]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/linux/zfs/zpl_xattr.c
OpenZFS restructuring - move platform specific sources
[mirror_zfs.git] / module / os / linux / zfs / zpl_xattr.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23 *
24 * Extended attributes (xattr) on Solaris are implemented as files
25 * which exist in a hidden xattr directory. These extended attributes
26 * can be accessed using the attropen() system call which opens
27 * the extended attribute. It can then be manipulated just like
28 * a standard file descriptor. This has a couple advantages such
29 * as practically no size limit on the file, and the extended
30 * attributes permissions may differ from those of the parent file.
31 * This interface is really quite clever, but it's also completely
32 * different than what is supported on Linux. It also comes with a
33 * steep performance penalty when accessing small xattrs because they
34 * are not stored with the parent file.
35 *
36 * Under Linux extended attributes are manipulated by the system
37 * calls getxattr(2), setxattr(2), and listxattr(2). They consider
38 * extended attributes to be name/value pairs where the name is a
39 * NULL terminated string. The name must also include one of the
40 * following namespace prefixes:
41 *
42 * user - No restrictions and is available to user applications.
43 * trusted - Restricted to kernel and root (CAP_SYS_ADMIN) use.
44 * system - Used for access control lists (system.nfs4_acl, etc).
45 * security - Used by SELinux to store a files security context.
46 *
47 * The value under Linux to limited to 65536 bytes of binary data.
48 * In practice, individual xattrs tend to be much smaller than this
49 * and are typically less than 100 bytes. A good example of this
50 * are the security.selinux xattrs which are less than 100 bytes and
51 * exist for every file when xattr labeling is enabled.
52 *
53 * The Linux xattr implementation has been written to take advantage of
54 * this typical usage. When the dataset property 'xattr=sa' is set,
55 * then xattrs will be preferentially stored as System Attributes (SA).
56 * This allows tiny xattrs (~100 bytes) to be stored with the dnode and
57 * up to 64k of xattrs to be stored in the spill block. If additional
58 * xattr space is required, which is unlikely under Linux, they will
59 * be stored using the traditional directory approach.
60 *
61 * This optimization results in roughly a 3x performance improvement
62 * when accessing xattrs because it avoids the need to perform a seek
63 * for every xattr value. When multiple xattrs are stored per-file
64 * the performance improvements are even greater because all of the
65 * xattrs stored in the spill block will be cached.
66 *
67 * However, by default SA based xattrs are disabled in the Linux port
68 * to maximize compatibility with other implementations. If you do
69 * enable SA based xattrs then they will not be visible on platforms
70 * which do not support this feature.
71 *
72 * NOTE: One additional consequence of the xattr directory implementation
73 * is that when an extended attribute is manipulated an inode is created.
74 * This inode will exist in the Linux inode cache but there will be no
75 * associated entry in the dentry cache which references it. This is
76 * safe but it may result in some confusion. Enabling SA based xattrs
77 * largely avoids the issue except in the overflow case.
78 */
79
80 #include <sys/zfs_vfsops.h>
81 #include <sys/zfs_vnops.h>
82 #include <sys/zfs_znode.h>
83 #include <sys/zap.h>
84 #include <sys/vfs.h>
85 #include <sys/zpl.h>
86
87 typedef struct xattr_filldir {
88 size_t size;
89 size_t offset;
90 char *buf;
91 struct dentry *dentry;
92 } xattr_filldir_t;
93
94 static const struct xattr_handler *zpl_xattr_handler(const char *);
95
96 static int
97 zpl_xattr_permission(xattr_filldir_t *xf, const char *name, int name_len)
98 {
99 static const struct xattr_handler *handler;
100 struct dentry *d = xf->dentry;
101
102 handler = zpl_xattr_handler(name);
103 if (!handler)
104 return (0);
105
106 if (handler->list) {
107 #if defined(HAVE_XATTR_LIST_SIMPLE)
108 if (!handler->list(d))
109 return (0);
110 #elif defined(HAVE_XATTR_LIST_DENTRY)
111 if (!handler->list(d, NULL, 0, name, name_len, 0))
112 return (0);
113 #elif defined(HAVE_XATTR_LIST_HANDLER)
114 if (!handler->list(handler, d, NULL, 0, name, name_len))
115 return (0);
116 #elif defined(HAVE_XATTR_LIST_INODE)
117 if (!handler->list(d->d_inode, NULL, 0, name, name_len))
118 return (0);
119 #endif
120 }
121
122 return (1);
123 }
124
125 /*
126 * Determine is a given xattr name should be visible and if so copy it
127 * in to the provided buffer (xf->buf).
128 */
129 static int
130 zpl_xattr_filldir(xattr_filldir_t *xf, const char *name, int name_len)
131 {
132 /* Check permissions using the per-namespace list xattr handler. */
133 if (!zpl_xattr_permission(xf, name, name_len))
134 return (0);
135
136 /* When xf->buf is NULL only calculate the required size. */
137 if (xf->buf) {
138 if (xf->offset + name_len + 1 > xf->size)
139 return (-ERANGE);
140
141 memcpy(xf->buf + xf->offset, name, name_len);
142 xf->buf[xf->offset + name_len] = '\0';
143 }
144
145 xf->offset += (name_len + 1);
146
147 return (0);
148 }
149
150 /*
151 * Read as many directory entry names as will fit in to the provided buffer,
152 * or when no buffer is provided calculate the required buffer size.
153 */
154 int
155 zpl_xattr_readdir(struct inode *dxip, xattr_filldir_t *xf)
156 {
157 zap_cursor_t zc;
158 zap_attribute_t zap;
159 int error;
160
161 zap_cursor_init(&zc, ITOZSB(dxip)->z_os, ITOZ(dxip)->z_id);
162
163 while ((error = -zap_cursor_retrieve(&zc, &zap)) == 0) {
164
165 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
166 error = -ENXIO;
167 break;
168 }
169
170 error = zpl_xattr_filldir(xf, zap.za_name, strlen(zap.za_name));
171 if (error)
172 break;
173
174 zap_cursor_advance(&zc);
175 }
176
177 zap_cursor_fini(&zc);
178
179 if (error == -ENOENT)
180 error = 0;
181
182 return (error);
183 }
184
185 static ssize_t
186 zpl_xattr_list_dir(xattr_filldir_t *xf, cred_t *cr)
187 {
188 struct inode *ip = xf->dentry->d_inode;
189 struct inode *dxip = NULL;
190 int error;
191
192 /* Lookup the xattr directory */
193 error = -zfs_lookup(ip, NULL, &dxip, LOOKUP_XATTR, cr, NULL, NULL);
194 if (error) {
195 if (error == -ENOENT)
196 error = 0;
197
198 return (error);
199 }
200
201 error = zpl_xattr_readdir(dxip, xf);
202 iput(dxip);
203
204 return (error);
205 }
206
207 static ssize_t
208 zpl_xattr_list_sa(xattr_filldir_t *xf)
209 {
210 znode_t *zp = ITOZ(xf->dentry->d_inode);
211 nvpair_t *nvp = NULL;
212 int error = 0;
213
214 mutex_enter(&zp->z_lock);
215 if (zp->z_xattr_cached == NULL)
216 error = -zfs_sa_get_xattr(zp);
217 mutex_exit(&zp->z_lock);
218
219 if (error)
220 return (error);
221
222 ASSERT(zp->z_xattr_cached);
223
224 while ((nvp = nvlist_next_nvpair(zp->z_xattr_cached, nvp)) != NULL) {
225 ASSERT3U(nvpair_type(nvp), ==, DATA_TYPE_BYTE_ARRAY);
226
227 error = zpl_xattr_filldir(xf, nvpair_name(nvp),
228 strlen(nvpair_name(nvp)));
229 if (error)
230 return (error);
231 }
232
233 return (0);
234 }
235
236 ssize_t
237 zpl_xattr_list(struct dentry *dentry, char *buffer, size_t buffer_size)
238 {
239 znode_t *zp = ITOZ(dentry->d_inode);
240 zfsvfs_t *zfsvfs = ZTOZSB(zp);
241 xattr_filldir_t xf = { buffer_size, 0, buffer, dentry };
242 cred_t *cr = CRED();
243 fstrans_cookie_t cookie;
244 int error = 0;
245
246 crhold(cr);
247 cookie = spl_fstrans_mark();
248 ZPL_ENTER(zfsvfs);
249 ZPL_VERIFY_ZP(zp);
250 rw_enter(&zp->z_xattr_lock, RW_READER);
251
252 if (zfsvfs->z_use_sa && zp->z_is_sa) {
253 error = zpl_xattr_list_sa(&xf);
254 if (error)
255 goto out;
256 }
257
258 error = zpl_xattr_list_dir(&xf, cr);
259 if (error)
260 goto out;
261
262 error = xf.offset;
263 out:
264
265 rw_exit(&zp->z_xattr_lock);
266 ZPL_EXIT(zfsvfs);
267 spl_fstrans_unmark(cookie);
268 crfree(cr);
269
270 return (error);
271 }
272
273 static int
274 zpl_xattr_get_dir(struct inode *ip, const char *name, void *value,
275 size_t size, cred_t *cr)
276 {
277 struct inode *dxip = NULL;
278 struct inode *xip = NULL;
279 loff_t pos = 0;
280 int error;
281
282 /* Lookup the xattr directory */
283 error = -zfs_lookup(ip, NULL, &dxip, LOOKUP_XATTR, cr, NULL, NULL);
284 if (error)
285 goto out;
286
287 /* Lookup a specific xattr name in the directory */
288 error = -zfs_lookup(dxip, (char *)name, &xip, 0, cr, NULL, NULL);
289 if (error)
290 goto out;
291
292 if (!size) {
293 error = i_size_read(xip);
294 goto out;
295 }
296
297 if (size < i_size_read(xip)) {
298 error = -ERANGE;
299 goto out;
300 }
301
302 error = zpl_read_common(xip, value, size, &pos, UIO_SYSSPACE, 0, cr);
303 out:
304 if (xip)
305 iput(xip);
306
307 if (dxip)
308 iput(dxip);
309
310 return (error);
311 }
312
313 static int
314 zpl_xattr_get_sa(struct inode *ip, const char *name, void *value, size_t size)
315 {
316 znode_t *zp = ITOZ(ip);
317 uchar_t *nv_value;
318 uint_t nv_size;
319 int error = 0;
320
321 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
322
323 mutex_enter(&zp->z_lock);
324 if (zp->z_xattr_cached == NULL)
325 error = -zfs_sa_get_xattr(zp);
326 mutex_exit(&zp->z_lock);
327
328 if (error)
329 return (error);
330
331 ASSERT(zp->z_xattr_cached);
332 error = -nvlist_lookup_byte_array(zp->z_xattr_cached, name,
333 &nv_value, &nv_size);
334 if (error)
335 return (error);
336
337 if (size == 0 || value == NULL)
338 return (nv_size);
339
340 if (size < nv_size)
341 return (-ERANGE);
342
343 memcpy(value, nv_value, nv_size);
344
345 return (nv_size);
346 }
347
348 static int
349 __zpl_xattr_get(struct inode *ip, const char *name, void *value, size_t size,
350 cred_t *cr)
351 {
352 znode_t *zp = ITOZ(ip);
353 zfsvfs_t *zfsvfs = ZTOZSB(zp);
354 int error;
355
356 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
357
358 if (zfsvfs->z_use_sa && zp->z_is_sa) {
359 error = zpl_xattr_get_sa(ip, name, value, size);
360 if (error != -ENOENT)
361 goto out;
362 }
363
364 error = zpl_xattr_get_dir(ip, name, value, size, cr);
365 out:
366 if (error == -ENOENT)
367 error = -ENODATA;
368
369 return (error);
370 }
371
372 #define XATTR_NOENT 0x0
373 #define XATTR_IN_SA 0x1
374 #define XATTR_IN_DIR 0x2
375 /* check where the xattr resides */
376 static int
377 __zpl_xattr_where(struct inode *ip, const char *name, int *where, cred_t *cr)
378 {
379 znode_t *zp = ITOZ(ip);
380 zfsvfs_t *zfsvfs = ZTOZSB(zp);
381 int error;
382
383 ASSERT(where);
384 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
385
386 *where = XATTR_NOENT;
387 if (zfsvfs->z_use_sa && zp->z_is_sa) {
388 error = zpl_xattr_get_sa(ip, name, NULL, 0);
389 if (error >= 0)
390 *where |= XATTR_IN_SA;
391 else if (error != -ENOENT)
392 return (error);
393 }
394
395 error = zpl_xattr_get_dir(ip, name, NULL, 0, cr);
396 if (error >= 0)
397 *where |= XATTR_IN_DIR;
398 else if (error != -ENOENT)
399 return (error);
400
401 if (*where == (XATTR_IN_SA|XATTR_IN_DIR))
402 cmn_err(CE_WARN, "ZFS: inode %p has xattr \"%s\""
403 " in both SA and dir", ip, name);
404 if (*where == XATTR_NOENT)
405 error = -ENODATA;
406 else
407 error = 0;
408 return (error);
409 }
410
411 static int
412 zpl_xattr_get(struct inode *ip, const char *name, void *value, size_t size)
413 {
414 znode_t *zp = ITOZ(ip);
415 zfsvfs_t *zfsvfs = ZTOZSB(zp);
416 cred_t *cr = CRED();
417 fstrans_cookie_t cookie;
418 int error;
419
420 crhold(cr);
421 cookie = spl_fstrans_mark();
422 ZPL_ENTER(zfsvfs);
423 ZPL_VERIFY_ZP(zp);
424 rw_enter(&zp->z_xattr_lock, RW_READER);
425 error = __zpl_xattr_get(ip, name, value, size, cr);
426 rw_exit(&zp->z_xattr_lock);
427 ZPL_EXIT(zfsvfs);
428 spl_fstrans_unmark(cookie);
429 crfree(cr);
430
431 return (error);
432 }
433
434 static int
435 zpl_xattr_set_dir(struct inode *ip, const char *name, const void *value,
436 size_t size, int flags, cred_t *cr)
437 {
438 struct inode *dxip = NULL;
439 struct inode *xip = NULL;
440 vattr_t *vap = NULL;
441 ssize_t wrote;
442 int lookup_flags, error;
443 const int xattr_mode = S_IFREG | 0644;
444 loff_t pos = 0;
445
446 /*
447 * Lookup the xattr directory. When we're adding an entry pass
448 * CREATE_XATTR_DIR to ensure the xattr directory is created.
449 * When removing an entry this flag is not passed to avoid
450 * unnecessarily creating a new xattr directory.
451 */
452 lookup_flags = LOOKUP_XATTR;
453 if (value != NULL)
454 lookup_flags |= CREATE_XATTR_DIR;
455
456 error = -zfs_lookup(ip, NULL, &dxip, lookup_flags, cr, NULL, NULL);
457 if (error)
458 goto out;
459
460 /* Lookup a specific xattr name in the directory */
461 error = -zfs_lookup(dxip, (char *)name, &xip, 0, cr, NULL, NULL);
462 if (error && (error != -ENOENT))
463 goto out;
464
465 error = 0;
466
467 /* Remove a specific name xattr when value is set to NULL. */
468 if (value == NULL) {
469 if (xip)
470 error = -zfs_remove(dxip, (char *)name, cr, 0);
471
472 goto out;
473 }
474
475 /* Lookup failed create a new xattr. */
476 if (xip == NULL) {
477 vap = kmem_zalloc(sizeof (vattr_t), KM_SLEEP);
478 vap->va_mode = xattr_mode;
479 vap->va_mask = ATTR_MODE;
480 vap->va_uid = crgetfsuid(cr);
481 vap->va_gid = crgetfsgid(cr);
482
483 error = -zfs_create(dxip, (char *)name, vap, 0, 0644, &xip,
484 cr, 0, NULL);
485 if (error)
486 goto out;
487 }
488
489 ASSERT(xip != NULL);
490
491 error = -zfs_freesp(ITOZ(xip), 0, 0, xattr_mode, TRUE);
492 if (error)
493 goto out;
494
495 wrote = zpl_write_common(xip, value, size, &pos, UIO_SYSSPACE, 0, cr);
496 if (wrote < 0)
497 error = wrote;
498
499 out:
500
501 if (error == 0) {
502 ip->i_ctime = current_time(ip);
503 zfs_mark_inode_dirty(ip);
504 }
505
506 if (vap)
507 kmem_free(vap, sizeof (vattr_t));
508
509 if (xip)
510 iput(xip);
511
512 if (dxip)
513 iput(dxip);
514
515 if (error == -ENOENT)
516 error = -ENODATA;
517
518 ASSERT3S(error, <=, 0);
519
520 return (error);
521 }
522
523 static int
524 zpl_xattr_set_sa(struct inode *ip, const char *name, const void *value,
525 size_t size, int flags, cred_t *cr)
526 {
527 znode_t *zp = ITOZ(ip);
528 nvlist_t *nvl;
529 size_t sa_size;
530 int error = 0;
531
532 mutex_enter(&zp->z_lock);
533 if (zp->z_xattr_cached == NULL)
534 error = -zfs_sa_get_xattr(zp);
535 mutex_exit(&zp->z_lock);
536
537 if (error)
538 return (error);
539
540 ASSERT(zp->z_xattr_cached);
541 nvl = zp->z_xattr_cached;
542
543 if (value == NULL) {
544 error = -nvlist_remove(nvl, name, DATA_TYPE_BYTE_ARRAY);
545 if (error == -ENOENT)
546 error = zpl_xattr_set_dir(ip, name, NULL, 0, flags, cr);
547 } else {
548 /* Limited to 32k to keep nvpair memory allocations small */
549 if (size > DXATTR_MAX_ENTRY_SIZE)
550 return (-EFBIG);
551
552 /* Prevent the DXATTR SA from consuming the entire SA region */
553 error = -nvlist_size(nvl, &sa_size, NV_ENCODE_XDR);
554 if (error)
555 return (error);
556
557 if (sa_size > DXATTR_MAX_SA_SIZE)
558 return (-EFBIG);
559
560 error = -nvlist_add_byte_array(nvl, name,
561 (uchar_t *)value, size);
562 }
563
564 /*
565 * Update the SA for additions, modifications, and removals. On
566 * error drop the inconsistent cached version of the nvlist, it
567 * will be reconstructed from the ARC when next accessed.
568 */
569 if (error == 0)
570 error = -zfs_sa_set_xattr(zp);
571
572 if (error) {
573 nvlist_free(nvl);
574 zp->z_xattr_cached = NULL;
575 }
576
577 ASSERT3S(error, <=, 0);
578
579 return (error);
580 }
581
582 static int
583 zpl_xattr_set(struct inode *ip, const char *name, const void *value,
584 size_t size, int flags)
585 {
586 znode_t *zp = ITOZ(ip);
587 zfsvfs_t *zfsvfs = ZTOZSB(zp);
588 cred_t *cr = CRED();
589 fstrans_cookie_t cookie;
590 int where;
591 int error;
592
593 crhold(cr);
594 cookie = spl_fstrans_mark();
595 ZPL_ENTER(zfsvfs);
596 ZPL_VERIFY_ZP(zp);
597 rw_enter(&ITOZ(ip)->z_xattr_lock, RW_WRITER);
598
599 /*
600 * Before setting the xattr check to see if it already exists.
601 * This is done to ensure the following optional flags are honored.
602 *
603 * XATTR_CREATE: fail if xattr already exists
604 * XATTR_REPLACE: fail if xattr does not exist
605 *
606 * We also want to know if it resides in sa or dir, so we can make
607 * sure we don't end up with duplicate in both places.
608 */
609 error = __zpl_xattr_where(ip, name, &where, cr);
610 if (error < 0) {
611 if (error != -ENODATA)
612 goto out;
613 if (flags & XATTR_REPLACE)
614 goto out;
615
616 /* The xattr to be removed already doesn't exist */
617 error = 0;
618 if (value == NULL)
619 goto out;
620 } else {
621 error = -EEXIST;
622 if (flags & XATTR_CREATE)
623 goto out;
624 }
625
626 /* Preferentially store the xattr as a SA for better performance */
627 if (zfsvfs->z_use_sa && zp->z_is_sa &&
628 (zfsvfs->z_xattr_sa || (value == NULL && where & XATTR_IN_SA))) {
629 error = zpl_xattr_set_sa(ip, name, value, size, flags, cr);
630 if (error == 0) {
631 /*
632 * Successfully put into SA, we need to clear the one
633 * in dir.
634 */
635 if (where & XATTR_IN_DIR)
636 zpl_xattr_set_dir(ip, name, NULL, 0, 0, cr);
637 goto out;
638 }
639 }
640
641 error = zpl_xattr_set_dir(ip, name, value, size, flags, cr);
642 /*
643 * Successfully put into dir, we need to clear the one in SA.
644 */
645 if (error == 0 && (where & XATTR_IN_SA))
646 zpl_xattr_set_sa(ip, name, NULL, 0, 0, cr);
647 out:
648 rw_exit(&ITOZ(ip)->z_xattr_lock);
649 ZPL_EXIT(zfsvfs);
650 spl_fstrans_unmark(cookie);
651 crfree(cr);
652 ASSERT3S(error, <=, 0);
653
654 return (error);
655 }
656
657 /*
658 * Extended user attributes
659 *
660 * "Extended user attributes may be assigned to files and directories for
661 * storing arbitrary additional information such as the mime type,
662 * character set or encoding of a file. The access permissions for user
663 * attributes are defined by the file permission bits: read permission
664 * is required to retrieve the attribute value, and writer permission is
665 * required to change it.
666 *
667 * The file permission bits of regular files and directories are
668 * interpreted differently from the file permission bits of special
669 * files and symbolic links. For regular files and directories the file
670 * permission bits define access to the file's contents, while for
671 * device special files they define access to the device described by
672 * the special file. The file permissions of symbolic links are not
673 * used in access checks. These differences would allow users to
674 * consume filesystem resources in a way not controllable by disk quotas
675 * for group or world writable special files and directories.
676 *
677 * For this reason, extended user attributes are allowed only for
678 * regular files and directories, and access to extended user attributes
679 * is restricted to the owner and to users with appropriate capabilities
680 * for directories with the sticky bit set (see the chmod(1) manual page
681 * for an explanation of the sticky bit)." - xattr(7)
682 *
683 * ZFS allows extended user attributes to be disabled administratively
684 * by setting the 'xattr=off' property on the dataset.
685 */
686 static int
687 __zpl_xattr_user_list(struct inode *ip, char *list, size_t list_size,
688 const char *name, size_t name_len)
689 {
690 return (ITOZSB(ip)->z_flags & ZSB_XATTR);
691 }
692 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_user_list);
693
694 static int
695 __zpl_xattr_user_get(struct inode *ip, const char *name,
696 void *value, size_t size)
697 {
698 char *xattr_name;
699 int error;
700 /* xattr_resolve_name will do this for us if this is defined */
701 #ifndef HAVE_XATTR_HANDLER_NAME
702 if (strcmp(name, "") == 0)
703 return (-EINVAL);
704 #endif
705 if (!(ITOZSB(ip)->z_flags & ZSB_XATTR))
706 return (-EOPNOTSUPP);
707
708 xattr_name = kmem_asprintf("%s%s", XATTR_USER_PREFIX, name);
709 error = zpl_xattr_get(ip, xattr_name, value, size);
710 strfree(xattr_name);
711
712 return (error);
713 }
714 ZPL_XATTR_GET_WRAPPER(zpl_xattr_user_get);
715
716 static int
717 __zpl_xattr_user_set(struct inode *ip, const char *name,
718 const void *value, size_t size, int flags)
719 {
720 char *xattr_name;
721 int error;
722 /* xattr_resolve_name will do this for us if this is defined */
723 #ifndef HAVE_XATTR_HANDLER_NAME
724 if (strcmp(name, "") == 0)
725 return (-EINVAL);
726 #endif
727 if (!(ITOZSB(ip)->z_flags & ZSB_XATTR))
728 return (-EOPNOTSUPP);
729
730 xattr_name = kmem_asprintf("%s%s", XATTR_USER_PREFIX, name);
731 error = zpl_xattr_set(ip, xattr_name, value, size, flags);
732 strfree(xattr_name);
733
734 return (error);
735 }
736 ZPL_XATTR_SET_WRAPPER(zpl_xattr_user_set);
737
738 xattr_handler_t zpl_xattr_user_handler =
739 {
740 .prefix = XATTR_USER_PREFIX,
741 .list = zpl_xattr_user_list,
742 .get = zpl_xattr_user_get,
743 .set = zpl_xattr_user_set,
744 };
745
746 /*
747 * Trusted extended attributes
748 *
749 * "Trusted extended attributes are visible and accessible only to
750 * processes that have the CAP_SYS_ADMIN capability. Attributes in this
751 * class are used to implement mechanisms in user space (i.e., outside
752 * the kernel) which keep information in extended attributes to which
753 * ordinary processes should not have access." - xattr(7)
754 */
755 static int
756 __zpl_xattr_trusted_list(struct inode *ip, char *list, size_t list_size,
757 const char *name, size_t name_len)
758 {
759 return (capable(CAP_SYS_ADMIN));
760 }
761 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_trusted_list);
762
763 static int
764 __zpl_xattr_trusted_get(struct inode *ip, const char *name,
765 void *value, size_t size)
766 {
767 char *xattr_name;
768 int error;
769
770 if (!capable(CAP_SYS_ADMIN))
771 return (-EACCES);
772 /* xattr_resolve_name will do this for us if this is defined */
773 #ifndef HAVE_XATTR_HANDLER_NAME
774 if (strcmp(name, "") == 0)
775 return (-EINVAL);
776 #endif
777 xattr_name = kmem_asprintf("%s%s", XATTR_TRUSTED_PREFIX, name);
778 error = zpl_xattr_get(ip, xattr_name, value, size);
779 strfree(xattr_name);
780
781 return (error);
782 }
783 ZPL_XATTR_GET_WRAPPER(zpl_xattr_trusted_get);
784
785 static int
786 __zpl_xattr_trusted_set(struct inode *ip, const char *name,
787 const void *value, size_t size, int flags)
788 {
789 char *xattr_name;
790 int error;
791
792 if (!capable(CAP_SYS_ADMIN))
793 return (-EACCES);
794 /* xattr_resolve_name will do this for us if this is defined */
795 #ifndef HAVE_XATTR_HANDLER_NAME
796 if (strcmp(name, "") == 0)
797 return (-EINVAL);
798 #endif
799 xattr_name = kmem_asprintf("%s%s", XATTR_TRUSTED_PREFIX, name);
800 error = zpl_xattr_set(ip, xattr_name, value, size, flags);
801 strfree(xattr_name);
802
803 return (error);
804 }
805 ZPL_XATTR_SET_WRAPPER(zpl_xattr_trusted_set);
806
807 xattr_handler_t zpl_xattr_trusted_handler =
808 {
809 .prefix = XATTR_TRUSTED_PREFIX,
810 .list = zpl_xattr_trusted_list,
811 .get = zpl_xattr_trusted_get,
812 .set = zpl_xattr_trusted_set,
813 };
814
815 /*
816 * Extended security attributes
817 *
818 * "The security attribute namespace is used by kernel security modules,
819 * such as Security Enhanced Linux, and also to implement file
820 * capabilities (see capabilities(7)). Read and write access
821 * permissions to security attributes depend on the policy implemented
822 * for each security attribute by the security module. When no security
823 * module is loaded, all processes have read access to extended security
824 * attributes, and write access is limited to processes that have the
825 * CAP_SYS_ADMIN capability." - xattr(7)
826 */
827 static int
828 __zpl_xattr_security_list(struct inode *ip, char *list, size_t list_size,
829 const char *name, size_t name_len)
830 {
831 return (1);
832 }
833 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_security_list);
834
835 static int
836 __zpl_xattr_security_get(struct inode *ip, const char *name,
837 void *value, size_t size)
838 {
839 char *xattr_name;
840 int error;
841 /* xattr_resolve_name will do this for us if this is defined */
842 #ifndef HAVE_XATTR_HANDLER_NAME
843 if (strcmp(name, "") == 0)
844 return (-EINVAL);
845 #endif
846 xattr_name = kmem_asprintf("%s%s", XATTR_SECURITY_PREFIX, name);
847 error = zpl_xattr_get(ip, xattr_name, value, size);
848 strfree(xattr_name);
849
850 return (error);
851 }
852 ZPL_XATTR_GET_WRAPPER(zpl_xattr_security_get);
853
854 static int
855 __zpl_xattr_security_set(struct inode *ip, const char *name,
856 const void *value, size_t size, int flags)
857 {
858 char *xattr_name;
859 int error;
860 /* xattr_resolve_name will do this for us if this is defined */
861 #ifndef HAVE_XATTR_HANDLER_NAME
862 if (strcmp(name, "") == 0)
863 return (-EINVAL);
864 #endif
865 xattr_name = kmem_asprintf("%s%s", XATTR_SECURITY_PREFIX, name);
866 error = zpl_xattr_set(ip, xattr_name, value, size, flags);
867 strfree(xattr_name);
868
869 return (error);
870 }
871 ZPL_XATTR_SET_WRAPPER(zpl_xattr_security_set);
872
873 #ifdef HAVE_CALLBACK_SECURITY_INODE_INIT_SECURITY
874 static int
875 __zpl_xattr_security_init(struct inode *ip, const struct xattr *xattrs,
876 void *fs_info)
877 {
878 const struct xattr *xattr;
879 int error = 0;
880
881 for (xattr = xattrs; xattr->name != NULL; xattr++) {
882 error = __zpl_xattr_security_set(ip,
883 xattr->name, xattr->value, xattr->value_len, 0);
884
885 if (error < 0)
886 break;
887 }
888
889 return (error);
890 }
891
892 int
893 zpl_xattr_security_init(struct inode *ip, struct inode *dip,
894 const struct qstr *qstr)
895 {
896 return security_inode_init_security(ip, dip, qstr,
897 &__zpl_xattr_security_init, NULL);
898 }
899
900 #else
901 int
902 zpl_xattr_security_init(struct inode *ip, struct inode *dip,
903 const struct qstr *qstr)
904 {
905 int error;
906 size_t len;
907 void *value;
908 char *name;
909
910 error = zpl_security_inode_init_security(ip, dip, qstr,
911 &name, &value, &len);
912 if (error) {
913 if (error == -EOPNOTSUPP)
914 return (0);
915
916 return (error);
917 }
918
919 error = __zpl_xattr_security_set(ip, name, value, len, 0);
920
921 kfree(name);
922 kfree(value);
923
924 return (error);
925 }
926 #endif /* HAVE_CALLBACK_SECURITY_INODE_INIT_SECURITY */
927
928 /*
929 * Security xattr namespace handlers.
930 */
931 xattr_handler_t zpl_xattr_security_handler = {
932 .prefix = XATTR_SECURITY_PREFIX,
933 .list = zpl_xattr_security_list,
934 .get = zpl_xattr_security_get,
935 .set = zpl_xattr_security_set,
936 };
937
938 /*
939 * Extended system attributes
940 *
941 * "Extended system attributes are used by the kernel to store system
942 * objects such as Access Control Lists. Read and write access permissions
943 * to system attributes depend on the policy implemented for each system
944 * attribute implemented by filesystems in the kernel." - xattr(7)
945 */
946 #ifdef CONFIG_FS_POSIX_ACL
947 int
948 zpl_set_acl(struct inode *ip, struct posix_acl *acl, int type)
949 {
950 char *name, *value = NULL;
951 int error = 0;
952 size_t size = 0;
953
954 if (S_ISLNK(ip->i_mode))
955 return (-EOPNOTSUPP);
956
957 switch (type) {
958 case ACL_TYPE_ACCESS:
959 name = XATTR_NAME_POSIX_ACL_ACCESS;
960 if (acl) {
961 zpl_equivmode_t mode = ip->i_mode;
962 error = posix_acl_equiv_mode(acl, &mode);
963 if (error < 0) {
964 return (error);
965 } else {
966 /*
967 * The mode bits will have been set by
968 * ->zfs_setattr()->zfs_acl_chmod_setattr()
969 * using the ZFS ACL conversion. If they
970 * differ from the Posix ACL conversion dirty
971 * the inode to write the Posix mode bits.
972 */
973 if (ip->i_mode != mode) {
974 ip->i_mode = mode;
975 ip->i_ctime = current_time(ip);
976 zfs_mark_inode_dirty(ip);
977 }
978
979 if (error == 0)
980 acl = NULL;
981 }
982 }
983 break;
984
985 case ACL_TYPE_DEFAULT:
986 name = XATTR_NAME_POSIX_ACL_DEFAULT;
987 if (!S_ISDIR(ip->i_mode))
988 return (acl ? -EACCES : 0);
989 break;
990
991 default:
992 return (-EINVAL);
993 }
994
995 if (acl) {
996 size = posix_acl_xattr_size(acl->a_count);
997 value = kmem_alloc(size, KM_SLEEP);
998
999 error = zpl_acl_to_xattr(acl, value, size);
1000 if (error < 0) {
1001 kmem_free(value, size);
1002 return (error);
1003 }
1004 }
1005
1006 error = zpl_xattr_set(ip, name, value, size, 0);
1007 if (value)
1008 kmem_free(value, size);
1009
1010 if (!error) {
1011 if (acl)
1012 zpl_set_cached_acl(ip, type, acl);
1013 else
1014 zpl_forget_cached_acl(ip, type);
1015 }
1016
1017 return (error);
1018 }
1019
1020 struct posix_acl *
1021 zpl_get_acl(struct inode *ip, int type)
1022 {
1023 struct posix_acl *acl;
1024 void *value = NULL;
1025 char *name;
1026 int size;
1027
1028 /*
1029 * As of Linux 3.14, the kernel get_acl will check this for us.
1030 * Also as of Linux 4.7, comparing against ACL_NOT_CACHED is wrong
1031 * as the kernel get_acl will set it to temporary sentinel value.
1032 */
1033 #ifndef HAVE_KERNEL_GET_ACL_HANDLE_CACHE
1034 acl = get_cached_acl(ip, type);
1035 if (acl != ACL_NOT_CACHED)
1036 return (acl);
1037 #endif
1038
1039 switch (type) {
1040 case ACL_TYPE_ACCESS:
1041 name = XATTR_NAME_POSIX_ACL_ACCESS;
1042 break;
1043 case ACL_TYPE_DEFAULT:
1044 name = XATTR_NAME_POSIX_ACL_DEFAULT;
1045 break;
1046 default:
1047 return (ERR_PTR(-EINVAL));
1048 }
1049
1050 size = zpl_xattr_get(ip, name, NULL, 0);
1051 if (size > 0) {
1052 value = kmem_alloc(size, KM_SLEEP);
1053 size = zpl_xattr_get(ip, name, value, size);
1054 }
1055
1056 if (size > 0) {
1057 acl = zpl_acl_from_xattr(value, size);
1058 } else if (size == -ENODATA || size == -ENOSYS) {
1059 acl = NULL;
1060 } else {
1061 acl = ERR_PTR(-EIO);
1062 }
1063
1064 if (size > 0)
1065 kmem_free(value, size);
1066
1067 /* As of Linux 4.7, the kernel get_acl will set this for us */
1068 #ifndef HAVE_KERNEL_GET_ACL_HANDLE_CACHE
1069 if (!IS_ERR(acl))
1070 zpl_set_cached_acl(ip, type, acl);
1071 #endif
1072
1073 return (acl);
1074 }
1075
1076 #if !defined(HAVE_GET_ACL)
1077 static int
1078 __zpl_check_acl(struct inode *ip, int mask)
1079 {
1080 struct posix_acl *acl;
1081 int error;
1082
1083 acl = zpl_get_acl(ip, ACL_TYPE_ACCESS);
1084 if (IS_ERR(acl))
1085 return (PTR_ERR(acl));
1086
1087 if (acl) {
1088 error = posix_acl_permission(ip, acl, mask);
1089 zpl_posix_acl_release(acl);
1090 return (error);
1091 }
1092
1093 return (-EAGAIN);
1094 }
1095
1096 #if defined(HAVE_CHECK_ACL_WITH_FLAGS)
1097 int
1098 zpl_check_acl(struct inode *ip, int mask, unsigned int flags)
1099 {
1100 return (__zpl_check_acl(ip, mask));
1101 }
1102 #elif defined(HAVE_CHECK_ACL)
1103 int
1104 zpl_check_acl(struct inode *ip, int mask)
1105 {
1106 return (__zpl_check_acl(ip, mask));
1107 }
1108 #elif defined(HAVE_PERMISSION_WITH_NAMEIDATA)
1109 int
1110 zpl_permission(struct inode *ip, int mask, struct nameidata *nd)
1111 {
1112 return (generic_permission(ip, mask, __zpl_check_acl));
1113 }
1114 #elif defined(HAVE_PERMISSION)
1115 int
1116 zpl_permission(struct inode *ip, int mask)
1117 {
1118 return (generic_permission(ip, mask, __zpl_check_acl));
1119 }
1120 #endif /* HAVE_CHECK_ACL | HAVE_PERMISSION */
1121 #endif /* !HAVE_GET_ACL */
1122
1123 int
1124 zpl_init_acl(struct inode *ip, struct inode *dir)
1125 {
1126 struct posix_acl *acl = NULL;
1127 int error = 0;
1128
1129 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
1130 return (0);
1131
1132 if (!S_ISLNK(ip->i_mode)) {
1133 acl = zpl_get_acl(dir, ACL_TYPE_DEFAULT);
1134 if (IS_ERR(acl))
1135 return (PTR_ERR(acl));
1136 if (!acl) {
1137 ip->i_mode &= ~current_umask();
1138 ip->i_ctime = current_time(ip);
1139 zfs_mark_inode_dirty(ip);
1140 return (0);
1141 }
1142 }
1143
1144 if (acl) {
1145 umode_t mode;
1146
1147 if (S_ISDIR(ip->i_mode)) {
1148 error = zpl_set_acl(ip, acl, ACL_TYPE_DEFAULT);
1149 if (error)
1150 goto out;
1151 }
1152
1153 mode = ip->i_mode;
1154 error = __posix_acl_create(&acl, GFP_KERNEL, &mode);
1155 if (error >= 0) {
1156 ip->i_mode = mode;
1157 zfs_mark_inode_dirty(ip);
1158 if (error > 0)
1159 error = zpl_set_acl(ip, acl, ACL_TYPE_ACCESS);
1160 }
1161 }
1162 out:
1163 zpl_posix_acl_release(acl);
1164
1165 return (error);
1166 }
1167
1168 int
1169 zpl_chmod_acl(struct inode *ip)
1170 {
1171 struct posix_acl *acl;
1172 int error;
1173
1174 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
1175 return (0);
1176
1177 if (S_ISLNK(ip->i_mode))
1178 return (-EOPNOTSUPP);
1179
1180 acl = zpl_get_acl(ip, ACL_TYPE_ACCESS);
1181 if (IS_ERR(acl) || !acl)
1182 return (PTR_ERR(acl));
1183
1184 error = __posix_acl_chmod(&acl, GFP_KERNEL, ip->i_mode);
1185 if (!error)
1186 error = zpl_set_acl(ip, acl, ACL_TYPE_ACCESS);
1187
1188 zpl_posix_acl_release(acl);
1189
1190 return (error);
1191 }
1192
1193 static int
1194 __zpl_xattr_acl_list_access(struct inode *ip, char *list, size_t list_size,
1195 const char *name, size_t name_len)
1196 {
1197 char *xattr_name = XATTR_NAME_POSIX_ACL_ACCESS;
1198 size_t xattr_size = sizeof (XATTR_NAME_POSIX_ACL_ACCESS);
1199
1200 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
1201 return (0);
1202
1203 if (list && xattr_size <= list_size)
1204 memcpy(list, xattr_name, xattr_size);
1205
1206 return (xattr_size);
1207 }
1208 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_acl_list_access);
1209
1210 static int
1211 __zpl_xattr_acl_list_default(struct inode *ip, char *list, size_t list_size,
1212 const char *name, size_t name_len)
1213 {
1214 char *xattr_name = XATTR_NAME_POSIX_ACL_DEFAULT;
1215 size_t xattr_size = sizeof (XATTR_NAME_POSIX_ACL_DEFAULT);
1216
1217 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
1218 return (0);
1219
1220 if (list && xattr_size <= list_size)
1221 memcpy(list, xattr_name, xattr_size);
1222
1223 return (xattr_size);
1224 }
1225 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_acl_list_default);
1226
1227 static int
1228 __zpl_xattr_acl_get_access(struct inode *ip, const char *name,
1229 void *buffer, size_t size)
1230 {
1231 struct posix_acl *acl;
1232 int type = ACL_TYPE_ACCESS;
1233 int error;
1234 /* xattr_resolve_name will do this for us if this is defined */
1235 #ifndef HAVE_XATTR_HANDLER_NAME
1236 if (strcmp(name, "") != 0)
1237 return (-EINVAL);
1238 #endif
1239 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
1240 return (-EOPNOTSUPP);
1241
1242 acl = zpl_get_acl(ip, type);
1243 if (IS_ERR(acl))
1244 return (PTR_ERR(acl));
1245 if (acl == NULL)
1246 return (-ENODATA);
1247
1248 error = zpl_acl_to_xattr(acl, buffer, size);
1249 zpl_posix_acl_release(acl);
1250
1251 return (error);
1252 }
1253 ZPL_XATTR_GET_WRAPPER(zpl_xattr_acl_get_access);
1254
1255 static int
1256 __zpl_xattr_acl_get_default(struct inode *ip, const char *name,
1257 void *buffer, size_t size)
1258 {
1259 struct posix_acl *acl;
1260 int type = ACL_TYPE_DEFAULT;
1261 int error;
1262 /* xattr_resolve_name will do this for us if this is defined */
1263 #ifndef HAVE_XATTR_HANDLER_NAME
1264 if (strcmp(name, "") != 0)
1265 return (-EINVAL);
1266 #endif
1267 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
1268 return (-EOPNOTSUPP);
1269
1270 acl = zpl_get_acl(ip, type);
1271 if (IS_ERR(acl))
1272 return (PTR_ERR(acl));
1273 if (acl == NULL)
1274 return (-ENODATA);
1275
1276 error = zpl_acl_to_xattr(acl, buffer, size);
1277 zpl_posix_acl_release(acl);
1278
1279 return (error);
1280 }
1281 ZPL_XATTR_GET_WRAPPER(zpl_xattr_acl_get_default);
1282
1283 static int
1284 __zpl_xattr_acl_set_access(struct inode *ip, const char *name,
1285 const void *value, size_t size, int flags)
1286 {
1287 struct posix_acl *acl;
1288 int type = ACL_TYPE_ACCESS;
1289 int error = 0;
1290 /* xattr_resolve_name will do this for us if this is defined */
1291 #ifndef HAVE_XATTR_HANDLER_NAME
1292 if (strcmp(name, "") != 0)
1293 return (-EINVAL);
1294 #endif
1295 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
1296 return (-EOPNOTSUPP);
1297
1298 if (!zpl_inode_owner_or_capable(ip))
1299 return (-EPERM);
1300
1301 if (value) {
1302 acl = zpl_acl_from_xattr(value, size);
1303 if (IS_ERR(acl))
1304 return (PTR_ERR(acl));
1305 else if (acl) {
1306 error = zpl_posix_acl_valid(ip, acl);
1307 if (error) {
1308 zpl_posix_acl_release(acl);
1309 return (error);
1310 }
1311 }
1312 } else {
1313 acl = NULL;
1314 }
1315
1316 error = zpl_set_acl(ip, acl, type);
1317 zpl_posix_acl_release(acl);
1318
1319 return (error);
1320 }
1321 ZPL_XATTR_SET_WRAPPER(zpl_xattr_acl_set_access);
1322
1323 static int
1324 __zpl_xattr_acl_set_default(struct inode *ip, const char *name,
1325 const void *value, size_t size, int flags)
1326 {
1327 struct posix_acl *acl;
1328 int type = ACL_TYPE_DEFAULT;
1329 int error = 0;
1330 /* xattr_resolve_name will do this for us if this is defined */
1331 #ifndef HAVE_XATTR_HANDLER_NAME
1332 if (strcmp(name, "") != 0)
1333 return (-EINVAL);
1334 #endif
1335 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIXACL)
1336 return (-EOPNOTSUPP);
1337
1338 if (!zpl_inode_owner_or_capable(ip))
1339 return (-EPERM);
1340
1341 if (value) {
1342 acl = zpl_acl_from_xattr(value, size);
1343 if (IS_ERR(acl))
1344 return (PTR_ERR(acl));
1345 else if (acl) {
1346 error = zpl_posix_acl_valid(ip, acl);
1347 if (error) {
1348 zpl_posix_acl_release(acl);
1349 return (error);
1350 }
1351 }
1352 } else {
1353 acl = NULL;
1354 }
1355
1356 error = zpl_set_acl(ip, acl, type);
1357 zpl_posix_acl_release(acl);
1358
1359 return (error);
1360 }
1361 ZPL_XATTR_SET_WRAPPER(zpl_xattr_acl_set_default);
1362
1363 /*
1364 * ACL access xattr namespace handlers.
1365 *
1366 * Use .name instead of .prefix when available. xattr_resolve_name will match
1367 * whole name and reject anything that has .name only as prefix.
1368 */
1369 xattr_handler_t zpl_xattr_acl_access_handler =
1370 {
1371 #ifdef HAVE_XATTR_HANDLER_NAME
1372 .name = XATTR_NAME_POSIX_ACL_ACCESS,
1373 #else
1374 .prefix = XATTR_NAME_POSIX_ACL_ACCESS,
1375 #endif
1376 .list = zpl_xattr_acl_list_access,
1377 .get = zpl_xattr_acl_get_access,
1378 .set = zpl_xattr_acl_set_access,
1379 #if defined(HAVE_XATTR_LIST_SIMPLE) || \
1380 defined(HAVE_XATTR_LIST_DENTRY) || \
1381 defined(HAVE_XATTR_LIST_HANDLER)
1382 .flags = ACL_TYPE_ACCESS,
1383 #endif
1384 };
1385
1386 /*
1387 * ACL default xattr namespace handlers.
1388 *
1389 * Use .name instead of .prefix when available. xattr_resolve_name will match
1390 * whole name and reject anything that has .name only as prefix.
1391 */
1392 xattr_handler_t zpl_xattr_acl_default_handler =
1393 {
1394 #ifdef HAVE_XATTR_HANDLER_NAME
1395 .name = XATTR_NAME_POSIX_ACL_DEFAULT,
1396 #else
1397 .prefix = XATTR_NAME_POSIX_ACL_DEFAULT,
1398 #endif
1399 .list = zpl_xattr_acl_list_default,
1400 .get = zpl_xattr_acl_get_default,
1401 .set = zpl_xattr_acl_set_default,
1402 #if defined(HAVE_XATTR_LIST_SIMPLE) || \
1403 defined(HAVE_XATTR_LIST_DENTRY) || \
1404 defined(HAVE_XATTR_LIST_HANDLER)
1405 .flags = ACL_TYPE_DEFAULT,
1406 #endif
1407 };
1408
1409 #endif /* CONFIG_FS_POSIX_ACL */
1410
1411 xattr_handler_t *zpl_xattr_handlers[] = {
1412 &zpl_xattr_security_handler,
1413 &zpl_xattr_trusted_handler,
1414 &zpl_xattr_user_handler,
1415 #ifdef CONFIG_FS_POSIX_ACL
1416 &zpl_xattr_acl_access_handler,
1417 &zpl_xattr_acl_default_handler,
1418 #endif /* CONFIG_FS_POSIX_ACL */
1419 NULL
1420 };
1421
1422 static const struct xattr_handler *
1423 zpl_xattr_handler(const char *name)
1424 {
1425 if (strncmp(name, XATTR_USER_PREFIX,
1426 XATTR_USER_PREFIX_LEN) == 0)
1427 return (&zpl_xattr_user_handler);
1428
1429 if (strncmp(name, XATTR_TRUSTED_PREFIX,
1430 XATTR_TRUSTED_PREFIX_LEN) == 0)
1431 return (&zpl_xattr_trusted_handler);
1432
1433 if (strncmp(name, XATTR_SECURITY_PREFIX,
1434 XATTR_SECURITY_PREFIX_LEN) == 0)
1435 return (&zpl_xattr_security_handler);
1436
1437 #ifdef CONFIG_FS_POSIX_ACL
1438 if (strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS,
1439 sizeof (XATTR_NAME_POSIX_ACL_ACCESS)) == 0)
1440 return (&zpl_xattr_acl_access_handler);
1441
1442 if (strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT,
1443 sizeof (XATTR_NAME_POSIX_ACL_DEFAULT)) == 0)
1444 return (&zpl_xattr_acl_default_handler);
1445 #endif /* CONFIG_FS_POSIX_ACL */
1446
1447 return (NULL);
1448 }
1449
1450 #if !defined(HAVE_POSIX_ACL_RELEASE) || defined(HAVE_POSIX_ACL_RELEASE_GPL_ONLY)
1451 struct acl_rel_struct {
1452 struct acl_rel_struct *next;
1453 struct posix_acl *acl;
1454 clock_t time;
1455 };
1456
1457 #define ACL_REL_GRACE (60*HZ)
1458 #define ACL_REL_WINDOW (1*HZ)
1459 #define ACL_REL_SCHED (ACL_REL_GRACE+ACL_REL_WINDOW)
1460
1461 /*
1462 * Lockless multi-producer single-consumer fifo list.
1463 * Nodes are added to tail and removed from head. Tail pointer is our
1464 * synchronization point. It always points to the next pointer of the last
1465 * node, or head if list is empty.
1466 */
1467 static struct acl_rel_struct *acl_rel_head = NULL;
1468 static struct acl_rel_struct **acl_rel_tail = &acl_rel_head;
1469
1470 static void
1471 zpl_posix_acl_free(void *arg)
1472 {
1473 struct acl_rel_struct *freelist = NULL;
1474 struct acl_rel_struct *a;
1475 clock_t new_time;
1476 boolean_t refire = B_FALSE;
1477
1478 ASSERT3P(acl_rel_head, !=, NULL);
1479 while (acl_rel_head) {
1480 a = acl_rel_head;
1481 if (ddi_get_lbolt() - a->time >= ACL_REL_GRACE) {
1482 /*
1483 * If a is the last node we need to reset tail, but we
1484 * need to use cmpxchg to make sure it is still the
1485 * last node.
1486 */
1487 if (acl_rel_tail == &a->next) {
1488 acl_rel_head = NULL;
1489 if (cmpxchg(&acl_rel_tail, &a->next,
1490 &acl_rel_head) == &a->next) {
1491 ASSERT3P(a->next, ==, NULL);
1492 a->next = freelist;
1493 freelist = a;
1494 break;
1495 }
1496 }
1497 /*
1498 * a is not last node, make sure next pointer is set
1499 * by the adder and advance the head.
1500 */
1501 while (READ_ONCE(a->next) == NULL)
1502 cpu_relax();
1503 acl_rel_head = a->next;
1504 a->next = freelist;
1505 freelist = a;
1506 } else {
1507 /*
1508 * a is still in grace period. We are responsible to
1509 * reschedule the free task, since adder will only do
1510 * so if list is empty.
1511 */
1512 new_time = a->time + ACL_REL_SCHED;
1513 refire = B_TRUE;
1514 break;
1515 }
1516 }
1517
1518 if (refire)
1519 taskq_dispatch_delay(system_delay_taskq, zpl_posix_acl_free,
1520 NULL, TQ_SLEEP, new_time);
1521
1522 while (freelist) {
1523 a = freelist;
1524 freelist = a->next;
1525 kfree(a->acl);
1526 kmem_free(a, sizeof (struct acl_rel_struct));
1527 }
1528 }
1529
1530 void
1531 zpl_posix_acl_release_impl(struct posix_acl *acl)
1532 {
1533 struct acl_rel_struct *a, **prev;
1534
1535 a = kmem_alloc(sizeof (struct acl_rel_struct), KM_SLEEP);
1536 a->next = NULL;
1537 a->acl = acl;
1538 a->time = ddi_get_lbolt();
1539 /* atomically points tail to us and get the previous tail */
1540 prev = xchg(&acl_rel_tail, &a->next);
1541 ASSERT3P(*prev, ==, NULL);
1542 *prev = a;
1543 /* if it was empty before, schedule the free task */
1544 if (prev == &acl_rel_head)
1545 taskq_dispatch_delay(system_delay_taskq, zpl_posix_acl_free,
1546 NULL, TQ_SLEEP, ddi_get_lbolt() + ACL_REL_SCHED);
1547 }
1548 #endif