]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/linux/zfs/zpl_xattr.c
module/*.ko: prune .data, global .rodata
[mirror_zfs.git] / module / os / linux / zfs / zpl_xattr.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23 *
24 * Extended attributes (xattr) on Solaris are implemented as files
25 * which exist in a hidden xattr directory. These extended attributes
26 * can be accessed using the attropen() system call which opens
27 * the extended attribute. It can then be manipulated just like
28 * a standard file descriptor. This has a couple advantages such
29 * as practically no size limit on the file, and the extended
30 * attributes permissions may differ from those of the parent file.
31 * This interface is really quite clever, but it's also completely
32 * different than what is supported on Linux. It also comes with a
33 * steep performance penalty when accessing small xattrs because they
34 * are not stored with the parent file.
35 *
36 * Under Linux extended attributes are manipulated by the system
37 * calls getxattr(2), setxattr(2), and listxattr(2). They consider
38 * extended attributes to be name/value pairs where the name is a
39 * NULL terminated string. The name must also include one of the
40 * following namespace prefixes:
41 *
42 * user - No restrictions and is available to user applications.
43 * trusted - Restricted to kernel and root (CAP_SYS_ADMIN) use.
44 * system - Used for access control lists (system.nfs4_acl, etc).
45 * security - Used by SELinux to store a files security context.
46 *
47 * The value under Linux to limited to 65536 bytes of binary data.
48 * In practice, individual xattrs tend to be much smaller than this
49 * and are typically less than 100 bytes. A good example of this
50 * are the security.selinux xattrs which are less than 100 bytes and
51 * exist for every file when xattr labeling is enabled.
52 *
53 * The Linux xattr implementation has been written to take advantage of
54 * this typical usage. When the dataset property 'xattr=sa' is set,
55 * then xattrs will be preferentially stored as System Attributes (SA).
56 * This allows tiny xattrs (~100 bytes) to be stored with the dnode and
57 * up to 64k of xattrs to be stored in the spill block. If additional
58 * xattr space is required, which is unlikely under Linux, they will
59 * be stored using the traditional directory approach.
60 *
61 * This optimization results in roughly a 3x performance improvement
62 * when accessing xattrs because it avoids the need to perform a seek
63 * for every xattr value. When multiple xattrs are stored per-file
64 * the performance improvements are even greater because all of the
65 * xattrs stored in the spill block will be cached.
66 *
67 * However, by default SA based xattrs are disabled in the Linux port
68 * to maximize compatibility with other implementations. If you do
69 * enable SA based xattrs then they will not be visible on platforms
70 * which do not support this feature.
71 *
72 * NOTE: One additional consequence of the xattr directory implementation
73 * is that when an extended attribute is manipulated an inode is created.
74 * This inode will exist in the Linux inode cache but there will be no
75 * associated entry in the dentry cache which references it. This is
76 * safe but it may result in some confusion. Enabling SA based xattrs
77 * largely avoids the issue except in the overflow case.
78 */
79
80 #include <sys/zfs_znode.h>
81 #include <sys/zfs_vfsops.h>
82 #include <sys/zfs_vnops.h>
83 #include <sys/zap.h>
84 #include <sys/vfs.h>
85 #include <sys/zpl.h>
86
87 typedef struct xattr_filldir {
88 size_t size;
89 size_t offset;
90 char *buf;
91 struct dentry *dentry;
92 } xattr_filldir_t;
93
94 static const struct xattr_handler *zpl_xattr_handler(const char *);
95
96 static int
97 zpl_xattr_permission(xattr_filldir_t *xf, const char *name, int name_len)
98 {
99 static const struct xattr_handler *handler;
100 struct dentry *d = xf->dentry;
101
102 handler = zpl_xattr_handler(name);
103 if (!handler)
104 return (0);
105
106 if (handler->list) {
107 #if defined(HAVE_XATTR_LIST_SIMPLE)
108 if (!handler->list(d))
109 return (0);
110 #elif defined(HAVE_XATTR_LIST_DENTRY)
111 if (!handler->list(d, NULL, 0, name, name_len, 0))
112 return (0);
113 #elif defined(HAVE_XATTR_LIST_HANDLER)
114 if (!handler->list(handler, d, NULL, 0, name, name_len))
115 return (0);
116 #endif
117 }
118
119 return (1);
120 }
121
122 /*
123 * Determine is a given xattr name should be visible and if so copy it
124 * in to the provided buffer (xf->buf).
125 */
126 static int
127 zpl_xattr_filldir(xattr_filldir_t *xf, const char *name, int name_len)
128 {
129 /* Check permissions using the per-namespace list xattr handler. */
130 if (!zpl_xattr_permission(xf, name, name_len))
131 return (0);
132
133 /* When xf->buf is NULL only calculate the required size. */
134 if (xf->buf) {
135 if (xf->offset + name_len + 1 > xf->size)
136 return (-ERANGE);
137
138 memcpy(xf->buf + xf->offset, name, name_len);
139 xf->buf[xf->offset + name_len] = '\0';
140 }
141
142 xf->offset += (name_len + 1);
143
144 return (0);
145 }
146
147 /*
148 * Read as many directory entry names as will fit in to the provided buffer,
149 * or when no buffer is provided calculate the required buffer size.
150 */
151 static int
152 zpl_xattr_readdir(struct inode *dxip, xattr_filldir_t *xf)
153 {
154 zap_cursor_t zc;
155 zap_attribute_t zap;
156 int error;
157
158 zap_cursor_init(&zc, ITOZSB(dxip)->z_os, ITOZ(dxip)->z_id);
159
160 while ((error = -zap_cursor_retrieve(&zc, &zap)) == 0) {
161
162 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
163 error = -ENXIO;
164 break;
165 }
166
167 error = zpl_xattr_filldir(xf, zap.za_name, strlen(zap.za_name));
168 if (error)
169 break;
170
171 zap_cursor_advance(&zc);
172 }
173
174 zap_cursor_fini(&zc);
175
176 if (error == -ENOENT)
177 error = 0;
178
179 return (error);
180 }
181
182 static ssize_t
183 zpl_xattr_list_dir(xattr_filldir_t *xf, cred_t *cr)
184 {
185 struct inode *ip = xf->dentry->d_inode;
186 struct inode *dxip = NULL;
187 znode_t *dxzp;
188 int error;
189
190 /* Lookup the xattr directory */
191 error = -zfs_lookup(ITOZ(ip), NULL, &dxzp, LOOKUP_XATTR,
192 cr, NULL, NULL);
193 if (error) {
194 if (error == -ENOENT)
195 error = 0;
196
197 return (error);
198 }
199
200 dxip = ZTOI(dxzp);
201 error = zpl_xattr_readdir(dxip, xf);
202 iput(dxip);
203
204 return (error);
205 }
206
207 static ssize_t
208 zpl_xattr_list_sa(xattr_filldir_t *xf)
209 {
210 znode_t *zp = ITOZ(xf->dentry->d_inode);
211 nvpair_t *nvp = NULL;
212 int error = 0;
213
214 mutex_enter(&zp->z_lock);
215 if (zp->z_xattr_cached == NULL)
216 error = -zfs_sa_get_xattr(zp);
217 mutex_exit(&zp->z_lock);
218
219 if (error)
220 return (error);
221
222 ASSERT(zp->z_xattr_cached);
223
224 while ((nvp = nvlist_next_nvpair(zp->z_xattr_cached, nvp)) != NULL) {
225 ASSERT3U(nvpair_type(nvp), ==, DATA_TYPE_BYTE_ARRAY);
226
227 error = zpl_xattr_filldir(xf, nvpair_name(nvp),
228 strlen(nvpair_name(nvp)));
229 if (error)
230 return (error);
231 }
232
233 return (0);
234 }
235
236 ssize_t
237 zpl_xattr_list(struct dentry *dentry, char *buffer, size_t buffer_size)
238 {
239 znode_t *zp = ITOZ(dentry->d_inode);
240 zfsvfs_t *zfsvfs = ZTOZSB(zp);
241 xattr_filldir_t xf = { buffer_size, 0, buffer, dentry };
242 cred_t *cr = CRED();
243 fstrans_cookie_t cookie;
244 int error = 0;
245
246 crhold(cr);
247 cookie = spl_fstrans_mark();
248 ZPL_ENTER(zfsvfs);
249 ZPL_VERIFY_ZP(zp);
250 rw_enter(&zp->z_xattr_lock, RW_READER);
251
252 if (zfsvfs->z_use_sa && zp->z_is_sa) {
253 error = zpl_xattr_list_sa(&xf);
254 if (error)
255 goto out;
256 }
257
258 error = zpl_xattr_list_dir(&xf, cr);
259 if (error)
260 goto out;
261
262 error = xf.offset;
263 out:
264
265 rw_exit(&zp->z_xattr_lock);
266 ZPL_EXIT(zfsvfs);
267 spl_fstrans_unmark(cookie);
268 crfree(cr);
269
270 return (error);
271 }
272
273 static int
274 zpl_xattr_get_dir(struct inode *ip, const char *name, void *value,
275 size_t size, cred_t *cr)
276 {
277 fstrans_cookie_t cookie;
278 struct inode *xip = NULL;
279 znode_t *dxzp = NULL;
280 znode_t *xzp = NULL;
281 int error;
282
283 /* Lookup the xattr directory */
284 error = -zfs_lookup(ITOZ(ip), NULL, &dxzp, LOOKUP_XATTR,
285 cr, NULL, NULL);
286 if (error)
287 goto out;
288
289 /* Lookup a specific xattr name in the directory */
290 error = -zfs_lookup(dxzp, (char *)name, &xzp, 0, cr, NULL, NULL);
291 if (error)
292 goto out;
293
294 xip = ZTOI(xzp);
295 if (!size) {
296 error = i_size_read(xip);
297 goto out;
298 }
299
300 if (size < i_size_read(xip)) {
301 error = -ERANGE;
302 goto out;
303 }
304
305 struct iovec iov;
306 iov.iov_base = (void *)value;
307 iov.iov_len = size;
308
309 zfs_uio_t uio;
310 zfs_uio_iovec_init(&uio, &iov, 1, 0, UIO_SYSSPACE, size, 0);
311
312 cookie = spl_fstrans_mark();
313 error = -zfs_read(ITOZ(xip), &uio, 0, cr);
314 spl_fstrans_unmark(cookie);
315
316 if (error == 0)
317 error = size - zfs_uio_resid(&uio);
318 out:
319 if (xzp)
320 zrele(xzp);
321
322 if (dxzp)
323 zrele(dxzp);
324
325 return (error);
326 }
327
328 static int
329 zpl_xattr_get_sa(struct inode *ip, const char *name, void *value, size_t size)
330 {
331 znode_t *zp = ITOZ(ip);
332 uchar_t *nv_value;
333 uint_t nv_size;
334 int error = 0;
335
336 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
337
338 mutex_enter(&zp->z_lock);
339 if (zp->z_xattr_cached == NULL)
340 error = -zfs_sa_get_xattr(zp);
341 mutex_exit(&zp->z_lock);
342
343 if (error)
344 return (error);
345
346 ASSERT(zp->z_xattr_cached);
347 error = -nvlist_lookup_byte_array(zp->z_xattr_cached, name,
348 &nv_value, &nv_size);
349 if (error)
350 return (error);
351
352 if (size == 0 || value == NULL)
353 return (nv_size);
354
355 if (size < nv_size)
356 return (-ERANGE);
357
358 memcpy(value, nv_value, nv_size);
359
360 return (nv_size);
361 }
362
363 static int
364 __zpl_xattr_get(struct inode *ip, const char *name, void *value, size_t size,
365 cred_t *cr)
366 {
367 znode_t *zp = ITOZ(ip);
368 zfsvfs_t *zfsvfs = ZTOZSB(zp);
369 int error;
370
371 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
372
373 if (zfsvfs->z_use_sa && zp->z_is_sa) {
374 error = zpl_xattr_get_sa(ip, name, value, size);
375 if (error != -ENOENT)
376 goto out;
377 }
378
379 error = zpl_xattr_get_dir(ip, name, value, size, cr);
380 out:
381 if (error == -ENOENT)
382 error = -ENODATA;
383
384 return (error);
385 }
386
387 #define XATTR_NOENT 0x0
388 #define XATTR_IN_SA 0x1
389 #define XATTR_IN_DIR 0x2
390 /* check where the xattr resides */
391 static int
392 __zpl_xattr_where(struct inode *ip, const char *name, int *where, cred_t *cr)
393 {
394 znode_t *zp = ITOZ(ip);
395 zfsvfs_t *zfsvfs = ZTOZSB(zp);
396 int error;
397
398 ASSERT(where);
399 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
400
401 *where = XATTR_NOENT;
402 if (zfsvfs->z_use_sa && zp->z_is_sa) {
403 error = zpl_xattr_get_sa(ip, name, NULL, 0);
404 if (error >= 0)
405 *where |= XATTR_IN_SA;
406 else if (error != -ENOENT)
407 return (error);
408 }
409
410 error = zpl_xattr_get_dir(ip, name, NULL, 0, cr);
411 if (error >= 0)
412 *where |= XATTR_IN_DIR;
413 else if (error != -ENOENT)
414 return (error);
415
416 if (*where == (XATTR_IN_SA|XATTR_IN_DIR))
417 cmn_err(CE_WARN, "ZFS: inode %p has xattr \"%s\""
418 " in both SA and dir", ip, name);
419 if (*where == XATTR_NOENT)
420 error = -ENODATA;
421 else
422 error = 0;
423 return (error);
424 }
425
426 static int
427 zpl_xattr_get(struct inode *ip, const char *name, void *value, size_t size)
428 {
429 znode_t *zp = ITOZ(ip);
430 zfsvfs_t *zfsvfs = ZTOZSB(zp);
431 cred_t *cr = CRED();
432 fstrans_cookie_t cookie;
433 int error;
434
435 crhold(cr);
436 cookie = spl_fstrans_mark();
437 ZPL_ENTER(zfsvfs);
438 ZPL_VERIFY_ZP(zp);
439 rw_enter(&zp->z_xattr_lock, RW_READER);
440 error = __zpl_xattr_get(ip, name, value, size, cr);
441 rw_exit(&zp->z_xattr_lock);
442 ZPL_EXIT(zfsvfs);
443 spl_fstrans_unmark(cookie);
444 crfree(cr);
445
446 return (error);
447 }
448
449 static int
450 zpl_xattr_set_dir(struct inode *ip, const char *name, const void *value,
451 size_t size, int flags, cred_t *cr)
452 {
453 znode_t *dxzp = NULL;
454 znode_t *xzp = NULL;
455 vattr_t *vap = NULL;
456 int lookup_flags, error;
457 const int xattr_mode = S_IFREG | 0644;
458 loff_t pos = 0;
459
460 /*
461 * Lookup the xattr directory. When we're adding an entry pass
462 * CREATE_XATTR_DIR to ensure the xattr directory is created.
463 * When removing an entry this flag is not passed to avoid
464 * unnecessarily creating a new xattr directory.
465 */
466 lookup_flags = LOOKUP_XATTR;
467 if (value != NULL)
468 lookup_flags |= CREATE_XATTR_DIR;
469
470 error = -zfs_lookup(ITOZ(ip), NULL, &dxzp, lookup_flags,
471 cr, NULL, NULL);
472 if (error)
473 goto out;
474
475 /* Lookup a specific xattr name in the directory */
476 error = -zfs_lookup(dxzp, (char *)name, &xzp, 0, cr, NULL, NULL);
477 if (error && (error != -ENOENT))
478 goto out;
479
480 error = 0;
481
482 /* Remove a specific name xattr when value is set to NULL. */
483 if (value == NULL) {
484 if (xzp)
485 error = -zfs_remove(dxzp, (char *)name, cr, 0);
486
487 goto out;
488 }
489
490 /* Lookup failed create a new xattr. */
491 if (xzp == NULL) {
492 vap = kmem_zalloc(sizeof (vattr_t), KM_SLEEP);
493 vap->va_mode = xattr_mode;
494 vap->va_mask = ATTR_MODE;
495 vap->va_uid = crgetfsuid(cr);
496 vap->va_gid = crgetfsgid(cr);
497
498 error = -zfs_create(dxzp, (char *)name, vap, 0, 0644, &xzp,
499 cr, 0, NULL);
500 if (error)
501 goto out;
502 }
503
504 ASSERT(xzp != NULL);
505
506 error = -zfs_freesp(xzp, 0, 0, xattr_mode, TRUE);
507 if (error)
508 goto out;
509
510 error = -zfs_write_simple(xzp, value, size, pos, NULL);
511 out:
512 if (error == 0) {
513 ip->i_ctime = current_time(ip);
514 zfs_mark_inode_dirty(ip);
515 }
516
517 if (vap)
518 kmem_free(vap, sizeof (vattr_t));
519
520 if (xzp)
521 zrele(xzp);
522
523 if (dxzp)
524 zrele(dxzp);
525
526 if (error == -ENOENT)
527 error = -ENODATA;
528
529 ASSERT3S(error, <=, 0);
530
531 return (error);
532 }
533
534 static int
535 zpl_xattr_set_sa(struct inode *ip, const char *name, const void *value,
536 size_t size, int flags, cred_t *cr)
537 {
538 znode_t *zp = ITOZ(ip);
539 nvlist_t *nvl;
540 size_t sa_size;
541 int error = 0;
542
543 mutex_enter(&zp->z_lock);
544 if (zp->z_xattr_cached == NULL)
545 error = -zfs_sa_get_xattr(zp);
546 mutex_exit(&zp->z_lock);
547
548 if (error)
549 return (error);
550
551 ASSERT(zp->z_xattr_cached);
552 nvl = zp->z_xattr_cached;
553
554 if (value == NULL) {
555 error = -nvlist_remove(nvl, name, DATA_TYPE_BYTE_ARRAY);
556 if (error == -ENOENT)
557 error = zpl_xattr_set_dir(ip, name, NULL, 0, flags, cr);
558 } else {
559 /* Limited to 32k to keep nvpair memory allocations small */
560 if (size > DXATTR_MAX_ENTRY_SIZE)
561 return (-EFBIG);
562
563 /* Prevent the DXATTR SA from consuming the entire SA region */
564 error = -nvlist_size(nvl, &sa_size, NV_ENCODE_XDR);
565 if (error)
566 return (error);
567
568 if (sa_size > DXATTR_MAX_SA_SIZE)
569 return (-EFBIG);
570
571 error = -nvlist_add_byte_array(nvl, name,
572 (uchar_t *)value, size);
573 }
574
575 /*
576 * Update the SA for additions, modifications, and removals. On
577 * error drop the inconsistent cached version of the nvlist, it
578 * will be reconstructed from the ARC when next accessed.
579 */
580 if (error == 0)
581 error = -zfs_sa_set_xattr(zp);
582
583 if (error) {
584 nvlist_free(nvl);
585 zp->z_xattr_cached = NULL;
586 }
587
588 ASSERT3S(error, <=, 0);
589
590 return (error);
591 }
592
593 static int
594 zpl_xattr_set(struct inode *ip, const char *name, const void *value,
595 size_t size, int flags)
596 {
597 znode_t *zp = ITOZ(ip);
598 zfsvfs_t *zfsvfs = ZTOZSB(zp);
599 cred_t *cr = CRED();
600 fstrans_cookie_t cookie;
601 int where;
602 int error;
603
604 crhold(cr);
605 cookie = spl_fstrans_mark();
606 ZPL_ENTER(zfsvfs);
607 ZPL_VERIFY_ZP(zp);
608 rw_enter(&zp->z_xattr_lock, RW_WRITER);
609
610 /*
611 * Before setting the xattr check to see if it already exists.
612 * This is done to ensure the following optional flags are honored.
613 *
614 * XATTR_CREATE: fail if xattr already exists
615 * XATTR_REPLACE: fail if xattr does not exist
616 *
617 * We also want to know if it resides in sa or dir, so we can make
618 * sure we don't end up with duplicate in both places.
619 */
620 error = __zpl_xattr_where(ip, name, &where, cr);
621 if (error < 0) {
622 if (error != -ENODATA)
623 goto out;
624 if (flags & XATTR_REPLACE)
625 goto out;
626
627 /* The xattr to be removed already doesn't exist */
628 error = 0;
629 if (value == NULL)
630 goto out;
631 } else {
632 error = -EEXIST;
633 if (flags & XATTR_CREATE)
634 goto out;
635 }
636
637 /* Preferentially store the xattr as a SA for better performance */
638 if (zfsvfs->z_use_sa && zp->z_is_sa &&
639 (zfsvfs->z_xattr_sa || (value == NULL && where & XATTR_IN_SA))) {
640 error = zpl_xattr_set_sa(ip, name, value, size, flags, cr);
641 if (error == 0) {
642 /*
643 * Successfully put into SA, we need to clear the one
644 * in dir.
645 */
646 if (where & XATTR_IN_DIR)
647 zpl_xattr_set_dir(ip, name, NULL, 0, 0, cr);
648 goto out;
649 }
650 }
651
652 error = zpl_xattr_set_dir(ip, name, value, size, flags, cr);
653 /*
654 * Successfully put into dir, we need to clear the one in SA.
655 */
656 if (error == 0 && (where & XATTR_IN_SA))
657 zpl_xattr_set_sa(ip, name, NULL, 0, 0, cr);
658 out:
659 rw_exit(&zp->z_xattr_lock);
660 ZPL_EXIT(zfsvfs);
661 spl_fstrans_unmark(cookie);
662 crfree(cr);
663 ASSERT3S(error, <=, 0);
664
665 return (error);
666 }
667
668 /*
669 * Extended user attributes
670 *
671 * "Extended user attributes may be assigned to files and directories for
672 * storing arbitrary additional information such as the mime type,
673 * character set or encoding of a file. The access permissions for user
674 * attributes are defined by the file permission bits: read permission
675 * is required to retrieve the attribute value, and writer permission is
676 * required to change it.
677 *
678 * The file permission bits of regular files and directories are
679 * interpreted differently from the file permission bits of special
680 * files and symbolic links. For regular files and directories the file
681 * permission bits define access to the file's contents, while for
682 * device special files they define access to the device described by
683 * the special file. The file permissions of symbolic links are not
684 * used in access checks. These differences would allow users to
685 * consume filesystem resources in a way not controllable by disk quotas
686 * for group or world writable special files and directories.
687 *
688 * For this reason, extended user attributes are allowed only for
689 * regular files and directories, and access to extended user attributes
690 * is restricted to the owner and to users with appropriate capabilities
691 * for directories with the sticky bit set (see the chmod(1) manual page
692 * for an explanation of the sticky bit)." - xattr(7)
693 *
694 * ZFS allows extended user attributes to be disabled administratively
695 * by setting the 'xattr=off' property on the dataset.
696 */
697 static int
698 __zpl_xattr_user_list(struct inode *ip, char *list, size_t list_size,
699 const char *name, size_t name_len)
700 {
701 return (ITOZSB(ip)->z_flags & ZSB_XATTR);
702 }
703 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_user_list);
704
705 static int
706 __zpl_xattr_user_get(struct inode *ip, const char *name,
707 void *value, size_t size)
708 {
709 char *xattr_name;
710 int error;
711 /* xattr_resolve_name will do this for us if this is defined */
712 #ifndef HAVE_XATTR_HANDLER_NAME
713 if (strcmp(name, "") == 0)
714 return (-EINVAL);
715 #endif
716 if (!(ITOZSB(ip)->z_flags & ZSB_XATTR))
717 return (-EOPNOTSUPP);
718
719 xattr_name = kmem_asprintf("%s%s", XATTR_USER_PREFIX, name);
720 error = zpl_xattr_get(ip, xattr_name, value, size);
721 kmem_strfree(xattr_name);
722
723 return (error);
724 }
725 ZPL_XATTR_GET_WRAPPER(zpl_xattr_user_get);
726
727 static int
728 __zpl_xattr_user_set(struct inode *ip, const char *name,
729 const void *value, size_t size, int flags)
730 {
731 char *xattr_name;
732 int error;
733 /* xattr_resolve_name will do this for us if this is defined */
734 #ifndef HAVE_XATTR_HANDLER_NAME
735 if (strcmp(name, "") == 0)
736 return (-EINVAL);
737 #endif
738 if (!(ITOZSB(ip)->z_flags & ZSB_XATTR))
739 return (-EOPNOTSUPP);
740
741 xattr_name = kmem_asprintf("%s%s", XATTR_USER_PREFIX, name);
742 error = zpl_xattr_set(ip, xattr_name, value, size, flags);
743 kmem_strfree(xattr_name);
744
745 return (error);
746 }
747 ZPL_XATTR_SET_WRAPPER(zpl_xattr_user_set);
748
749 static xattr_handler_t zpl_xattr_user_handler =
750 {
751 .prefix = XATTR_USER_PREFIX,
752 .list = zpl_xattr_user_list,
753 .get = zpl_xattr_user_get,
754 .set = zpl_xattr_user_set,
755 };
756
757 /*
758 * Trusted extended attributes
759 *
760 * "Trusted extended attributes are visible and accessible only to
761 * processes that have the CAP_SYS_ADMIN capability. Attributes in this
762 * class are used to implement mechanisms in user space (i.e., outside
763 * the kernel) which keep information in extended attributes to which
764 * ordinary processes should not have access." - xattr(7)
765 */
766 static int
767 __zpl_xattr_trusted_list(struct inode *ip, char *list, size_t list_size,
768 const char *name, size_t name_len)
769 {
770 return (capable(CAP_SYS_ADMIN));
771 }
772 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_trusted_list);
773
774 static int
775 __zpl_xattr_trusted_get(struct inode *ip, const char *name,
776 void *value, size_t size)
777 {
778 char *xattr_name;
779 int error;
780
781 if (!capable(CAP_SYS_ADMIN))
782 return (-EACCES);
783 /* xattr_resolve_name will do this for us if this is defined */
784 #ifndef HAVE_XATTR_HANDLER_NAME
785 if (strcmp(name, "") == 0)
786 return (-EINVAL);
787 #endif
788 xattr_name = kmem_asprintf("%s%s", XATTR_TRUSTED_PREFIX, name);
789 error = zpl_xattr_get(ip, xattr_name, value, size);
790 kmem_strfree(xattr_name);
791
792 return (error);
793 }
794 ZPL_XATTR_GET_WRAPPER(zpl_xattr_trusted_get);
795
796 static int
797 __zpl_xattr_trusted_set(struct inode *ip, const char *name,
798 const void *value, size_t size, int flags)
799 {
800 char *xattr_name;
801 int error;
802
803 if (!capable(CAP_SYS_ADMIN))
804 return (-EACCES);
805 /* xattr_resolve_name will do this for us if this is defined */
806 #ifndef HAVE_XATTR_HANDLER_NAME
807 if (strcmp(name, "") == 0)
808 return (-EINVAL);
809 #endif
810 xattr_name = kmem_asprintf("%s%s", XATTR_TRUSTED_PREFIX, name);
811 error = zpl_xattr_set(ip, xattr_name, value, size, flags);
812 kmem_strfree(xattr_name);
813
814 return (error);
815 }
816 ZPL_XATTR_SET_WRAPPER(zpl_xattr_trusted_set);
817
818 static xattr_handler_t zpl_xattr_trusted_handler = {
819 .prefix = XATTR_TRUSTED_PREFIX,
820 .list = zpl_xattr_trusted_list,
821 .get = zpl_xattr_trusted_get,
822 .set = zpl_xattr_trusted_set,
823 };
824
825 /*
826 * Extended security attributes
827 *
828 * "The security attribute namespace is used by kernel security modules,
829 * such as Security Enhanced Linux, and also to implement file
830 * capabilities (see capabilities(7)). Read and write access
831 * permissions to security attributes depend on the policy implemented
832 * for each security attribute by the security module. When no security
833 * module is loaded, all processes have read access to extended security
834 * attributes, and write access is limited to processes that have the
835 * CAP_SYS_ADMIN capability." - xattr(7)
836 */
837 static int
838 __zpl_xattr_security_list(struct inode *ip, char *list, size_t list_size,
839 const char *name, size_t name_len)
840 {
841 return (1);
842 }
843 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_security_list);
844
845 static int
846 __zpl_xattr_security_get(struct inode *ip, const char *name,
847 void *value, size_t size)
848 {
849 char *xattr_name;
850 int error;
851 /* xattr_resolve_name will do this for us if this is defined */
852 #ifndef HAVE_XATTR_HANDLER_NAME
853 if (strcmp(name, "") == 0)
854 return (-EINVAL);
855 #endif
856 xattr_name = kmem_asprintf("%s%s", XATTR_SECURITY_PREFIX, name);
857 error = zpl_xattr_get(ip, xattr_name, value, size);
858 kmem_strfree(xattr_name);
859
860 return (error);
861 }
862 ZPL_XATTR_GET_WRAPPER(zpl_xattr_security_get);
863
864 static int
865 __zpl_xattr_security_set(struct inode *ip, const char *name,
866 const void *value, size_t size, int flags)
867 {
868 char *xattr_name;
869 int error;
870 /* xattr_resolve_name will do this for us if this is defined */
871 #ifndef HAVE_XATTR_HANDLER_NAME
872 if (strcmp(name, "") == 0)
873 return (-EINVAL);
874 #endif
875 xattr_name = kmem_asprintf("%s%s", XATTR_SECURITY_PREFIX, name);
876 error = zpl_xattr_set(ip, xattr_name, value, size, flags);
877 kmem_strfree(xattr_name);
878
879 return (error);
880 }
881 ZPL_XATTR_SET_WRAPPER(zpl_xattr_security_set);
882
883 static int
884 zpl_xattr_security_init_impl(struct inode *ip, const struct xattr *xattrs,
885 void *fs_info)
886 {
887 const struct xattr *xattr;
888 int error = 0;
889
890 for (xattr = xattrs; xattr->name != NULL; xattr++) {
891 error = __zpl_xattr_security_set(ip,
892 xattr->name, xattr->value, xattr->value_len, 0);
893
894 if (error < 0)
895 break;
896 }
897
898 return (error);
899 }
900
901 int
902 zpl_xattr_security_init(struct inode *ip, struct inode *dip,
903 const struct qstr *qstr)
904 {
905 return security_inode_init_security(ip, dip, qstr,
906 &zpl_xattr_security_init_impl, NULL);
907 }
908
909 /*
910 * Security xattr namespace handlers.
911 */
912 static xattr_handler_t zpl_xattr_security_handler = {
913 .prefix = XATTR_SECURITY_PREFIX,
914 .list = zpl_xattr_security_list,
915 .get = zpl_xattr_security_get,
916 .set = zpl_xattr_security_set,
917 };
918
919 /*
920 * Extended system attributes
921 *
922 * "Extended system attributes are used by the kernel to store system
923 * objects such as Access Control Lists. Read and write access permissions
924 * to system attributes depend on the policy implemented for each system
925 * attribute implemented by filesystems in the kernel." - xattr(7)
926 */
927 #ifdef CONFIG_FS_POSIX_ACL
928 static int
929 zpl_set_acl_impl(struct inode *ip, struct posix_acl *acl, int type)
930 {
931 char *name, *value = NULL;
932 int error = 0;
933 size_t size = 0;
934
935 if (S_ISLNK(ip->i_mode))
936 return (-EOPNOTSUPP);
937
938 switch (type) {
939 case ACL_TYPE_ACCESS:
940 name = XATTR_NAME_POSIX_ACL_ACCESS;
941 if (acl) {
942 umode_t mode = ip->i_mode;
943 error = posix_acl_equiv_mode(acl, &mode);
944 if (error < 0) {
945 return (error);
946 } else {
947 /*
948 * The mode bits will have been set by
949 * ->zfs_setattr()->zfs_acl_chmod_setattr()
950 * using the ZFS ACL conversion. If they
951 * differ from the Posix ACL conversion dirty
952 * the inode to write the Posix mode bits.
953 */
954 if (ip->i_mode != mode) {
955 ip->i_mode = mode;
956 ip->i_ctime = current_time(ip);
957 zfs_mark_inode_dirty(ip);
958 }
959
960 if (error == 0)
961 acl = NULL;
962 }
963 }
964 break;
965
966 case ACL_TYPE_DEFAULT:
967 name = XATTR_NAME_POSIX_ACL_DEFAULT;
968 if (!S_ISDIR(ip->i_mode))
969 return (acl ? -EACCES : 0);
970 break;
971
972 default:
973 return (-EINVAL);
974 }
975
976 if (acl) {
977 size = posix_acl_xattr_size(acl->a_count);
978 value = kmem_alloc(size, KM_SLEEP);
979
980 error = zpl_acl_to_xattr(acl, value, size);
981 if (error < 0) {
982 kmem_free(value, size);
983 return (error);
984 }
985 }
986
987 error = zpl_xattr_set(ip, name, value, size, 0);
988 if (value)
989 kmem_free(value, size);
990
991 if (!error) {
992 if (acl)
993 zpl_set_cached_acl(ip, type, acl);
994 else
995 zpl_forget_cached_acl(ip, type);
996 }
997
998 return (error);
999 }
1000
1001 #ifdef HAVE_SET_ACL
1002 int
1003 #ifdef HAVE_SET_ACL_USERNS
1004 zpl_set_acl(struct user_namespace *userns, struct inode *ip,
1005 struct posix_acl *acl, int type)
1006 #else
1007 zpl_set_acl(struct inode *ip, struct posix_acl *acl, int type)
1008 #endif /* HAVE_SET_ACL_USERNS */
1009 {
1010 return (zpl_set_acl_impl(ip, acl, type));
1011 }
1012 #endif /* HAVE_SET_ACL */
1013
1014 static struct posix_acl *
1015 zpl_get_acl_impl(struct inode *ip, int type)
1016 {
1017 struct posix_acl *acl;
1018 void *value = NULL;
1019 char *name;
1020
1021 /*
1022 * As of Linux 3.14, the kernel get_acl will check this for us.
1023 * Also as of Linux 4.7, comparing against ACL_NOT_CACHED is wrong
1024 * as the kernel get_acl will set it to temporary sentinel value.
1025 */
1026 #ifndef HAVE_KERNEL_GET_ACL_HANDLE_CACHE
1027 acl = get_cached_acl(ip, type);
1028 if (acl != ACL_NOT_CACHED)
1029 return (acl);
1030 #endif
1031
1032 switch (type) {
1033 case ACL_TYPE_ACCESS:
1034 name = XATTR_NAME_POSIX_ACL_ACCESS;
1035 break;
1036 case ACL_TYPE_DEFAULT:
1037 name = XATTR_NAME_POSIX_ACL_DEFAULT;
1038 break;
1039 default:
1040 return (ERR_PTR(-EINVAL));
1041 }
1042
1043 int size = zpl_xattr_get(ip, name, NULL, 0);
1044 if (size > 0) {
1045 value = kmem_alloc(size, KM_SLEEP);
1046 size = zpl_xattr_get(ip, name, value, size);
1047 }
1048
1049 if (size > 0) {
1050 acl = zpl_acl_from_xattr(value, size);
1051 } else if (size == -ENODATA || size == -ENOSYS) {
1052 acl = NULL;
1053 } else {
1054 acl = ERR_PTR(-EIO);
1055 }
1056
1057 if (size > 0)
1058 kmem_free(value, size);
1059
1060 /* As of Linux 4.7, the kernel get_acl will set this for us */
1061 #ifndef HAVE_KERNEL_GET_ACL_HANDLE_CACHE
1062 if (!IS_ERR(acl))
1063 zpl_set_cached_acl(ip, type, acl);
1064 #endif
1065
1066 return (acl);
1067 }
1068
1069 #if defined(HAVE_GET_ACL_RCU)
1070 struct posix_acl *
1071 zpl_get_acl(struct inode *ip, int type, bool rcu)
1072 {
1073 if (rcu)
1074 return (ERR_PTR(-ECHILD));
1075
1076 return (zpl_get_acl_impl(ip, type));
1077 }
1078 #elif defined(HAVE_GET_ACL)
1079 struct posix_acl *
1080 zpl_get_acl(struct inode *ip, int type)
1081 {
1082 return (zpl_get_acl_impl(ip, type));
1083 }
1084 #else
1085 #error "Unsupported iops->get_acl() implementation"
1086 #endif /* HAVE_GET_ACL_RCU */
1087
1088 int
1089 zpl_init_acl(struct inode *ip, struct inode *dir)
1090 {
1091 struct posix_acl *acl = NULL;
1092 int error = 0;
1093
1094 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1095 return (0);
1096
1097 if (!S_ISLNK(ip->i_mode)) {
1098 acl = zpl_get_acl_impl(dir, ACL_TYPE_DEFAULT);
1099 if (IS_ERR(acl))
1100 return (PTR_ERR(acl));
1101 if (!acl) {
1102 ip->i_mode &= ~current_umask();
1103 ip->i_ctime = current_time(ip);
1104 zfs_mark_inode_dirty(ip);
1105 return (0);
1106 }
1107 }
1108
1109 if (acl) {
1110 umode_t mode;
1111
1112 if (S_ISDIR(ip->i_mode)) {
1113 error = zpl_set_acl_impl(ip, acl, ACL_TYPE_DEFAULT);
1114 if (error)
1115 goto out;
1116 }
1117
1118 mode = ip->i_mode;
1119 error = __posix_acl_create(&acl, GFP_KERNEL, &mode);
1120 if (error >= 0) {
1121 ip->i_mode = mode;
1122 zfs_mark_inode_dirty(ip);
1123 if (error > 0) {
1124 error = zpl_set_acl_impl(ip, acl,
1125 ACL_TYPE_ACCESS);
1126 }
1127 }
1128 }
1129 out:
1130 zpl_posix_acl_release(acl);
1131
1132 return (error);
1133 }
1134
1135 int
1136 zpl_chmod_acl(struct inode *ip)
1137 {
1138 struct posix_acl *acl;
1139 int error;
1140
1141 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1142 return (0);
1143
1144 if (S_ISLNK(ip->i_mode))
1145 return (-EOPNOTSUPP);
1146
1147 acl = zpl_get_acl_impl(ip, ACL_TYPE_ACCESS);
1148 if (IS_ERR(acl) || !acl)
1149 return (PTR_ERR(acl));
1150
1151 error = __posix_acl_chmod(&acl, GFP_KERNEL, ip->i_mode);
1152 if (!error)
1153 error = zpl_set_acl_impl(ip, acl, ACL_TYPE_ACCESS);
1154
1155 zpl_posix_acl_release(acl);
1156
1157 return (error);
1158 }
1159
1160 static int
1161 __zpl_xattr_acl_list_access(struct inode *ip, char *list, size_t list_size,
1162 const char *name, size_t name_len)
1163 {
1164 char *xattr_name = XATTR_NAME_POSIX_ACL_ACCESS;
1165 size_t xattr_size = sizeof (XATTR_NAME_POSIX_ACL_ACCESS);
1166
1167 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1168 return (0);
1169
1170 if (list && xattr_size <= list_size)
1171 memcpy(list, xattr_name, xattr_size);
1172
1173 return (xattr_size);
1174 }
1175 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_acl_list_access);
1176
1177 static int
1178 __zpl_xattr_acl_list_default(struct inode *ip, char *list, size_t list_size,
1179 const char *name, size_t name_len)
1180 {
1181 char *xattr_name = XATTR_NAME_POSIX_ACL_DEFAULT;
1182 size_t xattr_size = sizeof (XATTR_NAME_POSIX_ACL_DEFAULT);
1183
1184 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1185 return (0);
1186
1187 if (list && xattr_size <= list_size)
1188 memcpy(list, xattr_name, xattr_size);
1189
1190 return (xattr_size);
1191 }
1192 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_acl_list_default);
1193
1194 static int
1195 __zpl_xattr_acl_get_access(struct inode *ip, const char *name,
1196 void *buffer, size_t size)
1197 {
1198 struct posix_acl *acl;
1199 int type = ACL_TYPE_ACCESS;
1200 int error;
1201 /* xattr_resolve_name will do this for us if this is defined */
1202 #ifndef HAVE_XATTR_HANDLER_NAME
1203 if (strcmp(name, "") != 0)
1204 return (-EINVAL);
1205 #endif
1206 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1207 return (-EOPNOTSUPP);
1208
1209 acl = zpl_get_acl_impl(ip, type);
1210 if (IS_ERR(acl))
1211 return (PTR_ERR(acl));
1212 if (acl == NULL)
1213 return (-ENODATA);
1214
1215 error = zpl_acl_to_xattr(acl, buffer, size);
1216 zpl_posix_acl_release(acl);
1217
1218 return (error);
1219 }
1220 ZPL_XATTR_GET_WRAPPER(zpl_xattr_acl_get_access);
1221
1222 static int
1223 __zpl_xattr_acl_get_default(struct inode *ip, const char *name,
1224 void *buffer, size_t size)
1225 {
1226 struct posix_acl *acl;
1227 int type = ACL_TYPE_DEFAULT;
1228 int error;
1229 /* xattr_resolve_name will do this for us if this is defined */
1230 #ifndef HAVE_XATTR_HANDLER_NAME
1231 if (strcmp(name, "") != 0)
1232 return (-EINVAL);
1233 #endif
1234 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1235 return (-EOPNOTSUPP);
1236
1237 acl = zpl_get_acl_impl(ip, type);
1238 if (IS_ERR(acl))
1239 return (PTR_ERR(acl));
1240 if (acl == NULL)
1241 return (-ENODATA);
1242
1243 error = zpl_acl_to_xattr(acl, buffer, size);
1244 zpl_posix_acl_release(acl);
1245
1246 return (error);
1247 }
1248 ZPL_XATTR_GET_WRAPPER(zpl_xattr_acl_get_default);
1249
1250 static int
1251 __zpl_xattr_acl_set_access(struct inode *ip, const char *name,
1252 const void *value, size_t size, int flags)
1253 {
1254 struct posix_acl *acl;
1255 int type = ACL_TYPE_ACCESS;
1256 int error = 0;
1257 /* xattr_resolve_name will do this for us if this is defined */
1258 #ifndef HAVE_XATTR_HANDLER_NAME
1259 if (strcmp(name, "") != 0)
1260 return (-EINVAL);
1261 #endif
1262 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1263 return (-EOPNOTSUPP);
1264
1265 if (!zpl_inode_owner_or_capable(kcred->user_ns, ip))
1266 return (-EPERM);
1267
1268 if (value) {
1269 acl = zpl_acl_from_xattr(value, size);
1270 if (IS_ERR(acl))
1271 return (PTR_ERR(acl));
1272 else if (acl) {
1273 error = zpl_posix_acl_valid(ip, acl);
1274 if (error) {
1275 zpl_posix_acl_release(acl);
1276 return (error);
1277 }
1278 }
1279 } else {
1280 acl = NULL;
1281 }
1282 error = zpl_set_acl_impl(ip, acl, type);
1283 zpl_posix_acl_release(acl);
1284
1285 return (error);
1286 }
1287 ZPL_XATTR_SET_WRAPPER(zpl_xattr_acl_set_access);
1288
1289 static int
1290 __zpl_xattr_acl_set_default(struct inode *ip, const char *name,
1291 const void *value, size_t size, int flags)
1292 {
1293 struct posix_acl *acl;
1294 int type = ACL_TYPE_DEFAULT;
1295 int error = 0;
1296 /* xattr_resolve_name will do this for us if this is defined */
1297 #ifndef HAVE_XATTR_HANDLER_NAME
1298 if (strcmp(name, "") != 0)
1299 return (-EINVAL);
1300 #endif
1301 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1302 return (-EOPNOTSUPP);
1303
1304 if (!zpl_inode_owner_or_capable(kcred->user_ns, ip))
1305 return (-EPERM);
1306
1307 if (value) {
1308 acl = zpl_acl_from_xattr(value, size);
1309 if (IS_ERR(acl))
1310 return (PTR_ERR(acl));
1311 else if (acl) {
1312 error = zpl_posix_acl_valid(ip, acl);
1313 if (error) {
1314 zpl_posix_acl_release(acl);
1315 return (error);
1316 }
1317 }
1318 } else {
1319 acl = NULL;
1320 }
1321
1322 error = zpl_set_acl_impl(ip, acl, type);
1323 zpl_posix_acl_release(acl);
1324
1325 return (error);
1326 }
1327 ZPL_XATTR_SET_WRAPPER(zpl_xattr_acl_set_default);
1328
1329 /*
1330 * ACL access xattr namespace handlers.
1331 *
1332 * Use .name instead of .prefix when available. xattr_resolve_name will match
1333 * whole name and reject anything that has .name only as prefix.
1334 */
1335 static xattr_handler_t zpl_xattr_acl_access_handler = {
1336 #ifdef HAVE_XATTR_HANDLER_NAME
1337 .name = XATTR_NAME_POSIX_ACL_ACCESS,
1338 #else
1339 .prefix = XATTR_NAME_POSIX_ACL_ACCESS,
1340 #endif
1341 .list = zpl_xattr_acl_list_access,
1342 .get = zpl_xattr_acl_get_access,
1343 .set = zpl_xattr_acl_set_access,
1344 #if defined(HAVE_XATTR_LIST_SIMPLE) || \
1345 defined(HAVE_XATTR_LIST_DENTRY) || \
1346 defined(HAVE_XATTR_LIST_HANDLER)
1347 .flags = ACL_TYPE_ACCESS,
1348 #endif
1349 };
1350
1351 /*
1352 * ACL default xattr namespace handlers.
1353 *
1354 * Use .name instead of .prefix when available. xattr_resolve_name will match
1355 * whole name and reject anything that has .name only as prefix.
1356 */
1357 static xattr_handler_t zpl_xattr_acl_default_handler = {
1358 #ifdef HAVE_XATTR_HANDLER_NAME
1359 .name = XATTR_NAME_POSIX_ACL_DEFAULT,
1360 #else
1361 .prefix = XATTR_NAME_POSIX_ACL_DEFAULT,
1362 #endif
1363 .list = zpl_xattr_acl_list_default,
1364 .get = zpl_xattr_acl_get_default,
1365 .set = zpl_xattr_acl_set_default,
1366 #if defined(HAVE_XATTR_LIST_SIMPLE) || \
1367 defined(HAVE_XATTR_LIST_DENTRY) || \
1368 defined(HAVE_XATTR_LIST_HANDLER)
1369 .flags = ACL_TYPE_DEFAULT,
1370 #endif
1371 };
1372
1373 #endif /* CONFIG_FS_POSIX_ACL */
1374
1375 xattr_handler_t *zpl_xattr_handlers[] = {
1376 &zpl_xattr_security_handler,
1377 &zpl_xattr_trusted_handler,
1378 &zpl_xattr_user_handler,
1379 #ifdef CONFIG_FS_POSIX_ACL
1380 &zpl_xattr_acl_access_handler,
1381 &zpl_xattr_acl_default_handler,
1382 #endif /* CONFIG_FS_POSIX_ACL */
1383 NULL
1384 };
1385
1386 static const struct xattr_handler *
1387 zpl_xattr_handler(const char *name)
1388 {
1389 if (strncmp(name, XATTR_USER_PREFIX,
1390 XATTR_USER_PREFIX_LEN) == 0)
1391 return (&zpl_xattr_user_handler);
1392
1393 if (strncmp(name, XATTR_TRUSTED_PREFIX,
1394 XATTR_TRUSTED_PREFIX_LEN) == 0)
1395 return (&zpl_xattr_trusted_handler);
1396
1397 if (strncmp(name, XATTR_SECURITY_PREFIX,
1398 XATTR_SECURITY_PREFIX_LEN) == 0)
1399 return (&zpl_xattr_security_handler);
1400
1401 #ifdef CONFIG_FS_POSIX_ACL
1402 if (strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS,
1403 sizeof (XATTR_NAME_POSIX_ACL_ACCESS)) == 0)
1404 return (&zpl_xattr_acl_access_handler);
1405
1406 if (strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT,
1407 sizeof (XATTR_NAME_POSIX_ACL_DEFAULT)) == 0)
1408 return (&zpl_xattr_acl_default_handler);
1409 #endif /* CONFIG_FS_POSIX_ACL */
1410
1411 return (NULL);
1412 }
1413
1414 #if !defined(HAVE_POSIX_ACL_RELEASE) || defined(HAVE_POSIX_ACL_RELEASE_GPL_ONLY)
1415 struct acl_rel_struct {
1416 struct acl_rel_struct *next;
1417 struct posix_acl *acl;
1418 clock_t time;
1419 };
1420
1421 #define ACL_REL_GRACE (60*HZ)
1422 #define ACL_REL_WINDOW (1*HZ)
1423 #define ACL_REL_SCHED (ACL_REL_GRACE+ACL_REL_WINDOW)
1424
1425 /*
1426 * Lockless multi-producer single-consumer fifo list.
1427 * Nodes are added to tail and removed from head. Tail pointer is our
1428 * synchronization point. It always points to the next pointer of the last
1429 * node, or head if list is empty.
1430 */
1431 static struct acl_rel_struct *acl_rel_head = NULL;
1432 static struct acl_rel_struct **acl_rel_tail = &acl_rel_head;
1433
1434 static void
1435 zpl_posix_acl_free(void *arg)
1436 {
1437 struct acl_rel_struct *freelist = NULL;
1438 struct acl_rel_struct *a;
1439 clock_t new_time;
1440 boolean_t refire = B_FALSE;
1441
1442 ASSERT3P(acl_rel_head, !=, NULL);
1443 while (acl_rel_head) {
1444 a = acl_rel_head;
1445 if (ddi_get_lbolt() - a->time >= ACL_REL_GRACE) {
1446 /*
1447 * If a is the last node we need to reset tail, but we
1448 * need to use cmpxchg to make sure it is still the
1449 * last node.
1450 */
1451 if (acl_rel_tail == &a->next) {
1452 acl_rel_head = NULL;
1453 if (cmpxchg(&acl_rel_tail, &a->next,
1454 &acl_rel_head) == &a->next) {
1455 ASSERT3P(a->next, ==, NULL);
1456 a->next = freelist;
1457 freelist = a;
1458 break;
1459 }
1460 }
1461 /*
1462 * a is not last node, make sure next pointer is set
1463 * by the adder and advance the head.
1464 */
1465 while (READ_ONCE(a->next) == NULL)
1466 cpu_relax();
1467 acl_rel_head = a->next;
1468 a->next = freelist;
1469 freelist = a;
1470 } else {
1471 /*
1472 * a is still in grace period. We are responsible to
1473 * reschedule the free task, since adder will only do
1474 * so if list is empty.
1475 */
1476 new_time = a->time + ACL_REL_SCHED;
1477 refire = B_TRUE;
1478 break;
1479 }
1480 }
1481
1482 if (refire)
1483 taskq_dispatch_delay(system_delay_taskq, zpl_posix_acl_free,
1484 NULL, TQ_SLEEP, new_time);
1485
1486 while (freelist) {
1487 a = freelist;
1488 freelist = a->next;
1489 kfree(a->acl);
1490 kmem_free(a, sizeof (struct acl_rel_struct));
1491 }
1492 }
1493
1494 void
1495 zpl_posix_acl_release_impl(struct posix_acl *acl)
1496 {
1497 struct acl_rel_struct *a, **prev;
1498
1499 a = kmem_alloc(sizeof (struct acl_rel_struct), KM_SLEEP);
1500 a->next = NULL;
1501 a->acl = acl;
1502 a->time = ddi_get_lbolt();
1503 /* atomically points tail to us and get the previous tail */
1504 prev = xchg(&acl_rel_tail, &a->next);
1505 ASSERT3P(*prev, ==, NULL);
1506 *prev = a;
1507 /* if it was empty before, schedule the free task */
1508 if (prev == &acl_rel_head)
1509 taskq_dispatch_delay(system_delay_taskq, zpl_posix_acl_free,
1510 NULL, TQ_SLEEP, ddi_get_lbolt() + ACL_REL_SCHED);
1511 }
1512 #endif