]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/linux/zfs/zio_crypt.c
ZIL: Assert record sizes in different places
[mirror_zfs.git] / module / os / linux / zfs / zio_crypt.c
1 /*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16 /*
17 * Copyright (c) 2017, Datto, Inc. All rights reserved.
18 */
19
20 #include <sys/zio_crypt.h>
21 #include <sys/dmu.h>
22 #include <sys/dmu_objset.h>
23 #include <sys/dnode.h>
24 #include <sys/fs/zfs.h>
25 #include <sys/zio.h>
26 #include <sys/zil.h>
27 #include <sys/sha2.h>
28 #include <sys/hkdf.h>
29 #include <sys/qat.h>
30
31 /*
32 * This file is responsible for handling all of the details of generating
33 * encryption parameters and performing encryption and authentication.
34 *
35 * BLOCK ENCRYPTION PARAMETERS:
36 * Encryption /Authentication Algorithm Suite (crypt):
37 * The encryption algorithm, mode, and key length we are going to use. We
38 * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit
39 * keys. All authentication is currently done with SHA512-HMAC.
40 *
41 * Plaintext:
42 * The unencrypted data that we want to encrypt.
43 *
44 * Initialization Vector (IV):
45 * An initialization vector for the encryption algorithms. This is used to
46 * "tweak" the encryption algorithms so that two blocks of the same data are
47 * encrypted into different ciphertext outputs, thus obfuscating block patterns.
48 * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is
49 * never reused with the same encryption key. This value is stored unencrypted
50 * and must simply be provided to the decryption function. We use a 96 bit IV
51 * (as recommended by NIST) for all block encryption. For non-dedup blocks we
52 * derive the IV randomly. The first 64 bits of the IV are stored in the second
53 * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of
54 * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits
55 * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count
56 * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of
57 * level 0 blocks is the number of allocated dnodes in that block. The on-disk
58 * format supports at most 2^15 slots per L0 dnode block, because the maximum
59 * block size is 16MB (2^24). In either case, for level 0 blocks this number
60 * will still be smaller than UINT32_MAX so it is safe to store the IV in the
61 * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count
62 * for the dnode code.
63 *
64 * Master key:
65 * This is the most important secret data of an encrypted dataset. It is used
66 * along with the salt to generate that actual encryption keys via HKDF. We
67 * do not use the master key to directly encrypt any data because there are
68 * theoretical limits on how much data can actually be safely encrypted with
69 * any encryption mode. The master key is stored encrypted on disk with the
70 * user's wrapping key. Its length is determined by the encryption algorithm.
71 * For details on how this is stored see the block comment in dsl_crypt.c
72 *
73 * Salt:
74 * Used as an input to the HKDF function, along with the master key. We use a
75 * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt
76 * can be used for encrypting many blocks, so we cache the current salt and the
77 * associated derived key in zio_crypt_t so we do not need to derive it again
78 * needlessly.
79 *
80 * Encryption Key:
81 * A secret binary key, generated from an HKDF function used to encrypt and
82 * decrypt data.
83 *
84 * Message Authentication Code (MAC)
85 * The MAC is an output of authenticated encryption modes such as AES-GCM and
86 * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted
87 * data on disk and return garbage to the application. Effectively, it is a
88 * checksum that can not be reproduced by an attacker. We store the MAC in the
89 * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated
90 * regular checksum of the ciphertext which can be used for scrubbing.
91 *
92 * OBJECT AUTHENTICATION:
93 * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because
94 * they contain some info that always needs to be readable. To prevent this
95 * data from being altered, we authenticate this data using SHA512-HMAC. This
96 * will produce a MAC (similar to the one produced via encryption) which can
97 * be used to verify the object was not modified. HMACs do not require key
98 * rotation or IVs, so we can keep up to the full 3 copies of authenticated
99 * data.
100 *
101 * ZIL ENCRYPTION:
102 * ZIL blocks have their bp written to disk ahead of the associated data, so we
103 * cannot store the MAC there as we normally do. For these blocks the MAC is
104 * stored in the embedded checksum within the zil_chain_t header. The salt and
105 * IV are generated for the block on bp allocation instead of at encryption
106 * time. In addition, ZIL blocks have some pieces that must be left in plaintext
107 * for claiming even though all of the sensitive user data still needs to be
108 * encrypted. The function zio_crypt_init_uios_zil() handles parsing which
109 * pieces of the block need to be encrypted. All data that is not encrypted is
110 * authenticated using the AAD mechanisms that the supported encryption modes
111 * provide for. In order to preserve the semantics of the ZIL for encrypted
112 * datasets, the ZIL is not protected at the objset level as described below.
113 *
114 * DNODE ENCRYPTION:
115 * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left
116 * in plaintext for scrubbing and claiming, but the bonus buffers might contain
117 * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing
118 * which pieces of the block need to be encrypted. For more details about
119 * dnode authentication and encryption, see zio_crypt_init_uios_dnode().
120 *
121 * OBJECT SET AUTHENTICATION:
122 * Up to this point, everything we have encrypted and authenticated has been
123 * at level 0 (or -2 for the ZIL). If we did not do any further work the
124 * on-disk format would be susceptible to attacks that deleted or rearranged
125 * the order of level 0 blocks. Ideally, the cleanest solution would be to
126 * maintain a tree of authentication MACs going up the bp tree. However, this
127 * presents a problem for raw sends. Send files do not send information about
128 * indirect blocks so there would be no convenient way to transfer the MACs and
129 * they cannot be recalculated on the receive side without the master key which
130 * would defeat one of the purposes of raw sends in the first place. Instead,
131 * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs
132 * from the level below. We also include some portable fields from blk_prop such
133 * as the lsize and compression algorithm to prevent the data from being
134 * misinterpreted.
135 *
136 * At the objset level, we maintain 2 separate 256 bit MACs in the
137 * objset_phys_t. The first one is "portable" and is the logical root of the
138 * MAC tree maintained in the metadnode's bps. The second, is "local" and is
139 * used as the root MAC for the user accounting objects, which are also not
140 * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload
141 * of the send file. The useraccounting code ensures that the useraccounting
142 * info is not present upon a receive, so the local MAC can simply be cleared
143 * out at that time. For more info about objset_phys_t authentication, see
144 * zio_crypt_do_objset_hmacs().
145 *
146 * CONSIDERATIONS FOR DEDUP:
147 * In order for dedup to work, blocks that we want to dedup with one another
148 * need to use the same IV and encryption key, so that they will have the same
149 * ciphertext. Normally, one should never reuse an IV with the same encryption
150 * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both
151 * blocks. In this case, however, since we are using the same plaintext as
152 * well all that we end up with is a duplicate of the original ciphertext we
153 * already had. As a result, an attacker with read access to the raw disk will
154 * be able to tell which blocks are the same but this information is given away
155 * by dedup anyway. In order to get the same IVs and encryption keys for
156 * equivalent blocks of data we use an HMAC of the plaintext. We use an HMAC
157 * here so that a reproducible checksum of the plaintext is never available to
158 * the attacker. The HMAC key is kept alongside the master key, encrypted on
159 * disk. The first 64 bits of the HMAC are used in place of the random salt, and
160 * the next 96 bits are used as the IV. As a result of this mechanism, dedup
161 * will only work within a clone family since encrypted dedup requires use of
162 * the same master and HMAC keys.
163 */
164
165 /*
166 * After encrypting many blocks with the same key we may start to run up
167 * against the theoretical limits of how much data can securely be encrypted
168 * with a single key using the supported encryption modes. The most obvious
169 * limitation is that our risk of generating 2 equivalent 96 bit IVs increases
170 * the more IVs we generate (which both GCM and CCM modes strictly forbid).
171 * This risk actually grows surprisingly quickly over time according to the
172 * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have
173 * generated n IVs with a cryptographically secure RNG, the approximate
174 * probability p(n) of a collision is given as:
175 *
176 * p(n) ~= e^(-n*(n-1)/(2*(2^96)))
177 *
178 * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html]
179 *
180 * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion
181 * we must not write more than 398,065,730 blocks with the same encryption key.
182 * Therefore, we rotate our keys after 400,000,000 blocks have been written by
183 * generating a new random 64 bit salt for our HKDF encryption key generation
184 * function.
185 */
186 #define ZFS_KEY_MAX_SALT_USES_DEFAULT 400000000
187 #define ZFS_CURRENT_MAX_SALT_USES \
188 (MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT))
189 static unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT;
190
191 typedef struct blkptr_auth_buf {
192 uint64_t bab_prop; /* blk_prop - portable mask */
193 uint8_t bab_mac[ZIO_DATA_MAC_LEN]; /* MAC from blk_cksum */
194 uint64_t bab_pad; /* reserved for future use */
195 } blkptr_auth_buf_t;
196
197 const zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = {
198 {"", ZC_TYPE_NONE, 0, "inherit"},
199 {"", ZC_TYPE_NONE, 0, "on"},
200 {"", ZC_TYPE_NONE, 0, "off"},
201 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 16, "aes-128-ccm"},
202 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 24, "aes-192-ccm"},
203 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 32, "aes-256-ccm"},
204 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 16, "aes-128-gcm"},
205 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 24, "aes-192-gcm"},
206 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 32, "aes-256-gcm"}
207 };
208
209 void
210 zio_crypt_key_destroy(zio_crypt_key_t *key)
211 {
212 rw_destroy(&key->zk_salt_lock);
213
214 /* free crypto templates */
215 crypto_destroy_ctx_template(key->zk_current_tmpl);
216 crypto_destroy_ctx_template(key->zk_hmac_tmpl);
217
218 /* zero out sensitive data */
219 memset(key, 0, sizeof (zio_crypt_key_t));
220 }
221
222 int
223 zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key)
224 {
225 int ret;
226 crypto_mechanism_t mech = {0};
227 uint_t keydata_len;
228
229 ASSERT(key != NULL);
230 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
231
232 /*
233 * Workaround for GCC 12+ with UBSan enabled deficencies.
234 *
235 * GCC 12+ invoked with -fsanitize=undefined incorrectly reports the code
236 * below as violating -Warray-bounds
237 */
238 #if defined(__GNUC__) && !defined(__clang__) && \
239 ((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \
240 defined(CONFIG_UBSAN))
241 #pragma GCC diagnostic push
242 #pragma GCC diagnostic ignored "-Warray-bounds"
243 #endif
244 keydata_len = zio_crypt_table[crypt].ci_keylen;
245 #if defined(__GNUC__) && !defined(__clang__) && \
246 ((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \
247 defined(CONFIG_UBSAN))
248 #pragma GCC diagnostic pop
249 #endif
250 memset(key, 0, sizeof (zio_crypt_key_t));
251 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
252
253 /* fill keydata buffers and salt with random data */
254 ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t));
255 if (ret != 0)
256 goto error;
257
258 ret = random_get_bytes(key->zk_master_keydata, keydata_len);
259 if (ret != 0)
260 goto error;
261
262 ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN);
263 if (ret != 0)
264 goto error;
265
266 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
267 if (ret != 0)
268 goto error;
269
270 /* derive the current key from the master key */
271 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
272 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
273 keydata_len);
274 if (ret != 0)
275 goto error;
276
277 /* initialize keys for the ICP */
278 key->zk_current_key.ck_data = key->zk_current_keydata;
279 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
280
281 key->zk_hmac_key.ck_data = &key->zk_hmac_key;
282 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
283
284 /*
285 * Initialize the crypto templates. It's ok if this fails because
286 * this is just an optimization.
287 */
288 mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
289 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
290 &key->zk_current_tmpl);
291 if (ret != CRYPTO_SUCCESS)
292 key->zk_current_tmpl = NULL;
293
294 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
295 ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
296 &key->zk_hmac_tmpl);
297 if (ret != CRYPTO_SUCCESS)
298 key->zk_hmac_tmpl = NULL;
299
300 key->zk_crypt = crypt;
301 key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION;
302 key->zk_salt_count = 0;
303
304 return (0);
305
306 error:
307 zio_crypt_key_destroy(key);
308 return (ret);
309 }
310
311 static int
312 zio_crypt_key_change_salt(zio_crypt_key_t *key)
313 {
314 int ret = 0;
315 uint8_t salt[ZIO_DATA_SALT_LEN];
316 crypto_mechanism_t mech;
317 uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen;
318
319 /* generate a new salt */
320 ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN);
321 if (ret != 0)
322 goto error;
323
324 rw_enter(&key->zk_salt_lock, RW_WRITER);
325
326 /* someone beat us to the salt rotation, just unlock and return */
327 if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES)
328 goto out_unlock;
329
330 /* derive the current key from the master key and the new salt */
331 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
332 salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len);
333 if (ret != 0)
334 goto out_unlock;
335
336 /* assign the salt and reset the usage count */
337 memcpy(key->zk_salt, salt, ZIO_DATA_SALT_LEN);
338 key->zk_salt_count = 0;
339
340 /* destroy the old context template and create the new one */
341 crypto_destroy_ctx_template(key->zk_current_tmpl);
342 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
343 &key->zk_current_tmpl);
344 if (ret != CRYPTO_SUCCESS)
345 key->zk_current_tmpl = NULL;
346
347 rw_exit(&key->zk_salt_lock);
348
349 return (0);
350
351 out_unlock:
352 rw_exit(&key->zk_salt_lock);
353 error:
354 return (ret);
355 }
356
357 /* See comment above zfs_key_max_salt_uses definition for details */
358 int
359 zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt)
360 {
361 int ret;
362 boolean_t salt_change;
363
364 rw_enter(&key->zk_salt_lock, RW_READER);
365
366 memcpy(salt, key->zk_salt, ZIO_DATA_SALT_LEN);
367 salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >=
368 ZFS_CURRENT_MAX_SALT_USES);
369
370 rw_exit(&key->zk_salt_lock);
371
372 if (salt_change) {
373 ret = zio_crypt_key_change_salt(key);
374 if (ret != 0)
375 goto error;
376 }
377
378 return (0);
379
380 error:
381 return (ret);
382 }
383
384 /*
385 * This function handles all encryption and decryption in zfs. When
386 * encrypting it expects puio to reference the plaintext and cuio to
387 * reference the ciphertext. cuio must have enough space for the
388 * ciphertext + room for a MAC. datalen should be the length of the
389 * plaintext / ciphertext alone.
390 */
391 static int
392 zio_do_crypt_uio(boolean_t encrypt, uint64_t crypt, crypto_key_t *key,
393 crypto_ctx_template_t tmpl, uint8_t *ivbuf, uint_t datalen,
394 zfs_uio_t *puio, zfs_uio_t *cuio, uint8_t *authbuf, uint_t auth_len)
395 {
396 int ret;
397 crypto_data_t plaindata, cipherdata;
398 CK_AES_CCM_PARAMS ccmp;
399 CK_AES_GCM_PARAMS gcmp;
400 crypto_mechanism_t mech;
401 zio_crypt_info_t crypt_info;
402 uint_t plain_full_len, maclen;
403
404 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
405
406 /* lookup the encryption info */
407 crypt_info = zio_crypt_table[crypt];
408
409 /* the mac will always be the last iovec_t in the cipher uio */
410 maclen = cuio->uio_iov[cuio->uio_iovcnt - 1].iov_len;
411
412 ASSERT(maclen <= ZIO_DATA_MAC_LEN);
413
414 /* setup encryption mechanism (same as crypt) */
415 mech.cm_type = crypto_mech2id(crypt_info.ci_mechname);
416
417 /*
418 * Strangely, the ICP requires that plain_full_len must include
419 * the MAC length when decrypting, even though the UIO does not
420 * need to have the extra space allocated.
421 */
422 if (encrypt) {
423 plain_full_len = datalen;
424 } else {
425 plain_full_len = datalen + maclen;
426 }
427
428 /*
429 * setup encryption params (currently only AES CCM and AES GCM
430 * are supported)
431 */
432 if (crypt_info.ci_crypt_type == ZC_TYPE_CCM) {
433 ccmp.ulNonceSize = ZIO_DATA_IV_LEN;
434 ccmp.ulAuthDataSize = auth_len;
435 ccmp.authData = authbuf;
436 ccmp.ulMACSize = maclen;
437 ccmp.nonce = ivbuf;
438 ccmp.ulDataSize = plain_full_len;
439
440 mech.cm_param = (char *)(&ccmp);
441 mech.cm_param_len = sizeof (CK_AES_CCM_PARAMS);
442 } else {
443 gcmp.ulIvLen = ZIO_DATA_IV_LEN;
444 gcmp.ulIvBits = CRYPTO_BYTES2BITS(ZIO_DATA_IV_LEN);
445 gcmp.ulAADLen = auth_len;
446 gcmp.pAAD = authbuf;
447 gcmp.ulTagBits = CRYPTO_BYTES2BITS(maclen);
448 gcmp.pIv = ivbuf;
449
450 mech.cm_param = (char *)(&gcmp);
451 mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
452 }
453
454 /* populate the cipher and plain data structs. */
455 plaindata.cd_format = CRYPTO_DATA_UIO;
456 plaindata.cd_offset = 0;
457 plaindata.cd_uio = puio;
458 plaindata.cd_length = plain_full_len;
459
460 cipherdata.cd_format = CRYPTO_DATA_UIO;
461 cipherdata.cd_offset = 0;
462 cipherdata.cd_uio = cuio;
463 cipherdata.cd_length = datalen + maclen;
464
465 /* perform the actual encryption */
466 if (encrypt) {
467 ret = crypto_encrypt(&mech, &plaindata, key, tmpl, &cipherdata);
468 if (ret != CRYPTO_SUCCESS) {
469 ret = SET_ERROR(EIO);
470 goto error;
471 }
472 } else {
473 ret = crypto_decrypt(&mech, &cipherdata, key, tmpl, &plaindata);
474 if (ret != CRYPTO_SUCCESS) {
475 ASSERT3U(ret, ==, CRYPTO_INVALID_MAC);
476 ret = SET_ERROR(ECKSUM);
477 goto error;
478 }
479 }
480
481 return (0);
482
483 error:
484 return (ret);
485 }
486
487 int
488 zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv,
489 uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out)
490 {
491 int ret;
492 zfs_uio_t puio, cuio;
493 uint64_t aad[3];
494 iovec_t plain_iovecs[2], cipher_iovecs[3];
495 uint64_t crypt = key->zk_crypt;
496 uint_t enc_len, keydata_len, aad_len;
497
498 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
499
500 keydata_len = zio_crypt_table[crypt].ci_keylen;
501
502 /* generate iv for wrapping the master and hmac key */
503 ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN);
504 if (ret != 0)
505 goto error;
506
507 /* initialize zfs_uio_ts */
508 plain_iovecs[0].iov_base = key->zk_master_keydata;
509 plain_iovecs[0].iov_len = keydata_len;
510 plain_iovecs[1].iov_base = key->zk_hmac_keydata;
511 plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
512
513 cipher_iovecs[0].iov_base = keydata_out;
514 cipher_iovecs[0].iov_len = keydata_len;
515 cipher_iovecs[1].iov_base = hmac_keydata_out;
516 cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
517 cipher_iovecs[2].iov_base = mac;
518 cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
519
520 /*
521 * Although we don't support writing to the old format, we do
522 * support rewrapping the key so that the user can move and
523 * quarantine datasets on the old format.
524 */
525 if (key->zk_version == 0) {
526 aad_len = sizeof (uint64_t);
527 aad[0] = LE_64(key->zk_guid);
528 } else {
529 ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
530 aad_len = sizeof (uint64_t) * 3;
531 aad[0] = LE_64(key->zk_guid);
532 aad[1] = LE_64(crypt);
533 aad[2] = LE_64(key->zk_version);
534 }
535
536 enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN;
537 puio.uio_iov = plain_iovecs;
538 puio.uio_iovcnt = 2;
539 puio.uio_segflg = UIO_SYSSPACE;
540 cuio.uio_iov = cipher_iovecs;
541 cuio.uio_iovcnt = 3;
542 cuio.uio_segflg = UIO_SYSSPACE;
543
544 /* encrypt the keys and store the resulting ciphertext and mac */
545 ret = zio_do_crypt_uio(B_TRUE, crypt, cwkey, NULL, iv, enc_len,
546 &puio, &cuio, (uint8_t *)aad, aad_len);
547 if (ret != 0)
548 goto error;
549
550 return (0);
551
552 error:
553 return (ret);
554 }
555
556 int
557 zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version,
558 uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv,
559 uint8_t *mac, zio_crypt_key_t *key)
560 {
561 crypto_mechanism_t mech;
562 zfs_uio_t puio, cuio;
563 uint64_t aad[3];
564 iovec_t plain_iovecs[2], cipher_iovecs[3];
565 uint_t enc_len, keydata_len, aad_len;
566 int ret;
567
568 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
569
570 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
571
572 keydata_len = zio_crypt_table[crypt].ci_keylen;
573
574 /* initialize zfs_uio_ts */
575 plain_iovecs[0].iov_base = key->zk_master_keydata;
576 plain_iovecs[0].iov_len = keydata_len;
577 plain_iovecs[1].iov_base = key->zk_hmac_keydata;
578 plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
579
580 cipher_iovecs[0].iov_base = keydata;
581 cipher_iovecs[0].iov_len = keydata_len;
582 cipher_iovecs[1].iov_base = hmac_keydata;
583 cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
584 cipher_iovecs[2].iov_base = mac;
585 cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
586
587 if (version == 0) {
588 aad_len = sizeof (uint64_t);
589 aad[0] = LE_64(guid);
590 } else {
591 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
592 aad_len = sizeof (uint64_t) * 3;
593 aad[0] = LE_64(guid);
594 aad[1] = LE_64(crypt);
595 aad[2] = LE_64(version);
596 }
597
598 enc_len = keydata_len + SHA512_HMAC_KEYLEN;
599 puio.uio_iov = plain_iovecs;
600 puio.uio_segflg = UIO_SYSSPACE;
601 puio.uio_iovcnt = 2;
602 cuio.uio_iov = cipher_iovecs;
603 cuio.uio_iovcnt = 3;
604 cuio.uio_segflg = UIO_SYSSPACE;
605
606 /* decrypt the keys and store the result in the output buffers */
607 ret = zio_do_crypt_uio(B_FALSE, crypt, cwkey, NULL, iv, enc_len,
608 &puio, &cuio, (uint8_t *)aad, aad_len);
609 if (ret != 0)
610 goto error;
611
612 /* generate a fresh salt */
613 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
614 if (ret != 0)
615 goto error;
616
617 /* derive the current key from the master key */
618 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
619 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
620 keydata_len);
621 if (ret != 0)
622 goto error;
623
624 /* initialize keys for ICP */
625 key->zk_current_key.ck_data = key->zk_current_keydata;
626 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
627
628 key->zk_hmac_key.ck_data = key->zk_hmac_keydata;
629 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
630
631 /*
632 * Initialize the crypto templates. It's ok if this fails because
633 * this is just an optimization.
634 */
635 mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
636 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
637 &key->zk_current_tmpl);
638 if (ret != CRYPTO_SUCCESS)
639 key->zk_current_tmpl = NULL;
640
641 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
642 ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
643 &key->zk_hmac_tmpl);
644 if (ret != CRYPTO_SUCCESS)
645 key->zk_hmac_tmpl = NULL;
646
647 key->zk_crypt = crypt;
648 key->zk_version = version;
649 key->zk_guid = guid;
650 key->zk_salt_count = 0;
651
652 return (0);
653
654 error:
655 zio_crypt_key_destroy(key);
656 return (ret);
657 }
658
659 int
660 zio_crypt_generate_iv(uint8_t *ivbuf)
661 {
662 int ret;
663
664 /* randomly generate the IV */
665 ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN);
666 if (ret != 0)
667 goto error;
668
669 return (0);
670
671 error:
672 memset(ivbuf, 0, ZIO_DATA_IV_LEN);
673 return (ret);
674 }
675
676 int
677 zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen,
678 uint8_t *digestbuf, uint_t digestlen)
679 {
680 int ret;
681 crypto_mechanism_t mech;
682 crypto_data_t in_data, digest_data;
683 uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH];
684
685 ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH);
686
687 /* initialize sha512-hmac mechanism and crypto data */
688 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
689 mech.cm_param = NULL;
690 mech.cm_param_len = 0;
691
692 /* initialize the crypto data */
693 in_data.cd_format = CRYPTO_DATA_RAW;
694 in_data.cd_offset = 0;
695 in_data.cd_length = datalen;
696 in_data.cd_raw.iov_base = (char *)data;
697 in_data.cd_raw.iov_len = in_data.cd_length;
698
699 digest_data.cd_format = CRYPTO_DATA_RAW;
700 digest_data.cd_offset = 0;
701 digest_data.cd_length = SHA512_DIGEST_LENGTH;
702 digest_data.cd_raw.iov_base = (char *)raw_digestbuf;
703 digest_data.cd_raw.iov_len = digest_data.cd_length;
704
705 /* generate the hmac */
706 ret = crypto_mac(&mech, &in_data, &key->zk_hmac_key, key->zk_hmac_tmpl,
707 &digest_data);
708 if (ret != CRYPTO_SUCCESS) {
709 ret = SET_ERROR(EIO);
710 goto error;
711 }
712
713 memcpy(digestbuf, raw_digestbuf, digestlen);
714
715 return (0);
716
717 error:
718 memset(digestbuf, 0, digestlen);
719 return (ret);
720 }
721
722 int
723 zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data,
724 uint_t datalen, uint8_t *ivbuf, uint8_t *salt)
725 {
726 int ret;
727 uint8_t digestbuf[SHA512_DIGEST_LENGTH];
728
729 ret = zio_crypt_do_hmac(key, data, datalen,
730 digestbuf, SHA512_DIGEST_LENGTH);
731 if (ret != 0)
732 return (ret);
733
734 memcpy(salt, digestbuf, ZIO_DATA_SALT_LEN);
735 memcpy(ivbuf, digestbuf + ZIO_DATA_SALT_LEN, ZIO_DATA_IV_LEN);
736
737 return (0);
738 }
739
740 /*
741 * The following functions are used to encode and decode encryption parameters
742 * into blkptr_t and zil_header_t. The ICP wants to use these parameters as
743 * byte strings, which normally means that these strings would not need to deal
744 * with byteswapping at all. However, both blkptr_t and zil_header_t may be
745 * byteswapped by lower layers and so we must "undo" that byteswap here upon
746 * decoding and encoding in a non-native byteorder. These functions require
747 * that the byteorder bit is correct before being called.
748 */
749 void
750 zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv)
751 {
752 uint64_t val64;
753 uint32_t val32;
754
755 ASSERT(BP_IS_ENCRYPTED(bp));
756
757 if (!BP_SHOULD_BYTESWAP(bp)) {
758 memcpy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t));
759 memcpy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t));
760 memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
761 BP_SET_IV2(bp, val32);
762 } else {
763 memcpy(&val64, salt, sizeof (uint64_t));
764 bp->blk_dva[2].dva_word[0] = BSWAP_64(val64);
765
766 memcpy(&val64, iv, sizeof (uint64_t));
767 bp->blk_dva[2].dva_word[1] = BSWAP_64(val64);
768
769 memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
770 BP_SET_IV2(bp, BSWAP_32(val32));
771 }
772 }
773
774 void
775 zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv)
776 {
777 uint64_t val64;
778 uint32_t val32;
779
780 ASSERT(BP_IS_PROTECTED(bp));
781
782 /* for convenience, so callers don't need to check */
783 if (BP_IS_AUTHENTICATED(bp)) {
784 memset(salt, 0, ZIO_DATA_SALT_LEN);
785 memset(iv, 0, ZIO_DATA_IV_LEN);
786 return;
787 }
788
789 if (!BP_SHOULD_BYTESWAP(bp)) {
790 memcpy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t));
791 memcpy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t));
792
793 val32 = (uint32_t)BP_GET_IV2(bp);
794 memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
795 } else {
796 val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]);
797 memcpy(salt, &val64, sizeof (uint64_t));
798
799 val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]);
800 memcpy(iv, &val64, sizeof (uint64_t));
801
802 val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp));
803 memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
804 }
805 }
806
807 void
808 zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac)
809 {
810 uint64_t val64;
811
812 ASSERT(BP_USES_CRYPT(bp));
813 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET);
814
815 if (!BP_SHOULD_BYTESWAP(bp)) {
816 memcpy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t));
817 memcpy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t),
818 sizeof (uint64_t));
819 } else {
820 memcpy(&val64, mac, sizeof (uint64_t));
821 bp->blk_cksum.zc_word[2] = BSWAP_64(val64);
822
823 memcpy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t));
824 bp->blk_cksum.zc_word[3] = BSWAP_64(val64);
825 }
826 }
827
828 void
829 zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac)
830 {
831 uint64_t val64;
832
833 ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp));
834
835 /* for convenience, so callers don't need to check */
836 if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
837 memset(mac, 0, ZIO_DATA_MAC_LEN);
838 return;
839 }
840
841 if (!BP_SHOULD_BYTESWAP(bp)) {
842 memcpy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t));
843 memcpy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3],
844 sizeof (uint64_t));
845 } else {
846 val64 = BSWAP_64(bp->blk_cksum.zc_word[2]);
847 memcpy(mac, &val64, sizeof (uint64_t));
848
849 val64 = BSWAP_64(bp->blk_cksum.zc_word[3]);
850 memcpy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t));
851 }
852 }
853
854 void
855 zio_crypt_encode_mac_zil(void *data, uint8_t *mac)
856 {
857 zil_chain_t *zilc = data;
858
859 memcpy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t));
860 memcpy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t),
861 sizeof (uint64_t));
862 }
863
864 void
865 zio_crypt_decode_mac_zil(const void *data, uint8_t *mac)
866 {
867 /*
868 * The ZIL MAC is embedded in the block it protects, which will
869 * not have been byteswapped by the time this function has been called.
870 * As a result, we don't need to worry about byteswapping the MAC.
871 */
872 const zil_chain_t *zilc = data;
873
874 memcpy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t));
875 memcpy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3],
876 sizeof (uint64_t));
877 }
878
879 /*
880 * This routine takes a block of dnodes (src_abd) and copies only the bonus
881 * buffers to the same offsets in the dst buffer. datalen should be the size
882 * of both the src_abd and the dst buffer (not just the length of the bonus
883 * buffers).
884 */
885 void
886 zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen)
887 {
888 uint_t i, max_dnp = datalen >> DNODE_SHIFT;
889 uint8_t *src;
890 dnode_phys_t *dnp, *sdnp, *ddnp;
891
892 src = abd_borrow_buf_copy(src_abd, datalen);
893
894 sdnp = (dnode_phys_t *)src;
895 ddnp = (dnode_phys_t *)dst;
896
897 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
898 dnp = &sdnp[i];
899 if (dnp->dn_type != DMU_OT_NONE &&
900 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
901 dnp->dn_bonuslen != 0) {
902 memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp),
903 DN_MAX_BONUS_LEN(dnp));
904 }
905 }
906
907 abd_return_buf(src_abd, src, datalen);
908 }
909
910 /*
911 * This function decides what fields from blk_prop are included in
912 * the on-disk various MAC algorithms.
913 */
914 static void
915 zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version)
916 {
917 /*
918 * Version 0 did not properly zero out all non-portable fields
919 * as it should have done. We maintain this code so that we can
920 * do read-only imports of pools on this version.
921 */
922 if (version == 0) {
923 BP_SET_DEDUP(bp, 0);
924 BP_SET_CHECKSUM(bp, 0);
925 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
926 return;
927 }
928
929 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
930
931 /*
932 * The hole_birth feature might set these fields even if this bp
933 * is a hole. We zero them out here to guarantee that raw sends
934 * will function with or without the feature.
935 */
936 if (BP_IS_HOLE(bp)) {
937 bp->blk_prop = 0ULL;
938 return;
939 }
940
941 /*
942 * At L0 we want to verify these fields to ensure that data blocks
943 * can not be reinterpreted. For instance, we do not want an attacker
944 * to trick us into returning raw lz4 compressed data to the user
945 * by modifying the compression bits. At higher levels, we cannot
946 * enforce this policy since raw sends do not convey any information
947 * about indirect blocks, so these values might be different on the
948 * receive side. Fortunately, this does not open any new attack
949 * vectors, since any alterations that can be made to a higher level
950 * bp must still verify the correct order of the layer below it.
951 */
952 if (BP_GET_LEVEL(bp) != 0) {
953 BP_SET_BYTEORDER(bp, 0);
954 BP_SET_COMPRESS(bp, 0);
955
956 /*
957 * psize cannot be set to zero or it will trigger
958 * asserts, but the value doesn't really matter as
959 * long as it is constant.
960 */
961 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
962 }
963
964 BP_SET_DEDUP(bp, 0);
965 BP_SET_CHECKSUM(bp, 0);
966 }
967
968 static void
969 zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp,
970 blkptr_auth_buf_t *bab, uint_t *bab_len)
971 {
972 blkptr_t tmpbp = *bp;
973
974 if (should_bswap)
975 byteswap_uint64_array(&tmpbp, sizeof (blkptr_t));
976
977 ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp));
978 ASSERT0(BP_IS_EMBEDDED(&tmpbp));
979
980 zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac);
981
982 /*
983 * We always MAC blk_prop in LE to ensure portability. This
984 * must be done after decoding the mac, since the endianness
985 * will get zero'd out here.
986 */
987 zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version);
988 bab->bab_prop = LE_64(tmpbp.blk_prop);
989 bab->bab_pad = 0ULL;
990
991 /* version 0 did not include the padding */
992 *bab_len = sizeof (blkptr_auth_buf_t);
993 if (version == 0)
994 *bab_len -= sizeof (uint64_t);
995 }
996
997 static int
998 zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version,
999 boolean_t should_bswap, blkptr_t *bp)
1000 {
1001 int ret;
1002 uint_t bab_len;
1003 blkptr_auth_buf_t bab;
1004 crypto_data_t cd;
1005
1006 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1007 cd.cd_format = CRYPTO_DATA_RAW;
1008 cd.cd_offset = 0;
1009 cd.cd_length = bab_len;
1010 cd.cd_raw.iov_base = (char *)&bab;
1011 cd.cd_raw.iov_len = cd.cd_length;
1012
1013 ret = crypto_mac_update(ctx, &cd);
1014 if (ret != CRYPTO_SUCCESS) {
1015 ret = SET_ERROR(EIO);
1016 goto error;
1017 }
1018
1019 return (0);
1020
1021 error:
1022 return (ret);
1023 }
1024
1025 static void
1026 zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version,
1027 boolean_t should_bswap, blkptr_t *bp)
1028 {
1029 uint_t bab_len;
1030 blkptr_auth_buf_t bab;
1031
1032 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1033 SHA2Update(ctx, &bab, bab_len);
1034 }
1035
1036 static void
1037 zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version,
1038 boolean_t should_bswap, blkptr_t *bp)
1039 {
1040 uint_t bab_len;
1041 blkptr_auth_buf_t bab;
1042
1043 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1044 memcpy(*aadp, &bab, bab_len);
1045 *aadp += bab_len;
1046 *aad_len += bab_len;
1047 }
1048
1049 static int
1050 zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version,
1051 boolean_t should_bswap, dnode_phys_t *dnp)
1052 {
1053 int ret, i;
1054 dnode_phys_t *adnp, tmp_dncore;
1055 size_t dn_core_size = offsetof(dnode_phys_t, dn_blkptr);
1056 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1057 crypto_data_t cd;
1058
1059 cd.cd_format = CRYPTO_DATA_RAW;
1060 cd.cd_offset = 0;
1061
1062 /*
1063 * Authenticate the core dnode (masking out non-portable bits).
1064 * We only copy the first 64 bytes we operate on to avoid the overhead
1065 * of copying 512-64 unneeded bytes. The compiler seems to be fine
1066 * with that.
1067 */
1068 memcpy(&tmp_dncore, dnp, dn_core_size);
1069 adnp = &tmp_dncore;
1070
1071 if (le_bswap) {
1072 adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec);
1073 adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen);
1074 adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid);
1075 adnp->dn_used = BSWAP_64(adnp->dn_used);
1076 }
1077 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1078 adnp->dn_used = 0;
1079
1080 cd.cd_length = dn_core_size;
1081 cd.cd_raw.iov_base = (char *)adnp;
1082 cd.cd_raw.iov_len = cd.cd_length;
1083
1084 ret = crypto_mac_update(ctx, &cd);
1085 if (ret != CRYPTO_SUCCESS) {
1086 ret = SET_ERROR(EIO);
1087 goto error;
1088 }
1089
1090 for (i = 0; i < dnp->dn_nblkptr; i++) {
1091 ret = zio_crypt_bp_do_hmac_updates(ctx, version,
1092 should_bswap, &dnp->dn_blkptr[i]);
1093 if (ret != 0)
1094 goto error;
1095 }
1096
1097 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1098 ret = zio_crypt_bp_do_hmac_updates(ctx, version,
1099 should_bswap, DN_SPILL_BLKPTR(dnp));
1100 if (ret != 0)
1101 goto error;
1102 }
1103
1104 return (0);
1105
1106 error:
1107 return (ret);
1108 }
1109
1110 /*
1111 * objset_phys_t blocks introduce a number of exceptions to the normal
1112 * authentication process. objset_phys_t's contain 2 separate HMACS for
1113 * protecting the integrity of their data. The portable_mac protects the
1114 * metadnode. This MAC can be sent with a raw send and protects against
1115 * reordering of data within the metadnode. The local_mac protects the user
1116 * accounting objects which are not sent from one system to another.
1117 *
1118 * In addition, objset blocks are the only blocks that can be modified and
1119 * written to disk without the key loaded under certain circumstances. During
1120 * zil_claim() we need to be able to update the zil_header_t to complete
1121 * claiming log blocks and during raw receives we need to write out the
1122 * portable_mac from the send file. Both of these actions are possible
1123 * because these fields are not protected by either MAC so neither one will
1124 * need to modify the MACs without the key. However, when the modified blocks
1125 * are written out they will be byteswapped into the host machine's native
1126 * endianness which will modify fields protected by the MAC. As a result, MAC
1127 * calculation for objset blocks works slightly differently from other block
1128 * types. Where other block types MAC the data in whatever endianness is
1129 * written to disk, objset blocks always MAC little endian version of their
1130 * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP()
1131 * and le_bswap indicates whether a byteswap is needed to get this block
1132 * into little endian format.
1133 */
1134 int
1135 zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen,
1136 boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac)
1137 {
1138 int ret;
1139 crypto_mechanism_t mech;
1140 crypto_context_t ctx;
1141 crypto_data_t cd;
1142 objset_phys_t *osp = data;
1143 uint64_t intval;
1144 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1145 uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH];
1146 uint8_t raw_local_mac[SHA512_DIGEST_LENGTH];
1147
1148 /* initialize HMAC mechanism */
1149 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
1150 mech.cm_param = NULL;
1151 mech.cm_param_len = 0;
1152
1153 cd.cd_format = CRYPTO_DATA_RAW;
1154 cd.cd_offset = 0;
1155
1156 /* calculate the portable MAC from the portable fields and metadnode */
1157 ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx);
1158 if (ret != CRYPTO_SUCCESS) {
1159 ret = SET_ERROR(EIO);
1160 goto error;
1161 }
1162
1163 /* add in the os_type */
1164 intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type);
1165 cd.cd_length = sizeof (uint64_t);
1166 cd.cd_raw.iov_base = (char *)&intval;
1167 cd.cd_raw.iov_len = cd.cd_length;
1168
1169 ret = crypto_mac_update(ctx, &cd);
1170 if (ret != CRYPTO_SUCCESS) {
1171 ret = SET_ERROR(EIO);
1172 goto error;
1173 }
1174
1175 /* add in the portable os_flags */
1176 intval = osp->os_flags;
1177 if (should_bswap)
1178 intval = BSWAP_64(intval);
1179 intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1180 if (!ZFS_HOST_BYTEORDER)
1181 intval = BSWAP_64(intval);
1182
1183 cd.cd_length = sizeof (uint64_t);
1184 cd.cd_raw.iov_base = (char *)&intval;
1185 cd.cd_raw.iov_len = cd.cd_length;
1186
1187 ret = crypto_mac_update(ctx, &cd);
1188 if (ret != CRYPTO_SUCCESS) {
1189 ret = SET_ERROR(EIO);
1190 goto error;
1191 }
1192
1193 /* add in fields from the metadnode */
1194 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1195 should_bswap, &osp->os_meta_dnode);
1196 if (ret)
1197 goto error;
1198
1199 /* store the final digest in a temporary buffer and copy what we need */
1200 cd.cd_length = SHA512_DIGEST_LENGTH;
1201 cd.cd_raw.iov_base = (char *)raw_portable_mac;
1202 cd.cd_raw.iov_len = cd.cd_length;
1203
1204 ret = crypto_mac_final(ctx, &cd);
1205 if (ret != CRYPTO_SUCCESS) {
1206 ret = SET_ERROR(EIO);
1207 goto error;
1208 }
1209
1210 memcpy(portable_mac, raw_portable_mac, ZIO_OBJSET_MAC_LEN);
1211
1212 /*
1213 * This is necessary here as we check next whether
1214 * OBJSET_FLAG_USERACCOUNTING_COMPLETE is set in order to
1215 * decide if the local_mac should be zeroed out. That flag will always
1216 * be set by dmu_objset_id_quota_upgrade_cb() and
1217 * dmu_objset_userspace_upgrade_cb() if useraccounting has been
1218 * completed.
1219 */
1220 intval = osp->os_flags;
1221 if (should_bswap)
1222 intval = BSWAP_64(intval);
1223 boolean_t uacct_incomplete =
1224 !(intval & OBJSET_FLAG_USERACCOUNTING_COMPLETE);
1225
1226 /*
1227 * The local MAC protects the user, group and project accounting.
1228 * If these objects are not present, the local MAC is zeroed out.
1229 */
1230 if (uacct_incomplete ||
1231 (datalen >= OBJSET_PHYS_SIZE_V3 &&
1232 osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1233 osp->os_groupused_dnode.dn_type == DMU_OT_NONE &&
1234 osp->os_projectused_dnode.dn_type == DMU_OT_NONE) ||
1235 (datalen >= OBJSET_PHYS_SIZE_V2 &&
1236 osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1237 osp->os_groupused_dnode.dn_type == DMU_OT_NONE) ||
1238 (datalen <= OBJSET_PHYS_SIZE_V1)) {
1239 memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
1240 return (0);
1241 }
1242
1243 /* calculate the local MAC from the userused and groupused dnodes */
1244 ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx);
1245 if (ret != CRYPTO_SUCCESS) {
1246 ret = SET_ERROR(EIO);
1247 goto error;
1248 }
1249
1250 /* add in the non-portable os_flags */
1251 intval = osp->os_flags;
1252 if (should_bswap)
1253 intval = BSWAP_64(intval);
1254 intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1255 if (!ZFS_HOST_BYTEORDER)
1256 intval = BSWAP_64(intval);
1257
1258 cd.cd_length = sizeof (uint64_t);
1259 cd.cd_raw.iov_base = (char *)&intval;
1260 cd.cd_raw.iov_len = cd.cd_length;
1261
1262 ret = crypto_mac_update(ctx, &cd);
1263 if (ret != CRYPTO_SUCCESS) {
1264 ret = SET_ERROR(EIO);
1265 goto error;
1266 }
1267
1268 /* add in fields from the user accounting dnodes */
1269 if (osp->os_userused_dnode.dn_type != DMU_OT_NONE) {
1270 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1271 should_bswap, &osp->os_userused_dnode);
1272 if (ret)
1273 goto error;
1274 }
1275
1276 if (osp->os_groupused_dnode.dn_type != DMU_OT_NONE) {
1277 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1278 should_bswap, &osp->os_groupused_dnode);
1279 if (ret)
1280 goto error;
1281 }
1282
1283 if (osp->os_projectused_dnode.dn_type != DMU_OT_NONE &&
1284 datalen >= OBJSET_PHYS_SIZE_V3) {
1285 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1286 should_bswap, &osp->os_projectused_dnode);
1287 if (ret)
1288 goto error;
1289 }
1290
1291 /* store the final digest in a temporary buffer and copy what we need */
1292 cd.cd_length = SHA512_DIGEST_LENGTH;
1293 cd.cd_raw.iov_base = (char *)raw_local_mac;
1294 cd.cd_raw.iov_len = cd.cd_length;
1295
1296 ret = crypto_mac_final(ctx, &cd);
1297 if (ret != CRYPTO_SUCCESS) {
1298 ret = SET_ERROR(EIO);
1299 goto error;
1300 }
1301
1302 memcpy(local_mac, raw_local_mac, ZIO_OBJSET_MAC_LEN);
1303
1304 return (0);
1305
1306 error:
1307 memset(portable_mac, 0, ZIO_OBJSET_MAC_LEN);
1308 memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
1309 return (ret);
1310 }
1311
1312 static void
1313 zio_crypt_destroy_uio(zfs_uio_t *uio)
1314 {
1315 if (uio->uio_iov)
1316 kmem_free(uio->uio_iov, uio->uio_iovcnt * sizeof (iovec_t));
1317 }
1318
1319 /*
1320 * This function parses an uncompressed indirect block and returns a checksum
1321 * of all the portable fields from all of the contained bps. The portable
1322 * fields are the MAC and all of the fields from blk_prop except for the dedup,
1323 * checksum, and psize bits. For an explanation of the purpose of this, see
1324 * the comment block on object set authentication.
1325 */
1326 static int
1327 zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf,
1328 uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum)
1329 {
1330 blkptr_t *bp;
1331 int i, epb = datalen >> SPA_BLKPTRSHIFT;
1332 SHA2_CTX ctx;
1333 uint8_t digestbuf[SHA512_DIGEST_LENGTH];
1334
1335 /* checksum all of the MACs from the layer below */
1336 SHA2Init(SHA512, &ctx);
1337 for (i = 0, bp = buf; i < epb; i++, bp++) {
1338 zio_crypt_bp_do_indrect_checksum_updates(&ctx, version,
1339 byteswap, bp);
1340 }
1341 SHA2Final(digestbuf, &ctx);
1342
1343 if (generate) {
1344 memcpy(cksum, digestbuf, ZIO_DATA_MAC_LEN);
1345 return (0);
1346 }
1347
1348 if (memcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0)
1349 return (SET_ERROR(ECKSUM));
1350
1351 return (0);
1352 }
1353
1354 int
1355 zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf,
1356 uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1357 {
1358 int ret;
1359
1360 /*
1361 * Unfortunately, callers of this function will not always have
1362 * easy access to the on-disk format version. This info is
1363 * normally found in the DSL Crypto Key, but the checksum-of-MACs
1364 * is expected to be verifiable even when the key isn't loaded.
1365 * Here, instead of doing a ZAP lookup for the version for each
1366 * zio, we simply try both existing formats.
1367 */
1368 ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf,
1369 datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum);
1370 if (ret == ECKSUM) {
1371 ASSERT(!generate);
1372 ret = zio_crypt_do_indirect_mac_checksum_impl(generate,
1373 buf, datalen, 0, byteswap, cksum);
1374 }
1375
1376 return (ret);
1377 }
1378
1379 int
1380 zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd,
1381 uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1382 {
1383 int ret;
1384 void *buf;
1385
1386 buf = abd_borrow_buf_copy(abd, datalen);
1387 ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen,
1388 byteswap, cksum);
1389 abd_return_buf(abd, buf, datalen);
1390
1391 return (ret);
1392 }
1393
1394 /*
1395 * Special case handling routine for encrypting / decrypting ZIL blocks.
1396 * We do not check for the older ZIL chain because the encryption feature
1397 * was not available before the newer ZIL chain was introduced. The goal
1398 * here is to encrypt everything except the blkptr_t of a lr_write_t and
1399 * the zil_chain_t header. Everything that is not encrypted is authenticated.
1400 */
1401 static int
1402 zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf,
1403 uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, zfs_uio_t *puio,
1404 zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len,
1405 boolean_t *no_crypt)
1406 {
1407 int ret;
1408 uint64_t txtype, lr_len, nused;
1409 uint_t nr_src, nr_dst, crypt_len;
1410 uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
1411 iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
1412 uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp;
1413 zil_chain_t *zilc;
1414 lr_t *lr;
1415 uint8_t *aadbuf = zio_buf_alloc(datalen);
1416
1417 /* cipherbuf always needs an extra iovec for the MAC */
1418 if (encrypt) {
1419 src = plainbuf;
1420 dst = cipherbuf;
1421 nr_src = 0;
1422 nr_dst = 1;
1423 } else {
1424 src = cipherbuf;
1425 dst = plainbuf;
1426 nr_src = 1;
1427 nr_dst = 0;
1428 }
1429 memset(dst, 0, datalen);
1430
1431 /* find the start and end record of the log block */
1432 zilc = (zil_chain_t *)src;
1433 slrp = src + sizeof (zil_chain_t);
1434 aadp = aadbuf;
1435 nused = ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused);
1436 ASSERT3U(nused, >=, sizeof (zil_chain_t));
1437 ASSERT3U(nused, <=, datalen);
1438 blkend = src + nused;
1439
1440 /* calculate the number of encrypted iovecs we will need */
1441 for (; slrp < blkend; slrp += lr_len) {
1442 lr = (lr_t *)slrp;
1443
1444 if (!byteswap) {
1445 txtype = lr->lrc_txtype;
1446 lr_len = lr->lrc_reclen;
1447 } else {
1448 txtype = BSWAP_64(lr->lrc_txtype);
1449 lr_len = BSWAP_64(lr->lrc_reclen);
1450 }
1451 ASSERT3U(lr_len, >=, sizeof (lr_t));
1452 ASSERT3U(lr_len, <=, blkend - slrp);
1453
1454 nr_iovecs++;
1455 if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t))
1456 nr_iovecs++;
1457 }
1458
1459 nr_src += nr_iovecs;
1460 nr_dst += nr_iovecs;
1461
1462 /* allocate the iovec arrays */
1463 if (nr_src != 0) {
1464 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
1465 if (src_iovecs == NULL) {
1466 ret = SET_ERROR(ENOMEM);
1467 goto error;
1468 }
1469 }
1470
1471 if (nr_dst != 0) {
1472 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
1473 if (dst_iovecs == NULL) {
1474 ret = SET_ERROR(ENOMEM);
1475 goto error;
1476 }
1477 }
1478
1479 /*
1480 * Copy the plain zil header over and authenticate everything except
1481 * the checksum that will store our MAC. If we are writing the data
1482 * the embedded checksum will not have been calculated yet, so we don't
1483 * authenticate that.
1484 */
1485 memcpy(dst, src, sizeof (zil_chain_t));
1486 memcpy(aadp, src, sizeof (zil_chain_t) - sizeof (zio_eck_t));
1487 aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1488 aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1489
1490 /* loop over records again, filling in iovecs */
1491 nr_iovecs = 0;
1492 slrp = src + sizeof (zil_chain_t);
1493 dlrp = dst + sizeof (zil_chain_t);
1494
1495 for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) {
1496 lr = (lr_t *)slrp;
1497
1498 if (!byteswap) {
1499 txtype = lr->lrc_txtype;
1500 lr_len = lr->lrc_reclen;
1501 } else {
1502 txtype = BSWAP_64(lr->lrc_txtype);
1503 lr_len = BSWAP_64(lr->lrc_reclen);
1504 }
1505
1506 /* copy the common lr_t */
1507 memcpy(dlrp, slrp, sizeof (lr_t));
1508 memcpy(aadp, slrp, sizeof (lr_t));
1509 aadp += sizeof (lr_t);
1510 aad_len += sizeof (lr_t);
1511
1512 ASSERT3P(src_iovecs, !=, NULL);
1513 ASSERT3P(dst_iovecs, !=, NULL);
1514
1515 /*
1516 * If this is a TX_WRITE record we want to encrypt everything
1517 * except the bp if exists. If the bp does exist we want to
1518 * authenticate it.
1519 */
1520 if (txtype == TX_WRITE) {
1521 crypt_len = sizeof (lr_write_t) -
1522 sizeof (lr_t) - sizeof (blkptr_t);
1523 src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1524 src_iovecs[nr_iovecs].iov_len = crypt_len;
1525 dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1526 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1527
1528 /* copy the bp now since it will not be encrypted */
1529 memcpy(dlrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1530 slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1531 sizeof (blkptr_t));
1532 memcpy(aadp,
1533 slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1534 sizeof (blkptr_t));
1535 aadp += sizeof (blkptr_t);
1536 aad_len += sizeof (blkptr_t);
1537 nr_iovecs++;
1538 total_len += crypt_len;
1539
1540 if (lr_len != sizeof (lr_write_t)) {
1541 crypt_len = lr_len - sizeof (lr_write_t);
1542 src_iovecs[nr_iovecs].iov_base =
1543 slrp + sizeof (lr_write_t);
1544 src_iovecs[nr_iovecs].iov_len = crypt_len;
1545 dst_iovecs[nr_iovecs].iov_base =
1546 dlrp + sizeof (lr_write_t);
1547 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1548 nr_iovecs++;
1549 total_len += crypt_len;
1550 }
1551 } else if (txtype == TX_CLONE_RANGE) {
1552 const size_t o = offsetof(lr_clone_range_t, lr_nbps);
1553 crypt_len = o - sizeof (lr_t);
1554 src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1555 src_iovecs[nr_iovecs].iov_len = crypt_len;
1556 dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1557 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1558
1559 /* copy the bps now since they will not be encrypted */
1560 memcpy(dlrp + o, slrp + o, lr_len - o);
1561 memcpy(aadp, slrp + o, lr_len - o);
1562 aadp += lr_len - o;
1563 aad_len += lr_len - o;
1564 nr_iovecs++;
1565 total_len += crypt_len;
1566 } else {
1567 crypt_len = lr_len - sizeof (lr_t);
1568 src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1569 src_iovecs[nr_iovecs].iov_len = crypt_len;
1570 dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1571 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1572 nr_iovecs++;
1573 total_len += crypt_len;
1574 }
1575 }
1576
1577 *no_crypt = (nr_iovecs == 0);
1578 *enc_len = total_len;
1579 *authbuf = aadbuf;
1580 *auth_len = aad_len;
1581
1582 if (encrypt) {
1583 puio->uio_iov = src_iovecs;
1584 puio->uio_iovcnt = nr_src;
1585 cuio->uio_iov = dst_iovecs;
1586 cuio->uio_iovcnt = nr_dst;
1587 } else {
1588 puio->uio_iov = dst_iovecs;
1589 puio->uio_iovcnt = nr_dst;
1590 cuio->uio_iov = src_iovecs;
1591 cuio->uio_iovcnt = nr_src;
1592 }
1593
1594 return (0);
1595
1596 error:
1597 zio_buf_free(aadbuf, datalen);
1598 if (src_iovecs != NULL)
1599 kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
1600 if (dst_iovecs != NULL)
1601 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
1602
1603 *enc_len = 0;
1604 *authbuf = NULL;
1605 *auth_len = 0;
1606 *no_crypt = B_FALSE;
1607 puio->uio_iov = NULL;
1608 puio->uio_iovcnt = 0;
1609 cuio->uio_iov = NULL;
1610 cuio->uio_iovcnt = 0;
1611 return (ret);
1612 }
1613
1614 /*
1615 * Special case handling routine for encrypting / decrypting dnode blocks.
1616 */
1617 static int
1618 zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version,
1619 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1620 zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf,
1621 uint_t *auth_len, boolean_t *no_crypt)
1622 {
1623 int ret;
1624 uint_t nr_src, nr_dst, crypt_len;
1625 uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
1626 uint_t i, j, max_dnp = datalen >> DNODE_SHIFT;
1627 iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
1628 uint8_t *src, *dst, *aadp;
1629 dnode_phys_t *dnp, *adnp, *sdnp, *ddnp;
1630 uint8_t *aadbuf = zio_buf_alloc(datalen);
1631
1632 if (encrypt) {
1633 src = plainbuf;
1634 dst = cipherbuf;
1635 nr_src = 0;
1636 nr_dst = 1;
1637 } else {
1638 src = cipherbuf;
1639 dst = plainbuf;
1640 nr_src = 1;
1641 nr_dst = 0;
1642 }
1643
1644 sdnp = (dnode_phys_t *)src;
1645 ddnp = (dnode_phys_t *)dst;
1646 aadp = aadbuf;
1647
1648 /*
1649 * Count the number of iovecs we will need to do the encryption by
1650 * counting the number of bonus buffers that need to be encrypted.
1651 */
1652 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1653 /*
1654 * This block may still be byteswapped. However, all of the
1655 * values we use are either uint8_t's (for which byteswapping
1656 * is a noop) or a * != 0 check, which will work regardless
1657 * of whether or not we byteswap.
1658 */
1659 if (sdnp[i].dn_type != DMU_OT_NONE &&
1660 DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) &&
1661 sdnp[i].dn_bonuslen != 0) {
1662 nr_iovecs++;
1663 }
1664 }
1665
1666 nr_src += nr_iovecs;
1667 nr_dst += nr_iovecs;
1668
1669 if (nr_src != 0) {
1670 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
1671 if (src_iovecs == NULL) {
1672 ret = SET_ERROR(ENOMEM);
1673 goto error;
1674 }
1675 }
1676
1677 if (nr_dst != 0) {
1678 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
1679 if (dst_iovecs == NULL) {
1680 ret = SET_ERROR(ENOMEM);
1681 goto error;
1682 }
1683 }
1684
1685 nr_iovecs = 0;
1686
1687 /*
1688 * Iterate through the dnodes again, this time filling in the uios
1689 * we allocated earlier. We also concatenate any data we want to
1690 * authenticate onto aadbuf.
1691 */
1692 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1693 dnp = &sdnp[i];
1694
1695 /* copy over the core fields and blkptrs (kept as plaintext) */
1696 memcpy(&ddnp[i], dnp,
1697 (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp);
1698
1699 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1700 memcpy(DN_SPILL_BLKPTR(&ddnp[i]), DN_SPILL_BLKPTR(dnp),
1701 sizeof (blkptr_t));
1702 }
1703
1704 /*
1705 * Handle authenticated data. We authenticate everything in
1706 * the dnode that can be brought over when we do a raw send.
1707 * This includes all of the core fields as well as the MACs
1708 * stored in the bp checksums and all of the portable bits
1709 * from blk_prop. We include the dnode padding here in case it
1710 * ever gets used in the future. Some dn_flags and dn_used are
1711 * not portable so we mask those out values out of the
1712 * authenticated data.
1713 */
1714 crypt_len = offsetof(dnode_phys_t, dn_blkptr);
1715 memcpy(aadp, dnp, crypt_len);
1716 adnp = (dnode_phys_t *)aadp;
1717 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1718 adnp->dn_used = 0;
1719 aadp += crypt_len;
1720 aad_len += crypt_len;
1721
1722 for (j = 0; j < dnp->dn_nblkptr; j++) {
1723 zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1724 version, byteswap, &dnp->dn_blkptr[j]);
1725 }
1726
1727 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1728 zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1729 version, byteswap, DN_SPILL_BLKPTR(dnp));
1730 }
1731
1732 /*
1733 * If this bonus buffer needs to be encrypted, we prepare an
1734 * iovec_t. The encryption / decryption functions will fill
1735 * this in for us with the encrypted or decrypted data.
1736 * Otherwise we add the bonus buffer to the authenticated
1737 * data buffer and copy it over to the destination. The
1738 * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that
1739 * we can guarantee alignment with the AES block size
1740 * (128 bits).
1741 */
1742 crypt_len = DN_MAX_BONUS_LEN(dnp);
1743 if (dnp->dn_type != DMU_OT_NONE &&
1744 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
1745 dnp->dn_bonuslen != 0) {
1746 ASSERT3U(nr_iovecs, <, nr_src);
1747 ASSERT3U(nr_iovecs, <, nr_dst);
1748 ASSERT3P(src_iovecs, !=, NULL);
1749 ASSERT3P(dst_iovecs, !=, NULL);
1750 src_iovecs[nr_iovecs].iov_base = DN_BONUS(dnp);
1751 src_iovecs[nr_iovecs].iov_len = crypt_len;
1752 dst_iovecs[nr_iovecs].iov_base = DN_BONUS(&ddnp[i]);
1753 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1754
1755 nr_iovecs++;
1756 total_len += crypt_len;
1757 } else {
1758 memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp), crypt_len);
1759 memcpy(aadp, DN_BONUS(dnp), crypt_len);
1760 aadp += crypt_len;
1761 aad_len += crypt_len;
1762 }
1763 }
1764
1765 *no_crypt = (nr_iovecs == 0);
1766 *enc_len = total_len;
1767 *authbuf = aadbuf;
1768 *auth_len = aad_len;
1769
1770 if (encrypt) {
1771 puio->uio_iov = src_iovecs;
1772 puio->uio_iovcnt = nr_src;
1773 cuio->uio_iov = dst_iovecs;
1774 cuio->uio_iovcnt = nr_dst;
1775 } else {
1776 puio->uio_iov = dst_iovecs;
1777 puio->uio_iovcnt = nr_dst;
1778 cuio->uio_iov = src_iovecs;
1779 cuio->uio_iovcnt = nr_src;
1780 }
1781
1782 return (0);
1783
1784 error:
1785 zio_buf_free(aadbuf, datalen);
1786 if (src_iovecs != NULL)
1787 kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
1788 if (dst_iovecs != NULL)
1789 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
1790
1791 *enc_len = 0;
1792 *authbuf = NULL;
1793 *auth_len = 0;
1794 *no_crypt = B_FALSE;
1795 puio->uio_iov = NULL;
1796 puio->uio_iovcnt = 0;
1797 cuio->uio_iov = NULL;
1798 cuio->uio_iovcnt = 0;
1799 return (ret);
1800 }
1801
1802 static int
1803 zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf,
1804 uint8_t *cipherbuf, uint_t datalen, zfs_uio_t *puio, zfs_uio_t *cuio,
1805 uint_t *enc_len)
1806 {
1807 (void) encrypt;
1808 int ret;
1809 uint_t nr_plain = 1, nr_cipher = 2;
1810 iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL;
1811
1812 /* allocate the iovecs for the plain and cipher data */
1813 plain_iovecs = kmem_alloc(nr_plain * sizeof (iovec_t),
1814 KM_SLEEP);
1815 if (!plain_iovecs) {
1816 ret = SET_ERROR(ENOMEM);
1817 goto error;
1818 }
1819
1820 cipher_iovecs = kmem_alloc(nr_cipher * sizeof (iovec_t),
1821 KM_SLEEP);
1822 if (!cipher_iovecs) {
1823 ret = SET_ERROR(ENOMEM);
1824 goto error;
1825 }
1826
1827 plain_iovecs[0].iov_base = plainbuf;
1828 plain_iovecs[0].iov_len = datalen;
1829 cipher_iovecs[0].iov_base = cipherbuf;
1830 cipher_iovecs[0].iov_len = datalen;
1831
1832 *enc_len = datalen;
1833 puio->uio_iov = plain_iovecs;
1834 puio->uio_iovcnt = nr_plain;
1835 cuio->uio_iov = cipher_iovecs;
1836 cuio->uio_iovcnt = nr_cipher;
1837
1838 return (0);
1839
1840 error:
1841 if (plain_iovecs != NULL)
1842 kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t));
1843 if (cipher_iovecs != NULL)
1844 kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t));
1845
1846 *enc_len = 0;
1847 puio->uio_iov = NULL;
1848 puio->uio_iovcnt = 0;
1849 cuio->uio_iov = NULL;
1850 cuio->uio_iovcnt = 0;
1851 return (ret);
1852 }
1853
1854 /*
1855 * This function builds up the plaintext (puio) and ciphertext (cuio) uios so
1856 * that they can be used for encryption and decryption by zio_do_crypt_uio().
1857 * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks
1858 * requiring special handling to parse out pieces that are to be encrypted. The
1859 * authbuf is used by these special cases to store additional authenticated
1860 * data (AAD) for the encryption modes.
1861 */
1862 static int
1863 zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot,
1864 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1865 uint8_t *mac, zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len,
1866 uint8_t **authbuf, uint_t *auth_len, boolean_t *no_crypt)
1867 {
1868 int ret;
1869 iovec_t *mac_iov;
1870
1871 ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE);
1872
1873 /* route to handler */
1874 switch (ot) {
1875 case DMU_OT_INTENT_LOG:
1876 ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf,
1877 datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len,
1878 no_crypt);
1879 break;
1880 case DMU_OT_DNODE:
1881 ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf,
1882 cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf,
1883 auth_len, no_crypt);
1884 break;
1885 default:
1886 ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf,
1887 datalen, puio, cuio, enc_len);
1888 *authbuf = NULL;
1889 *auth_len = 0;
1890 *no_crypt = B_FALSE;
1891 break;
1892 }
1893
1894 if (ret != 0)
1895 goto error;
1896
1897 /* populate the uios */
1898 puio->uio_segflg = UIO_SYSSPACE;
1899 cuio->uio_segflg = UIO_SYSSPACE;
1900
1901 mac_iov = ((iovec_t *)&cuio->uio_iov[cuio->uio_iovcnt - 1]);
1902 mac_iov->iov_base = mac;
1903 mac_iov->iov_len = ZIO_DATA_MAC_LEN;
1904
1905 return (0);
1906
1907 error:
1908 return (ret);
1909 }
1910
1911 /*
1912 * Primary encryption / decryption entrypoint for zio data.
1913 */
1914 int
1915 zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key,
1916 dmu_object_type_t ot, boolean_t byteswap, uint8_t *salt, uint8_t *iv,
1917 uint8_t *mac, uint_t datalen, uint8_t *plainbuf, uint8_t *cipherbuf,
1918 boolean_t *no_crypt)
1919 {
1920 int ret;
1921 boolean_t locked = B_FALSE;
1922 uint64_t crypt = key->zk_crypt;
1923 uint_t keydata_len = zio_crypt_table[crypt].ci_keylen;
1924 uint_t enc_len, auth_len;
1925 zfs_uio_t puio, cuio;
1926 uint8_t enc_keydata[MASTER_KEY_MAX_LEN];
1927 crypto_key_t tmp_ckey, *ckey = NULL;
1928 crypto_ctx_template_t tmpl;
1929 uint8_t *authbuf = NULL;
1930
1931 memset(&puio, 0, sizeof (puio));
1932 memset(&cuio, 0, sizeof (cuio));
1933
1934 /*
1935 * If the needed key is the current one, just use it. Otherwise we
1936 * need to generate a temporary one from the given salt + master key.
1937 * If we are encrypting, we must return a copy of the current salt
1938 * so that it can be stored in the blkptr_t.
1939 */
1940 rw_enter(&key->zk_salt_lock, RW_READER);
1941 locked = B_TRUE;
1942
1943 if (memcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) {
1944 ckey = &key->zk_current_key;
1945 tmpl = key->zk_current_tmpl;
1946 } else {
1947 rw_exit(&key->zk_salt_lock);
1948 locked = B_FALSE;
1949
1950 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
1951 salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len);
1952 if (ret != 0)
1953 goto error;
1954
1955 tmp_ckey.ck_data = enc_keydata;
1956 tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len);
1957
1958 ckey = &tmp_ckey;
1959 tmpl = NULL;
1960 }
1961
1962 /*
1963 * Attempt to use QAT acceleration if we can. We currently don't
1964 * do this for metadnode and ZIL blocks, since they have a much
1965 * more involved buffer layout and the qat_crypt() function only
1966 * works in-place.
1967 */
1968 if (qat_crypt_use_accel(datalen) &&
1969 ot != DMU_OT_INTENT_LOG && ot != DMU_OT_DNODE) {
1970 uint8_t *srcbuf, *dstbuf;
1971
1972 if (encrypt) {
1973 srcbuf = plainbuf;
1974 dstbuf = cipherbuf;
1975 } else {
1976 srcbuf = cipherbuf;
1977 dstbuf = plainbuf;
1978 }
1979
1980 ret = qat_crypt((encrypt) ? QAT_ENCRYPT : QAT_DECRYPT, srcbuf,
1981 dstbuf, NULL, 0, iv, mac, ckey, key->zk_crypt, datalen);
1982 if (ret == CPA_STATUS_SUCCESS) {
1983 if (locked) {
1984 rw_exit(&key->zk_salt_lock);
1985 locked = B_FALSE;
1986 }
1987
1988 return (0);
1989 }
1990 /* If the hardware implementation fails fall back to software */
1991 }
1992
1993 /* create uios for encryption */
1994 ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf,
1995 cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len,
1996 &authbuf, &auth_len, no_crypt);
1997 if (ret != 0)
1998 goto error;
1999
2000 /* perform the encryption / decryption in software */
2001 ret = zio_do_crypt_uio(encrypt, key->zk_crypt, ckey, tmpl, iv, enc_len,
2002 &puio, &cuio, authbuf, auth_len);
2003 if (ret != 0)
2004 goto error;
2005
2006 if (locked) {
2007 rw_exit(&key->zk_salt_lock);
2008 }
2009
2010 if (authbuf != NULL)
2011 zio_buf_free(authbuf, datalen);
2012 if (ckey == &tmp_ckey)
2013 memset(enc_keydata, 0, keydata_len);
2014 zio_crypt_destroy_uio(&puio);
2015 zio_crypt_destroy_uio(&cuio);
2016
2017 return (0);
2018
2019 error:
2020 if (locked)
2021 rw_exit(&key->zk_salt_lock);
2022 if (authbuf != NULL)
2023 zio_buf_free(authbuf, datalen);
2024 if (ckey == &tmp_ckey)
2025 memset(enc_keydata, 0, keydata_len);
2026 zio_crypt_destroy_uio(&puio);
2027 zio_crypt_destroy_uio(&cuio);
2028
2029 return (ret);
2030 }
2031
2032 /*
2033 * Simple wrapper around zio_do_crypt_data() to work with abd's instead of
2034 * linear buffers.
2035 */
2036 int
2037 zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, dmu_object_type_t ot,
2038 boolean_t byteswap, uint8_t *salt, uint8_t *iv, uint8_t *mac,
2039 uint_t datalen, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt)
2040 {
2041 int ret;
2042 void *ptmp, *ctmp;
2043
2044 if (encrypt) {
2045 ptmp = abd_borrow_buf_copy(pabd, datalen);
2046 ctmp = abd_borrow_buf(cabd, datalen);
2047 } else {
2048 ptmp = abd_borrow_buf(pabd, datalen);
2049 ctmp = abd_borrow_buf_copy(cabd, datalen);
2050 }
2051
2052 ret = zio_do_crypt_data(encrypt, key, ot, byteswap, salt, iv, mac,
2053 datalen, ptmp, ctmp, no_crypt);
2054 if (ret != 0)
2055 goto error;
2056
2057 if (encrypt) {
2058 abd_return_buf(pabd, ptmp, datalen);
2059 abd_return_buf_copy(cabd, ctmp, datalen);
2060 } else {
2061 abd_return_buf_copy(pabd, ptmp, datalen);
2062 abd_return_buf(cabd, ctmp, datalen);
2063 }
2064
2065 return (0);
2066
2067 error:
2068 if (encrypt) {
2069 abd_return_buf(pabd, ptmp, datalen);
2070 abd_return_buf_copy(cabd, ctmp, datalen);
2071 } else {
2072 abd_return_buf_copy(pabd, ptmp, datalen);
2073 abd_return_buf(cabd, ctmp, datalen);
2074 }
2075
2076 return (ret);
2077 }
2078
2079 #if defined(_KERNEL)
2080 /* CSTYLED */
2081 module_param(zfs_key_max_salt_uses, ulong, 0644);
2082 MODULE_PARM_DESC(zfs_key_max_salt_uses, "Max number of times a salt value "
2083 "can be used for generating encryption keys before it is rotated");
2084 #endif