]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/arc.c
OpenZFS 7614, 9064 - zfs device evacuation/removal
[mirror_zfs.git] / module / zfs / arc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 /*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size. So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes). We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74 /*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
80 * uses method 1, while the internal ARC algorithms for
81 * adjusting the cache use method 2. We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * ARC list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each ARC state also has a mutex which is used to protect the
97 * buffer list associated with the state. When attempting to
98 * obtain a hash table lock while holding an ARC list lock you
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * It as also possible to register a callback which is run when the
103 * arc_meta_limit is reached and no buffers can be safely evicted. In
104 * this case the arc user should drop a reference on some arc buffers so
105 * they can be reclaimed and the arc_meta_limit honored. For example,
106 * when using the ZPL each dentry holds a references on a znode. These
107 * dentries must be pruned before the arc buffer holding the znode can
108 * be safely evicted.
109 *
110 * Note that the majority of the performance stats are manipulated
111 * with atomic operations.
112 *
113 * The L2ARC uses the l2ad_mtx on each vdev for the following:
114 *
115 * - L2ARC buflist creation
116 * - L2ARC buflist eviction
117 * - L2ARC write completion, which walks L2ARC buflists
118 * - ARC header destruction, as it removes from L2ARC buflists
119 * - ARC header release, as it removes from L2ARC buflists
120 */
121
122 /*
123 * ARC operation:
124 *
125 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
126 * This structure can point either to a block that is still in the cache or to
127 * one that is only accessible in an L2 ARC device, or it can provide
128 * information about a block that was recently evicted. If a block is
129 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
130 * information to retrieve it from the L2ARC device. This information is
131 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
132 * that is in this state cannot access the data directly.
133 *
134 * Blocks that are actively being referenced or have not been evicted
135 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
136 * the arc_buf_hdr_t that will point to the data block in memory. A block can
137 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
138 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
139 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
140 *
141 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
142 * ability to store the physical data (b_pabd) associated with the DVA of the
143 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
144 * it will match its on-disk compression characteristics. This behavior can be
145 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
146 * compressed ARC functionality is disabled, the b_pabd will point to an
147 * uncompressed version of the on-disk data.
148 *
149 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
150 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
151 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
152 * consumer. The ARC will provide references to this data and will keep it
153 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
154 * data block and will evict any arc_buf_t that is no longer referenced. The
155 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
156 * "overhead_size" kstat.
157 *
158 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
159 * compressed form. The typical case is that consumers will want uncompressed
160 * data, and when that happens a new data buffer is allocated where the data is
161 * decompressed for them to use. Currently the only consumer who wants
162 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
163 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
164 * with the arc_buf_hdr_t.
165 *
166 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
167 * first one is owned by a compressed send consumer (and therefore references
168 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
169 * used by any other consumer (and has its own uncompressed copy of the data
170 * buffer).
171 *
172 * arc_buf_hdr_t
173 * +-----------+
174 * | fields |
175 * | common to |
176 * | L1- and |
177 * | L2ARC |
178 * +-----------+
179 * | l2arc_buf_hdr_t
180 * | |
181 * +-----------+
182 * | l1arc_buf_hdr_t
183 * | | arc_buf_t
184 * | b_buf +------------>+-----------+ arc_buf_t
185 * | b_pabd +-+ |b_next +---->+-----------+
186 * +-----------+ | |-----------| |b_next +-->NULL
187 * | |b_comp = T | +-----------+
188 * | |b_data +-+ |b_comp = F |
189 * | +-----------+ | |b_data +-+
190 * +->+------+ | +-----------+ |
191 * compressed | | | |
192 * data | |<--------------+ | uncompressed
193 * +------+ compressed, | data
194 * shared +-->+------+
195 * data | |
196 * | |
197 * +------+
198 *
199 * When a consumer reads a block, the ARC must first look to see if the
200 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
201 * arc_buf_t and either copies uncompressed data into a new data buffer from an
202 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
203 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
204 * hdr is compressed and the desired compression characteristics of the
205 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
206 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
207 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
208 * be anywhere in the hdr's list.
209 *
210 * The diagram below shows an example of an uncompressed ARC hdr that is
211 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
212 * the last element in the buf list):
213 *
214 * arc_buf_hdr_t
215 * +-----------+
216 * | |
217 * | |
218 * | |
219 * +-----------+
220 * l2arc_buf_hdr_t| |
221 * | |
222 * +-----------+
223 * l1arc_buf_hdr_t| |
224 * | | arc_buf_t (shared)
225 * | b_buf +------------>+---------+ arc_buf_t
226 * | | |b_next +---->+---------+
227 * | b_pabd +-+ |---------| |b_next +-->NULL
228 * +-----------+ | | | +---------+
229 * | |b_data +-+ | |
230 * | +---------+ | |b_data +-+
231 * +->+------+ | +---------+ |
232 * | | | |
233 * uncompressed | | | |
234 * data +------+ | |
235 * ^ +->+------+ |
236 * | uncompressed | | |
237 * | data | | |
238 * | +------+ |
239 * +---------------------------------+
240 *
241 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
242 * since the physical block is about to be rewritten. The new data contents
243 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
244 * it may compress the data before writing it to disk. The ARC will be called
245 * with the transformed data and will bcopy the transformed on-disk block into
246 * a newly allocated b_pabd. Writes are always done into buffers which have
247 * either been loaned (and hence are new and don't have other readers) or
248 * buffers which have been released (and hence have their own hdr, if there
249 * were originally other readers of the buf's original hdr). This ensures that
250 * the ARC only needs to update a single buf and its hdr after a write occurs.
251 *
252 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
253 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
254 * that when compressed ARC is enabled that the L2ARC blocks are identical
255 * to the on-disk block in the main data pool. This provides a significant
256 * advantage since the ARC can leverage the bp's checksum when reading from the
257 * L2ARC to determine if the contents are valid. However, if the compressed
258 * ARC is disabled, then the L2ARC's block must be transformed to look
259 * like the physical block in the main data pool before comparing the
260 * checksum and determining its validity.
261 *
262 * The L1ARC has a slightly different system for storing encrypted data.
263 * Raw (encrypted + possibly compressed) data has a few subtle differences from
264 * data that is just compressed. The biggest difference is that it is not
265 * possible to decrypt encrypted data (or visa versa) if the keys aren't loaded.
266 * The other difference is that encryption cannot be treated as a suggestion.
267 * If a caller would prefer compressed data, but they actually wind up with
268 * uncompressed data the worst thing that could happen is there might be a
269 * performance hit. If the caller requests encrypted data, however, we must be
270 * sure they actually get it or else secret information could be leaked. Raw
271 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
272 * may have both an encrypted version and a decrypted version of its data at
273 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
274 * copied out of this header. To avoid complications with b_pabd, raw buffers
275 * cannot be shared.
276 */
277
278 #include <sys/spa.h>
279 #include <sys/zio.h>
280 #include <sys/spa_impl.h>
281 #include <sys/zio_compress.h>
282 #include <sys/zio_checksum.h>
283 #include <sys/zfs_context.h>
284 #include <sys/arc.h>
285 #include <sys/refcount.h>
286 #include <sys/vdev.h>
287 #include <sys/vdev_impl.h>
288 #include <sys/dsl_pool.h>
289 #include <sys/zio_checksum.h>
290 #include <sys/multilist.h>
291 #include <sys/abd.h>
292 #include <sys/zil.h>
293 #include <sys/fm/fs/zfs.h>
294 #ifdef _KERNEL
295 #include <sys/vmsystm.h>
296 #include <vm/anon.h>
297 #include <sys/fs/swapnode.h>
298 #include <sys/zpl.h>
299 #include <linux/mm_compat.h>
300 #include <linux/page_compat.h>
301 #endif
302 #include <sys/callb.h>
303 #include <sys/kstat.h>
304 #include <sys/dmu_tx.h>
305 #include <zfs_fletcher.h>
306 #include <sys/arc_impl.h>
307 #include <sys/trace_arc.h>
308
309 #ifndef _KERNEL
310 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
311 boolean_t arc_watch = B_FALSE;
312 #endif
313
314 static kmutex_t arc_reclaim_lock;
315 static kcondvar_t arc_reclaim_thread_cv;
316 static boolean_t arc_reclaim_thread_exit;
317 static kcondvar_t arc_reclaim_waiters_cv;
318
319 /*
320 * The number of headers to evict in arc_evict_state_impl() before
321 * dropping the sublist lock and evicting from another sublist. A lower
322 * value means we're more likely to evict the "correct" header (i.e. the
323 * oldest header in the arc state), but comes with higher overhead
324 * (i.e. more invocations of arc_evict_state_impl()).
325 */
326 int zfs_arc_evict_batch_limit = 10;
327
328 /* number of seconds before growing cache again */
329 static int arc_grow_retry = 5;
330
331 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
332 int zfs_arc_overflow_shift = 8;
333
334 /* shift of arc_c for calculating both min and max arc_p */
335 static int arc_p_min_shift = 4;
336
337 /* log2(fraction of arc to reclaim) */
338 static int arc_shrink_shift = 7;
339
340 /* percent of pagecache to reclaim arc to */
341 #ifdef _KERNEL
342 static uint_t zfs_arc_pc_percent = 0;
343 #endif
344
345 /*
346 * log2(fraction of ARC which must be free to allow growing).
347 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
348 * when reading a new block into the ARC, we will evict an equal-sized block
349 * from the ARC.
350 *
351 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
352 * we will still not allow it to grow.
353 */
354 int arc_no_grow_shift = 5;
355
356
357 /*
358 * minimum lifespan of a prefetch block in clock ticks
359 * (initialized in arc_init())
360 */
361 static int arc_min_prefetch_ms;
362 static int arc_min_prescient_prefetch_ms;
363
364 /*
365 * If this percent of memory is free, don't throttle.
366 */
367 int arc_lotsfree_percent = 10;
368
369 static int arc_dead;
370
371 /*
372 * The arc has filled available memory and has now warmed up.
373 */
374 static boolean_t arc_warm;
375
376 /*
377 * log2 fraction of the zio arena to keep free.
378 */
379 int arc_zio_arena_free_shift = 2;
380
381 /*
382 * These tunables are for performance analysis.
383 */
384 unsigned long zfs_arc_max = 0;
385 unsigned long zfs_arc_min = 0;
386 unsigned long zfs_arc_meta_limit = 0;
387 unsigned long zfs_arc_meta_min = 0;
388 unsigned long zfs_arc_dnode_limit = 0;
389 unsigned long zfs_arc_dnode_reduce_percent = 10;
390 int zfs_arc_grow_retry = 0;
391 int zfs_arc_shrink_shift = 0;
392 int zfs_arc_p_min_shift = 0;
393 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
394
395 int zfs_compressed_arc_enabled = B_TRUE;
396
397 /*
398 * ARC will evict meta buffers that exceed arc_meta_limit. This
399 * tunable make arc_meta_limit adjustable for different workloads.
400 */
401 unsigned long zfs_arc_meta_limit_percent = 75;
402
403 /*
404 * Percentage that can be consumed by dnodes of ARC meta buffers.
405 */
406 unsigned long zfs_arc_dnode_limit_percent = 10;
407
408 /*
409 * These tunables are Linux specific
410 */
411 unsigned long zfs_arc_sys_free = 0;
412 int zfs_arc_min_prefetch_ms = 0;
413 int zfs_arc_min_prescient_prefetch_ms = 0;
414 int zfs_arc_p_dampener_disable = 1;
415 int zfs_arc_meta_prune = 10000;
416 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
417 int zfs_arc_meta_adjust_restarts = 4096;
418 int zfs_arc_lotsfree_percent = 10;
419
420 /* The 6 states: */
421 static arc_state_t ARC_anon;
422 static arc_state_t ARC_mru;
423 static arc_state_t ARC_mru_ghost;
424 static arc_state_t ARC_mfu;
425 static arc_state_t ARC_mfu_ghost;
426 static arc_state_t ARC_l2c_only;
427
428 typedef struct arc_stats {
429 kstat_named_t arcstat_hits;
430 kstat_named_t arcstat_misses;
431 kstat_named_t arcstat_demand_data_hits;
432 kstat_named_t arcstat_demand_data_misses;
433 kstat_named_t arcstat_demand_metadata_hits;
434 kstat_named_t arcstat_demand_metadata_misses;
435 kstat_named_t arcstat_prefetch_data_hits;
436 kstat_named_t arcstat_prefetch_data_misses;
437 kstat_named_t arcstat_prefetch_metadata_hits;
438 kstat_named_t arcstat_prefetch_metadata_misses;
439 kstat_named_t arcstat_mru_hits;
440 kstat_named_t arcstat_mru_ghost_hits;
441 kstat_named_t arcstat_mfu_hits;
442 kstat_named_t arcstat_mfu_ghost_hits;
443 kstat_named_t arcstat_deleted;
444 /*
445 * Number of buffers that could not be evicted because the hash lock
446 * was held by another thread. The lock may not necessarily be held
447 * by something using the same buffer, since hash locks are shared
448 * by multiple buffers.
449 */
450 kstat_named_t arcstat_mutex_miss;
451 /*
452 * Number of buffers skipped when updating the access state due to the
453 * header having already been released after acquiring the hash lock.
454 */
455 kstat_named_t arcstat_access_skip;
456 /*
457 * Number of buffers skipped because they have I/O in progress, are
458 * indirect prefetch buffers that have not lived long enough, or are
459 * not from the spa we're trying to evict from.
460 */
461 kstat_named_t arcstat_evict_skip;
462 /*
463 * Number of times arc_evict_state() was unable to evict enough
464 * buffers to reach its target amount.
465 */
466 kstat_named_t arcstat_evict_not_enough;
467 kstat_named_t arcstat_evict_l2_cached;
468 kstat_named_t arcstat_evict_l2_eligible;
469 kstat_named_t arcstat_evict_l2_ineligible;
470 kstat_named_t arcstat_evict_l2_skip;
471 kstat_named_t arcstat_hash_elements;
472 kstat_named_t arcstat_hash_elements_max;
473 kstat_named_t arcstat_hash_collisions;
474 kstat_named_t arcstat_hash_chains;
475 kstat_named_t arcstat_hash_chain_max;
476 kstat_named_t arcstat_p;
477 kstat_named_t arcstat_c;
478 kstat_named_t arcstat_c_min;
479 kstat_named_t arcstat_c_max;
480 kstat_named_t arcstat_size;
481 /*
482 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
483 * Note that the compressed bytes may match the uncompressed bytes
484 * if the block is either not compressed or compressed arc is disabled.
485 */
486 kstat_named_t arcstat_compressed_size;
487 /*
488 * Uncompressed size of the data stored in b_pabd. If compressed
489 * arc is disabled then this value will be identical to the stat
490 * above.
491 */
492 kstat_named_t arcstat_uncompressed_size;
493 /*
494 * Number of bytes stored in all the arc_buf_t's. This is classified
495 * as "overhead" since this data is typically short-lived and will
496 * be evicted from the arc when it becomes unreferenced unless the
497 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
498 * values have been set (see comment in dbuf.c for more information).
499 */
500 kstat_named_t arcstat_overhead_size;
501 /*
502 * Number of bytes consumed by internal ARC structures necessary
503 * for tracking purposes; these structures are not actually
504 * backed by ARC buffers. This includes arc_buf_hdr_t structures
505 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
506 * caches), and arc_buf_t structures (allocated via arc_buf_t
507 * cache).
508 */
509 kstat_named_t arcstat_hdr_size;
510 /*
511 * Number of bytes consumed by ARC buffers of type equal to
512 * ARC_BUFC_DATA. This is generally consumed by buffers backing
513 * on disk user data (e.g. plain file contents).
514 */
515 kstat_named_t arcstat_data_size;
516 /*
517 * Number of bytes consumed by ARC buffers of type equal to
518 * ARC_BUFC_METADATA. This is generally consumed by buffers
519 * backing on disk data that is used for internal ZFS
520 * structures (e.g. ZAP, dnode, indirect blocks, etc).
521 */
522 kstat_named_t arcstat_metadata_size;
523 /*
524 * Number of bytes consumed by dmu_buf_impl_t objects.
525 */
526 kstat_named_t arcstat_dbuf_size;
527 /*
528 * Number of bytes consumed by dnode_t objects.
529 */
530 kstat_named_t arcstat_dnode_size;
531 /*
532 * Number of bytes consumed by bonus buffers.
533 */
534 kstat_named_t arcstat_bonus_size;
535 /*
536 * Total number of bytes consumed by ARC buffers residing in the
537 * arc_anon state. This includes *all* buffers in the arc_anon
538 * state; e.g. data, metadata, evictable, and unevictable buffers
539 * are all included in this value.
540 */
541 kstat_named_t arcstat_anon_size;
542 /*
543 * Number of bytes consumed by ARC buffers that meet the
544 * following criteria: backing buffers of type ARC_BUFC_DATA,
545 * residing in the arc_anon state, and are eligible for eviction
546 * (e.g. have no outstanding holds on the buffer).
547 */
548 kstat_named_t arcstat_anon_evictable_data;
549 /*
550 * Number of bytes consumed by ARC buffers that meet the
551 * following criteria: backing buffers of type ARC_BUFC_METADATA,
552 * residing in the arc_anon state, and are eligible for eviction
553 * (e.g. have no outstanding holds on the buffer).
554 */
555 kstat_named_t arcstat_anon_evictable_metadata;
556 /*
557 * Total number of bytes consumed by ARC buffers residing in the
558 * arc_mru state. This includes *all* buffers in the arc_mru
559 * state; e.g. data, metadata, evictable, and unevictable buffers
560 * are all included in this value.
561 */
562 kstat_named_t arcstat_mru_size;
563 /*
564 * Number of bytes consumed by ARC buffers that meet the
565 * following criteria: backing buffers of type ARC_BUFC_DATA,
566 * residing in the arc_mru state, and are eligible for eviction
567 * (e.g. have no outstanding holds on the buffer).
568 */
569 kstat_named_t arcstat_mru_evictable_data;
570 /*
571 * Number of bytes consumed by ARC buffers that meet the
572 * following criteria: backing buffers of type ARC_BUFC_METADATA,
573 * residing in the arc_mru state, and are eligible for eviction
574 * (e.g. have no outstanding holds on the buffer).
575 */
576 kstat_named_t arcstat_mru_evictable_metadata;
577 /*
578 * Total number of bytes that *would have been* consumed by ARC
579 * buffers in the arc_mru_ghost state. The key thing to note
580 * here, is the fact that this size doesn't actually indicate
581 * RAM consumption. The ghost lists only consist of headers and
582 * don't actually have ARC buffers linked off of these headers.
583 * Thus, *if* the headers had associated ARC buffers, these
584 * buffers *would have* consumed this number of bytes.
585 */
586 kstat_named_t arcstat_mru_ghost_size;
587 /*
588 * Number of bytes that *would have been* consumed by ARC
589 * buffers that are eligible for eviction, of type
590 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
591 */
592 kstat_named_t arcstat_mru_ghost_evictable_data;
593 /*
594 * Number of bytes that *would have been* consumed by ARC
595 * buffers that are eligible for eviction, of type
596 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
597 */
598 kstat_named_t arcstat_mru_ghost_evictable_metadata;
599 /*
600 * Total number of bytes consumed by ARC buffers residing in the
601 * arc_mfu state. This includes *all* buffers in the arc_mfu
602 * state; e.g. data, metadata, evictable, and unevictable buffers
603 * are all included in this value.
604 */
605 kstat_named_t arcstat_mfu_size;
606 /*
607 * Number of bytes consumed by ARC buffers that are eligible for
608 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
609 * state.
610 */
611 kstat_named_t arcstat_mfu_evictable_data;
612 /*
613 * Number of bytes consumed by ARC buffers that are eligible for
614 * eviction, of type ARC_BUFC_METADATA, and reside in the
615 * arc_mfu state.
616 */
617 kstat_named_t arcstat_mfu_evictable_metadata;
618 /*
619 * Total number of bytes that *would have been* consumed by ARC
620 * buffers in the arc_mfu_ghost state. See the comment above
621 * arcstat_mru_ghost_size for more details.
622 */
623 kstat_named_t arcstat_mfu_ghost_size;
624 /*
625 * Number of bytes that *would have been* consumed by ARC
626 * buffers that are eligible for eviction, of type
627 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
628 */
629 kstat_named_t arcstat_mfu_ghost_evictable_data;
630 /*
631 * Number of bytes that *would have been* consumed by ARC
632 * buffers that are eligible for eviction, of type
633 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
634 */
635 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
636 kstat_named_t arcstat_l2_hits;
637 kstat_named_t arcstat_l2_misses;
638 kstat_named_t arcstat_l2_feeds;
639 kstat_named_t arcstat_l2_rw_clash;
640 kstat_named_t arcstat_l2_read_bytes;
641 kstat_named_t arcstat_l2_write_bytes;
642 kstat_named_t arcstat_l2_writes_sent;
643 kstat_named_t arcstat_l2_writes_done;
644 kstat_named_t arcstat_l2_writes_error;
645 kstat_named_t arcstat_l2_writes_lock_retry;
646 kstat_named_t arcstat_l2_evict_lock_retry;
647 kstat_named_t arcstat_l2_evict_reading;
648 kstat_named_t arcstat_l2_evict_l1cached;
649 kstat_named_t arcstat_l2_free_on_write;
650 kstat_named_t arcstat_l2_abort_lowmem;
651 kstat_named_t arcstat_l2_cksum_bad;
652 kstat_named_t arcstat_l2_io_error;
653 kstat_named_t arcstat_l2_lsize;
654 kstat_named_t arcstat_l2_psize;
655 kstat_named_t arcstat_l2_hdr_size;
656 kstat_named_t arcstat_memory_throttle_count;
657 kstat_named_t arcstat_memory_direct_count;
658 kstat_named_t arcstat_memory_indirect_count;
659 kstat_named_t arcstat_memory_all_bytes;
660 kstat_named_t arcstat_memory_free_bytes;
661 kstat_named_t arcstat_memory_available_bytes;
662 kstat_named_t arcstat_no_grow;
663 kstat_named_t arcstat_tempreserve;
664 kstat_named_t arcstat_loaned_bytes;
665 kstat_named_t arcstat_prune;
666 kstat_named_t arcstat_meta_used;
667 kstat_named_t arcstat_meta_limit;
668 kstat_named_t arcstat_dnode_limit;
669 kstat_named_t arcstat_meta_max;
670 kstat_named_t arcstat_meta_min;
671 kstat_named_t arcstat_async_upgrade_sync;
672 kstat_named_t arcstat_demand_hit_predictive_prefetch;
673 kstat_named_t arcstat_demand_hit_prescient_prefetch;
674 kstat_named_t arcstat_need_free;
675 kstat_named_t arcstat_sys_free;
676 kstat_named_t arcstat_raw_size;
677 } arc_stats_t;
678
679 static arc_stats_t arc_stats = {
680 { "hits", KSTAT_DATA_UINT64 },
681 { "misses", KSTAT_DATA_UINT64 },
682 { "demand_data_hits", KSTAT_DATA_UINT64 },
683 { "demand_data_misses", KSTAT_DATA_UINT64 },
684 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
685 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
686 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
687 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
688 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
689 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
690 { "mru_hits", KSTAT_DATA_UINT64 },
691 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
692 { "mfu_hits", KSTAT_DATA_UINT64 },
693 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
694 { "deleted", KSTAT_DATA_UINT64 },
695 { "mutex_miss", KSTAT_DATA_UINT64 },
696 { "access_skip", KSTAT_DATA_UINT64 },
697 { "evict_skip", KSTAT_DATA_UINT64 },
698 { "evict_not_enough", KSTAT_DATA_UINT64 },
699 { "evict_l2_cached", KSTAT_DATA_UINT64 },
700 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
701 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
702 { "evict_l2_skip", KSTAT_DATA_UINT64 },
703 { "hash_elements", KSTAT_DATA_UINT64 },
704 { "hash_elements_max", KSTAT_DATA_UINT64 },
705 { "hash_collisions", KSTAT_DATA_UINT64 },
706 { "hash_chains", KSTAT_DATA_UINT64 },
707 { "hash_chain_max", KSTAT_DATA_UINT64 },
708 { "p", KSTAT_DATA_UINT64 },
709 { "c", KSTAT_DATA_UINT64 },
710 { "c_min", KSTAT_DATA_UINT64 },
711 { "c_max", KSTAT_DATA_UINT64 },
712 { "size", KSTAT_DATA_UINT64 },
713 { "compressed_size", KSTAT_DATA_UINT64 },
714 { "uncompressed_size", KSTAT_DATA_UINT64 },
715 { "overhead_size", KSTAT_DATA_UINT64 },
716 { "hdr_size", KSTAT_DATA_UINT64 },
717 { "data_size", KSTAT_DATA_UINT64 },
718 { "metadata_size", KSTAT_DATA_UINT64 },
719 { "dbuf_size", KSTAT_DATA_UINT64 },
720 { "dnode_size", KSTAT_DATA_UINT64 },
721 { "bonus_size", KSTAT_DATA_UINT64 },
722 { "anon_size", KSTAT_DATA_UINT64 },
723 { "anon_evictable_data", KSTAT_DATA_UINT64 },
724 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
725 { "mru_size", KSTAT_DATA_UINT64 },
726 { "mru_evictable_data", KSTAT_DATA_UINT64 },
727 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
728 { "mru_ghost_size", KSTAT_DATA_UINT64 },
729 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
730 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
731 { "mfu_size", KSTAT_DATA_UINT64 },
732 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
733 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
734 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
735 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
736 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
737 { "l2_hits", KSTAT_DATA_UINT64 },
738 { "l2_misses", KSTAT_DATA_UINT64 },
739 { "l2_feeds", KSTAT_DATA_UINT64 },
740 { "l2_rw_clash", KSTAT_DATA_UINT64 },
741 { "l2_read_bytes", KSTAT_DATA_UINT64 },
742 { "l2_write_bytes", KSTAT_DATA_UINT64 },
743 { "l2_writes_sent", KSTAT_DATA_UINT64 },
744 { "l2_writes_done", KSTAT_DATA_UINT64 },
745 { "l2_writes_error", KSTAT_DATA_UINT64 },
746 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
747 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
748 { "l2_evict_reading", KSTAT_DATA_UINT64 },
749 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
750 { "l2_free_on_write", KSTAT_DATA_UINT64 },
751 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
752 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
753 { "l2_io_error", KSTAT_DATA_UINT64 },
754 { "l2_size", KSTAT_DATA_UINT64 },
755 { "l2_asize", KSTAT_DATA_UINT64 },
756 { "l2_hdr_size", KSTAT_DATA_UINT64 },
757 { "memory_throttle_count", KSTAT_DATA_UINT64 },
758 { "memory_direct_count", KSTAT_DATA_UINT64 },
759 { "memory_indirect_count", KSTAT_DATA_UINT64 },
760 { "memory_all_bytes", KSTAT_DATA_UINT64 },
761 { "memory_free_bytes", KSTAT_DATA_UINT64 },
762 { "memory_available_bytes", KSTAT_DATA_INT64 },
763 { "arc_no_grow", KSTAT_DATA_UINT64 },
764 { "arc_tempreserve", KSTAT_DATA_UINT64 },
765 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
766 { "arc_prune", KSTAT_DATA_UINT64 },
767 { "arc_meta_used", KSTAT_DATA_UINT64 },
768 { "arc_meta_limit", KSTAT_DATA_UINT64 },
769 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
770 { "arc_meta_max", KSTAT_DATA_UINT64 },
771 { "arc_meta_min", KSTAT_DATA_UINT64 },
772 { "async_upgrade_sync", KSTAT_DATA_UINT64 },
773 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
774 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
775 { "arc_need_free", KSTAT_DATA_UINT64 },
776 { "arc_sys_free", KSTAT_DATA_UINT64 },
777 { "arc_raw_size", KSTAT_DATA_UINT64 }
778 };
779
780 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
781
782 #define ARCSTAT_INCR(stat, val) \
783 atomic_add_64(&arc_stats.stat.value.ui64, (val))
784
785 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
786 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
787
788 #define ARCSTAT_MAX(stat, val) { \
789 uint64_t m; \
790 while ((val) > (m = arc_stats.stat.value.ui64) && \
791 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
792 continue; \
793 }
794
795 #define ARCSTAT_MAXSTAT(stat) \
796 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
797
798 /*
799 * We define a macro to allow ARC hits/misses to be easily broken down by
800 * two separate conditions, giving a total of four different subtypes for
801 * each of hits and misses (so eight statistics total).
802 */
803 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
804 if (cond1) { \
805 if (cond2) { \
806 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
807 } else { \
808 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
809 } \
810 } else { \
811 if (cond2) { \
812 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
813 } else { \
814 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
815 } \
816 }
817
818 kstat_t *arc_ksp;
819 static arc_state_t *arc_anon;
820 static arc_state_t *arc_mru;
821 static arc_state_t *arc_mru_ghost;
822 static arc_state_t *arc_mfu;
823 static arc_state_t *arc_mfu_ghost;
824 static arc_state_t *arc_l2c_only;
825
826 /*
827 * There are several ARC variables that are critical to export as kstats --
828 * but we don't want to have to grovel around in the kstat whenever we wish to
829 * manipulate them. For these variables, we therefore define them to be in
830 * terms of the statistic variable. This assures that we are not introducing
831 * the possibility of inconsistency by having shadow copies of the variables,
832 * while still allowing the code to be readable.
833 */
834 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
835 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
836 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
837 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
838 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
839 #define arc_no_grow ARCSTAT(arcstat_no_grow) /* do not grow cache size */
840 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
841 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
842 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
843 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
844 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
845 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
846 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
847 #define arc_dbuf_size ARCSTAT(arcstat_dbuf_size) /* dbuf metadata */
848 #define arc_dnode_size ARCSTAT(arcstat_dnode_size) /* dnode metadata */
849 #define arc_bonus_size ARCSTAT(arcstat_bonus_size) /* bonus buffer metadata */
850 #define arc_need_free ARCSTAT(arcstat_need_free) /* bytes to be freed */
851 #define arc_sys_free ARCSTAT(arcstat_sys_free) /* target system free bytes */
852
853 /* size of all b_rabd's in entire arc */
854 #define arc_raw_size ARCSTAT(arcstat_raw_size)
855 /* compressed size of entire arc */
856 #define arc_compressed_size ARCSTAT(arcstat_compressed_size)
857 /* uncompressed size of entire arc */
858 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size)
859 /* number of bytes in the arc from arc_buf_t's */
860 #define arc_overhead_size ARCSTAT(arcstat_overhead_size)
861
862 static list_t arc_prune_list;
863 static kmutex_t arc_prune_mtx;
864 static taskq_t *arc_prune_taskq;
865
866 #define GHOST_STATE(state) \
867 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
868 (state) == arc_l2c_only)
869
870 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
871 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
872 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
873 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
874 #define HDR_PRESCIENT_PREFETCH(hdr) \
875 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
876 #define HDR_COMPRESSION_ENABLED(hdr) \
877 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
878
879 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
880 #define HDR_L2_READING(hdr) \
881 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
882 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
883 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
884 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
885 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
886 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
887 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
888 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
889
890 #define HDR_ISTYPE_METADATA(hdr) \
891 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
892 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
893
894 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
895 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
896 #define HDR_HAS_RABD(hdr) \
897 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
898 (hdr)->b_crypt_hdr.b_rabd != NULL)
899 #define HDR_ENCRYPTED(hdr) \
900 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
901 #define HDR_AUTHENTICATED(hdr) \
902 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
903
904 /* For storing compression mode in b_flags */
905 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
906
907 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
908 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
909 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
910 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
911
912 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
913 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
914 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
915 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
916
917 /*
918 * Other sizes
919 */
920
921 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
922 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
923 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
924
925 /*
926 * Hash table routines
927 */
928
929 #define HT_LOCK_ALIGN 64
930 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
931
932 struct ht_lock {
933 kmutex_t ht_lock;
934 #ifdef _KERNEL
935 unsigned char pad[HT_LOCK_PAD];
936 #endif
937 };
938
939 #define BUF_LOCKS 8192
940 typedef struct buf_hash_table {
941 uint64_t ht_mask;
942 arc_buf_hdr_t **ht_table;
943 struct ht_lock ht_locks[BUF_LOCKS];
944 } buf_hash_table_t;
945
946 static buf_hash_table_t buf_hash_table;
947
948 #define BUF_HASH_INDEX(spa, dva, birth) \
949 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
950 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
951 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
952 #define HDR_LOCK(hdr) \
953 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
954
955 uint64_t zfs_crc64_table[256];
956
957 /*
958 * Level 2 ARC
959 */
960
961 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
962 #define L2ARC_HEADROOM 2 /* num of writes */
963
964 /*
965 * If we discover during ARC scan any buffers to be compressed, we boost
966 * our headroom for the next scanning cycle by this percentage multiple.
967 */
968 #define L2ARC_HEADROOM_BOOST 200
969 #define L2ARC_FEED_SECS 1 /* caching interval secs */
970 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
971
972 /*
973 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
974 * and each of the state has two types: data and metadata.
975 */
976 #define L2ARC_FEED_TYPES 4
977
978 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
979 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
980
981 /* L2ARC Performance Tunables */
982 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
983 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
984 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
985 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
986 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
987 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
988 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
989 int l2arc_feed_again = B_TRUE; /* turbo warmup */
990 int l2arc_norw = B_FALSE; /* no reads during writes */
991
992 /*
993 * L2ARC Internals
994 */
995 static list_t L2ARC_dev_list; /* device list */
996 static list_t *l2arc_dev_list; /* device list pointer */
997 static kmutex_t l2arc_dev_mtx; /* device list mutex */
998 static l2arc_dev_t *l2arc_dev_last; /* last device used */
999 static list_t L2ARC_free_on_write; /* free after write buf list */
1000 static list_t *l2arc_free_on_write; /* free after write list ptr */
1001 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
1002 static uint64_t l2arc_ndev; /* number of devices */
1003
1004 typedef struct l2arc_read_callback {
1005 arc_buf_hdr_t *l2rcb_hdr; /* read header */
1006 blkptr_t l2rcb_bp; /* original blkptr */
1007 zbookmark_phys_t l2rcb_zb; /* original bookmark */
1008 int l2rcb_flags; /* original flags */
1009 abd_t *l2rcb_abd; /* temporary buffer */
1010 } l2arc_read_callback_t;
1011
1012 typedef struct l2arc_data_free {
1013 /* protected by l2arc_free_on_write_mtx */
1014 abd_t *l2df_abd;
1015 size_t l2df_size;
1016 arc_buf_contents_t l2df_type;
1017 list_node_t l2df_list_node;
1018 } l2arc_data_free_t;
1019
1020 typedef enum arc_fill_flags {
1021 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */
1022 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */
1023 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */
1024 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */
1025 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */
1026 } arc_fill_flags_t;
1027
1028 static kmutex_t l2arc_feed_thr_lock;
1029 static kcondvar_t l2arc_feed_thr_cv;
1030 static uint8_t l2arc_thread_exit;
1031
1032 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
1033 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1034 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
1035 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
1036 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1037 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
1038 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
1039 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, boolean_t);
1040 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1041 static boolean_t arc_is_overflowing(void);
1042 static void arc_buf_watch(arc_buf_t *);
1043 static void arc_tuning_update(void);
1044 static void arc_prune_async(int64_t);
1045 static uint64_t arc_all_memory(void);
1046
1047 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1048 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1049 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1050 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1051
1052 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1053 static void l2arc_read_done(zio_t *);
1054
1055 static uint64_t
1056 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1057 {
1058 uint8_t *vdva = (uint8_t *)dva;
1059 uint64_t crc = -1ULL;
1060 int i;
1061
1062 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1063
1064 for (i = 0; i < sizeof (dva_t); i++)
1065 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1066
1067 crc ^= (spa>>8) ^ birth;
1068
1069 return (crc);
1070 }
1071
1072 #define HDR_EMPTY(hdr) \
1073 ((hdr)->b_dva.dva_word[0] == 0 && \
1074 (hdr)->b_dva.dva_word[1] == 0)
1075
1076 #define HDR_EQUAL(spa, dva, birth, hdr) \
1077 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1078 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1079 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1080
1081 static void
1082 buf_discard_identity(arc_buf_hdr_t *hdr)
1083 {
1084 hdr->b_dva.dva_word[0] = 0;
1085 hdr->b_dva.dva_word[1] = 0;
1086 hdr->b_birth = 0;
1087 }
1088
1089 static arc_buf_hdr_t *
1090 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1091 {
1092 const dva_t *dva = BP_IDENTITY(bp);
1093 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1094 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1095 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1096 arc_buf_hdr_t *hdr;
1097
1098 mutex_enter(hash_lock);
1099 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1100 hdr = hdr->b_hash_next) {
1101 if (HDR_EQUAL(spa, dva, birth, hdr)) {
1102 *lockp = hash_lock;
1103 return (hdr);
1104 }
1105 }
1106 mutex_exit(hash_lock);
1107 *lockp = NULL;
1108 return (NULL);
1109 }
1110
1111 /*
1112 * Insert an entry into the hash table. If there is already an element
1113 * equal to elem in the hash table, then the already existing element
1114 * will be returned and the new element will not be inserted.
1115 * Otherwise returns NULL.
1116 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1117 */
1118 static arc_buf_hdr_t *
1119 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1120 {
1121 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1122 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1123 arc_buf_hdr_t *fhdr;
1124 uint32_t i;
1125
1126 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1127 ASSERT(hdr->b_birth != 0);
1128 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1129
1130 if (lockp != NULL) {
1131 *lockp = hash_lock;
1132 mutex_enter(hash_lock);
1133 } else {
1134 ASSERT(MUTEX_HELD(hash_lock));
1135 }
1136
1137 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1138 fhdr = fhdr->b_hash_next, i++) {
1139 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1140 return (fhdr);
1141 }
1142
1143 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1144 buf_hash_table.ht_table[idx] = hdr;
1145 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1146
1147 /* collect some hash table performance data */
1148 if (i > 0) {
1149 ARCSTAT_BUMP(arcstat_hash_collisions);
1150 if (i == 1)
1151 ARCSTAT_BUMP(arcstat_hash_chains);
1152
1153 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1154 }
1155
1156 ARCSTAT_BUMP(arcstat_hash_elements);
1157 ARCSTAT_MAXSTAT(arcstat_hash_elements);
1158
1159 return (NULL);
1160 }
1161
1162 static void
1163 buf_hash_remove(arc_buf_hdr_t *hdr)
1164 {
1165 arc_buf_hdr_t *fhdr, **hdrp;
1166 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1167
1168 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1169 ASSERT(HDR_IN_HASH_TABLE(hdr));
1170
1171 hdrp = &buf_hash_table.ht_table[idx];
1172 while ((fhdr = *hdrp) != hdr) {
1173 ASSERT3P(fhdr, !=, NULL);
1174 hdrp = &fhdr->b_hash_next;
1175 }
1176 *hdrp = hdr->b_hash_next;
1177 hdr->b_hash_next = NULL;
1178 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1179
1180 /* collect some hash table performance data */
1181 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1182
1183 if (buf_hash_table.ht_table[idx] &&
1184 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1185 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1186 }
1187
1188 /*
1189 * Global data structures and functions for the buf kmem cache.
1190 */
1191
1192 static kmem_cache_t *hdr_full_cache;
1193 static kmem_cache_t *hdr_full_crypt_cache;
1194 static kmem_cache_t *hdr_l2only_cache;
1195 static kmem_cache_t *buf_cache;
1196
1197 static void
1198 buf_fini(void)
1199 {
1200 int i;
1201
1202 #if defined(_KERNEL) && defined(HAVE_SPL)
1203 /*
1204 * Large allocations which do not require contiguous pages
1205 * should be using vmem_free() in the linux kernel\
1206 */
1207 vmem_free(buf_hash_table.ht_table,
1208 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1209 #else
1210 kmem_free(buf_hash_table.ht_table,
1211 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1212 #endif
1213 for (i = 0; i < BUF_LOCKS; i++)
1214 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1215 kmem_cache_destroy(hdr_full_cache);
1216 kmem_cache_destroy(hdr_full_crypt_cache);
1217 kmem_cache_destroy(hdr_l2only_cache);
1218 kmem_cache_destroy(buf_cache);
1219 }
1220
1221 /*
1222 * Constructor callback - called when the cache is empty
1223 * and a new buf is requested.
1224 */
1225 /* ARGSUSED */
1226 static int
1227 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1228 {
1229 arc_buf_hdr_t *hdr = vbuf;
1230
1231 bzero(hdr, HDR_FULL_SIZE);
1232 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1233 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1234 refcount_create(&hdr->b_l1hdr.b_refcnt);
1235 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1236 list_link_init(&hdr->b_l1hdr.b_arc_node);
1237 list_link_init(&hdr->b_l2hdr.b_l2node);
1238 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1239 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1240
1241 return (0);
1242 }
1243
1244 /* ARGSUSED */
1245 static int
1246 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag)
1247 {
1248 arc_buf_hdr_t *hdr = vbuf;
1249
1250 hdr_full_cons(vbuf, unused, kmflag);
1251 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr));
1252 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1253
1254 return (0);
1255 }
1256
1257 /* ARGSUSED */
1258 static int
1259 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1260 {
1261 arc_buf_hdr_t *hdr = vbuf;
1262
1263 bzero(hdr, HDR_L2ONLY_SIZE);
1264 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1265
1266 return (0);
1267 }
1268
1269 /* ARGSUSED */
1270 static int
1271 buf_cons(void *vbuf, void *unused, int kmflag)
1272 {
1273 arc_buf_t *buf = vbuf;
1274
1275 bzero(buf, sizeof (arc_buf_t));
1276 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1277 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1278
1279 return (0);
1280 }
1281
1282 /*
1283 * Destructor callback - called when a cached buf is
1284 * no longer required.
1285 */
1286 /* ARGSUSED */
1287 static void
1288 hdr_full_dest(void *vbuf, void *unused)
1289 {
1290 arc_buf_hdr_t *hdr = vbuf;
1291
1292 ASSERT(HDR_EMPTY(hdr));
1293 cv_destroy(&hdr->b_l1hdr.b_cv);
1294 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1295 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1296 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1297 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1298 }
1299
1300 /* ARGSUSED */
1301 static void
1302 hdr_full_crypt_dest(void *vbuf, void *unused)
1303 {
1304 arc_buf_hdr_t *hdr = vbuf;
1305
1306 hdr_full_dest(vbuf, unused);
1307 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1308 }
1309
1310 /* ARGSUSED */
1311 static void
1312 hdr_l2only_dest(void *vbuf, void *unused)
1313 {
1314 ASSERTV(arc_buf_hdr_t *hdr = vbuf);
1315
1316 ASSERT(HDR_EMPTY(hdr));
1317 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1318 }
1319
1320 /* ARGSUSED */
1321 static void
1322 buf_dest(void *vbuf, void *unused)
1323 {
1324 arc_buf_t *buf = vbuf;
1325
1326 mutex_destroy(&buf->b_evict_lock);
1327 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1328 }
1329
1330 /*
1331 * Reclaim callback -- invoked when memory is low.
1332 */
1333 /* ARGSUSED */
1334 static void
1335 hdr_recl(void *unused)
1336 {
1337 dprintf("hdr_recl called\n");
1338 /*
1339 * umem calls the reclaim func when we destroy the buf cache,
1340 * which is after we do arc_fini().
1341 */
1342 if (!arc_dead)
1343 cv_signal(&arc_reclaim_thread_cv);
1344 }
1345
1346 static void
1347 buf_init(void)
1348 {
1349 uint64_t *ct = NULL;
1350 uint64_t hsize = 1ULL << 12;
1351 int i, j;
1352
1353 /*
1354 * The hash table is big enough to fill all of physical memory
1355 * with an average block size of zfs_arc_average_blocksize (default 8K).
1356 * By default, the table will take up
1357 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1358 */
1359 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1360 hsize <<= 1;
1361 retry:
1362 buf_hash_table.ht_mask = hsize - 1;
1363 #if defined(_KERNEL) && defined(HAVE_SPL)
1364 /*
1365 * Large allocations which do not require contiguous pages
1366 * should be using vmem_alloc() in the linux kernel
1367 */
1368 buf_hash_table.ht_table =
1369 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1370 #else
1371 buf_hash_table.ht_table =
1372 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1373 #endif
1374 if (buf_hash_table.ht_table == NULL) {
1375 ASSERT(hsize > (1ULL << 8));
1376 hsize >>= 1;
1377 goto retry;
1378 }
1379
1380 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1381 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1382 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt",
1383 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest,
1384 hdr_recl, NULL, NULL, 0);
1385 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1386 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1387 NULL, NULL, 0);
1388 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1389 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1390
1391 for (i = 0; i < 256; i++)
1392 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1393 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1394
1395 for (i = 0; i < BUF_LOCKS; i++) {
1396 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1397 NULL, MUTEX_DEFAULT, NULL);
1398 }
1399 }
1400
1401 #define ARC_MINTIME (hz>>4) /* 62 ms */
1402
1403 /*
1404 * This is the size that the buf occupies in memory. If the buf is compressed,
1405 * it will correspond to the compressed size. You should use this method of
1406 * getting the buf size unless you explicitly need the logical size.
1407 */
1408 uint64_t
1409 arc_buf_size(arc_buf_t *buf)
1410 {
1411 return (ARC_BUF_COMPRESSED(buf) ?
1412 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1413 }
1414
1415 uint64_t
1416 arc_buf_lsize(arc_buf_t *buf)
1417 {
1418 return (HDR_GET_LSIZE(buf->b_hdr));
1419 }
1420
1421 /*
1422 * This function will return B_TRUE if the buffer is encrypted in memory.
1423 * This buffer can be decrypted by calling arc_untransform().
1424 */
1425 boolean_t
1426 arc_is_encrypted(arc_buf_t *buf)
1427 {
1428 return (ARC_BUF_ENCRYPTED(buf) != 0);
1429 }
1430
1431 /*
1432 * Returns B_TRUE if the buffer represents data that has not had its MAC
1433 * verified yet.
1434 */
1435 boolean_t
1436 arc_is_unauthenticated(arc_buf_t *buf)
1437 {
1438 return (HDR_NOAUTH(buf->b_hdr) != 0);
1439 }
1440
1441 void
1442 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1443 uint8_t *iv, uint8_t *mac)
1444 {
1445 arc_buf_hdr_t *hdr = buf->b_hdr;
1446
1447 ASSERT(HDR_PROTECTED(hdr));
1448
1449 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
1450 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
1451 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
1452 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1453 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1454 }
1455
1456 /*
1457 * Indicates how this buffer is compressed in memory. If it is not compressed
1458 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1459 * arc_untransform() as long as it is also unencrypted.
1460 */
1461 enum zio_compress
1462 arc_get_compression(arc_buf_t *buf)
1463 {
1464 return (ARC_BUF_COMPRESSED(buf) ?
1465 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1466 }
1467
1468 /*
1469 * Return the compression algorithm used to store this data in the ARC. If ARC
1470 * compression is enabled or this is an encrypted block, this will be the same
1471 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1472 */
1473 static inline enum zio_compress
1474 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1475 {
1476 return (HDR_COMPRESSION_ENABLED(hdr) ?
1477 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1478 }
1479
1480 static inline boolean_t
1481 arc_buf_is_shared(arc_buf_t *buf)
1482 {
1483 boolean_t shared = (buf->b_data != NULL &&
1484 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1485 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1486 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1487 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1488 IMPLY(shared, ARC_BUF_SHARED(buf));
1489 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1490
1491 /*
1492 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1493 * already being shared" requirement prevents us from doing that.
1494 */
1495
1496 return (shared);
1497 }
1498
1499 /*
1500 * Free the checksum associated with this header. If there is no checksum, this
1501 * is a no-op.
1502 */
1503 static inline void
1504 arc_cksum_free(arc_buf_hdr_t *hdr)
1505 {
1506 ASSERT(HDR_HAS_L1HDR(hdr));
1507
1508 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1509 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1510 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1511 hdr->b_l1hdr.b_freeze_cksum = NULL;
1512 }
1513 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1514 }
1515
1516 /*
1517 * Return true iff at least one of the bufs on hdr is not compressed.
1518 * Encrypted buffers count as compressed.
1519 */
1520 static boolean_t
1521 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1522 {
1523 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1524 if (!ARC_BUF_COMPRESSED(b)) {
1525 return (B_TRUE);
1526 }
1527 }
1528 return (B_FALSE);
1529 }
1530
1531
1532 /*
1533 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1534 * matches the checksum that is stored in the hdr. If there is no checksum,
1535 * or if the buf is compressed, this is a no-op.
1536 */
1537 static void
1538 arc_cksum_verify(arc_buf_t *buf)
1539 {
1540 arc_buf_hdr_t *hdr = buf->b_hdr;
1541 zio_cksum_t zc;
1542
1543 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1544 return;
1545
1546 if (ARC_BUF_COMPRESSED(buf)) {
1547 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1548 arc_hdr_has_uncompressed_buf(hdr));
1549 return;
1550 }
1551
1552 ASSERT(HDR_HAS_L1HDR(hdr));
1553
1554 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1555 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1556 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1557 return;
1558 }
1559
1560 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1561 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1562 panic("buffer modified while frozen!");
1563 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1564 }
1565
1566 /*
1567 * This function makes the assumption that data stored in the L2ARC
1568 * will be transformed exactly as it is in the main pool. Because of
1569 * this we can verify the checksum against the reading process's bp.
1570 */
1571 static boolean_t
1572 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1573 {
1574 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1575 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1576
1577 /*
1578 * Block pointers always store the checksum for the logical data.
1579 * If the block pointer has the gang bit set, then the checksum
1580 * it represents is for the reconstituted data and not for an
1581 * individual gang member. The zio pipeline, however, must be able to
1582 * determine the checksum of each of the gang constituents so it
1583 * treats the checksum comparison differently than what we need
1584 * for l2arc blocks. This prevents us from using the
1585 * zio_checksum_error() interface directly. Instead we must call the
1586 * zio_checksum_error_impl() so that we can ensure the checksum is
1587 * generated using the correct checksum algorithm and accounts for the
1588 * logical I/O size and not just a gang fragment.
1589 */
1590 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1591 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1592 zio->io_offset, NULL) == 0);
1593 }
1594
1595 /*
1596 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1597 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1598 * isn't modified later on. If buf is compressed or there is already a checksum
1599 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1600 */
1601 static void
1602 arc_cksum_compute(arc_buf_t *buf)
1603 {
1604 arc_buf_hdr_t *hdr = buf->b_hdr;
1605
1606 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1607 return;
1608
1609 ASSERT(HDR_HAS_L1HDR(hdr));
1610
1611 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1612 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1613 ASSERT(arc_hdr_has_uncompressed_buf(hdr));
1614 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1615 return;
1616 } else if (ARC_BUF_COMPRESSED(buf)) {
1617 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1618 return;
1619 }
1620
1621 ASSERT(!ARC_BUF_ENCRYPTED(buf));
1622 ASSERT(!ARC_BUF_COMPRESSED(buf));
1623 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1624 KM_SLEEP);
1625 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1626 hdr->b_l1hdr.b_freeze_cksum);
1627 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1628 arc_buf_watch(buf);
1629 }
1630
1631 #ifndef _KERNEL
1632 void
1633 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1634 {
1635 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1636 }
1637 #endif
1638
1639 /* ARGSUSED */
1640 static void
1641 arc_buf_unwatch(arc_buf_t *buf)
1642 {
1643 #ifndef _KERNEL
1644 if (arc_watch) {
1645 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1646 PROT_READ | PROT_WRITE));
1647 }
1648 #endif
1649 }
1650
1651 /* ARGSUSED */
1652 static void
1653 arc_buf_watch(arc_buf_t *buf)
1654 {
1655 #ifndef _KERNEL
1656 if (arc_watch)
1657 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1658 PROT_READ));
1659 #endif
1660 }
1661
1662 static arc_buf_contents_t
1663 arc_buf_type(arc_buf_hdr_t *hdr)
1664 {
1665 arc_buf_contents_t type;
1666 if (HDR_ISTYPE_METADATA(hdr)) {
1667 type = ARC_BUFC_METADATA;
1668 } else {
1669 type = ARC_BUFC_DATA;
1670 }
1671 VERIFY3U(hdr->b_type, ==, type);
1672 return (type);
1673 }
1674
1675 boolean_t
1676 arc_is_metadata(arc_buf_t *buf)
1677 {
1678 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1679 }
1680
1681 static uint32_t
1682 arc_bufc_to_flags(arc_buf_contents_t type)
1683 {
1684 switch (type) {
1685 case ARC_BUFC_DATA:
1686 /* metadata field is 0 if buffer contains normal data */
1687 return (0);
1688 case ARC_BUFC_METADATA:
1689 return (ARC_FLAG_BUFC_METADATA);
1690 default:
1691 break;
1692 }
1693 panic("undefined ARC buffer type!");
1694 return ((uint32_t)-1);
1695 }
1696
1697 void
1698 arc_buf_thaw(arc_buf_t *buf)
1699 {
1700 arc_buf_hdr_t *hdr = buf->b_hdr;
1701
1702 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1703 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1704
1705 arc_cksum_verify(buf);
1706
1707 /*
1708 * Compressed buffers do not manipulate the b_freeze_cksum or
1709 * allocate b_thawed.
1710 */
1711 if (ARC_BUF_COMPRESSED(buf)) {
1712 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1713 arc_hdr_has_uncompressed_buf(hdr));
1714 return;
1715 }
1716
1717 ASSERT(HDR_HAS_L1HDR(hdr));
1718 arc_cksum_free(hdr);
1719 arc_buf_unwatch(buf);
1720 }
1721
1722 void
1723 arc_buf_freeze(arc_buf_t *buf)
1724 {
1725 arc_buf_hdr_t *hdr = buf->b_hdr;
1726 kmutex_t *hash_lock;
1727
1728 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1729 return;
1730
1731 if (ARC_BUF_COMPRESSED(buf)) {
1732 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1733 arc_hdr_has_uncompressed_buf(hdr));
1734 return;
1735 }
1736
1737 hash_lock = HDR_LOCK(hdr);
1738 mutex_enter(hash_lock);
1739
1740 ASSERT(HDR_HAS_L1HDR(hdr));
1741 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1742 hdr->b_l1hdr.b_state == arc_anon);
1743 arc_cksum_compute(buf);
1744 mutex_exit(hash_lock);
1745 }
1746
1747 /*
1748 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1749 * the following functions should be used to ensure that the flags are
1750 * updated in a thread-safe way. When manipulating the flags either
1751 * the hash_lock must be held or the hdr must be undiscoverable. This
1752 * ensures that we're not racing with any other threads when updating
1753 * the flags.
1754 */
1755 static inline void
1756 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1757 {
1758 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1759 hdr->b_flags |= flags;
1760 }
1761
1762 static inline void
1763 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1764 {
1765 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1766 hdr->b_flags &= ~flags;
1767 }
1768
1769 /*
1770 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1771 * done in a special way since we have to clear and set bits
1772 * at the same time. Consumers that wish to set the compression bits
1773 * must use this function to ensure that the flags are updated in
1774 * thread-safe manner.
1775 */
1776 static void
1777 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1778 {
1779 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1780
1781 /*
1782 * Holes and embedded blocks will always have a psize = 0 so
1783 * we ignore the compression of the blkptr and set the
1784 * want to uncompress them. Mark them as uncompressed.
1785 */
1786 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1787 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1788 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1789 } else {
1790 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1791 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1792 }
1793
1794 HDR_SET_COMPRESS(hdr, cmp);
1795 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1796 }
1797
1798 /*
1799 * Looks for another buf on the same hdr which has the data decompressed, copies
1800 * from it, and returns true. If no such buf exists, returns false.
1801 */
1802 static boolean_t
1803 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1804 {
1805 arc_buf_hdr_t *hdr = buf->b_hdr;
1806 boolean_t copied = B_FALSE;
1807
1808 ASSERT(HDR_HAS_L1HDR(hdr));
1809 ASSERT3P(buf->b_data, !=, NULL);
1810 ASSERT(!ARC_BUF_COMPRESSED(buf));
1811
1812 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1813 from = from->b_next) {
1814 /* can't use our own data buffer */
1815 if (from == buf) {
1816 continue;
1817 }
1818
1819 if (!ARC_BUF_COMPRESSED(from)) {
1820 bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1821 copied = B_TRUE;
1822 break;
1823 }
1824 }
1825
1826 /*
1827 * There were no decompressed bufs, so there should not be a
1828 * checksum on the hdr either.
1829 */
1830 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1831
1832 return (copied);
1833 }
1834
1835 /*
1836 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1837 */
1838 static uint64_t
1839 arc_hdr_size(arc_buf_hdr_t *hdr)
1840 {
1841 uint64_t size;
1842
1843 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1844 HDR_GET_PSIZE(hdr) > 0) {
1845 size = HDR_GET_PSIZE(hdr);
1846 } else {
1847 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1848 size = HDR_GET_LSIZE(hdr);
1849 }
1850 return (size);
1851 }
1852
1853 static int
1854 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1855 {
1856 int ret;
1857 uint64_t csize;
1858 uint64_t lsize = HDR_GET_LSIZE(hdr);
1859 uint64_t psize = HDR_GET_PSIZE(hdr);
1860 void *tmpbuf = NULL;
1861 abd_t *abd = hdr->b_l1hdr.b_pabd;
1862
1863 ASSERT(HDR_LOCK(hdr) == NULL || MUTEX_HELD(HDR_LOCK(hdr)));
1864 ASSERT(HDR_AUTHENTICATED(hdr));
1865 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1866
1867 /*
1868 * The MAC is calculated on the compressed data that is stored on disk.
1869 * However, if compressed arc is disabled we will only have the
1870 * decompressed data available to us now. Compress it into a temporary
1871 * abd so we can verify the MAC. The performance overhead of this will
1872 * be relatively low, since most objects in an encrypted objset will
1873 * be encrypted (instead of authenticated) anyway.
1874 */
1875 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1876 !HDR_COMPRESSION_ENABLED(hdr)) {
1877 tmpbuf = zio_buf_alloc(lsize);
1878 abd = abd_get_from_buf(tmpbuf, lsize);
1879 abd_take_ownership_of_buf(abd, B_TRUE);
1880
1881 csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1882 hdr->b_l1hdr.b_pabd, tmpbuf, lsize);
1883 ASSERT3U(csize, <=, psize);
1884 abd_zero_off(abd, csize, psize - csize);
1885 }
1886
1887 /*
1888 * Authentication is best effort. We authenticate whenever the key is
1889 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1890 */
1891 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1892 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1893 ASSERT3U(lsize, ==, psize);
1894 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1895 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1896 } else {
1897 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1898 hdr->b_crypt_hdr.b_mac);
1899 }
1900
1901 if (ret == 0)
1902 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1903 else if (ret != ENOENT)
1904 goto error;
1905
1906 if (tmpbuf != NULL)
1907 abd_free(abd);
1908
1909 return (0);
1910
1911 error:
1912 if (tmpbuf != NULL)
1913 abd_free(abd);
1914
1915 return (ret);
1916 }
1917
1918 /*
1919 * This function will take a header that only has raw encrypted data in
1920 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1921 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1922 * also decompress the data.
1923 */
1924 static int
1925 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1926 {
1927 int ret;
1928 dsl_crypto_key_t *dck = NULL;
1929 abd_t *cabd = NULL;
1930 void *tmp = NULL;
1931 boolean_t no_crypt = B_FALSE;
1932 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1933
1934 ASSERT(HDR_LOCK(hdr) == NULL || MUTEX_HELD(HDR_LOCK(hdr)));
1935 ASSERT(HDR_ENCRYPTED(hdr));
1936
1937 arc_hdr_alloc_abd(hdr, B_FALSE);
1938
1939 /*
1940 * We must be careful to use the passed-in dsobj value here and
1941 * not the value in b_dsobj. b_dsobj is meant to be a best guess for
1942 * the L2ARC, which has the luxury of being able to fail without real
1943 * consequences (the data simply won't make it to the L2ARC). In
1944 * reality, the dsobj stored in the header may belong to a dataset
1945 * that has been unmounted or otherwise disowned, meaning the key
1946 * won't be accessible via that dsobj anymore.
1947 */
1948 ret = spa_keystore_lookup_key(spa, dsobj, FTAG, &dck);
1949 if (ret != 0) {
1950 ret = SET_ERROR(EACCES);
1951 goto error;
1952 }
1953
1954 ret = zio_do_crypt_abd(B_FALSE, &dck->dck_key,
1955 hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_ot,
1956 hdr->b_crypt_hdr.b_iv, hdr->b_crypt_hdr.b_mac,
1957 HDR_GET_PSIZE(hdr), bswap, hdr->b_l1hdr.b_pabd,
1958 hdr->b_crypt_hdr.b_rabd, &no_crypt);
1959 if (ret != 0)
1960 goto error;
1961
1962 if (no_crypt) {
1963 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1964 HDR_GET_PSIZE(hdr));
1965 }
1966
1967 /*
1968 * If this header has disabled arc compression but the b_pabd is
1969 * compressed after decrypting it, we need to decompress the newly
1970 * decrypted data.
1971 */
1972 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1973 !HDR_COMPRESSION_ENABLED(hdr)) {
1974 /*
1975 * We want to make sure that we are correctly honoring the
1976 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1977 * and then loan a buffer from it, rather than allocating a
1978 * linear buffer and wrapping it in an abd later.
1979 */
1980 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
1981 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
1982
1983 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1984 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
1985 HDR_GET_LSIZE(hdr));
1986 if (ret != 0) {
1987 abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
1988 goto error;
1989 }
1990
1991 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
1992 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1993 arc_hdr_size(hdr), hdr);
1994 hdr->b_l1hdr.b_pabd = cabd;
1995 }
1996
1997 spa_keystore_dsl_key_rele(spa, dck, FTAG);
1998
1999 return (0);
2000
2001 error:
2002 arc_hdr_free_abd(hdr, B_FALSE);
2003 if (dck != NULL)
2004 spa_keystore_dsl_key_rele(spa, dck, FTAG);
2005 if (cabd != NULL)
2006 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
2007
2008 return (ret);
2009 }
2010
2011 /*
2012 * This function is called during arc_buf_fill() to prepare the header's
2013 * abd plaintext pointer for use. This involves authenticated protected
2014 * data and decrypting encrypted data into the plaintext abd.
2015 */
2016 static int
2017 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
2018 uint64_t dsobj, boolean_t noauth)
2019 {
2020 int ret;
2021
2022 ASSERT(HDR_PROTECTED(hdr));
2023
2024 if (hash_lock != NULL)
2025 mutex_enter(hash_lock);
2026
2027 if (HDR_NOAUTH(hdr) && !noauth) {
2028 /*
2029 * The caller requested authenticated data but our data has
2030 * not been authenticated yet. Verify the MAC now if we can.
2031 */
2032 ret = arc_hdr_authenticate(hdr, spa, dsobj);
2033 if (ret != 0)
2034 goto error;
2035 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
2036 /*
2037 * If we only have the encrypted version of the data, but the
2038 * unencrypted version was requested we take this opportunity
2039 * to store the decrypted version in the header for future use.
2040 */
2041 ret = arc_hdr_decrypt(hdr, spa, dsobj);
2042 if (ret != 0)
2043 goto error;
2044 }
2045
2046 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2047
2048 if (hash_lock != NULL)
2049 mutex_exit(hash_lock);
2050
2051 return (0);
2052
2053 error:
2054 if (hash_lock != NULL)
2055 mutex_exit(hash_lock);
2056
2057 return (ret);
2058 }
2059
2060 /*
2061 * This function is used by the dbuf code to decrypt bonus buffers in place.
2062 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
2063 * block, so we use the hash lock here to protect against concurrent calls to
2064 * arc_buf_fill().
2065 */
2066 static void
2067 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock)
2068 {
2069 arc_buf_hdr_t *hdr = buf->b_hdr;
2070
2071 ASSERT(HDR_ENCRYPTED(hdr));
2072 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2073 ASSERT(HDR_LOCK(hdr) == NULL || MUTEX_HELD(HDR_LOCK(hdr)));
2074 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2075
2076 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
2077 arc_buf_size(buf));
2078 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
2079 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2080 hdr->b_crypt_hdr.b_ebufcnt -= 1;
2081 }
2082
2083 /*
2084 * Given a buf that has a data buffer attached to it, this function will
2085 * efficiently fill the buf with data of the specified compression setting from
2086 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
2087 * are already sharing a data buf, no copy is performed.
2088 *
2089 * If the buf is marked as compressed but uncompressed data was requested, this
2090 * will allocate a new data buffer for the buf, remove that flag, and fill the
2091 * buf with uncompressed data. You can't request a compressed buf on a hdr with
2092 * uncompressed data, and (since we haven't added support for it yet) if you
2093 * want compressed data your buf must already be marked as compressed and have
2094 * the correct-sized data buffer.
2095 */
2096 static int
2097 arc_buf_fill(arc_buf_t *buf, spa_t *spa, uint64_t dsobj, arc_fill_flags_t flags)
2098 {
2099 int error = 0;
2100 arc_buf_hdr_t *hdr = buf->b_hdr;
2101 boolean_t hdr_compressed =
2102 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
2103 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
2104 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
2105 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2106 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
2107
2108 ASSERT3P(buf->b_data, !=, NULL);
2109 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
2110 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2111 IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2112 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2113 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2114 IMPLY(encrypted, !ARC_BUF_SHARED(buf));
2115
2116 /*
2117 * If the caller wanted encrypted data we just need to copy it from
2118 * b_rabd and potentially byteswap it. We won't be able to do any
2119 * further transforms on it.
2120 */
2121 if (encrypted) {
2122 ASSERT(HDR_HAS_RABD(hdr));
2123 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2124 HDR_GET_PSIZE(hdr));
2125 goto byteswap;
2126 }
2127
2128 /*
2129 * Adjust encrypted and authenticated headers to accomodate the
2130 * request if needed.
2131 */
2132 if (HDR_PROTECTED(hdr)) {
2133 error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2134 dsobj, !!(flags & ARC_FILL_NOAUTH));
2135 if (error != 0)
2136 return (error);
2137 }
2138
2139 /*
2140 * There is a special case here for dnode blocks which are
2141 * decrypting their bonus buffers. These blocks may request to
2142 * be decrypted in-place. This is necessary because there may
2143 * be many dnodes pointing into this buffer and there is
2144 * currently no method to synchronize replacing the backing
2145 * b_data buffer and updating all of the pointers. Here we use
2146 * the hash lock to ensure there are no races. If the need
2147 * arises for other types to be decrypted in-place, they must
2148 * add handling here as well.
2149 */
2150 if ((flags & ARC_FILL_IN_PLACE) != 0) {
2151 ASSERT(!hdr_compressed);
2152 ASSERT(!compressed);
2153 ASSERT(!encrypted);
2154
2155 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2156 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2157
2158 if (hash_lock != NULL)
2159 mutex_enter(hash_lock);
2160 arc_buf_untransform_in_place(buf, hash_lock);
2161 if (hash_lock != NULL)
2162 mutex_exit(hash_lock);
2163
2164 /* Compute the hdr's checksum if necessary */
2165 arc_cksum_compute(buf);
2166 }
2167
2168 return (0);
2169 }
2170
2171 if (hdr_compressed == compressed) {
2172 if (!arc_buf_is_shared(buf)) {
2173 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2174 arc_buf_size(buf));
2175 }
2176 } else {
2177 ASSERT(hdr_compressed);
2178 ASSERT(!compressed);
2179 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2180
2181 /*
2182 * If the buf is sharing its data with the hdr, unlink it and
2183 * allocate a new data buffer for the buf.
2184 */
2185 if (arc_buf_is_shared(buf)) {
2186 ASSERT(ARC_BUF_COMPRESSED(buf));
2187
2188 /* We need to give the buf it's own b_data */
2189 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2190 buf->b_data =
2191 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2192 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2193
2194 /* Previously overhead was 0; just add new overhead */
2195 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2196 } else if (ARC_BUF_COMPRESSED(buf)) {
2197 /* We need to reallocate the buf's b_data */
2198 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2199 buf);
2200 buf->b_data =
2201 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2202
2203 /* We increased the size of b_data; update overhead */
2204 ARCSTAT_INCR(arcstat_overhead_size,
2205 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2206 }
2207
2208 /*
2209 * Regardless of the buf's previous compression settings, it
2210 * should not be compressed at the end of this function.
2211 */
2212 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2213
2214 /*
2215 * Try copying the data from another buf which already has a
2216 * decompressed version. If that's not possible, it's time to
2217 * bite the bullet and decompress the data from the hdr.
2218 */
2219 if (arc_buf_try_copy_decompressed_data(buf)) {
2220 /* Skip byteswapping and checksumming (already done) */
2221 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
2222 return (0);
2223 } else {
2224 error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2225 hdr->b_l1hdr.b_pabd, buf->b_data,
2226 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2227
2228 /*
2229 * Absent hardware errors or software bugs, this should
2230 * be impossible, but log it anyway so we can debug it.
2231 */
2232 if (error != 0) {
2233 zfs_dbgmsg(
2234 "hdr %p, compress %d, psize %d, lsize %d",
2235 hdr, arc_hdr_get_compress(hdr),
2236 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2237 return (SET_ERROR(EIO));
2238 }
2239 }
2240 }
2241
2242 byteswap:
2243 /* Byteswap the buf's data if necessary */
2244 if (bswap != DMU_BSWAP_NUMFUNCS) {
2245 ASSERT(!HDR_SHARED_DATA(hdr));
2246 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2247 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2248 }
2249
2250 /* Compute the hdr's checksum if necessary */
2251 arc_cksum_compute(buf);
2252
2253 return (0);
2254 }
2255
2256 /*
2257 * If this function is being called to decrypt an encrypted buffer or verify an
2258 * authenticated one, the key must be loaded and a mapping must be made
2259 * available in the keystore via spa_keystore_create_mapping() or one of its
2260 * callers.
2261 */
2262 int
2263 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2264 boolean_t in_place)
2265 {
2266 int ret;
2267 arc_fill_flags_t flags = 0;
2268
2269 if (in_place)
2270 flags |= ARC_FILL_IN_PLACE;
2271
2272 ret = arc_buf_fill(buf, spa, zb->zb_objset, flags);
2273 if (ret == ECKSUM) {
2274 /*
2275 * Convert authentication and decryption errors to EIO
2276 * (and generate an ereport) before leaving the ARC.
2277 */
2278 ret = SET_ERROR(EIO);
2279 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2280 spa, NULL, zb, NULL, 0, 0);
2281 }
2282
2283 return (ret);
2284 }
2285
2286 /*
2287 * Increment the amount of evictable space in the arc_state_t's refcount.
2288 * We account for the space used by the hdr and the arc buf individually
2289 * so that we can add and remove them from the refcount individually.
2290 */
2291 static void
2292 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2293 {
2294 arc_buf_contents_t type = arc_buf_type(hdr);
2295
2296 ASSERT(HDR_HAS_L1HDR(hdr));
2297
2298 if (GHOST_STATE(state)) {
2299 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2300 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2301 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2302 ASSERT(!HDR_HAS_RABD(hdr));
2303 (void) refcount_add_many(&state->arcs_esize[type],
2304 HDR_GET_LSIZE(hdr), hdr);
2305 return;
2306 }
2307
2308 ASSERT(!GHOST_STATE(state));
2309 if (hdr->b_l1hdr.b_pabd != NULL) {
2310 (void) refcount_add_many(&state->arcs_esize[type],
2311 arc_hdr_size(hdr), hdr);
2312 }
2313 if (HDR_HAS_RABD(hdr)) {
2314 (void) refcount_add_many(&state->arcs_esize[type],
2315 HDR_GET_PSIZE(hdr), hdr);
2316 }
2317
2318 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2319 buf = buf->b_next) {
2320 if (arc_buf_is_shared(buf))
2321 continue;
2322 (void) refcount_add_many(&state->arcs_esize[type],
2323 arc_buf_size(buf), buf);
2324 }
2325 }
2326
2327 /*
2328 * Decrement the amount of evictable space in the arc_state_t's refcount.
2329 * We account for the space used by the hdr and the arc buf individually
2330 * so that we can add and remove them from the refcount individually.
2331 */
2332 static void
2333 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2334 {
2335 arc_buf_contents_t type = arc_buf_type(hdr);
2336
2337 ASSERT(HDR_HAS_L1HDR(hdr));
2338
2339 if (GHOST_STATE(state)) {
2340 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2341 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2342 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2343 ASSERT(!HDR_HAS_RABD(hdr));
2344 (void) refcount_remove_many(&state->arcs_esize[type],
2345 HDR_GET_LSIZE(hdr), hdr);
2346 return;
2347 }
2348
2349 ASSERT(!GHOST_STATE(state));
2350 if (hdr->b_l1hdr.b_pabd != NULL) {
2351 (void) refcount_remove_many(&state->arcs_esize[type],
2352 arc_hdr_size(hdr), hdr);
2353 }
2354 if (HDR_HAS_RABD(hdr)) {
2355 (void) refcount_remove_many(&state->arcs_esize[type],
2356 HDR_GET_PSIZE(hdr), hdr);
2357 }
2358
2359 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2360 buf = buf->b_next) {
2361 if (arc_buf_is_shared(buf))
2362 continue;
2363 (void) refcount_remove_many(&state->arcs_esize[type],
2364 arc_buf_size(buf), buf);
2365 }
2366 }
2367
2368 /*
2369 * Add a reference to this hdr indicating that someone is actively
2370 * referencing that memory. When the refcount transitions from 0 to 1,
2371 * we remove it from the respective arc_state_t list to indicate that
2372 * it is not evictable.
2373 */
2374 static void
2375 add_reference(arc_buf_hdr_t *hdr, void *tag)
2376 {
2377 arc_state_t *state;
2378
2379 ASSERT(HDR_HAS_L1HDR(hdr));
2380 if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2381 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2382 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2383 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2384 }
2385
2386 state = hdr->b_l1hdr.b_state;
2387
2388 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2389 (state != arc_anon)) {
2390 /* We don't use the L2-only state list. */
2391 if (state != arc_l2c_only) {
2392 multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2393 hdr);
2394 arc_evictable_space_decrement(hdr, state);
2395 }
2396 /* remove the prefetch flag if we get a reference */
2397 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2398 }
2399 }
2400
2401 /*
2402 * Remove a reference from this hdr. When the reference transitions from
2403 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2404 * list making it eligible for eviction.
2405 */
2406 static int
2407 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2408 {
2409 int cnt;
2410 arc_state_t *state = hdr->b_l1hdr.b_state;
2411
2412 ASSERT(HDR_HAS_L1HDR(hdr));
2413 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2414 ASSERT(!GHOST_STATE(state));
2415
2416 /*
2417 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2418 * check to prevent usage of the arc_l2c_only list.
2419 */
2420 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2421 (state != arc_anon)) {
2422 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2423 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2424 arc_evictable_space_increment(hdr, state);
2425 }
2426 return (cnt);
2427 }
2428
2429 /*
2430 * Returns detailed information about a specific arc buffer. When the
2431 * state_index argument is set the function will calculate the arc header
2432 * list position for its arc state. Since this requires a linear traversal
2433 * callers are strongly encourage not to do this. However, it can be helpful
2434 * for targeted analysis so the functionality is provided.
2435 */
2436 void
2437 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2438 {
2439 arc_buf_hdr_t *hdr = ab->b_hdr;
2440 l1arc_buf_hdr_t *l1hdr = NULL;
2441 l2arc_buf_hdr_t *l2hdr = NULL;
2442 arc_state_t *state = NULL;
2443
2444 memset(abi, 0, sizeof (arc_buf_info_t));
2445
2446 if (hdr == NULL)
2447 return;
2448
2449 abi->abi_flags = hdr->b_flags;
2450
2451 if (HDR_HAS_L1HDR(hdr)) {
2452 l1hdr = &hdr->b_l1hdr;
2453 state = l1hdr->b_state;
2454 }
2455 if (HDR_HAS_L2HDR(hdr))
2456 l2hdr = &hdr->b_l2hdr;
2457
2458 if (l1hdr) {
2459 abi->abi_bufcnt = l1hdr->b_bufcnt;
2460 abi->abi_access = l1hdr->b_arc_access;
2461 abi->abi_mru_hits = l1hdr->b_mru_hits;
2462 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2463 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2464 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2465 abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
2466 }
2467
2468 if (l2hdr) {
2469 abi->abi_l2arc_dattr = l2hdr->b_daddr;
2470 abi->abi_l2arc_hits = l2hdr->b_hits;
2471 }
2472
2473 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2474 abi->abi_state_contents = arc_buf_type(hdr);
2475 abi->abi_size = arc_hdr_size(hdr);
2476 }
2477
2478 /*
2479 * Move the supplied buffer to the indicated state. The hash lock
2480 * for the buffer must be held by the caller.
2481 */
2482 static void
2483 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2484 kmutex_t *hash_lock)
2485 {
2486 arc_state_t *old_state;
2487 int64_t refcnt;
2488 uint32_t bufcnt;
2489 boolean_t update_old, update_new;
2490 arc_buf_contents_t buftype = arc_buf_type(hdr);
2491
2492 /*
2493 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2494 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2495 * L1 hdr doesn't always exist when we change state to arc_anon before
2496 * destroying a header, in which case reallocating to add the L1 hdr is
2497 * pointless.
2498 */
2499 if (HDR_HAS_L1HDR(hdr)) {
2500 old_state = hdr->b_l1hdr.b_state;
2501 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2502 bufcnt = hdr->b_l1hdr.b_bufcnt;
2503 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL ||
2504 HDR_HAS_RABD(hdr));
2505 } else {
2506 old_state = arc_l2c_only;
2507 refcnt = 0;
2508 bufcnt = 0;
2509 update_old = B_FALSE;
2510 }
2511 update_new = update_old;
2512
2513 ASSERT(MUTEX_HELD(hash_lock));
2514 ASSERT3P(new_state, !=, old_state);
2515 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2516 ASSERT(old_state != arc_anon || bufcnt <= 1);
2517
2518 /*
2519 * If this buffer is evictable, transfer it from the
2520 * old state list to the new state list.
2521 */
2522 if (refcnt == 0) {
2523 if (old_state != arc_anon && old_state != arc_l2c_only) {
2524 ASSERT(HDR_HAS_L1HDR(hdr));
2525 multilist_remove(old_state->arcs_list[buftype], hdr);
2526
2527 if (GHOST_STATE(old_state)) {
2528 ASSERT0(bufcnt);
2529 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2530 update_old = B_TRUE;
2531 }
2532 arc_evictable_space_decrement(hdr, old_state);
2533 }
2534 if (new_state != arc_anon && new_state != arc_l2c_only) {
2535 /*
2536 * An L1 header always exists here, since if we're
2537 * moving to some L1-cached state (i.e. not l2c_only or
2538 * anonymous), we realloc the header to add an L1hdr
2539 * beforehand.
2540 */
2541 ASSERT(HDR_HAS_L1HDR(hdr));
2542 multilist_insert(new_state->arcs_list[buftype], hdr);
2543
2544 if (GHOST_STATE(new_state)) {
2545 ASSERT0(bufcnt);
2546 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2547 update_new = B_TRUE;
2548 }
2549 arc_evictable_space_increment(hdr, new_state);
2550 }
2551 }
2552
2553 ASSERT(!HDR_EMPTY(hdr));
2554 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2555 buf_hash_remove(hdr);
2556
2557 /* adjust state sizes (ignore arc_l2c_only) */
2558
2559 if (update_new && new_state != arc_l2c_only) {
2560 ASSERT(HDR_HAS_L1HDR(hdr));
2561 if (GHOST_STATE(new_state)) {
2562 ASSERT0(bufcnt);
2563
2564 /*
2565 * When moving a header to a ghost state, we first
2566 * remove all arc buffers. Thus, we'll have a
2567 * bufcnt of zero, and no arc buffer to use for
2568 * the reference. As a result, we use the arc
2569 * header pointer for the reference.
2570 */
2571 (void) refcount_add_many(&new_state->arcs_size,
2572 HDR_GET_LSIZE(hdr), hdr);
2573 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2574 ASSERT(!HDR_HAS_RABD(hdr));
2575 } else {
2576 uint32_t buffers = 0;
2577
2578 /*
2579 * Each individual buffer holds a unique reference,
2580 * thus we must remove each of these references one
2581 * at a time.
2582 */
2583 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2584 buf = buf->b_next) {
2585 ASSERT3U(bufcnt, !=, 0);
2586 buffers++;
2587
2588 /*
2589 * When the arc_buf_t is sharing the data
2590 * block with the hdr, the owner of the
2591 * reference belongs to the hdr. Only
2592 * add to the refcount if the arc_buf_t is
2593 * not shared.
2594 */
2595 if (arc_buf_is_shared(buf))
2596 continue;
2597
2598 (void) refcount_add_many(&new_state->arcs_size,
2599 arc_buf_size(buf), buf);
2600 }
2601 ASSERT3U(bufcnt, ==, buffers);
2602
2603 if (hdr->b_l1hdr.b_pabd != NULL) {
2604 (void) refcount_add_many(&new_state->arcs_size,
2605 arc_hdr_size(hdr), hdr);
2606 }
2607
2608 if (HDR_HAS_RABD(hdr)) {
2609 (void) refcount_add_many(&new_state->arcs_size,
2610 HDR_GET_PSIZE(hdr), hdr);
2611 }
2612 }
2613 }
2614
2615 if (update_old && old_state != arc_l2c_only) {
2616 ASSERT(HDR_HAS_L1HDR(hdr));
2617 if (GHOST_STATE(old_state)) {
2618 ASSERT0(bufcnt);
2619 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2620 ASSERT(!HDR_HAS_RABD(hdr));
2621
2622 /*
2623 * When moving a header off of a ghost state,
2624 * the header will not contain any arc buffers.
2625 * We use the arc header pointer for the reference
2626 * which is exactly what we did when we put the
2627 * header on the ghost state.
2628 */
2629
2630 (void) refcount_remove_many(&old_state->arcs_size,
2631 HDR_GET_LSIZE(hdr), hdr);
2632 } else {
2633 uint32_t buffers = 0;
2634
2635 /*
2636 * Each individual buffer holds a unique reference,
2637 * thus we must remove each of these references one
2638 * at a time.
2639 */
2640 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2641 buf = buf->b_next) {
2642 ASSERT3U(bufcnt, !=, 0);
2643 buffers++;
2644
2645 /*
2646 * When the arc_buf_t is sharing the data
2647 * block with the hdr, the owner of the
2648 * reference belongs to the hdr. Only
2649 * add to the refcount if the arc_buf_t is
2650 * not shared.
2651 */
2652 if (arc_buf_is_shared(buf))
2653 continue;
2654
2655 (void) refcount_remove_many(
2656 &old_state->arcs_size, arc_buf_size(buf),
2657 buf);
2658 }
2659 ASSERT3U(bufcnt, ==, buffers);
2660 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2661 HDR_HAS_RABD(hdr));
2662
2663 if (hdr->b_l1hdr.b_pabd != NULL) {
2664 (void) refcount_remove_many(
2665 &old_state->arcs_size, arc_hdr_size(hdr),
2666 hdr);
2667 }
2668
2669 if (HDR_HAS_RABD(hdr)) {
2670 (void) refcount_remove_many(
2671 &old_state->arcs_size, HDR_GET_PSIZE(hdr),
2672 hdr);
2673 }
2674 }
2675 }
2676
2677 if (HDR_HAS_L1HDR(hdr))
2678 hdr->b_l1hdr.b_state = new_state;
2679
2680 /*
2681 * L2 headers should never be on the L2 state list since they don't
2682 * have L1 headers allocated.
2683 */
2684 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2685 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2686 }
2687
2688 void
2689 arc_space_consume(uint64_t space, arc_space_type_t type)
2690 {
2691 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2692
2693 switch (type) {
2694 default:
2695 break;
2696 case ARC_SPACE_DATA:
2697 ARCSTAT_INCR(arcstat_data_size, space);
2698 break;
2699 case ARC_SPACE_META:
2700 ARCSTAT_INCR(arcstat_metadata_size, space);
2701 break;
2702 case ARC_SPACE_BONUS:
2703 ARCSTAT_INCR(arcstat_bonus_size, space);
2704 break;
2705 case ARC_SPACE_DNODE:
2706 ARCSTAT_INCR(arcstat_dnode_size, space);
2707 break;
2708 case ARC_SPACE_DBUF:
2709 ARCSTAT_INCR(arcstat_dbuf_size, space);
2710 break;
2711 case ARC_SPACE_HDRS:
2712 ARCSTAT_INCR(arcstat_hdr_size, space);
2713 break;
2714 case ARC_SPACE_L2HDRS:
2715 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2716 break;
2717 }
2718
2719 if (type != ARC_SPACE_DATA)
2720 ARCSTAT_INCR(arcstat_meta_used, space);
2721
2722 atomic_add_64(&arc_size, space);
2723 }
2724
2725 void
2726 arc_space_return(uint64_t space, arc_space_type_t type)
2727 {
2728 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2729
2730 switch (type) {
2731 default:
2732 break;
2733 case ARC_SPACE_DATA:
2734 ARCSTAT_INCR(arcstat_data_size, -space);
2735 break;
2736 case ARC_SPACE_META:
2737 ARCSTAT_INCR(arcstat_metadata_size, -space);
2738 break;
2739 case ARC_SPACE_BONUS:
2740 ARCSTAT_INCR(arcstat_bonus_size, -space);
2741 break;
2742 case ARC_SPACE_DNODE:
2743 ARCSTAT_INCR(arcstat_dnode_size, -space);
2744 break;
2745 case ARC_SPACE_DBUF:
2746 ARCSTAT_INCR(arcstat_dbuf_size, -space);
2747 break;
2748 case ARC_SPACE_HDRS:
2749 ARCSTAT_INCR(arcstat_hdr_size, -space);
2750 break;
2751 case ARC_SPACE_L2HDRS:
2752 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2753 break;
2754 }
2755
2756 if (type != ARC_SPACE_DATA) {
2757 ASSERT(arc_meta_used >= space);
2758 if (arc_meta_max < arc_meta_used)
2759 arc_meta_max = arc_meta_used;
2760 ARCSTAT_INCR(arcstat_meta_used, -space);
2761 }
2762
2763 ASSERT(arc_size >= space);
2764 atomic_add_64(&arc_size, -space);
2765 }
2766
2767 /*
2768 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2769 * with the hdr's b_pabd.
2770 */
2771 static boolean_t
2772 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2773 {
2774 /*
2775 * The criteria for sharing a hdr's data are:
2776 * 1. the buffer is not encrypted
2777 * 2. the hdr's compression matches the buf's compression
2778 * 3. the hdr doesn't need to be byteswapped
2779 * 4. the hdr isn't already being shared
2780 * 5. the buf is either compressed or it is the last buf in the hdr list
2781 *
2782 * Criterion #5 maintains the invariant that shared uncompressed
2783 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2784 * might ask, "if a compressed buf is allocated first, won't that be the
2785 * last thing in the list?", but in that case it's impossible to create
2786 * a shared uncompressed buf anyway (because the hdr must be compressed
2787 * to have the compressed buf). You might also think that #3 is
2788 * sufficient to make this guarantee, however it's possible
2789 * (specifically in the rare L2ARC write race mentioned in
2790 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2791 * is sharable, but wasn't at the time of its allocation. Rather than
2792 * allow a new shared uncompressed buf to be created and then shuffle
2793 * the list around to make it the last element, this simply disallows
2794 * sharing if the new buf isn't the first to be added.
2795 */
2796 ASSERT3P(buf->b_hdr, ==, hdr);
2797 boolean_t hdr_compressed =
2798 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
2799 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2800 return (!ARC_BUF_ENCRYPTED(buf) &&
2801 buf_compressed == hdr_compressed &&
2802 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2803 !HDR_SHARED_DATA(hdr) &&
2804 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2805 }
2806
2807 /*
2808 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2809 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2810 * copy was made successfully, or an error code otherwise.
2811 */
2812 static int
2813 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj, void *tag,
2814 boolean_t encrypted, boolean_t compressed, boolean_t noauth,
2815 boolean_t fill, arc_buf_t **ret)
2816 {
2817 arc_buf_t *buf;
2818 arc_fill_flags_t flags = ARC_FILL_LOCKED;
2819
2820 ASSERT(HDR_HAS_L1HDR(hdr));
2821 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2822 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2823 hdr->b_type == ARC_BUFC_METADATA);
2824 ASSERT3P(ret, !=, NULL);
2825 ASSERT3P(*ret, ==, NULL);
2826 IMPLY(encrypted, compressed);
2827
2828 hdr->b_l1hdr.b_mru_hits = 0;
2829 hdr->b_l1hdr.b_mru_ghost_hits = 0;
2830 hdr->b_l1hdr.b_mfu_hits = 0;
2831 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
2832 hdr->b_l1hdr.b_l2_hits = 0;
2833
2834 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2835 buf->b_hdr = hdr;
2836 buf->b_data = NULL;
2837 buf->b_next = hdr->b_l1hdr.b_buf;
2838 buf->b_flags = 0;
2839
2840 add_reference(hdr, tag);
2841
2842 /*
2843 * We're about to change the hdr's b_flags. We must either
2844 * hold the hash_lock or be undiscoverable.
2845 */
2846 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2847
2848 /*
2849 * Only honor requests for compressed bufs if the hdr is actually
2850 * compressed. This must be overriden if the buffer is encrypted since
2851 * encrypted buffers cannot be decompressed.
2852 */
2853 if (encrypted) {
2854 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2855 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2856 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2857 } else if (compressed &&
2858 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2859 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2860 flags |= ARC_FILL_COMPRESSED;
2861 }
2862
2863 if (noauth) {
2864 ASSERT0(encrypted);
2865 flags |= ARC_FILL_NOAUTH;
2866 }
2867
2868 /*
2869 * If the hdr's data can be shared then we share the data buffer and
2870 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2871 * allocate a new buffer to store the buf's data.
2872 *
2873 * There are two additional restrictions here because we're sharing
2874 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2875 * actively involved in an L2ARC write, because if this buf is used by
2876 * an arc_write() then the hdr's data buffer will be released when the
2877 * write completes, even though the L2ARC write might still be using it.
2878 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2879 * need to be ABD-aware.
2880 */
2881 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2882 hdr->b_l1hdr.b_pabd != NULL && abd_is_linear(hdr->b_l1hdr.b_pabd);
2883
2884 /* Set up b_data and sharing */
2885 if (can_share) {
2886 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2887 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2888 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2889 } else {
2890 buf->b_data =
2891 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2892 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2893 }
2894 VERIFY3P(buf->b_data, !=, NULL);
2895
2896 hdr->b_l1hdr.b_buf = buf;
2897 hdr->b_l1hdr.b_bufcnt += 1;
2898 if (encrypted)
2899 hdr->b_crypt_hdr.b_ebufcnt += 1;
2900
2901 /*
2902 * If the user wants the data from the hdr, we need to either copy or
2903 * decompress the data.
2904 */
2905 if (fill) {
2906 return (arc_buf_fill(buf, spa, dsobj, flags));
2907 }
2908
2909 return (0);
2910 }
2911
2912 static char *arc_onloan_tag = "onloan";
2913
2914 static inline void
2915 arc_loaned_bytes_update(int64_t delta)
2916 {
2917 atomic_add_64(&arc_loaned_bytes, delta);
2918
2919 /* assert that it did not wrap around */
2920 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2921 }
2922
2923 /*
2924 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2925 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2926 * buffers must be returned to the arc before they can be used by the DMU or
2927 * freed.
2928 */
2929 arc_buf_t *
2930 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2931 {
2932 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2933 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2934
2935 arc_loaned_bytes_update(arc_buf_size(buf));
2936
2937 return (buf);
2938 }
2939
2940 arc_buf_t *
2941 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2942 enum zio_compress compression_type)
2943 {
2944 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2945 psize, lsize, compression_type);
2946
2947 arc_loaned_bytes_update(arc_buf_size(buf));
2948
2949 return (buf);
2950 }
2951
2952 arc_buf_t *
2953 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2954 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2955 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2956 enum zio_compress compression_type)
2957 {
2958 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2959 byteorder, salt, iv, mac, ot, psize, lsize, compression_type);
2960
2961 atomic_add_64(&arc_loaned_bytes, psize);
2962 return (buf);
2963 }
2964
2965
2966 /*
2967 * Return a loaned arc buffer to the arc.
2968 */
2969 void
2970 arc_return_buf(arc_buf_t *buf, void *tag)
2971 {
2972 arc_buf_hdr_t *hdr = buf->b_hdr;
2973
2974 ASSERT3P(buf->b_data, !=, NULL);
2975 ASSERT(HDR_HAS_L1HDR(hdr));
2976 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2977 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2978
2979 arc_loaned_bytes_update(-arc_buf_size(buf));
2980 }
2981
2982 /* Detach an arc_buf from a dbuf (tag) */
2983 void
2984 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2985 {
2986 arc_buf_hdr_t *hdr = buf->b_hdr;
2987
2988 ASSERT3P(buf->b_data, !=, NULL);
2989 ASSERT(HDR_HAS_L1HDR(hdr));
2990 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2991 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2992
2993 arc_loaned_bytes_update(arc_buf_size(buf));
2994 }
2995
2996 static void
2997 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2998 {
2999 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
3000
3001 df->l2df_abd = abd;
3002 df->l2df_size = size;
3003 df->l2df_type = type;
3004 mutex_enter(&l2arc_free_on_write_mtx);
3005 list_insert_head(l2arc_free_on_write, df);
3006 mutex_exit(&l2arc_free_on_write_mtx);
3007 }
3008
3009 static void
3010 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3011 {
3012 arc_state_t *state = hdr->b_l1hdr.b_state;
3013 arc_buf_contents_t type = arc_buf_type(hdr);
3014 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3015
3016 /* protected by hash lock, if in the hash table */
3017 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
3018 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3019 ASSERT(state != arc_anon && state != arc_l2c_only);
3020
3021 (void) refcount_remove_many(&state->arcs_esize[type],
3022 size, hdr);
3023 }
3024 (void) refcount_remove_many(&state->arcs_size, size, hdr);
3025 if (type == ARC_BUFC_METADATA) {
3026 arc_space_return(size, ARC_SPACE_META);
3027 } else {
3028 ASSERT(type == ARC_BUFC_DATA);
3029 arc_space_return(size, ARC_SPACE_DATA);
3030 }
3031
3032 if (free_rdata) {
3033 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
3034 } else {
3035 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
3036 }
3037 }
3038
3039 /*
3040 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
3041 * data buffer, we transfer the refcount ownership to the hdr and update
3042 * the appropriate kstats.
3043 */
3044 static void
3045 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3046 {
3047 ASSERT(arc_can_share(hdr, buf));
3048 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3049 ASSERT(!ARC_BUF_ENCRYPTED(buf));
3050 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3051
3052 /*
3053 * Start sharing the data buffer. We transfer the
3054 * refcount ownership to the hdr since it always owns
3055 * the refcount whenever an arc_buf_t is shared.
3056 */
3057 refcount_transfer_ownership(&hdr->b_l1hdr.b_state->arcs_size, buf, hdr);
3058 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
3059 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
3060 HDR_ISTYPE_METADATA(hdr));
3061 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
3062 buf->b_flags |= ARC_BUF_FLAG_SHARED;
3063
3064 /*
3065 * Since we've transferred ownership to the hdr we need
3066 * to increment its compressed and uncompressed kstats and
3067 * decrement the overhead size.
3068 */
3069 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3070 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3071 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
3072 }
3073
3074 static void
3075 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3076 {
3077 ASSERT(arc_buf_is_shared(buf));
3078 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3079 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3080
3081 /*
3082 * We are no longer sharing this buffer so we need
3083 * to transfer its ownership to the rightful owner.
3084 */
3085 refcount_transfer_ownership(&hdr->b_l1hdr.b_state->arcs_size, hdr, buf);
3086 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3087 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3088 abd_put(hdr->b_l1hdr.b_pabd);
3089 hdr->b_l1hdr.b_pabd = NULL;
3090 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
3091
3092 /*
3093 * Since the buffer is no longer shared between
3094 * the arc buf and the hdr, count it as overhead.
3095 */
3096 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3097 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3098 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3099 }
3100
3101 /*
3102 * Remove an arc_buf_t from the hdr's buf list and return the last
3103 * arc_buf_t on the list. If no buffers remain on the list then return
3104 * NULL.
3105 */
3106 static arc_buf_t *
3107 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3108 {
3109 ASSERT(HDR_HAS_L1HDR(hdr));
3110 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3111
3112 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3113 arc_buf_t *lastbuf = NULL;
3114
3115 /*
3116 * Remove the buf from the hdr list and locate the last
3117 * remaining buffer on the list.
3118 */
3119 while (*bufp != NULL) {
3120 if (*bufp == buf)
3121 *bufp = buf->b_next;
3122
3123 /*
3124 * If we've removed a buffer in the middle of
3125 * the list then update the lastbuf and update
3126 * bufp.
3127 */
3128 if (*bufp != NULL) {
3129 lastbuf = *bufp;
3130 bufp = &(*bufp)->b_next;
3131 }
3132 }
3133 buf->b_next = NULL;
3134 ASSERT3P(lastbuf, !=, buf);
3135 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
3136 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
3137 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3138
3139 return (lastbuf);
3140 }
3141
3142 /*
3143 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
3144 * list and free it.
3145 */
3146 static void
3147 arc_buf_destroy_impl(arc_buf_t *buf)
3148 {
3149 arc_buf_hdr_t *hdr = buf->b_hdr;
3150
3151 /*
3152 * Free up the data associated with the buf but only if we're not
3153 * sharing this with the hdr. If we are sharing it with the hdr, the
3154 * hdr is responsible for doing the free.
3155 */
3156 if (buf->b_data != NULL) {
3157 /*
3158 * We're about to change the hdr's b_flags. We must either
3159 * hold the hash_lock or be undiscoverable.
3160 */
3161 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3162
3163 arc_cksum_verify(buf);
3164 arc_buf_unwatch(buf);
3165
3166 if (arc_buf_is_shared(buf)) {
3167 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3168 } else {
3169 uint64_t size = arc_buf_size(buf);
3170 arc_free_data_buf(hdr, buf->b_data, size, buf);
3171 ARCSTAT_INCR(arcstat_overhead_size, -size);
3172 }
3173 buf->b_data = NULL;
3174
3175 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3176 hdr->b_l1hdr.b_bufcnt -= 1;
3177
3178 if (ARC_BUF_ENCRYPTED(buf)) {
3179 hdr->b_crypt_hdr.b_ebufcnt -= 1;
3180
3181 /*
3182 * If we have no more encrypted buffers and we've
3183 * already gotten a copy of the decrypted data we can
3184 * free b_rabd to save some space.
3185 */
3186 if (hdr->b_crypt_hdr.b_ebufcnt == 0 &&
3187 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL &&
3188 !HDR_IO_IN_PROGRESS(hdr)) {
3189 arc_hdr_free_abd(hdr, B_TRUE);
3190 }
3191 }
3192 }
3193
3194 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3195
3196 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3197 /*
3198 * If the current arc_buf_t is sharing its data buffer with the
3199 * hdr, then reassign the hdr's b_pabd to share it with the new
3200 * buffer at the end of the list. The shared buffer is always
3201 * the last one on the hdr's buffer list.
3202 *
3203 * There is an equivalent case for compressed bufs, but since
3204 * they aren't guaranteed to be the last buf in the list and
3205 * that is an exceedingly rare case, we just allow that space be
3206 * wasted temporarily. We must also be careful not to share
3207 * encrypted buffers, since they cannot be shared.
3208 */
3209 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3210 /* Only one buf can be shared at once */
3211 VERIFY(!arc_buf_is_shared(lastbuf));
3212 /* hdr is uncompressed so can't have compressed buf */
3213 VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
3214
3215 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3216 arc_hdr_free_abd(hdr, B_FALSE);
3217
3218 /*
3219 * We must setup a new shared block between the
3220 * last buffer and the hdr. The data would have
3221 * been allocated by the arc buf so we need to transfer
3222 * ownership to the hdr since it's now being shared.
3223 */
3224 arc_share_buf(hdr, lastbuf);
3225 }
3226 } else if (HDR_SHARED_DATA(hdr)) {
3227 /*
3228 * Uncompressed shared buffers are always at the end
3229 * of the list. Compressed buffers don't have the
3230 * same requirements. This makes it hard to
3231 * simply assert that the lastbuf is shared so
3232 * we rely on the hdr's compression flags to determine
3233 * if we have a compressed, shared buffer.
3234 */
3235 ASSERT3P(lastbuf, !=, NULL);
3236 ASSERT(arc_buf_is_shared(lastbuf) ||
3237 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3238 }
3239
3240 /*
3241 * Free the checksum if we're removing the last uncompressed buf from
3242 * this hdr.
3243 */
3244 if (!arc_hdr_has_uncompressed_buf(hdr)) {
3245 arc_cksum_free(hdr);
3246 }
3247
3248 /* clean up the buf */
3249 buf->b_hdr = NULL;
3250 kmem_cache_free(buf_cache, buf);
3251 }
3252
3253 static void
3254 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, boolean_t alloc_rdata)
3255 {
3256 uint64_t size;
3257
3258 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3259 ASSERT(HDR_HAS_L1HDR(hdr));
3260 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3261 IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3262
3263 if (alloc_rdata) {
3264 size = HDR_GET_PSIZE(hdr);
3265 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3266 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr);
3267 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3268 ARCSTAT_INCR(arcstat_raw_size, size);
3269 } else {
3270 size = arc_hdr_size(hdr);
3271 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3272 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr);
3273 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3274 }
3275
3276 ARCSTAT_INCR(arcstat_compressed_size, size);
3277 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3278 }
3279
3280 static void
3281 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3282 {
3283 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3284
3285 ASSERT(HDR_HAS_L1HDR(hdr));
3286 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3287 IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3288
3289 /*
3290 * If the hdr is currently being written to the l2arc then
3291 * we defer freeing the data by adding it to the l2arc_free_on_write
3292 * list. The l2arc will free the data once it's finished
3293 * writing it to the l2arc device.
3294 */
3295 if (HDR_L2_WRITING(hdr)) {
3296 arc_hdr_free_on_write(hdr, free_rdata);
3297 ARCSTAT_BUMP(arcstat_l2_free_on_write);
3298 } else if (free_rdata) {
3299 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3300 } else {
3301 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
3302 }
3303
3304 if (free_rdata) {
3305 hdr->b_crypt_hdr.b_rabd = NULL;
3306 ARCSTAT_INCR(arcstat_raw_size, -size);
3307 } else {
3308 hdr->b_l1hdr.b_pabd = NULL;
3309 }
3310
3311 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3312 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3313
3314 ARCSTAT_INCR(arcstat_compressed_size, -size);
3315 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3316 }
3317
3318 static arc_buf_hdr_t *
3319 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3320 boolean_t protected, enum zio_compress compression_type,
3321 arc_buf_contents_t type, boolean_t alloc_rdata)
3322 {
3323 arc_buf_hdr_t *hdr;
3324
3325 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3326 if (protected) {
3327 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE);
3328 } else {
3329 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3330 }
3331
3332 ASSERT(HDR_EMPTY(hdr));
3333 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3334 HDR_SET_PSIZE(hdr, psize);
3335 HDR_SET_LSIZE(hdr, lsize);
3336 hdr->b_spa = spa;
3337 hdr->b_type = type;
3338 hdr->b_flags = 0;
3339 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3340 arc_hdr_set_compress(hdr, compression_type);
3341 if (protected)
3342 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3343
3344 hdr->b_l1hdr.b_state = arc_anon;
3345 hdr->b_l1hdr.b_arc_access = 0;
3346 hdr->b_l1hdr.b_bufcnt = 0;
3347 hdr->b_l1hdr.b_buf = NULL;
3348
3349 /*
3350 * Allocate the hdr's buffer. This will contain either
3351 * the compressed or uncompressed data depending on the block
3352 * it references and compressed arc enablement.
3353 */
3354 arc_hdr_alloc_abd(hdr, alloc_rdata);
3355 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3356
3357 return (hdr);
3358 }
3359
3360 /*
3361 * Transition between the two allocation states for the arc_buf_hdr struct.
3362 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3363 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3364 * version is used when a cache buffer is only in the L2ARC in order to reduce
3365 * memory usage.
3366 */
3367 static arc_buf_hdr_t *
3368 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3369 {
3370 ASSERT(HDR_HAS_L2HDR(hdr));
3371
3372 arc_buf_hdr_t *nhdr;
3373 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3374
3375 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3376 (old == hdr_l2only_cache && new == hdr_full_cache));
3377
3378 /*
3379 * if the caller wanted a new full header and the header is to be
3380 * encrypted we will actually allocate the header from the full crypt
3381 * cache instead. The same applies to freeing from the old cache.
3382 */
3383 if (HDR_PROTECTED(hdr) && new == hdr_full_cache)
3384 new = hdr_full_crypt_cache;
3385 if (HDR_PROTECTED(hdr) && old == hdr_full_cache)
3386 old = hdr_full_crypt_cache;
3387
3388 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3389
3390 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3391 buf_hash_remove(hdr);
3392
3393 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3394
3395 if (new == hdr_full_cache || new == hdr_full_crypt_cache) {
3396 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3397 /*
3398 * arc_access and arc_change_state need to be aware that a
3399 * header has just come out of L2ARC, so we set its state to
3400 * l2c_only even though it's about to change.
3401 */
3402 nhdr->b_l1hdr.b_state = arc_l2c_only;
3403
3404 /* Verify previous threads set to NULL before freeing */
3405 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3406 ASSERT(!HDR_HAS_RABD(hdr));
3407 } else {
3408 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3409 ASSERT0(hdr->b_l1hdr.b_bufcnt);
3410 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3411
3412 /*
3413 * If we've reached here, We must have been called from
3414 * arc_evict_hdr(), as such we should have already been
3415 * removed from any ghost list we were previously on
3416 * (which protects us from racing with arc_evict_state),
3417 * thus no locking is needed during this check.
3418 */
3419 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3420
3421 /*
3422 * A buffer must not be moved into the arc_l2c_only
3423 * state if it's not finished being written out to the
3424 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3425 * might try to be accessed, even though it was removed.
3426 */
3427 VERIFY(!HDR_L2_WRITING(hdr));
3428 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3429 ASSERT(!HDR_HAS_RABD(hdr));
3430
3431 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3432 }
3433 /*
3434 * The header has been reallocated so we need to re-insert it into any
3435 * lists it was on.
3436 */
3437 (void) buf_hash_insert(nhdr, NULL);
3438
3439 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3440
3441 mutex_enter(&dev->l2ad_mtx);
3442
3443 /*
3444 * We must place the realloc'ed header back into the list at
3445 * the same spot. Otherwise, if it's placed earlier in the list,
3446 * l2arc_write_buffers() could find it during the function's
3447 * write phase, and try to write it out to the l2arc.
3448 */
3449 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3450 list_remove(&dev->l2ad_buflist, hdr);
3451
3452 mutex_exit(&dev->l2ad_mtx);
3453
3454 /*
3455 * Since we're using the pointer address as the tag when
3456 * incrementing and decrementing the l2ad_alloc refcount, we
3457 * must remove the old pointer (that we're about to destroy) and
3458 * add the new pointer to the refcount. Otherwise we'd remove
3459 * the wrong pointer address when calling arc_hdr_destroy() later.
3460 */
3461
3462 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
3463 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
3464
3465 buf_discard_identity(hdr);
3466 kmem_cache_free(old, hdr);
3467
3468 return (nhdr);
3469 }
3470
3471 /*
3472 * This function allows an L1 header to be reallocated as a crypt
3473 * header and vice versa. If we are going to a crypt header, the
3474 * new fields will be zeroed out.
3475 */
3476 static arc_buf_hdr_t *
3477 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt)
3478 {
3479 arc_buf_hdr_t *nhdr;
3480 arc_buf_t *buf;
3481 kmem_cache_t *ncache, *ocache;
3482
3483 ASSERT(HDR_HAS_L1HDR(hdr));
3484 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt);
3485 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3486 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3487
3488 if (need_crypt) {
3489 ncache = hdr_full_crypt_cache;
3490 ocache = hdr_full_cache;
3491 } else {
3492 ncache = hdr_full_cache;
3493 ocache = hdr_full_crypt_cache;
3494 }
3495
3496 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE);
3497 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3498 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum;
3499 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt;
3500 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap;
3501 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state;
3502 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access;
3503 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits;
3504 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits;
3505 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits;
3506 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits;
3507 nhdr->b_l1hdr.b_l2_hits = hdr->b_l1hdr.b_l2_hits;
3508 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb;
3509 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd;
3510 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf;
3511
3512 /*
3513 * This refcount_add() exists only to ensure that the individual
3514 * arc buffers always point to a header that is referenced, avoiding
3515 * a small race condition that could trigger ASSERTs.
3516 */
3517 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG);
3518
3519 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
3520 mutex_enter(&buf->b_evict_lock);
3521 buf->b_hdr = nhdr;
3522 mutex_exit(&buf->b_evict_lock);
3523 }
3524
3525 refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt);
3526 (void) refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG);
3527
3528 if (need_crypt) {
3529 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED);
3530 } else {
3531 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED);
3532 }
3533
3534 buf_discard_identity(hdr);
3535 kmem_cache_free(ocache, hdr);
3536
3537 return (nhdr);
3538 }
3539
3540 /*
3541 * This function is used by the send / receive code to convert a newly
3542 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3543 * is also used to allow the root objset block to be uupdated without altering
3544 * its embedded MACs. Both block types will always be uncompressed so we do not
3545 * have to worry about compression type or psize.
3546 */
3547 void
3548 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3549 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3550 const uint8_t *mac)
3551 {
3552 arc_buf_hdr_t *hdr = buf->b_hdr;
3553
3554 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3555 ASSERT(HDR_HAS_L1HDR(hdr));
3556 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3557
3558 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3559 if (!HDR_PROTECTED(hdr))
3560 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE);
3561 hdr->b_crypt_hdr.b_dsobj = dsobj;
3562 hdr->b_crypt_hdr.b_ot = ot;
3563 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3564 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3565 if (!arc_hdr_has_uncompressed_buf(hdr))
3566 arc_cksum_free(hdr);
3567
3568 if (salt != NULL)
3569 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3570 if (iv != NULL)
3571 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3572 if (mac != NULL)
3573 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3574 }
3575
3576 /*
3577 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3578 * The buf is returned thawed since we expect the consumer to modify it.
3579 */
3580 arc_buf_t *
3581 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3582 {
3583 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3584 B_FALSE, ZIO_COMPRESS_OFF, type, B_FALSE);
3585 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3586
3587 arc_buf_t *buf = NULL;
3588 VERIFY0(arc_buf_alloc_impl(hdr, spa, 0, tag, B_FALSE, B_FALSE,
3589 B_FALSE, B_FALSE, &buf));
3590 arc_buf_thaw(buf);
3591
3592 return (buf);
3593 }
3594
3595 /*
3596 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3597 * for bufs containing metadata.
3598 */
3599 arc_buf_t *
3600 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3601 enum zio_compress compression_type)
3602 {
3603 ASSERT3U(lsize, >, 0);
3604 ASSERT3U(lsize, >=, psize);
3605 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3606 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3607
3608 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3609 B_FALSE, compression_type, ARC_BUFC_DATA, B_FALSE);
3610 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3611
3612 arc_buf_t *buf = NULL;
3613 VERIFY0(arc_buf_alloc_impl(hdr, spa, 0, tag, B_FALSE,
3614 B_TRUE, B_FALSE, B_FALSE, &buf));
3615 arc_buf_thaw(buf);
3616 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3617
3618 if (!arc_buf_is_shared(buf)) {
3619 /*
3620 * To ensure that the hdr has the correct data in it if we call
3621 * arc_untransform() on this buf before it's been written to
3622 * disk, it's easiest if we just set up sharing between the
3623 * buf and the hdr.
3624 */
3625 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3626 arc_hdr_free_abd(hdr, B_FALSE);
3627 arc_share_buf(hdr, buf);
3628 }
3629
3630 return (buf);
3631 }
3632
3633 arc_buf_t *
3634 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder,
3635 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3636 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3637 enum zio_compress compression_type)
3638 {
3639 arc_buf_hdr_t *hdr;
3640 arc_buf_t *buf;
3641 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3642 ARC_BUFC_METADATA : ARC_BUFC_DATA;
3643
3644 ASSERT3U(lsize, >, 0);
3645 ASSERT3U(lsize, >=, psize);
3646 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3647 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3648
3649 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3650 compression_type, type, B_TRUE);
3651 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3652
3653 hdr->b_crypt_hdr.b_dsobj = dsobj;
3654 hdr->b_crypt_hdr.b_ot = ot;
3655 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3656 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3657 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3658 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3659 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3660
3661 /*
3662 * This buffer will be considered encrypted even if the ot is not an
3663 * encrypted type. It will become authenticated instead in
3664 * arc_write_ready().
3665 */
3666 buf = NULL;
3667 VERIFY0(arc_buf_alloc_impl(hdr, spa, dsobj, tag, B_TRUE, B_TRUE,
3668 B_FALSE, B_FALSE, &buf));
3669 arc_buf_thaw(buf);
3670 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3671
3672 return (buf);
3673 }
3674
3675 static void
3676 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3677 {
3678 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3679 l2arc_dev_t *dev = l2hdr->b_dev;
3680 uint64_t psize = arc_hdr_size(hdr);
3681
3682 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3683 ASSERT(HDR_HAS_L2HDR(hdr));
3684
3685 list_remove(&dev->l2ad_buflist, hdr);
3686
3687 ARCSTAT_INCR(arcstat_l2_psize, -psize);
3688 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3689
3690 vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
3691
3692 (void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
3693 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3694 }
3695
3696 static void
3697 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3698 {
3699 if (HDR_HAS_L1HDR(hdr)) {
3700 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3701 hdr->b_l1hdr.b_bufcnt > 0);
3702 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3703 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3704 }
3705 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3706 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3707
3708 if (!HDR_EMPTY(hdr))
3709 buf_discard_identity(hdr);
3710
3711 if (HDR_HAS_L2HDR(hdr)) {
3712 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3713 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3714
3715 if (!buflist_held)
3716 mutex_enter(&dev->l2ad_mtx);
3717
3718 /*
3719 * Even though we checked this conditional above, we
3720 * need to check this again now that we have the
3721 * l2ad_mtx. This is because we could be racing with
3722 * another thread calling l2arc_evict() which might have
3723 * destroyed this header's L2 portion as we were waiting
3724 * to acquire the l2ad_mtx. If that happens, we don't
3725 * want to re-destroy the header's L2 portion.
3726 */
3727 if (HDR_HAS_L2HDR(hdr))
3728 arc_hdr_l2hdr_destroy(hdr);
3729
3730 if (!buflist_held)
3731 mutex_exit(&dev->l2ad_mtx);
3732 }
3733
3734 if (HDR_HAS_L1HDR(hdr)) {
3735 arc_cksum_free(hdr);
3736
3737 while (hdr->b_l1hdr.b_buf != NULL)
3738 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3739
3740 if (hdr->b_l1hdr.b_pabd != NULL) {
3741 arc_hdr_free_abd(hdr, B_FALSE);
3742 }
3743
3744 if (HDR_HAS_RABD(hdr))
3745 arc_hdr_free_abd(hdr, B_TRUE);
3746 }
3747
3748 ASSERT3P(hdr->b_hash_next, ==, NULL);
3749 if (HDR_HAS_L1HDR(hdr)) {
3750 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3751 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3752
3753 if (!HDR_PROTECTED(hdr)) {
3754 kmem_cache_free(hdr_full_cache, hdr);
3755 } else {
3756 kmem_cache_free(hdr_full_crypt_cache, hdr);
3757 }
3758 } else {
3759 kmem_cache_free(hdr_l2only_cache, hdr);
3760 }
3761 }
3762
3763 void
3764 arc_buf_destroy(arc_buf_t *buf, void* tag)
3765 {
3766 arc_buf_hdr_t *hdr = buf->b_hdr;
3767 kmutex_t *hash_lock = HDR_LOCK(hdr);
3768
3769 if (hdr->b_l1hdr.b_state == arc_anon) {
3770 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3771 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3772 VERIFY0(remove_reference(hdr, NULL, tag));
3773 arc_hdr_destroy(hdr);
3774 return;
3775 }
3776
3777 mutex_enter(hash_lock);
3778 ASSERT3P(hdr, ==, buf->b_hdr);
3779 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3780 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3781 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3782 ASSERT3P(buf->b_data, !=, NULL);
3783
3784 (void) remove_reference(hdr, hash_lock, tag);
3785 arc_buf_destroy_impl(buf);
3786 mutex_exit(hash_lock);
3787 }
3788
3789 /*
3790 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3791 * state of the header is dependent on its state prior to entering this
3792 * function. The following transitions are possible:
3793 *
3794 * - arc_mru -> arc_mru_ghost
3795 * - arc_mfu -> arc_mfu_ghost
3796 * - arc_mru_ghost -> arc_l2c_only
3797 * - arc_mru_ghost -> deleted
3798 * - arc_mfu_ghost -> arc_l2c_only
3799 * - arc_mfu_ghost -> deleted
3800 */
3801 static int64_t
3802 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3803 {
3804 arc_state_t *evicted_state, *state;
3805 int64_t bytes_evicted = 0;
3806 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3807 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
3808
3809 ASSERT(MUTEX_HELD(hash_lock));
3810 ASSERT(HDR_HAS_L1HDR(hdr));
3811
3812 state = hdr->b_l1hdr.b_state;
3813 if (GHOST_STATE(state)) {
3814 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3815 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3816
3817 /*
3818 * l2arc_write_buffers() relies on a header's L1 portion
3819 * (i.e. its b_pabd field) during it's write phase.
3820 * Thus, we cannot push a header onto the arc_l2c_only
3821 * state (removing its L1 piece) until the header is
3822 * done being written to the l2arc.
3823 */
3824 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3825 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3826 return (bytes_evicted);
3827 }
3828
3829 ARCSTAT_BUMP(arcstat_deleted);
3830 bytes_evicted += HDR_GET_LSIZE(hdr);
3831
3832 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3833
3834 if (HDR_HAS_L2HDR(hdr)) {
3835 ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3836 ASSERT(!HDR_HAS_RABD(hdr));
3837 /*
3838 * This buffer is cached on the 2nd Level ARC;
3839 * don't destroy the header.
3840 */
3841 arc_change_state(arc_l2c_only, hdr, hash_lock);
3842 /*
3843 * dropping from L1+L2 cached to L2-only,
3844 * realloc to remove the L1 header.
3845 */
3846 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3847 hdr_l2only_cache);
3848 } else {
3849 arc_change_state(arc_anon, hdr, hash_lock);
3850 arc_hdr_destroy(hdr);
3851 }
3852 return (bytes_evicted);
3853 }
3854
3855 ASSERT(state == arc_mru || state == arc_mfu);
3856 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3857
3858 /* prefetch buffers have a minimum lifespan */
3859 if (HDR_IO_IN_PROGRESS(hdr) ||
3860 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3861 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3862 MSEC_TO_TICK(min_lifetime))) {
3863 ARCSTAT_BUMP(arcstat_evict_skip);
3864 return (bytes_evicted);
3865 }
3866
3867 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3868 while (hdr->b_l1hdr.b_buf) {
3869 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3870 if (!mutex_tryenter(&buf->b_evict_lock)) {
3871 ARCSTAT_BUMP(arcstat_mutex_miss);
3872 break;
3873 }
3874 if (buf->b_data != NULL)
3875 bytes_evicted += HDR_GET_LSIZE(hdr);
3876 mutex_exit(&buf->b_evict_lock);
3877 arc_buf_destroy_impl(buf);
3878 }
3879
3880 if (HDR_HAS_L2HDR(hdr)) {
3881 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3882 } else {
3883 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3884 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3885 HDR_GET_LSIZE(hdr));
3886 } else {
3887 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3888 HDR_GET_LSIZE(hdr));
3889 }
3890 }
3891
3892 if (hdr->b_l1hdr.b_bufcnt == 0) {
3893 arc_cksum_free(hdr);
3894
3895 bytes_evicted += arc_hdr_size(hdr);
3896
3897 /*
3898 * If this hdr is being evicted and has a compressed
3899 * buffer then we discard it here before we change states.
3900 * This ensures that the accounting is updated correctly
3901 * in arc_free_data_impl().
3902 */
3903 if (hdr->b_l1hdr.b_pabd != NULL)
3904 arc_hdr_free_abd(hdr, B_FALSE);
3905
3906 if (HDR_HAS_RABD(hdr))
3907 arc_hdr_free_abd(hdr, B_TRUE);
3908
3909 arc_change_state(evicted_state, hdr, hash_lock);
3910 ASSERT(HDR_IN_HASH_TABLE(hdr));
3911 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3912 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3913 }
3914
3915 return (bytes_evicted);
3916 }
3917
3918 static uint64_t
3919 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3920 uint64_t spa, int64_t bytes)
3921 {
3922 multilist_sublist_t *mls;
3923 uint64_t bytes_evicted = 0;
3924 arc_buf_hdr_t *hdr;
3925 kmutex_t *hash_lock;
3926 int evict_count = 0;
3927
3928 ASSERT3P(marker, !=, NULL);
3929 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3930
3931 mls = multilist_sublist_lock(ml, idx);
3932
3933 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3934 hdr = multilist_sublist_prev(mls, marker)) {
3935 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3936 (evict_count >= zfs_arc_evict_batch_limit))
3937 break;
3938
3939 /*
3940 * To keep our iteration location, move the marker
3941 * forward. Since we're not holding hdr's hash lock, we
3942 * must be very careful and not remove 'hdr' from the
3943 * sublist. Otherwise, other consumers might mistake the
3944 * 'hdr' as not being on a sublist when they call the
3945 * multilist_link_active() function (they all rely on
3946 * the hash lock protecting concurrent insertions and
3947 * removals). multilist_sublist_move_forward() was
3948 * specifically implemented to ensure this is the case
3949 * (only 'marker' will be removed and re-inserted).
3950 */
3951 multilist_sublist_move_forward(mls, marker);
3952
3953 /*
3954 * The only case where the b_spa field should ever be
3955 * zero, is the marker headers inserted by
3956 * arc_evict_state(). It's possible for multiple threads
3957 * to be calling arc_evict_state() concurrently (e.g.
3958 * dsl_pool_close() and zio_inject_fault()), so we must
3959 * skip any markers we see from these other threads.
3960 */
3961 if (hdr->b_spa == 0)
3962 continue;
3963
3964 /* we're only interested in evicting buffers of a certain spa */
3965 if (spa != 0 && hdr->b_spa != spa) {
3966 ARCSTAT_BUMP(arcstat_evict_skip);
3967 continue;
3968 }
3969
3970 hash_lock = HDR_LOCK(hdr);
3971
3972 /*
3973 * We aren't calling this function from any code path
3974 * that would already be holding a hash lock, so we're
3975 * asserting on this assumption to be defensive in case
3976 * this ever changes. Without this check, it would be
3977 * possible to incorrectly increment arcstat_mutex_miss
3978 * below (e.g. if the code changed such that we called
3979 * this function with a hash lock held).
3980 */
3981 ASSERT(!MUTEX_HELD(hash_lock));
3982
3983 if (mutex_tryenter(hash_lock)) {
3984 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3985 mutex_exit(hash_lock);
3986
3987 bytes_evicted += evicted;
3988
3989 /*
3990 * If evicted is zero, arc_evict_hdr() must have
3991 * decided to skip this header, don't increment
3992 * evict_count in this case.
3993 */
3994 if (evicted != 0)
3995 evict_count++;
3996
3997 /*
3998 * If arc_size isn't overflowing, signal any
3999 * threads that might happen to be waiting.
4000 *
4001 * For each header evicted, we wake up a single
4002 * thread. If we used cv_broadcast, we could
4003 * wake up "too many" threads causing arc_size
4004 * to significantly overflow arc_c; since
4005 * arc_get_data_impl() doesn't check for overflow
4006 * when it's woken up (it doesn't because it's
4007 * possible for the ARC to be overflowing while
4008 * full of un-evictable buffers, and the
4009 * function should proceed in this case).
4010 *
4011 * If threads are left sleeping, due to not
4012 * using cv_broadcast, they will be woken up
4013 * just before arc_reclaim_thread() sleeps.
4014 */
4015 mutex_enter(&arc_reclaim_lock);
4016 if (!arc_is_overflowing())
4017 cv_signal(&arc_reclaim_waiters_cv);
4018 mutex_exit(&arc_reclaim_lock);
4019 } else {
4020 ARCSTAT_BUMP(arcstat_mutex_miss);
4021 }
4022 }
4023
4024 multilist_sublist_unlock(mls);
4025
4026 return (bytes_evicted);
4027 }
4028
4029 /*
4030 * Evict buffers from the given arc state, until we've removed the
4031 * specified number of bytes. Move the removed buffers to the
4032 * appropriate evict state.
4033 *
4034 * This function makes a "best effort". It skips over any buffers
4035 * it can't get a hash_lock on, and so, may not catch all candidates.
4036 * It may also return without evicting as much space as requested.
4037 *
4038 * If bytes is specified using the special value ARC_EVICT_ALL, this
4039 * will evict all available (i.e. unlocked and evictable) buffers from
4040 * the given arc state; which is used by arc_flush().
4041 */
4042 static uint64_t
4043 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
4044 arc_buf_contents_t type)
4045 {
4046 uint64_t total_evicted = 0;
4047 multilist_t *ml = state->arcs_list[type];
4048 int num_sublists;
4049 arc_buf_hdr_t **markers;
4050
4051 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
4052
4053 num_sublists = multilist_get_num_sublists(ml);
4054
4055 /*
4056 * If we've tried to evict from each sublist, made some
4057 * progress, but still have not hit the target number of bytes
4058 * to evict, we want to keep trying. The markers allow us to
4059 * pick up where we left off for each individual sublist, rather
4060 * than starting from the tail each time.
4061 */
4062 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
4063 for (int i = 0; i < num_sublists; i++) {
4064 multilist_sublist_t *mls;
4065
4066 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4067
4068 /*
4069 * A b_spa of 0 is used to indicate that this header is
4070 * a marker. This fact is used in arc_adjust_type() and
4071 * arc_evict_state_impl().
4072 */
4073 markers[i]->b_spa = 0;
4074
4075 mls = multilist_sublist_lock(ml, i);
4076 multilist_sublist_insert_tail(mls, markers[i]);
4077 multilist_sublist_unlock(mls);
4078 }
4079
4080 /*
4081 * While we haven't hit our target number of bytes to evict, or
4082 * we're evicting all available buffers.
4083 */
4084 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
4085 int sublist_idx = multilist_get_random_index(ml);
4086 uint64_t scan_evicted = 0;
4087
4088 /*
4089 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
4090 * Request that 10% of the LRUs be scanned by the superblock
4091 * shrinker.
4092 */
4093 if (type == ARC_BUFC_DATA && arc_dnode_size > arc_dnode_limit)
4094 arc_prune_async((arc_dnode_size - arc_dnode_limit) /
4095 sizeof (dnode_t) / zfs_arc_dnode_reduce_percent);
4096
4097 /*
4098 * Start eviction using a randomly selected sublist,
4099 * this is to try and evenly balance eviction across all
4100 * sublists. Always starting at the same sublist
4101 * (e.g. index 0) would cause evictions to favor certain
4102 * sublists over others.
4103 */
4104 for (int i = 0; i < num_sublists; i++) {
4105 uint64_t bytes_remaining;
4106 uint64_t bytes_evicted;
4107
4108 if (bytes == ARC_EVICT_ALL)
4109 bytes_remaining = ARC_EVICT_ALL;
4110 else if (total_evicted < bytes)
4111 bytes_remaining = bytes - total_evicted;
4112 else
4113 break;
4114
4115 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4116 markers[sublist_idx], spa, bytes_remaining);
4117
4118 scan_evicted += bytes_evicted;
4119 total_evicted += bytes_evicted;
4120
4121 /* we've reached the end, wrap to the beginning */
4122 if (++sublist_idx >= num_sublists)
4123 sublist_idx = 0;
4124 }
4125
4126 /*
4127 * If we didn't evict anything during this scan, we have
4128 * no reason to believe we'll evict more during another
4129 * scan, so break the loop.
4130 */
4131 if (scan_evicted == 0) {
4132 /* This isn't possible, let's make that obvious */
4133 ASSERT3S(bytes, !=, 0);
4134
4135 /*
4136 * When bytes is ARC_EVICT_ALL, the only way to
4137 * break the loop is when scan_evicted is zero.
4138 * In that case, we actually have evicted enough,
4139 * so we don't want to increment the kstat.
4140 */
4141 if (bytes != ARC_EVICT_ALL) {
4142 ASSERT3S(total_evicted, <, bytes);
4143 ARCSTAT_BUMP(arcstat_evict_not_enough);
4144 }
4145
4146 break;
4147 }
4148 }
4149
4150 for (int i = 0; i < num_sublists; i++) {
4151 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4152 multilist_sublist_remove(mls, markers[i]);
4153 multilist_sublist_unlock(mls);
4154
4155 kmem_cache_free(hdr_full_cache, markers[i]);
4156 }
4157 kmem_free(markers, sizeof (*markers) * num_sublists);
4158
4159 return (total_evicted);
4160 }
4161
4162 /*
4163 * Flush all "evictable" data of the given type from the arc state
4164 * specified. This will not evict any "active" buffers (i.e. referenced).
4165 *
4166 * When 'retry' is set to B_FALSE, the function will make a single pass
4167 * over the state and evict any buffers that it can. Since it doesn't
4168 * continually retry the eviction, it might end up leaving some buffers
4169 * in the ARC due to lock misses.
4170 *
4171 * When 'retry' is set to B_TRUE, the function will continually retry the
4172 * eviction until *all* evictable buffers have been removed from the
4173 * state. As a result, if concurrent insertions into the state are
4174 * allowed (e.g. if the ARC isn't shutting down), this function might
4175 * wind up in an infinite loop, continually trying to evict buffers.
4176 */
4177 static uint64_t
4178 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4179 boolean_t retry)
4180 {
4181 uint64_t evicted = 0;
4182
4183 while (refcount_count(&state->arcs_esize[type]) != 0) {
4184 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4185
4186 if (!retry)
4187 break;
4188 }
4189
4190 return (evicted);
4191 }
4192
4193 /*
4194 * Helper function for arc_prune_async() it is responsible for safely
4195 * handling the execution of a registered arc_prune_func_t.
4196 */
4197 static void
4198 arc_prune_task(void *ptr)
4199 {
4200 arc_prune_t *ap = (arc_prune_t *)ptr;
4201 arc_prune_func_t *func = ap->p_pfunc;
4202
4203 if (func != NULL)
4204 func(ap->p_adjust, ap->p_private);
4205
4206 refcount_remove(&ap->p_refcnt, func);
4207 }
4208
4209 /*
4210 * Notify registered consumers they must drop holds on a portion of the ARC
4211 * buffered they reference. This provides a mechanism to ensure the ARC can
4212 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
4213 * is analogous to dnlc_reduce_cache() but more generic.
4214 *
4215 * This operation is performed asynchronously so it may be safely called
4216 * in the context of the arc_reclaim_thread(). A reference is taken here
4217 * for each registered arc_prune_t and the arc_prune_task() is responsible
4218 * for releasing it once the registered arc_prune_func_t has completed.
4219 */
4220 static void
4221 arc_prune_async(int64_t adjust)
4222 {
4223 arc_prune_t *ap;
4224
4225 mutex_enter(&arc_prune_mtx);
4226 for (ap = list_head(&arc_prune_list); ap != NULL;
4227 ap = list_next(&arc_prune_list, ap)) {
4228
4229 if (refcount_count(&ap->p_refcnt) >= 2)
4230 continue;
4231
4232 refcount_add(&ap->p_refcnt, ap->p_pfunc);
4233 ap->p_adjust = adjust;
4234 if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
4235 ap, TQ_SLEEP) == TASKQID_INVALID) {
4236 refcount_remove(&ap->p_refcnt, ap->p_pfunc);
4237 continue;
4238 }
4239 ARCSTAT_BUMP(arcstat_prune);
4240 }
4241 mutex_exit(&arc_prune_mtx);
4242 }
4243
4244 /*
4245 * Evict the specified number of bytes from the state specified,
4246 * restricting eviction to the spa and type given. This function
4247 * prevents us from trying to evict more from a state's list than
4248 * is "evictable", and to skip evicting altogether when passed a
4249 * negative value for "bytes". In contrast, arc_evict_state() will
4250 * evict everything it can, when passed a negative value for "bytes".
4251 */
4252 static uint64_t
4253 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
4254 arc_buf_contents_t type)
4255 {
4256 int64_t delta;
4257
4258 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
4259 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
4260 return (arc_evict_state(state, spa, delta, type));
4261 }
4262
4263 return (0);
4264 }
4265
4266 /*
4267 * The goal of this function is to evict enough meta data buffers from the
4268 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
4269 * more complicated than it appears because it is common for data buffers
4270 * to have holds on meta data buffers. In addition, dnode meta data buffers
4271 * will be held by the dnodes in the block preventing them from being freed.
4272 * This means we can't simply traverse the ARC and expect to always find
4273 * enough unheld meta data buffer to release.
4274 *
4275 * Therefore, this function has been updated to make alternating passes
4276 * over the ARC releasing data buffers and then newly unheld meta data
4277 * buffers. This ensures forward progress is maintained and arc_meta_used
4278 * will decrease. Normally this is sufficient, but if required the ARC
4279 * will call the registered prune callbacks causing dentry and inodes to
4280 * be dropped from the VFS cache. This will make dnode meta data buffers
4281 * available for reclaim.
4282 */
4283 static uint64_t
4284 arc_adjust_meta_balanced(void)
4285 {
4286 int64_t delta, prune = 0, adjustmnt;
4287 uint64_t total_evicted = 0;
4288 arc_buf_contents_t type = ARC_BUFC_DATA;
4289 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
4290
4291 restart:
4292 /*
4293 * This slightly differs than the way we evict from the mru in
4294 * arc_adjust because we don't have a "target" value (i.e. no
4295 * "meta" arc_p). As a result, I think we can completely
4296 * cannibalize the metadata in the MRU before we evict the
4297 * metadata from the MFU. I think we probably need to implement a
4298 * "metadata arc_p" value to do this properly.
4299 */
4300 adjustmnt = arc_meta_used - arc_meta_limit;
4301
4302 if (adjustmnt > 0 && refcount_count(&arc_mru->arcs_esize[type]) > 0) {
4303 delta = MIN(refcount_count(&arc_mru->arcs_esize[type]),
4304 adjustmnt);
4305 total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
4306 adjustmnt -= delta;
4307 }
4308
4309 /*
4310 * We can't afford to recalculate adjustmnt here. If we do,
4311 * new metadata buffers can sneak into the MRU or ANON lists,
4312 * thus penalize the MFU metadata. Although the fudge factor is
4313 * small, it has been empirically shown to be significant for
4314 * certain workloads (e.g. creating many empty directories). As
4315 * such, we use the original calculation for adjustmnt, and
4316 * simply decrement the amount of data evicted from the MRU.
4317 */
4318
4319 if (adjustmnt > 0 && refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
4320 delta = MIN(refcount_count(&arc_mfu->arcs_esize[type]),
4321 adjustmnt);
4322 total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
4323 }
4324
4325 adjustmnt = arc_meta_used - arc_meta_limit;
4326
4327 if (adjustmnt > 0 &&
4328 refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
4329 delta = MIN(adjustmnt,
4330 refcount_count(&arc_mru_ghost->arcs_esize[type]));
4331 total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
4332 adjustmnt -= delta;
4333 }
4334
4335 if (adjustmnt > 0 &&
4336 refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
4337 delta = MIN(adjustmnt,
4338 refcount_count(&arc_mfu_ghost->arcs_esize[type]));
4339 total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
4340 }
4341
4342 /*
4343 * If after attempting to make the requested adjustment to the ARC
4344 * the meta limit is still being exceeded then request that the
4345 * higher layers drop some cached objects which have holds on ARC
4346 * meta buffers. Requests to the upper layers will be made with
4347 * increasingly large scan sizes until the ARC is below the limit.
4348 */
4349 if (arc_meta_used > arc_meta_limit) {
4350 if (type == ARC_BUFC_DATA) {
4351 type = ARC_BUFC_METADATA;
4352 } else {
4353 type = ARC_BUFC_DATA;
4354
4355 if (zfs_arc_meta_prune) {
4356 prune += zfs_arc_meta_prune;
4357 arc_prune_async(prune);
4358 }
4359 }
4360
4361 if (restarts > 0) {
4362 restarts--;
4363 goto restart;
4364 }
4365 }
4366 return (total_evicted);
4367 }
4368
4369 /*
4370 * Evict metadata buffers from the cache, such that arc_meta_used is
4371 * capped by the arc_meta_limit tunable.
4372 */
4373 static uint64_t
4374 arc_adjust_meta_only(void)
4375 {
4376 uint64_t total_evicted = 0;
4377 int64_t target;
4378
4379 /*
4380 * If we're over the meta limit, we want to evict enough
4381 * metadata to get back under the meta limit. We don't want to
4382 * evict so much that we drop the MRU below arc_p, though. If
4383 * we're over the meta limit more than we're over arc_p, we
4384 * evict some from the MRU here, and some from the MFU below.
4385 */
4386 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
4387 (int64_t)(refcount_count(&arc_anon->arcs_size) +
4388 refcount_count(&arc_mru->arcs_size) - arc_p));
4389
4390 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4391
4392 /*
4393 * Similar to the above, we want to evict enough bytes to get us
4394 * below the meta limit, but not so much as to drop us below the
4395 * space allotted to the MFU (which is defined as arc_c - arc_p).
4396 */
4397 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
4398 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
4399
4400 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4401
4402 return (total_evicted);
4403 }
4404
4405 static uint64_t
4406 arc_adjust_meta(void)
4407 {
4408 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
4409 return (arc_adjust_meta_only());
4410 else
4411 return (arc_adjust_meta_balanced());
4412 }
4413
4414 /*
4415 * Return the type of the oldest buffer in the given arc state
4416 *
4417 * This function will select a random sublist of type ARC_BUFC_DATA and
4418 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4419 * is compared, and the type which contains the "older" buffer will be
4420 * returned.
4421 */
4422 static arc_buf_contents_t
4423 arc_adjust_type(arc_state_t *state)
4424 {
4425 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
4426 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
4427 int data_idx = multilist_get_random_index(data_ml);
4428 int meta_idx = multilist_get_random_index(meta_ml);
4429 multilist_sublist_t *data_mls;
4430 multilist_sublist_t *meta_mls;
4431 arc_buf_contents_t type;
4432 arc_buf_hdr_t *data_hdr;
4433 arc_buf_hdr_t *meta_hdr;
4434
4435 /*
4436 * We keep the sublist lock until we're finished, to prevent
4437 * the headers from being destroyed via arc_evict_state().
4438 */
4439 data_mls = multilist_sublist_lock(data_ml, data_idx);
4440 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4441
4442 /*
4443 * These two loops are to ensure we skip any markers that
4444 * might be at the tail of the lists due to arc_evict_state().
4445 */
4446
4447 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4448 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4449 if (data_hdr->b_spa != 0)
4450 break;
4451 }
4452
4453 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4454 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4455 if (meta_hdr->b_spa != 0)
4456 break;
4457 }
4458
4459 if (data_hdr == NULL && meta_hdr == NULL) {
4460 type = ARC_BUFC_DATA;
4461 } else if (data_hdr == NULL) {
4462 ASSERT3P(meta_hdr, !=, NULL);
4463 type = ARC_BUFC_METADATA;
4464 } else if (meta_hdr == NULL) {
4465 ASSERT3P(data_hdr, !=, NULL);
4466 type = ARC_BUFC_DATA;
4467 } else {
4468 ASSERT3P(data_hdr, !=, NULL);
4469 ASSERT3P(meta_hdr, !=, NULL);
4470
4471 /* The headers can't be on the sublist without an L1 header */
4472 ASSERT(HDR_HAS_L1HDR(data_hdr));
4473 ASSERT(HDR_HAS_L1HDR(meta_hdr));
4474
4475 if (data_hdr->b_l1hdr.b_arc_access <
4476 meta_hdr->b_l1hdr.b_arc_access) {
4477 type = ARC_BUFC_DATA;
4478 } else {
4479 type = ARC_BUFC_METADATA;
4480 }
4481 }
4482
4483 multilist_sublist_unlock(meta_mls);
4484 multilist_sublist_unlock(data_mls);
4485
4486 return (type);
4487 }
4488
4489 /*
4490 * Evict buffers from the cache, such that arc_size is capped by arc_c.
4491 */
4492 static uint64_t
4493 arc_adjust(void)
4494 {
4495 uint64_t total_evicted = 0;
4496 uint64_t bytes;
4497 int64_t target;
4498
4499 /*
4500 * If we're over arc_meta_limit, we want to correct that before
4501 * potentially evicting data buffers below.
4502 */
4503 total_evicted += arc_adjust_meta();
4504
4505 /*
4506 * Adjust MRU size
4507 *
4508 * If we're over the target cache size, we want to evict enough
4509 * from the list to get back to our target size. We don't want
4510 * to evict too much from the MRU, such that it drops below
4511 * arc_p. So, if we're over our target cache size more than
4512 * the MRU is over arc_p, we'll evict enough to get back to
4513 * arc_p here, and then evict more from the MFU below.
4514 */
4515 target = MIN((int64_t)(arc_size - arc_c),
4516 (int64_t)(refcount_count(&arc_anon->arcs_size) +
4517 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
4518
4519 /*
4520 * If we're below arc_meta_min, always prefer to evict data.
4521 * Otherwise, try to satisfy the requested number of bytes to
4522 * evict from the type which contains older buffers; in an
4523 * effort to keep newer buffers in the cache regardless of their
4524 * type. If we cannot satisfy the number of bytes from this
4525 * type, spill over into the next type.
4526 */
4527 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
4528 arc_meta_used > arc_meta_min) {
4529 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4530 total_evicted += bytes;
4531
4532 /*
4533 * If we couldn't evict our target number of bytes from
4534 * metadata, we try to get the rest from data.
4535 */
4536 target -= bytes;
4537
4538 total_evicted +=
4539 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4540 } else {
4541 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4542 total_evicted += bytes;
4543
4544 /*
4545 * If we couldn't evict our target number of bytes from
4546 * data, we try to get the rest from metadata.
4547 */
4548 target -= bytes;
4549
4550 total_evicted +=
4551 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4552 }
4553
4554 /*
4555 * Adjust MFU size
4556 *
4557 * Now that we've tried to evict enough from the MRU to get its
4558 * size back to arc_p, if we're still above the target cache
4559 * size, we evict the rest from the MFU.
4560 */
4561 target = arc_size - arc_c;
4562
4563 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
4564 arc_meta_used > arc_meta_min) {
4565 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4566 total_evicted += bytes;
4567
4568 /*
4569 * If we couldn't evict our target number of bytes from
4570 * metadata, we try to get the rest from data.
4571 */
4572 target -= bytes;
4573
4574 total_evicted +=
4575 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4576 } else {
4577 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4578 total_evicted += bytes;
4579
4580 /*
4581 * If we couldn't evict our target number of bytes from
4582 * data, we try to get the rest from data.
4583 */
4584 target -= bytes;
4585
4586 total_evicted +=
4587 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4588 }
4589
4590 /*
4591 * Adjust ghost lists
4592 *
4593 * In addition to the above, the ARC also defines target values
4594 * for the ghost lists. The sum of the mru list and mru ghost
4595 * list should never exceed the target size of the cache, and
4596 * the sum of the mru list, mfu list, mru ghost list, and mfu
4597 * ghost list should never exceed twice the target size of the
4598 * cache. The following logic enforces these limits on the ghost
4599 * caches, and evicts from them as needed.
4600 */
4601 target = refcount_count(&arc_mru->arcs_size) +
4602 refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
4603
4604 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4605 total_evicted += bytes;
4606
4607 target -= bytes;
4608
4609 total_evicted +=
4610 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4611
4612 /*
4613 * We assume the sum of the mru list and mfu list is less than
4614 * or equal to arc_c (we enforced this above), which means we
4615 * can use the simpler of the two equations below:
4616 *
4617 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4618 * mru ghost + mfu ghost <= arc_c
4619 */
4620 target = refcount_count(&arc_mru_ghost->arcs_size) +
4621 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
4622
4623 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4624 total_evicted += bytes;
4625
4626 target -= bytes;
4627
4628 total_evicted +=
4629 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4630
4631 return (total_evicted);
4632 }
4633
4634 void
4635 arc_flush(spa_t *spa, boolean_t retry)
4636 {
4637 uint64_t guid = 0;
4638
4639 /*
4640 * If retry is B_TRUE, a spa must not be specified since we have
4641 * no good way to determine if all of a spa's buffers have been
4642 * evicted from an arc state.
4643 */
4644 ASSERT(!retry || spa == 0);
4645
4646 if (spa != NULL)
4647 guid = spa_load_guid(spa);
4648
4649 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4650 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4651
4652 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4653 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4654
4655 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4656 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4657
4658 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4659 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4660 }
4661
4662 void
4663 arc_shrink(int64_t to_free)
4664 {
4665 uint64_t c = arc_c;
4666
4667 if (c > to_free && c - to_free > arc_c_min) {
4668 arc_c = c - to_free;
4669 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
4670 if (arc_c > arc_size)
4671 arc_c = MAX(arc_size, arc_c_min);
4672 if (arc_p > arc_c)
4673 arc_p = (arc_c >> 1);
4674 ASSERT(arc_c >= arc_c_min);
4675 ASSERT((int64_t)arc_p >= 0);
4676 } else {
4677 arc_c = arc_c_min;
4678 }
4679
4680 if (arc_size > arc_c)
4681 (void) arc_adjust();
4682 }
4683
4684 /*
4685 * Return maximum amount of memory that we could possibly use. Reduced
4686 * to half of all memory in user space which is primarily used for testing.
4687 */
4688 static uint64_t
4689 arc_all_memory(void)
4690 {
4691 #ifdef _KERNEL
4692 #ifdef CONFIG_HIGHMEM
4693 return (ptob(totalram_pages - totalhigh_pages));
4694 #else
4695 return (ptob(totalram_pages));
4696 #endif /* CONFIG_HIGHMEM */
4697 #else
4698 return (ptob(physmem) / 2);
4699 #endif /* _KERNEL */
4700 }
4701
4702 /*
4703 * Return the amount of memory that is considered free. In user space
4704 * which is primarily used for testing we pretend that free memory ranges
4705 * from 0-20% of all memory.
4706 */
4707 static uint64_t
4708 arc_free_memory(void)
4709 {
4710 #ifdef _KERNEL
4711 #ifdef CONFIG_HIGHMEM
4712 struct sysinfo si;
4713 si_meminfo(&si);
4714 return (ptob(si.freeram - si.freehigh));
4715 #else
4716 return (ptob(nr_free_pages() +
4717 nr_inactive_file_pages() +
4718 nr_inactive_anon_pages() +
4719 nr_slab_reclaimable_pages()));
4720
4721 #endif /* CONFIG_HIGHMEM */
4722 #else
4723 return (spa_get_random(arc_all_memory() * 20 / 100));
4724 #endif /* _KERNEL */
4725 }
4726
4727 typedef enum free_memory_reason_t {
4728 FMR_UNKNOWN,
4729 FMR_NEEDFREE,
4730 FMR_LOTSFREE,
4731 FMR_SWAPFS_MINFREE,
4732 FMR_PAGES_PP_MAXIMUM,
4733 FMR_HEAP_ARENA,
4734 FMR_ZIO_ARENA,
4735 } free_memory_reason_t;
4736
4737 int64_t last_free_memory;
4738 free_memory_reason_t last_free_reason;
4739
4740 #ifdef _KERNEL
4741 /*
4742 * Additional reserve of pages for pp_reserve.
4743 */
4744 int64_t arc_pages_pp_reserve = 64;
4745
4746 /*
4747 * Additional reserve of pages for swapfs.
4748 */
4749 int64_t arc_swapfs_reserve = 64;
4750 #endif /* _KERNEL */
4751
4752 /*
4753 * Return the amount of memory that can be consumed before reclaim will be
4754 * needed. Positive if there is sufficient free memory, negative indicates
4755 * the amount of memory that needs to be freed up.
4756 */
4757 static int64_t
4758 arc_available_memory(void)
4759 {
4760 int64_t lowest = INT64_MAX;
4761 free_memory_reason_t r = FMR_UNKNOWN;
4762 #ifdef _KERNEL
4763 int64_t n;
4764 #ifdef __linux__
4765 #ifdef freemem
4766 #undef freemem
4767 #endif
4768 pgcnt_t needfree = btop(arc_need_free);
4769 pgcnt_t lotsfree = btop(arc_sys_free);
4770 pgcnt_t desfree = 0;
4771 pgcnt_t freemem = btop(arc_free_memory());
4772 #endif
4773
4774 if (needfree > 0) {
4775 n = PAGESIZE * (-needfree);
4776 if (n < lowest) {
4777 lowest = n;
4778 r = FMR_NEEDFREE;
4779 }
4780 }
4781
4782 /*
4783 * check that we're out of range of the pageout scanner. It starts to
4784 * schedule paging if freemem is less than lotsfree and needfree.
4785 * lotsfree is the high-water mark for pageout, and needfree is the
4786 * number of needed free pages. We add extra pages here to make sure
4787 * the scanner doesn't start up while we're freeing memory.
4788 */
4789 n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
4790 if (n < lowest) {
4791 lowest = n;
4792 r = FMR_LOTSFREE;
4793 }
4794
4795 #ifndef __linux__
4796 /*
4797 * check to make sure that swapfs has enough space so that anon
4798 * reservations can still succeed. anon_resvmem() checks that the
4799 * availrmem is greater than swapfs_minfree, and the number of reserved
4800 * swap pages. We also add a bit of extra here just to prevent
4801 * circumstances from getting really dire.
4802 */
4803 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4804 desfree - arc_swapfs_reserve);
4805 if (n < lowest) {
4806 lowest = n;
4807 r = FMR_SWAPFS_MINFREE;
4808 }
4809
4810 /*
4811 * Check that we have enough availrmem that memory locking (e.g., via
4812 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
4813 * stores the number of pages that cannot be locked; when availrmem
4814 * drops below pages_pp_maximum, page locking mechanisms such as
4815 * page_pp_lock() will fail.)
4816 */
4817 n = PAGESIZE * (availrmem - pages_pp_maximum -
4818 arc_pages_pp_reserve);
4819 if (n < lowest) {
4820 lowest = n;
4821 r = FMR_PAGES_PP_MAXIMUM;
4822 }
4823 #endif
4824
4825 #if defined(_ILP32)
4826 /*
4827 * If we're on a 32-bit platform, it's possible that we'll exhaust the
4828 * kernel heap space before we ever run out of available physical
4829 * memory. Most checks of the size of the heap_area compare against
4830 * tune.t_minarmem, which is the minimum available real memory that we
4831 * can have in the system. However, this is generally fixed at 25 pages
4832 * which is so low that it's useless. In this comparison, we seek to
4833 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4834 * heap is allocated. (Or, in the calculation, if less than 1/4th is
4835 * free)
4836 */
4837 n = vmem_size(heap_arena, VMEM_FREE) -
4838 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4839 if (n < lowest) {
4840 lowest = n;
4841 r = FMR_HEAP_ARENA;
4842 }
4843 #endif
4844
4845 /*
4846 * If zio data pages are being allocated out of a separate heap segment,
4847 * then enforce that the size of available vmem for this arena remains
4848 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4849 *
4850 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4851 * memory (in the zio_arena) free, which can avoid memory
4852 * fragmentation issues.
4853 */
4854 if (zio_arena != NULL) {
4855 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4856 (vmem_size(zio_arena, VMEM_ALLOC) >>
4857 arc_zio_arena_free_shift);
4858 if (n < lowest) {
4859 lowest = n;
4860 r = FMR_ZIO_ARENA;
4861 }
4862 }
4863 #else /* _KERNEL */
4864 /* Every 100 calls, free a small amount */
4865 if (spa_get_random(100) == 0)
4866 lowest = -1024;
4867 #endif /* _KERNEL */
4868
4869 last_free_memory = lowest;
4870 last_free_reason = r;
4871
4872 return (lowest);
4873 }
4874
4875 /*
4876 * Determine if the system is under memory pressure and is asking
4877 * to reclaim memory. A return value of B_TRUE indicates that the system
4878 * is under memory pressure and that the arc should adjust accordingly.
4879 */
4880 static boolean_t
4881 arc_reclaim_needed(void)
4882 {
4883 return (arc_available_memory() < 0);
4884 }
4885
4886 static void
4887 arc_kmem_reap_now(void)
4888 {
4889 size_t i;
4890 kmem_cache_t *prev_cache = NULL;
4891 kmem_cache_t *prev_data_cache = NULL;
4892 extern kmem_cache_t *zio_buf_cache[];
4893 extern kmem_cache_t *zio_data_buf_cache[];
4894 extern kmem_cache_t *range_seg_cache;
4895
4896 #ifdef _KERNEL
4897 if ((arc_meta_used >= arc_meta_limit) && zfs_arc_meta_prune) {
4898 /*
4899 * We are exceeding our meta-data cache limit.
4900 * Prune some entries to release holds on meta-data.
4901 */
4902 arc_prune_async(zfs_arc_meta_prune);
4903 }
4904 #if defined(_ILP32)
4905 /*
4906 * Reclaim unused memory from all kmem caches.
4907 */
4908 kmem_reap();
4909 #endif
4910 #endif
4911
4912 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4913 #if defined(_ILP32)
4914 /* reach upper limit of cache size on 32-bit */
4915 if (zio_buf_cache[i] == NULL)
4916 break;
4917 #endif
4918 if (zio_buf_cache[i] != prev_cache) {
4919 prev_cache = zio_buf_cache[i];
4920 kmem_cache_reap_now(zio_buf_cache[i]);
4921 }
4922 if (zio_data_buf_cache[i] != prev_data_cache) {
4923 prev_data_cache = zio_data_buf_cache[i];
4924 kmem_cache_reap_now(zio_data_buf_cache[i]);
4925 }
4926 }
4927 kmem_cache_reap_now(buf_cache);
4928 kmem_cache_reap_now(hdr_full_cache);
4929 kmem_cache_reap_now(hdr_l2only_cache);
4930 kmem_cache_reap_now(range_seg_cache);
4931
4932 if (zio_arena != NULL) {
4933 /*
4934 * Ask the vmem arena to reclaim unused memory from its
4935 * quantum caches.
4936 */
4937 vmem_qcache_reap(zio_arena);
4938 }
4939 }
4940
4941 /*
4942 * Threads can block in arc_get_data_impl() waiting for this thread to evict
4943 * enough data and signal them to proceed. When this happens, the threads in
4944 * arc_get_data_impl() are sleeping while holding the hash lock for their
4945 * particular arc header. Thus, we must be careful to never sleep on a
4946 * hash lock in this thread. This is to prevent the following deadlock:
4947 *
4948 * - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L",
4949 * waiting for the reclaim thread to signal it.
4950 *
4951 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4952 * fails, and goes to sleep forever.
4953 *
4954 * This possible deadlock is avoided by always acquiring a hash lock
4955 * using mutex_tryenter() from arc_reclaim_thread().
4956 */
4957 /* ARGSUSED */
4958 static void
4959 arc_reclaim_thread(void *unused)
4960 {
4961 fstrans_cookie_t cookie = spl_fstrans_mark();
4962 hrtime_t growtime = 0;
4963 callb_cpr_t cpr;
4964
4965 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4966
4967 mutex_enter(&arc_reclaim_lock);
4968 while (!arc_reclaim_thread_exit) {
4969 uint64_t evicted = 0;
4970 uint64_t need_free = arc_need_free;
4971 arc_tuning_update();
4972
4973 /*
4974 * This is necessary in order for the mdb ::arc dcmd to
4975 * show up to date information. Since the ::arc command
4976 * does not call the kstat's update function, without
4977 * this call, the command may show stale stats for the
4978 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4979 * with this change, the data might be up to 1 second
4980 * out of date; but that should suffice. The arc_state_t
4981 * structures can be queried directly if more accurate
4982 * information is needed.
4983 */
4984 #ifndef __linux__
4985 if (arc_ksp != NULL)
4986 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4987 #endif
4988 mutex_exit(&arc_reclaim_lock);
4989
4990 /*
4991 * We call arc_adjust() before (possibly) calling
4992 * arc_kmem_reap_now(), so that we can wake up
4993 * arc_get_data_buf() sooner.
4994 */
4995 evicted = arc_adjust();
4996
4997 int64_t free_memory = arc_available_memory();
4998 if (free_memory < 0) {
4999
5000 arc_no_grow = B_TRUE;
5001 arc_warm = B_TRUE;
5002
5003 /*
5004 * Wait at least zfs_grow_retry (default 5) seconds
5005 * before considering growing.
5006 */
5007 growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
5008
5009 arc_kmem_reap_now();
5010
5011 /*
5012 * If we are still low on memory, shrink the ARC
5013 * so that we have arc_shrink_min free space.
5014 */
5015 free_memory = arc_available_memory();
5016
5017 int64_t to_free =
5018 (arc_c >> arc_shrink_shift) - free_memory;
5019 if (to_free > 0) {
5020 #ifdef _KERNEL
5021 to_free = MAX(to_free, need_free);
5022 #endif
5023 arc_shrink(to_free);
5024 }
5025 } else if (free_memory < arc_c >> arc_no_grow_shift) {
5026 arc_no_grow = B_TRUE;
5027 } else if (gethrtime() >= growtime) {
5028 arc_no_grow = B_FALSE;
5029 }
5030
5031 mutex_enter(&arc_reclaim_lock);
5032
5033 /*
5034 * If evicted is zero, we couldn't evict anything via
5035 * arc_adjust(). This could be due to hash lock
5036 * collisions, but more likely due to the majority of
5037 * arc buffers being unevictable. Therefore, even if
5038 * arc_size is above arc_c, another pass is unlikely to
5039 * be helpful and could potentially cause us to enter an
5040 * infinite loop.
5041 */
5042 if (arc_size <= arc_c || evicted == 0) {
5043 /*
5044 * We're either no longer overflowing, or we
5045 * can't evict anything more, so we should wake
5046 * up any threads before we go to sleep and remove
5047 * the bytes we were working on from arc_need_free
5048 * since nothing more will be done here.
5049 */
5050 cv_broadcast(&arc_reclaim_waiters_cv);
5051 ARCSTAT_INCR(arcstat_need_free, -need_free);
5052
5053 /*
5054 * Block until signaled, or after one second (we
5055 * might need to perform arc_kmem_reap_now()
5056 * even if we aren't being signalled)
5057 */
5058 CALLB_CPR_SAFE_BEGIN(&cpr);
5059 (void) cv_timedwait_sig_hires(&arc_reclaim_thread_cv,
5060 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
5061 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
5062 }
5063 }
5064
5065 arc_reclaim_thread_exit = B_FALSE;
5066 cv_broadcast(&arc_reclaim_thread_cv);
5067 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
5068 spl_fstrans_unmark(cookie);
5069 thread_exit();
5070 }
5071
5072 #ifdef _KERNEL
5073 /*
5074 * Determine the amount of memory eligible for eviction contained in the
5075 * ARC. All clean data reported by the ghost lists can always be safely
5076 * evicted. Due to arc_c_min, the same does not hold for all clean data
5077 * contained by the regular mru and mfu lists.
5078 *
5079 * In the case of the regular mru and mfu lists, we need to report as
5080 * much clean data as possible, such that evicting that same reported
5081 * data will not bring arc_size below arc_c_min. Thus, in certain
5082 * circumstances, the total amount of clean data in the mru and mfu
5083 * lists might not actually be evictable.
5084 *
5085 * The following two distinct cases are accounted for:
5086 *
5087 * 1. The sum of the amount of dirty data contained by both the mru and
5088 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5089 * is greater than or equal to arc_c_min.
5090 * (i.e. amount of dirty data >= arc_c_min)
5091 *
5092 * This is the easy case; all clean data contained by the mru and mfu
5093 * lists is evictable. Evicting all clean data can only drop arc_size
5094 * to the amount of dirty data, which is greater than arc_c_min.
5095 *
5096 * 2. The sum of the amount of dirty data contained by both the mru and
5097 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5098 * is less than arc_c_min.
5099 * (i.e. arc_c_min > amount of dirty data)
5100 *
5101 * 2.1. arc_size is greater than or equal arc_c_min.
5102 * (i.e. arc_size >= arc_c_min > amount of dirty data)
5103 *
5104 * In this case, not all clean data from the regular mru and mfu
5105 * lists is actually evictable; we must leave enough clean data
5106 * to keep arc_size above arc_c_min. Thus, the maximum amount of
5107 * evictable data from the two lists combined, is exactly the
5108 * difference between arc_size and arc_c_min.
5109 *
5110 * 2.2. arc_size is less than arc_c_min
5111 * (i.e. arc_c_min > arc_size > amount of dirty data)
5112 *
5113 * In this case, none of the data contained in the mru and mfu
5114 * lists is evictable, even if it's clean. Since arc_size is
5115 * already below arc_c_min, evicting any more would only
5116 * increase this negative difference.
5117 */
5118 static uint64_t
5119 arc_evictable_memory(void)
5120 {
5121 uint64_t arc_clean =
5122 refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
5123 refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
5124 refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
5125 refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5126 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
5127
5128 /*
5129 * Scale reported evictable memory in proportion to page cache, cap
5130 * at specified min/max.
5131 */
5132 uint64_t min = (ptob(nr_file_pages()) / 100) * zfs_arc_pc_percent;
5133 min = MAX(arc_c_min, MIN(arc_c_max, min));
5134
5135 if (arc_dirty >= min)
5136 return (arc_clean);
5137
5138 return (MAX((int64_t)arc_size - (int64_t)min, 0));
5139 }
5140
5141 /*
5142 * If sc->nr_to_scan is zero, the caller is requesting a query of the
5143 * number of objects which can potentially be freed. If it is nonzero,
5144 * the request is to free that many objects.
5145 *
5146 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
5147 * in struct shrinker and also require the shrinker to return the number
5148 * of objects freed.
5149 *
5150 * Older kernels require the shrinker to return the number of freeable
5151 * objects following the freeing of nr_to_free.
5152 */
5153 static spl_shrinker_t
5154 __arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
5155 {
5156 int64_t pages;
5157
5158 /* The arc is considered warm once reclaim has occurred */
5159 if (unlikely(arc_warm == B_FALSE))
5160 arc_warm = B_TRUE;
5161
5162 /* Return the potential number of reclaimable pages */
5163 pages = btop((int64_t)arc_evictable_memory());
5164 if (sc->nr_to_scan == 0)
5165 return (pages);
5166
5167 /* Not allowed to perform filesystem reclaim */
5168 if (!(sc->gfp_mask & __GFP_FS))
5169 return (SHRINK_STOP);
5170
5171 /* Reclaim in progress */
5172 if (mutex_tryenter(&arc_reclaim_lock) == 0) {
5173 ARCSTAT_INCR(arcstat_need_free, ptob(sc->nr_to_scan));
5174 return (0);
5175 }
5176
5177 mutex_exit(&arc_reclaim_lock);
5178
5179 /*
5180 * Evict the requested number of pages by shrinking arc_c the
5181 * requested amount.
5182 */
5183 if (pages > 0) {
5184 arc_shrink(ptob(sc->nr_to_scan));
5185 if (current_is_kswapd())
5186 arc_kmem_reap_now();
5187 #ifdef HAVE_SPLIT_SHRINKER_CALLBACK
5188 pages = MAX((int64_t)pages -
5189 (int64_t)btop(arc_evictable_memory()), 0);
5190 #else
5191 pages = btop(arc_evictable_memory());
5192 #endif
5193 /*
5194 * We've shrunk what we can, wake up threads.
5195 */
5196 cv_broadcast(&arc_reclaim_waiters_cv);
5197 } else
5198 pages = SHRINK_STOP;
5199
5200 /*
5201 * When direct reclaim is observed it usually indicates a rapid
5202 * increase in memory pressure. This occurs because the kswapd
5203 * threads were unable to asynchronously keep enough free memory
5204 * available. In this case set arc_no_grow to briefly pause arc
5205 * growth to avoid compounding the memory pressure.
5206 */
5207 if (current_is_kswapd()) {
5208 ARCSTAT_BUMP(arcstat_memory_indirect_count);
5209 } else {
5210 arc_no_grow = B_TRUE;
5211 arc_kmem_reap_now();
5212 ARCSTAT_BUMP(arcstat_memory_direct_count);
5213 }
5214
5215 return (pages);
5216 }
5217 SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
5218
5219 SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
5220 #endif /* _KERNEL */
5221
5222 /*
5223 * Adapt arc info given the number of bytes we are trying to add and
5224 * the state that we are coming from. This function is only called
5225 * when we are adding new content to the cache.
5226 */
5227 static void
5228 arc_adapt(int bytes, arc_state_t *state)
5229 {
5230 int mult;
5231 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
5232 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
5233 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
5234
5235 if (state == arc_l2c_only)
5236 return;
5237
5238 ASSERT(bytes > 0);
5239 /*
5240 * Adapt the target size of the MRU list:
5241 * - if we just hit in the MRU ghost list, then increase
5242 * the target size of the MRU list.
5243 * - if we just hit in the MFU ghost list, then increase
5244 * the target size of the MFU list by decreasing the
5245 * target size of the MRU list.
5246 */
5247 if (state == arc_mru_ghost) {
5248 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
5249 if (!zfs_arc_p_dampener_disable)
5250 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
5251
5252 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
5253 } else if (state == arc_mfu_ghost) {
5254 uint64_t delta;
5255
5256 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
5257 if (!zfs_arc_p_dampener_disable)
5258 mult = MIN(mult, 10);
5259
5260 delta = MIN(bytes * mult, arc_p);
5261 arc_p = MAX(arc_p_min, arc_p - delta);
5262 }
5263 ASSERT((int64_t)arc_p >= 0);
5264
5265 if (arc_reclaim_needed()) {
5266 cv_signal(&arc_reclaim_thread_cv);
5267 return;
5268 }
5269
5270 if (arc_no_grow)
5271 return;
5272
5273 if (arc_c >= arc_c_max)
5274 return;
5275
5276 /*
5277 * If we're within (2 * maxblocksize) bytes of the target
5278 * cache size, increment the target cache size
5279 */
5280 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
5281 if (arc_size >= arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
5282 atomic_add_64(&arc_c, (int64_t)bytes);
5283 if (arc_c > arc_c_max)
5284 arc_c = arc_c_max;
5285 else if (state == arc_anon)
5286 atomic_add_64(&arc_p, (int64_t)bytes);
5287 if (arc_p > arc_c)
5288 arc_p = arc_c;
5289 }
5290 ASSERT((int64_t)arc_p >= 0);
5291 }
5292
5293 /*
5294 * Check if arc_size has grown past our upper threshold, determined by
5295 * zfs_arc_overflow_shift.
5296 */
5297 static boolean_t
5298 arc_is_overflowing(void)
5299 {
5300 /* Always allow at least one block of overflow */
5301 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
5302 arc_c >> zfs_arc_overflow_shift);
5303
5304 return (arc_size >= arc_c + overflow);
5305 }
5306
5307 static abd_t *
5308 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5309 {
5310 arc_buf_contents_t type = arc_buf_type(hdr);
5311
5312 arc_get_data_impl(hdr, size, tag);
5313 if (type == ARC_BUFC_METADATA) {
5314 return (abd_alloc(size, B_TRUE));
5315 } else {
5316 ASSERT(type == ARC_BUFC_DATA);
5317 return (abd_alloc(size, B_FALSE));
5318 }
5319 }
5320
5321 static void *
5322 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5323 {
5324 arc_buf_contents_t type = arc_buf_type(hdr);
5325
5326 arc_get_data_impl(hdr, size, tag);
5327 if (type == ARC_BUFC_METADATA) {
5328 return (zio_buf_alloc(size));
5329 } else {
5330 ASSERT(type == ARC_BUFC_DATA);
5331 return (zio_data_buf_alloc(size));
5332 }
5333 }
5334
5335 /*
5336 * Allocate a block and return it to the caller. If we are hitting the
5337 * hard limit for the cache size, we must sleep, waiting for the eviction
5338 * thread to catch up. If we're past the target size but below the hard
5339 * limit, we'll only signal the reclaim thread and continue on.
5340 */
5341 static void
5342 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5343 {
5344 arc_state_t *state = hdr->b_l1hdr.b_state;
5345 arc_buf_contents_t type = arc_buf_type(hdr);
5346
5347 arc_adapt(size, state);
5348
5349 /*
5350 * If arc_size is currently overflowing, and has grown past our
5351 * upper limit, we must be adding data faster than the evict
5352 * thread can evict. Thus, to ensure we don't compound the
5353 * problem by adding more data and forcing arc_size to grow even
5354 * further past it's target size, we halt and wait for the
5355 * eviction thread to catch up.
5356 *
5357 * It's also possible that the reclaim thread is unable to evict
5358 * enough buffers to get arc_size below the overflow limit (e.g.
5359 * due to buffers being un-evictable, or hash lock collisions).
5360 * In this case, we want to proceed regardless if we're
5361 * overflowing; thus we don't use a while loop here.
5362 */
5363 if (arc_is_overflowing()) {
5364 mutex_enter(&arc_reclaim_lock);
5365
5366 /*
5367 * Now that we've acquired the lock, we may no longer be
5368 * over the overflow limit, lets check.
5369 *
5370 * We're ignoring the case of spurious wake ups. If that
5371 * were to happen, it'd let this thread consume an ARC
5372 * buffer before it should have (i.e. before we're under
5373 * the overflow limit and were signalled by the reclaim
5374 * thread). As long as that is a rare occurrence, it
5375 * shouldn't cause any harm.
5376 */
5377 if (arc_is_overflowing()) {
5378 cv_signal(&arc_reclaim_thread_cv);
5379 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
5380 }
5381
5382 mutex_exit(&arc_reclaim_lock);
5383 }
5384
5385 VERIFY3U(hdr->b_type, ==, type);
5386 if (type == ARC_BUFC_METADATA) {
5387 arc_space_consume(size, ARC_SPACE_META);
5388 } else {
5389 arc_space_consume(size, ARC_SPACE_DATA);
5390 }
5391
5392 /*
5393 * Update the state size. Note that ghost states have a
5394 * "ghost size" and so don't need to be updated.
5395 */
5396 if (!GHOST_STATE(state)) {
5397
5398 (void) refcount_add_many(&state->arcs_size, size, tag);
5399
5400 /*
5401 * If this is reached via arc_read, the link is
5402 * protected by the hash lock. If reached via
5403 * arc_buf_alloc, the header should not be accessed by
5404 * any other thread. And, if reached via arc_read_done,
5405 * the hash lock will protect it if it's found in the
5406 * hash table; otherwise no other thread should be
5407 * trying to [add|remove]_reference it.
5408 */
5409 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5410 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5411 (void) refcount_add_many(&state->arcs_esize[type],
5412 size, tag);
5413 }
5414
5415 /*
5416 * If we are growing the cache, and we are adding anonymous
5417 * data, and we have outgrown arc_p, update arc_p
5418 */
5419 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
5420 (refcount_count(&arc_anon->arcs_size) +
5421 refcount_count(&arc_mru->arcs_size) > arc_p))
5422 arc_p = MIN(arc_c, arc_p + size);
5423 }
5424 }
5425
5426 static void
5427 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
5428 {
5429 arc_free_data_impl(hdr, size, tag);
5430 abd_free(abd);
5431 }
5432
5433 static void
5434 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
5435 {
5436 arc_buf_contents_t type = arc_buf_type(hdr);
5437
5438 arc_free_data_impl(hdr, size, tag);
5439 if (type == ARC_BUFC_METADATA) {
5440 zio_buf_free(buf, size);
5441 } else {
5442 ASSERT(type == ARC_BUFC_DATA);
5443 zio_data_buf_free(buf, size);
5444 }
5445 }
5446
5447 /*
5448 * Free the arc data buffer.
5449 */
5450 static void
5451 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5452 {
5453 arc_state_t *state = hdr->b_l1hdr.b_state;
5454 arc_buf_contents_t type = arc_buf_type(hdr);
5455
5456 /* protected by hash lock, if in the hash table */
5457 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5458 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5459 ASSERT(state != arc_anon && state != arc_l2c_only);
5460
5461 (void) refcount_remove_many(&state->arcs_esize[type],
5462 size, tag);
5463 }
5464 (void) refcount_remove_many(&state->arcs_size, size, tag);
5465
5466 VERIFY3U(hdr->b_type, ==, type);
5467 if (type == ARC_BUFC_METADATA) {
5468 arc_space_return(size, ARC_SPACE_META);
5469 } else {
5470 ASSERT(type == ARC_BUFC_DATA);
5471 arc_space_return(size, ARC_SPACE_DATA);
5472 }
5473 }
5474
5475 /*
5476 * This routine is called whenever a buffer is accessed.
5477 * NOTE: the hash lock is dropped in this function.
5478 */
5479 static void
5480 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
5481 {
5482 clock_t now;
5483
5484 ASSERT(MUTEX_HELD(hash_lock));
5485 ASSERT(HDR_HAS_L1HDR(hdr));
5486
5487 if (hdr->b_l1hdr.b_state == arc_anon) {
5488 /*
5489 * This buffer is not in the cache, and does not
5490 * appear in our "ghost" list. Add the new buffer
5491 * to the MRU state.
5492 */
5493
5494 ASSERT0(hdr->b_l1hdr.b_arc_access);
5495 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5496 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5497 arc_change_state(arc_mru, hdr, hash_lock);
5498
5499 } else if (hdr->b_l1hdr.b_state == arc_mru) {
5500 now = ddi_get_lbolt();
5501
5502 /*
5503 * If this buffer is here because of a prefetch, then either:
5504 * - clear the flag if this is a "referencing" read
5505 * (any subsequent access will bump this into the MFU state).
5506 * or
5507 * - move the buffer to the head of the list if this is
5508 * another prefetch (to make it less likely to be evicted).
5509 */
5510 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5511 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5512 /* link protected by hash lock */
5513 ASSERT(multilist_link_active(
5514 &hdr->b_l1hdr.b_arc_node));
5515 } else {
5516 arc_hdr_clear_flags(hdr,
5517 ARC_FLAG_PREFETCH |
5518 ARC_FLAG_PRESCIENT_PREFETCH);
5519 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
5520 ARCSTAT_BUMP(arcstat_mru_hits);
5521 }
5522 hdr->b_l1hdr.b_arc_access = now;
5523 return;
5524 }
5525
5526 /*
5527 * This buffer has been "accessed" only once so far,
5528 * but it is still in the cache. Move it to the MFU
5529 * state.
5530 */
5531 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5532 ARC_MINTIME)) {
5533 /*
5534 * More than 125ms have passed since we
5535 * instantiated this buffer. Move it to the
5536 * most frequently used state.
5537 */
5538 hdr->b_l1hdr.b_arc_access = now;
5539 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5540 arc_change_state(arc_mfu, hdr, hash_lock);
5541 }
5542 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
5543 ARCSTAT_BUMP(arcstat_mru_hits);
5544 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5545 arc_state_t *new_state;
5546 /*
5547 * This buffer has been "accessed" recently, but
5548 * was evicted from the cache. Move it to the
5549 * MFU state.
5550 */
5551
5552 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5553 new_state = arc_mru;
5554 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
5555 arc_hdr_clear_flags(hdr,
5556 ARC_FLAG_PREFETCH |
5557 ARC_FLAG_PRESCIENT_PREFETCH);
5558 }
5559 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5560 } else {
5561 new_state = arc_mfu;
5562 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5563 }
5564
5565 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5566 arc_change_state(new_state, hdr, hash_lock);
5567
5568 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
5569 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5570 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
5571 /*
5572 * This buffer has been accessed more than once and is
5573 * still in the cache. Keep it in the MFU state.
5574 *
5575 * NOTE: an add_reference() that occurred when we did
5576 * the arc_read() will have kicked this off the list.
5577 * If it was a prefetch, we will explicitly move it to
5578 * the head of the list now.
5579 */
5580
5581 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
5582 ARCSTAT_BUMP(arcstat_mfu_hits);
5583 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5584 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5585 arc_state_t *new_state = arc_mfu;
5586 /*
5587 * This buffer has been accessed more than once but has
5588 * been evicted from the cache. Move it back to the
5589 * MFU state.
5590 */
5591
5592 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5593 /*
5594 * This is a prefetch access...
5595 * move this block back to the MRU state.
5596 */
5597 new_state = arc_mru;
5598 }
5599
5600 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5601 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5602 arc_change_state(new_state, hdr, hash_lock);
5603
5604 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
5605 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5606 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5607 /*
5608 * This buffer is on the 2nd Level ARC.
5609 */
5610
5611 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5612 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5613 arc_change_state(arc_mfu, hdr, hash_lock);
5614 } else {
5615 cmn_err(CE_PANIC, "invalid arc state 0x%p",
5616 hdr->b_l1hdr.b_state);
5617 }
5618 }
5619
5620 /*
5621 * This routine is called by dbuf_hold() to update the arc_access() state
5622 * which otherwise would be skipped for entries in the dbuf cache.
5623 */
5624 void
5625 arc_buf_access(arc_buf_t *buf)
5626 {
5627 mutex_enter(&buf->b_evict_lock);
5628 arc_buf_hdr_t *hdr = buf->b_hdr;
5629
5630 /*
5631 * Avoid taking the hash_lock when possible as an optimization.
5632 * The header must be checked again under the hash_lock in order
5633 * to handle the case where it is concurrently being released.
5634 */
5635 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5636 mutex_exit(&buf->b_evict_lock);
5637 return;
5638 }
5639
5640 kmutex_t *hash_lock = HDR_LOCK(hdr);
5641 mutex_enter(hash_lock);
5642
5643 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5644 mutex_exit(hash_lock);
5645 mutex_exit(&buf->b_evict_lock);
5646 ARCSTAT_BUMP(arcstat_access_skip);
5647 return;
5648 }
5649
5650 mutex_exit(&buf->b_evict_lock);
5651
5652 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5653 hdr->b_l1hdr.b_state == arc_mfu);
5654
5655 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5656 arc_access(hdr, hash_lock);
5657 mutex_exit(hash_lock);
5658
5659 ARCSTAT_BUMP(arcstat_hits);
5660 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr),
5661 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5662 }
5663
5664 /* a generic arc_read_done_func_t which you can use */
5665 /* ARGSUSED */
5666 void
5667 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5668 arc_buf_t *buf, void *arg)
5669 {
5670 if (buf == NULL)
5671 return;
5672
5673 bcopy(buf->b_data, arg, arc_buf_size(buf));
5674 arc_buf_destroy(buf, arg);
5675 }
5676
5677 /* a generic arc_read_done_func_t */
5678 /* ARGSUSED */
5679 void
5680 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5681 arc_buf_t *buf, void *arg)
5682 {
5683 arc_buf_t **bufp = arg;
5684
5685 if (buf == NULL) {
5686 *bufp = NULL;
5687 } else {
5688 *bufp = buf;
5689 ASSERT(buf->b_data);
5690 }
5691 }
5692
5693 static void
5694 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5695 {
5696 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5697 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5698 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5699 } else {
5700 if (HDR_COMPRESSION_ENABLED(hdr)) {
5701 ASSERT3U(arc_hdr_get_compress(hdr), ==,
5702 BP_GET_COMPRESS(bp));
5703 }
5704 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5705 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5706 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5707 }
5708 }
5709
5710 static void
5711 arc_read_done(zio_t *zio)
5712 {
5713 blkptr_t *bp = zio->io_bp;
5714 arc_buf_hdr_t *hdr = zio->io_private;
5715 kmutex_t *hash_lock = NULL;
5716 arc_callback_t *callback_list;
5717 arc_callback_t *acb;
5718 boolean_t freeable = B_FALSE;
5719
5720 /*
5721 * The hdr was inserted into hash-table and removed from lists
5722 * prior to starting I/O. We should find this header, since
5723 * it's in the hash table, and it should be legit since it's
5724 * not possible to evict it during the I/O. The only possible
5725 * reason for it not to be found is if we were freed during the
5726 * read.
5727 */
5728 if (HDR_IN_HASH_TABLE(hdr)) {
5729 arc_buf_hdr_t *found;
5730
5731 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5732 ASSERT3U(hdr->b_dva.dva_word[0], ==,
5733 BP_IDENTITY(zio->io_bp)->dva_word[0]);
5734 ASSERT3U(hdr->b_dva.dva_word[1], ==,
5735 BP_IDENTITY(zio->io_bp)->dva_word[1]);
5736
5737 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5738
5739 ASSERT((found == hdr &&
5740 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5741 (found == hdr && HDR_L2_READING(hdr)));
5742 ASSERT3P(hash_lock, !=, NULL);
5743 }
5744
5745 if (BP_IS_PROTECTED(bp)) {
5746 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5747 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5748 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5749 hdr->b_crypt_hdr.b_iv);
5750
5751 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5752 void *tmpbuf;
5753
5754 tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5755 sizeof (zil_chain_t));
5756 zio_crypt_decode_mac_zil(tmpbuf,
5757 hdr->b_crypt_hdr.b_mac);
5758 abd_return_buf(zio->io_abd, tmpbuf,
5759 sizeof (zil_chain_t));
5760 } else {
5761 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
5762 }
5763 }
5764
5765 if (zio->io_error == 0) {
5766 /* byteswap if necessary */
5767 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5768 if (BP_GET_LEVEL(zio->io_bp) > 0) {
5769 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5770 } else {
5771 hdr->b_l1hdr.b_byteswap =
5772 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5773 }
5774 } else {
5775 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5776 }
5777 }
5778
5779 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5780 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5781 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5782
5783 callback_list = hdr->b_l1hdr.b_acb;
5784 ASSERT3P(callback_list, !=, NULL);
5785
5786 if (hash_lock && zio->io_error == 0 &&
5787 hdr->b_l1hdr.b_state == arc_anon) {
5788 /*
5789 * Only call arc_access on anonymous buffers. This is because
5790 * if we've issued an I/O for an evicted buffer, we've already
5791 * called arc_access (to prevent any simultaneous readers from
5792 * getting confused).
5793 */
5794 arc_access(hdr, hash_lock);
5795 }
5796
5797 /*
5798 * If a read request has a callback (i.e. acb_done is not NULL), then we
5799 * make a buf containing the data according to the parameters which were
5800 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5801 * aren't needlessly decompressing the data multiple times.
5802 */
5803 int callback_cnt = 0;
5804 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5805 if (!acb->acb_done)
5806 continue;
5807
5808 callback_cnt++;
5809
5810 if (zio->io_error != 0)
5811 continue;
5812
5813 int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5814 acb->acb_dsobj, acb->acb_private, acb->acb_encrypted,
5815 acb->acb_compressed, acb->acb_noauth, B_TRUE,
5816 &acb->acb_buf);
5817 if (error != 0) {
5818 arc_buf_destroy(acb->acb_buf, acb->acb_private);
5819 acb->acb_buf = NULL;
5820 }
5821
5822 /*
5823 * Assert non-speculative zios didn't fail because an
5824 * encryption key wasn't loaded
5825 */
5826 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5827 error != ENOENT);
5828
5829 /*
5830 * If we failed to decrypt, report an error now (as the zio
5831 * layer would have done if it had done the transforms).
5832 */
5833 if (error == ECKSUM) {
5834 ASSERT(BP_IS_PROTECTED(bp));
5835 error = SET_ERROR(EIO);
5836 spa_log_error(zio->io_spa, &zio->io_bookmark);
5837 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5838 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
5839 zio->io_spa, NULL, &zio->io_bookmark, zio,
5840 0, 0);
5841 }
5842 }
5843
5844 if (zio->io_error == 0)
5845 zio->io_error = error;
5846 }
5847 hdr->b_l1hdr.b_acb = NULL;
5848 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5849 if (callback_cnt == 0)
5850 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
5851
5852 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5853 callback_list != NULL);
5854
5855 if (zio->io_error == 0) {
5856 arc_hdr_verify(hdr, zio->io_bp);
5857 } else {
5858 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5859 if (hdr->b_l1hdr.b_state != arc_anon)
5860 arc_change_state(arc_anon, hdr, hash_lock);
5861 if (HDR_IN_HASH_TABLE(hdr))
5862 buf_hash_remove(hdr);
5863 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5864 }
5865
5866 /*
5867 * Broadcast before we drop the hash_lock to avoid the possibility
5868 * that the hdr (and hence the cv) might be freed before we get to
5869 * the cv_broadcast().
5870 */
5871 cv_broadcast(&hdr->b_l1hdr.b_cv);
5872
5873 if (hash_lock != NULL) {
5874 mutex_exit(hash_lock);
5875 } else {
5876 /*
5877 * This block was freed while we waited for the read to
5878 * complete. It has been removed from the hash table and
5879 * moved to the anonymous state (so that it won't show up
5880 * in the cache).
5881 */
5882 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5883 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5884 }
5885
5886 /* execute each callback and free its structure */
5887 while ((acb = callback_list) != NULL) {
5888 if (acb->acb_done) {
5889 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5890 acb->acb_buf, acb->acb_private);
5891 }
5892
5893 if (acb->acb_zio_dummy != NULL) {
5894 acb->acb_zio_dummy->io_error = zio->io_error;
5895 zio_nowait(acb->acb_zio_dummy);
5896 }
5897
5898 callback_list = acb->acb_next;
5899 kmem_free(acb, sizeof (arc_callback_t));
5900 }
5901
5902 if (freeable)
5903 arc_hdr_destroy(hdr);
5904 }
5905
5906 /*
5907 * "Read" the block at the specified DVA (in bp) via the
5908 * cache. If the block is found in the cache, invoke the provided
5909 * callback immediately and return. Note that the `zio' parameter
5910 * in the callback will be NULL in this case, since no IO was
5911 * required. If the block is not in the cache pass the read request
5912 * on to the spa with a substitute callback function, so that the
5913 * requested block will be added to the cache.
5914 *
5915 * If a read request arrives for a block that has a read in-progress,
5916 * either wait for the in-progress read to complete (and return the
5917 * results); or, if this is a read with a "done" func, add a record
5918 * to the read to invoke the "done" func when the read completes,
5919 * and return; or just return.
5920 *
5921 * arc_read_done() will invoke all the requested "done" functions
5922 * for readers of this block.
5923 */
5924 int
5925 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5926 arc_read_done_func_t *done, void *private, zio_priority_t priority,
5927 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5928 {
5929 arc_buf_hdr_t *hdr = NULL;
5930 kmutex_t *hash_lock = NULL;
5931 zio_t *rzio;
5932 uint64_t guid = spa_load_guid(spa);
5933 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5934 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5935 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5936 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5937 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5938 int rc = 0;
5939
5940 ASSERT(!BP_IS_EMBEDDED(bp) ||
5941 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5942
5943 top:
5944 if (!BP_IS_EMBEDDED(bp)) {
5945 /*
5946 * Embedded BP's have no DVA and require no I/O to "read".
5947 * Create an anonymous arc buf to back it.
5948 */
5949 hdr = buf_hash_find(guid, bp, &hash_lock);
5950 }
5951
5952 /*
5953 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5954 * we maintain encrypted data seperately from compressed / uncompressed
5955 * data. If the user is requesting raw encrypted data and we don't have
5956 * that in the header we will read from disk to guarantee that we can
5957 * get it even if the encryption keys aren't loaded.
5958 */
5959 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5960 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5961 arc_buf_t *buf = NULL;
5962 *arc_flags |= ARC_FLAG_CACHED;
5963
5964 if (HDR_IO_IN_PROGRESS(hdr)) {
5965 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5966
5967 ASSERT3P(head_zio, !=, NULL);
5968 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5969 priority == ZIO_PRIORITY_SYNC_READ) {
5970 /*
5971 * This is a sync read that needs to wait for
5972 * an in-flight async read. Request that the
5973 * zio have its priority upgraded.
5974 */
5975 zio_change_priority(head_zio, priority);
5976 DTRACE_PROBE1(arc__async__upgrade__sync,
5977 arc_buf_hdr_t *, hdr);
5978 ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5979 }
5980 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5981 arc_hdr_clear_flags(hdr,
5982 ARC_FLAG_PREDICTIVE_PREFETCH);
5983 }
5984
5985 if (*arc_flags & ARC_FLAG_WAIT) {
5986 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5987 mutex_exit(hash_lock);
5988 goto top;
5989 }
5990 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5991
5992 if (done) {
5993 arc_callback_t *acb = NULL;
5994
5995 acb = kmem_zalloc(sizeof (arc_callback_t),
5996 KM_SLEEP);
5997 acb->acb_done = done;
5998 acb->acb_private = private;
5999 acb->acb_compressed = compressed_read;
6000 acb->acb_encrypted = encrypted_read;
6001 acb->acb_noauth = noauth_read;
6002 acb->acb_dsobj = zb->zb_objset;
6003 if (pio != NULL)
6004 acb->acb_zio_dummy = zio_null(pio,
6005 spa, NULL, NULL, NULL, zio_flags);
6006
6007 ASSERT3P(acb->acb_done, !=, NULL);
6008 acb->acb_zio_head = head_zio;
6009 acb->acb_next = hdr->b_l1hdr.b_acb;
6010 hdr->b_l1hdr.b_acb = acb;
6011 mutex_exit(hash_lock);
6012 goto out;
6013 }
6014 mutex_exit(hash_lock);
6015 goto out;
6016 }
6017
6018 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
6019 hdr->b_l1hdr.b_state == arc_mfu);
6020
6021 if (done) {
6022 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
6023 /*
6024 * This is a demand read which does not have to
6025 * wait for i/o because we did a predictive
6026 * prefetch i/o for it, which has completed.
6027 */
6028 DTRACE_PROBE1(
6029 arc__demand__hit__predictive__prefetch,
6030 arc_buf_hdr_t *, hdr);
6031 ARCSTAT_BUMP(
6032 arcstat_demand_hit_predictive_prefetch);
6033 arc_hdr_clear_flags(hdr,
6034 ARC_FLAG_PREDICTIVE_PREFETCH);
6035 }
6036
6037 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
6038 ARCSTAT_BUMP(
6039 arcstat_demand_hit_prescient_prefetch);
6040 arc_hdr_clear_flags(hdr,
6041 ARC_FLAG_PRESCIENT_PREFETCH);
6042 }
6043
6044 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
6045
6046 /* Get a buf with the desired data in it. */
6047 rc = arc_buf_alloc_impl(hdr, spa, zb->zb_objset,
6048 private, encrypted_read, compressed_read,
6049 noauth_read, B_TRUE, &buf);
6050 if (rc == ECKSUM) {
6051 /*
6052 * Convert authentication and decryption errors
6053 * to EIO (and generate an ereport) before
6054 * leaving the ARC.
6055 */
6056 rc = SET_ERROR(EIO);
6057 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
6058 spa, NULL, zb, NULL, 0, 0);
6059 }
6060 if (rc != 0) {
6061 arc_buf_destroy(buf, private);
6062 buf = NULL;
6063 }
6064
6065 /* assert any errors weren't due to unloaded keys */
6066 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
6067 rc != ENOENT);
6068 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
6069 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
6070 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
6071 }
6072 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
6073 arc_access(hdr, hash_lock);
6074 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6075 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
6076 if (*arc_flags & ARC_FLAG_L2CACHE)
6077 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6078 mutex_exit(hash_lock);
6079 ARCSTAT_BUMP(arcstat_hits);
6080 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6081 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
6082 data, metadata, hits);
6083
6084 if (done)
6085 done(NULL, zb, bp, buf, private);
6086 } else {
6087 uint64_t lsize = BP_GET_LSIZE(bp);
6088 uint64_t psize = BP_GET_PSIZE(bp);
6089 arc_callback_t *acb;
6090 vdev_t *vd = NULL;
6091 uint64_t addr = 0;
6092 boolean_t devw = B_FALSE;
6093 uint64_t size;
6094 abd_t *hdr_abd;
6095
6096 /*
6097 * Gracefully handle a damaged logical block size as a
6098 * checksum error.
6099 */
6100 if (lsize > spa_maxblocksize(spa)) {
6101 rc = SET_ERROR(ECKSUM);
6102 goto out;
6103 }
6104
6105 if (hdr == NULL) {
6106 /* this block is not in the cache */
6107 arc_buf_hdr_t *exists = NULL;
6108 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
6109 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
6110 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), type,
6111 encrypted_read);
6112
6113 if (!BP_IS_EMBEDDED(bp)) {
6114 hdr->b_dva = *BP_IDENTITY(bp);
6115 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
6116 exists = buf_hash_insert(hdr, &hash_lock);
6117 }
6118 if (exists != NULL) {
6119 /* somebody beat us to the hash insert */
6120 mutex_exit(hash_lock);
6121 buf_discard_identity(hdr);
6122 arc_hdr_destroy(hdr);
6123 goto top; /* restart the IO request */
6124 }
6125 } else {
6126 /*
6127 * This block is in the ghost cache or encrypted data
6128 * was requested and we didn't have it. If it was
6129 * L2-only (and thus didn't have an L1 hdr),
6130 * we realloc the header to add an L1 hdr.
6131 */
6132 if (!HDR_HAS_L1HDR(hdr)) {
6133 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
6134 hdr_full_cache);
6135 }
6136
6137 if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
6138 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6139 ASSERT(!HDR_HAS_RABD(hdr));
6140 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6141 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
6142 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
6143 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
6144 } else if (HDR_IO_IN_PROGRESS(hdr)) {
6145 /*
6146 * If this header already had an IO in progress
6147 * and we are performing another IO to fetch
6148 * encrypted data we must wait until the first
6149 * IO completes so as not to confuse
6150 * arc_read_done(). This should be very rare
6151 * and so the performance impact shouldn't
6152 * matter.
6153 */
6154 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
6155 mutex_exit(hash_lock);
6156 goto top;
6157 }
6158
6159 /*
6160 * This is a delicate dance that we play here.
6161 * This hdr might be in the ghost list so we access
6162 * it to move it out of the ghost list before we
6163 * initiate the read. If it's a prefetch then
6164 * it won't have a callback so we'll remove the
6165 * reference that arc_buf_alloc_impl() created. We
6166 * do this after we've called arc_access() to
6167 * avoid hitting an assert in remove_reference().
6168 */
6169 arc_access(hdr, hash_lock);
6170 arc_hdr_alloc_abd(hdr, encrypted_read);
6171 }
6172
6173 if (encrypted_read) {
6174 ASSERT(HDR_HAS_RABD(hdr));
6175 size = HDR_GET_PSIZE(hdr);
6176 hdr_abd = hdr->b_crypt_hdr.b_rabd;
6177 zio_flags |= ZIO_FLAG_RAW;
6178 } else {
6179 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6180 size = arc_hdr_size(hdr);
6181 hdr_abd = hdr->b_l1hdr.b_pabd;
6182
6183 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6184 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6185 }
6186
6187 /*
6188 * For authenticated bp's, we do not ask the ZIO layer
6189 * to authenticate them since this will cause the entire
6190 * IO to fail if the key isn't loaded. Instead, we
6191 * defer authentication until arc_buf_fill(), which will
6192 * verify the data when the key is available.
6193 */
6194 if (BP_IS_AUTHENTICATED(bp))
6195 zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
6196 }
6197
6198 if (*arc_flags & ARC_FLAG_PREFETCH &&
6199 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))
6200 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
6201 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6202 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
6203 if (*arc_flags & ARC_FLAG_L2CACHE)
6204 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6205 if (BP_IS_AUTHENTICATED(bp))
6206 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6207 if (BP_GET_LEVEL(bp) > 0)
6208 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
6209 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
6210 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
6211 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
6212
6213 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
6214 acb->acb_done = done;
6215 acb->acb_private = private;
6216 acb->acb_compressed = compressed_read;
6217 acb->acb_encrypted = encrypted_read;
6218 acb->acb_noauth = noauth_read;
6219 acb->acb_dsobj = zb->zb_objset;
6220
6221 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6222 hdr->b_l1hdr.b_acb = acb;
6223 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6224
6225 if (HDR_HAS_L2HDR(hdr) &&
6226 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6227 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6228 addr = hdr->b_l2hdr.b_daddr;
6229 /*
6230 * Lock out L2ARC device removal.
6231 */
6232 if (vdev_is_dead(vd) ||
6233 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6234 vd = NULL;
6235 }
6236
6237 /*
6238 * We count both async reads and scrub IOs as asynchronous so
6239 * that both can be upgraded in the event of a cache hit while
6240 * the read IO is still in-flight.
6241 */
6242 if (priority == ZIO_PRIORITY_ASYNC_READ ||
6243 priority == ZIO_PRIORITY_SCRUB)
6244 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6245 else
6246 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6247
6248 /*
6249 * At this point, we have a level 1 cache miss. Try again in
6250 * L2ARC if possible.
6251 */
6252 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6253
6254 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
6255 uint64_t, lsize, zbookmark_phys_t *, zb);
6256 ARCSTAT_BUMP(arcstat_misses);
6257 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6258 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
6259 data, metadata, misses);
6260
6261 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
6262 /*
6263 * Read from the L2ARC if the following are true:
6264 * 1. The L2ARC vdev was previously cached.
6265 * 2. This buffer still has L2ARC metadata.
6266 * 3. This buffer isn't currently writing to the L2ARC.
6267 * 4. The L2ARC entry wasn't evicted, which may
6268 * also have invalidated the vdev.
6269 * 5. This isn't prefetch and l2arc_noprefetch is set.
6270 */
6271 if (HDR_HAS_L2HDR(hdr) &&
6272 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
6273 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
6274 l2arc_read_callback_t *cb;
6275 abd_t *abd;
6276 uint64_t asize;
6277
6278 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6279 ARCSTAT_BUMP(arcstat_l2_hits);
6280 atomic_inc_32(&hdr->b_l2hdr.b_hits);
6281
6282 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
6283 KM_SLEEP);
6284 cb->l2rcb_hdr = hdr;
6285 cb->l2rcb_bp = *bp;
6286 cb->l2rcb_zb = *zb;
6287 cb->l2rcb_flags = zio_flags;
6288
6289 asize = vdev_psize_to_asize(vd, size);
6290 if (asize != size) {
6291 abd = abd_alloc_for_io(asize,
6292 HDR_ISTYPE_METADATA(hdr));
6293 cb->l2rcb_abd = abd;
6294 } else {
6295 abd = hdr_abd;
6296 }
6297
6298 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6299 addr + asize <= vd->vdev_psize -
6300 VDEV_LABEL_END_SIZE);
6301
6302 /*
6303 * l2arc read. The SCL_L2ARC lock will be
6304 * released by l2arc_read_done().
6305 * Issue a null zio if the underlying buffer
6306 * was squashed to zero size by compression.
6307 */
6308 ASSERT3U(arc_hdr_get_compress(hdr), !=,
6309 ZIO_COMPRESS_EMPTY);
6310 rzio = zio_read_phys(pio, vd, addr,
6311 asize, abd,
6312 ZIO_CHECKSUM_OFF,
6313 l2arc_read_done, cb, priority,
6314 zio_flags | ZIO_FLAG_DONT_CACHE |
6315 ZIO_FLAG_CANFAIL |
6316 ZIO_FLAG_DONT_PROPAGATE |
6317 ZIO_FLAG_DONT_RETRY, B_FALSE);
6318 acb->acb_zio_head = rzio;
6319
6320 if (hash_lock != NULL)
6321 mutex_exit(hash_lock);
6322
6323 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6324 zio_t *, rzio);
6325 ARCSTAT_INCR(arcstat_l2_read_bytes,
6326 HDR_GET_PSIZE(hdr));
6327
6328 if (*arc_flags & ARC_FLAG_NOWAIT) {
6329 zio_nowait(rzio);
6330 goto out;
6331 }
6332
6333 ASSERT(*arc_flags & ARC_FLAG_WAIT);
6334 if (zio_wait(rzio) == 0)
6335 goto out;
6336
6337 /* l2arc read error; goto zio_read() */
6338 if (hash_lock != NULL)
6339 mutex_enter(hash_lock);
6340 } else {
6341 DTRACE_PROBE1(l2arc__miss,
6342 arc_buf_hdr_t *, hdr);
6343 ARCSTAT_BUMP(arcstat_l2_misses);
6344 if (HDR_L2_WRITING(hdr))
6345 ARCSTAT_BUMP(arcstat_l2_rw_clash);
6346 spa_config_exit(spa, SCL_L2ARC, vd);
6347 }
6348 } else {
6349 if (vd != NULL)
6350 spa_config_exit(spa, SCL_L2ARC, vd);
6351 if (l2arc_ndev != 0) {
6352 DTRACE_PROBE1(l2arc__miss,
6353 arc_buf_hdr_t *, hdr);
6354 ARCSTAT_BUMP(arcstat_l2_misses);
6355 }
6356 }
6357
6358 rzio = zio_read(pio, spa, bp, hdr_abd, size,
6359 arc_read_done, hdr, priority, zio_flags, zb);
6360 acb->acb_zio_head = rzio;
6361
6362 if (hash_lock != NULL)
6363 mutex_exit(hash_lock);
6364
6365 if (*arc_flags & ARC_FLAG_WAIT) {
6366 rc = zio_wait(rzio);
6367 goto out;
6368 }
6369
6370 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6371 zio_nowait(rzio);
6372 }
6373
6374 out:
6375 /* embedded bps don't actually go to disk */
6376 if (!BP_IS_EMBEDDED(bp))
6377 spa_read_history_add(spa, zb, *arc_flags);
6378 return (rc);
6379 }
6380
6381 arc_prune_t *
6382 arc_add_prune_callback(arc_prune_func_t *func, void *private)
6383 {
6384 arc_prune_t *p;
6385
6386 p = kmem_alloc(sizeof (*p), KM_SLEEP);
6387 p->p_pfunc = func;
6388 p->p_private = private;
6389 list_link_init(&p->p_node);
6390 refcount_create(&p->p_refcnt);
6391
6392 mutex_enter(&arc_prune_mtx);
6393 refcount_add(&p->p_refcnt, &arc_prune_list);
6394 list_insert_head(&arc_prune_list, p);
6395 mutex_exit(&arc_prune_mtx);
6396
6397 return (p);
6398 }
6399
6400 void
6401 arc_remove_prune_callback(arc_prune_t *p)
6402 {
6403 boolean_t wait = B_FALSE;
6404 mutex_enter(&arc_prune_mtx);
6405 list_remove(&arc_prune_list, p);
6406 if (refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6407 wait = B_TRUE;
6408 mutex_exit(&arc_prune_mtx);
6409
6410 /* wait for arc_prune_task to finish */
6411 if (wait)
6412 taskq_wait_outstanding(arc_prune_taskq, 0);
6413 ASSERT0(refcount_count(&p->p_refcnt));
6414 refcount_destroy(&p->p_refcnt);
6415 kmem_free(p, sizeof (*p));
6416 }
6417
6418 /*
6419 * Notify the arc that a block was freed, and thus will never be used again.
6420 */
6421 void
6422 arc_freed(spa_t *spa, const blkptr_t *bp)
6423 {
6424 arc_buf_hdr_t *hdr;
6425 kmutex_t *hash_lock;
6426 uint64_t guid = spa_load_guid(spa);
6427
6428 ASSERT(!BP_IS_EMBEDDED(bp));
6429
6430 hdr = buf_hash_find(guid, bp, &hash_lock);
6431 if (hdr == NULL)
6432 return;
6433
6434 /*
6435 * We might be trying to free a block that is still doing I/O
6436 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6437 * dmu_sync-ed block). If this block is being prefetched, then it
6438 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6439 * until the I/O completes. A block may also have a reference if it is
6440 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6441 * have written the new block to its final resting place on disk but
6442 * without the dedup flag set. This would have left the hdr in the MRU
6443 * state and discoverable. When the txg finally syncs it detects that
6444 * the block was overridden in open context and issues an override I/O.
6445 * Since this is a dedup block, the override I/O will determine if the
6446 * block is already in the DDT. If so, then it will replace the io_bp
6447 * with the bp from the DDT and allow the I/O to finish. When the I/O
6448 * reaches the done callback, dbuf_write_override_done, it will
6449 * check to see if the io_bp and io_bp_override are identical.
6450 * If they are not, then it indicates that the bp was replaced with
6451 * the bp in the DDT and the override bp is freed. This allows
6452 * us to arrive here with a reference on a block that is being
6453 * freed. So if we have an I/O in progress, or a reference to
6454 * this hdr, then we don't destroy the hdr.
6455 */
6456 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
6457 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
6458 arc_change_state(arc_anon, hdr, hash_lock);
6459 arc_hdr_destroy(hdr);
6460 mutex_exit(hash_lock);
6461 } else {
6462 mutex_exit(hash_lock);
6463 }
6464
6465 }
6466
6467 /*
6468 * Release this buffer from the cache, making it an anonymous buffer. This
6469 * must be done after a read and prior to modifying the buffer contents.
6470 * If the buffer has more than one reference, we must make
6471 * a new hdr for the buffer.
6472 */
6473 void
6474 arc_release(arc_buf_t *buf, void *tag)
6475 {
6476 arc_buf_hdr_t *hdr = buf->b_hdr;
6477
6478 /*
6479 * It would be nice to assert that if its DMU metadata (level >
6480 * 0 || it's the dnode file), then it must be syncing context.
6481 * But we don't know that information at this level.
6482 */
6483
6484 mutex_enter(&buf->b_evict_lock);
6485
6486 ASSERT(HDR_HAS_L1HDR(hdr));
6487
6488 /*
6489 * We don't grab the hash lock prior to this check, because if
6490 * the buffer's header is in the arc_anon state, it won't be
6491 * linked into the hash table.
6492 */
6493 if (hdr->b_l1hdr.b_state == arc_anon) {
6494 mutex_exit(&buf->b_evict_lock);
6495 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6496 ASSERT(!HDR_IN_HASH_TABLE(hdr));
6497 ASSERT(!HDR_HAS_L2HDR(hdr));
6498 ASSERT(HDR_EMPTY(hdr));
6499
6500 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6501 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6502 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
6503
6504 hdr->b_l1hdr.b_arc_access = 0;
6505
6506 /*
6507 * If the buf is being overridden then it may already
6508 * have a hdr that is not empty.
6509 */
6510 buf_discard_identity(hdr);
6511 arc_buf_thaw(buf);
6512
6513 return;
6514 }
6515
6516 kmutex_t *hash_lock = HDR_LOCK(hdr);
6517 mutex_enter(hash_lock);
6518
6519 /*
6520 * This assignment is only valid as long as the hash_lock is
6521 * held, we must be careful not to reference state or the
6522 * b_state field after dropping the lock.
6523 */
6524 arc_state_t *state = hdr->b_l1hdr.b_state;
6525 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6526 ASSERT3P(state, !=, arc_anon);
6527
6528 /* this buffer is not on any list */
6529 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6530
6531 if (HDR_HAS_L2HDR(hdr)) {
6532 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6533
6534 /*
6535 * We have to recheck this conditional again now that
6536 * we're holding the l2ad_mtx to prevent a race with
6537 * another thread which might be concurrently calling
6538 * l2arc_evict(). In that case, l2arc_evict() might have
6539 * destroyed the header's L2 portion as we were waiting
6540 * to acquire the l2ad_mtx.
6541 */
6542 if (HDR_HAS_L2HDR(hdr))
6543 arc_hdr_l2hdr_destroy(hdr);
6544
6545 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6546 }
6547
6548 /*
6549 * Do we have more than one buf?
6550 */
6551 if (hdr->b_l1hdr.b_bufcnt > 1) {
6552 arc_buf_hdr_t *nhdr;
6553 uint64_t spa = hdr->b_spa;
6554 uint64_t psize = HDR_GET_PSIZE(hdr);
6555 uint64_t lsize = HDR_GET_LSIZE(hdr);
6556 boolean_t protected = HDR_PROTECTED(hdr);
6557 enum zio_compress compress = arc_hdr_get_compress(hdr);
6558 arc_buf_contents_t type = arc_buf_type(hdr);
6559 VERIFY3U(hdr->b_type, ==, type);
6560
6561 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6562 (void) remove_reference(hdr, hash_lock, tag);
6563
6564 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
6565 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6566 ASSERT(ARC_BUF_LAST(buf));
6567 }
6568
6569 /*
6570 * Pull the data off of this hdr and attach it to
6571 * a new anonymous hdr. Also find the last buffer
6572 * in the hdr's buffer list.
6573 */
6574 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6575 ASSERT3P(lastbuf, !=, NULL);
6576
6577 /*
6578 * If the current arc_buf_t and the hdr are sharing their data
6579 * buffer, then we must stop sharing that block.
6580 */
6581 if (arc_buf_is_shared(buf)) {
6582 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6583 VERIFY(!arc_buf_is_shared(lastbuf));
6584
6585 /*
6586 * First, sever the block sharing relationship between
6587 * buf and the arc_buf_hdr_t.
6588 */
6589 arc_unshare_buf(hdr, buf);
6590
6591 /*
6592 * Now we need to recreate the hdr's b_pabd. Since we
6593 * have lastbuf handy, we try to share with it, but if
6594 * we can't then we allocate a new b_pabd and copy the
6595 * data from buf into it.
6596 */
6597 if (arc_can_share(hdr, lastbuf)) {
6598 arc_share_buf(hdr, lastbuf);
6599 } else {
6600 arc_hdr_alloc_abd(hdr, B_FALSE);
6601 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6602 buf->b_data, psize);
6603 }
6604 VERIFY3P(lastbuf->b_data, !=, NULL);
6605 } else if (HDR_SHARED_DATA(hdr)) {
6606 /*
6607 * Uncompressed shared buffers are always at the end
6608 * of the list. Compressed buffers don't have the
6609 * same requirements. This makes it hard to
6610 * simply assert that the lastbuf is shared so
6611 * we rely on the hdr's compression flags to determine
6612 * if we have a compressed, shared buffer.
6613 */
6614 ASSERT(arc_buf_is_shared(lastbuf) ||
6615 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6616 ASSERT(!ARC_BUF_SHARED(buf));
6617 }
6618
6619 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6620 ASSERT3P(state, !=, arc_l2c_only);
6621
6622 (void) refcount_remove_many(&state->arcs_size,
6623 arc_buf_size(buf), buf);
6624
6625 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6626 ASSERT3P(state, !=, arc_l2c_only);
6627 (void) refcount_remove_many(&state->arcs_esize[type],
6628 arc_buf_size(buf), buf);
6629 }
6630
6631 hdr->b_l1hdr.b_bufcnt -= 1;
6632 if (ARC_BUF_ENCRYPTED(buf))
6633 hdr->b_crypt_hdr.b_ebufcnt -= 1;
6634
6635 arc_cksum_verify(buf);
6636 arc_buf_unwatch(buf);
6637
6638 /* if this is the last uncompressed buf free the checksum */
6639 if (!arc_hdr_has_uncompressed_buf(hdr))
6640 arc_cksum_free(hdr);
6641
6642 mutex_exit(hash_lock);
6643
6644 /*
6645 * Allocate a new hdr. The new hdr will contain a b_pabd
6646 * buffer which will be freed in arc_write().
6647 */
6648 nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6649 compress, type, HDR_HAS_RABD(hdr));
6650 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6651 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
6652 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
6653 VERIFY3U(nhdr->b_type, ==, type);
6654 ASSERT(!HDR_SHARED_DATA(nhdr));
6655
6656 nhdr->b_l1hdr.b_buf = buf;
6657 nhdr->b_l1hdr.b_bufcnt = 1;
6658 if (ARC_BUF_ENCRYPTED(buf))
6659 nhdr->b_crypt_hdr.b_ebufcnt = 1;
6660 nhdr->b_l1hdr.b_mru_hits = 0;
6661 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
6662 nhdr->b_l1hdr.b_mfu_hits = 0;
6663 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
6664 nhdr->b_l1hdr.b_l2_hits = 0;
6665 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6666 buf->b_hdr = nhdr;
6667
6668 mutex_exit(&buf->b_evict_lock);
6669 (void) refcount_add_many(&arc_anon->arcs_size,
6670 HDR_GET_LSIZE(nhdr), buf);
6671 } else {
6672 mutex_exit(&buf->b_evict_lock);
6673 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6674 /* protected by hash lock, or hdr is on arc_anon */
6675 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6676 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6677 hdr->b_l1hdr.b_mru_hits = 0;
6678 hdr->b_l1hdr.b_mru_ghost_hits = 0;
6679 hdr->b_l1hdr.b_mfu_hits = 0;
6680 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6681 hdr->b_l1hdr.b_l2_hits = 0;
6682 arc_change_state(arc_anon, hdr, hash_lock);
6683 hdr->b_l1hdr.b_arc_access = 0;
6684
6685 mutex_exit(hash_lock);
6686 buf_discard_identity(hdr);
6687 arc_buf_thaw(buf);
6688 }
6689 }
6690
6691 int
6692 arc_released(arc_buf_t *buf)
6693 {
6694 int released;
6695
6696 mutex_enter(&buf->b_evict_lock);
6697 released = (buf->b_data != NULL &&
6698 buf->b_hdr->b_l1hdr.b_state == arc_anon);
6699 mutex_exit(&buf->b_evict_lock);
6700 return (released);
6701 }
6702
6703 #ifdef ZFS_DEBUG
6704 int
6705 arc_referenced(arc_buf_t *buf)
6706 {
6707 int referenced;
6708
6709 mutex_enter(&buf->b_evict_lock);
6710 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6711 mutex_exit(&buf->b_evict_lock);
6712 return (referenced);
6713 }
6714 #endif
6715
6716 static void
6717 arc_write_ready(zio_t *zio)
6718 {
6719 arc_write_callback_t *callback = zio->io_private;
6720 arc_buf_t *buf = callback->awcb_buf;
6721 arc_buf_hdr_t *hdr = buf->b_hdr;
6722 blkptr_t *bp = zio->io_bp;
6723 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6724 fstrans_cookie_t cookie = spl_fstrans_mark();
6725
6726 ASSERT(HDR_HAS_L1HDR(hdr));
6727 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6728 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
6729
6730 /*
6731 * If we're reexecuting this zio because the pool suspended, then
6732 * cleanup any state that was previously set the first time the
6733 * callback was invoked.
6734 */
6735 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6736 arc_cksum_free(hdr);
6737 arc_buf_unwatch(buf);
6738 if (hdr->b_l1hdr.b_pabd != NULL) {
6739 if (arc_buf_is_shared(buf)) {
6740 arc_unshare_buf(hdr, buf);
6741 } else {
6742 arc_hdr_free_abd(hdr, B_FALSE);
6743 }
6744 }
6745
6746 if (HDR_HAS_RABD(hdr))
6747 arc_hdr_free_abd(hdr, B_TRUE);
6748 }
6749 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6750 ASSERT(!HDR_HAS_RABD(hdr));
6751 ASSERT(!HDR_SHARED_DATA(hdr));
6752 ASSERT(!arc_buf_is_shared(buf));
6753
6754 callback->awcb_ready(zio, buf, callback->awcb_private);
6755
6756 if (HDR_IO_IN_PROGRESS(hdr))
6757 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6758
6759 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6760
6761 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr))
6762 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp));
6763
6764 if (BP_IS_PROTECTED(bp)) {
6765 /* ZIL blocks are written through zio_rewrite */
6766 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6767 ASSERT(HDR_PROTECTED(hdr));
6768
6769 if (BP_SHOULD_BYTESWAP(bp)) {
6770 if (BP_GET_LEVEL(bp) > 0) {
6771 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6772 } else {
6773 hdr->b_l1hdr.b_byteswap =
6774 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6775 }
6776 } else {
6777 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6778 }
6779
6780 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6781 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6782 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6783 hdr->b_crypt_hdr.b_iv);
6784 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6785 }
6786
6787 /*
6788 * If this block was written for raw encryption but the zio layer
6789 * ended up only authenticating it, adjust the buffer flags now.
6790 */
6791 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6792 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6793 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6794 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6795 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6796 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6797 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6798 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6799 }
6800
6801 /* this must be done after the buffer flags are adjusted */
6802 arc_cksum_compute(buf);
6803
6804 enum zio_compress compress;
6805 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6806 compress = ZIO_COMPRESS_OFF;
6807 } else {
6808 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6809 compress = BP_GET_COMPRESS(bp);
6810 }
6811 HDR_SET_PSIZE(hdr, psize);
6812 arc_hdr_set_compress(hdr, compress);
6813
6814 if (zio->io_error != 0 || psize == 0)
6815 goto out;
6816
6817 /*
6818 * Fill the hdr with data. If the buffer is encrypted we have no choice
6819 * but to copy the data into b_radb. If the hdr is compressed, the data
6820 * we want is available from the zio, otherwise we can take it from
6821 * the buf.
6822 *
6823 * We might be able to share the buf's data with the hdr here. However,
6824 * doing so would cause the ARC to be full of linear ABDs if we write a
6825 * lot of shareable data. As a compromise, we check whether scattered
6826 * ABDs are allowed, and assume that if they are then the user wants
6827 * the ARC to be primarily filled with them regardless of the data being
6828 * written. Therefore, if they're allowed then we allocate one and copy
6829 * the data into it; otherwise, we share the data directly if we can.
6830 */
6831 if (ARC_BUF_ENCRYPTED(buf)) {
6832 ASSERT3U(psize, >, 0);
6833 ASSERT(ARC_BUF_COMPRESSED(buf));
6834 arc_hdr_alloc_abd(hdr, B_TRUE);
6835 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6836 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
6837 /*
6838 * Ideally, we would always copy the io_abd into b_pabd, but the
6839 * user may have disabled compressed ARC, thus we must check the
6840 * hdr's compression setting rather than the io_bp's.
6841 */
6842 if (BP_IS_ENCRYPTED(bp)) {
6843 ASSERT3U(psize, >, 0);
6844 arc_hdr_alloc_abd(hdr, B_TRUE);
6845 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6846 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6847 !ARC_BUF_COMPRESSED(buf)) {
6848 ASSERT3U(psize, >, 0);
6849 arc_hdr_alloc_abd(hdr, B_FALSE);
6850 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6851 } else {
6852 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6853 arc_hdr_alloc_abd(hdr, B_FALSE);
6854 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6855 arc_buf_size(buf));
6856 }
6857 } else {
6858 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6859 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6860 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6861
6862 arc_share_buf(hdr, buf);
6863 }
6864
6865 out:
6866 arc_hdr_verify(hdr, bp);
6867 spl_fstrans_unmark(cookie);
6868 }
6869
6870 static void
6871 arc_write_children_ready(zio_t *zio)
6872 {
6873 arc_write_callback_t *callback = zio->io_private;
6874 arc_buf_t *buf = callback->awcb_buf;
6875
6876 callback->awcb_children_ready(zio, buf, callback->awcb_private);
6877 }
6878
6879 /*
6880 * The SPA calls this callback for each physical write that happens on behalf
6881 * of a logical write. See the comment in dbuf_write_physdone() for details.
6882 */
6883 static void
6884 arc_write_physdone(zio_t *zio)
6885 {
6886 arc_write_callback_t *cb = zio->io_private;
6887 if (cb->awcb_physdone != NULL)
6888 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6889 }
6890
6891 static void
6892 arc_write_done(zio_t *zio)
6893 {
6894 arc_write_callback_t *callback = zio->io_private;
6895 arc_buf_t *buf = callback->awcb_buf;
6896 arc_buf_hdr_t *hdr = buf->b_hdr;
6897
6898 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6899
6900 if (zio->io_error == 0) {
6901 arc_hdr_verify(hdr, zio->io_bp);
6902
6903 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6904 buf_discard_identity(hdr);
6905 } else {
6906 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6907 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
6908 }
6909 } else {
6910 ASSERT(HDR_EMPTY(hdr));
6911 }
6912
6913 /*
6914 * If the block to be written was all-zero or compressed enough to be
6915 * embedded in the BP, no write was performed so there will be no
6916 * dva/birth/checksum. The buffer must therefore remain anonymous
6917 * (and uncached).
6918 */
6919 if (!HDR_EMPTY(hdr)) {
6920 arc_buf_hdr_t *exists;
6921 kmutex_t *hash_lock;
6922
6923 ASSERT3U(zio->io_error, ==, 0);
6924
6925 arc_cksum_verify(buf);
6926
6927 exists = buf_hash_insert(hdr, &hash_lock);
6928 if (exists != NULL) {
6929 /*
6930 * This can only happen if we overwrite for
6931 * sync-to-convergence, because we remove
6932 * buffers from the hash table when we arc_free().
6933 */
6934 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6935 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6936 panic("bad overwrite, hdr=%p exists=%p",
6937 (void *)hdr, (void *)exists);
6938 ASSERT(refcount_is_zero(
6939 &exists->b_l1hdr.b_refcnt));
6940 arc_change_state(arc_anon, exists, hash_lock);
6941 mutex_exit(hash_lock);
6942 arc_hdr_destroy(exists);
6943 exists = buf_hash_insert(hdr, &hash_lock);
6944 ASSERT3P(exists, ==, NULL);
6945 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6946 /* nopwrite */
6947 ASSERT(zio->io_prop.zp_nopwrite);
6948 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6949 panic("bad nopwrite, hdr=%p exists=%p",
6950 (void *)hdr, (void *)exists);
6951 } else {
6952 /* Dedup */
6953 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
6954 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6955 ASSERT(BP_GET_DEDUP(zio->io_bp));
6956 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6957 }
6958 }
6959 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6960 /* if it's not anon, we are doing a scrub */
6961 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6962 arc_access(hdr, hash_lock);
6963 mutex_exit(hash_lock);
6964 } else {
6965 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6966 }
6967
6968 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
6969 callback->awcb_done(zio, buf, callback->awcb_private);
6970
6971 abd_put(zio->io_abd);
6972 kmem_free(callback, sizeof (arc_write_callback_t));
6973 }
6974
6975 zio_t *
6976 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
6977 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc,
6978 const zio_prop_t *zp, arc_write_done_func_t *ready,
6979 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
6980 arc_write_done_func_t *done, void *private, zio_priority_t priority,
6981 int zio_flags, const zbookmark_phys_t *zb)
6982 {
6983 arc_buf_hdr_t *hdr = buf->b_hdr;
6984 arc_write_callback_t *callback;
6985 zio_t *zio;
6986 zio_prop_t localprop = *zp;
6987
6988 ASSERT3P(ready, !=, NULL);
6989 ASSERT3P(done, !=, NULL);
6990 ASSERT(!HDR_IO_ERROR(hdr));
6991 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6992 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6993 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
6994 if (l2arc)
6995 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6996
6997 if (ARC_BUF_ENCRYPTED(buf)) {
6998 ASSERT(ARC_BUF_COMPRESSED(buf));
6999 localprop.zp_encrypt = B_TRUE;
7000 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7001 localprop.zp_byteorder =
7002 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
7003 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
7004 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt,
7005 ZIO_DATA_SALT_LEN);
7006 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv,
7007 ZIO_DATA_IV_LEN);
7008 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac,
7009 ZIO_DATA_MAC_LEN);
7010 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
7011 localprop.zp_nopwrite = B_FALSE;
7012 localprop.zp_copies =
7013 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
7014 }
7015 zio_flags |= ZIO_FLAG_RAW;
7016 } else if (ARC_BUF_COMPRESSED(buf)) {
7017 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
7018 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7019 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
7020 }
7021 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
7022 callback->awcb_ready = ready;
7023 callback->awcb_children_ready = children_ready;
7024 callback->awcb_physdone = physdone;
7025 callback->awcb_done = done;
7026 callback->awcb_private = private;
7027 callback->awcb_buf = buf;
7028
7029 /*
7030 * The hdr's b_pabd is now stale, free it now. A new data block
7031 * will be allocated when the zio pipeline calls arc_write_ready().
7032 */
7033 if (hdr->b_l1hdr.b_pabd != NULL) {
7034 /*
7035 * If the buf is currently sharing the data block with
7036 * the hdr then we need to break that relationship here.
7037 * The hdr will remain with a NULL data pointer and the
7038 * buf will take sole ownership of the block.
7039 */
7040 if (arc_buf_is_shared(buf)) {
7041 arc_unshare_buf(hdr, buf);
7042 } else {
7043 arc_hdr_free_abd(hdr, B_FALSE);
7044 }
7045 VERIFY3P(buf->b_data, !=, NULL);
7046 }
7047
7048 if (HDR_HAS_RABD(hdr))
7049 arc_hdr_free_abd(hdr, B_TRUE);
7050
7051 if (!(zio_flags & ZIO_FLAG_RAW))
7052 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
7053
7054 ASSERT(!arc_buf_is_shared(buf));
7055 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
7056
7057 zio = zio_write(pio, spa, txg, bp,
7058 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
7059 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
7060 (children_ready != NULL) ? arc_write_children_ready : NULL,
7061 arc_write_physdone, arc_write_done, callback,
7062 priority, zio_flags, zb);
7063
7064 return (zio);
7065 }
7066
7067 static int
7068 arc_memory_throttle(uint64_t reserve, uint64_t txg)
7069 {
7070 #ifdef _KERNEL
7071 uint64_t available_memory = arc_free_memory();
7072 static uint64_t page_load = 0;
7073 static uint64_t last_txg = 0;
7074
7075 #if defined(_ILP32)
7076 available_memory =
7077 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
7078 #endif
7079
7080 if (available_memory > arc_all_memory() * arc_lotsfree_percent / 100)
7081 return (0);
7082
7083 if (txg > last_txg) {
7084 last_txg = txg;
7085 page_load = 0;
7086 }
7087 /*
7088 * If we are in pageout, we know that memory is already tight,
7089 * the arc is already going to be evicting, so we just want to
7090 * continue to let page writes occur as quickly as possible.
7091 */
7092 if (current_is_kswapd()) {
7093 if (page_load > MAX(arc_sys_free / 4, available_memory) / 4) {
7094 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
7095 return (SET_ERROR(ERESTART));
7096 }
7097 /* Note: reserve is inflated, so we deflate */
7098 page_load += reserve / 8;
7099 return (0);
7100 } else if (page_load > 0 && arc_reclaim_needed()) {
7101 /* memory is low, delay before restarting */
7102 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
7103 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
7104 return (SET_ERROR(EAGAIN));
7105 }
7106 page_load = 0;
7107 #endif
7108 return (0);
7109 }
7110
7111 void
7112 arc_tempreserve_clear(uint64_t reserve)
7113 {
7114 atomic_add_64(&arc_tempreserve, -reserve);
7115 ASSERT((int64_t)arc_tempreserve >= 0);
7116 }
7117
7118 int
7119 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
7120 {
7121 int error;
7122 uint64_t anon_size;
7123
7124 if (!arc_no_grow &&
7125 reserve > arc_c/4 &&
7126 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
7127 arc_c = MIN(arc_c_max, reserve * 4);
7128
7129 /*
7130 * Throttle when the calculated memory footprint for the TXG
7131 * exceeds the target ARC size.
7132 */
7133 if (reserve > arc_c) {
7134 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
7135 return (SET_ERROR(ERESTART));
7136 }
7137
7138 /*
7139 * Don't count loaned bufs as in flight dirty data to prevent long
7140 * network delays from blocking transactions that are ready to be
7141 * assigned to a txg.
7142 */
7143
7144 /* assert that it has not wrapped around */
7145 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
7146
7147 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
7148 arc_loaned_bytes), 0);
7149
7150 /*
7151 * Writes will, almost always, require additional memory allocations
7152 * in order to compress/encrypt/etc the data. We therefore need to
7153 * make sure that there is sufficient available memory for this.
7154 */
7155 error = arc_memory_throttle(reserve, txg);
7156 if (error != 0)
7157 return (error);
7158
7159 /*
7160 * Throttle writes when the amount of dirty data in the cache
7161 * gets too large. We try to keep the cache less than half full
7162 * of dirty blocks so that our sync times don't grow too large.
7163 * Note: if two requests come in concurrently, we might let them
7164 * both succeed, when one of them should fail. Not a huge deal.
7165 */
7166
7167 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
7168 anon_size > arc_c / 4) {
7169 #ifdef ZFS_DEBUG
7170 uint64_t meta_esize =
7171 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7172 uint64_t data_esize =
7173 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7174 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7175 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
7176 arc_tempreserve >> 10, meta_esize >> 10,
7177 data_esize >> 10, reserve >> 10, arc_c >> 10);
7178 #endif
7179 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
7180 return (SET_ERROR(ERESTART));
7181 }
7182 atomic_add_64(&arc_tempreserve, reserve);
7183 return (0);
7184 }
7185
7186 static void
7187 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7188 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7189 {
7190 size->value.ui64 = refcount_count(&state->arcs_size);
7191 evict_data->value.ui64 =
7192 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
7193 evict_metadata->value.ui64 =
7194 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
7195 }
7196
7197 static int
7198 arc_kstat_update(kstat_t *ksp, int rw)
7199 {
7200 arc_stats_t *as = ksp->ks_data;
7201
7202 if (rw == KSTAT_WRITE) {
7203 return (SET_ERROR(EACCES));
7204 } else {
7205 arc_kstat_update_state(arc_anon,
7206 &as->arcstat_anon_size,
7207 &as->arcstat_anon_evictable_data,
7208 &as->arcstat_anon_evictable_metadata);
7209 arc_kstat_update_state(arc_mru,
7210 &as->arcstat_mru_size,
7211 &as->arcstat_mru_evictable_data,
7212 &as->arcstat_mru_evictable_metadata);
7213 arc_kstat_update_state(arc_mru_ghost,
7214 &as->arcstat_mru_ghost_size,
7215 &as->arcstat_mru_ghost_evictable_data,
7216 &as->arcstat_mru_ghost_evictable_metadata);
7217 arc_kstat_update_state(arc_mfu,
7218 &as->arcstat_mfu_size,
7219 &as->arcstat_mfu_evictable_data,
7220 &as->arcstat_mfu_evictable_metadata);
7221 arc_kstat_update_state(arc_mfu_ghost,
7222 &as->arcstat_mfu_ghost_size,
7223 &as->arcstat_mfu_ghost_evictable_data,
7224 &as->arcstat_mfu_ghost_evictable_metadata);
7225
7226 as->arcstat_memory_all_bytes.value.ui64 =
7227 arc_all_memory();
7228 as->arcstat_memory_free_bytes.value.ui64 =
7229 arc_free_memory();
7230 as->arcstat_memory_available_bytes.value.i64 =
7231 arc_available_memory();
7232 }
7233
7234 return (0);
7235 }
7236
7237 /*
7238 * This function *must* return indices evenly distributed between all
7239 * sublists of the multilist. This is needed due to how the ARC eviction
7240 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7241 * distributed between all sublists and uses this assumption when
7242 * deciding which sublist to evict from and how much to evict from it.
7243 */
7244 unsigned int
7245 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7246 {
7247 arc_buf_hdr_t *hdr = obj;
7248
7249 /*
7250 * We rely on b_dva to generate evenly distributed index
7251 * numbers using buf_hash below. So, as an added precaution,
7252 * let's make sure we never add empty buffers to the arc lists.
7253 */
7254 ASSERT(!HDR_EMPTY(hdr));
7255
7256 /*
7257 * The assumption here, is the hash value for a given
7258 * arc_buf_hdr_t will remain constant throughout its lifetime
7259 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7260 * Thus, we don't need to store the header's sublist index
7261 * on insertion, as this index can be recalculated on removal.
7262 *
7263 * Also, the low order bits of the hash value are thought to be
7264 * distributed evenly. Otherwise, in the case that the multilist
7265 * has a power of two number of sublists, each sublists' usage
7266 * would not be evenly distributed.
7267 */
7268 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7269 multilist_get_num_sublists(ml));
7270 }
7271
7272 /*
7273 * Called during module initialization and periodically thereafter to
7274 * apply reasonable changes to the exposed performance tunings. Non-zero
7275 * zfs_* values which differ from the currently set values will be applied.
7276 */
7277 static void
7278 arc_tuning_update(void)
7279 {
7280 uint64_t allmem = arc_all_memory();
7281 unsigned long limit;
7282
7283 /* Valid range: 64M - <all physical memory> */
7284 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7285 (zfs_arc_max >= 64 << 20) && (zfs_arc_max < allmem) &&
7286 (zfs_arc_max > arc_c_min)) {
7287 arc_c_max = zfs_arc_max;
7288 arc_c = arc_c_max;
7289 arc_p = (arc_c >> 1);
7290 if (arc_meta_limit > arc_c_max)
7291 arc_meta_limit = arc_c_max;
7292 if (arc_dnode_limit > arc_meta_limit)
7293 arc_dnode_limit = arc_meta_limit;
7294 }
7295
7296 /* Valid range: 32M - <arc_c_max> */
7297 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7298 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7299 (zfs_arc_min <= arc_c_max)) {
7300 arc_c_min = zfs_arc_min;
7301 arc_c = MAX(arc_c, arc_c_min);
7302 }
7303
7304 /* Valid range: 16M - <arc_c_max> */
7305 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
7306 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
7307 (zfs_arc_meta_min <= arc_c_max)) {
7308 arc_meta_min = zfs_arc_meta_min;
7309 if (arc_meta_limit < arc_meta_min)
7310 arc_meta_limit = arc_meta_min;
7311 if (arc_dnode_limit < arc_meta_min)
7312 arc_dnode_limit = arc_meta_min;
7313 }
7314
7315 /* Valid range: <arc_meta_min> - <arc_c_max> */
7316 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit :
7317 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100;
7318 if ((limit != arc_meta_limit) &&
7319 (limit >= arc_meta_min) &&
7320 (limit <= arc_c_max))
7321 arc_meta_limit = limit;
7322
7323 /* Valid range: <arc_meta_min> - <arc_meta_limit> */
7324 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7325 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100;
7326 if ((limit != arc_dnode_limit) &&
7327 (limit >= arc_meta_min) &&
7328 (limit <= arc_meta_limit))
7329 arc_dnode_limit = limit;
7330
7331 /* Valid range: 1 - N */
7332 if (zfs_arc_grow_retry)
7333 arc_grow_retry = zfs_arc_grow_retry;
7334
7335 /* Valid range: 1 - N */
7336 if (zfs_arc_shrink_shift) {
7337 arc_shrink_shift = zfs_arc_shrink_shift;
7338 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7339 }
7340
7341 /* Valid range: 1 - N */
7342 if (zfs_arc_p_min_shift)
7343 arc_p_min_shift = zfs_arc_p_min_shift;
7344
7345 /* Valid range: 1 - N ms */
7346 if (zfs_arc_min_prefetch_ms)
7347 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7348
7349 /* Valid range: 1 - N ms */
7350 if (zfs_arc_min_prescient_prefetch_ms) {
7351 arc_min_prescient_prefetch_ms =
7352 zfs_arc_min_prescient_prefetch_ms;
7353 }
7354
7355 /* Valid range: 0 - 100 */
7356 if ((zfs_arc_lotsfree_percent >= 0) &&
7357 (zfs_arc_lotsfree_percent <= 100))
7358 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7359
7360 /* Valid range: 0 - <all physical memory> */
7361 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
7362 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem);
7363
7364 }
7365
7366 static void
7367 arc_state_init(void)
7368 {
7369 arc_anon = &ARC_anon;
7370 arc_mru = &ARC_mru;
7371 arc_mru_ghost = &ARC_mru_ghost;
7372 arc_mfu = &ARC_mfu;
7373 arc_mfu_ghost = &ARC_mfu_ghost;
7374 arc_l2c_only = &ARC_l2c_only;
7375
7376 arc_mru->arcs_list[ARC_BUFC_METADATA] =
7377 multilist_create(sizeof (arc_buf_hdr_t),
7378 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7379 arc_state_multilist_index_func);
7380 arc_mru->arcs_list[ARC_BUFC_DATA] =
7381 multilist_create(sizeof (arc_buf_hdr_t),
7382 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7383 arc_state_multilist_index_func);
7384 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
7385 multilist_create(sizeof (arc_buf_hdr_t),
7386 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7387 arc_state_multilist_index_func);
7388 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
7389 multilist_create(sizeof (arc_buf_hdr_t),
7390 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7391 arc_state_multilist_index_func);
7392 arc_mfu->arcs_list[ARC_BUFC_METADATA] =
7393 multilist_create(sizeof (arc_buf_hdr_t),
7394 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7395 arc_state_multilist_index_func);
7396 arc_mfu->arcs_list[ARC_BUFC_DATA] =
7397 multilist_create(sizeof (arc_buf_hdr_t),
7398 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7399 arc_state_multilist_index_func);
7400 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
7401 multilist_create(sizeof (arc_buf_hdr_t),
7402 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7403 arc_state_multilist_index_func);
7404 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
7405 multilist_create(sizeof (arc_buf_hdr_t),
7406 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7407 arc_state_multilist_index_func);
7408 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
7409 multilist_create(sizeof (arc_buf_hdr_t),
7410 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7411 arc_state_multilist_index_func);
7412 arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
7413 multilist_create(sizeof (arc_buf_hdr_t),
7414 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7415 arc_state_multilist_index_func);
7416
7417 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7418 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7419 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7420 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7421 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7422 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7423 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7424 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7425 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7426 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7427 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7428 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7429
7430 refcount_create(&arc_anon->arcs_size);
7431 refcount_create(&arc_mru->arcs_size);
7432 refcount_create(&arc_mru_ghost->arcs_size);
7433 refcount_create(&arc_mfu->arcs_size);
7434 refcount_create(&arc_mfu_ghost->arcs_size);
7435 refcount_create(&arc_l2c_only->arcs_size);
7436
7437 arc_anon->arcs_state = ARC_STATE_ANON;
7438 arc_mru->arcs_state = ARC_STATE_MRU;
7439 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7440 arc_mfu->arcs_state = ARC_STATE_MFU;
7441 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7442 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7443 }
7444
7445 static void
7446 arc_state_fini(void)
7447 {
7448 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7449 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7450 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7451 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7452 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7453 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7454 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7455 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7456 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7457 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7458 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7459 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7460
7461 refcount_destroy(&arc_anon->arcs_size);
7462 refcount_destroy(&arc_mru->arcs_size);
7463 refcount_destroy(&arc_mru_ghost->arcs_size);
7464 refcount_destroy(&arc_mfu->arcs_size);
7465 refcount_destroy(&arc_mfu_ghost->arcs_size);
7466 refcount_destroy(&arc_l2c_only->arcs_size);
7467
7468 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
7469 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7470 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7471 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7472 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
7473 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7474 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
7475 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7476 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7477 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7478 }
7479
7480 uint64_t
7481 arc_target_bytes(void)
7482 {
7483 return (arc_c);
7484 }
7485
7486 void
7487 arc_init(void)
7488 {
7489 uint64_t percent, allmem = arc_all_memory();
7490
7491 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
7492 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
7493 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
7494
7495 arc_min_prefetch_ms = 1000;
7496 arc_min_prescient_prefetch_ms = 6000;
7497
7498 #ifdef _KERNEL
7499 /*
7500 * Register a shrinker to support synchronous (direct) memory
7501 * reclaim from the arc. This is done to prevent kswapd from
7502 * swapping out pages when it is preferable to shrink the arc.
7503 */
7504 spl_register_shrinker(&arc_shrinker);
7505
7506 /* Set to 1/64 of all memory or a minimum of 512K */
7507 arc_sys_free = MAX(allmem / 64, (512 * 1024));
7508 arc_need_free = 0;
7509 #endif
7510
7511 /* Set max to 1/2 of all memory */
7512 arc_c_max = allmem / 2;
7513
7514 #ifdef _KERNEL
7515 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more */
7516 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7517 #else
7518 /*
7519 * In userland, there's only the memory pressure that we artificially
7520 * create (see arc_available_memory()). Don't let arc_c get too
7521 * small, because it can cause transactions to be larger than
7522 * arc_c, causing arc_tempreserve_space() to fail.
7523 */
7524 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
7525 #endif
7526
7527 arc_c = arc_c_max;
7528 arc_p = (arc_c >> 1);
7529 arc_size = 0;
7530
7531 /* Set min to 1/2 of arc_c_min */
7532 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
7533 /* Initialize maximum observed usage to zero */
7534 arc_meta_max = 0;
7535 /*
7536 * Set arc_meta_limit to a percent of arc_c_max with a floor of
7537 * arc_meta_min, and a ceiling of arc_c_max.
7538 */
7539 percent = MIN(zfs_arc_meta_limit_percent, 100);
7540 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
7541 percent = MIN(zfs_arc_dnode_limit_percent, 100);
7542 arc_dnode_limit = (percent * arc_meta_limit) / 100;
7543
7544 /* Apply user specified tunings */
7545 arc_tuning_update();
7546
7547 /* if kmem_flags are set, lets try to use less memory */
7548 if (kmem_debugging())
7549 arc_c = arc_c / 2;
7550 if (arc_c < arc_c_min)
7551 arc_c = arc_c_min;
7552
7553 arc_state_init();
7554 buf_init();
7555
7556 list_create(&arc_prune_list, sizeof (arc_prune_t),
7557 offsetof(arc_prune_t, p_node));
7558 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
7559
7560 arc_prune_taskq = taskq_create("arc_prune", max_ncpus, defclsyspri,
7561 max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
7562
7563 arc_reclaim_thread_exit = B_FALSE;
7564
7565 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7566 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7567
7568 if (arc_ksp != NULL) {
7569 arc_ksp->ks_data = &arc_stats;
7570 arc_ksp->ks_update = arc_kstat_update;
7571 kstat_install(arc_ksp);
7572 }
7573
7574 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
7575 TS_RUN, defclsyspri);
7576
7577 arc_dead = B_FALSE;
7578 arc_warm = B_FALSE;
7579
7580 /*
7581 * Calculate maximum amount of dirty data per pool.
7582 *
7583 * If it has been set by a module parameter, take that.
7584 * Otherwise, use a percentage of physical memory defined by
7585 * zfs_dirty_data_max_percent (default 10%) with a cap at
7586 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
7587 */
7588 if (zfs_dirty_data_max_max == 0)
7589 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
7590 allmem * zfs_dirty_data_max_max_percent / 100);
7591
7592 if (zfs_dirty_data_max == 0) {
7593 zfs_dirty_data_max = allmem *
7594 zfs_dirty_data_max_percent / 100;
7595 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7596 zfs_dirty_data_max_max);
7597 }
7598 }
7599
7600 void
7601 arc_fini(void)
7602 {
7603 arc_prune_t *p;
7604
7605 #ifdef _KERNEL
7606 spl_unregister_shrinker(&arc_shrinker);
7607 #endif /* _KERNEL */
7608
7609 mutex_enter(&arc_reclaim_lock);
7610 arc_reclaim_thread_exit = B_TRUE;
7611 /*
7612 * The reclaim thread will set arc_reclaim_thread_exit back to
7613 * B_FALSE when it is finished exiting; we're waiting for that.
7614 */
7615 while (arc_reclaim_thread_exit) {
7616 cv_signal(&arc_reclaim_thread_cv);
7617 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
7618 }
7619 mutex_exit(&arc_reclaim_lock);
7620
7621 /* Use B_TRUE to ensure *all* buffers are evicted */
7622 arc_flush(NULL, B_TRUE);
7623
7624 arc_dead = B_TRUE;
7625
7626 if (arc_ksp != NULL) {
7627 kstat_delete(arc_ksp);
7628 arc_ksp = NULL;
7629 }
7630
7631 taskq_wait(arc_prune_taskq);
7632 taskq_destroy(arc_prune_taskq);
7633
7634 mutex_enter(&arc_prune_mtx);
7635 while ((p = list_head(&arc_prune_list)) != NULL) {
7636 list_remove(&arc_prune_list, p);
7637 refcount_remove(&p->p_refcnt, &arc_prune_list);
7638 refcount_destroy(&p->p_refcnt);
7639 kmem_free(p, sizeof (*p));
7640 }
7641 mutex_exit(&arc_prune_mtx);
7642
7643 list_destroy(&arc_prune_list);
7644 mutex_destroy(&arc_prune_mtx);
7645 mutex_destroy(&arc_reclaim_lock);
7646 cv_destroy(&arc_reclaim_thread_cv);
7647 cv_destroy(&arc_reclaim_waiters_cv);
7648
7649 arc_state_fini();
7650 buf_fini();
7651
7652 ASSERT0(arc_loaned_bytes);
7653 }
7654
7655 /*
7656 * Level 2 ARC
7657 *
7658 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7659 * It uses dedicated storage devices to hold cached data, which are populated
7660 * using large infrequent writes. The main role of this cache is to boost
7661 * the performance of random read workloads. The intended L2ARC devices
7662 * include short-stroked disks, solid state disks, and other media with
7663 * substantially faster read latency than disk.
7664 *
7665 * +-----------------------+
7666 * | ARC |
7667 * +-----------------------+
7668 * | ^ ^
7669 * | | |
7670 * l2arc_feed_thread() arc_read()
7671 * | | |
7672 * | l2arc read |
7673 * V | |
7674 * +---------------+ |
7675 * | L2ARC | |
7676 * +---------------+ |
7677 * | ^ |
7678 * l2arc_write() | |
7679 * | | |
7680 * V | |
7681 * +-------+ +-------+
7682 * | vdev | | vdev |
7683 * | cache | | cache |
7684 * +-------+ +-------+
7685 * +=========+ .-----.
7686 * : L2ARC : |-_____-|
7687 * : devices : | Disks |
7688 * +=========+ `-_____-'
7689 *
7690 * Read requests are satisfied from the following sources, in order:
7691 *
7692 * 1) ARC
7693 * 2) vdev cache of L2ARC devices
7694 * 3) L2ARC devices
7695 * 4) vdev cache of disks
7696 * 5) disks
7697 *
7698 * Some L2ARC device types exhibit extremely slow write performance.
7699 * To accommodate for this there are some significant differences between
7700 * the L2ARC and traditional cache design:
7701 *
7702 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
7703 * the ARC behave as usual, freeing buffers and placing headers on ghost
7704 * lists. The ARC does not send buffers to the L2ARC during eviction as
7705 * this would add inflated write latencies for all ARC memory pressure.
7706 *
7707 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7708 * It does this by periodically scanning buffers from the eviction-end of
7709 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
7710 * not already there. It scans until a headroom of buffers is satisfied,
7711 * which itself is a buffer for ARC eviction. If a compressible buffer is
7712 * found during scanning and selected for writing to an L2ARC device, we
7713 * temporarily boost scanning headroom during the next scan cycle to make
7714 * sure we adapt to compression effects (which might significantly reduce
7715 * the data volume we write to L2ARC). The thread that does this is
7716 * l2arc_feed_thread(), illustrated below; example sizes are included to
7717 * provide a better sense of ratio than this diagram:
7718 *
7719 * head --> tail
7720 * +---------------------+----------+
7721 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
7722 * +---------------------+----------+ | o L2ARC eligible
7723 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
7724 * +---------------------+----------+ |
7725 * 15.9 Gbytes ^ 32 Mbytes |
7726 * headroom |
7727 * l2arc_feed_thread()
7728 * |
7729 * l2arc write hand <--[oooo]--'
7730 * | 8 Mbyte
7731 * | write max
7732 * V
7733 * +==============================+
7734 * L2ARC dev |####|#|###|###| |####| ... |
7735 * +==============================+
7736 * 32 Gbytes
7737 *
7738 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7739 * evicted, then the L2ARC has cached a buffer much sooner than it probably
7740 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
7741 * safe to say that this is an uncommon case, since buffers at the end of
7742 * the ARC lists have moved there due to inactivity.
7743 *
7744 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7745 * then the L2ARC simply misses copying some buffers. This serves as a
7746 * pressure valve to prevent heavy read workloads from both stalling the ARC
7747 * with waits and clogging the L2ARC with writes. This also helps prevent
7748 * the potential for the L2ARC to churn if it attempts to cache content too
7749 * quickly, such as during backups of the entire pool.
7750 *
7751 * 5. After system boot and before the ARC has filled main memory, there are
7752 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7753 * lists can remain mostly static. Instead of searching from tail of these
7754 * lists as pictured, the l2arc_feed_thread() will search from the list heads
7755 * for eligible buffers, greatly increasing its chance of finding them.
7756 *
7757 * The L2ARC device write speed is also boosted during this time so that
7758 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
7759 * there are no L2ARC reads, and no fear of degrading read performance
7760 * through increased writes.
7761 *
7762 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7763 * the vdev queue can aggregate them into larger and fewer writes. Each
7764 * device is written to in a rotor fashion, sweeping writes through
7765 * available space then repeating.
7766 *
7767 * 7. The L2ARC does not store dirty content. It never needs to flush
7768 * write buffers back to disk based storage.
7769 *
7770 * 8. If an ARC buffer is written (and dirtied) which also exists in the
7771 * L2ARC, the now stale L2ARC buffer is immediately dropped.
7772 *
7773 * The performance of the L2ARC can be tweaked by a number of tunables, which
7774 * may be necessary for different workloads:
7775 *
7776 * l2arc_write_max max write bytes per interval
7777 * l2arc_write_boost extra write bytes during device warmup
7778 * l2arc_noprefetch skip caching prefetched buffers
7779 * l2arc_headroom number of max device writes to precache
7780 * l2arc_headroom_boost when we find compressed buffers during ARC
7781 * scanning, we multiply headroom by this
7782 * percentage factor for the next scan cycle,
7783 * since more compressed buffers are likely to
7784 * be present
7785 * l2arc_feed_secs seconds between L2ARC writing
7786 *
7787 * Tunables may be removed or added as future performance improvements are
7788 * integrated, and also may become zpool properties.
7789 *
7790 * There are three key functions that control how the L2ARC warms up:
7791 *
7792 * l2arc_write_eligible() check if a buffer is eligible to cache
7793 * l2arc_write_size() calculate how much to write
7794 * l2arc_write_interval() calculate sleep delay between writes
7795 *
7796 * These three functions determine what to write, how much, and how quickly
7797 * to send writes.
7798 */
7799
7800 static boolean_t
7801 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
7802 {
7803 /*
7804 * A buffer is *not* eligible for the L2ARC if it:
7805 * 1. belongs to a different spa.
7806 * 2. is already cached on the L2ARC.
7807 * 3. has an I/O in progress (it may be an incomplete read).
7808 * 4. is flagged not eligible (zfs property).
7809 */
7810 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
7811 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
7812 return (B_FALSE);
7813
7814 return (B_TRUE);
7815 }
7816
7817 static uint64_t
7818 l2arc_write_size(void)
7819 {
7820 uint64_t size;
7821
7822 /*
7823 * Make sure our globals have meaningful values in case the user
7824 * altered them.
7825 */
7826 size = l2arc_write_max;
7827 if (size == 0) {
7828 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
7829 "be greater than zero, resetting it to the default (%d)",
7830 L2ARC_WRITE_SIZE);
7831 size = l2arc_write_max = L2ARC_WRITE_SIZE;
7832 }
7833
7834 if (arc_warm == B_FALSE)
7835 size += l2arc_write_boost;
7836
7837 return (size);
7838
7839 }
7840
7841 static clock_t
7842 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
7843 {
7844 clock_t interval, next, now;
7845
7846 /*
7847 * If the ARC lists are busy, increase our write rate; if the
7848 * lists are stale, idle back. This is achieved by checking
7849 * how much we previously wrote - if it was more than half of
7850 * what we wanted, schedule the next write much sooner.
7851 */
7852 if (l2arc_feed_again && wrote > (wanted / 2))
7853 interval = (hz * l2arc_feed_min_ms) / 1000;
7854 else
7855 interval = hz * l2arc_feed_secs;
7856
7857 now = ddi_get_lbolt();
7858 next = MAX(now, MIN(now + interval, began + interval));
7859
7860 return (next);
7861 }
7862
7863 /*
7864 * Cycle through L2ARC devices. This is how L2ARC load balances.
7865 * If a device is returned, this also returns holding the spa config lock.
7866 */
7867 static l2arc_dev_t *
7868 l2arc_dev_get_next(void)
7869 {
7870 l2arc_dev_t *first, *next = NULL;
7871
7872 /*
7873 * Lock out the removal of spas (spa_namespace_lock), then removal
7874 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
7875 * both locks will be dropped and a spa config lock held instead.
7876 */
7877 mutex_enter(&spa_namespace_lock);
7878 mutex_enter(&l2arc_dev_mtx);
7879
7880 /* if there are no vdevs, there is nothing to do */
7881 if (l2arc_ndev == 0)
7882 goto out;
7883
7884 first = NULL;
7885 next = l2arc_dev_last;
7886 do {
7887 /* loop around the list looking for a non-faulted vdev */
7888 if (next == NULL) {
7889 next = list_head(l2arc_dev_list);
7890 } else {
7891 next = list_next(l2arc_dev_list, next);
7892 if (next == NULL)
7893 next = list_head(l2arc_dev_list);
7894 }
7895
7896 /* if we have come back to the start, bail out */
7897 if (first == NULL)
7898 first = next;
7899 else if (next == first)
7900 break;
7901
7902 } while (vdev_is_dead(next->l2ad_vdev));
7903
7904 /* if we were unable to find any usable vdevs, return NULL */
7905 if (vdev_is_dead(next->l2ad_vdev))
7906 next = NULL;
7907
7908 l2arc_dev_last = next;
7909
7910 out:
7911 mutex_exit(&l2arc_dev_mtx);
7912
7913 /*
7914 * Grab the config lock to prevent the 'next' device from being
7915 * removed while we are writing to it.
7916 */
7917 if (next != NULL)
7918 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
7919 mutex_exit(&spa_namespace_lock);
7920
7921 return (next);
7922 }
7923
7924 /*
7925 * Free buffers that were tagged for destruction.
7926 */
7927 static void
7928 l2arc_do_free_on_write(void)
7929 {
7930 list_t *buflist;
7931 l2arc_data_free_t *df, *df_prev;
7932
7933 mutex_enter(&l2arc_free_on_write_mtx);
7934 buflist = l2arc_free_on_write;
7935
7936 for (df = list_tail(buflist); df; df = df_prev) {
7937 df_prev = list_prev(buflist, df);
7938 ASSERT3P(df->l2df_abd, !=, NULL);
7939 abd_free(df->l2df_abd);
7940 list_remove(buflist, df);
7941 kmem_free(df, sizeof (l2arc_data_free_t));
7942 }
7943
7944 mutex_exit(&l2arc_free_on_write_mtx);
7945 }
7946
7947 /*
7948 * A write to a cache device has completed. Update all headers to allow
7949 * reads from these buffers to begin.
7950 */
7951 static void
7952 l2arc_write_done(zio_t *zio)
7953 {
7954 l2arc_write_callback_t *cb;
7955 l2arc_dev_t *dev;
7956 list_t *buflist;
7957 arc_buf_hdr_t *head, *hdr, *hdr_prev;
7958 kmutex_t *hash_lock;
7959 int64_t bytes_dropped = 0;
7960
7961 cb = zio->io_private;
7962 ASSERT3P(cb, !=, NULL);
7963 dev = cb->l2wcb_dev;
7964 ASSERT3P(dev, !=, NULL);
7965 head = cb->l2wcb_head;
7966 ASSERT3P(head, !=, NULL);
7967 buflist = &dev->l2ad_buflist;
7968 ASSERT3P(buflist, !=, NULL);
7969 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
7970 l2arc_write_callback_t *, cb);
7971
7972 if (zio->io_error != 0)
7973 ARCSTAT_BUMP(arcstat_l2_writes_error);
7974
7975 /*
7976 * All writes completed, or an error was hit.
7977 */
7978 top:
7979 mutex_enter(&dev->l2ad_mtx);
7980 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
7981 hdr_prev = list_prev(buflist, hdr);
7982
7983 hash_lock = HDR_LOCK(hdr);
7984
7985 /*
7986 * We cannot use mutex_enter or else we can deadlock
7987 * with l2arc_write_buffers (due to swapping the order
7988 * the hash lock and l2ad_mtx are taken).
7989 */
7990 if (!mutex_tryenter(hash_lock)) {
7991 /*
7992 * Missed the hash lock. We must retry so we
7993 * don't leave the ARC_FLAG_L2_WRITING bit set.
7994 */
7995 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
7996
7997 /*
7998 * We don't want to rescan the headers we've
7999 * already marked as having been written out, so
8000 * we reinsert the head node so we can pick up
8001 * where we left off.
8002 */
8003 list_remove(buflist, head);
8004 list_insert_after(buflist, hdr, head);
8005
8006 mutex_exit(&dev->l2ad_mtx);
8007
8008 /*
8009 * We wait for the hash lock to become available
8010 * to try and prevent busy waiting, and increase
8011 * the chance we'll be able to acquire the lock
8012 * the next time around.
8013 */
8014 mutex_enter(hash_lock);
8015 mutex_exit(hash_lock);
8016 goto top;
8017 }
8018
8019 /*
8020 * We could not have been moved into the arc_l2c_only
8021 * state while in-flight due to our ARC_FLAG_L2_WRITING
8022 * bit being set. Let's just ensure that's being enforced.
8023 */
8024 ASSERT(HDR_HAS_L1HDR(hdr));
8025
8026 /*
8027 * Skipped - drop L2ARC entry and mark the header as no
8028 * longer L2 eligibile.
8029 */
8030 if (zio->io_error != 0) {
8031 /*
8032 * Error - drop L2ARC entry.
8033 */
8034 list_remove(buflist, hdr);
8035 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
8036
8037 ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
8038 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
8039
8040 bytes_dropped += arc_hdr_size(hdr);
8041 (void) refcount_remove_many(&dev->l2ad_alloc,
8042 arc_hdr_size(hdr), hdr);
8043 }
8044
8045 /*
8046 * Allow ARC to begin reads and ghost list evictions to
8047 * this L2ARC entry.
8048 */
8049 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
8050
8051 mutex_exit(hash_lock);
8052 }
8053
8054 atomic_inc_64(&l2arc_writes_done);
8055 list_remove(buflist, head);
8056 ASSERT(!HDR_HAS_L1HDR(head));
8057 kmem_cache_free(hdr_l2only_cache, head);
8058 mutex_exit(&dev->l2ad_mtx);
8059
8060 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8061
8062 l2arc_do_free_on_write();
8063
8064 kmem_free(cb, sizeof (l2arc_write_callback_t));
8065 }
8066
8067 static int
8068 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8069 {
8070 int ret;
8071 spa_t *spa = zio->io_spa;
8072 arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8073 blkptr_t *bp = zio->io_bp;
8074 dsl_crypto_key_t *dck = NULL;
8075 uint8_t salt[ZIO_DATA_SALT_LEN];
8076 uint8_t iv[ZIO_DATA_IV_LEN];
8077 uint8_t mac[ZIO_DATA_MAC_LEN];
8078 boolean_t no_crypt = B_FALSE;
8079
8080 /*
8081 * ZIL data is never be written to the L2ARC, so we don't need
8082 * special handling for its unique MAC storage.
8083 */
8084 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8085 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
8086 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8087
8088 /*
8089 * If the data was encrypted, decrypt it now. Note that
8090 * we must check the bp here and not the hdr, since the
8091 * hdr does not have its encryption parameters updated
8092 * until arc_read_done().
8093 */
8094 if (BP_IS_ENCRYPTED(bp)) {
8095 abd_t *eabd = arc_get_data_abd(hdr,
8096 arc_hdr_size(hdr), hdr);
8097
8098 zio_crypt_decode_params_bp(bp, salt, iv);
8099 zio_crypt_decode_mac_bp(bp, mac);
8100
8101 ret = spa_keystore_lookup_key(spa,
8102 cb->l2rcb_zb.zb_objset, FTAG, &dck);
8103 if (ret != 0) {
8104 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8105 goto error;
8106 }
8107
8108 ret = zio_do_crypt_abd(B_FALSE, &dck->dck_key,
8109 salt, BP_GET_TYPE(bp), iv, mac, HDR_GET_PSIZE(hdr),
8110 BP_SHOULD_BYTESWAP(bp), eabd, hdr->b_l1hdr.b_pabd,
8111 &no_crypt);
8112 if (ret != 0) {
8113 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8114 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8115 goto error;
8116 }
8117
8118 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8119
8120 /*
8121 * If we actually performed decryption, replace b_pabd
8122 * with the decrypted data. Otherwise we can just throw
8123 * our decryption buffer away.
8124 */
8125 if (!no_crypt) {
8126 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8127 arc_hdr_size(hdr), hdr);
8128 hdr->b_l1hdr.b_pabd = eabd;
8129 zio->io_abd = eabd;
8130 } else {
8131 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8132 }
8133 }
8134
8135 /*
8136 * If the L2ARC block was compressed, but ARC compression
8137 * is disabled we decompress the data into a new buffer and
8138 * replace the existing data.
8139 */
8140 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8141 !HDR_COMPRESSION_ENABLED(hdr)) {
8142 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
8143 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
8144
8145 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8146 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
8147 HDR_GET_LSIZE(hdr));
8148 if (ret != 0) {
8149 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8150 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8151 goto error;
8152 }
8153
8154 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8155 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8156 arc_hdr_size(hdr), hdr);
8157 hdr->b_l1hdr.b_pabd = cabd;
8158 zio->io_abd = cabd;
8159 zio->io_size = HDR_GET_LSIZE(hdr);
8160 }
8161
8162 return (0);
8163
8164 error:
8165 return (ret);
8166 }
8167
8168
8169 /*
8170 * A read to a cache device completed. Validate buffer contents before
8171 * handing over to the regular ARC routines.
8172 */
8173 static void
8174 l2arc_read_done(zio_t *zio)
8175 {
8176 int tfm_error = 0;
8177 l2arc_read_callback_t *cb;
8178 arc_buf_hdr_t *hdr;
8179 kmutex_t *hash_lock;
8180 boolean_t valid_cksum, using_rdata;
8181
8182 ASSERT3P(zio->io_vd, !=, NULL);
8183 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8184
8185 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8186
8187 cb = zio->io_private;
8188 ASSERT3P(cb, !=, NULL);
8189 hdr = cb->l2rcb_hdr;
8190 ASSERT3P(hdr, !=, NULL);
8191
8192 hash_lock = HDR_LOCK(hdr);
8193 mutex_enter(hash_lock);
8194 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8195
8196 /*
8197 * If the data was read into a temporary buffer,
8198 * move it and free the buffer.
8199 */
8200 if (cb->l2rcb_abd != NULL) {
8201 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8202 if (zio->io_error == 0) {
8203 abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
8204 arc_hdr_size(hdr));
8205 }
8206
8207 /*
8208 * The following must be done regardless of whether
8209 * there was an error:
8210 * - free the temporary buffer
8211 * - point zio to the real ARC buffer
8212 * - set zio size accordingly
8213 * These are required because zio is either re-used for
8214 * an I/O of the block in the case of the error
8215 * or the zio is passed to arc_read_done() and it
8216 * needs real data.
8217 */
8218 abd_free(cb->l2rcb_abd);
8219 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8220
8221 if (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8222 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)) {
8223 ASSERT(HDR_HAS_RABD(hdr));
8224 zio->io_abd = zio->io_orig_abd =
8225 hdr->b_crypt_hdr.b_rabd;
8226 } else {
8227 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8228 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8229 }
8230 }
8231
8232 ASSERT3P(zio->io_abd, !=, NULL);
8233
8234 /*
8235 * Check this survived the L2ARC journey.
8236 */
8237 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8238 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8239 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
8240 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
8241
8242 valid_cksum = arc_cksum_is_equal(hdr, zio);
8243 using_rdata = (HDR_HAS_RABD(hdr) &&
8244 zio->io_abd == hdr->b_crypt_hdr.b_rabd);
8245
8246 /*
8247 * b_rabd will always match the data as it exists on disk if it is
8248 * being used. Therefore if we are reading into b_rabd we do not
8249 * attempt to untransform the data.
8250 */
8251 if (valid_cksum && !using_rdata)
8252 tfm_error = l2arc_untransform(zio, cb);
8253
8254 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8255 !HDR_L2_EVICTED(hdr)) {
8256 mutex_exit(hash_lock);
8257 zio->io_private = hdr;
8258 arc_read_done(zio);
8259 } else {
8260 mutex_exit(hash_lock);
8261 /*
8262 * Buffer didn't survive caching. Increment stats and
8263 * reissue to the original storage device.
8264 */
8265 if (zio->io_error != 0) {
8266 ARCSTAT_BUMP(arcstat_l2_io_error);
8267 } else {
8268 zio->io_error = SET_ERROR(EIO);
8269 }
8270 if (!valid_cksum || tfm_error != 0)
8271 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8272
8273 /*
8274 * If there's no waiter, issue an async i/o to the primary
8275 * storage now. If there *is* a waiter, the caller must
8276 * issue the i/o in a context where it's OK to block.
8277 */
8278 if (zio->io_waiter == NULL) {
8279 zio_t *pio = zio_unique_parent(zio);
8280 void *abd = (using_rdata) ?
8281 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
8282
8283 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8284
8285 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
8286 abd, zio->io_size, arc_read_done,
8287 hdr, zio->io_priority, cb->l2rcb_flags,
8288 &cb->l2rcb_zb));
8289 }
8290 }
8291
8292 kmem_free(cb, sizeof (l2arc_read_callback_t));
8293 }
8294
8295 /*
8296 * This is the list priority from which the L2ARC will search for pages to
8297 * cache. This is used within loops (0..3) to cycle through lists in the
8298 * desired order. This order can have a significant effect on cache
8299 * performance.
8300 *
8301 * Currently the metadata lists are hit first, MFU then MRU, followed by
8302 * the data lists. This function returns a locked list, and also returns
8303 * the lock pointer.
8304 */
8305 static multilist_sublist_t *
8306 l2arc_sublist_lock(int list_num)
8307 {
8308 multilist_t *ml = NULL;
8309 unsigned int idx;
8310
8311 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
8312
8313 switch (list_num) {
8314 case 0:
8315 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
8316 break;
8317 case 1:
8318 ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
8319 break;
8320 case 2:
8321 ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
8322 break;
8323 case 3:
8324 ml = arc_mru->arcs_list[ARC_BUFC_DATA];
8325 break;
8326 default:
8327 return (NULL);
8328 }
8329
8330 /*
8331 * Return a randomly-selected sublist. This is acceptable
8332 * because the caller feeds only a little bit of data for each
8333 * call (8MB). Subsequent calls will result in different
8334 * sublists being selected.
8335 */
8336 idx = multilist_get_random_index(ml);
8337 return (multilist_sublist_lock(ml, idx));
8338 }
8339
8340 /*
8341 * Evict buffers from the device write hand to the distance specified in
8342 * bytes. This distance may span populated buffers, it may span nothing.
8343 * This is clearing a region on the L2ARC device ready for writing.
8344 * If the 'all' boolean is set, every buffer is evicted.
8345 */
8346 static void
8347 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8348 {
8349 list_t *buflist;
8350 arc_buf_hdr_t *hdr, *hdr_prev;
8351 kmutex_t *hash_lock;
8352 uint64_t taddr;
8353
8354 buflist = &dev->l2ad_buflist;
8355
8356 if (!all && dev->l2ad_first) {
8357 /*
8358 * This is the first sweep through the device. There is
8359 * nothing to evict.
8360 */
8361 return;
8362 }
8363
8364 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
8365 /*
8366 * When nearing the end of the device, evict to the end
8367 * before the device write hand jumps to the start.
8368 */
8369 taddr = dev->l2ad_end;
8370 } else {
8371 taddr = dev->l2ad_hand + distance;
8372 }
8373 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8374 uint64_t, taddr, boolean_t, all);
8375
8376 top:
8377 mutex_enter(&dev->l2ad_mtx);
8378 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
8379 hdr_prev = list_prev(buflist, hdr);
8380
8381 hash_lock = HDR_LOCK(hdr);
8382
8383 /*
8384 * We cannot use mutex_enter or else we can deadlock
8385 * with l2arc_write_buffers (due to swapping the order
8386 * the hash lock and l2ad_mtx are taken).
8387 */
8388 if (!mutex_tryenter(hash_lock)) {
8389 /*
8390 * Missed the hash lock. Retry.
8391 */
8392 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
8393 mutex_exit(&dev->l2ad_mtx);
8394 mutex_enter(hash_lock);
8395 mutex_exit(hash_lock);
8396 goto top;
8397 }
8398
8399 /*
8400 * A header can't be on this list if it doesn't have L2 header.
8401 */
8402 ASSERT(HDR_HAS_L2HDR(hdr));
8403
8404 /* Ensure this header has finished being written. */
8405 ASSERT(!HDR_L2_WRITING(hdr));
8406 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
8407
8408 if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
8409 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
8410 /*
8411 * We've evicted to the target address,
8412 * or the end of the device.
8413 */
8414 mutex_exit(hash_lock);
8415 break;
8416 }
8417
8418 if (!HDR_HAS_L1HDR(hdr)) {
8419 ASSERT(!HDR_L2_READING(hdr));
8420 /*
8421 * This doesn't exist in the ARC. Destroy.
8422 * arc_hdr_destroy() will call list_remove()
8423 * and decrement arcstat_l2_lsize.
8424 */
8425 arc_change_state(arc_anon, hdr, hash_lock);
8426 arc_hdr_destroy(hdr);
8427 } else {
8428 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
8429 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
8430 /*
8431 * Invalidate issued or about to be issued
8432 * reads, since we may be about to write
8433 * over this location.
8434 */
8435 if (HDR_L2_READING(hdr)) {
8436 ARCSTAT_BUMP(arcstat_l2_evict_reading);
8437 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
8438 }
8439
8440 arc_hdr_l2hdr_destroy(hdr);
8441 }
8442 mutex_exit(hash_lock);
8443 }
8444 mutex_exit(&dev->l2ad_mtx);
8445 }
8446
8447 /*
8448 * Handle any abd transforms that might be required for writing to the L2ARC.
8449 * If successful, this function will always return an abd with the data
8450 * transformed as it is on disk in a new abd of asize bytes.
8451 */
8452 static int
8453 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
8454 abd_t **abd_out)
8455 {
8456 int ret;
8457 void *tmp = NULL;
8458 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
8459 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
8460 uint64_t psize = HDR_GET_PSIZE(hdr);
8461 uint64_t size = arc_hdr_size(hdr);
8462 boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
8463 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
8464 dsl_crypto_key_t *dck = NULL;
8465 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
8466 boolean_t no_crypt = B_FALSE;
8467
8468 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8469 !HDR_COMPRESSION_ENABLED(hdr)) ||
8470 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
8471 ASSERT3U(psize, <=, asize);
8472
8473 /*
8474 * If this data simply needs its own buffer, we simply allocate it
8475 * and copy the data. This may be done to elimiate a depedency on a
8476 * shared buffer or to reallocate the buffer to match asize.
8477 */
8478 if (HDR_HAS_RABD(hdr) && asize != psize) {
8479 ASSERT3U(asize, >=, psize);
8480 to_write = abd_alloc_for_io(asize, ismd);
8481 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
8482 if (psize != asize)
8483 abd_zero_off(to_write, psize, asize - psize);
8484 goto out;
8485 }
8486
8487 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
8488 !HDR_ENCRYPTED(hdr)) {
8489 ASSERT3U(size, ==, psize);
8490 to_write = abd_alloc_for_io(asize, ismd);
8491 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
8492 if (size != asize)
8493 abd_zero_off(to_write, size, asize - size);
8494 goto out;
8495 }
8496
8497 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
8498 cabd = abd_alloc_for_io(asize, ismd);
8499 tmp = abd_borrow_buf(cabd, asize);
8500
8501 psize = zio_compress_data(compress, to_write, tmp, size);
8502 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr));
8503 if (psize < asize)
8504 bzero((char *)tmp + psize, asize - psize);
8505 psize = HDR_GET_PSIZE(hdr);
8506 abd_return_buf_copy(cabd, tmp, asize);
8507 to_write = cabd;
8508 }
8509
8510 if (HDR_ENCRYPTED(hdr)) {
8511 eabd = abd_alloc_for_io(asize, ismd);
8512
8513 /*
8514 * If the dataset was disowned before the buffer
8515 * made it to this point, the key to re-encrypt
8516 * it won't be available. In this case we simply
8517 * won't write the buffer to the L2ARC.
8518 */
8519 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
8520 FTAG, &dck);
8521 if (ret != 0)
8522 goto error;
8523
8524 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
8525 hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_ot,
8526 hdr->b_crypt_hdr.b_iv, mac, psize, bswap, to_write,
8527 eabd, &no_crypt);
8528 if (ret != 0)
8529 goto error;
8530
8531 if (no_crypt)
8532 abd_copy(eabd, to_write, psize);
8533
8534 if (psize != asize)
8535 abd_zero_off(eabd, psize, asize - psize);
8536
8537 /* assert that the MAC we got here matches the one we saved */
8538 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
8539 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8540
8541 if (to_write == cabd)
8542 abd_free(cabd);
8543
8544 to_write = eabd;
8545 }
8546
8547 out:
8548 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
8549 *abd_out = to_write;
8550 return (0);
8551
8552 error:
8553 if (dck != NULL)
8554 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8555 if (cabd != NULL)
8556 abd_free(cabd);
8557 if (eabd != NULL)
8558 abd_free(eabd);
8559
8560 *abd_out = NULL;
8561 return (ret);
8562 }
8563
8564 /*
8565 * Find and write ARC buffers to the L2ARC device.
8566 *
8567 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
8568 * for reading until they have completed writing.
8569 * The headroom_boost is an in-out parameter used to maintain headroom boost
8570 * state between calls to this function.
8571 *
8572 * Returns the number of bytes actually written (which may be smaller than
8573 * the delta by which the device hand has changed due to alignment).
8574 */
8575 static uint64_t
8576 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
8577 {
8578 arc_buf_hdr_t *hdr, *hdr_prev, *head;
8579 uint64_t write_asize, write_psize, write_lsize, headroom;
8580 boolean_t full;
8581 l2arc_write_callback_t *cb;
8582 zio_t *pio, *wzio;
8583 uint64_t guid = spa_load_guid(spa);
8584
8585 ASSERT3P(dev->l2ad_vdev, !=, NULL);
8586
8587 pio = NULL;
8588 write_lsize = write_asize = write_psize = 0;
8589 full = B_FALSE;
8590 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
8591 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
8592
8593 /*
8594 * Copy buffers for L2ARC writing.
8595 */
8596 for (int try = 0; try < L2ARC_FEED_TYPES; try++) {
8597 multilist_sublist_t *mls = l2arc_sublist_lock(try);
8598 uint64_t passed_sz = 0;
8599
8600 VERIFY3P(mls, !=, NULL);
8601
8602 /*
8603 * L2ARC fast warmup.
8604 *
8605 * Until the ARC is warm and starts to evict, read from the
8606 * head of the ARC lists rather than the tail.
8607 */
8608 if (arc_warm == B_FALSE)
8609 hdr = multilist_sublist_head(mls);
8610 else
8611 hdr = multilist_sublist_tail(mls);
8612
8613 headroom = target_sz * l2arc_headroom;
8614 if (zfs_compressed_arc_enabled)
8615 headroom = (headroom * l2arc_headroom_boost) / 100;
8616
8617 for (; hdr; hdr = hdr_prev) {
8618 kmutex_t *hash_lock;
8619 abd_t *to_write = NULL;
8620
8621 if (arc_warm == B_FALSE)
8622 hdr_prev = multilist_sublist_next(mls, hdr);
8623 else
8624 hdr_prev = multilist_sublist_prev(mls, hdr);
8625
8626 hash_lock = HDR_LOCK(hdr);
8627 if (!mutex_tryenter(hash_lock)) {
8628 /*
8629 * Skip this buffer rather than waiting.
8630 */
8631 continue;
8632 }
8633
8634 passed_sz += HDR_GET_LSIZE(hdr);
8635 if (passed_sz > headroom) {
8636 /*
8637 * Searched too far.
8638 */
8639 mutex_exit(hash_lock);
8640 break;
8641 }
8642
8643 if (!l2arc_write_eligible(guid, hdr)) {
8644 mutex_exit(hash_lock);
8645 continue;
8646 }
8647
8648 /*
8649 * We rely on the L1 portion of the header below, so
8650 * it's invalid for this header to have been evicted out
8651 * of the ghost cache, prior to being written out. The
8652 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8653 */
8654 ASSERT(HDR_HAS_L1HDR(hdr));
8655
8656 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8657 ASSERT3U(arc_hdr_size(hdr), >, 0);
8658 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8659 HDR_HAS_RABD(hdr));
8660 uint64_t psize = HDR_GET_PSIZE(hdr);
8661 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
8662 psize);
8663
8664 if ((write_asize + asize) > target_sz) {
8665 full = B_TRUE;
8666 mutex_exit(hash_lock);
8667 break;
8668 }
8669
8670 /*
8671 * We rely on the L1 portion of the header below, so
8672 * it's invalid for this header to have been evicted out
8673 * of the ghost cache, prior to being written out. The
8674 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8675 */
8676 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING);
8677 ASSERT(HDR_HAS_L1HDR(hdr));
8678
8679 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8680 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8681 HDR_HAS_RABD(hdr));
8682 ASSERT3U(arc_hdr_size(hdr), >, 0);
8683
8684 /*
8685 * If this header has b_rabd, we can use this since it
8686 * must always match the data exactly as it exists on
8687 * disk. Otherwise, the L2ARC can normally use the
8688 * hdr's data, but if we're sharing data between the
8689 * hdr and one of its bufs, L2ARC needs its own copy of
8690 * the data so that the ZIO below can't race with the
8691 * buf consumer. To ensure that this copy will be
8692 * available for the lifetime of the ZIO and be cleaned
8693 * up afterwards, we add it to the l2arc_free_on_write
8694 * queue. If we need to apply any transforms to the
8695 * data (compression, encryption) we will also need the
8696 * extra buffer.
8697 */
8698 if (HDR_HAS_RABD(hdr) && psize == asize) {
8699 to_write = hdr->b_crypt_hdr.b_rabd;
8700 } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
8701 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
8702 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
8703 psize == asize) {
8704 to_write = hdr->b_l1hdr.b_pabd;
8705 } else {
8706 int ret;
8707 arc_buf_contents_t type = arc_buf_type(hdr);
8708
8709 ret = l2arc_apply_transforms(spa, hdr, asize,
8710 &to_write);
8711 if (ret != 0) {
8712 arc_hdr_clear_flags(hdr,
8713 ARC_FLAG_L2_WRITING);
8714 mutex_exit(hash_lock);
8715 continue;
8716 }
8717
8718 l2arc_free_abd_on_write(to_write, asize, type);
8719 }
8720
8721 if (pio == NULL) {
8722 /*
8723 * Insert a dummy header on the buflist so
8724 * l2arc_write_done() can find where the
8725 * write buffers begin without searching.
8726 */
8727 mutex_enter(&dev->l2ad_mtx);
8728 list_insert_head(&dev->l2ad_buflist, head);
8729 mutex_exit(&dev->l2ad_mtx);
8730
8731 cb = kmem_alloc(
8732 sizeof (l2arc_write_callback_t), KM_SLEEP);
8733 cb->l2wcb_dev = dev;
8734 cb->l2wcb_head = head;
8735 pio = zio_root(spa, l2arc_write_done, cb,
8736 ZIO_FLAG_CANFAIL);
8737 }
8738
8739 hdr->b_l2hdr.b_dev = dev;
8740 hdr->b_l2hdr.b_hits = 0;
8741
8742 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
8743 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR);
8744
8745 mutex_enter(&dev->l2ad_mtx);
8746 list_insert_head(&dev->l2ad_buflist, hdr);
8747 mutex_exit(&dev->l2ad_mtx);
8748
8749 (void) refcount_add_many(&dev->l2ad_alloc,
8750 arc_hdr_size(hdr), hdr);
8751
8752 wzio = zio_write_phys(pio, dev->l2ad_vdev,
8753 hdr->b_l2hdr.b_daddr, asize, to_write,
8754 ZIO_CHECKSUM_OFF, NULL, hdr,
8755 ZIO_PRIORITY_ASYNC_WRITE,
8756 ZIO_FLAG_CANFAIL, B_FALSE);
8757
8758 write_lsize += HDR_GET_LSIZE(hdr);
8759 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
8760 zio_t *, wzio);
8761
8762 write_psize += psize;
8763 write_asize += asize;
8764 dev->l2ad_hand += asize;
8765
8766 mutex_exit(hash_lock);
8767
8768 (void) zio_nowait(wzio);
8769 }
8770
8771 multilist_sublist_unlock(mls);
8772
8773 if (full == B_TRUE)
8774 break;
8775 }
8776
8777 /* No buffers selected for writing? */
8778 if (pio == NULL) {
8779 ASSERT0(write_lsize);
8780 ASSERT(!HDR_HAS_L1HDR(head));
8781 kmem_cache_free(hdr_l2only_cache, head);
8782 return (0);
8783 }
8784
8785 ASSERT3U(write_asize, <=, target_sz);
8786 ARCSTAT_BUMP(arcstat_l2_writes_sent);
8787 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
8788 ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
8789 ARCSTAT_INCR(arcstat_l2_psize, write_psize);
8790 vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
8791
8792 /*
8793 * Bump device hand to the device start if it is approaching the end.
8794 * l2arc_evict() will already have evicted ahead for this case.
8795 */
8796 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
8797 dev->l2ad_hand = dev->l2ad_start;
8798 dev->l2ad_first = B_FALSE;
8799 }
8800
8801 dev->l2ad_writing = B_TRUE;
8802 (void) zio_wait(pio);
8803 dev->l2ad_writing = B_FALSE;
8804
8805 return (write_asize);
8806 }
8807
8808 /*
8809 * This thread feeds the L2ARC at regular intervals. This is the beating
8810 * heart of the L2ARC.
8811 */
8812 /* ARGSUSED */
8813 static void
8814 l2arc_feed_thread(void *unused)
8815 {
8816 callb_cpr_t cpr;
8817 l2arc_dev_t *dev;
8818 spa_t *spa;
8819 uint64_t size, wrote;
8820 clock_t begin, next = ddi_get_lbolt();
8821 fstrans_cookie_t cookie;
8822
8823 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
8824
8825 mutex_enter(&l2arc_feed_thr_lock);
8826
8827 cookie = spl_fstrans_mark();
8828 while (l2arc_thread_exit == 0) {
8829 CALLB_CPR_SAFE_BEGIN(&cpr);
8830 (void) cv_timedwait_sig(&l2arc_feed_thr_cv,
8831 &l2arc_feed_thr_lock, next);
8832 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
8833 next = ddi_get_lbolt() + hz;
8834
8835 /*
8836 * Quick check for L2ARC devices.
8837 */
8838 mutex_enter(&l2arc_dev_mtx);
8839 if (l2arc_ndev == 0) {
8840 mutex_exit(&l2arc_dev_mtx);
8841 continue;
8842 }
8843 mutex_exit(&l2arc_dev_mtx);
8844 begin = ddi_get_lbolt();
8845
8846 /*
8847 * This selects the next l2arc device to write to, and in
8848 * doing so the next spa to feed from: dev->l2ad_spa. This
8849 * will return NULL if there are now no l2arc devices or if
8850 * they are all faulted.
8851 *
8852 * If a device is returned, its spa's config lock is also
8853 * held to prevent device removal. l2arc_dev_get_next()
8854 * will grab and release l2arc_dev_mtx.
8855 */
8856 if ((dev = l2arc_dev_get_next()) == NULL)
8857 continue;
8858
8859 spa = dev->l2ad_spa;
8860 ASSERT3P(spa, !=, NULL);
8861
8862 /*
8863 * If the pool is read-only then force the feed thread to
8864 * sleep a little longer.
8865 */
8866 if (!spa_writeable(spa)) {
8867 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
8868 spa_config_exit(spa, SCL_L2ARC, dev);
8869 continue;
8870 }
8871
8872 /*
8873 * Avoid contributing to memory pressure.
8874 */
8875 if (arc_reclaim_needed()) {
8876 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
8877 spa_config_exit(spa, SCL_L2ARC, dev);
8878 continue;
8879 }
8880
8881 ARCSTAT_BUMP(arcstat_l2_feeds);
8882
8883 size = l2arc_write_size();
8884
8885 /*
8886 * Evict L2ARC buffers that will be overwritten.
8887 */
8888 l2arc_evict(dev, size, B_FALSE);
8889
8890 /*
8891 * Write ARC buffers.
8892 */
8893 wrote = l2arc_write_buffers(spa, dev, size);
8894
8895 /*
8896 * Calculate interval between writes.
8897 */
8898 next = l2arc_write_interval(begin, size, wrote);
8899 spa_config_exit(spa, SCL_L2ARC, dev);
8900 }
8901 spl_fstrans_unmark(cookie);
8902
8903 l2arc_thread_exit = 0;
8904 cv_broadcast(&l2arc_feed_thr_cv);
8905 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
8906 thread_exit();
8907 }
8908
8909 boolean_t
8910 l2arc_vdev_present(vdev_t *vd)
8911 {
8912 l2arc_dev_t *dev;
8913
8914 mutex_enter(&l2arc_dev_mtx);
8915 for (dev = list_head(l2arc_dev_list); dev != NULL;
8916 dev = list_next(l2arc_dev_list, dev)) {
8917 if (dev->l2ad_vdev == vd)
8918 break;
8919 }
8920 mutex_exit(&l2arc_dev_mtx);
8921
8922 return (dev != NULL);
8923 }
8924
8925 /*
8926 * Add a vdev for use by the L2ARC. By this point the spa has already
8927 * validated the vdev and opened it.
8928 */
8929 void
8930 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
8931 {
8932 l2arc_dev_t *adddev;
8933
8934 ASSERT(!l2arc_vdev_present(vd));
8935
8936 /*
8937 * Create a new l2arc device entry.
8938 */
8939 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
8940 adddev->l2ad_spa = spa;
8941 adddev->l2ad_vdev = vd;
8942 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
8943 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
8944 adddev->l2ad_hand = adddev->l2ad_start;
8945 adddev->l2ad_first = B_TRUE;
8946 adddev->l2ad_writing = B_FALSE;
8947 list_link_init(&adddev->l2ad_node);
8948
8949 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
8950 /*
8951 * This is a list of all ARC buffers that are still valid on the
8952 * device.
8953 */
8954 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
8955 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
8956
8957 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
8958 refcount_create(&adddev->l2ad_alloc);
8959
8960 /*
8961 * Add device to global list
8962 */
8963 mutex_enter(&l2arc_dev_mtx);
8964 list_insert_head(l2arc_dev_list, adddev);
8965 atomic_inc_64(&l2arc_ndev);
8966 mutex_exit(&l2arc_dev_mtx);
8967 }
8968
8969 /*
8970 * Remove a vdev from the L2ARC.
8971 */
8972 void
8973 l2arc_remove_vdev(vdev_t *vd)
8974 {
8975 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
8976
8977 /*
8978 * Find the device by vdev
8979 */
8980 mutex_enter(&l2arc_dev_mtx);
8981 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
8982 nextdev = list_next(l2arc_dev_list, dev);
8983 if (vd == dev->l2ad_vdev) {
8984 remdev = dev;
8985 break;
8986 }
8987 }
8988 ASSERT3P(remdev, !=, NULL);
8989
8990 /*
8991 * Remove device from global list
8992 */
8993 list_remove(l2arc_dev_list, remdev);
8994 l2arc_dev_last = NULL; /* may have been invalidated */
8995 atomic_dec_64(&l2arc_ndev);
8996 mutex_exit(&l2arc_dev_mtx);
8997
8998 /*
8999 * Clear all buflists and ARC references. L2ARC device flush.
9000 */
9001 l2arc_evict(remdev, 0, B_TRUE);
9002 list_destroy(&remdev->l2ad_buflist);
9003 mutex_destroy(&remdev->l2ad_mtx);
9004 refcount_destroy(&remdev->l2ad_alloc);
9005 kmem_free(remdev, sizeof (l2arc_dev_t));
9006 }
9007
9008 void
9009 l2arc_init(void)
9010 {
9011 l2arc_thread_exit = 0;
9012 l2arc_ndev = 0;
9013 l2arc_writes_sent = 0;
9014 l2arc_writes_done = 0;
9015
9016 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9017 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
9018 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
9019 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
9020
9021 l2arc_dev_list = &L2ARC_dev_list;
9022 l2arc_free_on_write = &L2ARC_free_on_write;
9023 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
9024 offsetof(l2arc_dev_t, l2ad_node));
9025 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
9026 offsetof(l2arc_data_free_t, l2df_list_node));
9027 }
9028
9029 void
9030 l2arc_fini(void)
9031 {
9032 /*
9033 * This is called from dmu_fini(), which is called from spa_fini();
9034 * Because of this, we can assume that all l2arc devices have
9035 * already been removed when the pools themselves were removed.
9036 */
9037
9038 l2arc_do_free_on_write();
9039
9040 mutex_destroy(&l2arc_feed_thr_lock);
9041 cv_destroy(&l2arc_feed_thr_cv);
9042 mutex_destroy(&l2arc_dev_mtx);
9043 mutex_destroy(&l2arc_free_on_write_mtx);
9044
9045 list_destroy(l2arc_dev_list);
9046 list_destroy(l2arc_free_on_write);
9047 }
9048
9049 void
9050 l2arc_start(void)
9051 {
9052 if (!(spa_mode_global & FWRITE))
9053 return;
9054
9055 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
9056 TS_RUN, defclsyspri);
9057 }
9058
9059 void
9060 l2arc_stop(void)
9061 {
9062 if (!(spa_mode_global & FWRITE))
9063 return;
9064
9065 mutex_enter(&l2arc_feed_thr_lock);
9066 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
9067 l2arc_thread_exit = 1;
9068 while (l2arc_thread_exit != 0)
9069 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
9070 mutex_exit(&l2arc_feed_thr_lock);
9071 }
9072
9073 #if defined(_KERNEL) && defined(HAVE_SPL)
9074 EXPORT_SYMBOL(arc_buf_size);
9075 EXPORT_SYMBOL(arc_write);
9076 EXPORT_SYMBOL(arc_read);
9077 EXPORT_SYMBOL(arc_buf_info);
9078 EXPORT_SYMBOL(arc_getbuf_func);
9079 EXPORT_SYMBOL(arc_add_prune_callback);
9080 EXPORT_SYMBOL(arc_remove_prune_callback);
9081
9082 /* BEGIN CSTYLED */
9083 module_param(zfs_arc_min, ulong, 0644);
9084 MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
9085
9086 module_param(zfs_arc_max, ulong, 0644);
9087 MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
9088
9089 module_param(zfs_arc_meta_limit, ulong, 0644);
9090 MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
9091
9092 module_param(zfs_arc_meta_limit_percent, ulong, 0644);
9093 MODULE_PARM_DESC(zfs_arc_meta_limit_percent,
9094 "Percent of arc size for arc meta limit");
9095
9096 module_param(zfs_arc_meta_min, ulong, 0644);
9097 MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
9098
9099 module_param(zfs_arc_meta_prune, int, 0644);
9100 MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
9101
9102 module_param(zfs_arc_meta_adjust_restarts, int, 0644);
9103 MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
9104 "Limit number of restarts in arc_adjust_meta");
9105
9106 module_param(zfs_arc_meta_strategy, int, 0644);
9107 MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
9108
9109 module_param(zfs_arc_grow_retry, int, 0644);
9110 MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
9111
9112 module_param(zfs_arc_p_dampener_disable, int, 0644);
9113 MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
9114
9115 module_param(zfs_arc_shrink_shift, int, 0644);
9116 MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
9117
9118 module_param(zfs_arc_pc_percent, uint, 0644);
9119 MODULE_PARM_DESC(zfs_arc_pc_percent,
9120 "Percent of pagecache to reclaim arc to");
9121
9122 module_param(zfs_arc_p_min_shift, int, 0644);
9123 MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
9124
9125 module_param(zfs_arc_average_blocksize, int, 0444);
9126 MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
9127
9128 module_param(zfs_compressed_arc_enabled, int, 0644);
9129 MODULE_PARM_DESC(zfs_compressed_arc_enabled, "Disable compressed arc buffers");
9130
9131 module_param(zfs_arc_min_prefetch_ms, int, 0644);
9132 MODULE_PARM_DESC(zfs_arc_min_prefetch_ms, "Min life of prefetch block in ms");
9133
9134 module_param(zfs_arc_min_prescient_prefetch_ms, int, 0644);
9135 MODULE_PARM_DESC(zfs_arc_min_prescient_prefetch_ms,
9136 "Min life of prescient prefetched block in ms");
9137
9138 module_param(l2arc_write_max, ulong, 0644);
9139 MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
9140
9141 module_param(l2arc_write_boost, ulong, 0644);
9142 MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
9143
9144 module_param(l2arc_headroom, ulong, 0644);
9145 MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
9146
9147 module_param(l2arc_headroom_boost, ulong, 0644);
9148 MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
9149
9150 module_param(l2arc_feed_secs, ulong, 0644);
9151 MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
9152
9153 module_param(l2arc_feed_min_ms, ulong, 0644);
9154 MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
9155
9156 module_param(l2arc_noprefetch, int, 0644);
9157 MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
9158
9159 module_param(l2arc_feed_again, int, 0644);
9160 MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
9161
9162 module_param(l2arc_norw, int, 0644);
9163 MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
9164
9165 module_param(zfs_arc_lotsfree_percent, int, 0644);
9166 MODULE_PARM_DESC(zfs_arc_lotsfree_percent,
9167 "System free memory I/O throttle in bytes");
9168
9169 module_param(zfs_arc_sys_free, ulong, 0644);
9170 MODULE_PARM_DESC(zfs_arc_sys_free, "System free memory target size in bytes");
9171
9172 module_param(zfs_arc_dnode_limit, ulong, 0644);
9173 MODULE_PARM_DESC(zfs_arc_dnode_limit, "Minimum bytes of dnodes in arc");
9174
9175 module_param(zfs_arc_dnode_limit_percent, ulong, 0644);
9176 MODULE_PARM_DESC(zfs_arc_dnode_limit_percent,
9177 "Percent of ARC meta buffers for dnodes");
9178
9179 module_param(zfs_arc_dnode_reduce_percent, ulong, 0644);
9180 MODULE_PARM_DESC(zfs_arc_dnode_reduce_percent,
9181 "Percentage of excess dnodes to try to unpin");
9182 /* END CSTYLED */
9183 #endif