]> git.proxmox.com Git - mirror_zfs.git/blob - module/zcommon/zfs_fletcher_sse.c
Unbreak build on Linux kernel < 3.10
[mirror_zfs.git] / module / zcommon / zfs_fletcher_sse.c
1 /*
2 * Implement fast Fletcher4 with SSE2,SSSE3 instructions. (x86)
3 *
4 * Use the 128-bit SSE2/SSSE3 SIMD instructions and registers to compute
5 * Fletcher4 in two incremental 64-bit parallel accumulator streams,
6 * and then combine the streams to form the final four checksum words.
7 * This implementation is a derivative of the AVX SIMD implementation by
8 * James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c).
9 *
10 * Copyright (C) 2016 Tyler J. Stachecki.
11 *
12 * Authors:
13 * Tyler J. Stachecki <stachecki.tyler@gmail.com>
14 *
15 * This software is available to you under a choice of one of two
16 * licenses. You may choose to be licensed under the terms of the GNU
17 * General Public License (GPL) Version 2, available from the file
18 * COPYING in the main directory of this source tree, or the
19 * OpenIB.org BSD license below:
20 *
21 * Redistribution and use in source and binary forms, with or
22 * without modification, are permitted provided that the following
23 * conditions are met:
24 *
25 * - Redistributions of source code must retain the above
26 * copyright notice, this list of conditions and the following
27 * disclaimer.
28 *
29 * - Redistributions in binary form must reproduce the above
30 * copyright notice, this list of conditions and the following
31 * disclaimer in the documentation and/or other materials
32 * provided with the distribution.
33 *
34 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
35 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
36 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
37 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
38 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
39 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
40 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
41 * SOFTWARE.
42 */
43
44 #if defined(HAVE_SSE2)
45
46 #include <linux/simd_x86.h>
47 #include <sys/spa_checksum.h>
48 #include <sys/byteorder.h>
49 #include <sys/strings.h>
50 #include <zfs_fletcher.h>
51
52 static void
53 fletcher_4_sse2_init(fletcher_4_ctx_t *ctx)
54 {
55 bzero(ctx->sse, 4 * sizeof (zfs_fletcher_sse_t));
56 }
57
58 static void
59 fletcher_4_sse2_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
60 {
61 uint64_t A, B, C, D;
62
63 /*
64 * The mixing matrix for checksum calculation is:
65 * a = a0 + a1
66 * b = 2b0 + 2b1 - a1
67 * c = 4c0 - b0 + 4c1 -3b1
68 * d = 8d0 - 4c0 + 8d1 - 8c1 + b1;
69 *
70 * c and d are multiplied by 4 and 8, respectively,
71 * before spilling the vectors out to memory.
72 */
73 A = ctx->sse[0].v[0] + ctx->sse[0].v[1];
74 B = 2 * ctx->sse[1].v[0] + 2 * ctx->sse[1].v[1] - ctx->sse[0].v[1];
75 C = 4 * ctx->sse[2].v[0] - ctx->sse[1].v[0] + 4 * ctx->sse[2].v[1] -
76 3 * ctx->sse[1].v[1];
77 D = 8 * ctx->sse[3].v[0] - 4 * ctx->sse[2].v[0] + 8 * ctx->sse[3].v[1] -
78 8 * ctx->sse[2].v[1] + ctx->sse[1].v[1];
79
80 ZIO_SET_CHECKSUM(zcp, A, B, C, D);
81 }
82
83 #define FLETCHER_4_SSE_RESTORE_CTX(ctx) \
84 { \
85 asm volatile("movdqu %0, %%xmm0" :: "m" ((ctx)->sse[0])); \
86 asm volatile("movdqu %0, %%xmm1" :: "m" ((ctx)->sse[1])); \
87 asm volatile("movdqu %0, %%xmm2" :: "m" ((ctx)->sse[2])); \
88 asm volatile("movdqu %0, %%xmm3" :: "m" ((ctx)->sse[3])); \
89 }
90
91 #define FLETCHER_4_SSE_SAVE_CTX(ctx) \
92 { \
93 asm volatile("movdqu %%xmm0, %0" : "=m" ((ctx)->sse[0])); \
94 asm volatile("movdqu %%xmm1, %0" : "=m" ((ctx)->sse[1])); \
95 asm volatile("movdqu %%xmm2, %0" : "=m" ((ctx)->sse[2])); \
96 asm volatile("movdqu %%xmm3, %0" : "=m" ((ctx)->sse[3])); \
97 }
98
99 static void
100 fletcher_4_sse2_native(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
101 {
102 const uint64_t *ip = buf;
103 const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size);
104
105 kfpu_begin();
106
107 FLETCHER_4_SSE_RESTORE_CTX(ctx);
108
109 asm volatile("pxor %xmm4, %xmm4");
110
111 for (; ip < ipend; ip += 2) {
112 asm volatile("movdqu %0, %%xmm5" :: "m"(*ip));
113 asm volatile("movdqa %xmm5, %xmm6");
114 asm volatile("punpckldq %xmm4, %xmm5");
115 asm volatile("punpckhdq %xmm4, %xmm6");
116 asm volatile("paddq %xmm5, %xmm0");
117 asm volatile("paddq %xmm0, %xmm1");
118 asm volatile("paddq %xmm1, %xmm2");
119 asm volatile("paddq %xmm2, %xmm3");
120 asm volatile("paddq %xmm6, %xmm0");
121 asm volatile("paddq %xmm0, %xmm1");
122 asm volatile("paddq %xmm1, %xmm2");
123 asm volatile("paddq %xmm2, %xmm3");
124 }
125
126 FLETCHER_4_SSE_SAVE_CTX(ctx);
127
128 kfpu_end();
129 }
130
131 static void
132 fletcher_4_sse2_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
133 {
134 const uint32_t *ip = buf;
135 const uint32_t *ipend = (uint32_t *)((uint8_t *)ip + size);
136
137 kfpu_begin();
138
139 FLETCHER_4_SSE_RESTORE_CTX(ctx);
140
141 for (; ip < ipend; ip += 2) {
142 uint32_t scratch1 = BSWAP_32(ip[0]);
143 uint32_t scratch2 = BSWAP_32(ip[1]);
144 asm volatile("movd %0, %%xmm5" :: "r"(scratch1));
145 asm volatile("movd %0, %%xmm6" :: "r"(scratch2));
146 asm volatile("punpcklqdq %xmm6, %xmm5");
147 asm volatile("paddq %xmm5, %xmm0");
148 asm volatile("paddq %xmm0, %xmm1");
149 asm volatile("paddq %xmm1, %xmm2");
150 asm volatile("paddq %xmm2, %xmm3");
151 }
152
153 FLETCHER_4_SSE_SAVE_CTX(ctx);
154
155 kfpu_end();
156 }
157
158 static boolean_t fletcher_4_sse2_valid(void)
159 {
160 return (zfs_sse2_available());
161 }
162
163 const fletcher_4_ops_t fletcher_4_sse2_ops = {
164 .init_native = fletcher_4_sse2_init,
165 .fini_native = fletcher_4_sse2_fini,
166 .compute_native = fletcher_4_sse2_native,
167 .init_byteswap = fletcher_4_sse2_init,
168 .fini_byteswap = fletcher_4_sse2_fini,
169 .compute_byteswap = fletcher_4_sse2_byteswap,
170 .valid = fletcher_4_sse2_valid,
171 .name = "sse2"
172 };
173
174 #endif /* defined(HAVE_SSE2) */
175
176 #if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
177 static void
178 fletcher_4_ssse3_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
179 {
180 static const zfs_fletcher_sse_t mask = {
181 .v = { 0x0405060700010203, 0x0C0D0E0F08090A0B }
182 };
183
184 const uint64_t *ip = buf;
185 const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size);
186
187 kfpu_begin();
188
189 FLETCHER_4_SSE_RESTORE_CTX(ctx);
190
191 asm volatile("movdqu %0, %%xmm7"::"m" (mask));
192 asm volatile("pxor %xmm4, %xmm4");
193
194 for (; ip < ipend; ip += 2) {
195 asm volatile("movdqu %0, %%xmm5"::"m" (*ip));
196 asm volatile("pshufb %xmm7, %xmm5");
197 asm volatile("movdqa %xmm5, %xmm6");
198 asm volatile("punpckldq %xmm4, %xmm5");
199 asm volatile("punpckhdq %xmm4, %xmm6");
200 asm volatile("paddq %xmm5, %xmm0");
201 asm volatile("paddq %xmm0, %xmm1");
202 asm volatile("paddq %xmm1, %xmm2");
203 asm volatile("paddq %xmm2, %xmm3");
204 asm volatile("paddq %xmm6, %xmm0");
205 asm volatile("paddq %xmm0, %xmm1");
206 asm volatile("paddq %xmm1, %xmm2");
207 asm volatile("paddq %xmm2, %xmm3");
208 }
209
210 FLETCHER_4_SSE_SAVE_CTX(ctx);
211
212 kfpu_end();
213 }
214
215 static boolean_t fletcher_4_ssse3_valid(void)
216 {
217 return (zfs_sse2_available() && zfs_ssse3_available());
218 }
219
220 const fletcher_4_ops_t fletcher_4_ssse3_ops = {
221 .init_native = fletcher_4_sse2_init,
222 .fini_native = fletcher_4_sse2_fini,
223 .compute_native = fletcher_4_sse2_native,
224 .init_byteswap = fletcher_4_sse2_init,
225 .fini_byteswap = fletcher_4_sse2_fini,
226 .compute_byteswap = fletcher_4_ssse3_byteswap,
227 .valid = fletcher_4_ssse3_valid,
228 .name = "ssse3"
229 };
230
231 #endif /* defined(HAVE_SSE2) && defined(HAVE_SSSE3) */