE_SIZE - 1);
284 int len = nbytes;
285 int error = 0;
286
287 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
288 uint64_t bytes = MIN(PAGE_SIZE - off, len);
289
290 struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT);
291 if (pp) {
292 /*
293 * If filemap_fault() retries there exists a window
294 * where the page will be unlocked and not up to date.
295 * In this case we must try and fill the page.
296 */
297 if (unlikely(!PageUptodate(pp))) {
298 error = zfs_fillpage(ip, pp);
299 if (error) {
300 unlock_page(pp);
301 put_page(pp);
302 return (error);
303 }
304 }
305
306 ASSERT(PageUptodate(pp) || PageDirty(pp));
307
308 unlock_page(pp);
309
310 void *pb = kmap(pp);
311 error = zfs_uiomove(pb + off, bytes, UIO_READ, uio);
312 kunmap(pp);
313
314 if (mapping_writably_mapped(mp))
315 flush_dcache_page(pp);
316
317 mark_page_accessed(pp);
318 put_page(pp);
319 } else {
320 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
321 uio, bytes);
322 }
323
324 len -= bytes;
325 off = 0;
326
327 if (error)
328 break;
329 }
330
331 return (error);
332 }
333 #endif /* _KERNEL */
334
335 static unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
336
337 /*
338 * Write the bytes to a file.
339 *
340 * IN: zp - znode of file to be written to
341 * data - bytes to write
342 * len - number of bytes to write
343 * pos - offset to start writing at
344 *
345 * OUT: resid - remaining bytes to write
346 *
347 * RETURN: 0 if success
348 * positive error code if failure. EIO is returned
349 * for a short write when residp isn't provided.
350 *
351 * Timestamps:
352 * zp - ctime|mtime updated if byte count > 0
353 */
354 int
355 zfs_write_simple(znode_t *zp, const void *data, size_t len,
356 loff_t pos, size_t *residp)
357 {
358 fstrans_cookie_t cookie;
359 int error;
360
361 struct iovec iov;
362 iov.iov_base = (void *)data;
363 iov.iov_len = len;
364
365 zfs_uio_t uio;
366 zfs_uio_iovec_init(&uio, &iov, 1, pos, UIO_SYSSPACE, len, 0);
367
368 cookie = spl_fstrans_mark();
369 error = zfs_write(zp, &uio, 0, kcred);
370 spl_fstrans_unmark(cookie);
371
372 if (error == 0) {
373 if (residp != NULL)
374 *residp = zfs_uio_resid(&uio);
375 else if (zfs_uio_resid(&uio) != 0)
376 error = SET_ERROR(EIO);
377 }
378
379 return (error);
380 }
381
382 static void
383 zfs_rele_async_task(void *arg)
384 {
385 iput(arg);
386 }
387
388 void
389 zfs_zrele_async(znode_t *zp)
390 {
391 struct inode *ip = ZTOI(zp);
392 objset_t *os = ITOZSB(ip)->z_os;
393
394 ASSERT(atomic_read(&ip->i_count) > 0);
395 ASSERT(os != NULL);
396
397 /*
398 * If decrementing the count would put us at 0, we can't do it inline
399 * here, because that would be synchronous. Instead, dispatch an iput
400 * to run later.
401 *
402 * For more information on the dangers of a synchronous iput, see the
403 * header comment of this file.
404 */
405 if (!atomic_add_unless(&ip->i_count, -1, 1)) {
406 VERIFY(taskq_dispatch(dsl_pool_zrele_taskq(dmu_objset_pool(os)),
407 zfs_rele_async_task, ip, TQ_SLEEP) != TASKQID_INVALID);
408 }
409 }
410
411
412 /*
413 * Lookup an entry in a directory, or an extended attribute directory.
414 * If it exists, return a held inode reference for it.
415 *
416 * IN: zdp - znode of directory to search.
417 * nm - name of entry to lookup.
418 * flags - LOOKUP_XATTR set if looking for an attribute.
419 * cr - credentials of caller.
420 * direntflags - directory lookup flags
421 * realpnp - returned pathname.
422 *
423 * OUT: zpp - znode of located entry, NULL if not found.
424 *
425 * RETURN: 0 on success, error code on failure.
426 *
427 * Timestamps:
428 * NA
429 */
430 int
431 zfs_lookup(znode_t *zdp, char *nm, znode_t **zpp, int flags, cred_t *cr,
432 int *direntflags, pathname_t *realpnp)
433 {
434 zfsvfs_t *zfsvfs = ZTOZSB(zdp);
435 int error = 0;
436
437 /*
438 * Fast path lookup, however we must skip DNLC lookup
439 * for case folding or normalizing lookups because the
440 * DNLC code only stores the passed in name. This means
441 * creating 'a' and removing 'A' on a case insensitive
442 * file system would work, but DNLC still thinks 'a'
443 * exists and won't let you create it again on the next
444 * pass through fast path.
445 */
446 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
447
448 if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
449 return (SET_ERROR(ENOTDIR));
450 } else if (zdp->z_sa_hdl == NULL) {
451 return (SET_ERROR(EIO));
452 }
453
454 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
455 error = zfs_fastaccesschk_execute(zdp, cr);
456 if (!error) {
457 *zpp = zdp;
458 zhold(*zpp);
459 return (0);
460 }
461 return (error);
462 }
463 }
464
465 if ((error = zfs_enter_verify_zp(zfsvfs, zdp, FTAG)) != 0)
466 return (error);
467
468 *zpp = NULL;
469
470 if (flags & LOOKUP_XATTR) {
471 /*
472 * We don't allow recursive attributes..
473 * Maybe someday we will.
474 */
475 if (zdp->z_pflags & ZFS_XATTR) {
476 zfs_exit(zfsvfs, FTAG);
477 return (SET_ERROR(EINVAL));
478 }
479
480 if ((error = zfs_get_xattrdir(zdp, zpp, cr, flags))) {
481 zfs_exit(zfsvfs, FTAG);
482 return (error);
483 }
484
485 /*
486 * Do we have permission to get into attribute directory?
487 */
488
489 if ((error = zfs_zaccess(*zpp, ACE_EXECUTE, 0,
490 B_TRUE, cr, zfs_init_idmap))) {
491 zrele(*zpp);
492 *zpp = NULL;
493 }
494
495 zfs_exit(zfsvfs, FTAG);
496 return (error);
497 }
498
499 if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
500 zfs_exit(zfsvfs, FTAG);
501 return (SET_ERROR(ENOTDIR));
502 }
503
504 /*
505 * Check accessibility of directory.
506 */
507
508 if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr,
509 zfs_init_idmap))) {
510 zfs_exit(zfsvfs, FTAG);
511 return (error);
512 }
513
514 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
515 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
516 zfs_exit(zfsvfs, FTAG);
517 return (SET_ERROR(EILSEQ));
518 }
519
520 error = zfs_dirlook(zdp, nm, zpp, flags, direntflags, realpnp);
521 if ((error == 0) && (*zpp))
522 zfs_znode_update_vfs(*zpp);
523
524 zfs_exit(zfsvfs, FTAG);
525 return (error);
526 }
527
528 /*
529 * Attempt to create a new entry in a directory. If the entry
530 * already exists, truncate the file if permissible, else return
531 * an error. Return the ip of the created or trunc'd file.
532 *
533 * IN: dzp - znode of directory to put new file entry in.
534 * name - name of new file entry.
535 * vap - attributes of new file.
536 * excl - flag indicating exclusive or non-exclusive mode.
537 * mode - mode to open file with.
538 * cr - credentials of caller.
539 * flag - file flag.
540 * vsecp - ACL to be set
541 * mnt_ns - user namespace of the mount
542 *
543 * OUT: zpp - znode of created or trunc'd entry.
544 *
545 * RETURN: 0 on success, error code on failure.
546 *
547 * Timestamps:
548 * dzp - ctime|mtime updated if new entry created
549 * zp - ctime|mtime always, atime if new
550 */
551 int
552 zfs_create(znode_t *dzp, char *name, vattr_t *vap, int excl,
553 int mode, znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp,
554 zidmap_t *mnt_ns)
555 {
556 znode_t *zp;
557 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
558 zilog_t *zilog;
559 objset_t *os;
560 zfs_dirlock_t *dl;
561 dmu_tx_t *tx;
562 int error;
563 uid_t uid;
564 gid_t gid;
565 zfs_acl_ids_t acl_ids;
566 boolean_t fuid_dirtied;
567 boolean_t have_acl = B_FALSE;
568 boolean_t waited = B_FALSE;
569 boolean_t skip_acl = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
570
571 /*
572 * If we have an ephemeral id, ACL, or XVATTR then
573 * make sure file system is at proper version
574 */
575
576 gid = crgetgid(cr);
577 uid = crgetuid(cr);
578
579 if (zfsvfs->z_use_fuids == B_FALSE &&
580 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
581 return (SET_ERROR(EINVAL));
582
583 if (name == NULL)
584 return (SET_ERROR(EINVAL));
585
586 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
587 return (error);
588 os = zfsvfs->z_os;
589 zilog = zfsvfs->z_log;
590
591 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
592 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
593 zfs_exit(zfsvfs, FTAG);
594 return (SET_ERROR(EILSEQ));
595 }
596
597 if (vap->va_mask & ATTR_XVATTR) {
598 if ((error = secpolicy_xvattr((xvattr_t *)vap,
599 crgetuid(cr), cr, vap->va_mode)) != 0) {
600 zfs_exit(zfsvfs, FTAG);
601 return (error);
602 }
603 }
604
605 top:
606 *zpp = NULL;
607 if (*name == '\0') {
608 /*
609 * Null component name refers to the directory itself.
610 */
611 zhold(dzp);
612 zp = dzp;
613 dl = NULL;
614 error = 0;
615 } else {
616 /* possible igrab(zp) */
617 int zflg = 0;
618
619 if (flag & FIGNORECASE)
620 zflg |= ZCILOOK;
621
622 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
623 NULL, NULL);
624 if (error) {
625 if (have_acl)
626 zfs_acl_ids_free(&acl_ids);
627 if (strcmp(name, "..") == 0)
628 error = SET_ERROR(EISDIR);
629 zfs_exit(zfsvfs, FTAG);
630 return (error);
631 }
632 }
633
634 if (zp == NULL) {
635 uint64_t txtype;
636 uint64_t projid = ZFS_DEFAULT_PROJID;
637
638 /*
639 * Create a new file object and update the directory
640 * to reference it.
641 */
642 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, skip_acl, cr,
643 mnt_ns))) {
644 if (have_acl)
645 zfs_acl_ids_free(&acl_ids);
646 goto out;
647 }
648
649 /*
650 * We only support the creation of regular files in
651 * extended attribute directories.
652 */
653
654 if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
655 if (have_acl)
656 zfs_acl_ids_free(&acl_ids);
657 error = SET_ERROR(EINVAL);
658 goto out;
659 }
660
661 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
662 cr, vsecp, &acl_ids, mnt_ns)) != 0)
663 goto out;
664 have_acl = B_TRUE;
665
666 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
667 projid = zfs_inherit_projid(dzp);
668 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
669 zfs_acl_ids_free(&acl_ids);
670 error = SET_ERROR(EDQUOT);
671 goto out;
672 }
673
674 tx = dmu_tx_create(os);
675
676 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
677 ZFS_SA_BASE_ATTR_SIZE);
678
679 fuid_dirtied = zfsvfs->z_fuid_dirty;
680 if (fuid_dirtied)
681 zfs_fuid_txhold(zfsvfs, tx);
682 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
683 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
684 if (!zfsvfs->z_use_sa &&
685 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
686 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
687 0, acl_ids.z_aclp->z_acl_bytes);
688 }
689
690 error = dmu_tx_assign(tx,
691 (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
692 if (error) {
693 zfs_dirent_unlock(dl);
694 if (error == ERESTART) {
695 waited = B_TRUE;
696 dmu_tx_wait(tx);
697 dmu_tx_abort(tx);
698 goto top;
699 }
700 zfs_acl_ids_free(&acl_ids);
701 dmu_tx_abort(tx);
702 zfs_exit(zfsvfs, FTAG);
703 return (error);
704 }
705 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
706
707 error = zfs_link_create(dl, zp, tx, ZNEW);
708 if (error != 0) {
709 /*
710 * Since, we failed to add the directory entry for it,
711 * delete the newly created dnode.
712 */
713 zfs_znode_delete(zp, tx);
714 remove_inode_hash(ZTOI(zp));
715 zfs_acl_ids_free(&acl_ids);
716 dmu_tx_commit(tx);
717 goto out;
718 }
719
720 if (fuid_dirtied)
721 zfs_fuid_sync(zfsvfs, tx);
722
723 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
724 if (flag & FIGNORECASE)
725 txtype |= TX_CI;
726 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
727 vsecp, acl_ids.z_fuidp, vap);
728 zfs_acl_ids_free(&acl_ids);
729 dmu_tx_commit(tx);
730 } else {
731 int aflags = (flag & O_APPEND) ? V_APPEND : 0;
732
733 if (have_acl)
734 zfs_acl_ids_free(&acl_ids);
735
736 /*
737 * A directory entry already exists for this name.
738 */
739 /*
740 * Can't truncate an existing file if in exclusive mode.
741 */
742 if (excl) {
743 error = SET_ERROR(EEXIST);
744 goto out;
745 }
746 /*
747 * Can't open a directory for writing.
748 */
749 if (S_ISDIR(ZTOI(zp)->i_mode)) {
750 error = SET_ERROR(EISDIR);
751 goto out;
752 }
753 /*
754 * Verify requested access to file.
755 */
756 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr,
757 mnt_ns))) {
758 goto out;
759 }
760
761 mutex_enter(&dzp->z_lock);
762 dzp->z_seq++;
763 mutex_exit(&dzp->z_lock);
764
765 /*
766 * Truncate regular files if requested.
767 */
768 if (S_ISREG(ZTOI(zp)->i_mode) &&
769 (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
770 /* we can't hold any locks when calling zfs_freesp() */
771 if (dl) {
772 zfs_dirent_unlock(dl);
773 dl = NULL;
774 }
775 error = zfs_freesp(zp, 0, 0, mode, TRUE);
776 }
777 }
778 out:
779
780 if (dl)
781 zfs_dirent_unlock(dl);
782
783 if (error) {
784 if (zp)
785 zrele(zp);
786 } else {
787 zfs_znode_update_vfs(dzp);
788 zfs_znode_update_vfs(zp);
789 *zpp = zp;
790 }
791
792 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
793 zil_commit(zilog, 0);
794
795 zfs_exit(zfsvfs, FTAG);
796 return (error);
797 }
798
799 int
800 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
801 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp,
802 zidmap_t *mnt_ns)
803 {
804 (void) excl, (void) mode, (void) flag;
805 znode_t *zp = NULL, *dzp = ITOZ(dip);
806 zfsvfs_t *zfsvfs = ITOZSB(dip);
807 objset_t *os;
808 dmu_tx_t *tx;
809 int error;
810 uid_t uid;
811 gid_t gid;
812 zfs_acl_ids_t acl_ids;
813 uint64_t projid = ZFS_DEFAULT_PROJID;
814 boolean_t fuid_dirtied;
815 boolean_t have_acl = B_FALSE;
816 boolean_t waited = B_FALSE;
817
818 /*
819 * If we have an ephemeral id, ACL, or XVATTR then
820 * make sure file system is at proper version
821 */
822
823 gid = crgetgid(cr);
824 uid = crgetuid(cr);
825
826 if (zfsvfs->z_use_fuids == B_FALSE &&
827 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
828 return (SET_ERROR(EINVAL));
829
830 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
831 return (error);
832 os = zfsvfs->z_os;
833
834 if (vap->va_mask & ATTR_XVATTR) {
835 if ((error = secpolicy_xvattr((xvattr_t *)vap,
836 crgetuid(cr), cr, vap->va_mode)) != 0) {
837 zfs_exit(zfsvfs, FTAG);
838 return (error);
839 }
840 }
841
842 top:
843 *ipp = NULL;
844
845 /*
846 * Create a new file object and update the directory
847 * to reference it.
848 */
849 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
850 if (have_acl)
851 zfs_acl_ids_free(&acl_ids);
852 goto out;
853 }
854
855 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
856 cr, vsecp, &acl_ids, mnt_ns)) != 0)
857 goto out;
858 have_acl = B_TRUE;
859
860 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
861 projid = zfs_inherit_projid(dzp);
862 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
863 zfs_acl_ids_free(&acl_ids);
864 error = SET_ERROR(EDQUOT);
865 goto out;
866 }
867
868 tx = dmu_tx_create(os);
869
870 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
871 ZFS_SA_BASE_ATTR_SIZE);
872 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
873
874 fuid_dirtied = zfsvfs->z_fuid_dirty;
875 if (fuid_dirtied)
876 zfs_fuid_txhold(zfsvfs, tx);
877 if (!zfsvfs->z_use_sa &&
878 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
879 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
880 0, acl_ids.z_aclp->z_acl_bytes);
881 }
882 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
883 if (error) {
884 if (error == ERESTART) {
885 waited = B_TRUE;
886 dmu_tx_wait(tx);
887 dmu_tx_abort(tx);
888 goto top;
889 }
890 zfs_acl_ids_free(&acl_ids);
891 dmu_tx_abort(tx);
892 zfs_exit(zfsvfs, FTAG);
893 return (error);
894 }
895 zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
896
897 if (fuid_dirtied)
898 zfs_fuid_sync(zfsvfs, tx);
899
900 /* Add to unlinked set */
901 zp->z_unlinked = B_TRUE;
902 zfs_unlinked_add(zp, tx);
903 zfs_acl_ids_free(&acl_ids);
904 dmu_tx_commit(tx);
905 out:
906
907 if (error) {
908 if (zp)
909 zrele(zp);
910 } else {
911 zfs_znode_update_vfs(dzp);
912 zfs_znode_update_vfs(zp);
913 *ipp = ZTOI(zp);
914 }
915
916 zfs_exit(zfsvfs, FTAG);
917 return (error);
918 }
919
920 /*
921 * Remove an entry from a directory.
922 *
923 * IN: dzp - znode of directory to remove entry from.
924 * name - name of entry to remove.
925 * cr - credentials of caller.
926 * flags - case flags.
927 *
928 * RETURN: 0 if success
929 * error code if failure
930 *
931 * Timestamps:
932 * dzp - ctime|mtime
933 * ip - ctime (if nlink > 0)
934 */
935
936 static uint64_t null_xattr = 0;
937
938 int
939 zfs_remove(znode_t *dzp, char *name, cred_t *cr, int flags)
940 {
941 znode_t *zp;
942 znode_t *xzp;
943 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
944 zilog_t *zilog;
945 uint64_t acl_obj, xattr_obj;
946 uint64_t xattr_obj_unlinked = 0;
947 uint64_t obj = 0;
948 uint64_t links;
949 zfs_dirlock_t *dl;
950 dmu_tx_t *tx;
951 boolean_t may_delete_now, delete_now = FALSE;
952 boolean_t unlinked, toobig = FALSE;
953 uint64_t txtype;
954 pathname_t *realnmp = NULL;
955 pathname_t realnm;
956 int error;
957 int zflg = ZEXISTS;
958 boolean_t waited = B_FALSE;
959
960 if (name == NULL)
961 return (SET_ERROR(EINVAL));
962
963 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
964 return (error);
965 zilog = zfsvfs->z_log;
966
967 if (flags & FIGNORECASE) {
968 zflg |= ZCILOOK;
969 pn_alloc(&realnm);
970 realnmp = &realnm;
971 }
972
973 top:
974 xattr_obj = 0;
975 xzp = NULL;
976 /*
977 * Attempt to lock directory; fail if entry doesn't exist.
978 */
979 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
980 NULL, realnmp))) {
981 if (realnmp)
982 pn_free(realnmp);
983 zfs_exit(zfsvfs, FTAG);
984 return (error);
985 }
986
987 if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) {
988 goto out;
989 }
990
991 /*
992 * Need to use rmdir for removing directories.
993 */
994 if (S_ISDIR(ZTOI(zp)->i_mode)) {
995 error = SET_ERROR(EPERM);
996 goto out;
997 }
998
999 mutex_enter(&zp->z_lock);
1000 may_delete_now = atomic_read(&ZTOI(zp)->i_count) == 1 &&
1001 !zn_has_cached_data(zp, 0, LLONG_MAX);
1002 mutex_exit(&zp->z_lock);
1003
1004 /*
1005 * We may delete the znode now, or we may put it in the unlinked set;
1006 * it depends on whether we're the last link, and on whether there are
1007 * other holds on the inode. So we dmu_tx_hold() the right things to
1008 * allow for either case.
1009 */
1010 obj = zp->z_id;
1011 tx = dmu_tx_create(zfsvfs->z_os);
1012 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1013 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1014 zfs_sa_upgrade_txholds(tx, zp);
1015 zfs_sa_upgrade_txholds(tx, dzp);
1016 if (may_delete_now) {
1017 toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1018 /* if the file is too big, only hold_free a token amount */
1019 dmu_tx_hold_free(tx, zp->z_id, 0,
1020 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1021 }
1022
1023 /* are there any extended attributes? */
1024 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1025 &xattr_obj, sizeof (xattr_obj));
1026 if (error == 0 && xattr_obj) {
1027 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1028 ASSERT0(error);
1029 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1030 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1031 }
1032
1033 mutex_enter(&zp->z_lock);
1034 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1035 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1036 mutex_exit(&zp->z_lock);
1037
1038 /* charge as an update -- would be nice not to charge at all */
1039 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1040
1041 /*
1042 * Mark this transaction as typically resulting in a net free of space
1043 */
1044 dmu_tx_mark_netfree(tx);
1045
1046 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1047 if (error) {
1048 zfs_dirent_unlock(dl);
1049 if (error == ERESTART) {
1050 waited = B_TRUE;
1051 dmu_tx_wait(tx);
1052 dmu_tx_abort(tx);
1053 zrele(zp);
1054 if (xzp)
1055 zrele(xzp);
1056 goto top;
1057 }
1058 if (realnmp)
1059 pn_free(realnmp);
1060 dmu_tx_abort(tx);
1061 zrele(zp);
1062 if (xzp)
1063 zrele(xzp);
1064 zfs_exit(zfsvfs, FTAG);
1065 return (error);
1066 }
1067
1068 /*
1069 * Remove the directory entry.
1070 */
1071 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1072
1073 if (error) {
1074 dmu_tx_commit(tx);
1075 goto out;
1076 }
1077
1078 if (unlinked) {
1079 /*
1080 * Hold z_lock so that we can make sure that the ACL obj
1081 * hasn't changed. Could have been deleted due to
1082 * zfs_sa_upgrade().
1083 */
1084 mutex_enter(&zp->z_lock);
1085 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1086 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1087 delete_now = may_delete_now && !toobig &&
1088 atomic_read(&ZTOI(zp)->i_count) == 1 &&
1089 !zn_has_cached_data(zp, 0, LLONG_MAX) &&
1090 xattr_obj == xattr_obj_unlinked &&
1091 zfs_external_acl(zp) == acl_obj;
1092 VERIFY_IMPLY(xattr_obj_unlinked, xzp);
1093 }
1094
1095 if (delete_now) {
1096 if (xattr_obj_unlinked) {
1097 ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1098 mutex_enter(&xzp->z_lock);
1099 xzp->z_unlinked = B_TRUE;
1100 clear_nlink(ZTOI(xzp));
1101 links = 0;
1102 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1103 &links, sizeof (links), tx);
1104 ASSERT3U(error, ==, 0);
1105 mutex_exit(&xzp->z_lock);
1106 zfs_unlinked_add(xzp, tx);
1107
1108 if (zp->z_is_sa)
1109 error = sa_remove(zp->z_sa_hdl,
1110 SA_ZPL_XATTR(zfsvfs), tx);
1111 else
1112 error = sa_update(zp->z_sa_hdl,
1113 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1114 sizeof (uint64_t), tx);
1115 ASSERT0(error);
1116 }
1117 /*
1118 * Add to the unlinked set because a new reference could be
1119 * taken concurrently resulting in a deferred destruction.
1120 */
1121 zfs_unlinked_add(zp, tx);
1122 mutex_exit(&zp->z_lock);
1123 } else if (unlinked) {
1124 mutex_exit(&zp->z_lock);
1125 zfs_unlinked_add(zp, tx);
1126 }
1127
1128 txtype = TX_REMOVE;
1129 if (flags & FIGNORECASE)
1130 txtype |= TX_CI;
1131 zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
1132
1133 dmu_tx_commit(tx);
1134 out:
1135 if (realnmp)
1136 pn_free(realnmp);
1137
1138 zfs_dirent_unlock(dl);
1139 zfs_znode_update_vfs(dzp);
1140 zfs_znode_update_vfs(zp);
1141
1142 if (delete_now)
1143 zrele(zp);
1144 else
1145 zfs_zrele_async(zp);
1146
1147 if (xzp) {
1148 zfs_znode_update_vfs(xzp);
1149 zfs_zrele_async(xzp);
1150 }
1151
1152 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1153 zil_commit(zilog, 0);
1154
1155 zfs_exit(zfsvfs, FTAG);
1156 return (error);
1157 }
1158
1159 /*
1160 * Create a new directory and insert it into dzp using the name
1161 * provided. Return a pointer to the inserted directory.
1162 *
1163 * IN: dzp - znode of directory to add subdir to.
1164 * dirname - name of new directory.
1165 * vap - attributes of new directory.
1166 * cr - credentials of caller.
1167 * flags - case flags.
1168 * vsecp - ACL to be set
1169 * mnt_ns - user namespace of the mount
1170 *
1171 * OUT: zpp - znode of created directory.
1172 *
1173 * RETURN: 0 if success
1174 * error code if failure
1175 *
1176 * Timestamps:
1177 * dzp - ctime|mtime updated
1178 * zpp - ctime|mtime|atime updated
1179 */
1180 int
1181 zfs_mkdir(znode_t *dzp, char *dirname, vattr_t *vap, znode_t **zpp,
1182 cred_t *cr, int flags, vsecattr_t *vsecp, zidmap_t *mnt_ns)
1183 {
1184 znode_t *zp;
1185 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
1186 zilog_t *zilog;
1187 zfs_dirlock_t *dl;
1188 uint64_t txtype;
1189 dmu_tx_t *tx;
1190 int error;
1191 int zf = ZNEW;
1192 uid_t uid;
1193 gid_t gid = crgetgid(cr);
1194 zfs_acl_ids_t acl_ids;
1195 boolean_t fuid_dirtied;
1196 boolean_t waited = B_FALSE;
1197
1198 ASSERT(S_ISDIR(vap->va_mode));
1199
1200 /*
1201 * If we have an ephemeral id, ACL, or XVATTR then
1202 * make sure file system is at proper version
1203 */
1204
1205 uid = crgetuid(cr);
1206 if (zfsvfs->z_use_fuids == B_FALSE &&
1207 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1208 return (SET_ERROR(EINVAL));
1209
1210 if (dirname == NULL)
1211 return (SET_ERROR(EINVAL));
1212
1213 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1214 return (error);
1215 zilog = zfsvfs->z_log;
1216
1217 if (dzp->z_pflags & ZFS_XATTR) {
1218 zfs_exit(zfsvfs, FTAG);
1219 return (SET_ERROR(EINVAL));
1220 }
1221
1222 if (zfsvfs->z_utf8 && u8_validate(dirname,
1223 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1224 zfs_exit(zfsvfs, FTAG);
1225 return (SET_ERROR(EILSEQ));
1226 }
1227 if (flags & FIGNORECASE)
1228 zf |= ZCILOOK;
1229
1230 if (vap->va_mask & ATTR_XVATTR) {
1231 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1232 crgetuid(cr), cr, vap->va_mode)) != 0) {
1233 zfs_exit(zfsvfs, FTAG);
1234 return (error);
1235 }
1236 }
1237
1238 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1239 vsecp, &acl_ids, mnt_ns)) != 0) {
1240 zfs_exit(zfsvfs, FTAG);
1241 return (error);
1242 }
1243 /*
1244 * First make sure the new directory doesn't exist.
1245 *
1246 * Existence is checked first to make sure we don't return
1247 * EACCES instead of EEXIST which can cause some applications
1248 * to fail.
1249 */
1250 top:
1251 *zpp = NULL;
1252
1253 if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1254 NULL, NULL))) {
1255 zfs_acl_ids_free(&acl_ids);
1256 zfs_exit(zfsvfs, FTAG);
1257 return (error);
1258 }
1259
1260 if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr,
1261 mnt_ns))) {
1262 zfs_acl_ids_free(&acl_ids);
1263 zfs_dirent_unlock(dl);
1264 zfs_exit(zfsvfs, FTAG);
1265 return (error);
1266 }
1267
1268 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
1269 zfs_acl_ids_free(&acl_ids);
1270 zfs_dirent_unlock(dl);
1271 zfs_exit(zfsvfs, FTAG);
1272 return (SET_ERROR(EDQUOT));
1273 }
1274
1275 /*
1276 * Add a new entry to the directory.
1277 */
1278 tx = dmu_tx_create(zfsvfs->z_os);
1279 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1280 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1281 fuid_dirtied = zfsvfs->z_fuid_dirty;
1282 if (fuid_dirtied)
1283 zfs_fuid_txhold(zfsvfs, tx);
1284 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1285 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1286 acl_ids.z_aclp->z_acl_bytes);
1287 }
1288
1289 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1290 ZFS_SA_BASE_ATTR_SIZE);
1291
1292 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1293 if (error) {
1294 zfs_dirent_unlock(dl);
1295 if (error == ERESTART) {
1296 waited = B_TRUE;
1297 dmu_tx_wait(tx);
1298 dmu_tx_abort(tx);
1299 goto top;
1300 }
1301 zfs_acl_ids_free(&acl_ids);
1302 dmu_tx_abort(tx);
1303 zfs_exit(zfsvfs, FTAG);
1304 return (error);
1305 }
1306
1307 /*
1308 * Create new node.
1309 */
1310 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1311
1312 /*
1313 * Now put new name in parent dir.
1314 */
1315 error = zfs_link_create(dl, zp, tx, ZNEW);
1316 if (error != 0) {
1317 zfs_znode_delete(zp, tx);
1318 remove_inode_hash(ZTOI(zp));
1319 goto out;
1320 }
1321
1322 if (fuid_dirtied)
1323 zfs_fuid_sync(zfsvfs, tx);
1324
1325 *zpp = zp;
1326
1327 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1328 if (flags & FIGNORECASE)
1329 txtype |= TX_CI;
1330 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1331 acl_ids.z_fuidp, vap);
1332
1333 out:
1334 zfs_acl_ids_free(&acl_ids);
1335
1336 dmu_tx_commit(tx);
1337
1338 zfs_dirent_unlock(dl);
1339
1340 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1341 zil_commit(zilog, 0);
1342
1343 if (error != 0) {
1344 zrele(zp);
1345 } else {
1346 zfs_znode_update_vfs(dzp);
1347 zfs_znode_update_vfs(zp);
1348 }
1349 zfs_exit(zfsvfs, FTAG);
1350 return (error);
1351 }
1352
1353 /*
1354 * Remove a directory subdir entry. If the current working
1355 * directory is the same as the subdir to be removed, the
1356 * remove will fail.
1357 *
1358 * IN: dzp - znode of directory to remove from.
1359 * name - name of directory to be removed.
1360 * cwd - inode of current working directory.
1361 * cr - credentials of caller.
1362 * flags - case flags
1363 *
1364 * RETURN: 0 on success, error code on failure.
1365 *
1366 * Timestamps:
1367 * dzp - ctime|mtime updated
1368 */
1369 int
1370 zfs_rmdir(znode_t *dzp, char *name, znode_t *cwd, cred_t *cr,
1371 int flags)
1372 {
1373 znode_t *zp;
1374 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
1375 zilog_t *zilog;
1376 zfs_dirlock_t *dl;
1377 dmu_tx_t *tx;
1378 int error;
1379 int zflg = ZEXISTS;
1380 boolean_t waited = B_FALSE;
1381
1382 if (name == NULL)
1383 return (SET_ERROR(EINVAL));
1384
1385 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1386 return (error);
1387 zilog = zfsvfs->z_log;
1388
1389 if (flags & FIGNORECASE)
1390 zflg |= ZCILOOK;
1391 top:
1392 zp = NULL;
1393
1394 /*
1395 * Attempt to lock directory; fail if entry doesn't exist.
1396 */
1397 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1398 NULL, NULL))) {
1399 zfs_exit(zfsvfs, FTAG);
1400 return (error);
1401 }
1402
1403 if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) {
1404 goto out;
1405 }
1406
1407 if (!S_ISDIR(ZTOI(zp)->i_mode)) {
1408 error = SET_ERROR(ENOTDIR);
1409 goto out;
1410 }
1411
1412 if (zp == cwd) {
1413 error = SET_ERROR(EINVAL);
1414 goto out;
1415 }
1416
1417 /*
1418 * Grab a lock on the directory to make sure that no one is
1419 * trying to add (or lookup) entries while we are removing it.
1420 */
1421 rw_enter(&zp->z_name_lock, RW_WRITER);
1422
1423 /*
1424 * Grab a lock on the parent pointer to make sure we play well
1425 * with the treewalk and directory rename code.
1426 */
1427 rw_enter(&zp->z_parent_lock, RW_WRITER);
1428
1429 tx = dmu_tx_create(zfsvfs->z_os);
1430 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1431 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1432 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1433 zfs_sa_upgrade_txholds(tx, zp);
1434 zfs_sa_upgrade_txholds(tx, dzp);
1435 dmu_tx_mark_netfree(tx);
1436 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1437 if (error) {
1438 rw_exit(&zp->z_parent_lock);
1439 rw_exit(&zp->z_name_lock);
1440 zfs_dirent_unlock(dl);
1441 if (error == ERESTART) {
1442 waited = B_TRUE;
1443 dmu_tx_wait(tx);
1444 dmu_tx_abort(tx);
1445 zrele(zp);
1446 goto top;
1447 }
1448 dmu_tx_abort(tx);
1449 zrele(zp);
1450 zfs_exit(zfsvfs, FTAG);
1451 return (error);
1452 }
1453
1454 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1455
1456 if (error == 0) {
1457 uint64_t txtype = TX_RMDIR;
1458 if (flags & FIGNORECASE)
1459 txtype |= TX_CI;
1460 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT,
1461 B_FALSE);
1462 }
1463
1464 dmu_tx_commit(tx);
1465
1466 rw_exit(&zp->z_parent_lock);
1467 rw_exit(&zp->z_name_lock);
1468 out:
1469 zfs_dirent_unlock(dl);
1470
1471 zfs_znode_update_vfs(dzp);
1472 zfs_znode_update_vfs(zp);
1473 zrele(zp);
1474
1475 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1476 zil_commit(zilog, 0);
1477
1478 zfs_exit(zfsvfs, FTAG);
1479 return (error);
1480 }
1481
1482 /*
1483 * Read directory entries from the given directory cursor position and emit
1484 * name and position for each entry.
1485 *
1486 * IN: ip - inode of directory to read.
1487 * ctx - directory entry context.
1488 * cr - credentials of caller.
1489 *
1490 * RETURN: 0 if success
1491 * error code if failure
1492 *
1493 * Timestamps:
1494 * ip - atime updated
1495 *
1496 * Note that the low 4 bits of the cookie returned by zap is always zero.
1497 * This allows us to use the low range for "special" directory entries:
1498 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
1499 * we use the offset 2 for the '.zfs' directory.
1500 */
1501 int
1502 zfs_readdir(struct inode *ip, zpl_dir_context_t *ctx, cred_t *cr)
1503 {
1504 (void) cr;
1505 znode_t *zp = ITOZ(ip);
1506 zfsvfs_t *zfsvfs = ITOZSB(ip);
1507 objset_t *os;
1508 zap_cursor_t zc;
1509 zap_attribute_t zap;
1510 int error;
1511 uint8_t prefetch;
1512 uint8_t type;
1513 int done = 0;
1514 uint64_t parent;
1515 uint64_t offset; /* must be unsigned; checks for < 1 */
1516
1517 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1518 return (error);
1519
1520 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1521 &parent, sizeof (parent))) != 0)
1522 goto out;
1523
1524 /*
1525 * Quit if directory has been removed (posix)
1526 */
1527 if (zp->z_unlinked)
1528 goto out;
1529
1530 error = 0;
1531 os = zfsvfs->z_os;
1532 offset = ctx->pos;
1533 prefetch = zp->z_zn_prefetch;
1534
1535 /*
1536 * Initialize the iterator cursor.
1537 */
1538 if (offset <= 3) {
1539 /*
1540 * Start iteration from the beginning of the directory.
1541 */
1542 zap_cursor_init(&zc, os, zp->z_id);
1543 } else {
1544 /*
1545 * The offset is a serialized cursor.
1546 */
1547 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1548 }
1549
1550 /*
1551 * Transform to file-system independent format
1552 */
1553 while (!done) {
1554 uint64_t objnum;
1555 /*
1556 * Special case `.', `..', and `.zfs'.
1557 */
1558 if (offset == 0) {
1559 (void) strcpy(zap.za_name, ".");
1560 zap.za_normalization_conflict = 0;
1561 objnum = zp->z_id;
1562 type = DT_DIR;
1563 } else if (offset == 1) {
1564 (void) strcpy(zap.za_name, "..");
1565 zap.za_normalization_conflict = 0;
1566 objnum = parent;
1567 type = DT_DIR;
1568 } else if (offset == 2 && zfs_show_ctldir(zp)) {
1569 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
1570 zap.za_normalization_conflict = 0;
1571 objnum = ZFSCTL_INO_ROOT;
1572 type = DT_DIR;
1573 } else {
1574 /*
1575 * Grab next entry.
1576 */
1577 if ((error = zap_cursor_retrieve(&zc, &zap))) {
1578 if (error == ENOENT)
1579 break;
1580 else
1581 goto update;
1582 }
1583
1584 /*
1585 * Allow multiple entries provided the first entry is
1586 * the object id. Non-zpl consumers may safely make
1587 * use of the additional space.
1588 *
1589 * XXX: This should be a feature flag for compatibility
1590 */
1591 if (zap.za_integer_length != 8 ||
1592 zap.za_num_integers == 0) {
1593 cmn_err(CE_WARN, "zap_readdir: bad directory "
1594 "entry, obj = %lld, offset = %lld, "
1595 "length = %d, num = %lld\n",
1596 (u_longlong_t)zp->z_id,
1597 (u_longlong_t)offset,
1598 zap.za_integer_length,
1599 (u_longlong_t)zap.za_num_integers);
1600 error = SET_ERROR(ENXIO);
1601 goto update;
1602 }
1603
1604 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
1605 type = ZFS_DIRENT_TYPE(zap.za_first_integer);
1606 }
1607
1608 done = !zpl_dir_emit(ctx, zap.za_name, strlen(zap.za_name),
1609 objnum, type);
1610 if (done)
1611 break;
1612
1613 /* Prefetch znode */
1614 if (prefetch) {
1615 dmu_prefetch(os, objnum, 0, 0, 0,
1616 ZIO_PRIORITY_SYNC_READ);
1617 }
1618
1619 /*
1620 * Move to the next entry, fill in the previous offset.
1621 */
1622 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1623 zap_cursor_advance(&zc);
1624 offset = zap_cursor_serialize(&zc);
1625 } else {
1626 offset += 1;
1627 }
1628 ctx->pos = offset;
1629 }
1630 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1631
1632 update:
1633 zap_cursor_fini(&zc);
1634 if (error == ENOENT)
1635 error = 0;
1636 out:
1637 zfs_exit(zfsvfs, FTAG);
1638
1639 return (error);
1640 }
1641
1642 /*
1643 * Get the basic file attributes and place them in the provided kstat
1644 * structure. The inode is assumed to be the authoritative source
1645 * for most of the attributes. However, the znode currently has the
1646 * authoritative atime, blksize, and block count.
1647 *
1648 * IN: ip - inode of file.
1649 *
1650 * OUT: sp - kstat values.
1651 *
1652 * RETURN: 0 (always succeeds)
1653 */
1654 int
1655 zfs_getattr_fast(zidmap_t *user_ns, struct inode *ip, struct kstat *sp)
1656 {
1657 znode_t *zp = ITOZ(ip);
1658 zfsvfs_t *zfsvfs = ITOZSB(ip);
1659 uint32_t blksize;
1660 u_longlong_t nblocks;
1661 int error;
1662
1663 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1664 return (error);
1665
1666 mutex_enter(&zp->z_lock);
1667
1668 zpl_generic_fillattr(user_ns, ip, sp);
1669 /*
1670 * +1 link count for root inode with visible '.zfs' directory.
1671 */
1672 if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
1673 if (sp->nlink < ZFS_LINK_MAX)
1674 sp->nlink++;
1675
1676 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1677 sp->blksize = blksize;
1678 sp->blocks = nblocks;
1679
1680 if (unlikely(zp->z_blksz == 0)) {
1681 /*
1682 * Block size hasn't been set; suggest maximal I/O transfers.
1683 */
1684 sp->blksize = zfsvfs->z_max_blksz;
1685 }
1686
1687 mutex_exit(&zp->z_lock);
1688
1689 /*
1690 * Required to prevent NFS client from detecting different inode
1691 * numbers of snapshot root dentry before and after snapshot mount.
1692 */
1693 if (zfsvfs->z_issnap) {
1694 if (ip->i_sb->s_root->d_inode == ip)
1695 sp->ino = ZFSCTL_INO_SNAPDIRS -
1696 dmu_objset_id(zfsvfs->z_os);
1697 }
1698
1699 zfs_exit(zfsvfs, FTAG);
1700
1701 return (0);
1702 }
1703
1704 /*
1705 * For the operation of changing file's user/group/project, we need to
1706 * handle not only the main object that is assigned to the file directly,
1707 * but also the ones that are used by the file via hidden xattr directory.
1708 *
1709 * Because the xattr directory may contains many EA entries, as to it may
1710 * be impossible to change all of them via the transaction of changing the
1711 * main object's user/group/project attributes. Then we have to change them
1712 * via other multiple independent transactions one by one. It may be not good
1713 * solution, but we have no better idea yet.
1714 */
1715 static int
1716 zfs_setattr_dir(znode_t *dzp)
1717 {
1718 struct inode *dxip = ZTOI(dzp);
1719 struct inode *xip = NULL;
1720 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
1721 objset_t *os = zfsvfs->z_os;
1722 zap_cursor_t zc;
1723 zap_attribute_t zap;
1724 zfs_dirlock_t *dl;
1725 znode_t *zp = NULL;
1726 dmu_tx_t *tx = NULL;
1727 uint64_t uid, gid;
1728 sa_bulk_attr_t bulk[4];
1729 int count;
1730 int err;
1731
1732 zap_cursor_init(&zc, os, dzp->z_id);
1733 while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) {
1734 count = 0;
1735 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
1736 err = ENXIO;
1737 break;
1738 }
1739
1740 err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp,
1741 ZEXISTS, NULL, NULL);
1742 if (err == ENOENT)
1743 goto next;
1744 if (err)
1745 break;
1746
1747 xip = ZTOI(zp);
1748 if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
1749 KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
1750 zp->z_projid == dzp->z_projid)
1751 goto next;
1752
1753 tx = dmu_tx_create(os);
1754 if (!(zp->z_pflags & ZFS_PROJID))
1755 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1756 else
1757 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1758
1759 err = dmu_tx_assign(tx, TXG_WAIT);
1760 if (err)
1761 break;
1762
1763 mutex_enter(&dzp->z_lock);
1764
1765 if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
1766 xip->i_uid = dxip->i_uid;
1767 uid = zfs_uid_read(dxip);
1768 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1769 &uid, sizeof (uid));
1770 }
1771
1772 if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
1773 xip->i_gid = dxip->i_gid;
1774 gid = zfs_gid_read(dxip);
1775 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1776 &gid, sizeof (gid));
1777 }
1778
1779 if (zp->z_projid != dzp->z_projid) {
1780 if (!(zp->z_pflags & ZFS_PROJID)) {
1781 zp->z_pflags |= ZFS_PROJID;
1782 SA_ADD_BULK_ATTR(bulk, count,
1783 SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags,
1784 sizeof (zp->z_pflags));
1785 }
1786
1787 zp->z_projid = dzp->z_projid;
1788 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs),
1789 NULL, &zp->z_projid, sizeof (zp->z_projid));
1790 }
1791
1792 mutex_exit(&dzp->z_lock);
1793
1794 if (likely(count > 0)) {
1795 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1796 dmu_tx_commit(tx);
1797 } else {
1798 dmu_tx_abort(tx);
1799 }
1800 tx = NULL;
1801 if (err != 0 && err != ENOENT)
1802 break;
1803
1804 next:
1805 if (zp) {
1806 zrele(zp);
1807 zp = NULL;
1808 zfs_dirent_unlock(dl);
1809 }
1810 zap_cursor_advance(&zc);
1811 }
1812
1813 if (tx)
1814 dmu_tx_abort(tx);
1815 if (zp) {
1816 zrele(zp);
1817 zfs_dirent_unlock(dl);
1818 }
1819 zap_cursor_fini(&zc);
1820
1821 return (err == ENOENT ? 0 : err);
1822 }
1823
1824 /*
1825 * Set the file attributes to the values contained in the
1826 * vattr structure.
1827 *
1828 * IN: zp - znode of file to be modified.
1829 * vap - new attribute values.
1830 * If ATTR_XVATTR set, then optional attrs are being set
1831 * flags - ATTR_UTIME set if non-default time values provided.
1832 * - ATTR_NOACLCHECK (CIFS context only).
1833 * cr - credentials of caller.
1834 * mnt_ns - user namespace of the mount
1835 *
1836 * RETURN: 0 if success
1837 * error code if failure
1838 *
1839 * Timestamps:
1840 * ip - ctime updated, mtime updated if size changed.
1841 */
1842 int
1843 zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr, zidmap_t *mnt_ns)
1844 {
1845 struct inode *ip;
1846 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1847 objset_t *os = zfsvfs->z_os;
1848 zilog_t *zilog;
1849 dmu_tx_t *tx;
1850 vattr_t oldva;
1851 xvattr_t *tmpxvattr;
1852 uint_t mask = vap->va_mask;
1853 uint_t saved_mask = 0;
1854 int trim_mask = 0;
1855 uint64_t new_mode;
1856 uint64_t new_kuid = 0, new_kgid = 0, new_uid, new_gid;
1857 uint64_t xattr_obj;
1858 uint64_t mtime[2], ctime[2], atime[2];
1859 uint64_t projid = ZFS_INVALID_PROJID;
1860 znode_t *attrzp;
1861 int need_policy = FALSE;
1862 int err, err2 = 0;
1863 zfs_fuid_info_t *fuidp = NULL;
1864 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
1865 xoptattr_t *xoap;
1866 zfs_acl_t *aclp;
1867 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1868 boolean_t fuid_dirtied = B_FALSE;
1869 boolean_t handle_eadir = B_FALSE;
1870 sa_bulk_attr_t *bulk, *xattr_bulk;
1871 int count = 0, xattr_count = 0, bulks = 8;
1872
1873 if (mask == 0)
1874 return (0);
1875
1876 if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1877 return (err);
1878 ip = ZTOI(zp);
1879
1880 /*
1881 * If this is a xvattr_t, then get a pointer to the structure of
1882 * optional attributes. If this is NULL, then we have a vattr_t.
1883 */
1884 xoap = xva_getxoptattr(xvap);
1885 if (xoap != NULL && (mask & ATTR_XVATTR)) {
1886 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
1887 if (!dmu_objset_projectquota_enabled(os) ||
1888 (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
1889 zfs_exit(zfsvfs, FTAG);
1890 return (SET_ERROR(ENOTSUP));
1891 }
1892
1893 projid = xoap->xoa_projid;
1894 if (unlikely(projid == ZFS_INVALID_PROJID)) {
1895 zfs_exit(zfsvfs, FTAG);
1896 return (SET_ERROR(EINVAL));
1897 }
1898
1899 if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
1900 projid = ZFS_INVALID_PROJID;
1901 else
1902 need_policy = TRUE;
1903 }
1904
1905 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
1906 (xoap->xoa_projinherit !=
1907 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
1908 (!dmu_objset_projectquota_enabled(os) ||
1909 (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
1910 zfs_exit(zfsvfs, FTAG);
1911 return (SET_ERROR(ENOTSUP));
1912 }
1913 }
1914
1915 zilog = zfsvfs->z_log;
1916
1917 /*
1918 * Make sure that if we have ephemeral uid/gid or xvattr specified
1919 * that file system is at proper version level
1920 */
1921
1922 if (zfsvfs->z_use_fuids == B_FALSE &&
1923 (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
1924 ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
1925 (mask & ATTR_XVATTR))) {
1926 zfs_exit(zfsvfs, FTAG);
1927 return (SET_ERROR(EINVAL));
1928 }
1929
1930 if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
1931 zfs_exit(zfsvfs, FTAG);
1932 return (SET_ERROR(EISDIR));
1933 }
1934
1935 if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
1936 zfs_exit(zfsvfs, FTAG);
1937 return (SET_ERROR(EINVAL));
1938 }
1939
1940 tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
1941 xva_init(tmpxvattr);
1942
1943 bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1944 xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1945
1946 /*
1947 * Immutable files can only alter immutable bit and atime
1948 */
1949 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
1950 ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
1951 ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
1952 err = SET_ERROR(EPERM);
1953 goto out3;
1954 }
1955
1956 if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
1957 err = SET_ERROR(EPERM);
1958 goto out3;
1959 }
1960
1961 /*
1962 * Verify timestamps doesn't overflow 32 bits.
1963 * ZFS can handle large timestamps, but 32bit syscalls can't
1964 * handle times greater than 2039. This check should be removed
1965 * once large timestamps are fully supported.
1966 */
1967 if (mask & (ATTR_ATIME | ATTR_MTIME)) {
1968 if (((mask & ATTR_ATIME) &&
1969 TIMESPEC_OVERFLOW(&vap->va_atime)) ||
1970 ((mask & ATTR_MTIME) &&
1971 TIMESPEC_OVERFLOW(&vap->va_mtime))) {
1972 err = SET_ERROR(EOVERFLOW);
1973 goto out3;
1974 }
1975 }
1976
1977 top:
1978 attrzp = NULL;
1979 aclp = NULL;
1980
1981 /* Can this be moved to before the top label? */
1982 if (zfs_is_readonly(zfsvfs)) {
1983 err = SET_ERROR(EROFS);
1984 goto out3;
1985 }
1986
1987 /*
1988 * First validate permissions
1989 */
1990
1991 if (mask & ATTR_SIZE) {
1992 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr,
1993 mnt_ns);
1994 if (err)
1995 goto out3;
1996
1997 /*
1998 * XXX - Note, we are not providing any open
1999 * mode flags here (like FNDELAY), so we may
2000 * block if there are locks present... this
2001 * should be addressed in openat().
2002 */
2003 /* XXX - would it be OK to generate a log record here? */
2004 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2005 if (err)
2006 goto out3;
2007 }
2008
2009 if (mask & (ATTR_ATIME|ATTR_MTIME) ||
2010 ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2011 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2012 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2013 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2014 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2015 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2016 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2017 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2018 skipaclchk, cr, mnt_ns);
2019 }
2020
2021 if (mask & (ATTR_UID|ATTR_GID)) {
2022 int idmask = (mask & (ATTR_UID|ATTR_GID));
2023 int take_owner;
2024 int take_group;
2025 uid_t uid;
2026 gid_t gid;
2027
2028 /*
2029 * NOTE: even if a new mode is being set,
2030 * we may clear S_ISUID/S_ISGID bits.
2031 */
2032
2033 if (!(mask & ATTR_MODE))
2034 vap->va_mode = zp->z_mode;
2035
2036 /*
2037 * Take ownership or chgrp to group we are a member of
2038 */
2039
2040 uid = zfs_uid_to_vfsuid(mnt_ns, zfs_i_user_ns(ip),
2041 vap->va_uid);
2042 gid = zfs_gid_to_vfsgid(mnt_ns, zfs_i_user_ns(ip),
2043 vap->va_gid);
2044 take_owner = (mask & ATTR_UID) && (uid == crgetuid(cr));
2045 take_group = (mask & ATTR_GID) &&
2046 zfs_groupmember(zfsvfs, gid, cr);
2047
2048 /*
2049 * If both ATTR_UID and ATTR_GID are set then take_owner and
2050 * take_group must both be set in order to allow taking
2051 * ownership.
2052 *
2053 * Otherwise, send the check through secpolicy_vnode_setattr()
2054 *
2055 */
2056
2057 if (((idmask == (ATTR_UID|ATTR_GID)) &&
2058 take_owner && take_group) ||
2059 ((idmask == ATTR_UID) && take_owner) ||
2060 ((idmask == ATTR_GID) && take_group)) {
2061 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2062 skipaclchk, cr, mnt_ns) == 0) {
2063 /*
2064 * Remove setuid/setgid for non-privileged users
2065 */
2066 (void) secpolicy_setid_clear(vap, cr);
2067 trim_mask = (mask & (ATTR_UID|ATTR_GID));
2068 } else {
2069 need_policy = TRUE;
2070 }
2071 } else {
2072 need_policy = TRUE;
2073 }
2074 }
2075
2076 mutex_enter(&zp->z_lock);
2077 oldva.va_mode = zp->z_mode;
2078 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2079 if (mask & ATTR_XVATTR) {
2080 /*
2081 * Update xvattr mask to include only those attributes
2082 * that are actually changing.
2083 *
2084 * the bits will be restored prior to actually setting
2085 * the attributes so the caller thinks they were set.
2086 */
2087 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2088 if (xoap->xoa_appendonly !=
2089 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2090 need_policy = TRUE;
2091 } else {
2092 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2093 XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2094 }
2095 }
2096
2097 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2098 if (xoap->xoa_projinherit !=
2099 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
2100 need_policy = TRUE;
2101 } else {
2102 XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
2103 XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
2104 }
2105 }
2106
2107 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2108 if (xoap->xoa_nounlink !=
2109 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2110 need_policy = TRUE;
2111 } else {
2112 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2113 XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2114 }
2115 }
2116
2117 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2118 if (xoap->xoa_immutable !=
2119 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2120 need_policy = TRUE;
2121 } else {
2122 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2123 XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2124 }
2125 }
2126
2127 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2128 if (xoap->xoa_nodump !=
2129 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2130 need_policy = TRUE;
2131 } else {
2132 XVA_CLR_REQ(xvap, XAT_NODUMP);
2133 XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2134 }
2135 }
2136
2137 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2138 if (xoap->xoa_av_modified !=
2139 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2140 need_policy = TRUE;
2141 } else {
2142 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2143 XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2144 }
2145 }
2146
2147 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2148 if ((!S_ISREG(ip->i_mode) &&
2149 xoap->xoa_av_quarantined) ||
2150 xoap->xoa_av_quarantined !=
2151 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2152 need_policy = TRUE;
2153 } else {
2154 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2155 XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2156 }
2157 }
2158
2159 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2160 mutex_exit(&zp->z_lock);
2161 err = SET_ERROR(EPERM);
2162 goto out3;
2163 }
2164
2165 if (need_policy == FALSE &&
2166 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2167 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2168 need_policy = TRUE;
2169 }
2170 }
2171
2172 mutex_exit(&zp->z_lock);
2173
2174 if (mask & ATTR_MODE) {
2175 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr,
2176 mnt_ns) == 0) {
2177 err = secpolicy_setid_setsticky_clear(ip, vap,
2178 &oldva, cr, mnt_ns, zfs_i_user_ns(ip));
2179 if (err)
2180 goto out3;
2181 trim_mask |= ATTR_MODE;
2182 } else {
2183 need_policy = TRUE;
2184 }
2185 }
2186
2187 if (need_policy) {
2188 /*
2189 * If trim_mask is set then take ownership
2190 * has been granted or write_acl is present and user
2191 * has the ability to modify mode. In that case remove
2192 * UID|GID and or MODE from mask so that
2193 * secpolicy_vnode_setattr() doesn't revoke it.
2194 */
2195
2196 if (trim_mask) {
2197 saved_mask = vap->va_mask;
2198 vap->va_mask &= ~trim_mask;
2199 }
2200 err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2201 zfs_zaccess_unix, zp);
2202 if (err)
2203 goto out3;
2204
2205 if (trim_mask)
2206 vap->va_mask |= saved_mask;
2207 }
2208
2209 /*
2210 * secpolicy_vnode_setattr, or take ownership may have
2211 * changed va_mask
2212 */
2213 mask = vap->va_mask;
2214
2215 if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
2216 handle_eadir = B_TRUE;
2217 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2218 &xattr_obj, sizeof (xattr_obj));
2219
2220 if (err == 0 && xattr_obj) {
2221 err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2222 if (err)
2223 goto out2;
2224 }
2225 if (mask & ATTR_UID) {
2226 new_kuid = zfs_fuid_create(zfsvfs,
2227 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2228 if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
2229 zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
2230 new_kuid)) {
2231 if (attrzp)
2232 zrele(attrzp);
2233 err = SET_ERROR(EDQUOT);
2234 goto out2;
2235 }
2236 }
2237
2238 if (mask & ATTR_GID) {
2239 new_kgid = zfs_fuid_create(zfsvfs,
2240 (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
2241 if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
2242 zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
2243 new_kgid)) {
2244 if (attrzp)
2245 zrele(attrzp);
2246 err = SET_ERROR(EDQUOT);
2247 goto out2;
2248 }
2249 }
2250
2251 if (projid != ZFS_INVALID_PROJID &&
2252 zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
2253 if (attrzp)
2254 zrele(attrzp);
2255 err = EDQUOT;
2256 goto out2;
2257 }
2258 }
2259 tx = dmu_tx_create(os);
2260
2261 if (mask & ATTR_MODE) {
2262 uint64_t pmode = zp->z_mode;
2263 uint64_t acl_obj;
2264 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2265
2266 if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_RESTRICTED &&
2267 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2268 err = EPERM;
2269 goto out;
2270 }
2271
2272 if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)))
2273 goto out;
2274
2275 mutex_enter(&zp->z_lock);
2276 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2277 /*
2278 * Are we upgrading ACL from old V0 format
2279 * to V1 format?
2280 */
2281 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2282 zfs_znode_acl_version(zp) ==
2283 ZFS_ACL_VERSION_INITIAL) {
2284 dmu_tx_hold_free(tx, acl_obj, 0,
2285 DMU_OBJECT_END);
2286 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2287 0, aclp->z_acl_bytes);
2288 } else {
2289 dmu_tx_hold_write(tx, acl_obj, 0,
2290 aclp->z_acl_bytes);
2291 }
2292 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2293 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2294 0, aclp->z_acl_bytes);
2295 }
2296 mutex_exit(&zp->z_lock);
2297 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2298 } else {
2299 if (((mask & ATTR_XVATTR) &&
2300 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
2301 (projid != ZFS_INVALID_PROJID &&
2302 !(zp->z_pflags & ZFS_PROJID)))
2303 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2304 else
2305 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2306 }
2307
2308 if (attrzp) {
2309 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2310 }
2311
2312 fuid_dirtied = zfsvfs->z_fuid_dirty;
2313 if (fuid_dirtied)
2314 zfs_fuid_txhold(zfsvfs, tx);
2315
2316 zfs_sa_upgrade_txholds(tx, zp);
2317
2318 err = dmu_tx_assign(tx, TXG_WAIT);
2319 if (err)
2320 goto out;
2321
2322 count = 0;
2323 /*
2324 * Set each attribute requested.
2325 * We group settings according to the locks they need to acquire.
2326 *
2327 * Note: you cannot set ctime directly, although it will be
2328 * updated as a side-effect of calling this function.
2329 */
2330
2331 if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
2332 /*
2333 * For the existed object that is upgraded from old system,
2334 * its on-disk layout has no slot for the project ID attribute.
2335 * But quota accounting logic needs to access related slots by
2336 * offset directly. So we need to adjust old objects' layout
2337 * to make the project ID to some unified and fixed offset.
2338 */
2339 if (attrzp)
2340 err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
2341 if (err == 0)
2342 err = sa_add_projid(zp->z_sa_hdl, tx, projid);
2343
2344 if (unlikely(err == EEXIST))
2345 err = 0;
2346 else if (err != 0)
2347 goto out;
2348 else
2349 projid = ZFS_INVALID_PROJID;
2350 }
2351
2352 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2353 mutex_enter(&zp->z_acl_lock);
2354 mutex_enter(&zp->z_lock);
2355
2356 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
2357 &zp->z_pflags, sizeof (zp->z_pflags));
2358
2359 if (attrzp) {
2360 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2361 mutex_enter(&attrzp->z_acl_lock);
2362 mutex_enter(&attrzp->z_lock);
2363 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2364 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
2365 sizeof (attrzp->z_pflags));
2366 if (projid != ZFS_INVALID_PROJID) {
2367 attrzp->z_projid = projid;
2368 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2369 SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
2370 sizeof (attrzp->z_projid));
2371 }
2372 }
2373
2374 if (mask & (ATTR_UID|ATTR_GID)) {
2375
2376 if (mask & ATTR_UID) {
2377 ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
2378 new_uid = zfs_uid_read(ZTOI(zp));
2379 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2380 &new_uid, sizeof (new_uid));
2381 if (attrzp) {
2382 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2383 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
2384 sizeof (new_uid));
2385 ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
2386 }
2387 }
2388
2389 if (mask & ATTR_GID) {
2390 ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
2391 new_gid = zfs_gid_read(ZTOI(zp));
2392 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
2393 NULL, &new_gid, sizeof (new_gid));
2394 if (attrzp) {
2395 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2396 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
2397 sizeof (new_gid));
2398 ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
2399 }
2400 }
2401 if (!(mask & ATTR_MODE)) {
2402 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
2403 NULL, &new_mode, sizeof (new_mode));
2404 new_mode = zp->z_mode;
2405 }
2406 err = zfs_acl_chown_setattr(zp);
2407 ASSERT(err == 0);
2408 if (attrzp) {
2409 err = zfs_acl_chown_setattr(attrzp);
2410 ASSERT(err == 0);
2411 }
2412 }
2413
2414 if (mask & ATTR_MODE) {
2415 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
2416 &new_mode, sizeof (new_mode));
2417 zp->z_mode = ZTOI(zp)->i_mode = new_mode;
2418 ASSERT3P(aclp, !=, NULL);
2419 err = zfs_aclset_common(zp, aclp, cr, tx);
2420 ASSERT0(err);
2421 if (zp->z_acl_cached)
2422 zfs_acl_free(zp->z_acl_cached);
2423 zp->z_acl_cached = aclp;
2424 aclp = NULL;
2425 }
2426
2427 if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
2428 zp->z_atime_dirty = B_FALSE;
2429 ZFS_TIME_ENCODE(&ip->i_atime, atime);
2430 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
2431 &atime, sizeof (atime));
2432 }
2433
2434 if (mask & (ATTR_MTIME | ATTR_SIZE)) {
2435 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
2436 ZTOI(zp)->i_mtime = zpl_inode_timestamp_truncate(
2437 vap->va_mtime, ZTOI(zp));
2438
2439 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
2440 mtime, sizeof (mtime));
2441 }
2442
2443 if (mask & (ATTR_CTIME | ATTR_SIZE)) {
2444 ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
2445 ZTOI(zp)->i_ctime = zpl_inode_timestamp_truncate(vap->va_ctime,
2446 ZTOI(zp));
2447 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
2448 ctime, sizeof (ctime));
2449 }
2450
2451 if (projid != ZFS_INVALID_PROJID) {
2452 zp->z_projid = projid;
2453 SA_ADD_BULK_ATTR(bulk, count,
2454 SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
2455 sizeof (zp->z_projid));
2456 }
2457
2458 if (attrzp && mask) {
2459 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2460 SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
2461 sizeof (ctime));
2462 }
2463
2464 /*
2465 * Do this after setting timestamps to prevent timestamp
2466 * update from toggling bit
2467 */
2468
2469 if (xoap && (mask & ATTR_XVATTR)) {
2470
2471 /*
2472 * restore trimmed off masks
2473 * so that return masks can be set for caller.
2474 */
2475
2476 if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
2477 XVA_SET_REQ(xvap, XAT_APPENDONLY);
2478 }
2479 if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
2480 XVA_SET_REQ(xvap, XAT_NOUNLINK);
2481 }
2482 if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
2483 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2484 }
2485 if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
2486 XVA_SET_REQ(xvap, XAT_NODUMP);
2487 }
2488 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
2489 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2490 }
2491 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
2492 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2493 }
2494 if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
2495 XVA_SET_REQ(xvap, XAT_PROJINHERIT);
2496 }
2497
2498 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2499 ASSERT(S_ISREG(ip->i_mode));
2500
2501 zfs_xvattr_set(zp, xvap, tx);
2502 }
2503
2504 if (fuid_dirtied)
2505 zfs_fuid_sync(zfsvfs, tx);
2506
2507 if (mask != 0)
2508 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2509
2510 mutex_exit(&zp->z_lock);
2511 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2512 mutex_exit(&zp->z_acl_lock);
2513
2514 if (attrzp) {
2515 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2516 mutex_exit(&attrzp->z_acl_lock);
2517 mutex_exit(&attrzp->z_lock);
2518 }
2519 out:
2520 if (err == 0 && xattr_count > 0) {
2521 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
2522 xattr_count, tx);
2523 ASSERT(err2 == 0);
2524 }
2525
2526 if (aclp)
2527 zfs_acl_free(aclp);
2528
2529 if (fuidp) {
2530 zfs_fuid_info_free(fuidp);
2531 fuidp = NULL;
2532 }
2533
2534 if (err) {
2535 dmu_tx_abort(tx);
2536 if (attrzp)
2537 zrele(attrzp);
2538 if (err == ERESTART)
2539 goto top;
2540 } else {
2541 if (count > 0)
2542 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2543 dmu_tx_commit(tx);
2544 if (attrzp) {
2545 if (err2 == 0 && handle_eadir)
2546 err = zfs_setattr_dir(attrzp);
2547 zrele(attrzp);
2548 }
2549 zfs_znode_update_vfs(zp);
2550 }
2551
2552 out2:
2553 if (os->os_sync == ZFS_SYNC_ALWAYS)
2554 zil_commit(zilog, 0);
2555
2556 out3:
2557 kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
2558 kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
2559 kmem_free(tmpxvattr, sizeof (xvattr_t));
2560 zfs_exit(zfsvfs, FTAG);
2561 return (err);
2562 }
2563
2564 typedef struct zfs_zlock {
2565 krwlock_t *zl_rwlock; /* lock we acquired */
2566 znode_t *zl_znode; /* znode we held */
2567 struct zfs_zlock *zl_next; /* next in list */
2568 } zfs_zlock_t;
2569
2570 /*
2571 * Drop locks and release vnodes that were held by zfs_rename_lock().
2572 */
2573 static void
2574 zfs_rename_unlock(zfs_zlock_t **zlpp)
2575 {
2576 zfs_zlock_t *zl;
2577
2578 while ((zl = *zlpp) != NULL) {
2579 if (zl->zl_znode != NULL)
2580 zfs_zrele_async(zl->zl_znode);
2581 rw_exit(zl->zl_rwlock);
2582 *zlpp = zl->zl_next;
2583 kmem_free(zl, sizeof (*zl));
2584 }
2585 }
2586
2587 /*
2588 * Search back through the directory tree, using the ".." entries.
2589 * Lock each directory in the chain to prevent concurrent renames.
2590 * Fail any attempt to move a directory into one of its own descendants.
2591 * XXX - z_parent_lock can overlap with map or grow locks
2592 */
2593 static int
2594 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2595 {
2596 zfs_zlock_t *zl;
2597 znode_t *zp = tdzp;
2598 uint64_t rootid = ZTOZSB(zp)->z_root;
2599 uint64_t oidp = zp->z_id;
2600 krwlock_t *rwlp = &szp->z_parent_lock;
2601 krw_t rw = RW_WRITER;
2602
2603 /*
2604 * First pass write-locks szp and compares to zp->z_id.
2605 * Later passes read-lock zp and compare to zp->z_parent.
2606 */
2607 do {
2608 if (!rw_tryenter(rwlp, rw)) {
2609 /*
2610 * Another thread is renaming in this path.
2611 * Note that if we are a WRITER, we don't have any
2612 * parent_locks held yet.
2613 */
2614 if (rw == RW_READER && zp->z_id > szp->z_id) {
2615 /*
2616 * Drop our locks and restart
2617 */
2618 zfs_rename_unlock(&zl);
2619 *zlpp = NULL;
2620 zp = tdzp;
2621 oidp = zp->z_id;
2622 rwlp = &szp->z_parent_lock;
2623 rw = RW_WRITER;
2624 continue;
2625 } else {
2626 /*
2627 * Wait for other thread to drop its locks
2628 */
2629 rw_enter(rwlp, rw);
2630 }
2631 }
2632
2633 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2634 zl->zl_rwlock = rwlp;
2635 zl->zl_znode = NULL;
2636 zl->zl_next = *zlpp;
2637 *zlpp = zl;
2638
2639 if (oidp == szp->z_id) /* We're a descendant of szp */
2640 return (SET_ERROR(EINVAL));
2641
2642 if (oidp == rootid) /* We've hit the top */
2643 return (0);
2644
2645 if (rw == RW_READER) { /* i.e. not the first pass */
2646 int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
2647 if (error)
2648 return (error);
2649 zl->zl_znode = zp;
2650 }
2651 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
2652 &oidp, sizeof (oidp));
2653 rwlp = &zp->z_parent_lock;
2654 rw = RW_READER;
2655
2656 } while (zp->z_id != sdzp->z_id);
2657
2658 return (0);
2659 }
2660
2661 /*
2662 * Move an entry from the provided source directory to the target
2663 * directory. Change the entry name as indicated.
2664 *
2665 * IN: sdzp - Source directory containing the "old entry".
2666 * snm - Old entry name.
2667 * tdzp - Target directory to contain the "new entry".
2668 * tnm - New entry name.
2669 * cr - credentials of caller.
2670 * flags - case flags
2671 * rflags - RENAME_* flags
2672 * wa_vap - attributes for RENAME_WHITEOUT (must be a char 0:0).
2673 * mnt_ns - user namespace of the mount
2674 *
2675 * RETURN: 0 on success, error code on failure.
2676 *
2677 * Timestamps:
2678 * sdzp,tdzp - ctime|mtime updated
2679 */
2680 int
2681 zfs_rename(znode_t *sdzp, char *snm, znode_t *tdzp, char *tnm,
2682 cred_t *cr, int flags, uint64_t rflags, vattr_t *wo_vap, zidmap_t *mnt_ns)
2683 {
2684 znode_t *szp, *tzp;
2685 zfsvfs_t *zfsvfs = ZTOZSB(sdzp);
2686 zilog_t *zilog;
2687 zfs_dirlock_t *sdl, *tdl;
2688 dmu_tx_t *tx;
2689 zfs_zlock_t *zl;
2690 int cmp, serr, terr;
2691 int error = 0;
2692 int zflg = 0;
2693 boolean_t waited = B_FALSE;
2694 /* Needed for whiteout inode creation. */
2695 boolean_t fuid_dirtied;
2696 zfs_acl_ids_t acl_ids;
2697 boolean_t have_acl = B_FALSE;
2698 znode_t *wzp = NULL;
2699
2700
2701 if (snm == NULL || tnm == NULL)
2702 return (SET_ERROR(EINVAL));
2703
2704 if (rflags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2705 return (SET_ERROR(EINVAL));
2706
2707 /* Already checked by Linux VFS, but just to make sure. */
2708 if (rflags & RENAME_EXCHANGE &&
2709 (rflags & (RENAME_NOREPLACE | RENAME_WHITEOUT)))
2710 return (SET_ERROR(EINVAL));
2711
2712 /*
2713 * Make sure we only get wo_vap iff. RENAME_WHITEOUT and that it's the
2714 * right kind of vattr_t for the whiteout file. These are set
2715 * internally by ZFS so should never be incorrect.
2716 */
2717 VERIFY_EQUIV(rflags & RENAME_WHITEOUT, wo_vap != NULL);
2718 VERIFY_IMPLY(wo_vap, wo_vap->va_mode == S_IFCHR);
2719 VERIFY_IMPLY(wo_vap, wo_vap->va_rdev == makedevice(0, 0));
2720
2721 if ((error = zfs_enter_verify_zp(zfsvfs, sdzp, FTAG)) != 0)
2722 return (error);
2723 zilog = zfsvfs->z_log;
2724
2725 if ((error = zfs_verify_zp(tdzp)) != 0) {
2726 zfs_exit(zfsvfs, FTAG);
2727 return (error);
2728 }
2729
2730 /*
2731 * We check i_sb because snapshots and the ctldir must have different
2732 * super blocks.
2733 */
2734 if (ZTOI(tdzp)->i_sb != ZTOI(sdzp)->i_sb ||
2735 zfsctl_is_node(ZTOI(tdzp))) {
2736 zfs_exit(zfsvfs, FTAG);
2737 return (SET_ERROR(EXDEV));
2738 }
2739
2740 if (zfsvfs->z_utf8 && u8_validate(tnm,
2741 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2742 zfs_exit(zfsvfs, FTAG);
2743 return (SET_ERROR(EILSEQ));
2744 }
2745
2746 if (flags & FIGNORECASE)
2747 zflg |= ZCILOOK;
2748
2749 top:
2750 szp = NULL;
2751 tzp = NULL;
2752 zl = NULL;
2753
2754 /*
2755 * This is to prevent the creation of links into attribute space
2756 * by renaming a linked file into/outof an attribute directory.
2757 * See the comment in zfs_link() for why this is considered bad.
2758 */
2759 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
2760 zfs_exit(zfsvfs, FTAG);
2761 return (SET_ERROR(EINVAL));
2762 }
2763
2764 /*
2765 * Lock source and target directory entries. To prevent deadlock,
2766 * a lock ordering must be defined. We lock the directory with
2767 * the smallest object id first, or if it's a tie, the one with
2768 * the lexically first name.
2769 */
2770 if (sdzp->z_id < tdzp->z_id) {
2771 cmp = -1;
2772 } else if (sdzp->z_id > tdzp->z_id) {
2773 cmp = 1;
2774 } else {
2775 /*
2776 * First compare the two name arguments without
2777 * considering any case folding.
2778 */
2779 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
2780
2781 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
2782 ASSERT(error == 0 || !zfsvfs->z_utf8);
2783 if (cmp == 0) {
2784 /*
2785 * POSIX: "If the old argument and the new argument
2786 * both refer to links to the same existing file,
2787 * the rename() function shall return successfully
2788 * and perform no other action."
2789 */
2790 zfs_exit(zfsvfs, FTAG);
2791 return (0);
2792 }
2793 /*
2794 * If the file system is case-folding, then we may
2795 * have some more checking to do. A case-folding file
2796 * system is either supporting mixed case sensitivity
2797 * access or is completely case-insensitive. Note
2798 * that the file system is always case preserving.
2799 *
2800 * In mixed sensitivity mode case sensitive behavior
2801 * is the default. FIGNORECASE must be used to
2802 * explicitly request case insensitive behavior.
2803 *
2804 * If the source and target names provided differ only
2805 * by case (e.g., a request to rename 'tim' to 'Tim'),
2806 * we will treat this as a special case in the
2807 * case-insensitive mode: as long as the source name
2808 * is an exact match, we will allow this to proceed as
2809 * a name-change request.
2810 */
2811 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
2812 (zfsvfs->z_case == ZFS_CASE_MIXED &&
2813 flags & FIGNORECASE)) &&
2814 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
2815 &error) == 0) {
2816 /*
2817 * case preserving rename request, require exact
2818 * name matches
2819 */
2820 zflg |= ZCIEXACT;
2821 zflg &= ~ZCILOOK;
2822 }
2823 }
2824
2825 /*
2826 * If the source and destination directories are the same, we should
2827 * grab the z_name_lock of that directory only once.
2828 */
2829 if (sdzp == tdzp) {
2830 zflg |= ZHAVELOCK;
2831 rw_enter(&sdzp->z_name_lock, RW_READER);
2832 }
2833
2834 if (cmp < 0) {
2835 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
2836 ZEXISTS | zflg, NULL, NULL);
2837 terr = zfs_dirent_lock(&tdl,
2838 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
2839 } else {
2840 terr = zfs_dirent_lock(&tdl,
2841 tdzp, tnm, &tzp, zflg, NULL, NULL);
2842 serr = zfs_dirent_lock(&sdl,
2843 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
2844 NULL, NULL);
2845 }
2846
2847 if (serr) {
2848 /*
2849 * Source entry invalid or not there.
2850 */
2851 if (!terr) {
2852 zfs_dirent_unlock(tdl);
2853 if (tzp)
2854 zrele(tzp);
2855 }
2856
2857 if (sdzp == tdzp)
2858 rw_exit(&sdzp->z_name_lock);
2859
2860 if (strcmp(snm, "..") == 0)
2861 serr = EINVAL;
2862 zfs_exit(zfsvfs, FTAG);
2863 return (serr);
2864 }
2865 if (terr) {
2866 zfs_dirent_unlock(sdl);
2867 zrele(szp);
2868
2869 if (sdzp == tdzp)
2870 rw_exit(&sdzp->z_name_lock);
2871
2872 if (strcmp(tnm, "..") == 0)
2873 terr = EINVAL;
2874 zfs_exit(zfsvfs, FTAG);
2875 return (terr);
2876 }
2877
2878 /*
2879 * If we are using project inheritance, means if the directory has
2880 * ZFS_PROJINHERIT set, then its descendant directories will inherit
2881 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
2882 * such case, we only allow renames into our tree when the project
2883 * IDs are the same.
2884 */
2885 if (tdzp->z_pflags & ZFS_PROJINHERIT &&
2886 tdzp->z_projid != szp->z_projid) {
2887 error = SET_ERROR(EXDEV);
2888 goto out;
2889 }
2890
2891 /*
2892 * Must have write access at the source to remove the old entry
2893 * and write access at the target to create the new entry.
2894 * Note that if target and source are the same, this can be
2895 * done in a single check.
2896 */
2897 if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr, mnt_ns)))
2898 goto out;
2899
2900 if (S_ISDIR(ZTOI(szp)->i_mode)) {
2901 /*
2902 * Check to make sure rename is valid.
2903 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
2904 */
2905 if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
2906 goto out;
2907 }
2908
2909 /*
2910 * Does target exist?
2911 */
2912 if (tzp) {
2913 if (rflags & RENAME_NOREPLACE) {
2914 error = SET_ERROR(EEXIST);
2915 goto out;
2916 }
2917 /*
2918 * Source and target must be the same type (unless exchanging).
2919 */
2920 if (!(rflags & RENAME_EXCHANGE)) {
2921 boolean_t s_is_dir = S_ISDIR(ZTOI(szp)->i_mode) != 0;
2922 boolean_t t_is_dir = S_ISDIR(ZTOI(tzp)->i_mode) != 0;
2923
2924 if (s_is_dir != t_is_dir) {
2925 error = SET_ERROR(s_is_dir ? ENOTDIR : EISDIR);
2926 goto out;
2927 }
2928 }
2929 /*
2930 * POSIX dictates that when the source and target
2931 * entries refer to the same file object, rename
2932 * must do nothing and exit without error.
2933 */
2934 if (szp->z_id == tzp->z_id) {
2935 error = 0;
2936 goto out;
2937 }
2938 } else if (rflags & RENAME_EXCHANGE) {
2939 /* Target must exist for RENAME_EXCHANGE. */
2940 error = SET_ERROR(ENOENT);
2941 goto out;
2942 }
2943
2944 /* Set up inode creation for RENAME_WHITEOUT. */
2945 if (rflags & RENAME_WHITEOUT) {
2946 /*
2947 * Whiteout files are not regular files or directories, so to
2948 * match zfs_create() we do not inherit the project id.
2949 */
2950 uint64_t wo_projid = ZFS_DEFAULT_PROJID;
2951
2952 error = zfs_zaccess(sdzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns);
2953 if (error)
2954 goto out;
2955
2956 if (!have_acl) {
2957 error = zfs_acl_ids_create(sdzp, 0, wo_vap, cr, NULL,
2958 &acl_ids, mnt_ns);
2959 if (error)
2960 goto out;
2961 have_acl = B_TRUE;
2962 }
2963
2964 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, wo_projid)) {
2965 error = SET_ERROR(EDQUOT);
2966 goto out;
2967 }
2968 }
2969
2970 tx = dmu_tx_create(zfsvfs->z_os);
2971 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
2972 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
2973 dmu_tx_hold_zap(tx, sdzp->z_id,
2974 (rflags & RENAME_EXCHANGE) ? TRUE : FALSE, snm);
2975 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
2976 if (sdzp != tdzp) {
2977 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
2978 zfs_sa_upgrade_txholds(tx, tdzp);
2979 }
2980 if (tzp) {
2981 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
2982 zfs_sa_upgrade_txholds(tx, tzp);
2983 }
2984 if (rflags & RENAME_WHITEOUT) {
2985 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2986 ZFS_SA_BASE_ATTR_SIZE);
2987
2988 dmu_tx_hold_zap(tx, sdzp->z_id, TRUE, snm);
2989 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
2990 if (!zfsvfs->z_use_sa &&
2991 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2992 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2993 0, acl_ids.z_aclp->z_acl_bytes);
2994 }
2995 }
2996 fuid_dirtied = zfsvfs->z_fuid_dirty;
2997 if (fuid_dirtied)
2998 zfs_fuid_txhold(zfsvfs, tx);
2999 zfs_sa_upgrade_txholds(tx, szp);
3000 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3001 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3002 if (error) {
3003 if (zl != NULL)
3004 zfs_rename_unlock(&zl);
3005 zfs_dirent_unlock(sdl);
3006 zfs_dirent_unlock(tdl);
3007
3008 if (sdzp == tdzp)
3009 rw_exit(&sdzp->z_name_lock);
3010
3011 if (error == ERESTART) {
3012 waited = B_TRUE;
3013 dmu_tx_wait(tx);
3014 dmu_tx_abort(tx);
3015 zrele(szp);
3016 if (tzp)
3017 zrele(tzp);
3018 goto top;
3019 }
3020 dmu_tx_abort(tx);
3021 zrele(szp);
3022 if (tzp)
3023 zrele(tzp);
3024 zfs_exit(zfsvfs, FTAG);
3025 return (error);
3026 }
3027
3028 /*
3029 * Unlink the source.
3030 */
3031 szp->z_pflags |= ZFS_AV_MODIFIED;
3032 if (tdzp->z_pflags & ZFS_PROJINHERIT)
3033 szp->z_pflags |= ZFS_PROJINHERIT;
3034
3035 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3036 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3037 VERIFY0(error);
3038
3039 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3040 if (error)
3041 goto commit;
3042
3043 /*
3044 * Unlink the target.
3045 */
3046 if (tzp) {
3047 int tzflg = zflg;
3048
3049 if (rflags & RENAME_EXCHANGE) {
3050 /* This inode will be re-linked soon. */
3051 tzflg |= ZRENAMING;
3052
3053 tzp->z_pflags |= ZFS_AV_MODIFIED;
3054 if (sdzp->z_pflags & ZFS_PROJINHERIT)
3055 tzp->z_pflags |= ZFS_PROJINHERIT;
3056
3057 error = sa_update(tzp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3058 (void *)&tzp->z_pflags, sizeof (uint64_t), tx);
3059 ASSERT0(error);
3060 }
3061 error = zfs_link_destroy(tdl, tzp, tx, tzflg, NULL);
3062 if (error)
3063 goto commit_link_szp;
3064 }
3065
3066 /*
3067 * Create the new target links:
3068 * * We always link the target.
3069 * * RENAME_EXCHANGE: Link the old target to the source.
3070 * * RENAME_WHITEOUT: Create a whiteout inode in-place of the source.
3071 */
3072 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3073 if (error) {
3074 /*
3075 * If we have removed the existing target, a subsequent call to
3076 * zfs_link_create() to add back the same entry, but with a new
3077 * dnode (szp), should not fail.
3078 */
3079 ASSERT3P(tzp, ==, NULL);
3080 goto commit_link_tzp;
3081 }
3082
3083 switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3084 case RENAME_EXCHANGE:
3085 error = zfs_link_create(sdl, tzp, tx, ZRENAMING);
3086 /*
3087 * The same argument as zfs_link_create() failing for
3088 * szp applies here, since the source directory must
3089 * have had an entry we are replacing.
3090 */
3091 ASSERT0(error);
3092 if (error)
3093 goto commit_unlink_td_szp;
3094 break;
3095 case RENAME_WHITEOUT:
3096 zfs_mknode(sdzp, wo_vap, tx, cr, 0, &wzp, &acl_ids);
3097 error = zfs_link_create(sdl, wzp, tx, ZNEW);
3098 if (error) {
3099 zfs_znode_delete(wzp, tx);
3100 remove_inode_hash(ZTOI(wzp));
3101 goto commit_unlink_td_szp;
3102 }
3103 break;
3104 }
3105
3106 if (fuid_dirtied)
3107 zfs_fuid_sync(zfsvfs, tx);
3108
3109 switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3110 case RENAME_EXCHANGE:
3111 zfs_log_rename_exchange(zilog, tx,
3112 (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3113 tdzp, tdl->dl_name, szp);
3114 break;
3115 case RENAME_WHITEOUT:
3116 zfs_log_rename_whiteout(zilog, tx,
3117 (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3118 tdzp, tdl->dl_name, szp, wzp);
3119 break;
3120 default:
3121 ASSERT0(rflags & ~RENAME_NOREPLACE);
3122 zfs_log_rename(zilog, tx, (flags & FIGNORECASE ? TX_CI : 0),
3123 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
3124 break;
3125 }
3126
3127 commit:
3128 dmu_tx_commit(tx);
3129 out:
3130 if (have_acl)
3131 zfs_acl_ids_free(&acl_ids);
3132
3133 zfs_znode_update_vfs(sdzp);
3134 if (sdzp == tdzp)
3135 rw_exit(&sdzp->z_name_lock);
3136
3137 if (sdzp != tdzp)
3138 zfs_znode_update_vfs(tdzp);
3139
3140 zfs_znode_update_vfs(szp);
3141 zrele(szp);
3142 if (wzp) {
3143 zfs_znode_update_vfs(wzp);
3144 zrele(wzp);
3145 }
3146 if (tzp) {
3147 zfs_znode_update_vfs(tzp);
3148 zrele(tzp);
3149 }
3150
3151 if (zl != NULL)
3152 zfs_rename_unlock(&zl);
3153
3154 zfs_dirent_unlock(sdl);
3155 zfs_dirent_unlock(tdl);
3156
3157 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3158 zil_commit(zilog, 0);
3159
3160 zfs_exit(zfsvfs, FTAG);
3161 return (error);
3162
3163 /*
3164 * Clean-up path for broken link state.
3165 *
3166 * At this point we are in a (very) bad state, so we need to do our
3167 * best to correct the state. In particular, all of the nlinks are
3168 * wrong because we were destroying and creating links with ZRENAMING.
3169 *
3170 * In some form, all of these operations have to resolve the state:
3171 *
3172 * * link_destroy() *must* succeed. Fortunately, this is very likely
3173 * since we only just created it.
3174 *
3175 * * link_create()s are allowed to fail (though they shouldn't because
3176 * we only just unlinked them and are putting the entries back
3177 * during clean-up). But if they fail, we can just forcefully drop
3178 * the nlink value to (at the very least) avoid broken nlink values
3179 * -- though in the case of non-empty directories we will have to
3180 * panic (otherwise we'd have a leaked directory with a broken ..).
3181 */
3182 commit_unlink_td_szp:
3183 VERIFY0(zfs_link_destroy(tdl, szp, tx, ZRENAMING, NULL));
3184 commit_link_tzp:
3185 if (tzp) {
3186 if (zfs_link_create(tdl, tzp, tx, ZRENAMING))
3187 VERIFY0(zfs_drop_nlink(tzp, tx, NULL));
3188 }
3189 commit_link_szp:
3190 if (zfs_link_create(sdl, szp, tx, ZRENAMING))
3191 VERIFY0(zfs_drop_nlink(szp, tx, NULL));
3192 goto commit;
3193 }
3194
3195 /*
3196 * Insert the indicated symbolic reference entry into the directory.
3197 *
3198 * IN: dzp - Directory to contain new symbolic link.
3199 * name - Name of directory entry in dip.
3200 * vap - Attributes of new entry.
3201 * link - Name for new symlink entry.
3202 * cr - credentials of caller.
3203 * flags - case flags
3204 * mnt_ns - user namespace of the mount
3205 *
3206 * OUT: zpp - Znode for new symbolic link.
3207 *
3208 * RETURN: 0 on success, error code on failure.
3209 *
3210 * Timestamps:
3211 * dip - ctime|mtime updated
3212 */
3213 int
3214 zfs_symlink(znode_t *dzp, char *name, vattr_t *vap, char *link,
3215 znode_t **zpp, cred_t *cr, int flags, zidmap_t *mnt_ns)
3216 {
3217 znode_t *zp;
3218 zfs_dirlock_t *dl;
3219 dmu_tx_t *tx;
3220 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
3221 zilog_t *zilog;
3222 uint64_t len = strlen(link);
3223 int error;
3224 int zflg = ZNEW;
3225 zfs_acl_ids_t acl_ids;
3226 boolean_t fuid_dirtied;
3227 uint64_t txtype = TX_SYMLINK;
3228 boolean_t waited = B_FALSE;
3229
3230 ASSERT(S_ISLNK(vap->va_mode));
3231
3232 if (name == NULL)
3233 return (SET_ERROR(EINVAL));
3234
3235 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
3236 return (error);
3237 zilog = zfsvfs->z_log;
3238
3239 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3240 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3241 zfs_exit(zfsvfs, FTAG);
3242 return (SET_ERROR(EILSEQ));
3243 }
3244 if (flags & FIGNORECASE)
3245 zflg |= ZCILOOK;
3246
3247 if (len > MAXPATHLEN) {
3248 zfs_exit(zfsvfs, FTAG);
3249 return (SET_ERROR(ENAMETOOLONG));
3250 }
3251
3252 if ((error = zfs_acl_ids_create(dzp, 0,
3253 vap, cr, NULL, &acl_ids, mnt_ns)) != 0) {
3254 zfs_exit(zfsvfs, FTAG);
3255 return (error);
3256 }
3257 top:
3258 *zpp = NULL;
3259
3260 /*
3261 * Attempt to lock directory; fail if entry already exists.
3262 */
3263 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3264 if (error) {
3265 zfs_acl_ids_free(&acl_ids);
3266 zfs_exit(zfsvfs, FTAG);
3267 return (error);
3268 }
3269
3270 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
3271 zfs_acl_ids_free(&acl_ids);
3272 zfs_dirent_unlock(dl);
3273 zfs_exit(zfsvfs, FTAG);
3274 return (error);
3275 }
3276
3277 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
3278 zfs_acl_ids_free(&acl_ids);
3279 zfs_dirent_unlock(dl);
3280 zfs_exit(zfsvfs, FTAG);
3281 return (SET_ERROR(EDQUOT));
3282 }
3283 tx = dmu_tx_create(zfsvfs->z_os);
3284 fuid_dirtied = zfsvfs->z_fuid_dirty;
3285 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3286 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3287 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3288 ZFS_SA_BASE_ATTR_SIZE + len);
3289 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3290 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3291 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3292 acl_ids.z_aclp->z_acl_bytes);
3293 }
3294 if (fuid_dirtied)
3295 zfs_fuid_txhold(zfsvfs, tx);
3296 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3297 if (error) {
3298 zfs_dirent_unlock(dl);
3299 if (error == ERESTART) {
3300 waited = B_TRUE;
3301 dmu_tx_wait(tx);
3302 dmu_tx_abort(tx);
3303 goto top;
3304 }
3305 zfs_acl_ids_free(&acl_ids);
3306 dmu_tx_abort(tx);
3307 zfs_exit(zfsvfs, FTAG);
3308 return (error);
3309 }
3310
3311 /*
3312 * Create a new object for the symlink.
3313 * for version 4 ZPL datasets the symlink will be an SA attribute
3314 */
3315 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3316
3317 if (fuid_dirtied)
3318 zfs_fuid_sync(zfsvfs, tx);
3319
3320 mutex_enter(&zp->z_lock);
3321 if (zp->z_is_sa)
3322 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3323 link, len, tx);
3324 else
3325 zfs_sa_symlink(zp, link, len, tx);
3326 mutex_exit(&zp->z_lock);
3327
3328 zp->z_size = len;
3329 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3330 &zp->z_size, sizeof (zp->z_size), tx);
3331 /*
3332 * Insert the new object into the directory.
3333 */
3334 error = zfs_link_create(dl, zp, tx, ZNEW);
3335 if (error != 0) {
3336 zfs_znode_delete(zp, tx);
3337 remove_inode_hash(ZTOI(zp));
3338 } else {
3339 if (flags & FIGNORECASE)
3340 txtype |= TX_CI;
3341 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3342
3343 zfs_znode_update_vfs(dzp);
3344 zfs_znode_update_vfs(zp);
3345 }
3346
3347 zfs_acl_ids_free(&acl_ids);
3348
3349 dmu_tx_commit(tx);
3350
3351 zfs_dirent_unlock(dl);
3352
3353 if (error == 0) {
3354 *zpp = zp;
3355
3356 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3357 zil_commit(zilog, 0);
3358 } else {
3359 zrele(zp);
3360 }
3361
3362 zfs_exit(zfsvfs, FTAG);
3363 return (error);
3364 }
3365
3366 /*
3367 * Return, in the buffer contained in the provided uio structure,
3368 * the symbolic path referred to by ip.
3369 *
3370 * IN: ip - inode of symbolic link
3371 * uio - structure to contain the link path.
3372 * cr - credentials of caller.
3373 *
3374 * RETURN: 0 if success
3375 * error code if failure
3376 *
3377 * Timestamps:
3378 * ip - atime updated
3379 */
3380 int
3381 zfs_readlink(struct inode *ip, zfs_uio_t *uio, cred_t *cr)
3382 {
3383 (void) cr;
3384 znode_t *zp = ITOZ(ip);
3385 zfsvfs_t *zfsvfs = ITOZSB(ip);
3386 int error;
3387
3388 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3389 return (error);
3390
3391 mutex_enter(&zp->z_lock);
3392 if (zp->z_is_sa)
3393 error = sa_lookup_uio(zp->z_sa_hdl,
3394 SA_ZPL_SYMLINK(zfsvfs), uio);
3395 else
3396 error = zfs_sa_readlink(zp, uio);
3397 mutex_exit(&zp->z_lock);
3398
3399 zfs_exit(zfsvfs, FTAG);
3400 return (error);
3401 }
3402
3403 /*
3404 * Insert a new entry into directory tdzp referencing szp.
3405 *
3406 * IN: tdzp - Directory to contain new entry.
3407 * szp - znode of new entry.
3408 * name - name of new entry.
3409 * cr - credentials of caller.
3410 * flags - case flags.
3411 *
3412 * RETURN: 0 if success
3413 * error code if failure
3414 *
3415 * Timestamps:
3416 * tdzp - ctime|mtime updated
3417 * szp - ctime updated
3418 */
3419 int
3420 zfs_link(znode_t *tdzp, znode_t *szp, char *name, cred_t *cr,
3421 int flags)
3422 {
3423 struct inode *sip = ZTOI(szp);
3424 znode_t *tzp;
3425 zfsvfs_t *zfsvfs = ZTOZSB(tdzp);
3426 zilog_t *zilog;
3427 zfs_dirlock_t *dl;
3428 dmu_tx_t *tx;
3429 int error;
3430 int zf = ZNEW;
3431 uint64_t parent;
3432 uid_t owner;
3433 boolean_t waited = B_FALSE;
3434 boolean_t is_tmpfile = 0;
3435 uint64_t txg;
3436 #ifdef HAVE_TMPFILE
3437 is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
3438 #endif
3439 ASSERT(S_ISDIR(ZTOI(tdzp)->i_mode));
3440
3441 if (name == NULL)
3442 return (SET_ERROR(EINVAL));
3443
3444 if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0)
3445 return (error);
3446 zilog = zfsvfs->z_log;
3447
3448 /*
3449 * POSIX dictates that we return EPERM here.
3450 * Better choices include ENOTSUP or EISDIR.
3451 */
3452 if (S_ISDIR(sip->i_mode)) {
3453 zfs_exit(zfsvfs, FTAG);
3454 return (SET_ERROR(EPERM));
3455 }
3456
3457 if ((error = zfs_verify_zp(szp)) != 0) {
3458 zfs_exit(zfsvfs, FTAG);
3459 return (error);
3460 }
3461
3462 /*
3463 * If we are using project inheritance, means if the directory has
3464 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3465 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3466 * such case, we only allow hard link creation in our tree when the
3467 * project IDs are the same.
3468 */
3469 if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3470 tdzp->z_projid != szp->z_projid) {
3471 zfs_exit(zfsvfs, FTAG);
3472 return (SET_ERROR(EXDEV));
3473 }
3474
3475 /*
3476 * We check i_sb because snapshots and the ctldir must have different
3477 * super blocks.
3478 */
3479 if (sip->i_sb != ZTOI(tdzp)->i_sb || zfsctl_is_node(sip)) {
3480 zfs_exit(zfsvfs, FTAG);
3481 return (SET_ERROR(EXDEV));
3482 }
3483
3484 /* Prevent links to .zfs/shares files */
3485
3486 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3487 &parent, sizeof (uint64_t))) != 0) {
3488 zfs_exit(zfsvfs, FTAG);
3489 return (error);
3490 }
3491 if (parent == zfsvfs->z_shares_dir) {
3492 zfs_exit(zfsvfs, FTAG);
3493 return (SET_ERROR(EPERM));
3494 }
3495
3496 if (zfsvfs->z_utf8 && u8_validate(name,
3497 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3498 zfs_exit(zfsvfs, FTAG);
3499 return (SET_ERROR(EILSEQ));
3500 }
3501 if (flags & FIGNORECASE)
3502 zf |= ZCILOOK;
3503
3504 /*
3505 * We do not support links between attributes and non-attributes
3506 * because of the potential security risk of creating links
3507 * into "normal" file space in order to circumvent restrictions
3508 * imposed in attribute space.
3509 */
3510 if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) {
3511 zfs_exit(zfsvfs, FTAG);
3512 return (SET_ERROR(EINVAL));
3513 }
3514
3515 owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
3516 cr, ZFS_OWNER);
3517 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3518 zfs_exit(zfsvfs, FTAG);
3519 return (SET_ERROR(EPERM));
3520 }
3521
3522 if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr,
3523 zfs_init_idmap))) {
3524 zfs_exit(zfsvfs, FTAG);
3525 return (error);
3526 }
3527
3528 top:
3529 /*
3530 * Attempt to lock directory; fail if entry already exists.
3531 */
3532 error = zfs_dirent_lock(&dl, tdzp, name, &tzp, zf, NULL, NULL);
3533 if (error) {
3534 zfs_exit(zfsvfs, FTAG);
3535 return (error);
3536 }
3537
3538 tx = dmu_tx_create(zfsvfs->z_os);
3539 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3540 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name);
3541 if (is_tmpfile)
3542 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3543
3544 zfs_sa_upgrade_txholds(tx, szp);
3545 zfs_sa_upgrade_txholds(tx, tdzp);
3546 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3547 if (error) {
3548 zfs_dirent_unlock(dl);
3549 if (error == ERESTART) {
3550 waited = B_TRUE;
3551 dmu_tx_wait(tx);
3552 dmu_tx_abort(tx);
3553 goto top;
3554 }
3555 dmu_tx_abort(tx);
3556 zfs_exit(zfsvfs, FTAG);
3557 return (error);
3558 }
3559 /* unmark z_unlinked so zfs_link_create will not reject */
3560 if (is_tmpfile)
3561 szp->z_unlinked = B_FALSE;
3562 error = zfs_link_create(dl, szp, tx, 0);
3563
3564 if (error == 0) {
3565 uint64_t txtype = TX_LINK;
3566 /*
3567 * tmpfile is created to be in z_unlinkedobj, so remove it.
3568 * Also, we don't log in ZIL, because all previous file
3569 * operation on the tmpfile are ignored by ZIL. Instead we
3570 * always wait for txg to sync to make sure all previous
3571 * operation are sync safe.
3572 */
3573 if (is_tmpfile) {
3574 VERIFY(zap_remove_int(zfsvfs->z_os,
3575 zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
3576 } else {
3577 if (flags & FIGNORECASE)
3578 txtype |= TX_CI;
3579 zfs_log_link(zilog, tx, txtype, tdzp, szp, name);
3580 }
3581 } else if (is_tmpfile) {
3582 /* restore z_unlinked since when linking failed */
3583 szp->z_unlinked = B_TRUE;
3584 }
3585 txg = dmu_tx_get_txg(tx);
3586 dmu_tx_commit(tx);
3587
3588 zfs_dirent_unlock(dl);
3589
3590 if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3591 zil_commit(zilog, 0);
3592
3593 if (is_tmpfile && zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED)
3594 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
3595
3596 zfs_znode_update_vfs(tdzp);
3597 zfs_znode_update_vfs(szp);
3598 zfs_exit(zfsvfs, FTAG);
3599 return (error);
3600 }
3601
3602 static void
3603 zfs_putpage_sync_commit_cb(void *arg)
3604 {
3605 struct page *pp = arg;
3606
3607 ClearPageError(pp);
3608 end_page_writeback(pp);
3609 }
3610
3611 static void
3612 zfs_putpage_async_commit_cb(void *arg)
3613 {
3614 struct page *pp = arg;
3615 znode_t *zp = ITOZ(pp->mapping->host);
3616
3617 ClearPageError(pp);
3618 end_page_writeback(pp);
3619 atomic_dec_32(&zp->z_async_writes_cnt);
3620 }
3621
3622 /*
3623 * Push a page out to disk, once the page is on stable storage the
3624 * registered commit callback will be run as notification of completion.
3625 *
3626 * IN: ip - page mapped for inode.
3627 * pp - page to push (page is locked)
3628 * wbc - writeback control data
3629 * for_sync - does the caller intend to wait synchronously for the
3630 * page writeback to complete?
3631 *
3632 * RETURN: 0 if success
3633 * error code if failure
3634 *
3635 * Timestamps:
3636 * ip - ctime|mtime updated
3637 */
3638 int
3639 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc,
3640 boolean_t for_sync)
3641 {
3642 znode_t *zp = ITOZ(ip);
3643 zfsvfs_t *zfsvfs = ITOZSB(ip);
3644 loff_t offset;
3645 loff_t pgoff;
3646 unsigned int pglen;
3647 dmu_tx_t *tx;
3648 caddr_t va;
3649 int err = 0;
3650 uint64_t mtime[2], ctime[2];
3651 sa_bulk_attr_t bulk[3];
3652 int cnt = 0;
3653 struct address_space *mapping;
3654
3655 if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3656 return (err);
3657
3658 ASSERT(PageLocked(pp));
3659
3660 pgoff = page_offset(pp); /* Page byte-offset in file */
3661 offset = i_size_read(ip); /* File length in bytes */
3662 pglen = MIN(PAGE_SIZE, /* Page length in bytes */
3663 P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
3664
3665 /* Page is beyond end of file */
3666 if (pgoff >= offset) {
3667 unlock_page(pp);
3668 zfs_exit(zfsvfs, FTAG);
3669 return (0);
3670 }
3671
3672 /* Truncate page length to end of file */
3673 if (pgoff + pglen > offset)
3674 pglen = offset - pgoff;
3675
3676 #if 0
3677 /*
3678 * FIXME: Allow mmap writes past its quota. The correct fix
3679 * is to register a page_mkwrite() handler to count the page
3680 * against its quota when it is about to be dirtied.
3681 */
3682 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
3683 KUID_TO_SUID(ip->i_uid)) ||
3684 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3685 KGID_TO_SGID(ip->i_gid)) ||
3686 (zp->z_projid != ZFS_DEFAULT_PROJID &&
3687 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
3688 zp->z_projid))) {
3689 err = EDQUOT;
3690 }
3691 #endif
3692
3693 /*
3694 * The ordering here is critical and must adhere to the following
3695 * rules in order to avoid deadlocking in either zfs_read() or
3696 * zfs_free_range() due to a lock inversion.
3697 *
3698 * 1) The page must be unlocked prior to acquiring the range lock.
3699 * This is critical because zfs_read() calls find_lock_page()
3700 * which may block on the page lock while holding the range lock.
3701 *
3702 * 2) Before setting or clearing write back on a page the range lock
3703 * must be held in order to prevent a lock inversion with the
3704 * zfs_free_range() function.
3705 *
3706 * This presents a problem because upon entering this function the
3707 * page lock is already held. To safely acquire the range lock the
3708 * page lock must be dropped. This creates a window where another
3709 * process could truncate, invalidate, dirty, or write out the page.
3710 *
3711 * Therefore, after successfully reacquiring the range and page locks
3712 * the current page state is checked. In the common case everything
3713 * will be as is expected and it can be written out. However, if
3714 * the page state has changed it must be handled accordingly.
3715 */
3716 mapping = pp->mapping;
3717 redirty_page_for_writepage(wbc, pp);
3718 unlock_page(pp);
3719
3720 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
3721 pgoff, pglen, RL_WRITER);
3722 lock_page(pp);
3723
3724 /* Page mapping changed or it was no longer dirty, we're done */
3725 if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
3726 unlock_page(pp);
3727 zfs_rangelock_exit(lr);
3728 zfs_exit(zfsvfs, FTAG);
3729 return (0);
3730 }
3731
3732 /* Another process started write block if required */
3733 if (PageWriteback(pp)) {
3734 unlock_page(pp);
3735 zfs_rangelock_exit(lr);
3736
3737 if (wbc->sync_mode != WB_SYNC_NONE) {
3738 /*
3739 * Speed up any non-sync page writebacks since
3740 * they may take several seconds to complete.
3741 * Refer to the comment in zpl_fsync() (when
3742 * HAVE_FSYNC_RANGE is defined) for details.
3743 */
3744 if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
3745 zil_commit(zfsvfs->z_log, zp->z_id);
3746 }
3747
3748 if (PageWriteback(pp))
3749 #ifdef HAVE_PAGEMAP_FOLIO_WAIT_BIT
3750 folio_wait_bit(page_folio(pp), PG_writeback);
3751 #else
3752 wait_on_page_bit(pp, PG_writeback);
3753 #endif
3754 }
3755
3756 zfs_exit(zfsvfs, FTAG);
3757 return (0);
3758 }
3759
3760 /* Clear the dirty flag the required locks are held */
3761 if (!clear_page_dirty_for_io(pp)) {
3762 unlock_page(pp);
3763 zfs_rangelock_exit(lr);
3764 zfs_exit(zfsvfs, FTAG);
3765 return (0);
3766 }
3767
3768 /*
3769 * Counterpart for redirty_page_for_writepage() above. This page
3770 * was in fact not skipped and should not be counted as if it were.
3771 */
3772 wbc->pages_skipped--;
3773 if (!for_sync)
3774 atomic_inc_32(&zp->z_async_writes_cnt);
3775 set_page_writeback(pp);
3776 unlock_page(pp);
3777
3778 tx = dmu_tx_create(zfsvfs->z_os);
3779 dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
3780 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3781 zfs_sa_upgrade_txholds(tx, zp);
3782
3783 err = dmu_tx_assign(tx, TXG_NOWAIT);
3784 if (err != 0) {
3785 if (err == ERESTART)
3786 dmu_tx_wait(tx);
3787
3788 dmu_tx_abort(tx);
3789 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
3790 filemap_dirty_folio(page_mapping(pp), page_folio(pp));
3791 #else
3792 __set_page_dirty_nobuffers(pp);
3793 #endif
3794 ClearPageError(pp);
3795 end_page_writeback(pp);
3796 if (!for_sync)
3797 atomic_dec_32(&zp->z_async_writes_cnt);
3798 zfs_rangelock_exit(lr);
3799 zfs_exit(zfsvfs, FTAG);
3800 return (err);
3801 }
3802
3803 va = kmap(pp);
3804 ASSERT3U(pglen, <=, PAGE_SIZE);
3805 dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
3806 kunmap(pp);
3807
3808 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3809 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3810 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
3811 &zp->z_pflags, 8);
3812
3813 /* Preserve the mtime and ctime provided by the inode */
3814 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3815 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
3816 zp->z_atime_dirty = B_FALSE;
3817 zp->z_seq++;
3818
3819 err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3820
3821 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
3822 for_sync ? zfs_putpage_sync_commit_cb :
3823 zfs_putpage_async_commit_cb, pp);
3824
3825 dmu_tx_commit(tx);
3826
3827 zfs_rangelock_exit(lr);
3828
3829 if (wbc->sync_mode != WB_SYNC_NONE) {
3830 /*
3831 * Note that this is rarely called under writepages(), because
3832 * writepages() normally handles the entire commit for
3833 * performance reasons.
3834 */
3835 zil_commit(zfsvfs->z_log, zp->z_id);
3836 } else if (!for_sync && atomic_load_32(&zp->z_sync_writes_cnt) > 0) {
3837 /*
3838 * If the caller does not intend to wait synchronously
3839 * for this page writeback to complete and there are active
3840 * synchronous calls on this file, do a commit so that
3841 * the latter don't accidentally end up waiting for
3842 * our writeback to complete. Refer to the comment in
3843 * zpl_fsync() (when HAVE_FSYNC_RANGE is defined) for details.
3844 */
3845 zil_commit(zfsvfs->z_log, zp->z_id);
3846 }
3847
3848 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, pglen);
3849
3850 zfs_exit(zfsvfs, FTAG);
3851 return (err);
3852 }
3853
3854 /*
3855 * Update the system attributes when the inode has been dirtied. For the
3856 * moment we only update the mode, atime, mtime, and ctime.
3857 */
3858 int
3859 zfs_dirty_inode(struct inode *ip, int flags)
3860 {
3861 znode_t *zp = ITOZ(ip);
3862 zfsvfs_t *zfsvfs = ITOZSB(ip);
3863 dmu_tx_t *tx;
3864 uint64_t mode, atime[2], mtime[2], ctime[2];
3865 sa_bulk_attr_t bulk[4];
3866 int error = 0;
3867 int cnt = 0;
3868
3869 if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
3870 return (0);
3871
3872 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3873 return (error);
3874
3875 #ifdef I_DIRTY_TIME
3876 /*
3877 * This is the lazytime semantic introduced in Linux 4.0
3878 * This flag will only be called from update_time when lazytime is set.
3879 * (Note, I_DIRTY_SYNC will also set if not lazytime)
3880 * Fortunately mtime and ctime are managed within ZFS itself, so we
3881 * only need to dirty atime.
3882 */
3883 if (flags == I_DIRTY_TIME) {
3884 zp->z_atime_dirty = B_TRUE;
3885 goto out;
3886 }
3887 #endif
3888
3889 tx = dmu_tx_create(zfsvfs->z_os);
3890
3891 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3892 zfs_sa_upgrade_txholds(tx, zp);
3893
3894 error = dmu_tx_assign(tx, TXG_WAIT);
3895 if (error) {
3896 dmu_tx_abort(tx);
3897 goto out;
3898 }
3899
3900 mutex_enter(&zp->z_lock);
3901 zp->z_atime_dirty = B_FALSE;
3902
3903 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
3904 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
3905 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3906 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3907
3908 /* Preserve the mode, mtime and ctime provided by the inode */
3909 ZFS_TIME_ENCODE(&ip->i_atime, atime);
3910 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3911 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
3912 mode = ip->i_mode;
3913
3914 zp->z_mode = mode;
3915
3916 error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3917 mutex_exit(&zp->z_lock);
3918
3919 dmu_tx_commit(tx);
3920 out:
3921 zfs_exit(zfsvfs, FTAG);
3922 return (error);
3923 }
3924
3925 void
3926 zfs_inactive(struct inode *ip)
3927 {
3928 znode_t *zp = ITOZ(ip);
3929 zfsvfs_t *zfsvfs = ITOZSB(ip);
3930 uint64_t atime[2];
3931 int error;
3932 int need_unlock = 0;
3933
3934 /* Only read lock if we haven't already write locked, e.g. rollback */
3935 if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
3936 need_unlock = 1;
3937 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
3938 }
3939 if (zp->z_sa_hdl == NULL) {
3940 if (need_unlock)
3941 rw_exit(&zfsvfs->z_teardown_inactive_lock);
3942 return;
3943 }
3944
3945 if (zp->z_atime_dirty && zp->z_unlinked == B_FALSE) {
3946 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
3947
3948 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3949 zfs_sa_upgrade_txholds(tx, zp);
3950 error = dmu_tx_assign(tx, TXG_WAIT);
3951 if (error) {
3952 dmu_tx_abort(tx);
3953 } else {
3954 ZFS_TIME_ENCODE(&ip->i_atime, atime);
3955 mutex_enter(&zp->z_lock);
3956 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
3957 (void *)&atime, sizeof (atime), tx);
3958 zp->z_atime_dirty = B_FALSE;
3959 mutex_exit(&zp->z_lock);
3960 dmu_tx_commit(tx);
3961 }
3962 }
3963
3964 zfs_zinactive(zp);
3965 if (need_unlock)
3966 rw_exit(&zfsvfs->z_teardown_inactive_lock);
3967 }
3968
3969 /*
3970 * Fill pages with data from the disk.
3971 */
3972 static int
3973 zfs_fillpage(struct inode *ip, struct page *pp)
3974 {
3975 zfsvfs_t *zfsvfs = ITOZSB(ip);
3976 loff_t i_size = i_size_read(ip);
3977 u_offset_t io_off = page_offset(pp);
3978 size_t io_len = PAGE_SIZE;
3979
3980 ASSERT3U(io_off, <, i_size);
3981
3982 if (io_off + io_len > i_size)
3983 io_len = i_size - io_off;
3984
3985 void *va = kmap(pp);
3986 int error = dmu_read(zfsvfs->z_os, ITOZ(ip)->z_id, io_off,
3987 io_len, va, DMU_READ_PREFETCH);
3988 if (io_len != PAGE_SIZE)
3989 memset((char *)va + io_len, 0, PAGE_SIZE - io_len);
3990 kunmap(pp);
3991
3992 if (error) {
3993 /* convert checksum errors into IO errors */
3994 if (error == ECKSUM)
3995 error = SET_ERROR(EIO);
3996
3997 SetPageError(pp);
3998 ClearPageUptodate(pp);
3999 } else {
4000 ClearPageError(pp);
4001 SetPageUptodate(pp);
4002 }
4003
4004 return (error);
4005 }
4006
4007 /*
4008 * Uses zfs_fillpage to read data from the file and fill the page.
4009 *
4010 * IN: ip - inode of file to get data from.
4011 * pp - page to read
4012 *
4013 * RETURN: 0 on success, error code on failure.
4014 *
4015 * Timestamps:
4016 * vp - atime updated
4017 */
4018 int
4019 zfs_getpage(struct inode *ip, struct page *pp)
4020 {
4021 zfsvfs_t *zfsvfs = ITOZSB(ip);
4022 znode_t *zp = ITOZ(ip);
4023 int error;
4024
4025 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4026 return (error);
4027
4028 error = zfs_fillpage(ip, pp);
4029 if (error == 0)
4030 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, PAGE_SIZE);
4031
4032 zfs_exit(zfsvfs, FTAG);
4033
4034 return (error);
4035 }
4036
4037 /*
4038 * Check ZFS specific permissions to memory map a section of a file.
4039 *
4040 * IN: ip - inode of the file to mmap
4041 * off - file offset
4042 * addrp - start address in memory region
4043 * len - length of memory region
4044 * vm_flags- address flags
4045 *
4046 * RETURN: 0 if success
4047 * error code if failure
4048 */
4049 int
4050 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4051 unsigned long vm_flags)
4052 {
4053 (void) addrp;
4054 znode_t *zp = ITOZ(ip);
4055 zfsvfs_t *zfsvfs = ITOZSB(ip);
4056 int error;
4057
4058 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4059 return (error);
4060
4061 if ((vm_flags & VM_WRITE) && (zp->z_pflags &
4062 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4063 zfs_exit(zfsvfs, FTAG);
4064 return (SET_ERROR(EPERM));
4065 }
4066
4067 if ((vm_flags & (VM_READ | VM_EXEC)) &&
4068 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4069 zfs_exit(zfsvfs, FTAG);
4070 return (SET_ERROR(EACCES));
4071 }
4072
4073 if (off < 0 || len > MAXOFFSET_T - off) {
4074 zfs_exit(zfsvfs, FTAG);
4075 return (SET_ERROR(ENXIO));
4076 }
4077
4078 zfs_exit(zfsvfs, FTAG);
4079 return (0);
4080 }
4081
4082 /*
4083 * Free or allocate space in a file. Currently, this function only
4084 * supports the `F_FREESP' command. However, this command is somewhat
4085 * misnamed, as its functionality includes the ability to allocate as
4086 * well as free space.
4087 *
4088 * IN: zp - znode of file to free data in.
4089 * cmd - action to take (only F_FREESP supported).
4090 * bfp - section of file to free/alloc.
4091 * flag - current file open mode flags.
4092 * offset - current file offset.
4093 * cr - credentials of caller.
4094 *
4095 * RETURN: 0 on success, error code on failure.
4096 *
4097 * Timestamps:
4098 * zp - ctime|mtime updated
4099 */
4100 int
4101 zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag,
4102 offset_t offset, cred_t *cr)
4103 {
4104 (void) offset;
4105 zfsvfs_t *zfsvfs = ZTOZSB(zp);
4106 uint64_t off, len;
4107 int error;
4108
4109 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4110 return (error);
4111
4112 if (cmd != F_FREESP) {
4113 zfs_exit(zfsvfs, FTAG);
4114 return (SET_ERROR(EINVAL));
4115 }
4116
4117 /*
4118 * Callers might not be able to detect properly that we are read-only,
4119 * so check it explicitly here.
4120 */
4121 if (zfs_is_readonly(zfsvfs)) {
4122 zfs_exit(zfsvfs, FTAG);
4123 return (SET_ERROR(EROFS));
4124 }
4125
4126 if (bfp->l_len < 0) {
4127 zfs_exit(zfsvfs, FTAG);
4128 return (SET_ERROR(EINVAL));
4129 }
4130
4131 /*
4132 * Permissions aren't checked on Solaris because on this OS
4133 * zfs_space() can only be called with an opened file handle.
4134 * On Linux we can get here through truncate_range() which
4135 * operates directly on inodes, so we need to check access rights.
4136 */
4137 if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr,
4138 zfs_init_idmap))) {
4139 zfs_exit(zfsvfs, FTAG);
4140 return (error);
4141 }
4142
4143 off = bfp->l_start;
4144 len = bfp->l_len; /* 0 means from off to end of file */
4145
4146 error = zfs_freesp(zp, off, len, flag, TRUE);
4147
4148 zfs_exit(zfsvfs, FTAG);
4149 return (error);
4150 }
4151
4152 int
4153 zfs_fid(struct inode *ip, fid_t *fidp)
4154 {
4155 znode_t *zp = ITOZ(ip);
4156 zfsvfs_t *zfsvfs = ITOZSB(ip);
4157 uint32_t gen;
4158 uint64_t gen64;
4159 uint64_t object = zp->z_id;
4160 zfid_short_t *zfid;
4161 int size, i, error;
4162
4163 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
4164 return (error);
4165
4166 if (fidp->fid_len < SHORT_FID_LEN) {
4167 fidp->fid_len = SHORT_FID_LEN;
4168 zfs_exit(zfsvfs, FTAG);
4169 return (SET_ERROR(ENOSPC));
4170 }
4171
4172 if ((error = zfs_verify_zp(zp)) != 0) {
4173 zfs_exit(zfsvfs, FTAG);
4174 return (error);
4175 }
4176
4177 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4178 &gen64, sizeof (uint64_t))) != 0) {
4179 zfs_exit(zfsvfs, FTAG);
4180 return (error);
4181 }
4182
4183 gen = (uint32_t)gen64;
4184
4185 size = SHORT_FID_LEN;
4186
4187 zfid = (zfid_short_t *)fidp;
4188
4189 zfid->zf_len = size;
4190
4191 for (i = 0; i < sizeof (zfid->zf_object); i++)
4192 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4193
4194 /* Must have a non-zero generation number to distinguish from .zfs */
4195 if (gen == 0)
4196 gen = 1;
4197 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4198 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4199
4200 zfs_exit(zfsvfs, FTAG);
4201 return (0);
4202 }
4203
4204 #if defined(_KERNEL)
4205 EXPORT_SYMBOL(zfs_open);
4206 EXPORT_SYMBOL(zfs_close);
4207 EXPORT_SYMBOL(zfs_lookup);
4208 EXPORT_SYMBOL(zfs_create);
4209 EXPORT_SYMBOL(zfs_tmpfile);
4210 EXPORT_SYMBOL(zfs_remove);
4211 EXPORT_SYMBOL(zfs_mkdir);
4212 EXPORT_SYMBOL(zfs_rmdir);
4213 EXPORT_SYMBOL(zfs_readdir);
4214 EXPORT_SYMBOL(zfs_getattr_fast);
4215 EXPORT_SYMBOL(zfs_setattr);
4216 EXPORT_SYMBOL(zfs_rename);
4217 EXPORT_SYMBOL(zfs_symlink);
4218 EXPORT_SYMBOL(zfs_readlink);
4219 EXPORT_SYMBOL(zfs_link);
4220 EXPORT_SYMBOL(zfs_inactive);
4221 EXPORT_SYMBOL(zfs_space);
4222 EXPORT_SYMBOL(zfs_fid);
4223 EXPORT_SYMBOL(zfs_getpage);
4224 EXPORT_SYMBOL(zfs_putpage);
4225 EXPORT_SYMBOL(zfs_dirty_inode);
4226 EXPORT_SYMBOL(zfs_map);
4227
4228 /* CSTYLED */
4229 module_param(zfs_delete_blocks, ulong, 0644);
4230 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
4231
4232 #endif