]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/linux/zfs/zvol_os.c
Linux 5.20 compat: blk_cleanup_disk()
[mirror_zfs.git] / module / os / linux / zfs / zvol_os.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
23 */
24
25 #include <sys/dataset_kstats.h>
26 #include <sys/dbuf.h>
27 #include <sys/dmu_traverse.h>
28 #include <sys/dsl_dataset.h>
29 #include <sys/dsl_prop.h>
30 #include <sys/dsl_dir.h>
31 #include <sys/zap.h>
32 #include <sys/zfeature.h>
33 #include <sys/zil_impl.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zio.h>
36 #include <sys/zfs_rlock.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zvol.h>
39 #include <sys/zvol_impl.h>
40
41 #include <linux/blkdev_compat.h>
42 #include <linux/task_io_accounting_ops.h>
43
44 #ifdef HAVE_BLK_MQ
45 #include <linux/blk-mq.h>
46 #endif
47
48 static void zvol_request_impl(zvol_state_t *zv, struct bio *bio,
49 struct request *rq, boolean_t force_sync);
50
51 static unsigned int zvol_major = ZVOL_MAJOR;
52 static unsigned int zvol_request_sync = 0;
53 static unsigned int zvol_prefetch_bytes = (128 * 1024);
54 static unsigned long zvol_max_discard_blocks = 16384;
55
56 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
57 static const unsigned int zvol_open_timeout_ms = 1000;
58 #endif
59
60 static unsigned int zvol_threads = 0;
61 #ifdef HAVE_BLK_MQ
62 static unsigned int zvol_blk_mq_threads = 0;
63 static unsigned int zvol_blk_mq_actual_threads;
64 static boolean_t zvol_use_blk_mq = B_FALSE;
65
66 /*
67 * The maximum number of volblocksize blocks to process per thread. Typically,
68 * write heavy workloads preform better with higher values here, and read
69 * heavy workloads preform better with lower values, but that's not a hard
70 * and fast rule. It's basically a knob to tune between "less overhead with
71 * less parallelism" and "more overhead, but more parallelism".
72 *
73 * '8' was chosen as a reasonable, balanced, default based off of sequential
74 * read and write tests to a zvol in an NVMe pool (with 16 CPUs).
75 */
76 static unsigned int zvol_blk_mq_blocks_per_thread = 8;
77 #endif
78
79 #ifndef BLKDEV_DEFAULT_RQ
80 /* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */
81 #define BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ
82 #endif
83
84 /*
85 * Finalize our BIO or request.
86 */
87 #ifdef HAVE_BLK_MQ
88 #define END_IO(zv, bio, rq, error) do { \
89 if (bio) { \
90 BIO_END_IO(bio, error); \
91 } else { \
92 blk_mq_end_request(rq, errno_to_bi_status(error)); \
93 } \
94 } while (0)
95 #else
96 #define END_IO(zv, bio, rq, error) BIO_END_IO(bio, error)
97 #endif
98
99 #ifdef HAVE_BLK_MQ
100 static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
101 static unsigned int zvol_actual_blk_mq_queue_depth;
102 #endif
103
104 struct zvol_state_os {
105 struct gendisk *zvo_disk; /* generic disk */
106 struct request_queue *zvo_queue; /* request queue */
107 dev_t zvo_dev; /* device id */
108
109 #ifdef HAVE_BLK_MQ
110 struct blk_mq_tag_set tag_set;
111 #endif
112
113 /* Set from the global 'zvol_use_blk_mq' at zvol load */
114 boolean_t use_blk_mq;
115 };
116
117 taskq_t *zvol_taskq;
118 static struct ida zvol_ida;
119
120 typedef struct zv_request_stack {
121 zvol_state_t *zv;
122 struct bio *bio;
123 struct request *rq;
124 } zv_request_t;
125
126 typedef struct zv_work {
127 struct request *rq;
128 struct work_struct work;
129 } zv_work_t;
130
131 typedef struct zv_request_task {
132 zv_request_t zvr;
133 taskq_ent_t ent;
134 } zv_request_task_t;
135
136 static zv_request_task_t *
137 zv_request_task_create(zv_request_t zvr)
138 {
139 zv_request_task_t *task;
140 task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
141 taskq_init_ent(&task->ent);
142 task->zvr = zvr;
143 return (task);
144 }
145
146 static void
147 zv_request_task_free(zv_request_task_t *task)
148 {
149 kmem_free(task, sizeof (*task));
150 }
151
152 #ifdef HAVE_BLK_MQ
153
154 /*
155 * This is called when a new block multiqueue request comes in. A request
156 * contains one or more BIOs.
157 */
158 static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
159 const struct blk_mq_queue_data *bd)
160 {
161 struct request *rq = bd->rq;
162 zvol_state_t *zv = rq->q->queuedata;
163
164 /* Tell the kernel that we are starting to process this request */
165 blk_mq_start_request(rq);
166
167 if (blk_rq_is_passthrough(rq)) {
168 /* Skip non filesystem request */
169 blk_mq_end_request(rq, BLK_STS_IOERR);
170 return (BLK_STS_IOERR);
171 }
172
173 zvol_request_impl(zv, NULL, rq, 0);
174
175 /* Acknowledge to the kernel that we got this request */
176 return (BLK_STS_OK);
177 }
178
179 static struct blk_mq_ops zvol_blk_mq_queue_ops = {
180 .queue_rq = zvol_mq_queue_rq,
181 };
182
183 /* Initialize our blk-mq struct */
184 static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv)
185 {
186 struct zvol_state_os *zso = zv->zv_zso;
187
188 memset(&zso->tag_set, 0, sizeof (zso->tag_set));
189
190 /* Initialize tag set. */
191 zso->tag_set.ops = &zvol_blk_mq_queue_ops;
192 zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads;
193 zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth;
194 zso->tag_set.numa_node = NUMA_NO_NODE;
195 zso->tag_set.cmd_size = 0;
196
197 /*
198 * We need BLK_MQ_F_BLOCKING here since we do blocking calls in
199 * zvol_request_impl()
200 */
201 zso->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
202 zso->tag_set.driver_data = zv;
203
204 return (blk_mq_alloc_tag_set(&zso->tag_set));
205 }
206 #endif /* HAVE_BLK_MQ */
207
208 /*
209 * Given a path, return TRUE if path is a ZVOL.
210 */
211 boolean_t
212 zvol_os_is_zvol(const char *path)
213 {
214 dev_t dev = 0;
215
216 if (vdev_lookup_bdev(path, &dev) != 0)
217 return (B_FALSE);
218
219 if (MAJOR(dev) == zvol_major)
220 return (B_TRUE);
221
222 return (B_FALSE);
223 }
224
225 static void
226 zvol_write(zv_request_t *zvr)
227 {
228 struct bio *bio = zvr->bio;
229 struct request *rq = zvr->rq;
230 int error = 0;
231 zfs_uio_t uio;
232 zvol_state_t *zv = zvr->zv;
233 struct request_queue *q;
234 struct gendisk *disk;
235 unsigned long start_time = 0;
236 boolean_t acct = B_FALSE;
237
238 ASSERT3P(zv, !=, NULL);
239 ASSERT3U(zv->zv_open_count, >, 0);
240 ASSERT3P(zv->zv_zilog, !=, NULL);
241
242 q = zv->zv_zso->zvo_queue;
243 disk = zv->zv_zso->zvo_disk;
244
245 /* bio marked as FLUSH need to flush before write */
246 if (io_is_flush(bio, rq))
247 zil_commit(zv->zv_zilog, ZVOL_OBJ);
248
249 /* Some requests are just for flush and nothing else. */
250 if (io_size(bio, rq) == 0) {
251 rw_exit(&zv->zv_suspend_lock);
252 END_IO(zv, bio, rq, 0);
253 return;
254 }
255
256 zfs_uio_bvec_init(&uio, bio, rq);
257
258 ssize_t start_resid = uio.uio_resid;
259
260 /*
261 * With use_blk_mq, accounting is done by blk_mq_start_request()
262 * and blk_mq_end_request(), so we can skip it here.
263 */
264 if (bio) {
265 acct = blk_queue_io_stat(q);
266 if (acct) {
267 start_time = blk_generic_start_io_acct(q, disk, WRITE,
268 bio);
269 }
270 }
271
272 boolean_t sync =
273 io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
274
275 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
276 uio.uio_loffset, uio.uio_resid, RL_WRITER);
277
278 uint64_t volsize = zv->zv_volsize;
279 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
280 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
281 uint64_t off = uio.uio_loffset;
282 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
283
284 if (bytes > volsize - off) /* don't write past the end */
285 bytes = volsize - off;
286
287 dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
288
289 /* This will only fail for ENOSPC */
290 error = dmu_tx_assign(tx, TXG_WAIT);
291 if (error) {
292 dmu_tx_abort(tx);
293 break;
294 }
295 error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
296 if (error == 0) {
297 zvol_log_write(zv, tx, off, bytes, sync);
298 }
299 dmu_tx_commit(tx);
300
301 if (error)
302 break;
303 }
304 zfs_rangelock_exit(lr);
305
306 int64_t nwritten = start_resid - uio.uio_resid;
307 dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
308 task_io_account_write(nwritten);
309
310 if (sync)
311 zil_commit(zv->zv_zilog, ZVOL_OBJ);
312
313 rw_exit(&zv->zv_suspend_lock);
314
315 if (bio && acct) {
316 blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
317 }
318
319 END_IO(zv, bio, rq, -error);
320 }
321
322 static void
323 zvol_write_task(void *arg)
324 {
325 zv_request_task_t *task = arg;
326 zvol_write(&task->zvr);
327 zv_request_task_free(task);
328 }
329
330 static void
331 zvol_discard(zv_request_t *zvr)
332 {
333 struct bio *bio = zvr->bio;
334 struct request *rq = zvr->rq;
335 zvol_state_t *zv = zvr->zv;
336 uint64_t start = io_offset(bio, rq);
337 uint64_t size = io_size(bio, rq);
338 uint64_t end = start + size;
339 boolean_t sync;
340 int error = 0;
341 dmu_tx_t *tx;
342 struct request_queue *q = zv->zv_zso->zvo_queue;
343 struct gendisk *disk = zv->zv_zso->zvo_disk;
344 unsigned long start_time = 0;
345
346 boolean_t acct = blk_queue_io_stat(q);
347
348 ASSERT3P(zv, !=, NULL);
349 ASSERT3U(zv->zv_open_count, >, 0);
350 ASSERT3P(zv->zv_zilog, !=, NULL);
351
352 if (bio) {
353 acct = blk_queue_io_stat(q);
354 if (acct) {
355 start_time = blk_generic_start_io_acct(q, disk, WRITE,
356 bio);
357 }
358 }
359
360 sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
361
362 if (end > zv->zv_volsize) {
363 error = SET_ERROR(EIO);
364 goto unlock;
365 }
366
367 /*
368 * Align the request to volume block boundaries when a secure erase is
369 * not required. This will prevent dnode_free_range() from zeroing out
370 * the unaligned parts which is slow (read-modify-write) and useless
371 * since we are not freeing any space by doing so.
372 */
373 if (!io_is_secure_erase(bio, rq)) {
374 start = P2ROUNDUP(start, zv->zv_volblocksize);
375 end = P2ALIGN(end, zv->zv_volblocksize);
376 size = end - start;
377 }
378
379 if (start >= end)
380 goto unlock;
381
382 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
383 start, size, RL_WRITER);
384
385 tx = dmu_tx_create(zv->zv_objset);
386 dmu_tx_mark_netfree(tx);
387 error = dmu_tx_assign(tx, TXG_WAIT);
388 if (error != 0) {
389 dmu_tx_abort(tx);
390 } else {
391 zvol_log_truncate(zv, tx, start, size, B_TRUE);
392 dmu_tx_commit(tx);
393 error = dmu_free_long_range(zv->zv_objset,
394 ZVOL_OBJ, start, size);
395 }
396 zfs_rangelock_exit(lr);
397
398 if (error == 0 && sync)
399 zil_commit(zv->zv_zilog, ZVOL_OBJ);
400
401 unlock:
402 rw_exit(&zv->zv_suspend_lock);
403
404 if (bio && acct) {
405 blk_generic_end_io_acct(q, disk, WRITE, bio,
406 start_time);
407 }
408
409 END_IO(zv, bio, rq, -error);
410 }
411
412 static void
413 zvol_discard_task(void *arg)
414 {
415 zv_request_task_t *task = arg;
416 zvol_discard(&task->zvr);
417 zv_request_task_free(task);
418 }
419
420 static void
421 zvol_read(zv_request_t *zvr)
422 {
423 struct bio *bio = zvr->bio;
424 struct request *rq = zvr->rq;
425 int error = 0;
426 zfs_uio_t uio;
427 boolean_t acct = B_FALSE;
428 zvol_state_t *zv = zvr->zv;
429 struct request_queue *q;
430 struct gendisk *disk;
431 unsigned long start_time = 0;
432
433 ASSERT3P(zv, !=, NULL);
434 ASSERT3U(zv->zv_open_count, >, 0);
435
436 zfs_uio_bvec_init(&uio, bio, rq);
437
438 q = zv->zv_zso->zvo_queue;
439 disk = zv->zv_zso->zvo_disk;
440
441 ssize_t start_resid = uio.uio_resid;
442
443 /*
444 * When blk-mq is being used, accounting is done by
445 * blk_mq_start_request() and blk_mq_end_request().
446 */
447 if (bio) {
448 acct = blk_queue_io_stat(q);
449 if (acct)
450 start_time = blk_generic_start_io_acct(q, disk, READ,
451 bio);
452 }
453
454 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
455 uio.uio_loffset, uio.uio_resid, RL_READER);
456
457 uint64_t volsize = zv->zv_volsize;
458
459 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
460 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
461
462 /* don't read past the end */
463 if (bytes > volsize - uio.uio_loffset)
464 bytes = volsize - uio.uio_loffset;
465
466 error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
467 if (error) {
468 /* convert checksum errors into IO errors */
469 if (error == ECKSUM)
470 error = SET_ERROR(EIO);
471 break;
472 }
473 }
474 zfs_rangelock_exit(lr);
475
476 int64_t nread = start_resid - uio.uio_resid;
477 dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
478 task_io_account_read(nread);
479
480 rw_exit(&zv->zv_suspend_lock);
481
482 if (bio && acct) {
483 blk_generic_end_io_acct(q, disk, READ, bio, start_time);
484 }
485
486 END_IO(zv, bio, rq, -error);
487 }
488
489 static void
490 zvol_read_task(void *arg)
491 {
492 zv_request_task_t *task = arg;
493 zvol_read(&task->zvr);
494 zv_request_task_free(task);
495 }
496
497
498 /*
499 * Process a BIO or request
500 *
501 * Either 'bio' or 'rq' should be set depending on if we are processing a
502 * bio or a request (both should not be set).
503 *
504 * force_sync: Set to 0 to defer processing to a background taskq
505 * Set to 1 to process data synchronously
506 */
507 static void
508 zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq,
509 boolean_t force_sync)
510 {
511 fstrans_cookie_t cookie = spl_fstrans_mark();
512 uint64_t offset = io_offset(bio, rq);
513 uint64_t size = io_size(bio, rq);
514 int rw = io_data_dir(bio, rq);
515
516 if (zvol_request_sync)
517 force_sync = 1;
518
519 zv_request_t zvr = {
520 .zv = zv,
521 .bio = bio,
522 .rq = rq,
523 };
524
525 if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) {
526 printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n",
527 zv->zv_zso->zvo_disk->disk_name,
528 (long long unsigned)offset,
529 (long unsigned)size);
530
531 END_IO(zv, bio, rq, -SET_ERROR(EIO));
532 goto out;
533 }
534
535 zv_request_task_t *task;
536
537 if (rw == WRITE) {
538 if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
539 END_IO(zv, bio, rq, -SET_ERROR(EROFS));
540 goto out;
541 }
542
543 /*
544 * Prevents the zvol from being suspended, or the ZIL being
545 * concurrently opened. Will be released after the i/o
546 * completes.
547 */
548 rw_enter(&zv->zv_suspend_lock, RW_READER);
549
550 /*
551 * Open a ZIL if this is the first time we have written to this
552 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
553 * than zv_state_lock so that we don't need to acquire an
554 * additional lock in this path.
555 */
556 if (zv->zv_zilog == NULL) {
557 rw_exit(&zv->zv_suspend_lock);
558 rw_enter(&zv->zv_suspend_lock, RW_WRITER);
559 if (zv->zv_zilog == NULL) {
560 zv->zv_zilog = zil_open(zv->zv_objset,
561 zvol_get_data, &zv->zv_kstat.dk_zil_sums);
562 zv->zv_flags |= ZVOL_WRITTEN_TO;
563 /* replay / destroy done in zvol_create_minor */
564 VERIFY0((zv->zv_zilog->zl_header->zh_flags &
565 ZIL_REPLAY_NEEDED));
566 }
567 rw_downgrade(&zv->zv_suspend_lock);
568 }
569
570 /*
571 * We don't want this thread to be blocked waiting for i/o to
572 * complete, so we instead wait from a taskq callback. The
573 * i/o may be a ZIL write (via zil_commit()), or a read of an
574 * indirect block, or a read of a data block (if this is a
575 * partial-block write). We will indicate that the i/o is
576 * complete by calling END_IO() from the taskq callback.
577 *
578 * This design allows the calling thread to continue and
579 * initiate more concurrent operations by calling
580 * zvol_request() again. There are typically only a small
581 * number of threads available to call zvol_request() (e.g.
582 * one per iSCSI target), so keeping the latency of
583 * zvol_request() low is important for performance.
584 *
585 * The zvol_request_sync module parameter allows this
586 * behavior to be altered, for performance evaluation
587 * purposes. If the callback blocks, setting
588 * zvol_request_sync=1 will result in much worse performance.
589 *
590 * We can have up to zvol_threads concurrent i/o's being
591 * processed for all zvols on the system. This is typically
592 * a vast improvement over the zvol_request_sync=1 behavior
593 * of one i/o at a time per zvol. However, an even better
594 * design would be for zvol_request() to initiate the zio
595 * directly, and then be notified by the zio_done callback,
596 * which would call END_IO(). Unfortunately, the DMU/ZIL
597 * interfaces lack this functionality (they block waiting for
598 * the i/o to complete).
599 */
600 if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) {
601 if (force_sync) {
602 zvol_discard(&zvr);
603 } else {
604 task = zv_request_task_create(zvr);
605 taskq_dispatch_ent(zvol_taskq,
606 zvol_discard_task, task, 0, &task->ent);
607 }
608 } else {
609 if (force_sync) {
610 zvol_write(&zvr);
611 } else {
612 task = zv_request_task_create(zvr);
613 taskq_dispatch_ent(zvol_taskq,
614 zvol_write_task, task, 0, &task->ent);
615 }
616 }
617 } else {
618 /*
619 * The SCST driver, and possibly others, may issue READ I/Os
620 * with a length of zero bytes. These empty I/Os contain no
621 * data and require no additional handling.
622 */
623 if (size == 0) {
624 END_IO(zv, bio, rq, 0);
625 goto out;
626 }
627
628 rw_enter(&zv->zv_suspend_lock, RW_READER);
629
630 /* See comment in WRITE case above. */
631 if (force_sync) {
632 zvol_read(&zvr);
633 } else {
634 task = zv_request_task_create(zvr);
635 taskq_dispatch_ent(zvol_taskq,
636 zvol_read_task, task, 0, &task->ent);
637 }
638 }
639
640 out:
641 spl_fstrans_unmark(cookie);
642 }
643
644 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
645 #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
646 static void
647 zvol_submit_bio(struct bio *bio)
648 #else
649 static blk_qc_t
650 zvol_submit_bio(struct bio *bio)
651 #endif
652 #else
653 static MAKE_REQUEST_FN_RET
654 zvol_request(struct request_queue *q, struct bio *bio)
655 #endif
656 {
657 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
658 #if defined(HAVE_BIO_BDEV_DISK)
659 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
660 #else
661 struct request_queue *q = bio->bi_disk->queue;
662 #endif
663 #endif
664 zvol_state_t *zv = q->queuedata;
665
666 zvol_request_impl(zv, bio, NULL, 0);
667 #if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
668 defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
669 !defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
670 return (BLK_QC_T_NONE);
671 #endif
672 }
673
674 static int
675 zvol_open(struct block_device *bdev, fmode_t flag)
676 {
677 zvol_state_t *zv;
678 int error = 0;
679 boolean_t drop_suspend = B_FALSE;
680 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
681 hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms);
682 hrtime_t start = gethrtime();
683
684 retry:
685 #endif
686 rw_enter(&zvol_state_lock, RW_READER);
687 /*
688 * Obtain a copy of private_data under the zvol_state_lock to make
689 * sure that either the result of zvol free code path setting
690 * bdev->bd_disk->private_data to NULL is observed, or zvol_os_free()
691 * is not called on this zv because of the positive zv_open_count.
692 */
693 zv = bdev->bd_disk->private_data;
694 if (zv == NULL) {
695 rw_exit(&zvol_state_lock);
696 return (SET_ERROR(-ENXIO));
697 }
698
699 mutex_enter(&zv->zv_state_lock);
700 /*
701 * Make sure zvol is not suspended during first open
702 * (hold zv_suspend_lock) and respect proper lock acquisition
703 * ordering - zv_suspend_lock before zv_state_lock
704 */
705 if (zv->zv_open_count == 0) {
706 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
707 mutex_exit(&zv->zv_state_lock);
708 rw_enter(&zv->zv_suspend_lock, RW_READER);
709 mutex_enter(&zv->zv_state_lock);
710 /* check to see if zv_suspend_lock is needed */
711 if (zv->zv_open_count != 0) {
712 rw_exit(&zv->zv_suspend_lock);
713 } else {
714 drop_suspend = B_TRUE;
715 }
716 } else {
717 drop_suspend = B_TRUE;
718 }
719 }
720 rw_exit(&zvol_state_lock);
721
722 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
723
724 if (zv->zv_open_count == 0) {
725 boolean_t drop_namespace = B_FALSE;
726
727 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
728
729 /*
730 * In all other call paths the spa_namespace_lock is taken
731 * before the bdev->bd_mutex lock. However, on open(2)
732 * the __blkdev_get() function calls fops->open() with the
733 * bdev->bd_mutex lock held. This can result in a deadlock
734 * when zvols from one pool are used as vdevs in another.
735 *
736 * To prevent a lock inversion deadlock we preemptively
737 * take the spa_namespace_lock. Normally the lock will not
738 * be contended and this is safe because spa_open_common()
739 * handles the case where the caller already holds the
740 * spa_namespace_lock.
741 *
742 * When the lock cannot be aquired after multiple retries
743 * this must be the vdev on zvol deadlock case and we have
744 * no choice but to return an error. For 5.12 and older
745 * kernels returning -ERESTARTSYS will result in the
746 * bdev->bd_mutex being dropped, then reacquired, and
747 * fops->open() being called again. This process can be
748 * repeated safely until both locks are acquired. For 5.13
749 * and newer the -ERESTARTSYS retry logic was removed from
750 * the kernel so the only option is to return the error for
751 * the caller to handle it.
752 */
753 if (!mutex_owned(&spa_namespace_lock)) {
754 if (!mutex_tryenter(&spa_namespace_lock)) {
755 mutex_exit(&zv->zv_state_lock);
756 rw_exit(&zv->zv_suspend_lock);
757
758 #ifdef HAVE_BLKDEV_GET_ERESTARTSYS
759 schedule();
760 return (SET_ERROR(-ERESTARTSYS));
761 #else
762 if ((gethrtime() - start) > timeout)
763 return (SET_ERROR(-ERESTARTSYS));
764
765 schedule_timeout(MSEC_TO_TICK(10));
766 goto retry;
767 #endif
768 } else {
769 drop_namespace = B_TRUE;
770 }
771 }
772
773 error = -zvol_first_open(zv, !(flag & FMODE_WRITE));
774
775 if (drop_namespace)
776 mutex_exit(&spa_namespace_lock);
777 }
778
779 if (error == 0) {
780 if ((flag & FMODE_WRITE) && (zv->zv_flags & ZVOL_RDONLY)) {
781 if (zv->zv_open_count == 0)
782 zvol_last_close(zv);
783
784 error = SET_ERROR(-EROFS);
785 } else {
786 zv->zv_open_count++;
787 }
788 }
789
790 mutex_exit(&zv->zv_state_lock);
791 if (drop_suspend)
792 rw_exit(&zv->zv_suspend_lock);
793
794 if (error == 0)
795 zfs_check_media_change(bdev);
796
797 return (error);
798 }
799
800 static void
801 zvol_release(struct gendisk *disk, fmode_t mode)
802 {
803 zvol_state_t *zv;
804 boolean_t drop_suspend = B_TRUE;
805
806 rw_enter(&zvol_state_lock, RW_READER);
807 zv = disk->private_data;
808
809 mutex_enter(&zv->zv_state_lock);
810 ASSERT3U(zv->zv_open_count, >, 0);
811 /*
812 * make sure zvol is not suspended during last close
813 * (hold zv_suspend_lock) and respect proper lock acquisition
814 * ordering - zv_suspend_lock before zv_state_lock
815 */
816 if (zv->zv_open_count == 1) {
817 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
818 mutex_exit(&zv->zv_state_lock);
819 rw_enter(&zv->zv_suspend_lock, RW_READER);
820 mutex_enter(&zv->zv_state_lock);
821 /* check to see if zv_suspend_lock is needed */
822 if (zv->zv_open_count != 1) {
823 rw_exit(&zv->zv_suspend_lock);
824 drop_suspend = B_FALSE;
825 }
826 }
827 } else {
828 drop_suspend = B_FALSE;
829 }
830 rw_exit(&zvol_state_lock);
831
832 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
833
834 zv->zv_open_count--;
835 if (zv->zv_open_count == 0) {
836 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
837 zvol_last_close(zv);
838 }
839
840 mutex_exit(&zv->zv_state_lock);
841
842 if (drop_suspend)
843 rw_exit(&zv->zv_suspend_lock);
844 }
845
846 static int
847 zvol_ioctl(struct block_device *bdev, fmode_t mode,
848 unsigned int cmd, unsigned long arg)
849 {
850 zvol_state_t *zv = bdev->bd_disk->private_data;
851 int error = 0;
852
853 ASSERT3U(zv->zv_open_count, >, 0);
854
855 switch (cmd) {
856 case BLKFLSBUF:
857 fsync_bdev(bdev);
858 invalidate_bdev(bdev);
859 rw_enter(&zv->zv_suspend_lock, RW_READER);
860
861 if (!(zv->zv_flags & ZVOL_RDONLY))
862 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
863
864 rw_exit(&zv->zv_suspend_lock);
865 break;
866
867 case BLKZNAME:
868 mutex_enter(&zv->zv_state_lock);
869 error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
870 mutex_exit(&zv->zv_state_lock);
871 break;
872
873 default:
874 error = -ENOTTY;
875 break;
876 }
877
878 return (SET_ERROR(error));
879 }
880
881 #ifdef CONFIG_COMPAT
882 static int
883 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
884 unsigned cmd, unsigned long arg)
885 {
886 return (zvol_ioctl(bdev, mode, cmd, arg));
887 }
888 #else
889 #define zvol_compat_ioctl NULL
890 #endif
891
892 static unsigned int
893 zvol_check_events(struct gendisk *disk, unsigned int clearing)
894 {
895 unsigned int mask = 0;
896
897 rw_enter(&zvol_state_lock, RW_READER);
898
899 zvol_state_t *zv = disk->private_data;
900 if (zv != NULL) {
901 mutex_enter(&zv->zv_state_lock);
902 mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
903 zv->zv_changed = 0;
904 mutex_exit(&zv->zv_state_lock);
905 }
906
907 rw_exit(&zvol_state_lock);
908
909 return (mask);
910 }
911
912 static int
913 zvol_revalidate_disk(struct gendisk *disk)
914 {
915 rw_enter(&zvol_state_lock, RW_READER);
916
917 zvol_state_t *zv = disk->private_data;
918 if (zv != NULL) {
919 mutex_enter(&zv->zv_state_lock);
920 set_capacity(zv->zv_zso->zvo_disk,
921 zv->zv_volsize >> SECTOR_BITS);
922 mutex_exit(&zv->zv_state_lock);
923 }
924
925 rw_exit(&zvol_state_lock);
926
927 return (0);
928 }
929
930 int
931 zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize)
932 {
933 struct gendisk *disk = zv->zv_zso->zvo_disk;
934
935 #if defined(HAVE_REVALIDATE_DISK_SIZE)
936 revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0);
937 #elif defined(HAVE_REVALIDATE_DISK)
938 revalidate_disk(disk);
939 #else
940 zvol_revalidate_disk(disk);
941 #endif
942 return (0);
943 }
944
945 void
946 zvol_os_clear_private(zvol_state_t *zv)
947 {
948 /*
949 * Cleared while holding zvol_state_lock as a writer
950 * which will prevent zvol_open() from opening it.
951 */
952 zv->zv_zso->zvo_disk->private_data = NULL;
953 }
954
955 /*
956 * Provide a simple virtual geometry for legacy compatibility. For devices
957 * smaller than 1 MiB a small head and sector count is used to allow very
958 * tiny devices. For devices over 1 Mib a standard head and sector count
959 * is used to keep the cylinders count reasonable.
960 */
961 static int
962 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
963 {
964 zvol_state_t *zv = bdev->bd_disk->private_data;
965 sector_t sectors;
966
967 ASSERT3U(zv->zv_open_count, >, 0);
968
969 sectors = get_capacity(zv->zv_zso->zvo_disk);
970
971 if (sectors > 2048) {
972 geo->heads = 16;
973 geo->sectors = 63;
974 } else {
975 geo->heads = 2;
976 geo->sectors = 4;
977 }
978
979 geo->start = 0;
980 geo->cylinders = sectors / (geo->heads * geo->sectors);
981
982 return (0);
983 }
984
985 /*
986 * Why have two separate block_device_operations structs?
987 *
988 * Normally we'd just have one, and assign 'submit_bio' as needed. However,
989 * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we
990 * can't just change submit_bio dynamically at runtime. So just create two
991 * separate structs to get around this.
992 */
993 static const struct block_device_operations zvol_ops_blk_mq = {
994 .open = zvol_open,
995 .release = zvol_release,
996 .ioctl = zvol_ioctl,
997 .compat_ioctl = zvol_compat_ioctl,
998 .check_events = zvol_check_events,
999 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1000 .revalidate_disk = zvol_revalidate_disk,
1001 #endif
1002 .getgeo = zvol_getgeo,
1003 .owner = THIS_MODULE,
1004 };
1005
1006 static const struct block_device_operations zvol_ops = {
1007 .open = zvol_open,
1008 .release = zvol_release,
1009 .ioctl = zvol_ioctl,
1010 .compat_ioctl = zvol_compat_ioctl,
1011 .check_events = zvol_check_events,
1012 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1013 .revalidate_disk = zvol_revalidate_disk,
1014 #endif
1015 .getgeo = zvol_getgeo,
1016 .owner = THIS_MODULE,
1017 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
1018 .submit_bio = zvol_submit_bio,
1019 #endif
1020 };
1021
1022 static int
1023 zvol_alloc_non_blk_mq(struct zvol_state_os *zso)
1024 {
1025 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
1026 #if defined(HAVE_BLK_ALLOC_DISK)
1027 zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE);
1028 if (zso->zvo_disk == NULL)
1029 return (1);
1030
1031 zso->zvo_disk->minors = ZVOL_MINORS;
1032 zso->zvo_queue = zso->zvo_disk->queue;
1033 #else
1034 zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
1035 if (zso->zvo_queue == NULL)
1036 return (1);
1037
1038 zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1039 if (zso->zvo_disk == NULL) {
1040 blk_cleanup_queue(zso->zvo_queue);
1041 return (1);
1042 }
1043
1044 zso->zvo_disk->queue = zso->zvo_queue;
1045 #endif /* HAVE_BLK_ALLOC_DISK */
1046 #else
1047 zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
1048 if (zso->zvo_queue == NULL)
1049 return (1);
1050
1051 zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1052 if (zso->zvo_disk == NULL) {
1053 blk_cleanup_queue(zso->zvo_queue);
1054 return (1);
1055 }
1056
1057 zso->zvo_disk->queue = zso->zvo_queue;
1058 #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */
1059 return (0);
1060
1061 }
1062
1063 static int
1064 zvol_alloc_blk_mq(zvol_state_t *zv)
1065 {
1066 #ifdef HAVE_BLK_MQ
1067 struct zvol_state_os *zso = zv->zv_zso;
1068
1069 /* Allocate our blk-mq tag_set */
1070 if (zvol_blk_mq_alloc_tag_set(zv) != 0)
1071 return (1);
1072
1073 #if defined(HAVE_BLK_ALLOC_DISK)
1074 zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv);
1075 if (zso->zvo_disk == NULL) {
1076 blk_mq_free_tag_set(&zso->tag_set);
1077 return (1);
1078 }
1079 zso->zvo_queue = zso->zvo_disk->queue;
1080 zso->zvo_disk->minors = ZVOL_MINORS;
1081 #else
1082 zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1083 if (zso->zvo_disk == NULL) {
1084 blk_cleanup_queue(zso->zvo_queue);
1085 blk_mq_free_tag_set(&zso->tag_set);
1086 return (1);
1087 }
1088 /* Allocate queue */
1089 zso->zvo_queue = blk_mq_init_queue(&zso->tag_set);
1090 if (IS_ERR(zso->zvo_queue)) {
1091 blk_mq_free_tag_set(&zso->tag_set);
1092 return (1);
1093 }
1094
1095 /* Our queue is now created, assign it to our disk */
1096 zso->zvo_disk->queue = zso->zvo_queue;
1097
1098 #endif
1099 #endif
1100 return (0);
1101 }
1102
1103 /*
1104 * Allocate memory for a new zvol_state_t and setup the required
1105 * request queue and generic disk structures for the block device.
1106 */
1107 static zvol_state_t *
1108 zvol_alloc(dev_t dev, const char *name)
1109 {
1110 zvol_state_t *zv;
1111 struct zvol_state_os *zso;
1112 uint64_t volmode;
1113 int ret;
1114
1115 if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
1116 return (NULL);
1117
1118 if (volmode == ZFS_VOLMODE_DEFAULT)
1119 volmode = zvol_volmode;
1120
1121 if (volmode == ZFS_VOLMODE_NONE)
1122 return (NULL);
1123
1124 zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
1125 zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
1126 zv->zv_zso = zso;
1127 zv->zv_volmode = volmode;
1128
1129 list_link_init(&zv->zv_next);
1130 mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
1131
1132 #ifdef HAVE_BLK_MQ
1133 zv->zv_zso->use_blk_mq = zvol_use_blk_mq;
1134 #endif
1135
1136 /*
1137 * The block layer has 3 interfaces for getting BIOs:
1138 *
1139 * 1. blk-mq request queues (new)
1140 * 2. submit_bio() (oldest)
1141 * 3. regular request queues (old).
1142 *
1143 * Each of those interfaces has two permutations:
1144 *
1145 * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates
1146 * both the disk and its queue (5.14 kernel or newer)
1147 *
1148 * b) We don't have blk_*alloc_disk(), and have to allocate the
1149 * disk and the queue separately. (5.13 kernel or older)
1150 */
1151 if (zv->zv_zso->use_blk_mq) {
1152 ret = zvol_alloc_blk_mq(zv);
1153 zso->zvo_disk->fops = &zvol_ops_blk_mq;
1154 } else {
1155 ret = zvol_alloc_non_blk_mq(zso);
1156 zso->zvo_disk->fops = &zvol_ops;
1157 }
1158 if (ret != 0)
1159 goto out_kmem;
1160
1161 blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE);
1162
1163 /* Limit read-ahead to a single page to prevent over-prefetching. */
1164 blk_queue_set_read_ahead(zso->zvo_queue, 1);
1165
1166 if (!zv->zv_zso->use_blk_mq) {
1167 /* Disable write merging in favor of the ZIO pipeline. */
1168 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
1169 }
1170
1171 /* Enable /proc/diskstats */
1172 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, zso->zvo_queue);
1173
1174 zso->zvo_queue->queuedata = zv;
1175 zso->zvo_dev = dev;
1176 zv->zv_open_count = 0;
1177 strlcpy(zv->zv_name, name, MAXNAMELEN);
1178
1179 zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
1180 rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
1181
1182 zso->zvo_disk->major = zvol_major;
1183 zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
1184
1185 /*
1186 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
1187 * This is accomplished by limiting the number of minors for the
1188 * device to one and explicitly disabling partition scanning.
1189 */
1190 if (volmode == ZFS_VOLMODE_DEV) {
1191 zso->zvo_disk->minors = 1;
1192 zso->zvo_disk->flags &= ~ZFS_GENHD_FL_EXT_DEVT;
1193 zso->zvo_disk->flags |= ZFS_GENHD_FL_NO_PART;
1194 }
1195
1196 zso->zvo_disk->first_minor = (dev & MINORMASK);
1197 zso->zvo_disk->private_data = zv;
1198 snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
1199 ZVOL_DEV_NAME, (dev & MINORMASK));
1200
1201 return (zv);
1202
1203 out_kmem:
1204 kmem_free(zso, sizeof (struct zvol_state_os));
1205 kmem_free(zv, sizeof (zvol_state_t));
1206 return (NULL);
1207 }
1208
1209 /*
1210 * Cleanup then free a zvol_state_t which was created by zvol_alloc().
1211 * At this time, the structure is not opened by anyone, is taken off
1212 * the zvol_state_list, and has its private data set to NULL.
1213 * The zvol_state_lock is dropped.
1214 *
1215 * This function may take many milliseconds to complete (e.g. we've seen
1216 * it take over 256ms), due to the calls to "blk_cleanup_queue" and
1217 * "del_gendisk". Thus, consumers need to be careful to account for this
1218 * latency when calling this function.
1219 */
1220 void
1221 zvol_os_free(zvol_state_t *zv)
1222 {
1223
1224 ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
1225 ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
1226 ASSERT0(zv->zv_open_count);
1227 ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL);
1228
1229 rw_destroy(&zv->zv_suspend_lock);
1230 zfs_rangelock_fini(&zv->zv_rangelock);
1231
1232 del_gendisk(zv->zv_zso->zvo_disk);
1233 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
1234 defined(HAVE_BLK_ALLOC_DISK)
1235 #if defined(HAVE_BLK_CLEANUP_DISK)
1236 blk_cleanup_disk(zv->zv_zso->zvo_disk);
1237 #else
1238 put_disk(zv->zv_zso->zvo_disk);
1239 #endif
1240 #else
1241 blk_cleanup_queue(zv->zv_zso->zvo_queue);
1242 put_disk(zv->zv_zso->zvo_disk);
1243 #endif
1244
1245 #ifdef HAVE_BLK_MQ
1246 if (zv->zv_zso->use_blk_mq)
1247 blk_mq_free_tag_set(&zv->zv_zso->tag_set);
1248 #endif
1249
1250 ida_simple_remove(&zvol_ida,
1251 MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS);
1252
1253 mutex_destroy(&zv->zv_state_lock);
1254 dataset_kstats_destroy(&zv->zv_kstat);
1255
1256 kmem_free(zv->zv_zso, sizeof (struct zvol_state_os));
1257 kmem_free(zv, sizeof (zvol_state_t));
1258 }
1259
1260 void
1261 zvol_wait_close(zvol_state_t *zv)
1262 {
1263 }
1264
1265 /*
1266 * Create a block device minor node and setup the linkage between it
1267 * and the specified volume. Once this function returns the block
1268 * device is live and ready for use.
1269 */
1270 int
1271 zvol_os_create_minor(const char *name)
1272 {
1273 zvol_state_t *zv;
1274 objset_t *os;
1275 dmu_object_info_t *doi;
1276 uint64_t volsize;
1277 uint64_t len;
1278 unsigned minor = 0;
1279 int error = 0;
1280 int idx;
1281 uint64_t hash = zvol_name_hash(name);
1282
1283 if (zvol_inhibit_dev)
1284 return (0);
1285
1286 idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
1287 if (idx < 0)
1288 return (SET_ERROR(-idx));
1289 minor = idx << ZVOL_MINOR_BITS;
1290
1291 zv = zvol_find_by_name_hash(name, hash, RW_NONE);
1292 if (zv) {
1293 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1294 mutex_exit(&zv->zv_state_lock);
1295 ida_simple_remove(&zvol_ida, idx);
1296 return (SET_ERROR(EEXIST));
1297 }
1298
1299 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
1300
1301 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
1302 if (error)
1303 goto out_doi;
1304
1305 error = dmu_object_info(os, ZVOL_OBJ, doi);
1306 if (error)
1307 goto out_dmu_objset_disown;
1308
1309 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1310 if (error)
1311 goto out_dmu_objset_disown;
1312
1313 zv = zvol_alloc(MKDEV(zvol_major, minor), name);
1314 if (zv == NULL) {
1315 error = SET_ERROR(EAGAIN);
1316 goto out_dmu_objset_disown;
1317 }
1318 zv->zv_hash = hash;
1319
1320 if (dmu_objset_is_snapshot(os))
1321 zv->zv_flags |= ZVOL_RDONLY;
1322
1323 zv->zv_volblocksize = doi->doi_data_block_size;
1324 zv->zv_volsize = volsize;
1325 zv->zv_objset = os;
1326
1327 set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
1328
1329 blk_queue_max_hw_sectors(zv->zv_zso->zvo_queue,
1330 (DMU_MAX_ACCESS / 4) >> 9);
1331
1332 if (zv->zv_zso->use_blk_mq) {
1333 /*
1334 * IO requests can be really big (1MB). When an IO request
1335 * comes in, it is passed off to zvol_read() or zvol_write()
1336 * in a new thread, where it is chunked up into 'volblocksize'
1337 * sized pieces and processed. So for example, if the request
1338 * is a 1MB write and your volblocksize is 128k, one zvol_write
1339 * thread will take that request and sequentially do ten 128k
1340 * IOs. This is due to the fact that the thread needs to lock
1341 * each volblocksize sized block. So you might be wondering:
1342 * "instead of passing the whole 1MB request to one thread,
1343 * why not pass ten individual 128k chunks to ten threads and
1344 * process the whole write in parallel?" The short answer is
1345 * that there's a sweet spot number of chunks that balances
1346 * the greater parallelism with the added overhead of more
1347 * threads. The sweet spot can be different depending on if you
1348 * have a read or write heavy workload. Writes typically want
1349 * high chunk counts while reads typically want lower ones. On
1350 * a test pool with 6 NVMe drives in a 3x 2-disk mirror
1351 * configuration, with volblocksize=8k, the sweet spot for good
1352 * sequential reads and writes was at 8 chunks.
1353 */
1354
1355 /*
1356 * Below we tell the kernel how big we want our requests
1357 * to be. You would think that blk_queue_io_opt() would be
1358 * used to do this since it is used to "set optimal request
1359 * size for the queue", but that doesn't seem to do
1360 * anything - the kernel still gives you huge requests
1361 * with tons of little PAGE_SIZE segments contained within it.
1362 *
1363 * Knowing that the kernel will just give you PAGE_SIZE segments
1364 * no matter what, you can say "ok, I want PAGE_SIZE byte
1365 * segments, and I want 'N' of them per request", where N is
1366 * the correct number of segments for the volblocksize and
1367 * number of chunks you want.
1368 */
1369 #ifdef HAVE_BLK_MQ
1370 if (zvol_blk_mq_blocks_per_thread != 0) {
1371 unsigned int chunks;
1372 chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX);
1373
1374 blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
1375 PAGE_SIZE);
1376 blk_queue_max_segments(zv->zv_zso->zvo_queue,
1377 (zv->zv_volblocksize * chunks) / PAGE_SIZE);
1378 } else {
1379 /*
1380 * Special case: zvol_blk_mq_blocks_per_thread = 0
1381 * Max everything out.
1382 */
1383 blk_queue_max_segments(zv->zv_zso->zvo_queue,
1384 UINT16_MAX);
1385 blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
1386 UINT_MAX);
1387 }
1388 #endif
1389 } else {
1390 blk_queue_max_segments(zv->zv_zso->zvo_queue, UINT16_MAX);
1391 blk_queue_max_segment_size(zv->zv_zso->zvo_queue, UINT_MAX);
1392 }
1393
1394 blk_queue_physical_block_size(zv->zv_zso->zvo_queue,
1395 zv->zv_volblocksize);
1396 blk_queue_io_opt(zv->zv_zso->zvo_queue, zv->zv_volblocksize);
1397 blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue,
1398 (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
1399 blk_queue_discard_granularity(zv->zv_zso->zvo_queue,
1400 zv->zv_volblocksize);
1401 #ifdef QUEUE_FLAG_DISCARD
1402 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
1403 #endif
1404 #ifdef QUEUE_FLAG_NONROT
1405 blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
1406 #endif
1407 #ifdef QUEUE_FLAG_ADD_RANDOM
1408 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
1409 #endif
1410 /* This flag was introduced in kernel version 4.12. */
1411 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
1412 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
1413 #endif
1414
1415 ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
1416 error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
1417 if (error)
1418 goto out_dmu_objset_disown;
1419 ASSERT3P(zv->zv_zilog, ==, NULL);
1420 zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums);
1421 if (spa_writeable(dmu_objset_spa(os))) {
1422 if (zil_replay_disable)
1423 zil_destroy(zv->zv_zilog, B_FALSE);
1424 else
1425 zil_replay(os, zv, zvol_replay_vector);
1426 }
1427 zil_close(zv->zv_zilog);
1428 zv->zv_zilog = NULL;
1429
1430 /*
1431 * When udev detects the addition of the device it will immediately
1432 * invoke blkid(8) to determine the type of content on the device.
1433 * Prefetching the blocks commonly scanned by blkid(8) will speed
1434 * up this process.
1435 */
1436 len = MIN(MAX(zvol_prefetch_bytes, 0), SPA_MAXBLOCKSIZE);
1437 if (len > 0) {
1438 dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
1439 dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
1440 ZIO_PRIORITY_SYNC_READ);
1441 }
1442
1443 zv->zv_objset = NULL;
1444 out_dmu_objset_disown:
1445 dmu_objset_disown(os, B_TRUE, FTAG);
1446 out_doi:
1447 kmem_free(doi, sizeof (dmu_object_info_t));
1448
1449 /*
1450 * Keep in mind that once add_disk() is called, the zvol is
1451 * announced to the world, and zvol_open()/zvol_release() can
1452 * be called at any time. Incidentally, add_disk() itself calls
1453 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
1454 * directly as well.
1455 */
1456 if (error == 0) {
1457 rw_enter(&zvol_state_lock, RW_WRITER);
1458 zvol_insert(zv);
1459 rw_exit(&zvol_state_lock);
1460 #ifdef HAVE_ADD_DISK_RET
1461 error = add_disk(zv->zv_zso->zvo_disk);
1462 #else
1463 add_disk(zv->zv_zso->zvo_disk);
1464 #endif
1465 } else {
1466 ida_simple_remove(&zvol_ida, idx);
1467 }
1468
1469 return (error);
1470 }
1471
1472 void
1473 zvol_os_rename_minor(zvol_state_t *zv, const char *newname)
1474 {
1475 int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
1476
1477 ASSERT(RW_LOCK_HELD(&zvol_state_lock));
1478 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1479
1480 strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
1481
1482 /* move to new hashtable entry */
1483 zv->zv_hash = zvol_name_hash(zv->zv_name);
1484 hlist_del(&zv->zv_hlink);
1485 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1486
1487 /*
1488 * The block device's read-only state is briefly changed causing
1489 * a KOBJ_CHANGE uevent to be issued. This ensures udev detects
1490 * the name change and fixes the symlinks. This does not change
1491 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
1492 * changes. This would normally be done using kobject_uevent() but
1493 * that is a GPL-only symbol which is why we need this workaround.
1494 */
1495 set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
1496 set_disk_ro(zv->zv_zso->zvo_disk, readonly);
1497 }
1498
1499 void
1500 zvol_os_set_disk_ro(zvol_state_t *zv, int flags)
1501 {
1502
1503 set_disk_ro(zv->zv_zso->zvo_disk, flags);
1504 }
1505
1506 void
1507 zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity)
1508 {
1509
1510 set_capacity(zv->zv_zso->zvo_disk, capacity);
1511 }
1512
1513 int
1514 zvol_init(void)
1515 {
1516 int error;
1517
1518 /*
1519 * zvol_threads is the module param the user passes in.
1520 *
1521 * zvol_actual_threads is what we use internally, since the user can
1522 * pass zvol_thread = 0 to mean "use all the CPUs" (the default).
1523 */
1524 static unsigned int zvol_actual_threads;
1525
1526 if (zvol_threads == 0) {
1527 /*
1528 * See dde9380a1 for why 32 was chosen here. This should
1529 * probably be refined to be some multiple of the number
1530 * of CPUs.
1531 */
1532 zvol_actual_threads = MAX(num_online_cpus(), 32);
1533 } else {
1534 zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024);
1535 }
1536
1537 error = register_blkdev(zvol_major, ZVOL_DRIVER);
1538 if (error) {
1539 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
1540 return (error);
1541 }
1542
1543 #ifdef HAVE_BLK_MQ
1544 if (zvol_blk_mq_queue_depth == 0) {
1545 zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
1546 } else {
1547 zvol_actual_blk_mq_queue_depth =
1548 MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ);
1549 }
1550
1551 if (zvol_blk_mq_threads == 0) {
1552 zvol_blk_mq_actual_threads = num_online_cpus();
1553 } else {
1554 zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1),
1555 1024);
1556 }
1557 #endif
1558 zvol_taskq = taskq_create(ZVOL_DRIVER, zvol_actual_threads, maxclsyspri,
1559 zvol_actual_threads, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1560 if (zvol_taskq == NULL) {
1561 unregister_blkdev(zvol_major, ZVOL_DRIVER);
1562 return (-ENOMEM);
1563 }
1564
1565 zvol_init_impl();
1566 ida_init(&zvol_ida);
1567 return (0);
1568 }
1569
1570 void
1571 zvol_fini(void)
1572 {
1573 zvol_fini_impl();
1574 unregister_blkdev(zvol_major, ZVOL_DRIVER);
1575 taskq_destroy(zvol_taskq);
1576 ida_destroy(&zvol_ida);
1577 }
1578
1579 /* BEGIN CSTYLED */
1580 module_param(zvol_inhibit_dev, uint, 0644);
1581 MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
1582
1583 module_param(zvol_major, uint, 0444);
1584 MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
1585
1586 module_param(zvol_threads, uint, 0444);
1587 MODULE_PARM_DESC(zvol_threads, "Number of threads to handle I/O requests. Set"
1588 "to 0 to use all active CPUs");
1589
1590 module_param(zvol_request_sync, uint, 0644);
1591 MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
1592
1593 module_param(zvol_max_discard_blocks, ulong, 0444);
1594 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
1595
1596 module_param(zvol_prefetch_bytes, uint, 0644);
1597 MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
1598
1599 module_param(zvol_volmode, uint, 0644);
1600 MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
1601
1602 #ifdef HAVE_BLK_MQ
1603 module_param(zvol_blk_mq_queue_depth, uint, 0644);
1604 MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth");
1605
1606 module_param(zvol_use_blk_mq, uint, 0644);
1607 MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols");
1608
1609 module_param(zvol_blk_mq_blocks_per_thread, uint, 0644);
1610 MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread,
1611 "Process volblocksize blocks per thread");
1612 #endif
1613
1614 /* END CSTYLED */