]> git.proxmox.com Git - mirror_zfs.git/blob - module/zcommon/zfs_fletcher_superscalar4.c
Fix vd_path and error in spa_vdev_remove()
[mirror_zfs.git] / module / zcommon / zfs_fletcher_superscalar4.c
1 /*
2 * Implement fast Fletcher4 using superscalar pipelines.
3 *
4 * Use regular C code to compute
5 * Fletcher4 in four incremental 64-bit parallel accumulator streams,
6 * and then combine the streams to form the final four checksum words.
7 * This implementation is a derivative of the AVX SIMD implementation by
8 * James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c).
9 *
10 * Copyright (C) 2016 Romain Dolbeau.
11 *
12 * Authors:
13 * Romain Dolbeau <romain.dolbeau@atos.net>
14 *
15 * This software is available to you under a choice of one of two
16 * licenses. You may choose to be licensed under the terms of the GNU
17 * General Public License (GPL) Version 2, available from the file
18 * COPYING in the main directory of this source tree, or the
19 * OpenIB.org BSD license below:
20 *
21 * Redistribution and use in source and binary forms, with or
22 * without modification, are permitted provided that the following
23 * conditions are met:
24 *
25 * - Redistributions of source code must retain the above
26 * copyright notice, this list of conditions and the following
27 * disclaimer.
28 *
29 * - Redistributions in binary form must reproduce the above
30 * copyright notice, this list of conditions and the following
31 * disclaimer in the documentation and/or other materials
32 * provided with the distribution.
33 *
34 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
35 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
36 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
37 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
38 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
39 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
40 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
41 * SOFTWARE.
42 */
43
44 #include <sys/byteorder.h>
45 #include <sys/spa_checksum.h>
46 #include <sys/strings.h>
47 #include <zfs_fletcher.h>
48
49 static void
50 fletcher_4_superscalar4_init(fletcher_4_ctx_t *ctx)
51 {
52 bzero(ctx->superscalar, 4 * sizeof (zfs_fletcher_superscalar_t));
53 }
54
55 static void
56 fletcher_4_superscalar4_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
57 {
58 uint64_t A, B, C, D;
59
60 A = ctx->superscalar[0].v[0] + ctx->superscalar[0].v[1] +
61 ctx->superscalar[0].v[2] + ctx->superscalar[0].v[3];
62 B = 0 - ctx->superscalar[0].v[1] - 2 * ctx->superscalar[0].v[2] -
63 3 * ctx->superscalar[0].v[3] + 4 * ctx->superscalar[1].v[0] +
64 4 * ctx->superscalar[1].v[1] + 4 * ctx->superscalar[1].v[2] +
65 4 * ctx->superscalar[1].v[3];
66
67 C = ctx->superscalar[0].v[2] + 3 * ctx->superscalar[0].v[3] -
68 6 * ctx->superscalar[1].v[0] - 10 * ctx->superscalar[1].v[1] -
69 14 * ctx->superscalar[1].v[2] - 18 * ctx->superscalar[1].v[3] +
70 16 * ctx->superscalar[2].v[0] + 16 * ctx->superscalar[2].v[1] +
71 16 * ctx->superscalar[2].v[2] + 16 * ctx->superscalar[2].v[3];
72
73 D = 0 - ctx->superscalar[0].v[3] + 4 * ctx->superscalar[1].v[0] +
74 10 * ctx->superscalar[1].v[1] + 20 * ctx->superscalar[1].v[2] +
75 34 * ctx->superscalar[1].v[3] - 48 * ctx->superscalar[2].v[0] -
76 64 * ctx->superscalar[2].v[1] - 80 * ctx->superscalar[2].v[2] -
77 96 * ctx->superscalar[2].v[3] + 64 * ctx->superscalar[3].v[0] +
78 64 * ctx->superscalar[3].v[1] + 64 * ctx->superscalar[3].v[2] +
79 64 * ctx->superscalar[3].v[3];
80
81 ZIO_SET_CHECKSUM(zcp, A, B, C, D);
82 }
83
84 static void
85 fletcher_4_superscalar4_native(fletcher_4_ctx_t *ctx,
86 const void *buf, uint64_t size)
87 {
88 const uint32_t *ip = buf;
89 const uint32_t *ipend = ip + (size / sizeof (uint32_t));
90 uint64_t a, b, c, d;
91 uint64_t a2, b2, c2, d2;
92 uint64_t a3, b3, c3, d3;
93 uint64_t a4, b4, c4, d4;
94
95 a = ctx->superscalar[0].v[0];
96 b = ctx->superscalar[1].v[0];
97 c = ctx->superscalar[2].v[0];
98 d = ctx->superscalar[3].v[0];
99 a2 = ctx->superscalar[0].v[1];
100 b2 = ctx->superscalar[1].v[1];
101 c2 = ctx->superscalar[2].v[1];
102 d2 = ctx->superscalar[3].v[1];
103 a3 = ctx->superscalar[0].v[2];
104 b3 = ctx->superscalar[1].v[2];
105 c3 = ctx->superscalar[2].v[2];
106 d3 = ctx->superscalar[3].v[2];
107 a4 = ctx->superscalar[0].v[3];
108 b4 = ctx->superscalar[1].v[3];
109 c4 = ctx->superscalar[2].v[3];
110 d4 = ctx->superscalar[3].v[3];
111
112 for (; ip < ipend; ip += 4) {
113 a += ip[0];
114 a2 += ip[1];
115 a3 += ip[2];
116 a4 += ip[3];
117 b += a;
118 b2 += a2;
119 b3 += a3;
120 b4 += a4;
121 c += b;
122 c2 += b2;
123 c3 += b3;
124 c4 += b4;
125 d += c;
126 d2 += c2;
127 d3 += c3;
128 d4 += c4;
129 }
130
131 ctx->superscalar[0].v[0] = a;
132 ctx->superscalar[1].v[0] = b;
133 ctx->superscalar[2].v[0] = c;
134 ctx->superscalar[3].v[0] = d;
135 ctx->superscalar[0].v[1] = a2;
136 ctx->superscalar[1].v[1] = b2;
137 ctx->superscalar[2].v[1] = c2;
138 ctx->superscalar[3].v[1] = d2;
139 ctx->superscalar[0].v[2] = a3;
140 ctx->superscalar[1].v[2] = b3;
141 ctx->superscalar[2].v[2] = c3;
142 ctx->superscalar[3].v[2] = d3;
143 ctx->superscalar[0].v[3] = a4;
144 ctx->superscalar[1].v[3] = b4;
145 ctx->superscalar[2].v[3] = c4;
146 ctx->superscalar[3].v[3] = d4;
147 }
148
149 static void
150 fletcher_4_superscalar4_byteswap(fletcher_4_ctx_t *ctx,
151 const void *buf, uint64_t size)
152 {
153 const uint32_t *ip = buf;
154 const uint32_t *ipend = ip + (size / sizeof (uint32_t));
155 uint64_t a, b, c, d;
156 uint64_t a2, b2, c2, d2;
157 uint64_t a3, b3, c3, d3;
158 uint64_t a4, b4, c4, d4;
159
160 a = ctx->superscalar[0].v[0];
161 b = ctx->superscalar[1].v[0];
162 c = ctx->superscalar[2].v[0];
163 d = ctx->superscalar[3].v[0];
164 a2 = ctx->superscalar[0].v[1];
165 b2 = ctx->superscalar[1].v[1];
166 c2 = ctx->superscalar[2].v[1];
167 d2 = ctx->superscalar[3].v[1];
168 a3 = ctx->superscalar[0].v[2];
169 b3 = ctx->superscalar[1].v[2];
170 c3 = ctx->superscalar[2].v[2];
171 d3 = ctx->superscalar[3].v[2];
172 a4 = ctx->superscalar[0].v[3];
173 b4 = ctx->superscalar[1].v[3];
174 c4 = ctx->superscalar[2].v[3];
175 d4 = ctx->superscalar[3].v[3];
176
177 for (; ip < ipend; ip += 4) {
178 a += BSWAP_32(ip[0]);
179 a2 += BSWAP_32(ip[1]);
180 a3 += BSWAP_32(ip[2]);
181 a4 += BSWAP_32(ip[3]);
182 b += a;
183 b2 += a2;
184 b3 += a3;
185 b4 += a4;
186 c += b;
187 c2 += b2;
188 c3 += b3;
189 c4 += b4;
190 d += c;
191 d2 += c2;
192 d3 += c3;
193 d4 += c4;
194 }
195
196 ctx->superscalar[0].v[0] = a;
197 ctx->superscalar[1].v[0] = b;
198 ctx->superscalar[2].v[0] = c;
199 ctx->superscalar[3].v[0] = d;
200 ctx->superscalar[0].v[1] = a2;
201 ctx->superscalar[1].v[1] = b2;
202 ctx->superscalar[2].v[1] = c2;
203 ctx->superscalar[3].v[1] = d2;
204 ctx->superscalar[0].v[2] = a3;
205 ctx->superscalar[1].v[2] = b3;
206 ctx->superscalar[2].v[2] = c3;
207 ctx->superscalar[3].v[2] = d3;
208 ctx->superscalar[0].v[3] = a4;
209 ctx->superscalar[1].v[3] = b4;
210 ctx->superscalar[2].v[3] = c4;
211 ctx->superscalar[3].v[3] = d4;
212 }
213
214 static boolean_t fletcher_4_superscalar4_valid(void)
215 {
216 return (B_TRUE);
217 }
218
219 const fletcher_4_ops_t fletcher_4_superscalar4_ops = {
220 .init_native = fletcher_4_superscalar4_init,
221 .compute_native = fletcher_4_superscalar4_native,
222 .fini_native = fletcher_4_superscalar4_fini,
223 .init_byteswap = fletcher_4_superscalar4_init,
224 .compute_byteswap = fletcher_4_superscalar4_byteswap,
225 .fini_byteswap = fletcher_4_superscalar4_fini,
226 .valid = fletcher_4_superscalar4_valid,
227 .name = "superscalar4"
228 };