]> git.proxmox.com Git - mirror_zfs.git/blob - module/spl/spl-kmem.c
Build system and packaging (RPM support)
[mirror_zfs.git] / module / spl / spl-kmem.c
1 /*
2 * This file is part of the SPL: Solaris Porting Layer.
3 *
4 * Copyright (c) 2008 Lawrence Livermore National Security, LLC.
5 * Produced at Lawrence Livermore National Laboratory
6 * Written by:
7 * Brian Behlendorf <behlendorf1@llnl.gov>,
8 * Herb Wartens <wartens2@llnl.gov>,
9 * Jim Garlick <garlick@llnl.gov>
10 * UCRL-CODE-235197
11 *
12 * This is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This is distributed in the hope that it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * for more details.
21 *
22 * You should have received a copy of the GNU General Public License along
23 * with this program; if not, write to the Free Software Foundation, Inc.,
24 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
25 */
26
27 #include <sys/kmem.h>
28
29 #ifdef DEBUG_SUBSYSTEM
30 # undef DEBUG_SUBSYSTEM
31 #endif
32
33 #define DEBUG_SUBSYSTEM S_KMEM
34
35 /*
36 * The minimum amount of memory measured in pages to be free at all
37 * times on the system. This is similar to Linux's zone->pages_min
38 * multipled by the number of zones and is sized based on that.
39 */
40 pgcnt_t minfree = 0;
41 EXPORT_SYMBOL(minfree);
42
43 /*
44 * The desired amount of memory measured in pages to be free at all
45 * times on the system. This is similar to Linux's zone->pages_low
46 * multipled by the number of zones and is sized based on that.
47 * Assuming all zones are being used roughly equally, when we drop
48 * below this threshold async page reclamation is triggered.
49 */
50 pgcnt_t desfree = 0;
51 EXPORT_SYMBOL(desfree);
52
53 /*
54 * When above this amount of memory measures in pages the system is
55 * determined to have enough free memory. This is similar to Linux's
56 * zone->pages_high multipled by the number of zones and is sized based
57 * on that. Assuming all zones are being used roughly equally, when
58 * async page reclamation reaches this threshold it stops.
59 */
60 pgcnt_t lotsfree = 0;
61 EXPORT_SYMBOL(lotsfree);
62
63 /* Unused always 0 in this implementation */
64 pgcnt_t needfree = 0;
65 EXPORT_SYMBOL(needfree);
66
67 pgcnt_t swapfs_minfree = 0;
68 EXPORT_SYMBOL(swapfs_minfree);
69
70 pgcnt_t swapfs_reserve = 0;
71 EXPORT_SYMBOL(swapfs_reserve);
72
73 vmem_t *heap_arena = NULL;
74 EXPORT_SYMBOL(heap_arena);
75
76 vmem_t *zio_alloc_arena = NULL;
77 EXPORT_SYMBOL(zio_alloc_arena);
78
79 vmem_t *zio_arena = NULL;
80 EXPORT_SYMBOL(zio_arena);
81
82 #ifndef HAVE_GET_VMALLOC_INFO
83 get_vmalloc_info_t get_vmalloc_info_fn = NULL;
84 EXPORT_SYMBOL(get_vmalloc_info_fn);
85 #endif /* HAVE_GET_VMALLOC_INFO */
86
87 #ifndef HAVE_FIRST_ONLINE_PGDAT
88 first_online_pgdat_t first_online_pgdat_fn = NULL;
89 EXPORT_SYMBOL(first_online_pgdat_fn);
90 #endif /* HAVE_FIRST_ONLINE_PGDAT */
91
92 #ifndef HAVE_NEXT_ONLINE_PGDAT
93 next_online_pgdat_t next_online_pgdat_fn = NULL;
94 EXPORT_SYMBOL(next_online_pgdat_fn);
95 #endif /* HAVE_NEXT_ONLINE_PGDAT */
96
97 #ifndef HAVE_NEXT_ZONE
98 next_zone_t next_zone_fn = NULL;
99 EXPORT_SYMBOL(next_zone_fn);
100 #endif /* HAVE_NEXT_ZONE */
101
102 #ifndef HAVE_GET_ZONE_COUNTS
103 get_zone_counts_t get_zone_counts_fn = NULL;
104 EXPORT_SYMBOL(get_zone_counts_fn);
105 #endif /* HAVE_GET_ZONE_COUNTS */
106
107 pgcnt_t
108 spl_kmem_availrmem(void)
109 {
110 unsigned long active;
111 unsigned long inactive;
112 unsigned long free;
113
114 get_zone_counts(&active, &inactive, &free);
115
116 /* The amount of easily available memory */
117 return free + inactive;
118 }
119 EXPORT_SYMBOL(spl_kmem_availrmem);
120
121 size_t
122 vmem_size(vmem_t *vmp, int typemask)
123 {
124 struct vmalloc_info vmi;
125 size_t size = 0;
126
127 ASSERT(vmp == NULL);
128 ASSERT(typemask & (VMEM_ALLOC | VMEM_FREE));
129
130 get_vmalloc_info(&vmi);
131 if (typemask & VMEM_ALLOC)
132 size += (size_t)vmi.used;
133
134 if (typemask & VMEM_FREE)
135 size += (size_t)(VMALLOC_TOTAL - vmi.used);
136
137 return size;
138 }
139 EXPORT_SYMBOL(vmem_size);
140
141 /*
142 * Memory allocation interfaces and debugging for basic kmem_*
143 * and vmem_* style memory allocation. When DEBUG_KMEM is enable
144 * all allocations will be tracked when they are allocated and
145 * freed. When the SPL module is unload a list of all leaked
146 * addresses and where they were allocated will be dumped to the
147 * console. Enabling this feature has a significant impant on
148 * performance but it makes finding memory leaks staight forward.
149 */
150 #ifdef DEBUG_KMEM
151 /* Shim layer memory accounting */
152 atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
153 unsigned long long kmem_alloc_max = 0;
154 atomic64_t vmem_alloc_used = ATOMIC64_INIT(0);
155 unsigned long long vmem_alloc_max = 0;
156 int kmem_warning_flag = 1;
157
158 EXPORT_SYMBOL(kmem_alloc_used);
159 EXPORT_SYMBOL(kmem_alloc_max);
160 EXPORT_SYMBOL(vmem_alloc_used);
161 EXPORT_SYMBOL(vmem_alloc_max);
162 EXPORT_SYMBOL(kmem_warning_flag);
163
164 # ifdef DEBUG_KMEM_TRACKING
165
166 /* XXX - Not to surprisingly with debugging enabled the xmem_locks are very
167 * highly contended particularly on xfree(). If we want to run with this
168 * detailed debugging enabled for anything other than debugging we need to
169 * minimize the contention by moving to a lock per xmem_table entry model.
170 */
171
172 # define KMEM_HASH_BITS 10
173 # define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS)
174
175 # define VMEM_HASH_BITS 10
176 # define VMEM_TABLE_SIZE (1 << VMEM_HASH_BITS)
177
178 typedef struct kmem_debug {
179 struct hlist_node kd_hlist; /* Hash node linkage */
180 struct list_head kd_list; /* List of all allocations */
181 void *kd_addr; /* Allocation pointer */
182 size_t kd_size; /* Allocation size */
183 const char *kd_func; /* Allocation function */
184 int kd_line; /* Allocation line */
185 } kmem_debug_t;
186
187 spinlock_t kmem_lock;
188 struct hlist_head kmem_table[KMEM_TABLE_SIZE];
189 struct list_head kmem_list;
190
191 spinlock_t vmem_lock;
192 struct hlist_head vmem_table[VMEM_TABLE_SIZE];
193 struct list_head vmem_list;
194
195 EXPORT_SYMBOL(kmem_lock);
196 EXPORT_SYMBOL(kmem_table);
197 EXPORT_SYMBOL(kmem_list);
198
199 EXPORT_SYMBOL(vmem_lock);
200 EXPORT_SYMBOL(vmem_table);
201 EXPORT_SYMBOL(vmem_list);
202 # endif
203
204 int kmem_set_warning(int flag) { return (kmem_warning_flag = !!flag); }
205 #else
206 int kmem_set_warning(int flag) { return 0; }
207 #endif
208 EXPORT_SYMBOL(kmem_set_warning);
209
210 /*
211 * Slab allocation interfaces
212 *
213 * While the Linux slab implementation was inspired by the Solaris
214 * implemenation I cannot use it to emulate the Solaris APIs. I
215 * require two features which are not provided by the Linux slab.
216 *
217 * 1) Constructors AND destructors. Recent versions of the Linux
218 * kernel have removed support for destructors. This is a deal
219 * breaker for the SPL which contains particularly expensive
220 * initializers for mutex's, condition variables, etc. We also
221 * require a minimal level of cleanup for these data types unlike
222 * many Linux data type which do need to be explicitly destroyed.
223 *
224 * 2) Virtual address space backed slab. Callers of the Solaris slab
225 * expect it to work well for both small are very large allocations.
226 * Because of memory fragmentation the Linux slab which is backed
227 * by kmalloc'ed memory performs very badly when confronted with
228 * large numbers of large allocations. Basing the slab on the
229 * virtual address space removes the need for contigeous pages
230 * and greatly improve performance for large allocations.
231 *
232 * For these reasons, the SPL has its own slab implementation with
233 * the needed features. It is not as highly optimized as either the
234 * Solaris or Linux slabs, but it should get me most of what is
235 * needed until it can be optimized or obsoleted by another approach.
236 *
237 * One serious concern I do have about this method is the relatively
238 * small virtual address space on 32bit arches. This will seriously
239 * constrain the size of the slab caches and their performance.
240 *
241 * XXX: Improve the partial slab list by carefully maintaining a
242 * strict ordering of fullest to emptiest slabs based on
243 * the slab reference count. This gaurentees the when freeing
244 * slabs back to the system we need only linearly traverse the
245 * last N slabs in the list to discover all the freeable slabs.
246 *
247 * XXX: NUMA awareness for optionally allocating memory close to a
248 * particular core. This can be adventageous if you know the slab
249 * object will be short lived and primarily accessed from one core.
250 *
251 * XXX: Slab coloring may also yield performance improvements and would
252 * be desirable to implement.
253 */
254
255 struct list_head spl_kmem_cache_list; /* List of caches */
256 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
257
258 static int spl_cache_flush(spl_kmem_cache_t *skc,
259 spl_kmem_magazine_t *skm, int flush);
260
261 #ifdef HAVE_SET_SHRINKER
262 static struct shrinker *spl_kmem_cache_shrinker;
263 #else
264 static int spl_kmem_cache_generic_shrinker(int nr_to_scan,
265 unsigned int gfp_mask);
266 static struct shrinker spl_kmem_cache_shrinker = {
267 .shrink = spl_kmem_cache_generic_shrinker,
268 .seeks = KMC_DEFAULT_SEEKS,
269 };
270 #endif
271
272 #ifdef DEBUG_KMEM
273 # ifdef DEBUG_KMEM_TRACKING
274
275 static kmem_debug_t *
276 kmem_del_init(spinlock_t *lock, struct hlist_head *table, int bits,
277 void *addr)
278 {
279 struct hlist_head *head;
280 struct hlist_node *node;
281 struct kmem_debug *p;
282 unsigned long flags;
283 ENTRY;
284
285 spin_lock_irqsave(lock, flags);
286
287 head = &table[hash_ptr(addr, bits)];
288 hlist_for_each_entry_rcu(p, node, head, kd_hlist) {
289 if (p->kd_addr == addr) {
290 hlist_del_init(&p->kd_hlist);
291 list_del_init(&p->kd_list);
292 spin_unlock_irqrestore(lock, flags);
293 return p;
294 }
295 }
296
297 spin_unlock_irqrestore(lock, flags);
298
299 RETURN(NULL);
300 }
301
302 void *
303 kmem_alloc_track(size_t size, int flags, const char *func, int line,
304 int node_alloc, int node)
305 {
306 void *ptr = NULL;
307 kmem_debug_t *dptr;
308 unsigned long irq_flags;
309 ENTRY;
310
311 dptr = (kmem_debug_t *) kmalloc(sizeof(kmem_debug_t),
312 flags & ~__GFP_ZERO);
313
314 if (dptr == NULL) {
315 CWARN("kmem_alloc(%ld, 0x%x) debug failed\n",
316 sizeof(kmem_debug_t), flags);
317 } else {
318 /* Marked unlikely because we should never be doing this,
319 * we tolerate to up 2 pages but a single page is best. */
320 if (unlikely((size) > (PAGE_SIZE * 2)) && kmem_warning_flag)
321 CWARN("Large kmem_alloc(%llu, 0x%x) (%lld/%llu)\n",
322 (unsigned long long) size, flags,
323 atomic64_read(&kmem_alloc_used), kmem_alloc_max);
324
325 /* We use kstrdup() below because the string pointed to by
326 * __FUNCTION__ might not be available by the time we want
327 * to print it since the module might have been unloaded. */
328 dptr->kd_func = kstrdup(func, flags & ~__GFP_ZERO);
329 if (unlikely(dptr->kd_func == NULL)) {
330 kfree(dptr);
331 CWARN("kstrdup() failed in kmem_alloc(%llu, 0x%x) "
332 "(%lld/%llu)\n", (unsigned long long) size, flags,
333 atomic64_read(&kmem_alloc_used), kmem_alloc_max);
334 goto out;
335 }
336
337 /* Use the correct allocator */
338 if (node_alloc) {
339 ASSERT(!(flags & __GFP_ZERO));
340 ptr = kmalloc_node(size, flags, node);
341 } else if (flags & __GFP_ZERO) {
342 ptr = kzalloc(size, flags & ~__GFP_ZERO);
343 } else {
344 ptr = kmalloc(size, flags);
345 }
346
347 if (unlikely(ptr == NULL)) {
348 kfree(dptr->kd_func);
349 kfree(dptr);
350 CWARN("kmem_alloc(%llu, 0x%x) failed (%lld/%llu)\n",
351 (unsigned long long) size, flags,
352 atomic64_read(&kmem_alloc_used), kmem_alloc_max);
353 goto out;
354 }
355
356 atomic64_add(size, &kmem_alloc_used);
357 if (unlikely(atomic64_read(&kmem_alloc_used) >
358 kmem_alloc_max))
359 kmem_alloc_max =
360 atomic64_read(&kmem_alloc_used);
361
362 INIT_HLIST_NODE(&dptr->kd_hlist);
363 INIT_LIST_HEAD(&dptr->kd_list);
364
365 dptr->kd_addr = ptr;
366 dptr->kd_size = size;
367 dptr->kd_line = line;
368
369 spin_lock_irqsave(&kmem_lock, irq_flags);
370 hlist_add_head_rcu(&dptr->kd_hlist,
371 &kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]);
372 list_add_tail(&dptr->kd_list, &kmem_list);
373 spin_unlock_irqrestore(&kmem_lock, irq_flags);
374
375 CDEBUG_LIMIT(D_INFO, "kmem_alloc(%llu, 0x%x) = %p "
376 "(%lld/%llu)\n", (unsigned long long) size, flags,
377 ptr, atomic64_read(&kmem_alloc_used),
378 kmem_alloc_max);
379 }
380 out:
381 RETURN(ptr);
382 }
383 EXPORT_SYMBOL(kmem_alloc_track);
384
385 void
386 kmem_free_track(void *ptr, size_t size)
387 {
388 kmem_debug_t *dptr;
389 ENTRY;
390
391 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
392 (unsigned long long) size);
393
394 dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);
395
396 ASSERT(dptr); /* Must exist in hash due to kmem_alloc() */
397
398 /* Size must match */
399 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
400 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
401 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
402
403 atomic64_sub(size, &kmem_alloc_used);
404
405 CDEBUG_LIMIT(D_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
406 (unsigned long long) size, atomic64_read(&kmem_alloc_used),
407 kmem_alloc_max);
408
409 kfree(dptr->kd_func);
410
411 memset(dptr, 0x5a, sizeof(kmem_debug_t));
412 kfree(dptr);
413
414 memset(ptr, 0x5a, size);
415 kfree(ptr);
416
417 EXIT;
418 }
419 EXPORT_SYMBOL(kmem_free_track);
420
421 void *
422 vmem_alloc_track(size_t size, int flags, const char *func, int line)
423 {
424 void *ptr = NULL;
425 kmem_debug_t *dptr;
426 unsigned long irq_flags;
427 ENTRY;
428
429 ASSERT(flags & KM_SLEEP);
430
431 dptr = (kmem_debug_t *) kmalloc(sizeof(kmem_debug_t), flags);
432 if (dptr == NULL) {
433 CWARN("vmem_alloc(%ld, 0x%x) debug failed\n",
434 sizeof(kmem_debug_t), flags);
435 } else {
436 /* We use kstrdup() below because the string pointed to by
437 * __FUNCTION__ might not be available by the time we want
438 * to print it, since the module might have been unloaded. */
439 dptr->kd_func = kstrdup(func, flags & ~__GFP_ZERO);
440 if (unlikely(dptr->kd_func == NULL)) {
441 kfree(dptr);
442 CWARN("kstrdup() failed in vmem_alloc(%llu, 0x%x) "
443 "(%lld/%llu)\n", (unsigned long long) size, flags,
444 atomic64_read(&vmem_alloc_used), vmem_alloc_max);
445 goto out;
446 }
447
448 ptr = __vmalloc(size, (flags | __GFP_HIGHMEM) & ~__GFP_ZERO,
449 PAGE_KERNEL);
450
451 if (unlikely(ptr == NULL)) {
452 kfree(dptr->kd_func);
453 kfree(dptr);
454 CWARN("vmem_alloc(%llu, 0x%x) failed (%lld/%llu)\n",
455 (unsigned long long) size, flags,
456 atomic64_read(&vmem_alloc_used), vmem_alloc_max);
457 goto out;
458 }
459
460 if (flags & __GFP_ZERO)
461 memset(ptr, 0, size);
462
463 atomic64_add(size, &vmem_alloc_used);
464 if (unlikely(atomic64_read(&vmem_alloc_used) >
465 vmem_alloc_max))
466 vmem_alloc_max =
467 atomic64_read(&vmem_alloc_used);
468
469 INIT_HLIST_NODE(&dptr->kd_hlist);
470 INIT_LIST_HEAD(&dptr->kd_list);
471
472 dptr->kd_addr = ptr;
473 dptr->kd_size = size;
474 dptr->kd_line = line;
475
476 spin_lock_irqsave(&vmem_lock, irq_flags);
477 hlist_add_head_rcu(&dptr->kd_hlist,
478 &vmem_table[hash_ptr(ptr, VMEM_HASH_BITS)]);
479 list_add_tail(&dptr->kd_list, &vmem_list);
480 spin_unlock_irqrestore(&vmem_lock, irq_flags);
481
482 CDEBUG_LIMIT(D_INFO, "vmem_alloc(%llu, 0x%x) = %p "
483 "(%lld/%llu)\n", (unsigned long long) size, flags,
484 ptr, atomic64_read(&vmem_alloc_used),
485 vmem_alloc_max);
486 }
487 out:
488 RETURN(ptr);
489 }
490 EXPORT_SYMBOL(vmem_alloc_track);
491
492 void
493 vmem_free_track(void *ptr, size_t size)
494 {
495 kmem_debug_t *dptr;
496 ENTRY;
497
498 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
499 (unsigned long long) size);
500
501 dptr = kmem_del_init(&vmem_lock, vmem_table, VMEM_HASH_BITS, ptr);
502 ASSERT(dptr); /* Must exist in hash due to vmem_alloc() */
503
504 /* Size must match */
505 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
506 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
507 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
508
509 atomic64_sub(size, &vmem_alloc_used);
510 CDEBUG_LIMIT(D_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
511 (unsigned long long) size, atomic64_read(&vmem_alloc_used),
512 vmem_alloc_max);
513
514 kfree(dptr->kd_func);
515
516 memset(dptr, 0x5a, sizeof(kmem_debug_t));
517 kfree(dptr);
518
519 memset(ptr, 0x5a, size);
520 vfree(ptr);
521
522 EXIT;
523 }
524 EXPORT_SYMBOL(vmem_free_track);
525
526 # else /* DEBUG_KMEM_TRACKING */
527
528 void *
529 kmem_alloc_debug(size_t size, int flags, const char *func, int line,
530 int node_alloc, int node)
531 {
532 void *ptr;
533 ENTRY;
534
535 /* Marked unlikely because we should never be doing this,
536 * we tolerate to up 2 pages but a single page is best. */
537 if (unlikely(size > (PAGE_SIZE * 2)) && kmem_warning_flag)
538 CWARN("Large kmem_alloc(%llu, 0x%x) (%lld/%llu)\n",
539 (unsigned long long) size, flags,
540 atomic64_read(&kmem_alloc_used), kmem_alloc_max);
541
542 /* Use the correct allocator */
543 if (node_alloc) {
544 ASSERT(!(flags & __GFP_ZERO));
545 ptr = kmalloc_node(size, flags, node);
546 } else if (flags & __GFP_ZERO) {
547 ptr = kzalloc(size, flags & (~__GFP_ZERO));
548 } else {
549 ptr = kmalloc(size, flags);
550 }
551
552 if (ptr == NULL) {
553 CWARN("kmem_alloc(%llu, 0x%x) failed (%lld/%llu)\n",
554 (unsigned long long) size, flags,
555 atomic64_read(&kmem_alloc_used), kmem_alloc_max);
556 } else {
557 atomic64_add(size, &kmem_alloc_used);
558 if (unlikely(atomic64_read(&kmem_alloc_used) > kmem_alloc_max))
559 kmem_alloc_max = atomic64_read(&kmem_alloc_used);
560
561 CDEBUG_LIMIT(D_INFO, "kmem_alloc(%llu, 0x%x) = %p "
562 "(%lld/%llu)\n", (unsigned long long) size, flags, ptr,
563 atomic64_read(&kmem_alloc_used), kmem_alloc_max);
564 }
565 RETURN(ptr);
566 }
567 EXPORT_SYMBOL(kmem_alloc_debug);
568
569 void
570 kmem_free_debug(void *ptr, size_t size)
571 {
572 ENTRY;
573
574 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
575 (unsigned long long) size);
576
577 atomic64_sub(size, &kmem_alloc_used);
578
579 CDEBUG_LIMIT(D_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
580 (unsigned long long) size, atomic64_read(&kmem_alloc_used),
581 kmem_alloc_max);
582
583 memset(ptr, 0x5a, size);
584 kfree(ptr);
585
586 EXIT;
587 }
588 EXPORT_SYMBOL(kmem_free_debug);
589
590 void *
591 vmem_alloc_debug(size_t size, int flags, const char *func, int line)
592 {
593 void *ptr;
594 ENTRY;
595
596 ASSERT(flags & KM_SLEEP);
597
598 ptr = __vmalloc(size, (flags | __GFP_HIGHMEM) & ~__GFP_ZERO,
599 PAGE_KERNEL);
600 if (ptr == NULL) {
601 CWARN("vmem_alloc(%llu, 0x%x) failed (%lld/%llu)\n",
602 (unsigned long long) size, flags,
603 atomic64_read(&vmem_alloc_used), vmem_alloc_max);
604 } else {
605 if (flags & __GFP_ZERO)
606 memset(ptr, 0, size);
607
608 atomic64_add(size, &vmem_alloc_used);
609
610 if (unlikely(atomic64_read(&vmem_alloc_used) > vmem_alloc_max))
611 vmem_alloc_max = atomic64_read(&vmem_alloc_used);
612
613 CDEBUG_LIMIT(D_INFO, "vmem_alloc(%llu, 0x%x) = %p "
614 "(%lld/%llu)\n", (unsigned long long) size, flags, ptr,
615 atomic64_read(&vmem_alloc_used), vmem_alloc_max);
616 }
617
618 RETURN(ptr);
619 }
620 EXPORT_SYMBOL(vmem_alloc_debug);
621
622 void
623 vmem_free_debug(void *ptr, size_t size)
624 {
625 ENTRY;
626
627 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
628 (unsigned long long) size);
629
630 atomic64_sub(size, &vmem_alloc_used);
631
632 CDEBUG_LIMIT(D_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
633 (unsigned long long) size, atomic64_read(&vmem_alloc_used),
634 vmem_alloc_max);
635
636 memset(ptr, 0x5a, size);
637 vfree(ptr);
638
639 EXIT;
640 }
641 EXPORT_SYMBOL(vmem_free_debug);
642
643 # endif /* DEBUG_KMEM_TRACKING */
644 #endif /* DEBUG_KMEM */
645
646 static void *
647 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
648 {
649 void *ptr;
650
651 if (skc->skc_flags & KMC_KMEM) {
652 if (size > (2 * PAGE_SIZE)) {
653 ptr = (void *)__get_free_pages(flags, get_order(size));
654 } else
655 ptr = kmem_alloc(size, flags);
656 } else {
657 ptr = vmem_alloc(size, flags);
658 }
659
660 return ptr;
661 }
662
663 static void
664 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
665 {
666 if (skc->skc_flags & KMC_KMEM) {
667 if (size > (2 * PAGE_SIZE))
668 free_pages((unsigned long)ptr, get_order(size));
669 else
670 kmem_free(ptr, size);
671 } else {
672 vmem_free(ptr, size);
673 }
674 }
675
676 /*
677 * It's important that we pack the spl_kmem_obj_t structure and the
678 * actual objects in to one large address space to minimize the number
679 * of calls to the allocator. It is far better to do a few large
680 * allocations and then subdivide it ourselves. Now which allocator
681 * we use requires balancing a few trade offs.
682 *
683 * For small objects we use kmem_alloc() because as long as you are
684 * only requesting a small number of pages (ideally just one) its cheap.
685 * However, when you start requesting multiple pages with kmem_alloc()
686 * it gets increasingly expensive since it requires contigeous pages.
687 * For this reason we shift to vmem_alloc() for slabs of large objects
688 * which removes the need for contigeous pages. We do not use
689 * vmem_alloc() in all cases because there is significant locking
690 * overhead in __get_vm_area_node(). This function takes a single
691 * global lock when aquiring an available virtual address range which
692 * serializes all vmem_alloc()'s for all slab caches. Using slightly
693 * different allocation functions for small and large objects should
694 * give us the best of both worlds.
695 *
696 * KMC_ONSLAB KMC_OFFSLAB
697 *
698 * +------------------------+ +-----------------+
699 * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
700 * | skc_obj_size <-+ | | +-----------------+ | |
701 * | spl_kmem_obj_t | | | |
702 * | skc_obj_size <---+ | +-----------------+ | |
703 * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
704 * | ... v | | spl_kmem_obj_t | |
705 * +------------------------+ +-----------------+ v
706 */
707 static spl_kmem_slab_t *
708 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
709 {
710 spl_kmem_slab_t *sks;
711 spl_kmem_obj_t *sko, *n;
712 void *base, *obj;
713 int i, align, size, rc = 0;
714
715 base = kv_alloc(skc, skc->skc_slab_size, flags);
716 if (base == NULL)
717 RETURN(NULL);
718
719 sks = (spl_kmem_slab_t *)base;
720 sks->sks_magic = SKS_MAGIC;
721 sks->sks_objs = skc->skc_slab_objs;
722 sks->sks_age = jiffies;
723 sks->sks_cache = skc;
724 INIT_LIST_HEAD(&sks->sks_list);
725 INIT_LIST_HEAD(&sks->sks_free_list);
726 sks->sks_ref = 0;
727
728 align = skc->skc_obj_align;
729 size = P2ROUNDUP(skc->skc_obj_size, align) +
730 P2ROUNDUP(sizeof(spl_kmem_obj_t), align);
731
732 for (i = 0; i < sks->sks_objs; i++) {
733 if (skc->skc_flags & KMC_OFFSLAB) {
734 obj = kv_alloc(skc, size, flags);
735 if (!obj)
736 GOTO(out, rc = -ENOMEM);
737 } else {
738 obj = base +
739 P2ROUNDUP(sizeof(spl_kmem_slab_t), align) +
740 (i * size);
741 }
742
743 sko = obj + P2ROUNDUP(skc->skc_obj_size, align);
744 sko->sko_addr = obj;
745 sko->sko_magic = SKO_MAGIC;
746 sko->sko_slab = sks;
747 INIT_LIST_HEAD(&sko->sko_list);
748 list_add_tail(&sko->sko_list, &sks->sks_free_list);
749 }
750
751 list_for_each_entry(sko, &sks->sks_free_list, sko_list)
752 if (skc->skc_ctor)
753 skc->skc_ctor(sko->sko_addr, skc->skc_private, flags);
754 out:
755 if (rc) {
756 if (skc->skc_flags & KMC_OFFSLAB)
757 list_for_each_entry_safe(sko, n, &sks->sks_free_list,
758 sko_list)
759 kv_free(skc, sko->sko_addr, size);
760
761 kv_free(skc, base, skc->skc_slab_size);
762 sks = NULL;
763 }
764
765 RETURN(sks);
766 }
767
768 /*
769 * Remove a slab from complete or partial list, it must be called with
770 * the 'skc->skc_lock' held but the actual free must be performed
771 * outside the lock to prevent deadlocking on vmem addresses.
772 */
773 static void
774 spl_slab_free(spl_kmem_slab_t *sks,
775 struct list_head *sks_list, struct list_head *sko_list)
776 {
777 spl_kmem_cache_t *skc;
778 ENTRY;
779
780 ASSERT(sks->sks_magic == SKS_MAGIC);
781 ASSERT(sks->sks_ref == 0);
782
783 skc = sks->sks_cache;
784 ASSERT(skc->skc_magic == SKC_MAGIC);
785 ASSERT(spin_is_locked(&skc->skc_lock));
786
787 /*
788 * Update slab/objects counters in the cache, then remove the
789 * slab from the skc->skc_partial_list. Finally add the slab
790 * and all its objects in to the private work lists where the
791 * destructors will be called and the memory freed to the system.
792 */
793 skc->skc_obj_total -= sks->sks_objs;
794 skc->skc_slab_total--;
795 list_del(&sks->sks_list);
796 list_add(&sks->sks_list, sks_list);
797 list_splice_init(&sks->sks_free_list, sko_list);
798
799 EXIT;
800 }
801
802 /*
803 * Traverses all the partial slabs attached to a cache and free those
804 * which which are currently empty, and have not been touched for
805 * skc_delay seconds to avoid thrashing. The count argument is
806 * passed to optionally cap the number of slabs reclaimed, a count
807 * of zero means try and reclaim everything. When flag is set we
808 * always free an available slab regardless of age.
809 */
810 static void
811 spl_slab_reclaim(spl_kmem_cache_t *skc, int count, int flag)
812 {
813 spl_kmem_slab_t *sks, *m;
814 spl_kmem_obj_t *sko, *n;
815 LIST_HEAD(sks_list);
816 LIST_HEAD(sko_list);
817 int size = 0, i = 0;
818 ENTRY;
819
820 /*
821 * Move empty slabs and objects which have not been touched in
822 * skc_delay seconds on to private lists to be freed outside
823 * the spin lock. This delay time is important to avoid thrashing
824 * however when flag is set the delay will not be used.
825 */
826 spin_lock(&skc->skc_lock);
827 list_for_each_entry_safe_reverse(sks,m,&skc->skc_partial_list,sks_list){
828 /*
829 * All empty slabs are at the end of skc->skc_partial_list,
830 * therefore once a non-empty slab is found we can stop
831 * scanning. Additionally, stop when reaching the target
832 * reclaim 'count' if a non-zero threshhold is given.
833 */
834 if ((sks->sks_ref > 0) || (count && i > count))
835 break;
836
837 if (time_after(jiffies,sks->sks_age+skc->skc_delay*HZ)||flag) {
838 spl_slab_free(sks, &sks_list, &sko_list);
839 i++;
840 }
841 }
842 spin_unlock(&skc->skc_lock);
843
844 /*
845 * The following two loops ensure all the object destructors are
846 * run, any offslab objects are freed, and the slabs themselves
847 * are freed. This is all done outside the skc->skc_lock since
848 * this allows the destructor to sleep, and allows us to perform
849 * a conditional reschedule when a freeing a large number of
850 * objects and slabs back to the system.
851 */
852 if (skc->skc_flags & KMC_OFFSLAB)
853 size = P2ROUNDUP(skc->skc_obj_size, skc->skc_obj_align) +
854 P2ROUNDUP(sizeof(spl_kmem_obj_t), skc->skc_obj_align);
855
856 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
857 ASSERT(sko->sko_magic == SKO_MAGIC);
858
859 if (skc->skc_dtor)
860 skc->skc_dtor(sko->sko_addr, skc->skc_private);
861
862 if (skc->skc_flags & KMC_OFFSLAB)
863 kv_free(skc, sko->sko_addr, size);
864
865 cond_resched();
866 }
867
868 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
869 ASSERT(sks->sks_magic == SKS_MAGIC);
870 kv_free(skc, sks, skc->skc_slab_size);
871 cond_resched();
872 }
873
874 EXIT;
875 }
876
877 /*
878 * Called regularly on all caches to age objects out of the magazines
879 * which have not been access in skc->skc_delay seconds. This prevents
880 * idle magazines from holding memory which might be better used by
881 * other caches or parts of the system. The delay is present to
882 * prevent thrashing the magazine.
883 */
884 static void
885 spl_magazine_age(void *data)
886 {
887 spl_kmem_magazine_t *skm =
888 spl_get_work_data(data, spl_kmem_magazine_t, skm_work.work);
889 spl_kmem_cache_t *skc = skm->skm_cache;
890 int i = smp_processor_id();
891
892 ASSERT(skm->skm_magic == SKM_MAGIC);
893 ASSERT(skc->skc_magic == SKC_MAGIC);
894 ASSERT(skc->skc_mag[i] == skm);
895
896 if (skm->skm_avail > 0 &&
897 time_after(jiffies, skm->skm_age + skc->skc_delay * HZ))
898 (void)spl_cache_flush(skc, skm, skm->skm_refill);
899
900 if (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags))
901 schedule_delayed_work_on(i, &skm->skm_work,
902 skc->skc_delay / 3 * HZ);
903 }
904
905 /*
906 * Called regularly to keep a downward pressure on the size of idle
907 * magazines and to release free slabs from the cache. This function
908 * never calls the registered reclaim function, that only occures
909 * under memory pressure or with a direct call to spl_kmem_reap().
910 */
911 static void
912 spl_cache_age(void *data)
913 {
914 spl_kmem_cache_t *skc =
915 spl_get_work_data(data, spl_kmem_cache_t, skc_work.work);
916
917 ASSERT(skc->skc_magic == SKC_MAGIC);
918 spl_slab_reclaim(skc, skc->skc_reap, 0);
919
920 if (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags))
921 schedule_delayed_work(&skc->skc_work, skc->skc_delay / 3 * HZ);
922 }
923
924 /*
925 * Size a slab based on the size of each aliged object plus spl_kmem_obj_t.
926 * When on-slab we want to target SPL_KMEM_CACHE_OBJ_PER_SLAB. However,
927 * for very small objects we may end up with more than this so as not
928 * to waste space in the minimal allocation of a single page. Also for
929 * very large objects we may use as few as SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN,
930 * lower than this and we will fail.
931 */
932 static int
933 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
934 {
935 int sks_size, obj_size, max_size, align;
936
937 if (skc->skc_flags & KMC_OFFSLAB) {
938 *objs = SPL_KMEM_CACHE_OBJ_PER_SLAB;
939 *size = sizeof(spl_kmem_slab_t);
940 } else {
941 align = skc->skc_obj_align;
942 sks_size = P2ROUNDUP(sizeof(spl_kmem_slab_t), align);
943 obj_size = P2ROUNDUP(skc->skc_obj_size, align) +
944 P2ROUNDUP(sizeof(spl_kmem_obj_t), align);
945
946 if (skc->skc_flags & KMC_KMEM)
947 max_size = ((uint64_t)1 << (MAX_ORDER-1)) * PAGE_SIZE;
948 else
949 max_size = (32 * 1024 * 1024);
950
951 for (*size = PAGE_SIZE; *size <= max_size; *size += PAGE_SIZE) {
952 *objs = (*size - sks_size) / obj_size;
953 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB)
954 RETURN(0);
955 }
956
957 /*
958 * Unable to satisfy target objets per slab, fallback to
959 * allocating a maximally sized slab and assuming it can
960 * contain the minimum objects count use it. If not fail.
961 */
962 *size = max_size;
963 *objs = (*size - sks_size) / obj_size;
964 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN)
965 RETURN(0);
966 }
967
968 RETURN(-ENOSPC);
969 }
970
971 /*
972 * Make a guess at reasonable per-cpu magazine size based on the size of
973 * each object and the cost of caching N of them in each magazine. Long
974 * term this should really adapt based on an observed usage heuristic.
975 */
976 static int
977 spl_magazine_size(spl_kmem_cache_t *skc)
978 {
979 int size, align = skc->skc_obj_align;
980 ENTRY;
981
982 /* Per-magazine sizes below assume a 4Kib page size */
983 if (P2ROUNDUP(skc->skc_obj_size, align) > (PAGE_SIZE * 256))
984 size = 4; /* Minimum 4Mib per-magazine */
985 else if (P2ROUNDUP(skc->skc_obj_size, align) > (PAGE_SIZE * 32))
986 size = 16; /* Minimum 2Mib per-magazine */
987 else if (P2ROUNDUP(skc->skc_obj_size, align) > (PAGE_SIZE))
988 size = 64; /* Minimum 256Kib per-magazine */
989 else if (P2ROUNDUP(skc->skc_obj_size, align) > (PAGE_SIZE / 4))
990 size = 128; /* Minimum 128Kib per-magazine */
991 else
992 size = 256;
993
994 RETURN(size);
995 }
996
997 /*
998 * Allocate a per-cpu magazine to assoicate with a specific core.
999 */
1000 static spl_kmem_magazine_t *
1001 spl_magazine_alloc(spl_kmem_cache_t *skc, int node)
1002 {
1003 spl_kmem_magazine_t *skm;
1004 int size = sizeof(spl_kmem_magazine_t) +
1005 sizeof(void *) * skc->skc_mag_size;
1006 ENTRY;
1007
1008 skm = kmem_alloc_node(size, GFP_KERNEL | __GFP_NOFAIL, node);
1009 if (skm) {
1010 skm->skm_magic = SKM_MAGIC;
1011 skm->skm_avail = 0;
1012 skm->skm_size = skc->skc_mag_size;
1013 skm->skm_refill = skc->skc_mag_refill;
1014 skm->skm_cache = skc;
1015 spl_init_delayed_work(&skm->skm_work, spl_magazine_age, skm);
1016 skm->skm_age = jiffies;
1017 }
1018
1019 RETURN(skm);
1020 }
1021
1022 /*
1023 * Free a per-cpu magazine assoicated with a specific core.
1024 */
1025 static void
1026 spl_magazine_free(spl_kmem_magazine_t *skm)
1027 {
1028 int size = sizeof(spl_kmem_magazine_t) +
1029 sizeof(void *) * skm->skm_size;
1030
1031 ENTRY;
1032 ASSERT(skm->skm_magic == SKM_MAGIC);
1033 ASSERT(skm->skm_avail == 0);
1034
1035 kmem_free(skm, size);
1036 EXIT;
1037 }
1038
1039 /*
1040 * Create all pre-cpu magazines of reasonable sizes.
1041 */
1042 static int
1043 spl_magazine_create(spl_kmem_cache_t *skc)
1044 {
1045 int i;
1046 ENTRY;
1047
1048 skc->skc_mag_size = spl_magazine_size(skc);
1049 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
1050
1051 for_each_online_cpu(i) {
1052 skc->skc_mag[i] = spl_magazine_alloc(skc, cpu_to_node(i));
1053 if (!skc->skc_mag[i]) {
1054 for (i--; i >= 0; i--)
1055 spl_magazine_free(skc->skc_mag[i]);
1056
1057 RETURN(-ENOMEM);
1058 }
1059 }
1060
1061 /* Only after everything is allocated schedule magazine work */
1062 for_each_online_cpu(i)
1063 schedule_delayed_work_on(i, &skc->skc_mag[i]->skm_work,
1064 skc->skc_delay / 3 * HZ);
1065
1066 RETURN(0);
1067 }
1068
1069 /*
1070 * Destroy all pre-cpu magazines.
1071 */
1072 static void
1073 spl_magazine_destroy(spl_kmem_cache_t *skc)
1074 {
1075 spl_kmem_magazine_t *skm;
1076 int i;
1077 ENTRY;
1078
1079 for_each_online_cpu(i) {
1080 skm = skc->skc_mag[i];
1081 (void)spl_cache_flush(skc, skm, skm->skm_avail);
1082 spl_magazine_free(skm);
1083 }
1084
1085 EXIT;
1086 }
1087
1088 /*
1089 * Create a object cache based on the following arguments:
1090 * name cache name
1091 * size cache object size
1092 * align cache object alignment
1093 * ctor cache object constructor
1094 * dtor cache object destructor
1095 * reclaim cache object reclaim
1096 * priv cache private data for ctor/dtor/reclaim
1097 * vmp unused must be NULL
1098 * flags
1099 * KMC_NOTOUCH Disable cache object aging (unsupported)
1100 * KMC_NODEBUG Disable debugging (unsupported)
1101 * KMC_NOMAGAZINE Disable magazine (unsupported)
1102 * KMC_NOHASH Disable hashing (unsupported)
1103 * KMC_QCACHE Disable qcache (unsupported)
1104 * KMC_KMEM Force kmem backed cache
1105 * KMC_VMEM Force vmem backed cache
1106 * KMC_OFFSLAB Locate objects off the slab
1107 */
1108 spl_kmem_cache_t *
1109 spl_kmem_cache_create(char *name, size_t size, size_t align,
1110 spl_kmem_ctor_t ctor,
1111 spl_kmem_dtor_t dtor,
1112 spl_kmem_reclaim_t reclaim,
1113 void *priv, void *vmp, int flags)
1114 {
1115 spl_kmem_cache_t *skc;
1116 int rc, kmem_flags = KM_SLEEP;
1117 ENTRY;
1118
1119 ASSERTF(!(flags & KMC_NOMAGAZINE), "Bad KMC_NOMAGAZINE (%x)\n", flags);
1120 ASSERTF(!(flags & KMC_NOHASH), "Bad KMC_NOHASH (%x)\n", flags);
1121 ASSERTF(!(flags & KMC_QCACHE), "Bad KMC_QCACHE (%x)\n", flags);
1122 ASSERT(vmp == NULL);
1123
1124 /* We may be called when there is a non-zero preempt_count or
1125 * interrupts are disabled is which case we must not sleep.
1126 */
1127 if (current_thread_info()->preempt_count || irqs_disabled())
1128 kmem_flags = KM_NOSLEEP;
1129
1130 /* Allocate new cache memory and initialize. */
1131 skc = (spl_kmem_cache_t *)kmem_zalloc(sizeof(*skc), kmem_flags);
1132 if (skc == NULL)
1133 RETURN(NULL);
1134
1135 skc->skc_magic = SKC_MAGIC;
1136 skc->skc_name_size = strlen(name) + 1;
1137 skc->skc_name = (char *)kmem_alloc(skc->skc_name_size, kmem_flags);
1138 if (skc->skc_name == NULL) {
1139 kmem_free(skc, sizeof(*skc));
1140 RETURN(NULL);
1141 }
1142 strncpy(skc->skc_name, name, skc->skc_name_size);
1143
1144 skc->skc_ctor = ctor;
1145 skc->skc_dtor = dtor;
1146 skc->skc_reclaim = reclaim;
1147 skc->skc_private = priv;
1148 skc->skc_vmp = vmp;
1149 skc->skc_flags = flags;
1150 skc->skc_obj_size = size;
1151 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
1152 skc->skc_delay = SPL_KMEM_CACHE_DELAY;
1153 skc->skc_reap = SPL_KMEM_CACHE_REAP;
1154 atomic_set(&skc->skc_ref, 0);
1155
1156 INIT_LIST_HEAD(&skc->skc_list);
1157 INIT_LIST_HEAD(&skc->skc_complete_list);
1158 INIT_LIST_HEAD(&skc->skc_partial_list);
1159 spin_lock_init(&skc->skc_lock);
1160 skc->skc_slab_fail = 0;
1161 skc->skc_slab_create = 0;
1162 skc->skc_slab_destroy = 0;
1163 skc->skc_slab_total = 0;
1164 skc->skc_slab_alloc = 0;
1165 skc->skc_slab_max = 0;
1166 skc->skc_obj_total = 0;
1167 skc->skc_obj_alloc = 0;
1168 skc->skc_obj_max = 0;
1169
1170 if (align) {
1171 ASSERT((align & (align - 1)) == 0); /* Power of two */
1172 ASSERT(align >= SPL_KMEM_CACHE_ALIGN); /* Minimum size */
1173 skc->skc_obj_align = align;
1174 }
1175
1176 /* If none passed select a cache type based on object size */
1177 if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM))) {
1178 if (P2ROUNDUP(skc->skc_obj_size, skc->skc_obj_align) <
1179 (PAGE_SIZE / 8)) {
1180 skc->skc_flags |= KMC_KMEM;
1181 } else {
1182 skc->skc_flags |= KMC_VMEM;
1183 }
1184 }
1185
1186 rc = spl_slab_size(skc, &skc->skc_slab_objs, &skc->skc_slab_size);
1187 if (rc)
1188 GOTO(out, rc);
1189
1190 rc = spl_magazine_create(skc);
1191 if (rc)
1192 GOTO(out, rc);
1193
1194 spl_init_delayed_work(&skc->skc_work, spl_cache_age, skc);
1195 schedule_delayed_work(&skc->skc_work, skc->skc_delay / 3 * HZ);
1196
1197 down_write(&spl_kmem_cache_sem);
1198 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
1199 up_write(&spl_kmem_cache_sem);
1200
1201 RETURN(skc);
1202 out:
1203 kmem_free(skc->skc_name, skc->skc_name_size);
1204 kmem_free(skc, sizeof(*skc));
1205 RETURN(NULL);
1206 }
1207 EXPORT_SYMBOL(spl_kmem_cache_create);
1208
1209 /*
1210 * Destroy a cache and all objects assoicated with the cache.
1211 */
1212 void
1213 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
1214 {
1215 DECLARE_WAIT_QUEUE_HEAD(wq);
1216 int i;
1217 ENTRY;
1218
1219 ASSERT(skc->skc_magic == SKC_MAGIC);
1220
1221 down_write(&spl_kmem_cache_sem);
1222 list_del_init(&skc->skc_list);
1223 up_write(&spl_kmem_cache_sem);
1224
1225 /* Cancel any and wait for any pending delayed work */
1226 ASSERT(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1227 cancel_delayed_work(&skc->skc_work);
1228 for_each_online_cpu(i)
1229 cancel_delayed_work(&skc->skc_mag[i]->skm_work);
1230
1231 flush_scheduled_work();
1232
1233 /* Wait until all current callers complete, this is mainly
1234 * to catch the case where a low memory situation triggers a
1235 * cache reaping action which races with this destroy. */
1236 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
1237
1238 spl_magazine_destroy(skc);
1239 spl_slab_reclaim(skc, 0, 1);
1240 spin_lock(&skc->skc_lock);
1241
1242 /* Validate there are no objects in use and free all the
1243 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. */
1244 ASSERT3U(skc->skc_slab_alloc, ==, 0);
1245 ASSERT3U(skc->skc_obj_alloc, ==, 0);
1246 ASSERT3U(skc->skc_slab_total, ==, 0);
1247 ASSERT3U(skc->skc_obj_total, ==, 0);
1248 ASSERT(list_empty(&skc->skc_complete_list));
1249
1250 kmem_free(skc->skc_name, skc->skc_name_size);
1251 spin_unlock(&skc->skc_lock);
1252
1253 kmem_free(skc, sizeof(*skc));
1254
1255 EXIT;
1256 }
1257 EXPORT_SYMBOL(spl_kmem_cache_destroy);
1258
1259 /*
1260 * Allocate an object from a slab attached to the cache. This is used to
1261 * repopulate the per-cpu magazine caches in batches when they run low.
1262 */
1263 static void *
1264 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
1265 {
1266 spl_kmem_obj_t *sko;
1267
1268 ASSERT(skc->skc_magic == SKC_MAGIC);
1269 ASSERT(sks->sks_magic == SKS_MAGIC);
1270 ASSERT(spin_is_locked(&skc->skc_lock));
1271
1272 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
1273 ASSERT(sko->sko_magic == SKO_MAGIC);
1274 ASSERT(sko->sko_addr != NULL);
1275
1276 /* Remove from sks_free_list */
1277 list_del_init(&sko->sko_list);
1278
1279 sks->sks_age = jiffies;
1280 sks->sks_ref++;
1281 skc->skc_obj_alloc++;
1282
1283 /* Track max obj usage statistics */
1284 if (skc->skc_obj_alloc > skc->skc_obj_max)
1285 skc->skc_obj_max = skc->skc_obj_alloc;
1286
1287 /* Track max slab usage statistics */
1288 if (sks->sks_ref == 1) {
1289 skc->skc_slab_alloc++;
1290
1291 if (skc->skc_slab_alloc > skc->skc_slab_max)
1292 skc->skc_slab_max = skc->skc_slab_alloc;
1293 }
1294
1295 return sko->sko_addr;
1296 }
1297
1298 /*
1299 * No available objects on any slabsi, create a new slab. Since this
1300 * is an expensive operation we do it without holding the spinlock and
1301 * only briefly aquire it when we link in the fully allocated and
1302 * constructed slab.
1303 */
1304 static spl_kmem_slab_t *
1305 spl_cache_grow(spl_kmem_cache_t *skc, int flags)
1306 {
1307 spl_kmem_slab_t *sks;
1308 ENTRY;
1309
1310 ASSERT(skc->skc_magic == SKC_MAGIC);
1311 local_irq_enable();
1312 might_sleep();
1313
1314 /*
1315 * Before allocating a new slab check if the slab is being reaped.
1316 * If it is there is a good chance we can wait until it finishes
1317 * and then use one of the newly freed but not aged-out slabs.
1318 */
1319 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1320 schedule();
1321 GOTO(out, sks= NULL);
1322 }
1323
1324 /* Allocate a new slab for the cache */
1325 sks = spl_slab_alloc(skc, flags | __GFP_NORETRY | __GFP_NOWARN);
1326 if (sks == NULL)
1327 GOTO(out, sks = NULL);
1328
1329 /* Link the new empty slab in to the end of skc_partial_list. */
1330 spin_lock(&skc->skc_lock);
1331 skc->skc_slab_total++;
1332 skc->skc_obj_total += sks->sks_objs;
1333 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1334 spin_unlock(&skc->skc_lock);
1335 out:
1336 local_irq_disable();
1337
1338 RETURN(sks);
1339 }
1340
1341 /*
1342 * Refill a per-cpu magazine with objects from the slabs for this
1343 * cache. Ideally the magazine can be repopulated using existing
1344 * objects which have been released, however if we are unable to
1345 * locate enough free objects new slabs of objects will be created.
1346 */
1347 static int
1348 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1349 {
1350 spl_kmem_slab_t *sks;
1351 int rc = 0, refill;
1352 ENTRY;
1353
1354 ASSERT(skc->skc_magic == SKC_MAGIC);
1355 ASSERT(skm->skm_magic == SKM_MAGIC);
1356
1357 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1358 spin_lock(&skc->skc_lock);
1359
1360 while (refill > 0) {
1361 /* No slabs available we may need to grow the cache */
1362 if (list_empty(&skc->skc_partial_list)) {
1363 spin_unlock(&skc->skc_lock);
1364
1365 sks = spl_cache_grow(skc, flags);
1366 if (!sks)
1367 GOTO(out, rc);
1368
1369 /* Rescheduled to different CPU skm is not local */
1370 if (skm != skc->skc_mag[smp_processor_id()])
1371 GOTO(out, rc);
1372
1373 /* Potentially rescheduled to the same CPU but
1374 * allocations may have occured from this CPU while
1375 * we were sleeping so recalculate max refill. */
1376 refill = MIN(refill, skm->skm_size - skm->skm_avail);
1377
1378 spin_lock(&skc->skc_lock);
1379 continue;
1380 }
1381
1382 /* Grab the next available slab */
1383 sks = list_entry((&skc->skc_partial_list)->next,
1384 spl_kmem_slab_t, sks_list);
1385 ASSERT(sks->sks_magic == SKS_MAGIC);
1386 ASSERT(sks->sks_ref < sks->sks_objs);
1387 ASSERT(!list_empty(&sks->sks_free_list));
1388
1389 /* Consume as many objects as needed to refill the requested
1390 * cache. We must also be careful not to overfill it. */
1391 while (sks->sks_ref < sks->sks_objs && refill-- > 0 && ++rc) {
1392 ASSERT(skm->skm_avail < skm->skm_size);
1393 ASSERT(rc < skm->skm_size);
1394 skm->skm_objs[skm->skm_avail++]=spl_cache_obj(skc,sks);
1395 }
1396
1397 /* Move slab to skc_complete_list when full */
1398 if (sks->sks_ref == sks->sks_objs) {
1399 list_del(&sks->sks_list);
1400 list_add(&sks->sks_list, &skc->skc_complete_list);
1401 }
1402 }
1403
1404 spin_unlock(&skc->skc_lock);
1405 out:
1406 /* Returns the number of entries added to cache */
1407 RETURN(rc);
1408 }
1409
1410 /*
1411 * Release an object back to the slab from which it came.
1412 */
1413 static void
1414 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1415 {
1416 spl_kmem_slab_t *sks = NULL;
1417 spl_kmem_obj_t *sko = NULL;
1418 ENTRY;
1419
1420 ASSERT(skc->skc_magic == SKC_MAGIC);
1421 ASSERT(spin_is_locked(&skc->skc_lock));
1422
1423 sko = obj + P2ROUNDUP(skc->skc_obj_size, skc->skc_obj_align);
1424 ASSERT(sko->sko_magic == SKO_MAGIC);
1425
1426 sks = sko->sko_slab;
1427 ASSERT(sks->sks_magic == SKS_MAGIC);
1428 ASSERT(sks->sks_cache == skc);
1429 list_add(&sko->sko_list, &sks->sks_free_list);
1430
1431 sks->sks_age = jiffies;
1432 sks->sks_ref--;
1433 skc->skc_obj_alloc--;
1434
1435 /* Move slab to skc_partial_list when no longer full. Slabs
1436 * are added to the head to keep the partial list is quasi-full
1437 * sorted order. Fuller at the head, emptier at the tail. */
1438 if (sks->sks_ref == (sks->sks_objs - 1)) {
1439 list_del(&sks->sks_list);
1440 list_add(&sks->sks_list, &skc->skc_partial_list);
1441 }
1442
1443 /* Move emply slabs to the end of the partial list so
1444 * they can be easily found and freed during reclamation. */
1445 if (sks->sks_ref == 0) {
1446 list_del(&sks->sks_list);
1447 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1448 skc->skc_slab_alloc--;
1449 }
1450
1451 EXIT;
1452 }
1453
1454 /*
1455 * Release a batch of objects from a per-cpu magazine back to their
1456 * respective slabs. This occurs when we exceed the magazine size,
1457 * are under memory pressure, when the cache is idle, or during
1458 * cache cleanup. The flush argument contains the number of entries
1459 * to remove from the magazine.
1460 */
1461 static int
1462 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
1463 {
1464 int i, count = MIN(flush, skm->skm_avail);
1465 ENTRY;
1466
1467 ASSERT(skc->skc_magic == SKC_MAGIC);
1468 ASSERT(skm->skm_magic == SKM_MAGIC);
1469
1470 /*
1471 * XXX: Currently we simply return objects from the magazine to
1472 * the slabs in fifo order. The ideal thing to do from a memory
1473 * fragmentation standpoint is to cheaply determine the set of
1474 * objects in the magazine which will result in the largest
1475 * number of free slabs if released from the magazine.
1476 */
1477 spin_lock(&skc->skc_lock);
1478 for (i = 0; i < count; i++)
1479 spl_cache_shrink(skc, skm->skm_objs[i]);
1480
1481 skm->skm_avail -= count;
1482 memmove(skm->skm_objs, &(skm->skm_objs[count]),
1483 sizeof(void *) * skm->skm_avail);
1484
1485 spin_unlock(&skc->skc_lock);
1486
1487 RETURN(count);
1488 }
1489
1490 /*
1491 * Allocate an object from the per-cpu magazine, or if the magazine
1492 * is empty directly allocate from a slab and repopulate the magazine.
1493 */
1494 void *
1495 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1496 {
1497 spl_kmem_magazine_t *skm;
1498 unsigned long irq_flags;
1499 void *obj = NULL;
1500 ENTRY;
1501
1502 ASSERT(skc->skc_magic == SKC_MAGIC);
1503 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1504 ASSERT(flags & KM_SLEEP);
1505 atomic_inc(&skc->skc_ref);
1506 local_irq_save(irq_flags);
1507
1508 restart:
1509 /* Safe to update per-cpu structure without lock, but
1510 * in the restart case we must be careful to reaquire
1511 * the local magazine since this may have changed
1512 * when we need to grow the cache. */
1513 skm = skc->skc_mag[smp_processor_id()];
1514 ASSERTF(skm->skm_magic == SKM_MAGIC, "%x != %x: %s/%p/%p %x/%x/%x\n",
1515 skm->skm_magic, SKM_MAGIC, skc->skc_name, skc, skm,
1516 skm->skm_size, skm->skm_refill, skm->skm_avail);
1517
1518 if (likely(skm->skm_avail)) {
1519 /* Object available in CPU cache, use it */
1520 obj = skm->skm_objs[--skm->skm_avail];
1521 skm->skm_age = jiffies;
1522 } else {
1523 /* Per-CPU cache empty, directly allocate from
1524 * the slab and refill the per-CPU cache. */
1525 (void)spl_cache_refill(skc, skm, flags);
1526 GOTO(restart, obj = NULL);
1527 }
1528
1529 local_irq_restore(irq_flags);
1530 ASSERT(obj);
1531 ASSERT(((unsigned long)(obj) % skc->skc_obj_align) == 0);
1532
1533 /* Pre-emptively migrate object to CPU L1 cache */
1534 prefetchw(obj);
1535 atomic_dec(&skc->skc_ref);
1536
1537 RETURN(obj);
1538 }
1539 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1540
1541 /*
1542 * Free an object back to the local per-cpu magazine, there is no
1543 * guarantee that this is the same magazine the object was originally
1544 * allocated from. We may need to flush entire from the magazine
1545 * back to the slabs to make space.
1546 */
1547 void
1548 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1549 {
1550 spl_kmem_magazine_t *skm;
1551 unsigned long flags;
1552 ENTRY;
1553
1554 ASSERT(skc->skc_magic == SKC_MAGIC);
1555 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1556 atomic_inc(&skc->skc_ref);
1557 local_irq_save(flags);
1558
1559 /* Safe to update per-cpu structure without lock, but
1560 * no remote memory allocation tracking is being performed
1561 * it is entirely possible to allocate an object from one
1562 * CPU cache and return it to another. */
1563 skm = skc->skc_mag[smp_processor_id()];
1564 ASSERT(skm->skm_magic == SKM_MAGIC);
1565
1566 /* Per-CPU cache full, flush it to make space */
1567 if (unlikely(skm->skm_avail >= skm->skm_size))
1568 (void)spl_cache_flush(skc, skm, skm->skm_refill);
1569
1570 /* Available space in cache, use it */
1571 skm->skm_objs[skm->skm_avail++] = obj;
1572
1573 local_irq_restore(flags);
1574 atomic_dec(&skc->skc_ref);
1575
1576 EXIT;
1577 }
1578 EXPORT_SYMBOL(spl_kmem_cache_free);
1579
1580 /*
1581 * The generic shrinker function for all caches. Under linux a shrinker
1582 * may not be tightly coupled with a slab cache. In fact linux always
1583 * systematically trys calling all registered shrinker callbacks which
1584 * report that they contain unused objects. Because of this we only
1585 * register one shrinker function in the shim layer for all slab caches.
1586 * We always attempt to shrink all caches when this generic shrinker
1587 * is called. The shrinker should return the number of free objects
1588 * in the cache when called with nr_to_scan == 0 but not attempt to
1589 * free any objects. When nr_to_scan > 0 it is a request that nr_to_scan
1590 * objects should be freed, because Solaris semantics are to free
1591 * all available objects we may free more objects than requested.
1592 */
1593 static int
1594 spl_kmem_cache_generic_shrinker(int nr_to_scan, unsigned int gfp_mask)
1595 {
1596 spl_kmem_cache_t *skc;
1597 int unused = 0;
1598
1599 down_read(&spl_kmem_cache_sem);
1600 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1601 if (nr_to_scan)
1602 spl_kmem_cache_reap_now(skc);
1603
1604 /*
1605 * Presume everything alloc'ed in reclaimable, this ensures
1606 * we are called again with nr_to_scan > 0 so can try and
1607 * reclaim. The exact number is not important either so
1608 * we forgo taking this already highly contented lock.
1609 */
1610 unused += skc->skc_obj_alloc;
1611 }
1612 up_read(&spl_kmem_cache_sem);
1613
1614 return (unused * sysctl_vfs_cache_pressure) / 100;
1615 }
1616
1617 /*
1618 * Call the registered reclaim function for a cache. Depending on how
1619 * many and which objects are released it may simply repopulate the
1620 * local magazine which will then need to age-out. Objects which cannot
1621 * fit in the magazine we will be released back to their slabs which will
1622 * also need to age out before being release. This is all just best
1623 * effort and we do not want to thrash creating and destroying slabs.
1624 */
1625 void
1626 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
1627 {
1628 ENTRY;
1629
1630 ASSERT(skc->skc_magic == SKC_MAGIC);
1631 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1632
1633 /* Prevent concurrent cache reaping when contended */
1634 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1635 EXIT;
1636 return;
1637 }
1638
1639 atomic_inc(&skc->skc_ref);
1640
1641 if (skc->skc_reclaim)
1642 skc->skc_reclaim(skc->skc_private);
1643
1644 spl_slab_reclaim(skc, skc->skc_reap, 0);
1645 clear_bit(KMC_BIT_REAPING, &skc->skc_flags);
1646 atomic_dec(&skc->skc_ref);
1647
1648 EXIT;
1649 }
1650 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1651
1652 /*
1653 * Reap all free slabs from all registered caches.
1654 */
1655 void
1656 spl_kmem_reap(void)
1657 {
1658 spl_kmem_cache_generic_shrinker(KMC_REAP_CHUNK, GFP_KERNEL);
1659 }
1660 EXPORT_SYMBOL(spl_kmem_reap);
1661
1662 #if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
1663 static char *
1664 spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
1665 {
1666 int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
1667 int i, flag = 1;
1668
1669 ASSERT(str != NULL && len >= 17);
1670 memset(str, 0, len);
1671
1672 /* Check for a fully printable string, and while we are at
1673 * it place the printable characters in the passed buffer. */
1674 for (i = 0; i < size; i++) {
1675 str[i] = ((char *)(kd->kd_addr))[i];
1676 if (isprint(str[i])) {
1677 continue;
1678 } else {
1679 /* Minimum number of printable characters found
1680 * to make it worthwhile to print this as ascii. */
1681 if (i > min)
1682 break;
1683
1684 flag = 0;
1685 break;
1686 }
1687 }
1688
1689 if (!flag) {
1690 sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
1691 *((uint8_t *)kd->kd_addr),
1692 *((uint8_t *)kd->kd_addr + 2),
1693 *((uint8_t *)kd->kd_addr + 4),
1694 *((uint8_t *)kd->kd_addr + 6),
1695 *((uint8_t *)kd->kd_addr + 8),
1696 *((uint8_t *)kd->kd_addr + 10),
1697 *((uint8_t *)kd->kd_addr + 12),
1698 *((uint8_t *)kd->kd_addr + 14));
1699 }
1700
1701 return str;
1702 }
1703
1704 static int
1705 spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
1706 {
1707 int i;
1708 ENTRY;
1709
1710 spin_lock_init(lock);
1711 INIT_LIST_HEAD(list);
1712
1713 for (i = 0; i < size; i++)
1714 INIT_HLIST_HEAD(&kmem_table[i]);
1715
1716 RETURN(0);
1717 }
1718
1719 static void
1720 spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
1721 {
1722 unsigned long flags;
1723 kmem_debug_t *kd;
1724 char str[17];
1725 ENTRY;
1726
1727 spin_lock_irqsave(lock, flags);
1728 if (!list_empty(list))
1729 printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address",
1730 "size", "data", "func", "line");
1731
1732 list_for_each_entry(kd, list, kd_list)
1733 printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr,
1734 (int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8),
1735 kd->kd_func, kd->kd_line);
1736
1737 spin_unlock_irqrestore(lock, flags);
1738 EXIT;
1739 }
1740 #else /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
1741 #define spl_kmem_init_tracking(list, lock, size)
1742 #define spl_kmem_fini_tracking(list, lock)
1743 #endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
1744
1745 static void
1746 spl_kmem_init_globals(void)
1747 {
1748 struct zone *zone;
1749
1750 /* For now all zones are includes, it may be wise to restrict
1751 * this to normal and highmem zones if we see problems. */
1752 for_each_zone(zone) {
1753
1754 if (!populated_zone(zone))
1755 continue;
1756
1757 minfree += zone->pages_min;
1758 desfree += zone->pages_low;
1759 lotsfree += zone->pages_high;
1760 }
1761
1762 /* Solaris default values */
1763 swapfs_minfree = MAX(2*1024*1024 / PAGE_SIZE, physmem / 8);
1764 swapfs_reserve = MIN(4*1024*1024 / PAGE_SIZE, physmem / 16);
1765 }
1766
1767 /*
1768 * Called at module init when it is safe to use spl_kallsyms_lookup_name()
1769 */
1770 int
1771 spl_kmem_init_kallsyms_lookup(void)
1772 {
1773 #ifndef HAVE_GET_VMALLOC_INFO
1774 get_vmalloc_info_fn = (get_vmalloc_info_t)
1775 spl_kallsyms_lookup_name("get_vmalloc_info");
1776 if (!get_vmalloc_info_fn)
1777 return -EFAULT;
1778 #endif /* HAVE_GET_VMALLOC_INFO */
1779
1780 #ifndef HAVE_FIRST_ONLINE_PGDAT
1781 first_online_pgdat_fn = (first_online_pgdat_t)
1782 spl_kallsyms_lookup_name("first_online_pgdat");
1783 if (!first_online_pgdat_fn)
1784 return -EFAULT;
1785 #endif /* HAVE_FIRST_ONLINE_PGDAT */
1786
1787 #ifndef HAVE_NEXT_ONLINE_PGDAT
1788 next_online_pgdat_fn = (next_online_pgdat_t)
1789 spl_kallsyms_lookup_name("next_online_pgdat");
1790 if (!next_online_pgdat_fn)
1791 return -EFAULT;
1792 #endif /* HAVE_NEXT_ONLINE_PGDAT */
1793
1794 #ifndef HAVE_NEXT_ZONE
1795 next_zone_fn = (next_zone_t)
1796 spl_kallsyms_lookup_name("next_zone");
1797 if (!next_zone_fn)
1798 return -EFAULT;
1799 #endif /* HAVE_NEXT_ZONE */
1800
1801 #ifndef HAVE_GET_ZONE_COUNTS
1802 get_zone_counts_fn = (get_zone_counts_t)
1803 spl_kallsyms_lookup_name("get_zone_counts");
1804 if (!get_zone_counts_fn)
1805 return -EFAULT;
1806 #endif /* HAVE_GET_ZONE_COUNTS */
1807
1808 /*
1809 * It is now safe to initialize the global tunings which rely on
1810 * the use of the for_each_zone() macro. This macro in turns
1811 * depends on the *_pgdat symbols which are now available.
1812 */
1813 spl_kmem_init_globals();
1814
1815 return 0;
1816 }
1817
1818 int
1819 spl_kmem_init(void)
1820 {
1821 int rc = 0;
1822 ENTRY;
1823
1824 init_rwsem(&spl_kmem_cache_sem);
1825 INIT_LIST_HEAD(&spl_kmem_cache_list);
1826
1827 #ifdef HAVE_SET_SHRINKER
1828 spl_kmem_cache_shrinker = set_shrinker(KMC_DEFAULT_SEEKS,
1829 spl_kmem_cache_generic_shrinker);
1830 if (spl_kmem_cache_shrinker == NULL)
1831 RETURN(rc = -ENOMEM);
1832 #else
1833 register_shrinker(&spl_kmem_cache_shrinker);
1834 #endif
1835
1836 #ifdef DEBUG_KMEM
1837 atomic64_set(&kmem_alloc_used, 0);
1838 atomic64_set(&vmem_alloc_used, 0);
1839
1840 spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
1841 spl_kmem_init_tracking(&vmem_list, &vmem_lock, VMEM_TABLE_SIZE);
1842 #endif
1843 RETURN(rc);
1844 }
1845
1846 void
1847 spl_kmem_fini(void)
1848 {
1849 #ifdef DEBUG_KMEM
1850 /* Display all unreclaimed memory addresses, including the
1851 * allocation size and the first few bytes of what's located
1852 * at that address to aid in debugging. Performance is not
1853 * a serious concern here since it is module unload time. */
1854 if (atomic64_read(&kmem_alloc_used) != 0)
1855 CWARN("kmem leaked %ld/%ld bytes\n",
1856 atomic64_read(&kmem_alloc_used), kmem_alloc_max);
1857
1858
1859 if (atomic64_read(&vmem_alloc_used) != 0)
1860 CWARN("vmem leaked %ld/%ld bytes\n",
1861 atomic64_read(&vmem_alloc_used), vmem_alloc_max);
1862
1863 spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
1864 spl_kmem_fini_tracking(&vmem_list, &vmem_lock);
1865 #endif /* DEBUG_KMEM */
1866 ENTRY;
1867
1868 #ifdef HAVE_SET_SHRINKER
1869 remove_shrinker(spl_kmem_cache_shrinker);
1870 #else
1871 unregister_shrinker(&spl_kmem_cache_shrinker);
1872 #endif
1873
1874 EXIT;
1875 }