4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
30 * DVA-based Adjustable Replacement Cache
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size. So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes). We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
80 * uses method 1, while the internal ARC algorithms for
81 * adjusting the cache use method 2. We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
96 * Each ARC state also has a mutex which is used to protect the
97 * buffer list associated with the state. When attempting to
98 * obtain a hash table lock while holding an ARC list lock you
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
102 * It as also possible to register a callback which is run when the
103 * arc_meta_limit is reached and no buffers can be safely evicted. In
104 * this case the arc user should drop a reference on some arc buffers so
105 * they can be reclaimed and the arc_meta_limit honored. For example,
106 * when using the ZPL each dentry holds a references on a znode. These
107 * dentries must be pruned before the arc buffer holding the znode can
110 * Note that the majority of the performance stats are manipulated
111 * with atomic operations.
113 * The L2ARC uses the l2ad_mtx on each vdev for the following:
115 * - L2ARC buflist creation
116 * - L2ARC buflist eviction
117 * - L2ARC write completion, which walks L2ARC buflists
118 * - ARC header destruction, as it removes from L2ARC buflists
119 * - ARC header release, as it removes from L2ARC buflists
125 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
126 * This structure can point either to a block that is still in the cache or to
127 * one that is only accessible in an L2 ARC device, or it can provide
128 * information about a block that was recently evicted. If a block is
129 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
130 * information to retrieve it from the L2ARC device. This information is
131 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
132 * that is in this state cannot access the data directly.
134 * Blocks that are actively being referenced or have not been evicted
135 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
136 * the arc_buf_hdr_t that will point to the data block in memory. A block can
137 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
138 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
139 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
141 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
142 * ability to store the physical data (b_pabd) associated with the DVA of the
143 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
144 * it will match its on-disk compression characteristics. This behavior can be
145 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
146 * compressed ARC functionality is disabled, the b_pabd will point to an
147 * uncompressed version of the on-disk data.
149 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
150 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
151 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
152 * consumer. The ARC will provide references to this data and will keep it
153 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
154 * data block and will evict any arc_buf_t that is no longer referenced. The
155 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
156 * "overhead_size" kstat.
158 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
159 * compressed form. The typical case is that consumers will want uncompressed
160 * data, and when that happens a new data buffer is allocated where the data is
161 * decompressed for them to use. Currently the only consumer who wants
162 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
163 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
164 * with the arc_buf_hdr_t.
166 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
167 * first one is owned by a compressed send consumer (and therefore references
168 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
169 * used by any other consumer (and has its own uncompressed copy of the data
184 * | b_buf +------------>+-----------+ arc_buf_t
185 * | b_pabd +-+ |b_next +---->+-----------+
186 * +-----------+ | |-----------| |b_next +-->NULL
187 * | |b_comp = T | +-----------+
188 * | |b_data +-+ |b_comp = F |
189 * | +-----------+ | |b_data +-+
190 * +->+------+ | +-----------+ |
192 * data | |<--------------+ | uncompressed
193 * +------+ compressed, | data
194 * shared +-->+------+
199 * When a consumer reads a block, the ARC must first look to see if the
200 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
201 * arc_buf_t and either copies uncompressed data into a new data buffer from an
202 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
203 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
204 * hdr is compressed and the desired compression characteristics of the
205 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
206 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
207 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
208 * be anywhere in the hdr's list.
210 * The diagram below shows an example of an uncompressed ARC hdr that is
211 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
212 * the last element in the buf list):
224 * | | arc_buf_t (shared)
225 * | b_buf +------------>+---------+ arc_buf_t
226 * | | |b_next +---->+---------+
227 * | b_pabd +-+ |---------| |b_next +-->NULL
228 * +-----------+ | | | +---------+
230 * | +---------+ | |b_data +-+
231 * +->+------+ | +---------+ |
233 * uncompressed | | | |
236 * | uncompressed | | |
239 * +---------------------------------+
241 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
242 * since the physical block is about to be rewritten. The new data contents
243 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
244 * it may compress the data before writing it to disk. The ARC will be called
245 * with the transformed data and will bcopy the transformed on-disk block into
246 * a newly allocated b_pabd. Writes are always done into buffers which have
247 * either been loaned (and hence are new and don't have other readers) or
248 * buffers which have been released (and hence have their own hdr, if there
249 * were originally other readers of the buf's original hdr). This ensures that
250 * the ARC only needs to update a single buf and its hdr after a write occurs.
252 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
253 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
254 * that when compressed ARC is enabled that the L2ARC blocks are identical
255 * to the on-disk block in the main data pool. This provides a significant
256 * advantage since the ARC can leverage the bp's checksum when reading from the
257 * L2ARC to determine if the contents are valid. However, if the compressed
258 * ARC is disabled, then the L2ARC's block must be transformed to look
259 * like the physical block in the main data pool before comparing the
260 * checksum and determining its validity.
262 * The L1ARC has a slightly different system for storing encrypted data.
263 * Raw (encrypted + possibly compressed) data has a few subtle differences from
264 * data that is just compressed. The biggest difference is that it is not
265 * possible to decrypt encrypted data (or visa versa) if the keys aren't loaded.
266 * The other difference is that encryption cannot be treated as a suggestion.
267 * If a caller would prefer compressed data, but they actually wind up with
268 * uncompressed data the worst thing that could happen is there might be a
269 * performance hit. If the caller requests encrypted data, however, we must be
270 * sure they actually get it or else secret information could be leaked. Raw
271 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
272 * may have both an encrypted version and a decrypted version of its data at
273 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
274 * copied out of this header. To avoid complications with b_pabd, raw buffers
280 #include <sys/spa_impl.h>
281 #include <sys/zio_compress.h>
282 #include <sys/zio_checksum.h>
283 #include <sys/zfs_context.h>
285 #include <sys/refcount.h>
286 #include <sys/vdev.h>
287 #include <sys/vdev_impl.h>
288 #include <sys/dsl_pool.h>
289 #include <sys/zio_checksum.h>
290 #include <sys/multilist.h>
293 #include <sys/fm/fs/zfs.h>
295 #include <sys/vmsystm.h>
297 #include <sys/fs/swapnode.h>
299 #include <linux/mm_compat.h>
301 #include <sys/callb.h>
302 #include <sys/kstat.h>
303 #include <sys/dmu_tx.h>
304 #include <zfs_fletcher.h>
305 #include <sys/arc_impl.h>
306 #include <sys/trace_arc.h>
309 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
310 boolean_t arc_watch
= B_FALSE
;
313 static kmutex_t arc_reclaim_lock
;
314 static kcondvar_t arc_reclaim_thread_cv
;
315 static boolean_t arc_reclaim_thread_exit
;
316 static kcondvar_t arc_reclaim_waiters_cv
;
319 * The number of headers to evict in arc_evict_state_impl() before
320 * dropping the sublist lock and evicting from another sublist. A lower
321 * value means we're more likely to evict the "correct" header (i.e. the
322 * oldest header in the arc state), but comes with higher overhead
323 * (i.e. more invocations of arc_evict_state_impl()).
325 int zfs_arc_evict_batch_limit
= 10;
327 /* number of seconds before growing cache again */
328 static int arc_grow_retry
= 5;
330 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
331 int zfs_arc_overflow_shift
= 8;
333 /* shift of arc_c for calculating both min and max arc_p */
334 static int arc_p_min_shift
= 4;
336 /* log2(fraction of arc to reclaim) */
337 static int arc_shrink_shift
= 7;
339 /* percent of pagecache to reclaim arc to */
341 static uint_t zfs_arc_pc_percent
= 0;
345 * log2(fraction of ARC which must be free to allow growing).
346 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
347 * when reading a new block into the ARC, we will evict an equal-sized block
350 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
351 * we will still not allow it to grow.
353 int arc_no_grow_shift
= 5;
357 * minimum lifespan of a prefetch block in clock ticks
358 * (initialized in arc_init())
360 static int arc_min_prefetch_lifespan
;
363 * If this percent of memory is free, don't throttle.
365 int arc_lotsfree_percent
= 10;
370 * The arc has filled available memory and has now warmed up.
372 static boolean_t arc_warm
;
375 * log2 fraction of the zio arena to keep free.
377 int arc_zio_arena_free_shift
= 2;
380 * These tunables are for performance analysis.
382 unsigned long zfs_arc_max
= 0;
383 unsigned long zfs_arc_min
= 0;
384 unsigned long zfs_arc_meta_limit
= 0;
385 unsigned long zfs_arc_meta_min
= 0;
386 unsigned long zfs_arc_dnode_limit
= 0;
387 unsigned long zfs_arc_dnode_reduce_percent
= 10;
388 int zfs_arc_grow_retry
= 0;
389 int zfs_arc_shrink_shift
= 0;
390 int zfs_arc_p_min_shift
= 0;
391 int zfs_arc_average_blocksize
= 8 * 1024; /* 8KB */
393 int zfs_compressed_arc_enabled
= B_TRUE
;
396 * ARC will evict meta buffers that exceed arc_meta_limit. This
397 * tunable make arc_meta_limit adjustable for different workloads.
399 unsigned long zfs_arc_meta_limit_percent
= 75;
402 * Percentage that can be consumed by dnodes of ARC meta buffers.
404 unsigned long zfs_arc_dnode_limit_percent
= 10;
407 * These tunables are Linux specific
409 unsigned long zfs_arc_sys_free
= 0;
410 int zfs_arc_min_prefetch_lifespan
= 0;
411 int zfs_arc_p_aggressive_disable
= 1;
412 int zfs_arc_p_dampener_disable
= 1;
413 int zfs_arc_meta_prune
= 10000;
414 int zfs_arc_meta_strategy
= ARC_STRATEGY_META_BALANCED
;
415 int zfs_arc_meta_adjust_restarts
= 4096;
416 int zfs_arc_lotsfree_percent
= 10;
419 static arc_state_t ARC_anon
;
420 static arc_state_t ARC_mru
;
421 static arc_state_t ARC_mru_ghost
;
422 static arc_state_t ARC_mfu
;
423 static arc_state_t ARC_mfu_ghost
;
424 static arc_state_t ARC_l2c_only
;
426 typedef struct arc_stats
{
427 kstat_named_t arcstat_hits
;
428 kstat_named_t arcstat_misses
;
429 kstat_named_t arcstat_demand_data_hits
;
430 kstat_named_t arcstat_demand_data_misses
;
431 kstat_named_t arcstat_demand_metadata_hits
;
432 kstat_named_t arcstat_demand_metadata_misses
;
433 kstat_named_t arcstat_prefetch_data_hits
;
434 kstat_named_t arcstat_prefetch_data_misses
;
435 kstat_named_t arcstat_prefetch_metadata_hits
;
436 kstat_named_t arcstat_prefetch_metadata_misses
;
437 kstat_named_t arcstat_mru_hits
;
438 kstat_named_t arcstat_mru_ghost_hits
;
439 kstat_named_t arcstat_mfu_hits
;
440 kstat_named_t arcstat_mfu_ghost_hits
;
441 kstat_named_t arcstat_deleted
;
443 * Number of buffers that could not be evicted because the hash lock
444 * was held by another thread. The lock may not necessarily be held
445 * by something using the same buffer, since hash locks are shared
446 * by multiple buffers.
448 kstat_named_t arcstat_mutex_miss
;
450 * Number of buffers skipped because they have I/O in progress, are
451 * indrect prefetch buffers that have not lived long enough, or are
452 * not from the spa we're trying to evict from.
454 kstat_named_t arcstat_evict_skip
;
456 * Number of times arc_evict_state() was unable to evict enough
457 * buffers to reach its target amount.
459 kstat_named_t arcstat_evict_not_enough
;
460 kstat_named_t arcstat_evict_l2_cached
;
461 kstat_named_t arcstat_evict_l2_eligible
;
462 kstat_named_t arcstat_evict_l2_ineligible
;
463 kstat_named_t arcstat_evict_l2_skip
;
464 kstat_named_t arcstat_hash_elements
;
465 kstat_named_t arcstat_hash_elements_max
;
466 kstat_named_t arcstat_hash_collisions
;
467 kstat_named_t arcstat_hash_chains
;
468 kstat_named_t arcstat_hash_chain_max
;
469 kstat_named_t arcstat_p
;
470 kstat_named_t arcstat_c
;
471 kstat_named_t arcstat_c_min
;
472 kstat_named_t arcstat_c_max
;
473 kstat_named_t arcstat_size
;
475 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
476 * Note that the compressed bytes may match the uncompressed bytes
477 * if the block is either not compressed or compressed arc is disabled.
479 kstat_named_t arcstat_compressed_size
;
481 * Uncompressed size of the data stored in b_pabd. If compressed
482 * arc is disabled then this value will be identical to the stat
485 kstat_named_t arcstat_uncompressed_size
;
487 * Number of bytes stored in all the arc_buf_t's. This is classified
488 * as "overhead" since this data is typically short-lived and will
489 * be evicted from the arc when it becomes unreferenced unless the
490 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
491 * values have been set (see comment in dbuf.c for more information).
493 kstat_named_t arcstat_overhead_size
;
495 * Number of bytes consumed by internal ARC structures necessary
496 * for tracking purposes; these structures are not actually
497 * backed by ARC buffers. This includes arc_buf_hdr_t structures
498 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
499 * caches), and arc_buf_t structures (allocated via arc_buf_t
502 kstat_named_t arcstat_hdr_size
;
504 * Number of bytes consumed by ARC buffers of type equal to
505 * ARC_BUFC_DATA. This is generally consumed by buffers backing
506 * on disk user data (e.g. plain file contents).
508 kstat_named_t arcstat_data_size
;
510 * Number of bytes consumed by ARC buffers of type equal to
511 * ARC_BUFC_METADATA. This is generally consumed by buffers
512 * backing on disk data that is used for internal ZFS
513 * structures (e.g. ZAP, dnode, indirect blocks, etc).
515 kstat_named_t arcstat_metadata_size
;
517 * Number of bytes consumed by dmu_buf_impl_t objects.
519 kstat_named_t arcstat_dbuf_size
;
521 * Number of bytes consumed by dnode_t objects.
523 kstat_named_t arcstat_dnode_size
;
525 * Number of bytes consumed by bonus buffers.
527 kstat_named_t arcstat_bonus_size
;
529 * Total number of bytes consumed by ARC buffers residing in the
530 * arc_anon state. This includes *all* buffers in the arc_anon
531 * state; e.g. data, metadata, evictable, and unevictable buffers
532 * are all included in this value.
534 kstat_named_t arcstat_anon_size
;
536 * Number of bytes consumed by ARC buffers that meet the
537 * following criteria: backing buffers of type ARC_BUFC_DATA,
538 * residing in the arc_anon state, and are eligible for eviction
539 * (e.g. have no outstanding holds on the buffer).
541 kstat_named_t arcstat_anon_evictable_data
;
543 * Number of bytes consumed by ARC buffers that meet the
544 * following criteria: backing buffers of type ARC_BUFC_METADATA,
545 * residing in the arc_anon state, and are eligible for eviction
546 * (e.g. have no outstanding holds on the buffer).
548 kstat_named_t arcstat_anon_evictable_metadata
;
550 * Total number of bytes consumed by ARC buffers residing in the
551 * arc_mru state. This includes *all* buffers in the arc_mru
552 * state; e.g. data, metadata, evictable, and unevictable buffers
553 * are all included in this value.
555 kstat_named_t arcstat_mru_size
;
557 * Number of bytes consumed by ARC buffers that meet the
558 * following criteria: backing buffers of type ARC_BUFC_DATA,
559 * residing in the arc_mru state, and are eligible for eviction
560 * (e.g. have no outstanding holds on the buffer).
562 kstat_named_t arcstat_mru_evictable_data
;
564 * Number of bytes consumed by ARC buffers that meet the
565 * following criteria: backing buffers of type ARC_BUFC_METADATA,
566 * residing in the arc_mru state, and are eligible for eviction
567 * (e.g. have no outstanding holds on the buffer).
569 kstat_named_t arcstat_mru_evictable_metadata
;
571 * Total number of bytes that *would have been* consumed by ARC
572 * buffers in the arc_mru_ghost state. The key thing to note
573 * here, is the fact that this size doesn't actually indicate
574 * RAM consumption. The ghost lists only consist of headers and
575 * don't actually have ARC buffers linked off of these headers.
576 * Thus, *if* the headers had associated ARC buffers, these
577 * buffers *would have* consumed this number of bytes.
579 kstat_named_t arcstat_mru_ghost_size
;
581 * Number of bytes that *would have been* consumed by ARC
582 * buffers that are eligible for eviction, of type
583 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
585 kstat_named_t arcstat_mru_ghost_evictable_data
;
587 * Number of bytes that *would have been* consumed by ARC
588 * buffers that are eligible for eviction, of type
589 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
591 kstat_named_t arcstat_mru_ghost_evictable_metadata
;
593 * Total number of bytes consumed by ARC buffers residing in the
594 * arc_mfu state. This includes *all* buffers in the arc_mfu
595 * state; e.g. data, metadata, evictable, and unevictable buffers
596 * are all included in this value.
598 kstat_named_t arcstat_mfu_size
;
600 * Number of bytes consumed by ARC buffers that are eligible for
601 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
604 kstat_named_t arcstat_mfu_evictable_data
;
606 * Number of bytes consumed by ARC buffers that are eligible for
607 * eviction, of type ARC_BUFC_METADATA, and reside in the
610 kstat_named_t arcstat_mfu_evictable_metadata
;
612 * Total number of bytes that *would have been* consumed by ARC
613 * buffers in the arc_mfu_ghost state. See the comment above
614 * arcstat_mru_ghost_size for more details.
616 kstat_named_t arcstat_mfu_ghost_size
;
618 * Number of bytes that *would have been* consumed by ARC
619 * buffers that are eligible for eviction, of type
620 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
622 kstat_named_t arcstat_mfu_ghost_evictable_data
;
624 * Number of bytes that *would have been* consumed by ARC
625 * buffers that are eligible for eviction, of type
626 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
628 kstat_named_t arcstat_mfu_ghost_evictable_metadata
;
629 kstat_named_t arcstat_l2_hits
;
630 kstat_named_t arcstat_l2_misses
;
631 kstat_named_t arcstat_l2_feeds
;
632 kstat_named_t arcstat_l2_rw_clash
;
633 kstat_named_t arcstat_l2_read_bytes
;
634 kstat_named_t arcstat_l2_write_bytes
;
635 kstat_named_t arcstat_l2_writes_sent
;
636 kstat_named_t arcstat_l2_writes_done
;
637 kstat_named_t arcstat_l2_writes_error
;
638 kstat_named_t arcstat_l2_writes_lock_retry
;
639 kstat_named_t arcstat_l2_evict_lock_retry
;
640 kstat_named_t arcstat_l2_evict_reading
;
641 kstat_named_t arcstat_l2_evict_l1cached
;
642 kstat_named_t arcstat_l2_free_on_write
;
643 kstat_named_t arcstat_l2_abort_lowmem
;
644 kstat_named_t arcstat_l2_cksum_bad
;
645 kstat_named_t arcstat_l2_io_error
;
646 kstat_named_t arcstat_l2_lsize
;
647 kstat_named_t arcstat_l2_psize
;
648 kstat_named_t arcstat_l2_hdr_size
;
649 kstat_named_t arcstat_memory_throttle_count
;
650 kstat_named_t arcstat_memory_direct_count
;
651 kstat_named_t arcstat_memory_indirect_count
;
652 kstat_named_t arcstat_memory_all_bytes
;
653 kstat_named_t arcstat_memory_free_bytes
;
654 kstat_named_t arcstat_memory_available_bytes
;
655 kstat_named_t arcstat_no_grow
;
656 kstat_named_t arcstat_tempreserve
;
657 kstat_named_t arcstat_loaned_bytes
;
658 kstat_named_t arcstat_prune
;
659 kstat_named_t arcstat_meta_used
;
660 kstat_named_t arcstat_meta_limit
;
661 kstat_named_t arcstat_dnode_limit
;
662 kstat_named_t arcstat_meta_max
;
663 kstat_named_t arcstat_meta_min
;
664 kstat_named_t arcstat_sync_wait_for_async
;
665 kstat_named_t arcstat_demand_hit_predictive_prefetch
;
666 kstat_named_t arcstat_need_free
;
667 kstat_named_t arcstat_sys_free
;
668 kstat_named_t arcstat_raw_size
;
671 static arc_stats_t arc_stats
= {
672 { "hits", KSTAT_DATA_UINT64
},
673 { "misses", KSTAT_DATA_UINT64
},
674 { "demand_data_hits", KSTAT_DATA_UINT64
},
675 { "demand_data_misses", KSTAT_DATA_UINT64
},
676 { "demand_metadata_hits", KSTAT_DATA_UINT64
},
677 { "demand_metadata_misses", KSTAT_DATA_UINT64
},
678 { "prefetch_data_hits", KSTAT_DATA_UINT64
},
679 { "prefetch_data_misses", KSTAT_DATA_UINT64
},
680 { "prefetch_metadata_hits", KSTAT_DATA_UINT64
},
681 { "prefetch_metadata_misses", KSTAT_DATA_UINT64
},
682 { "mru_hits", KSTAT_DATA_UINT64
},
683 { "mru_ghost_hits", KSTAT_DATA_UINT64
},
684 { "mfu_hits", KSTAT_DATA_UINT64
},
685 { "mfu_ghost_hits", KSTAT_DATA_UINT64
},
686 { "deleted", KSTAT_DATA_UINT64
},
687 { "mutex_miss", KSTAT_DATA_UINT64
},
688 { "evict_skip", KSTAT_DATA_UINT64
},
689 { "evict_not_enough", KSTAT_DATA_UINT64
},
690 { "evict_l2_cached", KSTAT_DATA_UINT64
},
691 { "evict_l2_eligible", KSTAT_DATA_UINT64
},
692 { "evict_l2_ineligible", KSTAT_DATA_UINT64
},
693 { "evict_l2_skip", KSTAT_DATA_UINT64
},
694 { "hash_elements", KSTAT_DATA_UINT64
},
695 { "hash_elements_max", KSTAT_DATA_UINT64
},
696 { "hash_collisions", KSTAT_DATA_UINT64
},
697 { "hash_chains", KSTAT_DATA_UINT64
},
698 { "hash_chain_max", KSTAT_DATA_UINT64
},
699 { "p", KSTAT_DATA_UINT64
},
700 { "c", KSTAT_DATA_UINT64
},
701 { "c_min", KSTAT_DATA_UINT64
},
702 { "c_max", KSTAT_DATA_UINT64
},
703 { "size", KSTAT_DATA_UINT64
},
704 { "compressed_size", KSTAT_DATA_UINT64
},
705 { "uncompressed_size", KSTAT_DATA_UINT64
},
706 { "overhead_size", KSTAT_DATA_UINT64
},
707 { "hdr_size", KSTAT_DATA_UINT64
},
708 { "data_size", KSTAT_DATA_UINT64
},
709 { "metadata_size", KSTAT_DATA_UINT64
},
710 { "dbuf_size", KSTAT_DATA_UINT64
},
711 { "dnode_size", KSTAT_DATA_UINT64
},
712 { "bonus_size", KSTAT_DATA_UINT64
},
713 { "anon_size", KSTAT_DATA_UINT64
},
714 { "anon_evictable_data", KSTAT_DATA_UINT64
},
715 { "anon_evictable_metadata", KSTAT_DATA_UINT64
},
716 { "mru_size", KSTAT_DATA_UINT64
},
717 { "mru_evictable_data", KSTAT_DATA_UINT64
},
718 { "mru_evictable_metadata", KSTAT_DATA_UINT64
},
719 { "mru_ghost_size", KSTAT_DATA_UINT64
},
720 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64
},
721 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64
},
722 { "mfu_size", KSTAT_DATA_UINT64
},
723 { "mfu_evictable_data", KSTAT_DATA_UINT64
},
724 { "mfu_evictable_metadata", KSTAT_DATA_UINT64
},
725 { "mfu_ghost_size", KSTAT_DATA_UINT64
},
726 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64
},
727 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64
},
728 { "l2_hits", KSTAT_DATA_UINT64
},
729 { "l2_misses", KSTAT_DATA_UINT64
},
730 { "l2_feeds", KSTAT_DATA_UINT64
},
731 { "l2_rw_clash", KSTAT_DATA_UINT64
},
732 { "l2_read_bytes", KSTAT_DATA_UINT64
},
733 { "l2_write_bytes", KSTAT_DATA_UINT64
},
734 { "l2_writes_sent", KSTAT_DATA_UINT64
},
735 { "l2_writes_done", KSTAT_DATA_UINT64
},
736 { "l2_writes_error", KSTAT_DATA_UINT64
},
737 { "l2_writes_lock_retry", KSTAT_DATA_UINT64
},
738 { "l2_evict_lock_retry", KSTAT_DATA_UINT64
},
739 { "l2_evict_reading", KSTAT_DATA_UINT64
},
740 { "l2_evict_l1cached", KSTAT_DATA_UINT64
},
741 { "l2_free_on_write", KSTAT_DATA_UINT64
},
742 { "l2_abort_lowmem", KSTAT_DATA_UINT64
},
743 { "l2_cksum_bad", KSTAT_DATA_UINT64
},
744 { "l2_io_error", KSTAT_DATA_UINT64
},
745 { "l2_size", KSTAT_DATA_UINT64
},
746 { "l2_asize", KSTAT_DATA_UINT64
},
747 { "l2_hdr_size", KSTAT_DATA_UINT64
},
748 { "memory_throttle_count", KSTAT_DATA_UINT64
},
749 { "memory_direct_count", KSTAT_DATA_UINT64
},
750 { "memory_indirect_count", KSTAT_DATA_UINT64
},
751 { "memory_all_bytes", KSTAT_DATA_UINT64
},
752 { "memory_free_bytes", KSTAT_DATA_UINT64
},
753 { "memory_available_bytes", KSTAT_DATA_INT64
},
754 { "arc_no_grow", KSTAT_DATA_UINT64
},
755 { "arc_tempreserve", KSTAT_DATA_UINT64
},
756 { "arc_loaned_bytes", KSTAT_DATA_UINT64
},
757 { "arc_prune", KSTAT_DATA_UINT64
},
758 { "arc_meta_used", KSTAT_DATA_UINT64
},
759 { "arc_meta_limit", KSTAT_DATA_UINT64
},
760 { "arc_dnode_limit", KSTAT_DATA_UINT64
},
761 { "arc_meta_max", KSTAT_DATA_UINT64
},
762 { "arc_meta_min", KSTAT_DATA_UINT64
},
763 { "sync_wait_for_async", KSTAT_DATA_UINT64
},
764 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64
},
765 { "arc_need_free", KSTAT_DATA_UINT64
},
766 { "arc_sys_free", KSTAT_DATA_UINT64
},
767 { "arc_raw_size", KSTAT_DATA_UINT64
}
770 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
772 #define ARCSTAT_INCR(stat, val) \
773 atomic_add_64(&arc_stats.stat.value.ui64, (val))
775 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
776 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
778 #define ARCSTAT_MAX(stat, val) { \
780 while ((val) > (m = arc_stats.stat.value.ui64) && \
781 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
785 #define ARCSTAT_MAXSTAT(stat) \
786 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
789 * We define a macro to allow ARC hits/misses to be easily broken down by
790 * two separate conditions, giving a total of four different subtypes for
791 * each of hits and misses (so eight statistics total).
793 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
796 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
798 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
802 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
804 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
809 static arc_state_t
*arc_anon
;
810 static arc_state_t
*arc_mru
;
811 static arc_state_t
*arc_mru_ghost
;
812 static arc_state_t
*arc_mfu
;
813 static arc_state_t
*arc_mfu_ghost
;
814 static arc_state_t
*arc_l2c_only
;
817 * There are several ARC variables that are critical to export as kstats --
818 * but we don't want to have to grovel around in the kstat whenever we wish to
819 * manipulate them. For these variables, we therefore define them to be in
820 * terms of the statistic variable. This assures that we are not introducing
821 * the possibility of inconsistency by having shadow copies of the variables,
822 * while still allowing the code to be readable.
824 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
825 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
826 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
827 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
828 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
829 #define arc_no_grow ARCSTAT(arcstat_no_grow) /* do not grow cache size */
830 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
831 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
832 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
833 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
834 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
835 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
836 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
837 #define arc_dbuf_size ARCSTAT(arcstat_dbuf_size) /* dbuf metadata */
838 #define arc_dnode_size ARCSTAT(arcstat_dnode_size) /* dnode metadata */
839 #define arc_bonus_size ARCSTAT(arcstat_bonus_size) /* bonus buffer metadata */
840 #define arc_need_free ARCSTAT(arcstat_need_free) /* bytes to be freed */
841 #define arc_sys_free ARCSTAT(arcstat_sys_free) /* target system free bytes */
843 /* size of all b_rabd's in entire arc */
844 #define arc_raw_size ARCSTAT(arcstat_raw_size)
845 /* compressed size of entire arc */
846 #define arc_compressed_size ARCSTAT(arcstat_compressed_size)
847 /* uncompressed size of entire arc */
848 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size)
849 /* number of bytes in the arc from arc_buf_t's */
850 #define arc_overhead_size ARCSTAT(arcstat_overhead_size)
852 static list_t arc_prune_list
;
853 static kmutex_t arc_prune_mtx
;
854 static taskq_t
*arc_prune_taskq
;
856 #define GHOST_STATE(state) \
857 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
858 (state) == arc_l2c_only)
860 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
861 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
862 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
863 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
864 #define HDR_COMPRESSION_ENABLED(hdr) \
865 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
867 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
868 #define HDR_L2_READING(hdr) \
869 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
870 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
871 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
872 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
873 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
874 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
875 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
876 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
878 #define HDR_ISTYPE_METADATA(hdr) \
879 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
880 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
882 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
883 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
884 #define HDR_HAS_RABD(hdr) \
885 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
886 (hdr)->b_crypt_hdr.b_rabd != NULL)
887 #define HDR_ENCRYPTED(hdr) \
888 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
889 #define HDR_AUTHENTICATED(hdr) \
890 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
892 /* For storing compression mode in b_flags */
893 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
895 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
896 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
897 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
898 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
900 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
901 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
902 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
903 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
909 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
910 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
911 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
914 * Hash table routines
917 #define HT_LOCK_ALIGN 64
918 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
923 unsigned char pad
[HT_LOCK_PAD
];
927 #define BUF_LOCKS 8192
928 typedef struct buf_hash_table
{
930 arc_buf_hdr_t
**ht_table
;
931 struct ht_lock ht_locks
[BUF_LOCKS
];
934 static buf_hash_table_t buf_hash_table
;
936 #define BUF_HASH_INDEX(spa, dva, birth) \
937 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
938 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
939 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
940 #define HDR_LOCK(hdr) \
941 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
943 uint64_t zfs_crc64_table
[256];
949 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
950 #define L2ARC_HEADROOM 2 /* num of writes */
953 * If we discover during ARC scan any buffers to be compressed, we boost
954 * our headroom for the next scanning cycle by this percentage multiple.
956 #define L2ARC_HEADROOM_BOOST 200
957 #define L2ARC_FEED_SECS 1 /* caching interval secs */
958 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
961 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
962 * and each of the state has two types: data and metadata.
964 #define L2ARC_FEED_TYPES 4
966 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
967 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
969 /* L2ARC Performance Tunables */
970 unsigned long l2arc_write_max
= L2ARC_WRITE_SIZE
; /* def max write size */
971 unsigned long l2arc_write_boost
= L2ARC_WRITE_SIZE
; /* extra warmup write */
972 unsigned long l2arc_headroom
= L2ARC_HEADROOM
; /* # of dev writes */
973 unsigned long l2arc_headroom_boost
= L2ARC_HEADROOM_BOOST
;
974 unsigned long l2arc_feed_secs
= L2ARC_FEED_SECS
; /* interval seconds */
975 unsigned long l2arc_feed_min_ms
= L2ARC_FEED_MIN_MS
; /* min interval msecs */
976 int l2arc_noprefetch
= B_TRUE
; /* don't cache prefetch bufs */
977 int l2arc_feed_again
= B_TRUE
; /* turbo warmup */
978 int l2arc_norw
= B_FALSE
; /* no reads during writes */
983 static list_t L2ARC_dev_list
; /* device list */
984 static list_t
*l2arc_dev_list
; /* device list pointer */
985 static kmutex_t l2arc_dev_mtx
; /* device list mutex */
986 static l2arc_dev_t
*l2arc_dev_last
; /* last device used */
987 static list_t L2ARC_free_on_write
; /* free after write buf list */
988 static list_t
*l2arc_free_on_write
; /* free after write list ptr */
989 static kmutex_t l2arc_free_on_write_mtx
; /* mutex for list */
990 static uint64_t l2arc_ndev
; /* number of devices */
992 typedef struct l2arc_read_callback
{
993 arc_buf_hdr_t
*l2rcb_hdr
; /* read header */
994 blkptr_t l2rcb_bp
; /* original blkptr */
995 zbookmark_phys_t l2rcb_zb
; /* original bookmark */
996 int l2rcb_flags
; /* original flags */
997 abd_t
*l2rcb_abd
; /* temporary buffer */
998 } l2arc_read_callback_t
;
1000 typedef struct l2arc_data_free
{
1001 /* protected by l2arc_free_on_write_mtx */
1004 arc_buf_contents_t l2df_type
;
1005 list_node_t l2df_list_node
;
1006 } l2arc_data_free_t
;
1008 typedef enum arc_fill_flags
{
1009 ARC_FILL_LOCKED
= 1 << 0, /* hdr lock is held */
1010 ARC_FILL_COMPRESSED
= 1 << 1, /* fill with compressed data */
1011 ARC_FILL_ENCRYPTED
= 1 << 2, /* fill with encrypted data */
1012 ARC_FILL_NOAUTH
= 1 << 3, /* don't attempt to authenticate */
1013 ARC_FILL_IN_PLACE
= 1 << 4 /* fill in place (special case) */
1016 static kmutex_t l2arc_feed_thr_lock
;
1017 static kcondvar_t l2arc_feed_thr_cv
;
1018 static uint8_t l2arc_thread_exit
;
1020 static abd_t
*arc_get_data_abd(arc_buf_hdr_t
*, uint64_t, void *);
1021 static void *arc_get_data_buf(arc_buf_hdr_t
*, uint64_t, void *);
1022 static void arc_get_data_impl(arc_buf_hdr_t
*, uint64_t, void *);
1023 static void arc_free_data_abd(arc_buf_hdr_t
*, abd_t
*, uint64_t, void *);
1024 static void arc_free_data_buf(arc_buf_hdr_t
*, void *, uint64_t, void *);
1025 static void arc_free_data_impl(arc_buf_hdr_t
*hdr
, uint64_t size
, void *tag
);
1026 static void arc_hdr_free_abd(arc_buf_hdr_t
*, boolean_t
);
1027 static void arc_hdr_alloc_abd(arc_buf_hdr_t
*, boolean_t
);
1028 static void arc_access(arc_buf_hdr_t
*, kmutex_t
*);
1029 static boolean_t
arc_is_overflowing(void);
1030 static void arc_buf_watch(arc_buf_t
*);
1031 static void arc_tuning_update(void);
1032 static void arc_prune_async(int64_t);
1033 static uint64_t arc_all_memory(void);
1035 static arc_buf_contents_t
arc_buf_type(arc_buf_hdr_t
*);
1036 static uint32_t arc_bufc_to_flags(arc_buf_contents_t
);
1037 static inline void arc_hdr_set_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
);
1038 static inline void arc_hdr_clear_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
);
1040 static boolean_t
l2arc_write_eligible(uint64_t, arc_buf_hdr_t
*);
1041 static void l2arc_read_done(zio_t
*);
1044 buf_hash(uint64_t spa
, const dva_t
*dva
, uint64_t birth
)
1046 uint8_t *vdva
= (uint8_t *)dva
;
1047 uint64_t crc
= -1ULL;
1050 ASSERT(zfs_crc64_table
[128] == ZFS_CRC64_POLY
);
1052 for (i
= 0; i
< sizeof (dva_t
); i
++)
1053 crc
= (crc
>> 8) ^ zfs_crc64_table
[(crc
^ vdva
[i
]) & 0xFF];
1055 crc
^= (spa
>>8) ^ birth
;
1060 #define HDR_EMPTY(hdr) \
1061 ((hdr)->b_dva.dva_word[0] == 0 && \
1062 (hdr)->b_dva.dva_word[1] == 0)
1064 #define HDR_EQUAL(spa, dva, birth, hdr) \
1065 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1066 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1067 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1070 buf_discard_identity(arc_buf_hdr_t
*hdr
)
1072 hdr
->b_dva
.dva_word
[0] = 0;
1073 hdr
->b_dva
.dva_word
[1] = 0;
1077 static arc_buf_hdr_t
*
1078 buf_hash_find(uint64_t spa
, const blkptr_t
*bp
, kmutex_t
**lockp
)
1080 const dva_t
*dva
= BP_IDENTITY(bp
);
1081 uint64_t birth
= BP_PHYSICAL_BIRTH(bp
);
1082 uint64_t idx
= BUF_HASH_INDEX(spa
, dva
, birth
);
1083 kmutex_t
*hash_lock
= BUF_HASH_LOCK(idx
);
1086 mutex_enter(hash_lock
);
1087 for (hdr
= buf_hash_table
.ht_table
[idx
]; hdr
!= NULL
;
1088 hdr
= hdr
->b_hash_next
) {
1089 if (HDR_EQUAL(spa
, dva
, birth
, hdr
)) {
1094 mutex_exit(hash_lock
);
1100 * Insert an entry into the hash table. If there is already an element
1101 * equal to elem in the hash table, then the already existing element
1102 * will be returned and the new element will not be inserted.
1103 * Otherwise returns NULL.
1104 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1106 static arc_buf_hdr_t
*
1107 buf_hash_insert(arc_buf_hdr_t
*hdr
, kmutex_t
**lockp
)
1109 uint64_t idx
= BUF_HASH_INDEX(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
);
1110 kmutex_t
*hash_lock
= BUF_HASH_LOCK(idx
);
1111 arc_buf_hdr_t
*fhdr
;
1114 ASSERT(!DVA_IS_EMPTY(&hdr
->b_dva
));
1115 ASSERT(hdr
->b_birth
!= 0);
1116 ASSERT(!HDR_IN_HASH_TABLE(hdr
));
1118 if (lockp
!= NULL
) {
1120 mutex_enter(hash_lock
);
1122 ASSERT(MUTEX_HELD(hash_lock
));
1125 for (fhdr
= buf_hash_table
.ht_table
[idx
], i
= 0; fhdr
!= NULL
;
1126 fhdr
= fhdr
->b_hash_next
, i
++) {
1127 if (HDR_EQUAL(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
, fhdr
))
1131 hdr
->b_hash_next
= buf_hash_table
.ht_table
[idx
];
1132 buf_hash_table
.ht_table
[idx
] = hdr
;
1133 arc_hdr_set_flags(hdr
, ARC_FLAG_IN_HASH_TABLE
);
1135 /* collect some hash table performance data */
1137 ARCSTAT_BUMP(arcstat_hash_collisions
);
1139 ARCSTAT_BUMP(arcstat_hash_chains
);
1141 ARCSTAT_MAX(arcstat_hash_chain_max
, i
);
1144 ARCSTAT_BUMP(arcstat_hash_elements
);
1145 ARCSTAT_MAXSTAT(arcstat_hash_elements
);
1151 buf_hash_remove(arc_buf_hdr_t
*hdr
)
1153 arc_buf_hdr_t
*fhdr
, **hdrp
;
1154 uint64_t idx
= BUF_HASH_INDEX(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
);
1156 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx
)));
1157 ASSERT(HDR_IN_HASH_TABLE(hdr
));
1159 hdrp
= &buf_hash_table
.ht_table
[idx
];
1160 while ((fhdr
= *hdrp
) != hdr
) {
1161 ASSERT3P(fhdr
, !=, NULL
);
1162 hdrp
= &fhdr
->b_hash_next
;
1164 *hdrp
= hdr
->b_hash_next
;
1165 hdr
->b_hash_next
= NULL
;
1166 arc_hdr_clear_flags(hdr
, ARC_FLAG_IN_HASH_TABLE
);
1168 /* collect some hash table performance data */
1169 ARCSTAT_BUMPDOWN(arcstat_hash_elements
);
1171 if (buf_hash_table
.ht_table
[idx
] &&
1172 buf_hash_table
.ht_table
[idx
]->b_hash_next
== NULL
)
1173 ARCSTAT_BUMPDOWN(arcstat_hash_chains
);
1177 * Global data structures and functions for the buf kmem cache.
1180 static kmem_cache_t
*hdr_full_cache
;
1181 static kmem_cache_t
*hdr_full_crypt_cache
;
1182 static kmem_cache_t
*hdr_l2only_cache
;
1183 static kmem_cache_t
*buf_cache
;
1190 #if defined(_KERNEL) && defined(HAVE_SPL)
1192 * Large allocations which do not require contiguous pages
1193 * should be using vmem_free() in the linux kernel\
1195 vmem_free(buf_hash_table
.ht_table
,
1196 (buf_hash_table
.ht_mask
+ 1) * sizeof (void *));
1198 kmem_free(buf_hash_table
.ht_table
,
1199 (buf_hash_table
.ht_mask
+ 1) * sizeof (void *));
1201 for (i
= 0; i
< BUF_LOCKS
; i
++)
1202 mutex_destroy(&buf_hash_table
.ht_locks
[i
].ht_lock
);
1203 kmem_cache_destroy(hdr_full_cache
);
1204 kmem_cache_destroy(hdr_full_crypt_cache
);
1205 kmem_cache_destroy(hdr_l2only_cache
);
1206 kmem_cache_destroy(buf_cache
);
1210 * Constructor callback - called when the cache is empty
1211 * and a new buf is requested.
1215 hdr_full_cons(void *vbuf
, void *unused
, int kmflag
)
1217 arc_buf_hdr_t
*hdr
= vbuf
;
1219 bzero(hdr
, HDR_FULL_SIZE
);
1220 cv_init(&hdr
->b_l1hdr
.b_cv
, NULL
, CV_DEFAULT
, NULL
);
1221 refcount_create(&hdr
->b_l1hdr
.b_refcnt
);
1222 mutex_init(&hdr
->b_l1hdr
.b_freeze_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1223 list_link_init(&hdr
->b_l1hdr
.b_arc_node
);
1224 list_link_init(&hdr
->b_l2hdr
.b_l2node
);
1225 multilist_link_init(&hdr
->b_l1hdr
.b_arc_node
);
1226 arc_space_consume(HDR_FULL_SIZE
, ARC_SPACE_HDRS
);
1233 hdr_full_crypt_cons(void *vbuf
, void *unused
, int kmflag
)
1235 arc_buf_hdr_t
*hdr
= vbuf
;
1237 hdr_full_cons(vbuf
, unused
, kmflag
);
1238 bzero(&hdr
->b_crypt_hdr
, sizeof (hdr
->b_crypt_hdr
));
1239 arc_space_consume(sizeof (hdr
->b_crypt_hdr
), ARC_SPACE_HDRS
);
1246 hdr_l2only_cons(void *vbuf
, void *unused
, int kmflag
)
1248 arc_buf_hdr_t
*hdr
= vbuf
;
1250 bzero(hdr
, HDR_L2ONLY_SIZE
);
1251 arc_space_consume(HDR_L2ONLY_SIZE
, ARC_SPACE_L2HDRS
);
1258 buf_cons(void *vbuf
, void *unused
, int kmflag
)
1260 arc_buf_t
*buf
= vbuf
;
1262 bzero(buf
, sizeof (arc_buf_t
));
1263 mutex_init(&buf
->b_evict_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1264 arc_space_consume(sizeof (arc_buf_t
), ARC_SPACE_HDRS
);
1270 * Destructor callback - called when a cached buf is
1271 * no longer required.
1275 hdr_full_dest(void *vbuf
, void *unused
)
1277 arc_buf_hdr_t
*hdr
= vbuf
;
1279 ASSERT(HDR_EMPTY(hdr
));
1280 cv_destroy(&hdr
->b_l1hdr
.b_cv
);
1281 refcount_destroy(&hdr
->b_l1hdr
.b_refcnt
);
1282 mutex_destroy(&hdr
->b_l1hdr
.b_freeze_lock
);
1283 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
1284 arc_space_return(HDR_FULL_SIZE
, ARC_SPACE_HDRS
);
1289 hdr_full_crypt_dest(void *vbuf
, void *unused
)
1291 arc_buf_hdr_t
*hdr
= vbuf
;
1293 hdr_full_dest(vbuf
, unused
);
1294 arc_space_return(sizeof (hdr
->b_crypt_hdr
), ARC_SPACE_HDRS
);
1299 hdr_l2only_dest(void *vbuf
, void *unused
)
1301 ASSERTV(arc_buf_hdr_t
*hdr
= vbuf
);
1303 ASSERT(HDR_EMPTY(hdr
));
1304 arc_space_return(HDR_L2ONLY_SIZE
, ARC_SPACE_L2HDRS
);
1309 buf_dest(void *vbuf
, void *unused
)
1311 arc_buf_t
*buf
= vbuf
;
1313 mutex_destroy(&buf
->b_evict_lock
);
1314 arc_space_return(sizeof (arc_buf_t
), ARC_SPACE_HDRS
);
1318 * Reclaim callback -- invoked when memory is low.
1322 hdr_recl(void *unused
)
1324 dprintf("hdr_recl called\n");
1326 * umem calls the reclaim func when we destroy the buf cache,
1327 * which is after we do arc_fini().
1330 cv_signal(&arc_reclaim_thread_cv
);
1336 uint64_t *ct
= NULL
;
1337 uint64_t hsize
= 1ULL << 12;
1341 * The hash table is big enough to fill all of physical memory
1342 * with an average block size of zfs_arc_average_blocksize (default 8K).
1343 * By default, the table will take up
1344 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1346 while (hsize
* zfs_arc_average_blocksize
< arc_all_memory())
1349 buf_hash_table
.ht_mask
= hsize
- 1;
1350 #if defined(_KERNEL) && defined(HAVE_SPL)
1352 * Large allocations which do not require contiguous pages
1353 * should be using vmem_alloc() in the linux kernel
1355 buf_hash_table
.ht_table
=
1356 vmem_zalloc(hsize
* sizeof (void*), KM_SLEEP
);
1358 buf_hash_table
.ht_table
=
1359 kmem_zalloc(hsize
* sizeof (void*), KM_NOSLEEP
);
1361 if (buf_hash_table
.ht_table
== NULL
) {
1362 ASSERT(hsize
> (1ULL << 8));
1367 hdr_full_cache
= kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE
,
1368 0, hdr_full_cons
, hdr_full_dest
, hdr_recl
, NULL
, NULL
, 0);
1369 hdr_full_crypt_cache
= kmem_cache_create("arc_buf_hdr_t_full_crypt",
1370 HDR_FULL_CRYPT_SIZE
, 0, hdr_full_crypt_cons
, hdr_full_crypt_dest
,
1371 hdr_recl
, NULL
, NULL
, 0);
1372 hdr_l2only_cache
= kmem_cache_create("arc_buf_hdr_t_l2only",
1373 HDR_L2ONLY_SIZE
, 0, hdr_l2only_cons
, hdr_l2only_dest
, hdr_recl
,
1375 buf_cache
= kmem_cache_create("arc_buf_t", sizeof (arc_buf_t
),
1376 0, buf_cons
, buf_dest
, NULL
, NULL
, NULL
, 0);
1378 for (i
= 0; i
< 256; i
++)
1379 for (ct
= zfs_crc64_table
+ i
, *ct
= i
, j
= 8; j
> 0; j
--)
1380 *ct
= (*ct
>> 1) ^ (-(*ct
& 1) & ZFS_CRC64_POLY
);
1382 for (i
= 0; i
< BUF_LOCKS
; i
++) {
1383 mutex_init(&buf_hash_table
.ht_locks
[i
].ht_lock
,
1384 NULL
, MUTEX_DEFAULT
, NULL
);
1388 #define ARC_MINTIME (hz>>4) /* 62 ms */
1391 * This is the size that the buf occupies in memory. If the buf is compressed,
1392 * it will correspond to the compressed size. You should use this method of
1393 * getting the buf size unless you explicitly need the logical size.
1396 arc_buf_size(arc_buf_t
*buf
)
1398 return (ARC_BUF_COMPRESSED(buf
) ?
1399 HDR_GET_PSIZE(buf
->b_hdr
) : HDR_GET_LSIZE(buf
->b_hdr
));
1403 arc_buf_lsize(arc_buf_t
*buf
)
1405 return (HDR_GET_LSIZE(buf
->b_hdr
));
1409 * This function will return B_TRUE if the buffer is encrypted in memory.
1410 * This buffer can be decrypted by calling arc_untransform().
1413 arc_is_encrypted(arc_buf_t
*buf
)
1415 return (ARC_BUF_ENCRYPTED(buf
) != 0);
1419 * Returns B_TRUE if the buffer represents data that has not had its MAC
1423 arc_is_unauthenticated(arc_buf_t
*buf
)
1425 return (HDR_NOAUTH(buf
->b_hdr
) != 0);
1429 arc_get_raw_params(arc_buf_t
*buf
, boolean_t
*byteorder
, uint8_t *salt
,
1430 uint8_t *iv
, uint8_t *mac
)
1432 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1434 ASSERT(HDR_PROTECTED(hdr
));
1436 bcopy(hdr
->b_crypt_hdr
.b_salt
, salt
, ZIO_DATA_SALT_LEN
);
1437 bcopy(hdr
->b_crypt_hdr
.b_iv
, iv
, ZIO_DATA_IV_LEN
);
1438 bcopy(hdr
->b_crypt_hdr
.b_mac
, mac
, ZIO_DATA_MAC_LEN
);
1439 *byteorder
= (hdr
->b_l1hdr
.b_byteswap
== DMU_BSWAP_NUMFUNCS
) ?
1440 ZFS_HOST_BYTEORDER
: !ZFS_HOST_BYTEORDER
;
1444 * Indicates how this buffer is compressed in memory. If it is not compressed
1445 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1446 * arc_untransform() as long as it is also unencrypted.
1449 arc_get_compression(arc_buf_t
*buf
)
1451 return (ARC_BUF_COMPRESSED(buf
) ?
1452 HDR_GET_COMPRESS(buf
->b_hdr
) : ZIO_COMPRESS_OFF
);
1456 * Return the compression algorithm used to store this data in the ARC. If ARC
1457 * compression is enabled or this is an encrypted block, this will be the same
1458 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1460 static inline enum zio_compress
1461 arc_hdr_get_compress(arc_buf_hdr_t
*hdr
)
1463 return (HDR_COMPRESSION_ENABLED(hdr
) ?
1464 HDR_GET_COMPRESS(hdr
) : ZIO_COMPRESS_OFF
);
1467 static inline boolean_t
1468 arc_buf_is_shared(arc_buf_t
*buf
)
1470 boolean_t shared
= (buf
->b_data
!= NULL
&&
1471 buf
->b_hdr
->b_l1hdr
.b_pabd
!= NULL
&&
1472 abd_is_linear(buf
->b_hdr
->b_l1hdr
.b_pabd
) &&
1473 buf
->b_data
== abd_to_buf(buf
->b_hdr
->b_l1hdr
.b_pabd
));
1474 IMPLY(shared
, HDR_SHARED_DATA(buf
->b_hdr
));
1475 IMPLY(shared
, ARC_BUF_SHARED(buf
));
1476 IMPLY(shared
, ARC_BUF_COMPRESSED(buf
) || ARC_BUF_LAST(buf
));
1479 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1480 * already being shared" requirement prevents us from doing that.
1487 * Free the checksum associated with this header. If there is no checksum, this
1491 arc_cksum_free(arc_buf_hdr_t
*hdr
)
1493 ASSERT(HDR_HAS_L1HDR(hdr
));
1495 mutex_enter(&hdr
->b_l1hdr
.b_freeze_lock
);
1496 if (hdr
->b_l1hdr
.b_freeze_cksum
!= NULL
) {
1497 kmem_free(hdr
->b_l1hdr
.b_freeze_cksum
, sizeof (zio_cksum_t
));
1498 hdr
->b_l1hdr
.b_freeze_cksum
= NULL
;
1500 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1504 * Return true iff at least one of the bufs on hdr is not compressed.
1505 * Encrypted buffers count as compressed.
1508 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t
*hdr
)
1510 for (arc_buf_t
*b
= hdr
->b_l1hdr
.b_buf
; b
!= NULL
; b
= b
->b_next
) {
1511 if (!ARC_BUF_COMPRESSED(b
)) {
1520 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1521 * matches the checksum that is stored in the hdr. If there is no checksum,
1522 * or if the buf is compressed, this is a no-op.
1525 arc_cksum_verify(arc_buf_t
*buf
)
1527 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1530 if (!(zfs_flags
& ZFS_DEBUG_MODIFY
))
1533 if (ARC_BUF_COMPRESSED(buf
)) {
1534 ASSERT(hdr
->b_l1hdr
.b_freeze_cksum
== NULL
||
1535 arc_hdr_has_uncompressed_buf(hdr
));
1539 ASSERT(HDR_HAS_L1HDR(hdr
));
1541 mutex_enter(&hdr
->b_l1hdr
.b_freeze_lock
);
1542 if (hdr
->b_l1hdr
.b_freeze_cksum
== NULL
|| HDR_IO_ERROR(hdr
)) {
1543 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1547 fletcher_2_native(buf
->b_data
, arc_buf_size(buf
), NULL
, &zc
);
1548 if (!ZIO_CHECKSUM_EQUAL(*hdr
->b_l1hdr
.b_freeze_cksum
, zc
))
1549 panic("buffer modified while frozen!");
1550 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1554 * This function makes the assumption that data stored in the L2ARC
1555 * will be transformed exactly as it is in the main pool. Because of
1556 * this we can verify the checksum against the reading process's bp.
1559 arc_cksum_is_equal(arc_buf_hdr_t
*hdr
, zio_t
*zio
)
1561 ASSERT(!BP_IS_EMBEDDED(zio
->io_bp
));
1562 VERIFY3U(BP_GET_PSIZE(zio
->io_bp
), ==, HDR_GET_PSIZE(hdr
));
1565 * Block pointers always store the checksum for the logical data.
1566 * If the block pointer has the gang bit set, then the checksum
1567 * it represents is for the reconstituted data and not for an
1568 * individual gang member. The zio pipeline, however, must be able to
1569 * determine the checksum of each of the gang constituents so it
1570 * treats the checksum comparison differently than what we need
1571 * for l2arc blocks. This prevents us from using the
1572 * zio_checksum_error() interface directly. Instead we must call the
1573 * zio_checksum_error_impl() so that we can ensure the checksum is
1574 * generated using the correct checksum algorithm and accounts for the
1575 * logical I/O size and not just a gang fragment.
1577 return (zio_checksum_error_impl(zio
->io_spa
, zio
->io_bp
,
1578 BP_GET_CHECKSUM(zio
->io_bp
), zio
->io_abd
, zio
->io_size
,
1579 zio
->io_offset
, NULL
) == 0);
1583 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1584 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1585 * isn't modified later on. If buf is compressed or there is already a checksum
1586 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1589 arc_cksum_compute(arc_buf_t
*buf
)
1591 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1593 if (!(zfs_flags
& ZFS_DEBUG_MODIFY
))
1596 ASSERT(HDR_HAS_L1HDR(hdr
));
1598 mutex_enter(&buf
->b_hdr
->b_l1hdr
.b_freeze_lock
);
1599 if (hdr
->b_l1hdr
.b_freeze_cksum
!= NULL
) {
1600 ASSERT(arc_hdr_has_uncompressed_buf(hdr
));
1601 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1603 } else if (ARC_BUF_COMPRESSED(buf
)) {
1604 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1608 ASSERT(!ARC_BUF_ENCRYPTED(buf
));
1609 ASSERT(!ARC_BUF_COMPRESSED(buf
));
1610 hdr
->b_l1hdr
.b_freeze_cksum
= kmem_alloc(sizeof (zio_cksum_t
),
1612 fletcher_2_native(buf
->b_data
, arc_buf_size(buf
), NULL
,
1613 hdr
->b_l1hdr
.b_freeze_cksum
);
1614 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1620 arc_buf_sigsegv(int sig
, siginfo_t
*si
, void *unused
)
1622 panic("Got SIGSEGV at address: 0x%lx\n", (long)si
->si_addr
);
1628 arc_buf_unwatch(arc_buf_t
*buf
)
1632 ASSERT0(mprotect(buf
->b_data
, arc_buf_size(buf
),
1633 PROT_READ
| PROT_WRITE
));
1640 arc_buf_watch(arc_buf_t
*buf
)
1644 ASSERT0(mprotect(buf
->b_data
, arc_buf_size(buf
),
1649 static arc_buf_contents_t
1650 arc_buf_type(arc_buf_hdr_t
*hdr
)
1652 arc_buf_contents_t type
;
1653 if (HDR_ISTYPE_METADATA(hdr
)) {
1654 type
= ARC_BUFC_METADATA
;
1656 type
= ARC_BUFC_DATA
;
1658 VERIFY3U(hdr
->b_type
, ==, type
);
1663 arc_is_metadata(arc_buf_t
*buf
)
1665 return (HDR_ISTYPE_METADATA(buf
->b_hdr
) != 0);
1669 arc_bufc_to_flags(arc_buf_contents_t type
)
1673 /* metadata field is 0 if buffer contains normal data */
1675 case ARC_BUFC_METADATA
:
1676 return (ARC_FLAG_BUFC_METADATA
);
1680 panic("undefined ARC buffer type!");
1681 return ((uint32_t)-1);
1685 arc_buf_thaw(arc_buf_t
*buf
)
1687 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1689 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
1690 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
1692 arc_cksum_verify(buf
);
1695 * Compressed buffers do not manipulate the b_freeze_cksum or
1696 * allocate b_thawed.
1698 if (ARC_BUF_COMPRESSED(buf
)) {
1699 ASSERT(hdr
->b_l1hdr
.b_freeze_cksum
== NULL
||
1700 arc_hdr_has_uncompressed_buf(hdr
));
1704 ASSERT(HDR_HAS_L1HDR(hdr
));
1705 arc_cksum_free(hdr
);
1706 arc_buf_unwatch(buf
);
1710 arc_buf_freeze(arc_buf_t
*buf
)
1712 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1713 kmutex_t
*hash_lock
;
1715 if (!(zfs_flags
& ZFS_DEBUG_MODIFY
))
1718 if (ARC_BUF_COMPRESSED(buf
)) {
1719 ASSERT(hdr
->b_l1hdr
.b_freeze_cksum
== NULL
||
1720 arc_hdr_has_uncompressed_buf(hdr
));
1724 hash_lock
= HDR_LOCK(hdr
);
1725 mutex_enter(hash_lock
);
1727 ASSERT(HDR_HAS_L1HDR(hdr
));
1728 ASSERT(hdr
->b_l1hdr
.b_freeze_cksum
!= NULL
||
1729 hdr
->b_l1hdr
.b_state
== arc_anon
);
1730 arc_cksum_compute(buf
);
1731 mutex_exit(hash_lock
);
1735 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1736 * the following functions should be used to ensure that the flags are
1737 * updated in a thread-safe way. When manipulating the flags either
1738 * the hash_lock must be held or the hdr must be undiscoverable. This
1739 * ensures that we're not racing with any other threads when updating
1743 arc_hdr_set_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
)
1745 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)) || HDR_EMPTY(hdr
));
1746 hdr
->b_flags
|= flags
;
1750 arc_hdr_clear_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
)
1752 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)) || HDR_EMPTY(hdr
));
1753 hdr
->b_flags
&= ~flags
;
1757 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1758 * done in a special way since we have to clear and set bits
1759 * at the same time. Consumers that wish to set the compression bits
1760 * must use this function to ensure that the flags are updated in
1761 * thread-safe manner.
1764 arc_hdr_set_compress(arc_buf_hdr_t
*hdr
, enum zio_compress cmp
)
1766 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)) || HDR_EMPTY(hdr
));
1769 * Holes and embedded blocks will always have a psize = 0 so
1770 * we ignore the compression of the blkptr and set the
1771 * want to uncompress them. Mark them as uncompressed.
1773 if (!zfs_compressed_arc_enabled
|| HDR_GET_PSIZE(hdr
) == 0) {
1774 arc_hdr_clear_flags(hdr
, ARC_FLAG_COMPRESSED_ARC
);
1775 ASSERT(!HDR_COMPRESSION_ENABLED(hdr
));
1777 arc_hdr_set_flags(hdr
, ARC_FLAG_COMPRESSED_ARC
);
1778 ASSERT(HDR_COMPRESSION_ENABLED(hdr
));
1781 HDR_SET_COMPRESS(hdr
, cmp
);
1782 ASSERT3U(HDR_GET_COMPRESS(hdr
), ==, cmp
);
1786 * Looks for another buf on the same hdr which has the data decompressed, copies
1787 * from it, and returns true. If no such buf exists, returns false.
1790 arc_buf_try_copy_decompressed_data(arc_buf_t
*buf
)
1792 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1793 boolean_t copied
= B_FALSE
;
1795 ASSERT(HDR_HAS_L1HDR(hdr
));
1796 ASSERT3P(buf
->b_data
, !=, NULL
);
1797 ASSERT(!ARC_BUF_COMPRESSED(buf
));
1799 for (arc_buf_t
*from
= hdr
->b_l1hdr
.b_buf
; from
!= NULL
;
1800 from
= from
->b_next
) {
1801 /* can't use our own data buffer */
1806 if (!ARC_BUF_COMPRESSED(from
)) {
1807 bcopy(from
->b_data
, buf
->b_data
, arc_buf_size(buf
));
1814 * There were no decompressed bufs, so there should not be a
1815 * checksum on the hdr either.
1817 EQUIV(!copied
, hdr
->b_l1hdr
.b_freeze_cksum
== NULL
);
1823 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1826 arc_hdr_size(arc_buf_hdr_t
*hdr
)
1830 if (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
&&
1831 HDR_GET_PSIZE(hdr
) > 0) {
1832 size
= HDR_GET_PSIZE(hdr
);
1834 ASSERT3U(HDR_GET_LSIZE(hdr
), !=, 0);
1835 size
= HDR_GET_LSIZE(hdr
);
1841 arc_hdr_authenticate(arc_buf_hdr_t
*hdr
, spa_t
*spa
, uint64_t dsobj
)
1845 uint64_t lsize
= HDR_GET_LSIZE(hdr
);
1846 uint64_t psize
= HDR_GET_PSIZE(hdr
);
1847 void *tmpbuf
= NULL
;
1848 abd_t
*abd
= hdr
->b_l1hdr
.b_pabd
;
1850 ASSERT(HDR_LOCK(hdr
) == NULL
|| MUTEX_HELD(HDR_LOCK(hdr
)));
1851 ASSERT(HDR_AUTHENTICATED(hdr
));
1852 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
1855 * The MAC is calculated on the compressed data that is stored on disk.
1856 * However, if compressed arc is disabled we will only have the
1857 * decompressed data available to us now. Compress it into a temporary
1858 * abd so we can verify the MAC. The performance overhead of this will
1859 * be relatively low, since most objects in an encrypted objset will
1860 * be encrypted (instead of authenticated) anyway.
1862 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
1863 !HDR_COMPRESSION_ENABLED(hdr
)) {
1864 tmpbuf
= zio_buf_alloc(lsize
);
1865 abd
= abd_get_from_buf(tmpbuf
, lsize
);
1866 abd_take_ownership_of_buf(abd
, B_TRUE
);
1868 csize
= zio_compress_data(HDR_GET_COMPRESS(hdr
),
1869 hdr
->b_l1hdr
.b_pabd
, tmpbuf
, lsize
);
1870 ASSERT3U(csize
, <=, psize
);
1871 abd_zero_off(abd
, csize
, psize
- csize
);
1875 * Authentication is best effort. We authenticate whenever the key is
1876 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1878 if (hdr
->b_crypt_hdr
.b_ot
== DMU_OT_OBJSET
) {
1879 ASSERT3U(HDR_GET_COMPRESS(hdr
), ==, ZIO_COMPRESS_OFF
);
1880 ASSERT3U(lsize
, ==, psize
);
1881 ret
= spa_do_crypt_objset_mac_abd(B_FALSE
, spa
, dsobj
, abd
,
1882 psize
, hdr
->b_l1hdr
.b_byteswap
!= DMU_BSWAP_NUMFUNCS
);
1884 ret
= spa_do_crypt_mac_abd(B_FALSE
, spa
, dsobj
, abd
, psize
,
1885 hdr
->b_crypt_hdr
.b_mac
);
1889 arc_hdr_clear_flags(hdr
, ARC_FLAG_NOAUTH
);
1890 else if (ret
!= ENOENT
)
1906 * This function will take a header that only has raw encrypted data in
1907 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1908 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1909 * also decompress the data.
1912 arc_hdr_decrypt(arc_buf_hdr_t
*hdr
, spa_t
*spa
, uint64_t dsobj
)
1915 dsl_crypto_key_t
*dck
= NULL
;
1918 boolean_t no_crypt
= B_FALSE
;
1919 boolean_t bswap
= (hdr
->b_l1hdr
.b_byteswap
!= DMU_BSWAP_NUMFUNCS
);
1921 ASSERT(HDR_LOCK(hdr
) == NULL
|| MUTEX_HELD(HDR_LOCK(hdr
)));
1922 ASSERT(HDR_ENCRYPTED(hdr
));
1924 arc_hdr_alloc_abd(hdr
, B_FALSE
);
1927 * We must be careful to use the passed-in dsobj value here and
1928 * not the value in b_dsobj. b_dsobj is meant to be a best guess for
1929 * the L2ARC, which has the luxury of being able to fail without real
1930 * consequences (the data simply won't make it to the L2ARC). In
1931 * reality, the dsobj stored in the header may belong to a dataset
1932 * that has been unmounted or otherwise disowned, meaning the key
1933 * won't be accessible via that dsobj anymore.
1935 ret
= spa_keystore_lookup_key(spa
, dsobj
, FTAG
, &dck
);
1937 ret
= SET_ERROR(EACCES
);
1941 ret
= zio_do_crypt_abd(B_FALSE
, &dck
->dck_key
,
1942 hdr
->b_crypt_hdr
.b_salt
, hdr
->b_crypt_hdr
.b_ot
,
1943 hdr
->b_crypt_hdr
.b_iv
, hdr
->b_crypt_hdr
.b_mac
,
1944 HDR_GET_PSIZE(hdr
), bswap
, hdr
->b_l1hdr
.b_pabd
,
1945 hdr
->b_crypt_hdr
.b_rabd
, &no_crypt
);
1950 abd_copy(hdr
->b_l1hdr
.b_pabd
, hdr
->b_crypt_hdr
.b_rabd
,
1951 HDR_GET_PSIZE(hdr
));
1955 * If this header has disabled arc compression but the b_pabd is
1956 * compressed after decrypting it, we need to decompress the newly
1959 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
1960 !HDR_COMPRESSION_ENABLED(hdr
)) {
1962 * We want to make sure that we are correctly honoring the
1963 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1964 * and then loan a buffer from it, rather than allocating a
1965 * linear buffer and wrapping it in an abd later.
1967 cabd
= arc_get_data_abd(hdr
, arc_hdr_size(hdr
), hdr
);
1968 tmp
= abd_borrow_buf(cabd
, arc_hdr_size(hdr
));
1970 ret
= zio_decompress_data(HDR_GET_COMPRESS(hdr
),
1971 hdr
->b_l1hdr
.b_pabd
, tmp
, HDR_GET_PSIZE(hdr
),
1972 HDR_GET_LSIZE(hdr
));
1974 abd_return_buf(cabd
, tmp
, arc_hdr_size(hdr
));
1978 abd_return_buf_copy(cabd
, tmp
, arc_hdr_size(hdr
));
1979 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
,
1980 arc_hdr_size(hdr
), hdr
);
1981 hdr
->b_l1hdr
.b_pabd
= cabd
;
1984 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
1989 arc_hdr_free_abd(hdr
, B_FALSE
);
1991 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
1993 arc_free_data_buf(hdr
, cabd
, arc_hdr_size(hdr
), hdr
);
1999 * This function is called during arc_buf_fill() to prepare the header's
2000 * abd plaintext pointer for use. This involves authenticated protected
2001 * data and decrypting encrypted data into the plaintext abd.
2004 arc_fill_hdr_crypt(arc_buf_hdr_t
*hdr
, kmutex_t
*hash_lock
, spa_t
*spa
,
2005 uint64_t dsobj
, boolean_t noauth
)
2009 ASSERT(HDR_PROTECTED(hdr
));
2011 if (hash_lock
!= NULL
)
2012 mutex_enter(hash_lock
);
2014 if (HDR_NOAUTH(hdr
) && !noauth
) {
2016 * The caller requested authenticated data but our data has
2017 * not been authenticated yet. Verify the MAC now if we can.
2019 ret
= arc_hdr_authenticate(hdr
, spa
, dsobj
);
2022 } else if (HDR_HAS_RABD(hdr
) && hdr
->b_l1hdr
.b_pabd
== NULL
) {
2024 * If we only have the encrypted version of the data, but the
2025 * unencrypted version was requested we take this opportunity
2026 * to store the decrypted version in the header for future use.
2028 ret
= arc_hdr_decrypt(hdr
, spa
, dsobj
);
2033 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
2035 if (hash_lock
!= NULL
)
2036 mutex_exit(hash_lock
);
2041 if (hash_lock
!= NULL
)
2042 mutex_exit(hash_lock
);
2048 * This function is used by the dbuf code to decrypt bonus buffers in place.
2049 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
2050 * block, so we use the hash lock here to protect against concurrent calls to
2054 arc_buf_untransform_in_place(arc_buf_t
*buf
, kmutex_t
*hash_lock
)
2056 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
2058 ASSERT(HDR_ENCRYPTED(hdr
));
2059 ASSERT3U(hdr
->b_crypt_hdr
.b_ot
, ==, DMU_OT_DNODE
);
2060 ASSERT(HDR_LOCK(hdr
) == NULL
|| MUTEX_HELD(HDR_LOCK(hdr
)));
2061 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
2063 zio_crypt_copy_dnode_bonus(hdr
->b_l1hdr
.b_pabd
, buf
->b_data
,
2065 buf
->b_flags
&= ~ARC_BUF_FLAG_ENCRYPTED
;
2066 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
2067 hdr
->b_crypt_hdr
.b_ebufcnt
-= 1;
2071 * Given a buf that has a data buffer attached to it, this function will
2072 * efficiently fill the buf with data of the specified compression setting from
2073 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
2074 * are already sharing a data buf, no copy is performed.
2076 * If the buf is marked as compressed but uncompressed data was requested, this
2077 * will allocate a new data buffer for the buf, remove that flag, and fill the
2078 * buf with uncompressed data. You can't request a compressed buf on a hdr with
2079 * uncompressed data, and (since we haven't added support for it yet) if you
2080 * want compressed data your buf must already be marked as compressed and have
2081 * the correct-sized data buffer.
2084 arc_buf_fill(arc_buf_t
*buf
, spa_t
*spa
, uint64_t dsobj
, arc_fill_flags_t flags
)
2087 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
2088 boolean_t hdr_compressed
=
2089 (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
);
2090 boolean_t compressed
= (flags
& ARC_FILL_COMPRESSED
) != 0;
2091 boolean_t encrypted
= (flags
& ARC_FILL_ENCRYPTED
) != 0;
2092 dmu_object_byteswap_t bswap
= hdr
->b_l1hdr
.b_byteswap
;
2093 kmutex_t
*hash_lock
= (flags
& ARC_FILL_LOCKED
) ? NULL
: HDR_LOCK(hdr
);
2095 ASSERT3P(buf
->b_data
, !=, NULL
);
2096 IMPLY(compressed
, hdr_compressed
|| ARC_BUF_ENCRYPTED(buf
));
2097 IMPLY(compressed
, ARC_BUF_COMPRESSED(buf
));
2098 IMPLY(encrypted
, HDR_ENCRYPTED(hdr
));
2099 IMPLY(encrypted
, ARC_BUF_ENCRYPTED(buf
));
2100 IMPLY(encrypted
, ARC_BUF_COMPRESSED(buf
));
2101 IMPLY(encrypted
, !ARC_BUF_SHARED(buf
));
2104 * If the caller wanted encrypted data we just need to copy it from
2105 * b_rabd and potentially byteswap it. We won't be able to do any
2106 * further transforms on it.
2109 ASSERT(HDR_HAS_RABD(hdr
));
2110 abd_copy_to_buf(buf
->b_data
, hdr
->b_crypt_hdr
.b_rabd
,
2111 HDR_GET_PSIZE(hdr
));
2116 * Adjust encrypted and authenticated headers to accomodate the
2117 * request if needed.
2119 if (HDR_PROTECTED(hdr
)) {
2120 error
= arc_fill_hdr_crypt(hdr
, hash_lock
, spa
,
2121 dsobj
, !!(flags
& ARC_FILL_NOAUTH
));
2127 * There is a special case here for dnode blocks which are
2128 * decrypting their bonus buffers. These blocks may request to
2129 * be decrypted in-place. This is necessary because there may
2130 * be many dnodes pointing into this buffer and there is
2131 * currently no method to synchronize replacing the backing
2132 * b_data buffer and updating all of the pointers. Here we use
2133 * the hash lock to ensure there are no races. If the need
2134 * arises for other types to be decrypted in-place, they must
2135 * add handling here as well.
2137 if ((flags
& ARC_FILL_IN_PLACE
) != 0) {
2138 ASSERT(!hdr_compressed
);
2139 ASSERT(!compressed
);
2142 if (HDR_ENCRYPTED(hdr
) && ARC_BUF_ENCRYPTED(buf
)) {
2143 ASSERT3U(hdr
->b_crypt_hdr
.b_ot
, ==, DMU_OT_DNODE
);
2145 if (hash_lock
!= NULL
)
2146 mutex_enter(hash_lock
);
2147 arc_buf_untransform_in_place(buf
, hash_lock
);
2148 if (hash_lock
!= NULL
)
2149 mutex_exit(hash_lock
);
2151 /* Compute the hdr's checksum if necessary */
2152 arc_cksum_compute(buf
);
2158 if (hdr_compressed
== compressed
) {
2159 if (!arc_buf_is_shared(buf
)) {
2160 abd_copy_to_buf(buf
->b_data
, hdr
->b_l1hdr
.b_pabd
,
2164 ASSERT(hdr_compressed
);
2165 ASSERT(!compressed
);
2166 ASSERT3U(HDR_GET_LSIZE(hdr
), !=, HDR_GET_PSIZE(hdr
));
2169 * If the buf is sharing its data with the hdr, unlink it and
2170 * allocate a new data buffer for the buf.
2172 if (arc_buf_is_shared(buf
)) {
2173 ASSERT(ARC_BUF_COMPRESSED(buf
));
2175 /* We need to give the buf it's own b_data */
2176 buf
->b_flags
&= ~ARC_BUF_FLAG_SHARED
;
2178 arc_get_data_buf(hdr
, HDR_GET_LSIZE(hdr
), buf
);
2179 arc_hdr_clear_flags(hdr
, ARC_FLAG_SHARED_DATA
);
2181 /* Previously overhead was 0; just add new overhead */
2182 ARCSTAT_INCR(arcstat_overhead_size
, HDR_GET_LSIZE(hdr
));
2183 } else if (ARC_BUF_COMPRESSED(buf
)) {
2184 /* We need to reallocate the buf's b_data */
2185 arc_free_data_buf(hdr
, buf
->b_data
, HDR_GET_PSIZE(hdr
),
2188 arc_get_data_buf(hdr
, HDR_GET_LSIZE(hdr
), buf
);
2190 /* We increased the size of b_data; update overhead */
2191 ARCSTAT_INCR(arcstat_overhead_size
,
2192 HDR_GET_LSIZE(hdr
) - HDR_GET_PSIZE(hdr
));
2196 * Regardless of the buf's previous compression settings, it
2197 * should not be compressed at the end of this function.
2199 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
2202 * Try copying the data from another buf which already has a
2203 * decompressed version. If that's not possible, it's time to
2204 * bite the bullet and decompress the data from the hdr.
2206 if (arc_buf_try_copy_decompressed_data(buf
)) {
2207 /* Skip byteswapping and checksumming (already done) */
2208 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, !=, NULL
);
2211 error
= zio_decompress_data(HDR_GET_COMPRESS(hdr
),
2212 hdr
->b_l1hdr
.b_pabd
, buf
->b_data
,
2213 HDR_GET_PSIZE(hdr
), HDR_GET_LSIZE(hdr
));
2216 * Absent hardware errors or software bugs, this should
2217 * be impossible, but log it anyway so we can debug it.
2221 "hdr %p, compress %d, psize %d, lsize %d",
2222 hdr
, arc_hdr_get_compress(hdr
),
2223 HDR_GET_PSIZE(hdr
), HDR_GET_LSIZE(hdr
));
2224 return (SET_ERROR(EIO
));
2230 /* Byteswap the buf's data if necessary */
2231 if (bswap
!= DMU_BSWAP_NUMFUNCS
) {
2232 ASSERT(!HDR_SHARED_DATA(hdr
));
2233 ASSERT3U(bswap
, <, DMU_BSWAP_NUMFUNCS
);
2234 dmu_ot_byteswap
[bswap
].ob_func(buf
->b_data
, HDR_GET_LSIZE(hdr
));
2237 /* Compute the hdr's checksum if necessary */
2238 arc_cksum_compute(buf
);
2244 * If this function is being called to decrypt an encrypted buffer or verify an
2245 * authenticated one, the key must be loaded and a mapping must be made
2246 * available in the keystore via spa_keystore_create_mapping() or one of its
2250 arc_untransform(arc_buf_t
*buf
, spa_t
*spa
, uint64_t dsobj
, boolean_t in_place
)
2252 arc_fill_flags_t flags
= 0;
2255 flags
|= ARC_FILL_IN_PLACE
;
2257 return (arc_buf_fill(buf
, spa
, dsobj
, flags
));
2261 * Increment the amount of evictable space in the arc_state_t's refcount.
2262 * We account for the space used by the hdr and the arc buf individually
2263 * so that we can add and remove them from the refcount individually.
2266 arc_evictable_space_increment(arc_buf_hdr_t
*hdr
, arc_state_t
*state
)
2268 arc_buf_contents_t type
= arc_buf_type(hdr
);
2271 ASSERT(HDR_HAS_L1HDR(hdr
));
2273 if (GHOST_STATE(state
)) {
2274 ASSERT0(hdr
->b_l1hdr
.b_bufcnt
);
2275 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2276 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2277 ASSERT(!HDR_HAS_RABD(hdr
));
2278 (void) refcount_add_many(&state
->arcs_esize
[type
],
2279 HDR_GET_LSIZE(hdr
), hdr
);
2283 ASSERT(!GHOST_STATE(state
));
2284 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2285 (void) refcount_add_many(&state
->arcs_esize
[type
],
2286 arc_hdr_size(hdr
), hdr
);
2288 if (HDR_HAS_RABD(hdr
)) {
2289 (void) refcount_add_many(&state
->arcs_esize
[type
],
2290 HDR_GET_PSIZE(hdr
), hdr
);
2293 for (buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
; buf
= buf
->b_next
) {
2294 if (arc_buf_is_shared(buf
))
2296 (void) refcount_add_many(&state
->arcs_esize
[type
],
2297 arc_buf_size(buf
), buf
);
2302 * Decrement the amount of evictable space in the arc_state_t's refcount.
2303 * We account for the space used by the hdr and the arc buf individually
2304 * so that we can add and remove them from the refcount individually.
2307 arc_evictable_space_decrement(arc_buf_hdr_t
*hdr
, arc_state_t
*state
)
2309 arc_buf_contents_t type
= arc_buf_type(hdr
);
2312 ASSERT(HDR_HAS_L1HDR(hdr
));
2314 if (GHOST_STATE(state
)) {
2315 ASSERT0(hdr
->b_l1hdr
.b_bufcnt
);
2316 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2317 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2318 ASSERT(!HDR_HAS_RABD(hdr
));
2319 (void) refcount_remove_many(&state
->arcs_esize
[type
],
2320 HDR_GET_LSIZE(hdr
), hdr
);
2324 ASSERT(!GHOST_STATE(state
));
2325 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2326 (void) refcount_remove_many(&state
->arcs_esize
[type
],
2327 arc_hdr_size(hdr
), hdr
);
2329 if (HDR_HAS_RABD(hdr
)) {
2330 (void) refcount_remove_many(&state
->arcs_esize
[type
],
2331 HDR_GET_PSIZE(hdr
), hdr
);
2334 for (buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
; buf
= buf
->b_next
) {
2335 if (arc_buf_is_shared(buf
))
2337 (void) refcount_remove_many(&state
->arcs_esize
[type
],
2338 arc_buf_size(buf
), buf
);
2343 * Add a reference to this hdr indicating that someone is actively
2344 * referencing that memory. When the refcount transitions from 0 to 1,
2345 * we remove it from the respective arc_state_t list to indicate that
2346 * it is not evictable.
2349 add_reference(arc_buf_hdr_t
*hdr
, void *tag
)
2353 ASSERT(HDR_HAS_L1HDR(hdr
));
2354 if (!MUTEX_HELD(HDR_LOCK(hdr
))) {
2355 ASSERT(hdr
->b_l1hdr
.b_state
== arc_anon
);
2356 ASSERT(refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
2357 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2360 state
= hdr
->b_l1hdr
.b_state
;
2362 if ((refcount_add(&hdr
->b_l1hdr
.b_refcnt
, tag
) == 1) &&
2363 (state
!= arc_anon
)) {
2364 /* We don't use the L2-only state list. */
2365 if (state
!= arc_l2c_only
) {
2366 multilist_remove(state
->arcs_list
[arc_buf_type(hdr
)],
2368 arc_evictable_space_decrement(hdr
, state
);
2370 /* remove the prefetch flag if we get a reference */
2371 arc_hdr_clear_flags(hdr
, ARC_FLAG_PREFETCH
);
2376 * Remove a reference from this hdr. When the reference transitions from
2377 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2378 * list making it eligible for eviction.
2381 remove_reference(arc_buf_hdr_t
*hdr
, kmutex_t
*hash_lock
, void *tag
)
2384 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
2386 ASSERT(HDR_HAS_L1HDR(hdr
));
2387 ASSERT(state
== arc_anon
|| MUTEX_HELD(hash_lock
));
2388 ASSERT(!GHOST_STATE(state
));
2391 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2392 * check to prevent usage of the arc_l2c_only list.
2394 if (((cnt
= refcount_remove(&hdr
->b_l1hdr
.b_refcnt
, tag
)) == 0) &&
2395 (state
!= arc_anon
)) {
2396 multilist_insert(state
->arcs_list
[arc_buf_type(hdr
)], hdr
);
2397 ASSERT3U(hdr
->b_l1hdr
.b_bufcnt
, >, 0);
2398 arc_evictable_space_increment(hdr
, state
);
2404 * Returns detailed information about a specific arc buffer. When the
2405 * state_index argument is set the function will calculate the arc header
2406 * list position for its arc state. Since this requires a linear traversal
2407 * callers are strongly encourage not to do this. However, it can be helpful
2408 * for targeted analysis so the functionality is provided.
2411 arc_buf_info(arc_buf_t
*ab
, arc_buf_info_t
*abi
, int state_index
)
2413 arc_buf_hdr_t
*hdr
= ab
->b_hdr
;
2414 l1arc_buf_hdr_t
*l1hdr
= NULL
;
2415 l2arc_buf_hdr_t
*l2hdr
= NULL
;
2416 arc_state_t
*state
= NULL
;
2418 memset(abi
, 0, sizeof (arc_buf_info_t
));
2423 abi
->abi_flags
= hdr
->b_flags
;
2425 if (HDR_HAS_L1HDR(hdr
)) {
2426 l1hdr
= &hdr
->b_l1hdr
;
2427 state
= l1hdr
->b_state
;
2429 if (HDR_HAS_L2HDR(hdr
))
2430 l2hdr
= &hdr
->b_l2hdr
;
2433 abi
->abi_bufcnt
= l1hdr
->b_bufcnt
;
2434 abi
->abi_access
= l1hdr
->b_arc_access
;
2435 abi
->abi_mru_hits
= l1hdr
->b_mru_hits
;
2436 abi
->abi_mru_ghost_hits
= l1hdr
->b_mru_ghost_hits
;
2437 abi
->abi_mfu_hits
= l1hdr
->b_mfu_hits
;
2438 abi
->abi_mfu_ghost_hits
= l1hdr
->b_mfu_ghost_hits
;
2439 abi
->abi_holds
= refcount_count(&l1hdr
->b_refcnt
);
2443 abi
->abi_l2arc_dattr
= l2hdr
->b_daddr
;
2444 abi
->abi_l2arc_hits
= l2hdr
->b_hits
;
2447 abi
->abi_state_type
= state
? state
->arcs_state
: ARC_STATE_ANON
;
2448 abi
->abi_state_contents
= arc_buf_type(hdr
);
2449 abi
->abi_size
= arc_hdr_size(hdr
);
2453 * Move the supplied buffer to the indicated state. The hash lock
2454 * for the buffer must be held by the caller.
2457 arc_change_state(arc_state_t
*new_state
, arc_buf_hdr_t
*hdr
,
2458 kmutex_t
*hash_lock
)
2460 arc_state_t
*old_state
;
2463 boolean_t update_old
, update_new
;
2464 arc_buf_contents_t buftype
= arc_buf_type(hdr
);
2467 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2468 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2469 * L1 hdr doesn't always exist when we change state to arc_anon before
2470 * destroying a header, in which case reallocating to add the L1 hdr is
2473 if (HDR_HAS_L1HDR(hdr
)) {
2474 old_state
= hdr
->b_l1hdr
.b_state
;
2475 refcnt
= refcount_count(&hdr
->b_l1hdr
.b_refcnt
);
2476 bufcnt
= hdr
->b_l1hdr
.b_bufcnt
;
2477 update_old
= (bufcnt
> 0 || hdr
->b_l1hdr
.b_pabd
!= NULL
||
2480 old_state
= arc_l2c_only
;
2483 update_old
= B_FALSE
;
2485 update_new
= update_old
;
2487 ASSERT(MUTEX_HELD(hash_lock
));
2488 ASSERT3P(new_state
, !=, old_state
);
2489 ASSERT(!GHOST_STATE(new_state
) || bufcnt
== 0);
2490 ASSERT(old_state
!= arc_anon
|| bufcnt
<= 1);
2493 * If this buffer is evictable, transfer it from the
2494 * old state list to the new state list.
2497 if (old_state
!= arc_anon
&& old_state
!= arc_l2c_only
) {
2498 ASSERT(HDR_HAS_L1HDR(hdr
));
2499 multilist_remove(old_state
->arcs_list
[buftype
], hdr
);
2501 if (GHOST_STATE(old_state
)) {
2503 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2504 update_old
= B_TRUE
;
2506 arc_evictable_space_decrement(hdr
, old_state
);
2508 if (new_state
!= arc_anon
&& new_state
!= arc_l2c_only
) {
2510 * An L1 header always exists here, since if we're
2511 * moving to some L1-cached state (i.e. not l2c_only or
2512 * anonymous), we realloc the header to add an L1hdr
2515 ASSERT(HDR_HAS_L1HDR(hdr
));
2516 multilist_insert(new_state
->arcs_list
[buftype
], hdr
);
2518 if (GHOST_STATE(new_state
)) {
2520 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2521 update_new
= B_TRUE
;
2523 arc_evictable_space_increment(hdr
, new_state
);
2527 ASSERT(!HDR_EMPTY(hdr
));
2528 if (new_state
== arc_anon
&& HDR_IN_HASH_TABLE(hdr
))
2529 buf_hash_remove(hdr
);
2531 /* adjust state sizes (ignore arc_l2c_only) */
2533 if (update_new
&& new_state
!= arc_l2c_only
) {
2534 ASSERT(HDR_HAS_L1HDR(hdr
));
2535 if (GHOST_STATE(new_state
)) {
2539 * When moving a header to a ghost state, we first
2540 * remove all arc buffers. Thus, we'll have a
2541 * bufcnt of zero, and no arc buffer to use for
2542 * the reference. As a result, we use the arc
2543 * header pointer for the reference.
2545 (void) refcount_add_many(&new_state
->arcs_size
,
2546 HDR_GET_LSIZE(hdr
), hdr
);
2547 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2548 ASSERT(!HDR_HAS_RABD(hdr
));
2551 uint32_t buffers
= 0;
2554 * Each individual buffer holds a unique reference,
2555 * thus we must remove each of these references one
2558 for (buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2559 buf
= buf
->b_next
) {
2560 ASSERT3U(bufcnt
, !=, 0);
2564 * When the arc_buf_t is sharing the data
2565 * block with the hdr, the owner of the
2566 * reference belongs to the hdr. Only
2567 * add to the refcount if the arc_buf_t is
2570 if (arc_buf_is_shared(buf
))
2573 (void) refcount_add_many(&new_state
->arcs_size
,
2574 arc_buf_size(buf
), buf
);
2576 ASSERT3U(bufcnt
, ==, buffers
);
2578 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2579 (void) refcount_add_many(&new_state
->arcs_size
,
2580 arc_hdr_size(hdr
), hdr
);
2583 if (HDR_HAS_RABD(hdr
)) {
2584 (void) refcount_add_many(&new_state
->arcs_size
,
2585 HDR_GET_PSIZE(hdr
), hdr
);
2590 if (update_old
&& old_state
!= arc_l2c_only
) {
2591 ASSERT(HDR_HAS_L1HDR(hdr
));
2592 if (GHOST_STATE(old_state
)) {
2594 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2595 ASSERT(!HDR_HAS_RABD(hdr
));
2598 * When moving a header off of a ghost state,
2599 * the header will not contain any arc buffers.
2600 * We use the arc header pointer for the reference
2601 * which is exactly what we did when we put the
2602 * header on the ghost state.
2605 (void) refcount_remove_many(&old_state
->arcs_size
,
2606 HDR_GET_LSIZE(hdr
), hdr
);
2609 uint32_t buffers
= 0;
2612 * Each individual buffer holds a unique reference,
2613 * thus we must remove each of these references one
2616 for (buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2617 buf
= buf
->b_next
) {
2618 ASSERT3U(bufcnt
, !=, 0);
2622 * When the arc_buf_t is sharing the data
2623 * block with the hdr, the owner of the
2624 * reference belongs to the hdr. Only
2625 * add to the refcount if the arc_buf_t is
2628 if (arc_buf_is_shared(buf
))
2631 (void) refcount_remove_many(
2632 &old_state
->arcs_size
, arc_buf_size(buf
),
2635 ASSERT3U(bufcnt
, ==, buffers
);
2636 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
||
2639 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2640 (void) refcount_remove_many(
2641 &old_state
->arcs_size
, arc_hdr_size(hdr
),
2645 if (HDR_HAS_RABD(hdr
)) {
2646 (void) refcount_remove_many(
2647 &old_state
->arcs_size
, HDR_GET_PSIZE(hdr
),
2653 if (HDR_HAS_L1HDR(hdr
))
2654 hdr
->b_l1hdr
.b_state
= new_state
;
2657 * L2 headers should never be on the L2 state list since they don't
2658 * have L1 headers allocated.
2660 ASSERT(multilist_is_empty(arc_l2c_only
->arcs_list
[ARC_BUFC_DATA
]) &&
2661 multilist_is_empty(arc_l2c_only
->arcs_list
[ARC_BUFC_METADATA
]));
2665 arc_space_consume(uint64_t space
, arc_space_type_t type
)
2667 ASSERT(type
>= 0 && type
< ARC_SPACE_NUMTYPES
);
2672 case ARC_SPACE_DATA
:
2673 ARCSTAT_INCR(arcstat_data_size
, space
);
2675 case ARC_SPACE_META
:
2676 ARCSTAT_INCR(arcstat_metadata_size
, space
);
2678 case ARC_SPACE_BONUS
:
2679 ARCSTAT_INCR(arcstat_bonus_size
, space
);
2681 case ARC_SPACE_DNODE
:
2682 ARCSTAT_INCR(arcstat_dnode_size
, space
);
2684 case ARC_SPACE_DBUF
:
2685 ARCSTAT_INCR(arcstat_dbuf_size
, space
);
2687 case ARC_SPACE_HDRS
:
2688 ARCSTAT_INCR(arcstat_hdr_size
, space
);
2690 case ARC_SPACE_L2HDRS
:
2691 ARCSTAT_INCR(arcstat_l2_hdr_size
, space
);
2695 if (type
!= ARC_SPACE_DATA
)
2696 ARCSTAT_INCR(arcstat_meta_used
, space
);
2698 atomic_add_64(&arc_size
, space
);
2702 arc_space_return(uint64_t space
, arc_space_type_t type
)
2704 ASSERT(type
>= 0 && type
< ARC_SPACE_NUMTYPES
);
2709 case ARC_SPACE_DATA
:
2710 ARCSTAT_INCR(arcstat_data_size
, -space
);
2712 case ARC_SPACE_META
:
2713 ARCSTAT_INCR(arcstat_metadata_size
, -space
);
2715 case ARC_SPACE_BONUS
:
2716 ARCSTAT_INCR(arcstat_bonus_size
, -space
);
2718 case ARC_SPACE_DNODE
:
2719 ARCSTAT_INCR(arcstat_dnode_size
, -space
);
2721 case ARC_SPACE_DBUF
:
2722 ARCSTAT_INCR(arcstat_dbuf_size
, -space
);
2724 case ARC_SPACE_HDRS
:
2725 ARCSTAT_INCR(arcstat_hdr_size
, -space
);
2727 case ARC_SPACE_L2HDRS
:
2728 ARCSTAT_INCR(arcstat_l2_hdr_size
, -space
);
2732 if (type
!= ARC_SPACE_DATA
) {
2733 ASSERT(arc_meta_used
>= space
);
2734 if (arc_meta_max
< arc_meta_used
)
2735 arc_meta_max
= arc_meta_used
;
2736 ARCSTAT_INCR(arcstat_meta_used
, -space
);
2739 ASSERT(arc_size
>= space
);
2740 atomic_add_64(&arc_size
, -space
);
2744 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2745 * with the hdr's b_pabd.
2748 arc_can_share(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
2751 * The criteria for sharing a hdr's data are:
2752 * 1. the buffer is not encrypted
2753 * 2. the hdr's compression matches the buf's compression
2754 * 3. the hdr doesn't need to be byteswapped
2755 * 4. the hdr isn't already being shared
2756 * 5. the buf is either compressed or it is the last buf in the hdr list
2758 * Criterion #5 maintains the invariant that shared uncompressed
2759 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2760 * might ask, "if a compressed buf is allocated first, won't that be the
2761 * last thing in the list?", but in that case it's impossible to create
2762 * a shared uncompressed buf anyway (because the hdr must be compressed
2763 * to have the compressed buf). You might also think that #3 is
2764 * sufficient to make this guarantee, however it's possible
2765 * (specifically in the rare L2ARC write race mentioned in
2766 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2767 * is sharable, but wasn't at the time of its allocation. Rather than
2768 * allow a new shared uncompressed buf to be created and then shuffle
2769 * the list around to make it the last element, this simply disallows
2770 * sharing if the new buf isn't the first to be added.
2772 ASSERT3P(buf
->b_hdr
, ==, hdr
);
2773 boolean_t hdr_compressed
=
2774 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
;
2775 boolean_t buf_compressed
= ARC_BUF_COMPRESSED(buf
) != 0;
2776 return (!ARC_BUF_ENCRYPTED(buf
) &&
2777 buf_compressed
== hdr_compressed
&&
2778 hdr
->b_l1hdr
.b_byteswap
== DMU_BSWAP_NUMFUNCS
&&
2779 !HDR_SHARED_DATA(hdr
) &&
2780 (ARC_BUF_LAST(buf
) || ARC_BUF_COMPRESSED(buf
)));
2784 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2785 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2786 * copy was made successfully, or an error code otherwise.
2789 arc_buf_alloc_impl(arc_buf_hdr_t
*hdr
, spa_t
*spa
, uint64_t dsobj
, void *tag
,
2790 boolean_t encrypted
, boolean_t compressed
, boolean_t noauth
,
2791 boolean_t fill
, arc_buf_t
**ret
)
2794 arc_fill_flags_t flags
= ARC_FILL_LOCKED
;
2796 ASSERT(HDR_HAS_L1HDR(hdr
));
2797 ASSERT3U(HDR_GET_LSIZE(hdr
), >, 0);
2798 VERIFY(hdr
->b_type
== ARC_BUFC_DATA
||
2799 hdr
->b_type
== ARC_BUFC_METADATA
);
2800 ASSERT3P(ret
, !=, NULL
);
2801 ASSERT3P(*ret
, ==, NULL
);
2802 IMPLY(encrypted
, compressed
);
2804 hdr
->b_l1hdr
.b_mru_hits
= 0;
2805 hdr
->b_l1hdr
.b_mru_ghost_hits
= 0;
2806 hdr
->b_l1hdr
.b_mfu_hits
= 0;
2807 hdr
->b_l1hdr
.b_mfu_ghost_hits
= 0;
2808 hdr
->b_l1hdr
.b_l2_hits
= 0;
2810 buf
= *ret
= kmem_cache_alloc(buf_cache
, KM_PUSHPAGE
);
2813 buf
->b_next
= hdr
->b_l1hdr
.b_buf
;
2816 add_reference(hdr
, tag
);
2819 * We're about to change the hdr's b_flags. We must either
2820 * hold the hash_lock or be undiscoverable.
2822 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)) || HDR_EMPTY(hdr
));
2825 * Only honor requests for compressed bufs if the hdr is actually
2826 * compressed. This must be overriden if the buffer is encrypted since
2827 * encrypted buffers cannot be decompressed.
2830 buf
->b_flags
|= ARC_BUF_FLAG_COMPRESSED
;
2831 buf
->b_flags
|= ARC_BUF_FLAG_ENCRYPTED
;
2832 flags
|= ARC_FILL_COMPRESSED
| ARC_FILL_ENCRYPTED
;
2833 } else if (compressed
&&
2834 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
) {
2835 buf
->b_flags
|= ARC_BUF_FLAG_COMPRESSED
;
2836 flags
|= ARC_FILL_COMPRESSED
;
2841 flags
|= ARC_FILL_NOAUTH
;
2845 * If the hdr's data can be shared then we share the data buffer and
2846 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2847 * allocate a new buffer to store the buf's data.
2849 * There are two additional restrictions here because we're sharing
2850 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2851 * actively involved in an L2ARC write, because if this buf is used by
2852 * an arc_write() then the hdr's data buffer will be released when the
2853 * write completes, even though the L2ARC write might still be using it.
2854 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2855 * need to be ABD-aware.
2857 boolean_t can_share
= arc_can_share(hdr
, buf
) && !HDR_L2_WRITING(hdr
) &&
2858 hdr
->b_l1hdr
.b_pabd
!= NULL
&& abd_is_linear(hdr
->b_l1hdr
.b_pabd
);
2860 /* Set up b_data and sharing */
2862 buf
->b_data
= abd_to_buf(hdr
->b_l1hdr
.b_pabd
);
2863 buf
->b_flags
|= ARC_BUF_FLAG_SHARED
;
2864 arc_hdr_set_flags(hdr
, ARC_FLAG_SHARED_DATA
);
2867 arc_get_data_buf(hdr
, arc_buf_size(buf
), buf
);
2868 ARCSTAT_INCR(arcstat_overhead_size
, arc_buf_size(buf
));
2870 VERIFY3P(buf
->b_data
, !=, NULL
);
2872 hdr
->b_l1hdr
.b_buf
= buf
;
2873 hdr
->b_l1hdr
.b_bufcnt
+= 1;
2875 hdr
->b_crypt_hdr
.b_ebufcnt
+= 1;
2878 * If the user wants the data from the hdr, we need to either copy or
2879 * decompress the data.
2882 return (arc_buf_fill(buf
, spa
, dsobj
, flags
));
2888 static char *arc_onloan_tag
= "onloan";
2891 arc_loaned_bytes_update(int64_t delta
)
2893 atomic_add_64(&arc_loaned_bytes
, delta
);
2895 /* assert that it did not wrap around */
2896 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes
, 0), >=, 0);
2900 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2901 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2902 * buffers must be returned to the arc before they can be used by the DMU or
2906 arc_loan_buf(spa_t
*spa
, boolean_t is_metadata
, int size
)
2908 arc_buf_t
*buf
= arc_alloc_buf(spa
, arc_onloan_tag
,
2909 is_metadata
? ARC_BUFC_METADATA
: ARC_BUFC_DATA
, size
);
2911 arc_loaned_bytes_update(size
);
2917 arc_loan_compressed_buf(spa_t
*spa
, uint64_t psize
, uint64_t lsize
,
2918 enum zio_compress compression_type
)
2920 arc_buf_t
*buf
= arc_alloc_compressed_buf(spa
, arc_onloan_tag
,
2921 psize
, lsize
, compression_type
);
2923 arc_loaned_bytes_update(psize
);
2929 arc_loan_raw_buf(spa_t
*spa
, uint64_t dsobj
, boolean_t byteorder
,
2930 const uint8_t *salt
, const uint8_t *iv
, const uint8_t *mac
,
2931 dmu_object_type_t ot
, uint64_t psize
, uint64_t lsize
,
2932 enum zio_compress compression_type
)
2934 arc_buf_t
*buf
= arc_alloc_raw_buf(spa
, arc_onloan_tag
, dsobj
,
2935 byteorder
, salt
, iv
, mac
, ot
, psize
, lsize
, compression_type
);
2937 atomic_add_64(&arc_loaned_bytes
, psize
);
2943 * Return a loaned arc buffer to the arc.
2946 arc_return_buf(arc_buf_t
*buf
, void *tag
)
2948 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
2950 ASSERT3P(buf
->b_data
, !=, NULL
);
2951 ASSERT(HDR_HAS_L1HDR(hdr
));
2952 (void) refcount_add(&hdr
->b_l1hdr
.b_refcnt
, tag
);
2953 (void) refcount_remove(&hdr
->b_l1hdr
.b_refcnt
, arc_onloan_tag
);
2955 arc_loaned_bytes_update(-arc_buf_size(buf
));
2958 /* Detach an arc_buf from a dbuf (tag) */
2960 arc_loan_inuse_buf(arc_buf_t
*buf
, void *tag
)
2962 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
2964 ASSERT3P(buf
->b_data
, !=, NULL
);
2965 ASSERT(HDR_HAS_L1HDR(hdr
));
2966 (void) refcount_add(&hdr
->b_l1hdr
.b_refcnt
, arc_onloan_tag
);
2967 (void) refcount_remove(&hdr
->b_l1hdr
.b_refcnt
, tag
);
2969 arc_loaned_bytes_update(arc_buf_size(buf
));
2973 l2arc_free_abd_on_write(abd_t
*abd
, size_t size
, arc_buf_contents_t type
)
2975 l2arc_data_free_t
*df
= kmem_alloc(sizeof (*df
), KM_SLEEP
);
2978 df
->l2df_size
= size
;
2979 df
->l2df_type
= type
;
2980 mutex_enter(&l2arc_free_on_write_mtx
);
2981 list_insert_head(l2arc_free_on_write
, df
);
2982 mutex_exit(&l2arc_free_on_write_mtx
);
2986 arc_hdr_free_on_write(arc_buf_hdr_t
*hdr
, boolean_t free_rdata
)
2988 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
2989 arc_buf_contents_t type
= arc_buf_type(hdr
);
2990 uint64_t size
= (free_rdata
) ? HDR_GET_PSIZE(hdr
) : arc_hdr_size(hdr
);
2992 /* protected by hash lock, if in the hash table */
2993 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
2994 ASSERT(refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
2995 ASSERT(state
!= arc_anon
&& state
!= arc_l2c_only
);
2997 (void) refcount_remove_many(&state
->arcs_esize
[type
],
3000 (void) refcount_remove_many(&state
->arcs_size
, size
, hdr
);
3001 if (type
== ARC_BUFC_METADATA
) {
3002 arc_space_return(size
, ARC_SPACE_META
);
3004 ASSERT(type
== ARC_BUFC_DATA
);
3005 arc_space_return(size
, ARC_SPACE_DATA
);
3009 l2arc_free_abd_on_write(hdr
->b_crypt_hdr
.b_rabd
, size
, type
);
3011 l2arc_free_abd_on_write(hdr
->b_l1hdr
.b_pabd
, size
, type
);
3016 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
3017 * data buffer, we transfer the refcount ownership to the hdr and update
3018 * the appropriate kstats.
3021 arc_share_buf(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
3023 ASSERT(arc_can_share(hdr
, buf
));
3024 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
3025 ASSERT(!ARC_BUF_ENCRYPTED(buf
));
3026 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)) || HDR_EMPTY(hdr
));
3029 * Start sharing the data buffer. We transfer the
3030 * refcount ownership to the hdr since it always owns
3031 * the refcount whenever an arc_buf_t is shared.
3033 refcount_transfer_ownership(&hdr
->b_l1hdr
.b_state
->arcs_size
, buf
, hdr
);
3034 hdr
->b_l1hdr
.b_pabd
= abd_get_from_buf(buf
->b_data
, arc_buf_size(buf
));
3035 abd_take_ownership_of_buf(hdr
->b_l1hdr
.b_pabd
,
3036 HDR_ISTYPE_METADATA(hdr
));
3037 arc_hdr_set_flags(hdr
, ARC_FLAG_SHARED_DATA
);
3038 buf
->b_flags
|= ARC_BUF_FLAG_SHARED
;
3041 * Since we've transferred ownership to the hdr we need
3042 * to increment its compressed and uncompressed kstats and
3043 * decrement the overhead size.
3045 ARCSTAT_INCR(arcstat_compressed_size
, arc_hdr_size(hdr
));
3046 ARCSTAT_INCR(arcstat_uncompressed_size
, HDR_GET_LSIZE(hdr
));
3047 ARCSTAT_INCR(arcstat_overhead_size
, -arc_buf_size(buf
));
3051 arc_unshare_buf(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
3053 ASSERT(arc_buf_is_shared(buf
));
3054 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
3055 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)) || HDR_EMPTY(hdr
));
3058 * We are no longer sharing this buffer so we need
3059 * to transfer its ownership to the rightful owner.
3061 refcount_transfer_ownership(&hdr
->b_l1hdr
.b_state
->arcs_size
, hdr
, buf
);
3062 arc_hdr_clear_flags(hdr
, ARC_FLAG_SHARED_DATA
);
3063 abd_release_ownership_of_buf(hdr
->b_l1hdr
.b_pabd
);
3064 abd_put(hdr
->b_l1hdr
.b_pabd
);
3065 hdr
->b_l1hdr
.b_pabd
= NULL
;
3066 buf
->b_flags
&= ~ARC_BUF_FLAG_SHARED
;
3069 * Since the buffer is no longer shared between
3070 * the arc buf and the hdr, count it as overhead.
3072 ARCSTAT_INCR(arcstat_compressed_size
, -arc_hdr_size(hdr
));
3073 ARCSTAT_INCR(arcstat_uncompressed_size
, -HDR_GET_LSIZE(hdr
));
3074 ARCSTAT_INCR(arcstat_overhead_size
, arc_buf_size(buf
));
3078 * Remove an arc_buf_t from the hdr's buf list and return the last
3079 * arc_buf_t on the list. If no buffers remain on the list then return
3083 arc_buf_remove(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
3085 ASSERT(HDR_HAS_L1HDR(hdr
));
3086 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)) || HDR_EMPTY(hdr
));
3088 arc_buf_t
**bufp
= &hdr
->b_l1hdr
.b_buf
;
3089 arc_buf_t
*lastbuf
= NULL
;
3092 * Remove the buf from the hdr list and locate the last
3093 * remaining buffer on the list.
3095 while (*bufp
!= NULL
) {
3097 *bufp
= buf
->b_next
;
3100 * If we've removed a buffer in the middle of
3101 * the list then update the lastbuf and update
3104 if (*bufp
!= NULL
) {
3106 bufp
= &(*bufp
)->b_next
;
3110 ASSERT3P(lastbuf
, !=, buf
);
3111 IMPLY(hdr
->b_l1hdr
.b_bufcnt
> 0, lastbuf
!= NULL
);
3112 IMPLY(hdr
->b_l1hdr
.b_bufcnt
> 0, hdr
->b_l1hdr
.b_buf
!= NULL
);
3113 IMPLY(lastbuf
!= NULL
, ARC_BUF_LAST(lastbuf
));
3119 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
3123 arc_buf_destroy_impl(arc_buf_t
*buf
)
3125 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
3128 * Free up the data associated with the buf but only if we're not
3129 * sharing this with the hdr. If we are sharing it with the hdr, the
3130 * hdr is responsible for doing the free.
3132 if (buf
->b_data
!= NULL
) {
3134 * We're about to change the hdr's b_flags. We must either
3135 * hold the hash_lock or be undiscoverable.
3137 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)) || HDR_EMPTY(hdr
));
3139 arc_cksum_verify(buf
);
3140 arc_buf_unwatch(buf
);
3142 if (arc_buf_is_shared(buf
)) {
3143 arc_hdr_clear_flags(hdr
, ARC_FLAG_SHARED_DATA
);
3145 uint64_t size
= arc_buf_size(buf
);
3146 arc_free_data_buf(hdr
, buf
->b_data
, size
, buf
);
3147 ARCSTAT_INCR(arcstat_overhead_size
, -size
);
3151 ASSERT(hdr
->b_l1hdr
.b_bufcnt
> 0);
3152 hdr
->b_l1hdr
.b_bufcnt
-= 1;
3154 if (ARC_BUF_ENCRYPTED(buf
))
3155 hdr
->b_crypt_hdr
.b_ebufcnt
-= 1;
3158 * if we have no more encrypted buffers and we've already
3159 * gotten a copy of the decrypted data we can free b_rabd to
3162 if (hdr
->b_crypt_hdr
.b_ebufcnt
== 0 && HDR_HAS_RABD(hdr
) &&
3163 hdr
->b_l1hdr
.b_pabd
!= NULL
)
3164 arc_hdr_free_abd(hdr
, B_TRUE
);
3167 arc_buf_t
*lastbuf
= arc_buf_remove(hdr
, buf
);
3169 if (ARC_BUF_SHARED(buf
) && !ARC_BUF_COMPRESSED(buf
)) {
3171 * If the current arc_buf_t is sharing its data buffer with the
3172 * hdr, then reassign the hdr's b_pabd to share it with the new
3173 * buffer at the end of the list. The shared buffer is always
3174 * the last one on the hdr's buffer list.
3176 * There is an equivalent case for compressed bufs, but since
3177 * they aren't guaranteed to be the last buf in the list and
3178 * that is an exceedingly rare case, we just allow that space be
3179 * wasted temporarily. We must also be careful not to share
3180 * encrypted buffers, since they cannot be shared.
3182 if (lastbuf
!= NULL
&& !ARC_BUF_ENCRYPTED(lastbuf
)) {
3183 /* Only one buf can be shared at once */
3184 VERIFY(!arc_buf_is_shared(lastbuf
));
3185 /* hdr is uncompressed so can't have compressed buf */
3186 VERIFY(!ARC_BUF_COMPRESSED(lastbuf
));
3188 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
3189 arc_hdr_free_abd(hdr
, B_FALSE
);
3192 * We must setup a new shared block between the
3193 * last buffer and the hdr. The data would have
3194 * been allocated by the arc buf so we need to transfer
3195 * ownership to the hdr since it's now being shared.
3197 arc_share_buf(hdr
, lastbuf
);
3199 } else if (HDR_SHARED_DATA(hdr
)) {
3201 * Uncompressed shared buffers are always at the end
3202 * of the list. Compressed buffers don't have the
3203 * same requirements. This makes it hard to
3204 * simply assert that the lastbuf is shared so
3205 * we rely on the hdr's compression flags to determine
3206 * if we have a compressed, shared buffer.
3208 ASSERT3P(lastbuf
, !=, NULL
);
3209 ASSERT(arc_buf_is_shared(lastbuf
) ||
3210 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
);
3214 * Free the checksum if we're removing the last uncompressed buf from
3217 if (!arc_hdr_has_uncompressed_buf(hdr
)) {
3218 arc_cksum_free(hdr
);
3221 /* clean up the buf */
3223 kmem_cache_free(buf_cache
, buf
);
3227 arc_hdr_alloc_abd(arc_buf_hdr_t
*hdr
, boolean_t alloc_rdata
)
3231 ASSERT3U(HDR_GET_LSIZE(hdr
), >, 0);
3232 ASSERT(HDR_HAS_L1HDR(hdr
));
3233 ASSERT(!HDR_SHARED_DATA(hdr
) || alloc_rdata
);
3234 IMPLY(alloc_rdata
, HDR_PROTECTED(hdr
));
3236 if (hdr
->b_l1hdr
.b_pabd
== NULL
&& !HDR_HAS_RABD(hdr
))
3237 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
3240 size
= HDR_GET_PSIZE(hdr
);
3241 ASSERT3P(hdr
->b_crypt_hdr
.b_rabd
, ==, NULL
);
3242 hdr
->b_crypt_hdr
.b_rabd
= arc_get_data_abd(hdr
, size
, hdr
);
3243 ASSERT3P(hdr
->b_crypt_hdr
.b_rabd
, !=, NULL
);
3244 ARCSTAT_INCR(arcstat_raw_size
, size
);
3246 size
= arc_hdr_size(hdr
);
3247 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
3248 hdr
->b_l1hdr
.b_pabd
= arc_get_data_abd(hdr
, size
, hdr
);
3249 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
3252 ARCSTAT_INCR(arcstat_compressed_size
, size
);
3253 ARCSTAT_INCR(arcstat_uncompressed_size
, HDR_GET_LSIZE(hdr
));
3257 arc_hdr_free_abd(arc_buf_hdr_t
*hdr
, boolean_t free_rdata
)
3259 uint64_t size
= (free_rdata
) ? HDR_GET_PSIZE(hdr
) : arc_hdr_size(hdr
);
3261 ASSERT(HDR_HAS_L1HDR(hdr
));
3262 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
|| HDR_HAS_RABD(hdr
));
3263 IMPLY(free_rdata
, HDR_HAS_RABD(hdr
));
3266 * If the hdr is currently being written to the l2arc then
3267 * we defer freeing the data by adding it to the l2arc_free_on_write
3268 * list. The l2arc will free the data once it's finished
3269 * writing it to the l2arc device.
3271 if (HDR_L2_WRITING(hdr
)) {
3272 arc_hdr_free_on_write(hdr
, free_rdata
);
3273 ARCSTAT_BUMP(arcstat_l2_free_on_write
);
3274 } else if (free_rdata
) {
3275 arc_free_data_abd(hdr
, hdr
->b_crypt_hdr
.b_rabd
, size
, hdr
);
3277 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
, size
, hdr
);
3281 hdr
->b_crypt_hdr
.b_rabd
= NULL
;
3282 ARCSTAT_INCR(arcstat_raw_size
, -size
);
3284 hdr
->b_l1hdr
.b_pabd
= NULL
;
3287 if (hdr
->b_l1hdr
.b_pabd
== NULL
&& !HDR_HAS_RABD(hdr
))
3288 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
3290 ARCSTAT_INCR(arcstat_compressed_size
, -size
);
3291 ARCSTAT_INCR(arcstat_uncompressed_size
, -HDR_GET_LSIZE(hdr
));
3294 static arc_buf_hdr_t
*
3295 arc_hdr_alloc(uint64_t spa
, int32_t psize
, int32_t lsize
,
3296 boolean_t
protected, enum zio_compress compression_type
,
3297 arc_buf_contents_t type
, boolean_t alloc_rdata
)
3301 VERIFY(type
== ARC_BUFC_DATA
|| type
== ARC_BUFC_METADATA
);
3303 hdr
= kmem_cache_alloc(hdr_full_crypt_cache
, KM_PUSHPAGE
);
3305 hdr
= kmem_cache_alloc(hdr_full_cache
, KM_PUSHPAGE
);
3308 ASSERT(HDR_EMPTY(hdr
));
3309 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3310 HDR_SET_PSIZE(hdr
, psize
);
3311 HDR_SET_LSIZE(hdr
, lsize
);
3315 arc_hdr_set_flags(hdr
, arc_bufc_to_flags(type
) | ARC_FLAG_HAS_L1HDR
);
3316 arc_hdr_set_compress(hdr
, compression_type
);
3318 arc_hdr_set_flags(hdr
, ARC_FLAG_PROTECTED
);
3320 hdr
->b_l1hdr
.b_state
= arc_anon
;
3321 hdr
->b_l1hdr
.b_arc_access
= 0;
3322 hdr
->b_l1hdr
.b_bufcnt
= 0;
3323 hdr
->b_l1hdr
.b_buf
= NULL
;
3326 * Allocate the hdr's buffer. This will contain either
3327 * the compressed or uncompressed data depending on the block
3328 * it references and compressed arc enablement.
3330 arc_hdr_alloc_abd(hdr
, alloc_rdata
);
3331 ASSERT(refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
3337 * Transition between the two allocation states for the arc_buf_hdr struct.
3338 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3339 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3340 * version is used when a cache buffer is only in the L2ARC in order to reduce
3343 static arc_buf_hdr_t
*
3344 arc_hdr_realloc(arc_buf_hdr_t
*hdr
, kmem_cache_t
*old
, kmem_cache_t
*new)
3346 arc_buf_hdr_t
*nhdr
;
3347 l2arc_dev_t
*dev
= hdr
->b_l2hdr
.b_dev
;
3349 ASSERT(HDR_HAS_L2HDR(hdr
));
3350 ASSERT((old
== hdr_full_cache
&& new == hdr_l2only_cache
) ||
3351 (old
== hdr_l2only_cache
&& new == hdr_full_cache
));
3354 * if the caller wanted a new full header and the header is to be
3355 * encrypted we will actually allocate the header from the full crypt
3356 * cache instead. The same applies to freeing from the old cache.
3358 if (HDR_PROTECTED(hdr
) && new == hdr_full_cache
)
3359 new = hdr_full_crypt_cache
;
3360 if (HDR_PROTECTED(hdr
) && old
== hdr_full_cache
)
3361 old
= hdr_full_crypt_cache
;
3363 nhdr
= kmem_cache_alloc(new, KM_PUSHPAGE
);
3365 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
3366 buf_hash_remove(hdr
);
3368 bcopy(hdr
, nhdr
, HDR_L2ONLY_SIZE
);
3370 if (new == hdr_full_cache
|| new == hdr_full_crypt_cache
) {
3371 arc_hdr_set_flags(nhdr
, ARC_FLAG_HAS_L1HDR
);
3373 * arc_access and arc_change_state need to be aware that a
3374 * header has just come out of L2ARC, so we set its state to
3375 * l2c_only even though it's about to change.
3377 nhdr
->b_l1hdr
.b_state
= arc_l2c_only
;
3379 /* Verify previous threads set to NULL before freeing */
3380 ASSERT3P(nhdr
->b_l1hdr
.b_pabd
, ==, NULL
);
3381 ASSERT(!HDR_HAS_RABD(hdr
));
3383 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
3384 ASSERT0(hdr
->b_l1hdr
.b_bufcnt
);
3385 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3388 * If we've reached here, We must have been called from
3389 * arc_evict_hdr(), as such we should have already been
3390 * removed from any ghost list we were previously on
3391 * (which protects us from racing with arc_evict_state),
3392 * thus no locking is needed during this check.
3394 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
3397 * A buffer must not be moved into the arc_l2c_only
3398 * state if it's not finished being written out to the
3399 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3400 * might try to be accessed, even though it was removed.
3402 VERIFY(!HDR_L2_WRITING(hdr
));
3403 VERIFY3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
3404 ASSERT(!HDR_HAS_RABD(hdr
));
3406 arc_hdr_clear_flags(nhdr
, ARC_FLAG_HAS_L1HDR
);
3409 * The header has been reallocated so we need to re-insert it into any
3412 (void) buf_hash_insert(nhdr
, NULL
);
3414 ASSERT(list_link_active(&hdr
->b_l2hdr
.b_l2node
));
3416 mutex_enter(&dev
->l2ad_mtx
);
3419 * We must place the realloc'ed header back into the list at
3420 * the same spot. Otherwise, if it's placed earlier in the list,
3421 * l2arc_write_buffers() could find it during the function's
3422 * write phase, and try to write it out to the l2arc.
3424 list_insert_after(&dev
->l2ad_buflist
, hdr
, nhdr
);
3425 list_remove(&dev
->l2ad_buflist
, hdr
);
3427 mutex_exit(&dev
->l2ad_mtx
);
3430 * Since we're using the pointer address as the tag when
3431 * incrementing and decrementing the l2ad_alloc refcount, we
3432 * must remove the old pointer (that we're about to destroy) and
3433 * add the new pointer to the refcount. Otherwise we'd remove
3434 * the wrong pointer address when calling arc_hdr_destroy() later.
3437 (void) refcount_remove_many(&dev
->l2ad_alloc
, arc_hdr_size(hdr
), hdr
);
3438 (void) refcount_add_many(&dev
->l2ad_alloc
, arc_hdr_size(nhdr
), nhdr
);
3440 buf_discard_identity(hdr
);
3441 kmem_cache_free(old
, hdr
);
3447 * This function allows an L1 header to be reallocated as a crypt
3448 * header and vice versa. If we are going to a crypt header, the
3449 * new fields will be zeroed out.
3451 static arc_buf_hdr_t
*
3452 arc_hdr_realloc_crypt(arc_buf_hdr_t
*hdr
, boolean_t need_crypt
)
3454 arc_buf_hdr_t
*nhdr
;
3456 kmem_cache_t
*ncache
, *ocache
;
3458 ASSERT(HDR_HAS_L1HDR(hdr
));
3459 ASSERT3U(!!HDR_PROTECTED(hdr
), !=, need_crypt
);
3460 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
3461 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
3464 ncache
= hdr_full_crypt_cache
;
3465 ocache
= hdr_full_cache
;
3467 ncache
= hdr_full_cache
;
3468 ocache
= hdr_full_crypt_cache
;
3471 nhdr
= kmem_cache_alloc(ncache
, KM_PUSHPAGE
);
3472 bcopy(hdr
, nhdr
, HDR_L2ONLY_SIZE
);
3473 nhdr
->b_l1hdr
.b_freeze_cksum
= hdr
->b_l1hdr
.b_freeze_cksum
;
3474 nhdr
->b_l1hdr
.b_bufcnt
= hdr
->b_l1hdr
.b_bufcnt
;
3475 nhdr
->b_l1hdr
.b_byteswap
= hdr
->b_l1hdr
.b_byteswap
;
3476 nhdr
->b_l1hdr
.b_state
= hdr
->b_l1hdr
.b_state
;
3477 nhdr
->b_l1hdr
.b_arc_access
= hdr
->b_l1hdr
.b_arc_access
;
3478 nhdr
->b_l1hdr
.b_mru_hits
= hdr
->b_l1hdr
.b_mru_hits
;
3479 nhdr
->b_l1hdr
.b_mru_ghost_hits
= hdr
->b_l1hdr
.b_mru_ghost_hits
;
3480 nhdr
->b_l1hdr
.b_mfu_hits
= hdr
->b_l1hdr
.b_mfu_hits
;
3481 nhdr
->b_l1hdr
.b_mfu_ghost_hits
= hdr
->b_l1hdr
.b_mfu_ghost_hits
;
3482 nhdr
->b_l1hdr
.b_l2_hits
= hdr
->b_l1hdr
.b_l2_hits
;
3483 nhdr
->b_l1hdr
.b_acb
= hdr
->b_l1hdr
.b_acb
;
3484 nhdr
->b_l1hdr
.b_pabd
= hdr
->b_l1hdr
.b_pabd
;
3485 nhdr
->b_l1hdr
.b_buf
= hdr
->b_l1hdr
.b_buf
;
3488 * This refcount_add() exists only to ensure that the individual
3489 * arc buffers always point to a header that is referenced, avoiding
3490 * a small race condition that could trigger ASSERTs.
3492 (void) refcount_add(&nhdr
->b_l1hdr
.b_refcnt
, FTAG
);
3494 for (buf
= nhdr
->b_l1hdr
.b_buf
; buf
!= NULL
; buf
= buf
->b_next
) {
3495 mutex_enter(&buf
->b_evict_lock
);
3497 mutex_exit(&buf
->b_evict_lock
);
3500 refcount_transfer(&nhdr
->b_l1hdr
.b_refcnt
, &hdr
->b_l1hdr
.b_refcnt
);
3501 (void) refcount_remove(&nhdr
->b_l1hdr
.b_refcnt
, FTAG
);
3504 arc_hdr_set_flags(nhdr
, ARC_FLAG_PROTECTED
);
3506 arc_hdr_clear_flags(nhdr
, ARC_FLAG_PROTECTED
);
3509 buf_discard_identity(hdr
);
3510 kmem_cache_free(ocache
, hdr
);
3516 * This function is used by the send / receive code to convert a newly
3517 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3518 * is also used to allow the root objset block to be uupdated without altering
3519 * its embedded MACs. Both block types will always be uncompressed so we do not
3520 * have to worry about compression type or psize.
3523 arc_convert_to_raw(arc_buf_t
*buf
, uint64_t dsobj
, boolean_t byteorder
,
3524 dmu_object_type_t ot
, const uint8_t *salt
, const uint8_t *iv
,
3527 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
3529 ASSERT(ot
== DMU_OT_DNODE
|| ot
== DMU_OT_OBJSET
);
3530 ASSERT(HDR_HAS_L1HDR(hdr
));
3531 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
3533 buf
->b_flags
|= (ARC_BUF_FLAG_COMPRESSED
| ARC_BUF_FLAG_ENCRYPTED
);
3534 if (!HDR_PROTECTED(hdr
))
3535 hdr
= arc_hdr_realloc_crypt(hdr
, B_TRUE
);
3536 hdr
->b_crypt_hdr
.b_dsobj
= dsobj
;
3537 hdr
->b_crypt_hdr
.b_ot
= ot
;
3538 hdr
->b_l1hdr
.b_byteswap
= (byteorder
== ZFS_HOST_BYTEORDER
) ?
3539 DMU_BSWAP_NUMFUNCS
: DMU_OT_BYTESWAP(ot
);
3540 if (!arc_hdr_has_uncompressed_buf(hdr
))
3541 arc_cksum_free(hdr
);
3544 bcopy(salt
, hdr
->b_crypt_hdr
.b_salt
, ZIO_DATA_SALT_LEN
);
3546 bcopy(iv
, hdr
->b_crypt_hdr
.b_iv
, ZIO_DATA_IV_LEN
);
3548 bcopy(mac
, hdr
->b_crypt_hdr
.b_mac
, ZIO_DATA_MAC_LEN
);
3552 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3553 * The buf is returned thawed since we expect the consumer to modify it.
3556 arc_alloc_buf(spa_t
*spa
, void *tag
, arc_buf_contents_t type
, int32_t size
)
3558 arc_buf_hdr_t
*hdr
= arc_hdr_alloc(spa_load_guid(spa
), size
, size
,
3559 B_FALSE
, ZIO_COMPRESS_OFF
, type
, B_FALSE
);
3560 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr
)));
3562 arc_buf_t
*buf
= NULL
;
3563 VERIFY0(arc_buf_alloc_impl(hdr
, spa
, 0, tag
, B_FALSE
, B_FALSE
,
3564 B_FALSE
, B_FALSE
, &buf
));
3571 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3572 * for bufs containing metadata.
3575 arc_alloc_compressed_buf(spa_t
*spa
, void *tag
, uint64_t psize
, uint64_t lsize
,
3576 enum zio_compress compression_type
)
3578 ASSERT3U(lsize
, >, 0);
3579 ASSERT3U(lsize
, >=, psize
);
3580 ASSERT3U(compression_type
, >, ZIO_COMPRESS_OFF
);
3581 ASSERT3U(compression_type
, <, ZIO_COMPRESS_FUNCTIONS
);
3583 arc_buf_hdr_t
*hdr
= arc_hdr_alloc(spa_load_guid(spa
), psize
, lsize
,
3584 B_FALSE
, compression_type
, ARC_BUFC_DATA
, B_FALSE
);
3585 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr
)));
3587 arc_buf_t
*buf
= NULL
;
3588 VERIFY0(arc_buf_alloc_impl(hdr
, spa
, 0, tag
, B_FALSE
,
3589 B_TRUE
, B_FALSE
, B_FALSE
, &buf
));
3591 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3593 if (!arc_buf_is_shared(buf
)) {
3595 * To ensure that the hdr has the correct data in it if we call
3596 * arc_untransform() on this buf before it's been written to
3597 * disk, it's easiest if we just set up sharing between the
3600 ASSERT(!abd_is_linear(hdr
->b_l1hdr
.b_pabd
));
3601 arc_hdr_free_abd(hdr
, B_FALSE
);
3602 arc_share_buf(hdr
, buf
);
3609 arc_alloc_raw_buf(spa_t
*spa
, void *tag
, uint64_t dsobj
, boolean_t byteorder
,
3610 const uint8_t *salt
, const uint8_t *iv
, const uint8_t *mac
,
3611 dmu_object_type_t ot
, uint64_t psize
, uint64_t lsize
,
3612 enum zio_compress compression_type
)
3616 arc_buf_contents_t type
= DMU_OT_IS_METADATA(ot
) ?
3617 ARC_BUFC_METADATA
: ARC_BUFC_DATA
;
3619 ASSERT3U(lsize
, >, 0);
3620 ASSERT3U(lsize
, >=, psize
);
3621 ASSERT3U(compression_type
, >=, ZIO_COMPRESS_OFF
);
3622 ASSERT3U(compression_type
, <, ZIO_COMPRESS_FUNCTIONS
);
3624 hdr
= arc_hdr_alloc(spa_load_guid(spa
), psize
, lsize
, B_TRUE
,
3625 compression_type
, type
, B_TRUE
);
3626 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr
)));
3628 hdr
->b_crypt_hdr
.b_dsobj
= dsobj
;
3629 hdr
->b_crypt_hdr
.b_ot
= ot
;
3630 hdr
->b_l1hdr
.b_byteswap
= (byteorder
== ZFS_HOST_BYTEORDER
) ?
3631 DMU_BSWAP_NUMFUNCS
: DMU_OT_BYTESWAP(ot
);
3632 bcopy(salt
, hdr
->b_crypt_hdr
.b_salt
, ZIO_DATA_SALT_LEN
);
3633 bcopy(iv
, hdr
->b_crypt_hdr
.b_iv
, ZIO_DATA_IV_LEN
);
3634 bcopy(mac
, hdr
->b_crypt_hdr
.b_mac
, ZIO_DATA_MAC_LEN
);
3637 * This buffer will be considered encrypted even if the ot is not an
3638 * encrypted type. It will become authenticated instead in
3639 * arc_write_ready().
3642 VERIFY0(arc_buf_alloc_impl(hdr
, spa
, dsobj
, tag
, B_TRUE
, B_TRUE
,
3643 B_FALSE
, B_FALSE
, &buf
));
3645 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3651 arc_hdr_l2hdr_destroy(arc_buf_hdr_t
*hdr
)
3653 l2arc_buf_hdr_t
*l2hdr
= &hdr
->b_l2hdr
;
3654 l2arc_dev_t
*dev
= l2hdr
->b_dev
;
3655 uint64_t psize
= arc_hdr_size(hdr
);
3657 ASSERT(MUTEX_HELD(&dev
->l2ad_mtx
));
3658 ASSERT(HDR_HAS_L2HDR(hdr
));
3660 list_remove(&dev
->l2ad_buflist
, hdr
);
3662 ARCSTAT_INCR(arcstat_l2_psize
, -psize
);
3663 ARCSTAT_INCR(arcstat_l2_lsize
, -HDR_GET_LSIZE(hdr
));
3665 vdev_space_update(dev
->l2ad_vdev
, -psize
, 0, 0);
3667 (void) refcount_remove_many(&dev
->l2ad_alloc
, psize
, hdr
);
3668 arc_hdr_clear_flags(hdr
, ARC_FLAG_HAS_L2HDR
);
3672 arc_hdr_destroy(arc_buf_hdr_t
*hdr
)
3674 if (HDR_HAS_L1HDR(hdr
)) {
3675 ASSERT(hdr
->b_l1hdr
.b_buf
== NULL
||
3676 hdr
->b_l1hdr
.b_bufcnt
> 0);
3677 ASSERT(refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
3678 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
3680 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
3681 ASSERT(!HDR_IN_HASH_TABLE(hdr
));
3683 if (!HDR_EMPTY(hdr
))
3684 buf_discard_identity(hdr
);
3686 if (HDR_HAS_L2HDR(hdr
)) {
3687 l2arc_dev_t
*dev
= hdr
->b_l2hdr
.b_dev
;
3688 boolean_t buflist_held
= MUTEX_HELD(&dev
->l2ad_mtx
);
3691 mutex_enter(&dev
->l2ad_mtx
);
3694 * Even though we checked this conditional above, we
3695 * need to check this again now that we have the
3696 * l2ad_mtx. This is because we could be racing with
3697 * another thread calling l2arc_evict() which might have
3698 * destroyed this header's L2 portion as we were waiting
3699 * to acquire the l2ad_mtx. If that happens, we don't
3700 * want to re-destroy the header's L2 portion.
3702 if (HDR_HAS_L2HDR(hdr
))
3703 arc_hdr_l2hdr_destroy(hdr
);
3706 mutex_exit(&dev
->l2ad_mtx
);
3709 if (HDR_HAS_L1HDR(hdr
)) {
3710 arc_cksum_free(hdr
);
3712 while (hdr
->b_l1hdr
.b_buf
!= NULL
)
3713 arc_buf_destroy_impl(hdr
->b_l1hdr
.b_buf
);
3715 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
3716 arc_hdr_free_abd(hdr
, B_FALSE
);
3719 if (HDR_HAS_RABD(hdr
)) {
3720 arc_hdr_free_abd(hdr
, B_TRUE
);
3724 ASSERT3P(hdr
->b_hash_next
, ==, NULL
);
3725 if (HDR_HAS_L1HDR(hdr
)) {
3726 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
3727 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
3729 if (!HDR_PROTECTED(hdr
)) {
3730 kmem_cache_free(hdr_full_cache
, hdr
);
3732 kmem_cache_free(hdr_full_crypt_cache
, hdr
);
3735 kmem_cache_free(hdr_l2only_cache
, hdr
);
3740 arc_buf_destroy(arc_buf_t
*buf
, void* tag
)
3742 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
3743 kmutex_t
*hash_lock
= HDR_LOCK(hdr
);
3745 if (hdr
->b_l1hdr
.b_state
== arc_anon
) {
3746 ASSERT3U(hdr
->b_l1hdr
.b_bufcnt
, ==, 1);
3747 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
3748 VERIFY0(remove_reference(hdr
, NULL
, tag
));
3749 arc_hdr_destroy(hdr
);
3753 mutex_enter(hash_lock
);
3754 ASSERT3P(hdr
, ==, buf
->b_hdr
);
3755 ASSERT(hdr
->b_l1hdr
.b_bufcnt
> 0);
3756 ASSERT3P(hash_lock
, ==, HDR_LOCK(hdr
));
3757 ASSERT3P(hdr
->b_l1hdr
.b_state
, !=, arc_anon
);
3758 ASSERT3P(buf
->b_data
, !=, NULL
);
3760 (void) remove_reference(hdr
, hash_lock
, tag
);
3761 arc_buf_destroy_impl(buf
);
3762 mutex_exit(hash_lock
);
3766 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3767 * state of the header is dependent on its state prior to entering this
3768 * function. The following transitions are possible:
3770 * - arc_mru -> arc_mru_ghost
3771 * - arc_mfu -> arc_mfu_ghost
3772 * - arc_mru_ghost -> arc_l2c_only
3773 * - arc_mru_ghost -> deleted
3774 * - arc_mfu_ghost -> arc_l2c_only
3775 * - arc_mfu_ghost -> deleted
3778 arc_evict_hdr(arc_buf_hdr_t
*hdr
, kmutex_t
*hash_lock
)
3780 arc_state_t
*evicted_state
, *state
;
3781 int64_t bytes_evicted
= 0;
3783 ASSERT(MUTEX_HELD(hash_lock
));
3784 ASSERT(HDR_HAS_L1HDR(hdr
));
3786 state
= hdr
->b_l1hdr
.b_state
;
3787 if (GHOST_STATE(state
)) {
3788 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
3789 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
3792 * l2arc_write_buffers() relies on a header's L1 portion
3793 * (i.e. its b_pabd field) during it's write phase.
3794 * Thus, we cannot push a header onto the arc_l2c_only
3795 * state (removing its L1 piece) until the header is
3796 * done being written to the l2arc.
3798 if (HDR_HAS_L2HDR(hdr
) && HDR_L2_WRITING(hdr
)) {
3799 ARCSTAT_BUMP(arcstat_evict_l2_skip
);
3800 return (bytes_evicted
);
3803 ARCSTAT_BUMP(arcstat_deleted
);
3804 bytes_evicted
+= HDR_GET_LSIZE(hdr
);
3806 DTRACE_PROBE1(arc__delete
, arc_buf_hdr_t
*, hdr
);
3808 if (HDR_HAS_L2HDR(hdr
)) {
3809 ASSERT(hdr
->b_l1hdr
.b_pabd
== NULL
);
3810 ASSERT(!HDR_HAS_RABD(hdr
));
3812 * This buffer is cached on the 2nd Level ARC;
3813 * don't destroy the header.
3815 arc_change_state(arc_l2c_only
, hdr
, hash_lock
);
3817 * dropping from L1+L2 cached to L2-only,
3818 * realloc to remove the L1 header.
3820 hdr
= arc_hdr_realloc(hdr
, hdr_full_cache
,
3823 arc_change_state(arc_anon
, hdr
, hash_lock
);
3824 arc_hdr_destroy(hdr
);
3826 return (bytes_evicted
);
3829 ASSERT(state
== arc_mru
|| state
== arc_mfu
);
3830 evicted_state
= (state
== arc_mru
) ? arc_mru_ghost
: arc_mfu_ghost
;
3832 /* prefetch buffers have a minimum lifespan */
3833 if (HDR_IO_IN_PROGRESS(hdr
) ||
3834 ((hdr
->b_flags
& (ARC_FLAG_PREFETCH
| ARC_FLAG_INDIRECT
)) &&
3835 ddi_get_lbolt() - hdr
->b_l1hdr
.b_arc_access
<
3836 arc_min_prefetch_lifespan
)) {
3837 ARCSTAT_BUMP(arcstat_evict_skip
);
3838 return (bytes_evicted
);
3841 ASSERT0(refcount_count(&hdr
->b_l1hdr
.b_refcnt
));
3842 while (hdr
->b_l1hdr
.b_buf
) {
3843 arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
;
3844 if (!mutex_tryenter(&buf
->b_evict_lock
)) {
3845 ARCSTAT_BUMP(arcstat_mutex_miss
);
3848 if (buf
->b_data
!= NULL
)
3849 bytes_evicted
+= HDR_GET_LSIZE(hdr
);
3850 mutex_exit(&buf
->b_evict_lock
);
3851 arc_buf_destroy_impl(buf
);
3854 if (HDR_HAS_L2HDR(hdr
)) {
3855 ARCSTAT_INCR(arcstat_evict_l2_cached
, HDR_GET_LSIZE(hdr
));
3857 if (l2arc_write_eligible(hdr
->b_spa
, hdr
)) {
3858 ARCSTAT_INCR(arcstat_evict_l2_eligible
,
3859 HDR_GET_LSIZE(hdr
));
3861 ARCSTAT_INCR(arcstat_evict_l2_ineligible
,
3862 HDR_GET_LSIZE(hdr
));
3866 if (hdr
->b_l1hdr
.b_bufcnt
== 0) {
3867 arc_cksum_free(hdr
);
3869 bytes_evicted
+= arc_hdr_size(hdr
);
3872 * If this hdr is being evicted and has a compressed
3873 * buffer then we discard it here before we change states.
3874 * This ensures that the accounting is updated correctly
3875 * in arc_free_data_impl().
3877 if (hdr
->b_l1hdr
.b_pabd
!= NULL
)
3878 arc_hdr_free_abd(hdr
, B_FALSE
);
3880 if (HDR_HAS_RABD(hdr
))
3881 arc_hdr_free_abd(hdr
, B_TRUE
);
3883 arc_change_state(evicted_state
, hdr
, hash_lock
);
3884 ASSERT(HDR_IN_HASH_TABLE(hdr
));
3885 arc_hdr_set_flags(hdr
, ARC_FLAG_IN_HASH_TABLE
);
3886 DTRACE_PROBE1(arc__evict
, arc_buf_hdr_t
*, hdr
);
3889 return (bytes_evicted
);
3893 arc_evict_state_impl(multilist_t
*ml
, int idx
, arc_buf_hdr_t
*marker
,
3894 uint64_t spa
, int64_t bytes
)
3896 multilist_sublist_t
*mls
;
3897 uint64_t bytes_evicted
= 0;
3899 kmutex_t
*hash_lock
;
3900 int evict_count
= 0;
3902 ASSERT3P(marker
, !=, NULL
);
3903 IMPLY(bytes
< 0, bytes
== ARC_EVICT_ALL
);
3905 mls
= multilist_sublist_lock(ml
, idx
);
3907 for (hdr
= multilist_sublist_prev(mls
, marker
); hdr
!= NULL
;
3908 hdr
= multilist_sublist_prev(mls
, marker
)) {
3909 if ((bytes
!= ARC_EVICT_ALL
&& bytes_evicted
>= bytes
) ||
3910 (evict_count
>= zfs_arc_evict_batch_limit
))
3914 * To keep our iteration location, move the marker
3915 * forward. Since we're not holding hdr's hash lock, we
3916 * must be very careful and not remove 'hdr' from the
3917 * sublist. Otherwise, other consumers might mistake the
3918 * 'hdr' as not being on a sublist when they call the
3919 * multilist_link_active() function (they all rely on
3920 * the hash lock protecting concurrent insertions and
3921 * removals). multilist_sublist_move_forward() was
3922 * specifically implemented to ensure this is the case
3923 * (only 'marker' will be removed and re-inserted).
3925 multilist_sublist_move_forward(mls
, marker
);
3928 * The only case where the b_spa field should ever be
3929 * zero, is the marker headers inserted by
3930 * arc_evict_state(). It's possible for multiple threads
3931 * to be calling arc_evict_state() concurrently (e.g.
3932 * dsl_pool_close() and zio_inject_fault()), so we must
3933 * skip any markers we see from these other threads.
3935 if (hdr
->b_spa
== 0)
3938 /* we're only interested in evicting buffers of a certain spa */
3939 if (spa
!= 0 && hdr
->b_spa
!= spa
) {
3940 ARCSTAT_BUMP(arcstat_evict_skip
);
3944 hash_lock
= HDR_LOCK(hdr
);
3947 * We aren't calling this function from any code path
3948 * that would already be holding a hash lock, so we're
3949 * asserting on this assumption to be defensive in case
3950 * this ever changes. Without this check, it would be
3951 * possible to incorrectly increment arcstat_mutex_miss
3952 * below (e.g. if the code changed such that we called
3953 * this function with a hash lock held).
3955 ASSERT(!MUTEX_HELD(hash_lock
));
3957 if (mutex_tryenter(hash_lock
)) {
3958 uint64_t evicted
= arc_evict_hdr(hdr
, hash_lock
);
3959 mutex_exit(hash_lock
);
3961 bytes_evicted
+= evicted
;
3964 * If evicted is zero, arc_evict_hdr() must have
3965 * decided to skip this header, don't increment
3966 * evict_count in this case.
3972 * If arc_size isn't overflowing, signal any
3973 * threads that might happen to be waiting.
3975 * For each header evicted, we wake up a single
3976 * thread. If we used cv_broadcast, we could
3977 * wake up "too many" threads causing arc_size
3978 * to significantly overflow arc_c; since
3979 * arc_get_data_impl() doesn't check for overflow
3980 * when it's woken up (it doesn't because it's
3981 * possible for the ARC to be overflowing while
3982 * full of un-evictable buffers, and the
3983 * function should proceed in this case).
3985 * If threads are left sleeping, due to not
3986 * using cv_broadcast, they will be woken up
3987 * just before arc_reclaim_thread() sleeps.
3989 mutex_enter(&arc_reclaim_lock
);
3990 if (!arc_is_overflowing())
3991 cv_signal(&arc_reclaim_waiters_cv
);
3992 mutex_exit(&arc_reclaim_lock
);
3994 ARCSTAT_BUMP(arcstat_mutex_miss
);
3998 multilist_sublist_unlock(mls
);
4000 return (bytes_evicted
);
4004 * Evict buffers from the given arc state, until we've removed the
4005 * specified number of bytes. Move the removed buffers to the
4006 * appropriate evict state.
4008 * This function makes a "best effort". It skips over any buffers
4009 * it can't get a hash_lock on, and so, may not catch all candidates.
4010 * It may also return without evicting as much space as requested.
4012 * If bytes is specified using the special value ARC_EVICT_ALL, this
4013 * will evict all available (i.e. unlocked and evictable) buffers from
4014 * the given arc state; which is used by arc_flush().
4017 arc_evict_state(arc_state_t
*state
, uint64_t spa
, int64_t bytes
,
4018 arc_buf_contents_t type
)
4020 uint64_t total_evicted
= 0;
4021 multilist_t
*ml
= state
->arcs_list
[type
];
4023 arc_buf_hdr_t
**markers
;
4026 IMPLY(bytes
< 0, bytes
== ARC_EVICT_ALL
);
4028 num_sublists
= multilist_get_num_sublists(ml
);
4031 * If we've tried to evict from each sublist, made some
4032 * progress, but still have not hit the target number of bytes
4033 * to evict, we want to keep trying. The markers allow us to
4034 * pick up where we left off for each individual sublist, rather
4035 * than starting from the tail each time.
4037 markers
= kmem_zalloc(sizeof (*markers
) * num_sublists
, KM_SLEEP
);
4038 for (i
= 0; i
< num_sublists
; i
++) {
4039 multilist_sublist_t
*mls
;
4041 markers
[i
] = kmem_cache_alloc(hdr_full_cache
, KM_SLEEP
);
4044 * A b_spa of 0 is used to indicate that this header is
4045 * a marker. This fact is used in arc_adjust_type() and
4046 * arc_evict_state_impl().
4048 markers
[i
]->b_spa
= 0;
4050 mls
= multilist_sublist_lock(ml
, i
);
4051 multilist_sublist_insert_tail(mls
, markers
[i
]);
4052 multilist_sublist_unlock(mls
);
4056 * While we haven't hit our target number of bytes to evict, or
4057 * we're evicting all available buffers.
4059 while (total_evicted
< bytes
|| bytes
== ARC_EVICT_ALL
) {
4060 int sublist_idx
= multilist_get_random_index(ml
);
4061 uint64_t scan_evicted
= 0;
4064 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
4065 * Request that 10% of the LRUs be scanned by the superblock
4068 if (type
== ARC_BUFC_DATA
&& arc_dnode_size
> arc_dnode_limit
)
4069 arc_prune_async((arc_dnode_size
- arc_dnode_limit
) /
4070 sizeof (dnode_t
) / zfs_arc_dnode_reduce_percent
);
4073 * Start eviction using a randomly selected sublist,
4074 * this is to try and evenly balance eviction across all
4075 * sublists. Always starting at the same sublist
4076 * (e.g. index 0) would cause evictions to favor certain
4077 * sublists over others.
4079 for (i
= 0; i
< num_sublists
; i
++) {
4080 uint64_t bytes_remaining
;
4081 uint64_t bytes_evicted
;
4083 if (bytes
== ARC_EVICT_ALL
)
4084 bytes_remaining
= ARC_EVICT_ALL
;
4085 else if (total_evicted
< bytes
)
4086 bytes_remaining
= bytes
- total_evicted
;
4090 bytes_evicted
= arc_evict_state_impl(ml
, sublist_idx
,
4091 markers
[sublist_idx
], spa
, bytes_remaining
);
4093 scan_evicted
+= bytes_evicted
;
4094 total_evicted
+= bytes_evicted
;
4096 /* we've reached the end, wrap to the beginning */
4097 if (++sublist_idx
>= num_sublists
)
4102 * If we didn't evict anything during this scan, we have
4103 * no reason to believe we'll evict more during another
4104 * scan, so break the loop.
4106 if (scan_evicted
== 0) {
4107 /* This isn't possible, let's make that obvious */
4108 ASSERT3S(bytes
, !=, 0);
4111 * When bytes is ARC_EVICT_ALL, the only way to
4112 * break the loop is when scan_evicted is zero.
4113 * In that case, we actually have evicted enough,
4114 * so we don't want to increment the kstat.
4116 if (bytes
!= ARC_EVICT_ALL
) {
4117 ASSERT3S(total_evicted
, <, bytes
);
4118 ARCSTAT_BUMP(arcstat_evict_not_enough
);
4125 for (i
= 0; i
< num_sublists
; i
++) {
4126 multilist_sublist_t
*mls
= multilist_sublist_lock(ml
, i
);
4127 multilist_sublist_remove(mls
, markers
[i
]);
4128 multilist_sublist_unlock(mls
);
4130 kmem_cache_free(hdr_full_cache
, markers
[i
]);
4132 kmem_free(markers
, sizeof (*markers
) * num_sublists
);
4134 return (total_evicted
);
4138 * Flush all "evictable" data of the given type from the arc state
4139 * specified. This will not evict any "active" buffers (i.e. referenced).
4141 * When 'retry' is set to B_FALSE, the function will make a single pass
4142 * over the state and evict any buffers that it can. Since it doesn't
4143 * continually retry the eviction, it might end up leaving some buffers
4144 * in the ARC due to lock misses.
4146 * When 'retry' is set to B_TRUE, the function will continually retry the
4147 * eviction until *all* evictable buffers have been removed from the
4148 * state. As a result, if concurrent insertions into the state are
4149 * allowed (e.g. if the ARC isn't shutting down), this function might
4150 * wind up in an infinite loop, continually trying to evict buffers.
4153 arc_flush_state(arc_state_t
*state
, uint64_t spa
, arc_buf_contents_t type
,
4156 uint64_t evicted
= 0;
4158 while (refcount_count(&state
->arcs_esize
[type
]) != 0) {
4159 evicted
+= arc_evict_state(state
, spa
, ARC_EVICT_ALL
, type
);
4169 * Helper function for arc_prune_async() it is responsible for safely
4170 * handling the execution of a registered arc_prune_func_t.
4173 arc_prune_task(void *ptr
)
4175 arc_prune_t
*ap
= (arc_prune_t
*)ptr
;
4176 arc_prune_func_t
*func
= ap
->p_pfunc
;
4179 func(ap
->p_adjust
, ap
->p_private
);
4181 refcount_remove(&ap
->p_refcnt
, func
);
4185 * Notify registered consumers they must drop holds on a portion of the ARC
4186 * buffered they reference. This provides a mechanism to ensure the ARC can
4187 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
4188 * is analogous to dnlc_reduce_cache() but more generic.
4190 * This operation is performed asynchronously so it may be safely called
4191 * in the context of the arc_reclaim_thread(). A reference is taken here
4192 * for each registered arc_prune_t and the arc_prune_task() is responsible
4193 * for releasing it once the registered arc_prune_func_t has completed.
4196 arc_prune_async(int64_t adjust
)
4200 mutex_enter(&arc_prune_mtx
);
4201 for (ap
= list_head(&arc_prune_list
); ap
!= NULL
;
4202 ap
= list_next(&arc_prune_list
, ap
)) {
4204 if (refcount_count(&ap
->p_refcnt
) >= 2)
4207 refcount_add(&ap
->p_refcnt
, ap
->p_pfunc
);
4208 ap
->p_adjust
= adjust
;
4209 if (taskq_dispatch(arc_prune_taskq
, arc_prune_task
,
4210 ap
, TQ_SLEEP
) == TASKQID_INVALID
) {
4211 refcount_remove(&ap
->p_refcnt
, ap
->p_pfunc
);
4214 ARCSTAT_BUMP(arcstat_prune
);
4216 mutex_exit(&arc_prune_mtx
);
4220 * Evict the specified number of bytes from the state specified,
4221 * restricting eviction to the spa and type given. This function
4222 * prevents us from trying to evict more from a state's list than
4223 * is "evictable", and to skip evicting altogether when passed a
4224 * negative value for "bytes". In contrast, arc_evict_state() will
4225 * evict everything it can, when passed a negative value for "bytes".
4228 arc_adjust_impl(arc_state_t
*state
, uint64_t spa
, int64_t bytes
,
4229 arc_buf_contents_t type
)
4233 if (bytes
> 0 && refcount_count(&state
->arcs_esize
[type
]) > 0) {
4234 delta
= MIN(refcount_count(&state
->arcs_esize
[type
]), bytes
);
4235 return (arc_evict_state(state
, spa
, delta
, type
));
4242 * The goal of this function is to evict enough meta data buffers from the
4243 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
4244 * more complicated than it appears because it is common for data buffers
4245 * to have holds on meta data buffers. In addition, dnode meta data buffers
4246 * will be held by the dnodes in the block preventing them from being freed.
4247 * This means we can't simply traverse the ARC and expect to always find
4248 * enough unheld meta data buffer to release.
4250 * Therefore, this function has been updated to make alternating passes
4251 * over the ARC releasing data buffers and then newly unheld meta data
4252 * buffers. This ensures forward progress is maintained and arc_meta_used
4253 * will decrease. Normally this is sufficient, but if required the ARC
4254 * will call the registered prune callbacks causing dentry and inodes to
4255 * be dropped from the VFS cache. This will make dnode meta data buffers
4256 * available for reclaim.
4259 arc_adjust_meta_balanced(void)
4261 int64_t delta
, prune
= 0, adjustmnt
;
4262 uint64_t total_evicted
= 0;
4263 arc_buf_contents_t type
= ARC_BUFC_DATA
;
4264 int restarts
= MAX(zfs_arc_meta_adjust_restarts
, 0);
4268 * This slightly differs than the way we evict from the mru in
4269 * arc_adjust because we don't have a "target" value (i.e. no
4270 * "meta" arc_p). As a result, I think we can completely
4271 * cannibalize the metadata in the MRU before we evict the
4272 * metadata from the MFU. I think we probably need to implement a
4273 * "metadata arc_p" value to do this properly.
4275 adjustmnt
= arc_meta_used
- arc_meta_limit
;
4277 if (adjustmnt
> 0 && refcount_count(&arc_mru
->arcs_esize
[type
]) > 0) {
4278 delta
= MIN(refcount_count(&arc_mru
->arcs_esize
[type
]),
4280 total_evicted
+= arc_adjust_impl(arc_mru
, 0, delta
, type
);
4285 * We can't afford to recalculate adjustmnt here. If we do,
4286 * new metadata buffers can sneak into the MRU or ANON lists,
4287 * thus penalize the MFU metadata. Although the fudge factor is
4288 * small, it has been empirically shown to be significant for
4289 * certain workloads (e.g. creating many empty directories). As
4290 * such, we use the original calculation for adjustmnt, and
4291 * simply decrement the amount of data evicted from the MRU.
4294 if (adjustmnt
> 0 && refcount_count(&arc_mfu
->arcs_esize
[type
]) > 0) {
4295 delta
= MIN(refcount_count(&arc_mfu
->arcs_esize
[type
]),
4297 total_evicted
+= arc_adjust_impl(arc_mfu
, 0, delta
, type
);
4300 adjustmnt
= arc_meta_used
- arc_meta_limit
;
4302 if (adjustmnt
> 0 &&
4303 refcount_count(&arc_mru_ghost
->arcs_esize
[type
]) > 0) {
4304 delta
= MIN(adjustmnt
,
4305 refcount_count(&arc_mru_ghost
->arcs_esize
[type
]));
4306 total_evicted
+= arc_adjust_impl(arc_mru_ghost
, 0, delta
, type
);
4310 if (adjustmnt
> 0 &&
4311 refcount_count(&arc_mfu_ghost
->arcs_esize
[type
]) > 0) {
4312 delta
= MIN(adjustmnt
,
4313 refcount_count(&arc_mfu_ghost
->arcs_esize
[type
]));
4314 total_evicted
+= arc_adjust_impl(arc_mfu_ghost
, 0, delta
, type
);
4318 * If after attempting to make the requested adjustment to the ARC
4319 * the meta limit is still being exceeded then request that the
4320 * higher layers drop some cached objects which have holds on ARC
4321 * meta buffers. Requests to the upper layers will be made with
4322 * increasingly large scan sizes until the ARC is below the limit.
4324 if (arc_meta_used
> arc_meta_limit
) {
4325 if (type
== ARC_BUFC_DATA
) {
4326 type
= ARC_BUFC_METADATA
;
4328 type
= ARC_BUFC_DATA
;
4330 if (zfs_arc_meta_prune
) {
4331 prune
+= zfs_arc_meta_prune
;
4332 arc_prune_async(prune
);
4341 return (total_evicted
);
4345 * Evict metadata buffers from the cache, such that arc_meta_used is
4346 * capped by the arc_meta_limit tunable.
4349 arc_adjust_meta_only(void)
4351 uint64_t total_evicted
= 0;
4355 * If we're over the meta limit, we want to evict enough
4356 * metadata to get back under the meta limit. We don't want to
4357 * evict so much that we drop the MRU below arc_p, though. If
4358 * we're over the meta limit more than we're over arc_p, we
4359 * evict some from the MRU here, and some from the MFU below.
4361 target
= MIN((int64_t)(arc_meta_used
- arc_meta_limit
),
4362 (int64_t)(refcount_count(&arc_anon
->arcs_size
) +
4363 refcount_count(&arc_mru
->arcs_size
) - arc_p
));
4365 total_evicted
+= arc_adjust_impl(arc_mru
, 0, target
, ARC_BUFC_METADATA
);
4368 * Similar to the above, we want to evict enough bytes to get us
4369 * below the meta limit, but not so much as to drop us below the
4370 * space allotted to the MFU (which is defined as arc_c - arc_p).
4372 target
= MIN((int64_t)(arc_meta_used
- arc_meta_limit
),
4373 (int64_t)(refcount_count(&arc_mfu
->arcs_size
) - (arc_c
- arc_p
)));
4375 total_evicted
+= arc_adjust_impl(arc_mfu
, 0, target
, ARC_BUFC_METADATA
);
4377 return (total_evicted
);
4381 arc_adjust_meta(void)
4383 if (zfs_arc_meta_strategy
== ARC_STRATEGY_META_ONLY
)
4384 return (arc_adjust_meta_only());
4386 return (arc_adjust_meta_balanced());
4390 * Return the type of the oldest buffer in the given arc state
4392 * This function will select a random sublist of type ARC_BUFC_DATA and
4393 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4394 * is compared, and the type which contains the "older" buffer will be
4397 static arc_buf_contents_t
4398 arc_adjust_type(arc_state_t
*state
)
4400 multilist_t
*data_ml
= state
->arcs_list
[ARC_BUFC_DATA
];
4401 multilist_t
*meta_ml
= state
->arcs_list
[ARC_BUFC_METADATA
];
4402 int data_idx
= multilist_get_random_index(data_ml
);
4403 int meta_idx
= multilist_get_random_index(meta_ml
);
4404 multilist_sublist_t
*data_mls
;
4405 multilist_sublist_t
*meta_mls
;
4406 arc_buf_contents_t type
;
4407 arc_buf_hdr_t
*data_hdr
;
4408 arc_buf_hdr_t
*meta_hdr
;
4411 * We keep the sublist lock until we're finished, to prevent
4412 * the headers from being destroyed via arc_evict_state().
4414 data_mls
= multilist_sublist_lock(data_ml
, data_idx
);
4415 meta_mls
= multilist_sublist_lock(meta_ml
, meta_idx
);
4418 * These two loops are to ensure we skip any markers that
4419 * might be at the tail of the lists due to arc_evict_state().
4422 for (data_hdr
= multilist_sublist_tail(data_mls
); data_hdr
!= NULL
;
4423 data_hdr
= multilist_sublist_prev(data_mls
, data_hdr
)) {
4424 if (data_hdr
->b_spa
!= 0)
4428 for (meta_hdr
= multilist_sublist_tail(meta_mls
); meta_hdr
!= NULL
;
4429 meta_hdr
= multilist_sublist_prev(meta_mls
, meta_hdr
)) {
4430 if (meta_hdr
->b_spa
!= 0)
4434 if (data_hdr
== NULL
&& meta_hdr
== NULL
) {
4435 type
= ARC_BUFC_DATA
;
4436 } else if (data_hdr
== NULL
) {
4437 ASSERT3P(meta_hdr
, !=, NULL
);
4438 type
= ARC_BUFC_METADATA
;
4439 } else if (meta_hdr
== NULL
) {
4440 ASSERT3P(data_hdr
, !=, NULL
);
4441 type
= ARC_BUFC_DATA
;
4443 ASSERT3P(data_hdr
, !=, NULL
);
4444 ASSERT3P(meta_hdr
, !=, NULL
);
4446 /* The headers can't be on the sublist without an L1 header */
4447 ASSERT(HDR_HAS_L1HDR(data_hdr
));
4448 ASSERT(HDR_HAS_L1HDR(meta_hdr
));
4450 if (data_hdr
->b_l1hdr
.b_arc_access
<
4451 meta_hdr
->b_l1hdr
.b_arc_access
) {
4452 type
= ARC_BUFC_DATA
;
4454 type
= ARC_BUFC_METADATA
;
4458 multilist_sublist_unlock(meta_mls
);
4459 multilist_sublist_unlock(data_mls
);
4465 * Evict buffers from the cache, such that arc_size is capped by arc_c.
4470 uint64_t total_evicted
= 0;
4475 * If we're over arc_meta_limit, we want to correct that before
4476 * potentially evicting data buffers below.
4478 total_evicted
+= arc_adjust_meta();
4483 * If we're over the target cache size, we want to evict enough
4484 * from the list to get back to our target size. We don't want
4485 * to evict too much from the MRU, such that it drops below
4486 * arc_p. So, if we're over our target cache size more than
4487 * the MRU is over arc_p, we'll evict enough to get back to
4488 * arc_p here, and then evict more from the MFU below.
4490 target
= MIN((int64_t)(arc_size
- arc_c
),
4491 (int64_t)(refcount_count(&arc_anon
->arcs_size
) +
4492 refcount_count(&arc_mru
->arcs_size
) + arc_meta_used
- arc_p
));
4495 * If we're below arc_meta_min, always prefer to evict data.
4496 * Otherwise, try to satisfy the requested number of bytes to
4497 * evict from the type which contains older buffers; in an
4498 * effort to keep newer buffers in the cache regardless of their
4499 * type. If we cannot satisfy the number of bytes from this
4500 * type, spill over into the next type.
4502 if (arc_adjust_type(arc_mru
) == ARC_BUFC_METADATA
&&
4503 arc_meta_used
> arc_meta_min
) {
4504 bytes
= arc_adjust_impl(arc_mru
, 0, target
, ARC_BUFC_METADATA
);
4505 total_evicted
+= bytes
;
4508 * If we couldn't evict our target number of bytes from
4509 * metadata, we try to get the rest from data.
4514 arc_adjust_impl(arc_mru
, 0, target
, ARC_BUFC_DATA
);
4516 bytes
= arc_adjust_impl(arc_mru
, 0, target
, ARC_BUFC_DATA
);
4517 total_evicted
+= bytes
;
4520 * If we couldn't evict our target number of bytes from
4521 * data, we try to get the rest from metadata.
4526 arc_adjust_impl(arc_mru
, 0, target
, ARC_BUFC_METADATA
);
4532 * Now that we've tried to evict enough from the MRU to get its
4533 * size back to arc_p, if we're still above the target cache
4534 * size, we evict the rest from the MFU.
4536 target
= arc_size
- arc_c
;
4538 if (arc_adjust_type(arc_mfu
) == ARC_BUFC_METADATA
&&
4539 arc_meta_used
> arc_meta_min
) {
4540 bytes
= arc_adjust_impl(arc_mfu
, 0, target
, ARC_BUFC_METADATA
);
4541 total_evicted
+= bytes
;
4544 * If we couldn't evict our target number of bytes from
4545 * metadata, we try to get the rest from data.
4550 arc_adjust_impl(arc_mfu
, 0, target
, ARC_BUFC_DATA
);
4552 bytes
= arc_adjust_impl(arc_mfu
, 0, target
, ARC_BUFC_DATA
);
4553 total_evicted
+= bytes
;
4556 * If we couldn't evict our target number of bytes from
4557 * data, we try to get the rest from data.
4562 arc_adjust_impl(arc_mfu
, 0, target
, ARC_BUFC_METADATA
);
4566 * Adjust ghost lists
4568 * In addition to the above, the ARC also defines target values
4569 * for the ghost lists. The sum of the mru list and mru ghost
4570 * list should never exceed the target size of the cache, and
4571 * the sum of the mru list, mfu list, mru ghost list, and mfu
4572 * ghost list should never exceed twice the target size of the
4573 * cache. The following logic enforces these limits on the ghost
4574 * caches, and evicts from them as needed.
4576 target
= refcount_count(&arc_mru
->arcs_size
) +
4577 refcount_count(&arc_mru_ghost
->arcs_size
) - arc_c
;
4579 bytes
= arc_adjust_impl(arc_mru_ghost
, 0, target
, ARC_BUFC_DATA
);
4580 total_evicted
+= bytes
;
4585 arc_adjust_impl(arc_mru_ghost
, 0, target
, ARC_BUFC_METADATA
);
4588 * We assume the sum of the mru list and mfu list is less than
4589 * or equal to arc_c (we enforced this above), which means we
4590 * can use the simpler of the two equations below:
4592 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4593 * mru ghost + mfu ghost <= arc_c
4595 target
= refcount_count(&arc_mru_ghost
->arcs_size
) +
4596 refcount_count(&arc_mfu_ghost
->arcs_size
) - arc_c
;
4598 bytes
= arc_adjust_impl(arc_mfu_ghost
, 0, target
, ARC_BUFC_DATA
);
4599 total_evicted
+= bytes
;
4604 arc_adjust_impl(arc_mfu_ghost
, 0, target
, ARC_BUFC_METADATA
);
4606 return (total_evicted
);
4610 arc_flush(spa_t
*spa
, boolean_t retry
)
4615 * If retry is B_TRUE, a spa must not be specified since we have
4616 * no good way to determine if all of a spa's buffers have been
4617 * evicted from an arc state.
4619 ASSERT(!retry
|| spa
== 0);
4622 guid
= spa_load_guid(spa
);
4624 (void) arc_flush_state(arc_mru
, guid
, ARC_BUFC_DATA
, retry
);
4625 (void) arc_flush_state(arc_mru
, guid
, ARC_BUFC_METADATA
, retry
);
4627 (void) arc_flush_state(arc_mfu
, guid
, ARC_BUFC_DATA
, retry
);
4628 (void) arc_flush_state(arc_mfu
, guid
, ARC_BUFC_METADATA
, retry
);
4630 (void) arc_flush_state(arc_mru_ghost
, guid
, ARC_BUFC_DATA
, retry
);
4631 (void) arc_flush_state(arc_mru_ghost
, guid
, ARC_BUFC_METADATA
, retry
);
4633 (void) arc_flush_state(arc_mfu_ghost
, guid
, ARC_BUFC_DATA
, retry
);
4634 (void) arc_flush_state(arc_mfu_ghost
, guid
, ARC_BUFC_METADATA
, retry
);
4638 arc_shrink(int64_t to_free
)
4642 if (c
> to_free
&& c
- to_free
> arc_c_min
) {
4643 arc_c
= c
- to_free
;
4644 atomic_add_64(&arc_p
, -(arc_p
>> arc_shrink_shift
));
4645 if (arc_c
> arc_size
)
4646 arc_c
= MAX(arc_size
, arc_c_min
);
4648 arc_p
= (arc_c
>> 1);
4649 ASSERT(arc_c
>= arc_c_min
);
4650 ASSERT((int64_t)arc_p
>= 0);
4655 if (arc_size
> arc_c
)
4656 (void) arc_adjust();
4660 * Return maximum amount of memory that we could possibly use. Reduced
4661 * to half of all memory in user space which is primarily used for testing.
4664 arc_all_memory(void)
4667 #ifdef CONFIG_HIGHMEM
4668 return (ptob(totalram_pages
- totalhigh_pages
));
4670 return (ptob(totalram_pages
));
4671 #endif /* CONFIG_HIGHMEM */
4673 return (ptob(physmem
) / 2);
4674 #endif /* _KERNEL */
4678 * Return the amount of memory that is considered free. In user space
4679 * which is primarily used for testing we pretend that free memory ranges
4680 * from 0-20% of all memory.
4683 arc_free_memory(void)
4686 #ifdef CONFIG_HIGHMEM
4689 return (ptob(si
.freeram
- si
.freehigh
));
4691 #ifdef ZFS_GLOBAL_NODE_PAGE_STATE
4692 return (ptob(nr_free_pages() +
4693 global_node_page_state(NR_INACTIVE_FILE
) +
4694 global_node_page_state(NR_INACTIVE_ANON
) +
4695 global_node_page_state(NR_SLAB_RECLAIMABLE
)));
4697 return (ptob(nr_free_pages() +
4698 global_page_state(NR_INACTIVE_FILE
) +
4699 global_page_state(NR_INACTIVE_ANON
) +
4700 global_page_state(NR_SLAB_RECLAIMABLE
)));
4701 #endif /* ZFS_GLOBAL_NODE_PAGE_STATE */
4702 #endif /* CONFIG_HIGHMEM */
4704 return (spa_get_random(arc_all_memory() * 20 / 100));
4705 #endif /* _KERNEL */
4708 typedef enum free_memory_reason_t
{
4713 FMR_PAGES_PP_MAXIMUM
,
4716 } free_memory_reason_t
;
4718 int64_t last_free_memory
;
4719 free_memory_reason_t last_free_reason
;
4723 * Additional reserve of pages for pp_reserve.
4725 int64_t arc_pages_pp_reserve
= 64;
4728 * Additional reserve of pages for swapfs.
4730 int64_t arc_swapfs_reserve
= 64;
4731 #endif /* _KERNEL */
4734 * Return the amount of memory that can be consumed before reclaim will be
4735 * needed. Positive if there is sufficient free memory, negative indicates
4736 * the amount of memory that needs to be freed up.
4739 arc_available_memory(void)
4741 int64_t lowest
= INT64_MAX
;
4742 free_memory_reason_t r
= FMR_UNKNOWN
;
4749 pgcnt_t needfree
= btop(arc_need_free
);
4750 pgcnt_t lotsfree
= btop(arc_sys_free
);
4751 pgcnt_t desfree
= 0;
4752 pgcnt_t freemem
= btop(arc_free_memory());
4756 n
= PAGESIZE
* (-needfree
);
4764 * check that we're out of range of the pageout scanner. It starts to
4765 * schedule paging if freemem is less than lotsfree and needfree.
4766 * lotsfree is the high-water mark for pageout, and needfree is the
4767 * number of needed free pages. We add extra pages here to make sure
4768 * the scanner doesn't start up while we're freeing memory.
4770 n
= PAGESIZE
* (freemem
- lotsfree
- needfree
- desfree
);
4778 * check to make sure that swapfs has enough space so that anon
4779 * reservations can still succeed. anon_resvmem() checks that the
4780 * availrmem is greater than swapfs_minfree, and the number of reserved
4781 * swap pages. We also add a bit of extra here just to prevent
4782 * circumstances from getting really dire.
4784 n
= PAGESIZE
* (availrmem
- swapfs_minfree
- swapfs_reserve
-
4785 desfree
- arc_swapfs_reserve
);
4788 r
= FMR_SWAPFS_MINFREE
;
4792 * Check that we have enough availrmem that memory locking (e.g., via
4793 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
4794 * stores the number of pages that cannot be locked; when availrmem
4795 * drops below pages_pp_maximum, page locking mechanisms such as
4796 * page_pp_lock() will fail.)
4798 n
= PAGESIZE
* (availrmem
- pages_pp_maximum
-
4799 arc_pages_pp_reserve
);
4802 r
= FMR_PAGES_PP_MAXIMUM
;
4808 * If we're on a 32-bit platform, it's possible that we'll exhaust the
4809 * kernel heap space before we ever run out of available physical
4810 * memory. Most checks of the size of the heap_area compare against
4811 * tune.t_minarmem, which is the minimum available real memory that we
4812 * can have in the system. However, this is generally fixed at 25 pages
4813 * which is so low that it's useless. In this comparison, we seek to
4814 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4815 * heap is allocated. (Or, in the calculation, if less than 1/4th is
4818 n
= vmem_size(heap_arena
, VMEM_FREE
) -
4819 (vmem_size(heap_arena
, VMEM_FREE
| VMEM_ALLOC
) >> 2);
4827 * If zio data pages are being allocated out of a separate heap segment,
4828 * then enforce that the size of available vmem for this arena remains
4829 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4831 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4832 * memory (in the zio_arena) free, which can avoid memory
4833 * fragmentation issues.
4835 if (zio_arena
!= NULL
) {
4836 n
= (int64_t)vmem_size(zio_arena
, VMEM_FREE
) -
4837 (vmem_size(zio_arena
, VMEM_ALLOC
) >>
4838 arc_zio_arena_free_shift
);
4845 /* Every 100 calls, free a small amount */
4846 if (spa_get_random(100) == 0)
4848 #endif /* _KERNEL */
4850 last_free_memory
= lowest
;
4851 last_free_reason
= r
;
4857 * Determine if the system is under memory pressure and is asking
4858 * to reclaim memory. A return value of B_TRUE indicates that the system
4859 * is under memory pressure and that the arc should adjust accordingly.
4862 arc_reclaim_needed(void)
4864 return (arc_available_memory() < 0);
4868 arc_kmem_reap_now(void)
4871 kmem_cache_t
*prev_cache
= NULL
;
4872 kmem_cache_t
*prev_data_cache
= NULL
;
4873 extern kmem_cache_t
*zio_buf_cache
[];
4874 extern kmem_cache_t
*zio_data_buf_cache
[];
4875 extern kmem_cache_t
*range_seg_cache
;
4878 if ((arc_meta_used
>= arc_meta_limit
) && zfs_arc_meta_prune
) {
4880 * We are exceeding our meta-data cache limit.
4881 * Prune some entries to release holds on meta-data.
4883 arc_prune_async(zfs_arc_meta_prune
);
4887 * Reclaim unused memory from all kmem caches.
4893 for (i
= 0; i
< SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
; i
++) {
4895 /* reach upper limit of cache size on 32-bit */
4896 if (zio_buf_cache
[i
] == NULL
)
4899 if (zio_buf_cache
[i
] != prev_cache
) {
4900 prev_cache
= zio_buf_cache
[i
];
4901 kmem_cache_reap_now(zio_buf_cache
[i
]);
4903 if (zio_data_buf_cache
[i
] != prev_data_cache
) {
4904 prev_data_cache
= zio_data_buf_cache
[i
];
4905 kmem_cache_reap_now(zio_data_buf_cache
[i
]);
4908 kmem_cache_reap_now(buf_cache
);
4909 kmem_cache_reap_now(hdr_full_cache
);
4910 kmem_cache_reap_now(hdr_l2only_cache
);
4911 kmem_cache_reap_now(range_seg_cache
);
4913 if (zio_arena
!= NULL
) {
4915 * Ask the vmem arena to reclaim unused memory from its
4918 vmem_qcache_reap(zio_arena
);
4923 * Threads can block in arc_get_data_impl() waiting for this thread to evict
4924 * enough data and signal them to proceed. When this happens, the threads in
4925 * arc_get_data_impl() are sleeping while holding the hash lock for their
4926 * particular arc header. Thus, we must be careful to never sleep on a
4927 * hash lock in this thread. This is to prevent the following deadlock:
4929 * - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L",
4930 * waiting for the reclaim thread to signal it.
4932 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4933 * fails, and goes to sleep forever.
4935 * This possible deadlock is avoided by always acquiring a hash lock
4936 * using mutex_tryenter() from arc_reclaim_thread().
4939 arc_reclaim_thread(void *unused
)
4941 fstrans_cookie_t cookie
= spl_fstrans_mark();
4942 hrtime_t growtime
= 0;
4945 CALLB_CPR_INIT(&cpr
, &arc_reclaim_lock
, callb_generic_cpr
, FTAG
);
4947 mutex_enter(&arc_reclaim_lock
);
4948 while (!arc_reclaim_thread_exit
) {
4950 uint64_t evicted
= 0;
4951 uint64_t need_free
= arc_need_free
;
4952 arc_tuning_update();
4955 * This is necessary in order for the mdb ::arc dcmd to
4956 * show up to date information. Since the ::arc command
4957 * does not call the kstat's update function, without
4958 * this call, the command may show stale stats for the
4959 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4960 * with this change, the data might be up to 1 second
4961 * out of date; but that should suffice. The arc_state_t
4962 * structures can be queried directly if more accurate
4963 * information is needed.
4966 if (arc_ksp
!= NULL
)
4967 arc_ksp
->ks_update(arc_ksp
, KSTAT_READ
);
4969 mutex_exit(&arc_reclaim_lock
);
4972 * We call arc_adjust() before (possibly) calling
4973 * arc_kmem_reap_now(), so that we can wake up
4974 * arc_get_data_buf() sooner.
4976 evicted
= arc_adjust();
4978 int64_t free_memory
= arc_available_memory();
4979 if (free_memory
< 0) {
4981 arc_no_grow
= B_TRUE
;
4985 * Wait at least zfs_grow_retry (default 5) seconds
4986 * before considering growing.
4988 growtime
= gethrtime() + SEC2NSEC(arc_grow_retry
);
4990 arc_kmem_reap_now();
4993 * If we are still low on memory, shrink the ARC
4994 * so that we have arc_shrink_min free space.
4996 free_memory
= arc_available_memory();
4998 to_free
= (arc_c
>> arc_shrink_shift
) - free_memory
;
5001 to_free
= MAX(to_free
, need_free
);
5003 arc_shrink(to_free
);
5005 } else if (free_memory
< arc_c
>> arc_no_grow_shift
) {
5006 arc_no_grow
= B_TRUE
;
5007 } else if (gethrtime() >= growtime
) {
5008 arc_no_grow
= B_FALSE
;
5011 mutex_enter(&arc_reclaim_lock
);
5014 * If evicted is zero, we couldn't evict anything via
5015 * arc_adjust(). This could be due to hash lock
5016 * collisions, but more likely due to the majority of
5017 * arc buffers being unevictable. Therefore, even if
5018 * arc_size is above arc_c, another pass is unlikely to
5019 * be helpful and could potentially cause us to enter an
5022 if (arc_size
<= arc_c
|| evicted
== 0) {
5024 * We're either no longer overflowing, or we
5025 * can't evict anything more, so we should wake
5026 * up any threads before we go to sleep and remove
5027 * the bytes we were working on from arc_need_free
5028 * since nothing more will be done here.
5030 cv_broadcast(&arc_reclaim_waiters_cv
);
5031 ARCSTAT_INCR(arcstat_need_free
, -need_free
);
5034 * Block until signaled, or after one second (we
5035 * might need to perform arc_kmem_reap_now()
5036 * even if we aren't being signalled)
5038 CALLB_CPR_SAFE_BEGIN(&cpr
);
5039 (void) cv_timedwait_sig_hires(&arc_reclaim_thread_cv
,
5040 &arc_reclaim_lock
, SEC2NSEC(1), MSEC2NSEC(1), 0);
5041 CALLB_CPR_SAFE_END(&cpr
, &arc_reclaim_lock
);
5045 arc_reclaim_thread_exit
= B_FALSE
;
5046 cv_broadcast(&arc_reclaim_thread_cv
);
5047 CALLB_CPR_EXIT(&cpr
); /* drops arc_reclaim_lock */
5048 spl_fstrans_unmark(cookie
);
5054 * Determine the amount of memory eligible for eviction contained in the
5055 * ARC. All clean data reported by the ghost lists can always be safely
5056 * evicted. Due to arc_c_min, the same does not hold for all clean data
5057 * contained by the regular mru and mfu lists.
5059 * In the case of the regular mru and mfu lists, we need to report as
5060 * much clean data as possible, such that evicting that same reported
5061 * data will not bring arc_size below arc_c_min. Thus, in certain
5062 * circumstances, the total amount of clean data in the mru and mfu
5063 * lists might not actually be evictable.
5065 * The following two distinct cases are accounted for:
5067 * 1. The sum of the amount of dirty data contained by both the mru and
5068 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5069 * is greater than or equal to arc_c_min.
5070 * (i.e. amount of dirty data >= arc_c_min)
5072 * This is the easy case; all clean data contained by the mru and mfu
5073 * lists is evictable. Evicting all clean data can only drop arc_size
5074 * to the amount of dirty data, which is greater than arc_c_min.
5076 * 2. The sum of the amount of dirty data contained by both the mru and
5077 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5078 * is less than arc_c_min.
5079 * (i.e. arc_c_min > amount of dirty data)
5081 * 2.1. arc_size is greater than or equal arc_c_min.
5082 * (i.e. arc_size >= arc_c_min > amount of dirty data)
5084 * In this case, not all clean data from the regular mru and mfu
5085 * lists is actually evictable; we must leave enough clean data
5086 * to keep arc_size above arc_c_min. Thus, the maximum amount of
5087 * evictable data from the two lists combined, is exactly the
5088 * difference between arc_size and arc_c_min.
5090 * 2.2. arc_size is less than arc_c_min
5091 * (i.e. arc_c_min > arc_size > amount of dirty data)
5093 * In this case, none of the data contained in the mru and mfu
5094 * lists is evictable, even if it's clean. Since arc_size is
5095 * already below arc_c_min, evicting any more would only
5096 * increase this negative difference.
5099 arc_evictable_memory(void)
5101 uint64_t arc_clean
=
5102 refcount_count(&arc_mru
->arcs_esize
[ARC_BUFC_DATA
]) +
5103 refcount_count(&arc_mru
->arcs_esize
[ARC_BUFC_METADATA
]) +
5104 refcount_count(&arc_mfu
->arcs_esize
[ARC_BUFC_DATA
]) +
5105 refcount_count(&arc_mfu
->arcs_esize
[ARC_BUFC_METADATA
]);
5106 uint64_t arc_dirty
= MAX((int64_t)arc_size
- (int64_t)arc_clean
, 0);
5109 * Scale reported evictable memory in proportion to page cache, cap
5110 * at specified min/max.
5112 #ifdef ZFS_GLOBAL_NODE_PAGE_STATE
5113 uint64_t min
= (ptob(global_node_page_state(NR_FILE_PAGES
)) / 100) *
5116 uint64_t min
= (ptob(global_page_state(NR_FILE_PAGES
)) / 100) *
5119 min
= MAX(arc_c_min
, MIN(arc_c_max
, min
));
5121 if (arc_dirty
>= min
)
5124 return (MAX((int64_t)arc_size
- (int64_t)min
, 0));
5128 * If sc->nr_to_scan is zero, the caller is requesting a query of the
5129 * number of objects which can potentially be freed. If it is nonzero,
5130 * the request is to free that many objects.
5132 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
5133 * in struct shrinker and also require the shrinker to return the number
5136 * Older kernels require the shrinker to return the number of freeable
5137 * objects following the freeing of nr_to_free.
5139 static spl_shrinker_t
5140 __arc_shrinker_func(struct shrinker
*shrink
, struct shrink_control
*sc
)
5144 /* The arc is considered warm once reclaim has occurred */
5145 if (unlikely(arc_warm
== B_FALSE
))
5148 /* Return the potential number of reclaimable pages */
5149 pages
= btop((int64_t)arc_evictable_memory());
5150 if (sc
->nr_to_scan
== 0)
5153 /* Not allowed to perform filesystem reclaim */
5154 if (!(sc
->gfp_mask
& __GFP_FS
))
5155 return (SHRINK_STOP
);
5157 /* Reclaim in progress */
5158 if (mutex_tryenter(&arc_reclaim_lock
) == 0) {
5159 ARCSTAT_INCR(arcstat_need_free
, ptob(sc
->nr_to_scan
));
5163 mutex_exit(&arc_reclaim_lock
);
5166 * Evict the requested number of pages by shrinking arc_c the
5170 arc_shrink(ptob(sc
->nr_to_scan
));
5171 if (current_is_kswapd())
5172 arc_kmem_reap_now();
5173 #ifdef HAVE_SPLIT_SHRINKER_CALLBACK
5174 pages
= MAX((int64_t)pages
-
5175 (int64_t)btop(arc_evictable_memory()), 0);
5177 pages
= btop(arc_evictable_memory());
5180 * We've shrunk what we can, wake up threads.
5182 cv_broadcast(&arc_reclaim_waiters_cv
);
5184 pages
= SHRINK_STOP
;
5187 * When direct reclaim is observed it usually indicates a rapid
5188 * increase in memory pressure. This occurs because the kswapd
5189 * threads were unable to asynchronously keep enough free memory
5190 * available. In this case set arc_no_grow to briefly pause arc
5191 * growth to avoid compounding the memory pressure.
5193 if (current_is_kswapd()) {
5194 ARCSTAT_BUMP(arcstat_memory_indirect_count
);
5196 arc_no_grow
= B_TRUE
;
5197 arc_kmem_reap_now();
5198 ARCSTAT_BUMP(arcstat_memory_direct_count
);
5203 SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func
);
5205 SPL_SHRINKER_DECLARE(arc_shrinker
, arc_shrinker_func
, DEFAULT_SEEKS
);
5206 #endif /* _KERNEL */
5209 * Adapt arc info given the number of bytes we are trying to add and
5210 * the state that we are coming from. This function is only called
5211 * when we are adding new content to the cache.
5214 arc_adapt(int bytes
, arc_state_t
*state
)
5217 uint64_t arc_p_min
= (arc_c
>> arc_p_min_shift
);
5218 int64_t mrug_size
= refcount_count(&arc_mru_ghost
->arcs_size
);
5219 int64_t mfug_size
= refcount_count(&arc_mfu_ghost
->arcs_size
);
5221 if (state
== arc_l2c_only
)
5226 * Adapt the target size of the MRU list:
5227 * - if we just hit in the MRU ghost list, then increase
5228 * the target size of the MRU list.
5229 * - if we just hit in the MFU ghost list, then increase
5230 * the target size of the MFU list by decreasing the
5231 * target size of the MRU list.
5233 if (state
== arc_mru_ghost
) {
5234 mult
= (mrug_size
>= mfug_size
) ? 1 : (mfug_size
/ mrug_size
);
5235 if (!zfs_arc_p_dampener_disable
)
5236 mult
= MIN(mult
, 10); /* avoid wild arc_p adjustment */
5238 arc_p
= MIN(arc_c
- arc_p_min
, arc_p
+ bytes
* mult
);
5239 } else if (state
== arc_mfu_ghost
) {
5242 mult
= (mfug_size
>= mrug_size
) ? 1 : (mrug_size
/ mfug_size
);
5243 if (!zfs_arc_p_dampener_disable
)
5244 mult
= MIN(mult
, 10);
5246 delta
= MIN(bytes
* mult
, arc_p
);
5247 arc_p
= MAX(arc_p_min
, arc_p
- delta
);
5249 ASSERT((int64_t)arc_p
>= 0);
5251 if (arc_reclaim_needed()) {
5252 cv_signal(&arc_reclaim_thread_cv
);
5259 if (arc_c
>= arc_c_max
)
5263 * If we're within (2 * maxblocksize) bytes of the target
5264 * cache size, increment the target cache size
5266 ASSERT3U(arc_c
, >=, 2ULL << SPA_MAXBLOCKSHIFT
);
5267 if (arc_size
>= arc_c
- (2ULL << SPA_MAXBLOCKSHIFT
)) {
5268 atomic_add_64(&arc_c
, (int64_t)bytes
);
5269 if (arc_c
> arc_c_max
)
5271 else if (state
== arc_anon
)
5272 atomic_add_64(&arc_p
, (int64_t)bytes
);
5276 ASSERT((int64_t)arc_p
>= 0);
5280 * Check if arc_size has grown past our upper threshold, determined by
5281 * zfs_arc_overflow_shift.
5284 arc_is_overflowing(void)
5286 /* Always allow at least one block of overflow */
5287 uint64_t overflow
= MAX(SPA_MAXBLOCKSIZE
,
5288 arc_c
>> zfs_arc_overflow_shift
);
5290 return (arc_size
>= arc_c
+ overflow
);
5294 arc_get_data_abd(arc_buf_hdr_t
*hdr
, uint64_t size
, void *tag
)
5296 arc_buf_contents_t type
= arc_buf_type(hdr
);
5298 arc_get_data_impl(hdr
, size
, tag
);
5299 if (type
== ARC_BUFC_METADATA
) {
5300 return (abd_alloc(size
, B_TRUE
));
5302 ASSERT(type
== ARC_BUFC_DATA
);
5303 return (abd_alloc(size
, B_FALSE
));
5308 arc_get_data_buf(arc_buf_hdr_t
*hdr
, uint64_t size
, void *tag
)
5310 arc_buf_contents_t type
= arc_buf_type(hdr
);
5312 arc_get_data_impl(hdr
, size
, tag
);
5313 if (type
== ARC_BUFC_METADATA
) {
5314 return (zio_buf_alloc(size
));
5316 ASSERT(type
== ARC_BUFC_DATA
);
5317 return (zio_data_buf_alloc(size
));
5322 * Allocate a block and return it to the caller. If we are hitting the
5323 * hard limit for the cache size, we must sleep, waiting for the eviction
5324 * thread to catch up. If we're past the target size but below the hard
5325 * limit, we'll only signal the reclaim thread and continue on.
5328 arc_get_data_impl(arc_buf_hdr_t
*hdr
, uint64_t size
, void *tag
)
5330 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
5331 arc_buf_contents_t type
= arc_buf_type(hdr
);
5333 arc_adapt(size
, state
);
5336 * If arc_size is currently overflowing, and has grown past our
5337 * upper limit, we must be adding data faster than the evict
5338 * thread can evict. Thus, to ensure we don't compound the
5339 * problem by adding more data and forcing arc_size to grow even
5340 * further past it's target size, we halt and wait for the
5341 * eviction thread to catch up.
5343 * It's also possible that the reclaim thread is unable to evict
5344 * enough buffers to get arc_size below the overflow limit (e.g.
5345 * due to buffers being un-evictable, or hash lock collisions).
5346 * In this case, we want to proceed regardless if we're
5347 * overflowing; thus we don't use a while loop here.
5349 if (arc_is_overflowing()) {
5350 mutex_enter(&arc_reclaim_lock
);
5353 * Now that we've acquired the lock, we may no longer be
5354 * over the overflow limit, lets check.
5356 * We're ignoring the case of spurious wake ups. If that
5357 * were to happen, it'd let this thread consume an ARC
5358 * buffer before it should have (i.e. before we're under
5359 * the overflow limit and were signalled by the reclaim
5360 * thread). As long as that is a rare occurrence, it
5361 * shouldn't cause any harm.
5363 if (arc_is_overflowing()) {
5364 cv_signal(&arc_reclaim_thread_cv
);
5365 cv_wait(&arc_reclaim_waiters_cv
, &arc_reclaim_lock
);
5368 mutex_exit(&arc_reclaim_lock
);
5371 VERIFY3U(hdr
->b_type
, ==, type
);
5372 if (type
== ARC_BUFC_METADATA
) {
5373 arc_space_consume(size
, ARC_SPACE_META
);
5375 arc_space_consume(size
, ARC_SPACE_DATA
);
5379 * Update the state size. Note that ghost states have a
5380 * "ghost size" and so don't need to be updated.
5382 if (!GHOST_STATE(state
)) {
5384 (void) refcount_add_many(&state
->arcs_size
, size
, tag
);
5387 * If this is reached via arc_read, the link is
5388 * protected by the hash lock. If reached via
5389 * arc_buf_alloc, the header should not be accessed by
5390 * any other thread. And, if reached via arc_read_done,
5391 * the hash lock will protect it if it's found in the
5392 * hash table; otherwise no other thread should be
5393 * trying to [add|remove]_reference it.
5395 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
5396 ASSERT(refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
5397 (void) refcount_add_many(&state
->arcs_esize
[type
],
5402 * If we are growing the cache, and we are adding anonymous
5403 * data, and we have outgrown arc_p, update arc_p
5405 if (arc_size
< arc_c
&& hdr
->b_l1hdr
.b_state
== arc_anon
&&
5406 (refcount_count(&arc_anon
->arcs_size
) +
5407 refcount_count(&arc_mru
->arcs_size
) > arc_p
))
5408 arc_p
= MIN(arc_c
, arc_p
+ size
);
5413 arc_free_data_abd(arc_buf_hdr_t
*hdr
, abd_t
*abd
, uint64_t size
, void *tag
)
5415 arc_free_data_impl(hdr
, size
, tag
);
5420 arc_free_data_buf(arc_buf_hdr_t
*hdr
, void *buf
, uint64_t size
, void *tag
)
5422 arc_buf_contents_t type
= arc_buf_type(hdr
);
5424 arc_free_data_impl(hdr
, size
, tag
);
5425 if (type
== ARC_BUFC_METADATA
) {
5426 zio_buf_free(buf
, size
);
5428 ASSERT(type
== ARC_BUFC_DATA
);
5429 zio_data_buf_free(buf
, size
);
5434 * Free the arc data buffer.
5437 arc_free_data_impl(arc_buf_hdr_t
*hdr
, uint64_t size
, void *tag
)
5439 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
5440 arc_buf_contents_t type
= arc_buf_type(hdr
);
5442 /* protected by hash lock, if in the hash table */
5443 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
5444 ASSERT(refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
5445 ASSERT(state
!= arc_anon
&& state
!= arc_l2c_only
);
5447 (void) refcount_remove_many(&state
->arcs_esize
[type
],
5450 (void) refcount_remove_many(&state
->arcs_size
, size
, tag
);
5452 VERIFY3U(hdr
->b_type
, ==, type
);
5453 if (type
== ARC_BUFC_METADATA
) {
5454 arc_space_return(size
, ARC_SPACE_META
);
5456 ASSERT(type
== ARC_BUFC_DATA
);
5457 arc_space_return(size
, ARC_SPACE_DATA
);
5462 * This routine is called whenever a buffer is accessed.
5463 * NOTE: the hash lock is dropped in this function.
5466 arc_access(arc_buf_hdr_t
*hdr
, kmutex_t
*hash_lock
)
5470 ASSERT(MUTEX_HELD(hash_lock
));
5471 ASSERT(HDR_HAS_L1HDR(hdr
));
5473 if (hdr
->b_l1hdr
.b_state
== arc_anon
) {
5475 * This buffer is not in the cache, and does not
5476 * appear in our "ghost" list. Add the new buffer
5480 ASSERT0(hdr
->b_l1hdr
.b_arc_access
);
5481 hdr
->b_l1hdr
.b_arc_access
= ddi_get_lbolt();
5482 DTRACE_PROBE1(new_state__mru
, arc_buf_hdr_t
*, hdr
);
5483 arc_change_state(arc_mru
, hdr
, hash_lock
);
5485 } else if (hdr
->b_l1hdr
.b_state
== arc_mru
) {
5486 now
= ddi_get_lbolt();
5489 * If this buffer is here because of a prefetch, then either:
5490 * - clear the flag if this is a "referencing" read
5491 * (any subsequent access will bump this into the MFU state).
5493 * - move the buffer to the head of the list if this is
5494 * another prefetch (to make it less likely to be evicted).
5496 if (HDR_PREFETCH(hdr
)) {
5497 if (refcount_count(&hdr
->b_l1hdr
.b_refcnt
) == 0) {
5498 /* link protected by hash lock */
5499 ASSERT(multilist_link_active(
5500 &hdr
->b_l1hdr
.b_arc_node
));
5502 arc_hdr_clear_flags(hdr
, ARC_FLAG_PREFETCH
);
5503 atomic_inc_32(&hdr
->b_l1hdr
.b_mru_hits
);
5504 ARCSTAT_BUMP(arcstat_mru_hits
);
5506 hdr
->b_l1hdr
.b_arc_access
= now
;
5511 * This buffer has been "accessed" only once so far,
5512 * but it is still in the cache. Move it to the MFU
5515 if (ddi_time_after(now
, hdr
->b_l1hdr
.b_arc_access
+
5518 * More than 125ms have passed since we
5519 * instantiated this buffer. Move it to the
5520 * most frequently used state.
5522 hdr
->b_l1hdr
.b_arc_access
= now
;
5523 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5524 arc_change_state(arc_mfu
, hdr
, hash_lock
);
5526 atomic_inc_32(&hdr
->b_l1hdr
.b_mru_hits
);
5527 ARCSTAT_BUMP(arcstat_mru_hits
);
5528 } else if (hdr
->b_l1hdr
.b_state
== arc_mru_ghost
) {
5529 arc_state_t
*new_state
;
5531 * This buffer has been "accessed" recently, but
5532 * was evicted from the cache. Move it to the
5536 if (HDR_PREFETCH(hdr
)) {
5537 new_state
= arc_mru
;
5538 if (refcount_count(&hdr
->b_l1hdr
.b_refcnt
) > 0)
5539 arc_hdr_clear_flags(hdr
, ARC_FLAG_PREFETCH
);
5540 DTRACE_PROBE1(new_state__mru
, arc_buf_hdr_t
*, hdr
);
5542 new_state
= arc_mfu
;
5543 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5546 hdr
->b_l1hdr
.b_arc_access
= ddi_get_lbolt();
5547 arc_change_state(new_state
, hdr
, hash_lock
);
5549 atomic_inc_32(&hdr
->b_l1hdr
.b_mru_ghost_hits
);
5550 ARCSTAT_BUMP(arcstat_mru_ghost_hits
);
5551 } else if (hdr
->b_l1hdr
.b_state
== arc_mfu
) {
5553 * This buffer has been accessed more than once and is
5554 * still in the cache. Keep it in the MFU state.
5556 * NOTE: an add_reference() that occurred when we did
5557 * the arc_read() will have kicked this off the list.
5558 * If it was a prefetch, we will explicitly move it to
5559 * the head of the list now.
5561 if ((HDR_PREFETCH(hdr
)) != 0) {
5562 ASSERT(refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
5563 /* link protected by hash_lock */
5564 ASSERT(multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
5566 atomic_inc_32(&hdr
->b_l1hdr
.b_mfu_hits
);
5567 ARCSTAT_BUMP(arcstat_mfu_hits
);
5568 hdr
->b_l1hdr
.b_arc_access
= ddi_get_lbolt();
5569 } else if (hdr
->b_l1hdr
.b_state
== arc_mfu_ghost
) {
5570 arc_state_t
*new_state
= arc_mfu
;
5572 * This buffer has been accessed more than once but has
5573 * been evicted from the cache. Move it back to the
5577 if (HDR_PREFETCH(hdr
)) {
5579 * This is a prefetch access...
5580 * move this block back to the MRU state.
5582 ASSERT0(refcount_count(&hdr
->b_l1hdr
.b_refcnt
));
5583 new_state
= arc_mru
;
5586 hdr
->b_l1hdr
.b_arc_access
= ddi_get_lbolt();
5587 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5588 arc_change_state(new_state
, hdr
, hash_lock
);
5590 atomic_inc_32(&hdr
->b_l1hdr
.b_mfu_ghost_hits
);
5591 ARCSTAT_BUMP(arcstat_mfu_ghost_hits
);
5592 } else if (hdr
->b_l1hdr
.b_state
== arc_l2c_only
) {
5594 * This buffer is on the 2nd Level ARC.
5597 hdr
->b_l1hdr
.b_arc_access
= ddi_get_lbolt();
5598 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5599 arc_change_state(arc_mfu
, hdr
, hash_lock
);
5601 cmn_err(CE_PANIC
, "invalid arc state 0x%p",
5602 hdr
->b_l1hdr
.b_state
);
5606 /* a generic arc_read_done_func_t which you can use */
5609 arc_bcopy_func(zio_t
*zio
, int error
, arc_buf_t
*buf
, void *arg
)
5612 bcopy(buf
->b_data
, arg
, arc_buf_size(buf
));
5613 arc_buf_destroy(buf
, arg
);
5616 /* a generic arc_read_done_func_t */
5618 arc_getbuf_func(zio_t
*zio
, int error
, arc_buf_t
*buf
, void *arg
)
5620 arc_buf_t
**bufp
= arg
;
5622 arc_buf_destroy(buf
, arg
);
5626 ASSERT(buf
->b_data
);
5631 arc_hdr_verify(arc_buf_hdr_t
*hdr
, blkptr_t
*bp
)
5633 if (BP_IS_HOLE(bp
) || BP_IS_EMBEDDED(bp
)) {
5634 ASSERT3U(HDR_GET_PSIZE(hdr
), ==, 0);
5635 ASSERT3U(arc_hdr_get_compress(hdr
), ==, ZIO_COMPRESS_OFF
);
5637 if (HDR_COMPRESSION_ENABLED(hdr
)) {
5638 ASSERT3U(arc_hdr_get_compress(hdr
), ==,
5639 BP_GET_COMPRESS(bp
));
5641 ASSERT3U(HDR_GET_LSIZE(hdr
), ==, BP_GET_LSIZE(bp
));
5642 ASSERT3U(HDR_GET_PSIZE(hdr
), ==, BP_GET_PSIZE(bp
));
5643 ASSERT3U(!!HDR_PROTECTED(hdr
), ==, BP_IS_PROTECTED(bp
));
5648 arc_read_done(zio_t
*zio
)
5650 blkptr_t
*bp
= zio
->io_bp
;
5651 arc_buf_hdr_t
*hdr
= zio
->io_private
;
5652 kmutex_t
*hash_lock
= NULL
;
5653 arc_callback_t
*callback_list
;
5654 arc_callback_t
*acb
;
5655 boolean_t freeable
= B_FALSE
;
5656 boolean_t no_zio_error
= (zio
->io_error
== 0);
5659 * The hdr was inserted into hash-table and removed from lists
5660 * prior to starting I/O. We should find this header, since
5661 * it's in the hash table, and it should be legit since it's
5662 * not possible to evict it during the I/O. The only possible
5663 * reason for it not to be found is if we were freed during the
5666 if (HDR_IN_HASH_TABLE(hdr
)) {
5667 arc_buf_hdr_t
*found
;
5669 ASSERT3U(hdr
->b_birth
, ==, BP_PHYSICAL_BIRTH(zio
->io_bp
));
5670 ASSERT3U(hdr
->b_dva
.dva_word
[0], ==,
5671 BP_IDENTITY(zio
->io_bp
)->dva_word
[0]);
5672 ASSERT3U(hdr
->b_dva
.dva_word
[1], ==,
5673 BP_IDENTITY(zio
->io_bp
)->dva_word
[1]);
5675 found
= buf_hash_find(hdr
->b_spa
, zio
->io_bp
, &hash_lock
);
5677 ASSERT((found
== hdr
&&
5678 DVA_EQUAL(&hdr
->b_dva
, BP_IDENTITY(zio
->io_bp
))) ||
5679 (found
== hdr
&& HDR_L2_READING(hdr
)));
5680 ASSERT3P(hash_lock
, !=, NULL
);
5683 if (BP_IS_PROTECTED(bp
)) {
5684 hdr
->b_crypt_hdr
.b_ot
= BP_GET_TYPE(bp
);
5685 hdr
->b_crypt_hdr
.b_dsobj
= zio
->io_bookmark
.zb_objset
;
5686 zio_crypt_decode_params_bp(bp
, hdr
->b_crypt_hdr
.b_salt
,
5687 hdr
->b_crypt_hdr
.b_iv
);
5689 if (BP_GET_TYPE(bp
) == DMU_OT_INTENT_LOG
) {
5692 tmpbuf
= abd_borrow_buf_copy(zio
->io_abd
,
5693 sizeof (zil_chain_t
));
5694 zio_crypt_decode_mac_zil(tmpbuf
,
5695 hdr
->b_crypt_hdr
.b_mac
);
5696 abd_return_buf(zio
->io_abd
, tmpbuf
,
5697 sizeof (zil_chain_t
));
5699 zio_crypt_decode_mac_bp(bp
, hdr
->b_crypt_hdr
.b_mac
);
5704 /* byteswap if necessary */
5705 if (BP_SHOULD_BYTESWAP(zio
->io_bp
)) {
5706 if (BP_GET_LEVEL(zio
->io_bp
) > 0) {
5707 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_UINT64
;
5709 hdr
->b_l1hdr
.b_byteswap
=
5710 DMU_OT_BYTESWAP(BP_GET_TYPE(zio
->io_bp
));
5713 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
5717 arc_hdr_clear_flags(hdr
, ARC_FLAG_L2_EVICTED
);
5718 if (l2arc_noprefetch
&& HDR_PREFETCH(hdr
))
5719 arc_hdr_clear_flags(hdr
, ARC_FLAG_L2CACHE
);
5721 callback_list
= hdr
->b_l1hdr
.b_acb
;
5722 ASSERT3P(callback_list
, !=, NULL
);
5724 if (hash_lock
&& no_zio_error
&& hdr
->b_l1hdr
.b_state
== arc_anon
) {
5726 * Only call arc_access on anonymous buffers. This is because
5727 * if we've issued an I/O for an evicted buffer, we've already
5728 * called arc_access (to prevent any simultaneous readers from
5729 * getting confused).
5731 arc_access(hdr
, hash_lock
);
5735 * If a read request has a callback (i.e. acb_done is not NULL), then we
5736 * make a buf containing the data according to the parameters which were
5737 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5738 * aren't needlessly decompressing the data multiple times.
5740 int callback_cnt
= 0;
5741 for (acb
= callback_list
; acb
!= NULL
; acb
= acb
->acb_next
) {
5745 /* This is a demand read since prefetches don't use callbacks */
5748 int error
= arc_buf_alloc_impl(hdr
, zio
->io_spa
,
5749 zio
->io_bookmark
.zb_objset
, acb
->acb_private
,
5750 acb
->acb_encrypted
, acb
->acb_compressed
, acb
->acb_noauth
,
5751 no_zio_error
, &acb
->acb_buf
);
5754 * assert non-speculative zios didn't fail because an
5755 * encryption key wasn't loaded
5757 ASSERT((zio
->io_flags
& ZIO_FLAG_SPECULATIVE
) ||
5758 error
== 0 || error
!= ENOENT
);
5761 * If we failed to decrypt, report an error now (as the zio
5762 * layer would have done if it had done the transforms).
5764 if (error
== ECKSUM
) {
5765 ASSERT(BP_IS_PROTECTED(bp
));
5766 error
= SET_ERROR(EIO
);
5767 spa_log_error(zio
->io_spa
, &zio
->io_bookmark
);
5768 if ((zio
->io_flags
& ZIO_FLAG_SPECULATIVE
) == 0) {
5769 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION
,
5770 zio
->io_spa
, NULL
, &zio
->io_bookmark
, zio
,
5776 zio
->io_error
= error
;
5779 hdr
->b_l1hdr
.b_acb
= NULL
;
5780 arc_hdr_clear_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
5781 if (callback_cnt
== 0) {
5782 ASSERT(HDR_PREFETCH(hdr
) || HDR_HAS_RABD(hdr
));
5783 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
|| HDR_HAS_RABD(hdr
));
5786 ASSERT(refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
) ||
5787 callback_list
!= NULL
);
5790 arc_hdr_verify(hdr
, zio
->io_bp
);
5792 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_ERROR
);
5793 if (hdr
->b_l1hdr
.b_state
!= arc_anon
)
5794 arc_change_state(arc_anon
, hdr
, hash_lock
);
5795 if (HDR_IN_HASH_TABLE(hdr
))
5796 buf_hash_remove(hdr
);
5797 freeable
= refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
);
5801 * Broadcast before we drop the hash_lock to avoid the possibility
5802 * that the hdr (and hence the cv) might be freed before we get to
5803 * the cv_broadcast().
5805 cv_broadcast(&hdr
->b_l1hdr
.b_cv
);
5807 if (hash_lock
!= NULL
) {
5808 mutex_exit(hash_lock
);
5811 * This block was freed while we waited for the read to
5812 * complete. It has been removed from the hash table and
5813 * moved to the anonymous state (so that it won't show up
5816 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
5817 freeable
= refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
);
5820 /* execute each callback and free its structure */
5821 while ((acb
= callback_list
) != NULL
) {
5822 if (acb
->acb_done
) {
5823 acb
->acb_done(zio
, zio
->io_error
, acb
->acb_buf
,
5827 if (acb
->acb_zio_dummy
!= NULL
) {
5828 acb
->acb_zio_dummy
->io_error
= zio
->io_error
;
5829 zio_nowait(acb
->acb_zio_dummy
);
5832 callback_list
= acb
->acb_next
;
5833 kmem_free(acb
, sizeof (arc_callback_t
));
5837 arc_hdr_destroy(hdr
);
5841 * "Read" the block at the specified DVA (in bp) via the
5842 * cache. If the block is found in the cache, invoke the provided
5843 * callback immediately and return. Note that the `zio' parameter
5844 * in the callback will be NULL in this case, since no IO was
5845 * required. If the block is not in the cache pass the read request
5846 * on to the spa with a substitute callback function, so that the
5847 * requested block will be added to the cache.
5849 * If a read request arrives for a block that has a read in-progress,
5850 * either wait for the in-progress read to complete (and return the
5851 * results); or, if this is a read with a "done" func, add a record
5852 * to the read to invoke the "done" func when the read completes,
5853 * and return; or just return.
5855 * arc_read_done() will invoke all the requested "done" functions
5856 * for readers of this block.
5859 arc_read(zio_t
*pio
, spa_t
*spa
, const blkptr_t
*bp
,
5860 arc_read_done_func_t
*done
, void *private, zio_priority_t priority
,
5861 int zio_flags
, arc_flags_t
*arc_flags
, const zbookmark_phys_t
*zb
)
5863 arc_buf_hdr_t
*hdr
= NULL
;
5864 kmutex_t
*hash_lock
= NULL
;
5866 uint64_t guid
= spa_load_guid(spa
);
5867 boolean_t compressed_read
= (zio_flags
& ZIO_FLAG_RAW_COMPRESS
) != 0;
5868 boolean_t encrypted_read
= BP_IS_ENCRYPTED(bp
) &&
5869 (zio_flags
& ZIO_FLAG_RAW_ENCRYPT
) != 0;
5870 boolean_t noauth_read
= BP_IS_AUTHENTICATED(bp
) &&
5871 (zio_flags
& ZIO_FLAG_RAW_ENCRYPT
) != 0;
5874 ASSERT(!BP_IS_EMBEDDED(bp
) ||
5875 BPE_GET_ETYPE(bp
) == BP_EMBEDDED_TYPE_DATA
);
5878 if (!BP_IS_EMBEDDED(bp
)) {
5880 * Embedded BP's have no DVA and require no I/O to "read".
5881 * Create an anonymous arc buf to back it.
5883 hdr
= buf_hash_find(guid
, bp
, &hash_lock
);
5887 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5888 * we maintain encrypted data seperately from compressed / uncompressed
5889 * data. If the user is requesting raw encrypted data and we don't have
5890 * that in the header we will read from disk to guarantee that we can
5891 * get it even if the encryption keys aren't loaded.
5893 if (hdr
!= NULL
&& HDR_HAS_L1HDR(hdr
) && (HDR_HAS_RABD(hdr
) ||
5894 (hdr
->b_l1hdr
.b_pabd
!= NULL
&& !encrypted_read
))) {
5895 arc_buf_t
*buf
= NULL
;
5896 *arc_flags
|= ARC_FLAG_CACHED
;
5898 if (HDR_IO_IN_PROGRESS(hdr
)) {
5900 if ((hdr
->b_flags
& ARC_FLAG_PRIO_ASYNC_READ
) &&
5901 priority
== ZIO_PRIORITY_SYNC_READ
) {
5903 * This sync read must wait for an
5904 * in-progress async read (e.g. a predictive
5905 * prefetch). Async reads are queued
5906 * separately at the vdev_queue layer, so
5907 * this is a form of priority inversion.
5908 * Ideally, we would "inherit" the demand
5909 * i/o's priority by moving the i/o from
5910 * the async queue to the synchronous queue,
5911 * but there is currently no mechanism to do
5912 * so. Track this so that we can evaluate
5913 * the magnitude of this potential performance
5916 * Note that if the prefetch i/o is already
5917 * active (has been issued to the device),
5918 * the prefetch improved performance, because
5919 * we issued it sooner than we would have
5920 * without the prefetch.
5922 DTRACE_PROBE1(arc__sync__wait__for__async
,
5923 arc_buf_hdr_t
*, hdr
);
5924 ARCSTAT_BUMP(arcstat_sync_wait_for_async
);
5926 if (hdr
->b_flags
& ARC_FLAG_PREDICTIVE_PREFETCH
) {
5927 arc_hdr_clear_flags(hdr
,
5928 ARC_FLAG_PREDICTIVE_PREFETCH
);
5931 if (*arc_flags
& ARC_FLAG_WAIT
) {
5932 cv_wait(&hdr
->b_l1hdr
.b_cv
, hash_lock
);
5933 mutex_exit(hash_lock
);
5936 ASSERT(*arc_flags
& ARC_FLAG_NOWAIT
);
5939 arc_callback_t
*acb
= NULL
;
5941 acb
= kmem_zalloc(sizeof (arc_callback_t
),
5943 acb
->acb_done
= done
;
5944 acb
->acb_private
= private;
5945 acb
->acb_compressed
= compressed_read
;
5947 acb
->acb_zio_dummy
= zio_null(pio
,
5948 spa
, NULL
, NULL
, NULL
, zio_flags
);
5950 ASSERT3P(acb
->acb_done
, !=, NULL
);
5951 acb
->acb_next
= hdr
->b_l1hdr
.b_acb
;
5952 hdr
->b_l1hdr
.b_acb
= acb
;
5953 mutex_exit(hash_lock
);
5956 mutex_exit(hash_lock
);
5960 ASSERT(hdr
->b_l1hdr
.b_state
== arc_mru
||
5961 hdr
->b_l1hdr
.b_state
== arc_mfu
);
5964 if (hdr
->b_flags
& ARC_FLAG_PREDICTIVE_PREFETCH
) {
5966 * This is a demand read which does not have to
5967 * wait for i/o because we did a predictive
5968 * prefetch i/o for it, which has completed.
5971 arc__demand__hit__predictive__prefetch
,
5972 arc_buf_hdr_t
*, hdr
);
5974 arcstat_demand_hit_predictive_prefetch
);
5975 arc_hdr_clear_flags(hdr
,
5976 ARC_FLAG_PREDICTIVE_PREFETCH
);
5978 ASSERT(!BP_IS_EMBEDDED(bp
) || !BP_IS_HOLE(bp
));
5980 /* Get a buf with the desired data in it. */
5981 rc
= arc_buf_alloc_impl(hdr
, spa
, zb
->zb_objset
,
5982 private, encrypted_read
, compressed_read
,
5983 noauth_read
, B_TRUE
, &buf
);
5985 ASSERT((zio_flags
& ZIO_FLAG_SPECULATIVE
) ||
5986 rc
== 0 || rc
!= ENOENT
);
5987 } else if (*arc_flags
& ARC_FLAG_PREFETCH
&&
5988 refcount_count(&hdr
->b_l1hdr
.b_refcnt
) == 0) {
5989 arc_hdr_set_flags(hdr
, ARC_FLAG_PREFETCH
);
5991 DTRACE_PROBE1(arc__hit
, arc_buf_hdr_t
*, hdr
);
5992 arc_access(hdr
, hash_lock
);
5993 if (*arc_flags
& ARC_FLAG_L2CACHE
)
5994 arc_hdr_set_flags(hdr
, ARC_FLAG_L2CACHE
);
5995 mutex_exit(hash_lock
);
5996 ARCSTAT_BUMP(arcstat_hits
);
5997 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr
),
5998 demand
, prefetch
, !HDR_ISTYPE_METADATA(hdr
),
5999 data
, metadata
, hits
);
6002 done(NULL
, rc
, buf
, private);
6004 uint64_t lsize
= BP_GET_LSIZE(bp
);
6005 uint64_t psize
= BP_GET_PSIZE(bp
);
6006 arc_callback_t
*acb
;
6009 boolean_t devw
= B_FALSE
;
6014 * Gracefully handle a damaged logical block size as a
6017 if (lsize
> spa_maxblocksize(spa
)) {
6018 rc
= SET_ERROR(ECKSUM
);
6023 /* this block is not in the cache */
6024 arc_buf_hdr_t
*exists
= NULL
;
6025 arc_buf_contents_t type
= BP_GET_BUFC_TYPE(bp
);
6026 hdr
= arc_hdr_alloc(spa_load_guid(spa
), psize
, lsize
,
6027 BP_IS_PROTECTED(bp
), BP_GET_COMPRESS(bp
), type
,
6030 if (!BP_IS_EMBEDDED(bp
)) {
6031 hdr
->b_dva
= *BP_IDENTITY(bp
);
6032 hdr
->b_birth
= BP_PHYSICAL_BIRTH(bp
);
6033 exists
= buf_hash_insert(hdr
, &hash_lock
);
6035 if (exists
!= NULL
) {
6036 /* somebody beat us to the hash insert */
6037 mutex_exit(hash_lock
);
6038 buf_discard_identity(hdr
);
6039 arc_hdr_destroy(hdr
);
6040 goto top
; /* restart the IO request */
6044 * This block is in the ghost cache or encrypted data
6045 * was requested and we didn't have it. If it was
6046 * L2-only (and thus didn't have an L1 hdr),
6047 * we realloc the header to add an L1 hdr.
6049 if (!HDR_HAS_L1HDR(hdr
)) {
6050 hdr
= arc_hdr_realloc(hdr
, hdr_l2only_cache
,
6054 if (GHOST_STATE(hdr
->b_l1hdr
.b_state
)) {
6055 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
6056 ASSERT(!HDR_HAS_RABD(hdr
));
6057 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
6058 ASSERT0(refcount_count(&hdr
->b_l1hdr
.b_refcnt
));
6059 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
6060 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
6061 } else if (HDR_IO_IN_PROGRESS(hdr
)) {
6063 * If this header already had an IO in progress
6064 * and we are performing another IO to fetch
6065 * encrypted data we must wait until the first
6066 * IO completes so as not to confuse
6067 * arc_read_done(). This should be very rare
6068 * and so the performance impact shouldn't
6071 cv_wait(&hdr
->b_l1hdr
.b_cv
, hash_lock
);
6072 mutex_exit(hash_lock
);
6077 * This is a delicate dance that we play here.
6078 * This hdr might be in the ghost list so we access
6079 * it to move it out of the ghost list before we
6080 * initiate the read. If it's a prefetch then
6081 * it won't have a callback so we'll remove the
6082 * reference that arc_buf_alloc_impl() created. We
6083 * do this after we've called arc_access() to
6084 * avoid hitting an assert in remove_reference().
6086 arc_access(hdr
, hash_lock
);
6087 arc_hdr_alloc_abd(hdr
, encrypted_read
);
6090 if (encrypted_read
) {
6091 ASSERT(HDR_HAS_RABD(hdr
));
6092 size
= HDR_GET_PSIZE(hdr
);
6093 hdr_abd
= hdr
->b_crypt_hdr
.b_rabd
;
6094 zio_flags
|= ZIO_FLAG_RAW
;
6096 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
6097 size
= arc_hdr_size(hdr
);
6098 hdr_abd
= hdr
->b_l1hdr
.b_pabd
;
6100 if (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
) {
6101 zio_flags
|= ZIO_FLAG_RAW_COMPRESS
;
6105 * For authenticated bp's, we do not ask the ZIO layer
6106 * to authenticate them since this will cause the entire
6107 * IO to fail if the key isn't loaded. Instead, we
6108 * defer authentication until arc_buf_fill(), which will
6109 * verify the data when the key is available.
6111 if (BP_IS_AUTHENTICATED(bp
))
6112 zio_flags
|= ZIO_FLAG_RAW_ENCRYPT
;
6115 if (*arc_flags
& ARC_FLAG_PREFETCH
&&
6116 refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
))
6117 arc_hdr_set_flags(hdr
, ARC_FLAG_PREFETCH
);
6118 if (*arc_flags
& ARC_FLAG_L2CACHE
)
6119 arc_hdr_set_flags(hdr
, ARC_FLAG_L2CACHE
);
6120 if (BP_IS_AUTHENTICATED(bp
))
6121 arc_hdr_set_flags(hdr
, ARC_FLAG_NOAUTH
);
6122 if (BP_GET_LEVEL(bp
) > 0)
6123 arc_hdr_set_flags(hdr
, ARC_FLAG_INDIRECT
);
6124 if (*arc_flags
& ARC_FLAG_PREDICTIVE_PREFETCH
)
6125 arc_hdr_set_flags(hdr
, ARC_FLAG_PREDICTIVE_PREFETCH
);
6126 ASSERT(!GHOST_STATE(hdr
->b_l1hdr
.b_state
));
6128 acb
= kmem_zalloc(sizeof (arc_callback_t
), KM_SLEEP
);
6129 acb
->acb_done
= done
;
6130 acb
->acb_private
= private;
6131 acb
->acb_compressed
= compressed_read
;
6132 acb
->acb_encrypted
= encrypted_read
;
6133 acb
->acb_noauth
= noauth_read
;
6135 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
6136 hdr
->b_l1hdr
.b_acb
= acb
;
6137 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
6139 if (HDR_HAS_L2HDR(hdr
) &&
6140 (vd
= hdr
->b_l2hdr
.b_dev
->l2ad_vdev
) != NULL
) {
6141 devw
= hdr
->b_l2hdr
.b_dev
->l2ad_writing
;
6142 addr
= hdr
->b_l2hdr
.b_daddr
;
6144 * Lock out device removal.
6146 if (vdev_is_dead(vd
) ||
6147 !spa_config_tryenter(spa
, SCL_L2ARC
, vd
, RW_READER
))
6151 if (priority
== ZIO_PRIORITY_ASYNC_READ
)
6152 arc_hdr_set_flags(hdr
, ARC_FLAG_PRIO_ASYNC_READ
);
6154 arc_hdr_clear_flags(hdr
, ARC_FLAG_PRIO_ASYNC_READ
);
6156 if (hash_lock
!= NULL
)
6157 mutex_exit(hash_lock
);
6160 * At this point, we have a level 1 cache miss. Try again in
6161 * L2ARC if possible.
6163 ASSERT3U(HDR_GET_LSIZE(hdr
), ==, lsize
);
6165 DTRACE_PROBE4(arc__miss
, arc_buf_hdr_t
*, hdr
, blkptr_t
*, bp
,
6166 uint64_t, lsize
, zbookmark_phys_t
*, zb
);
6167 ARCSTAT_BUMP(arcstat_misses
);
6168 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr
),
6169 demand
, prefetch
, !HDR_ISTYPE_METADATA(hdr
),
6170 data
, metadata
, misses
);
6172 if (vd
!= NULL
&& l2arc_ndev
!= 0 && !(l2arc_norw
&& devw
)) {
6174 * Read from the L2ARC if the following are true:
6175 * 1. The L2ARC vdev was previously cached.
6176 * 2. This buffer still has L2ARC metadata.
6177 * 3. This buffer isn't currently writing to the L2ARC.
6178 * 4. The L2ARC entry wasn't evicted, which may
6179 * also have invalidated the vdev.
6180 * 5. This isn't prefetch and l2arc_noprefetch is set.
6182 if (HDR_HAS_L2HDR(hdr
) &&
6183 !HDR_L2_WRITING(hdr
) && !HDR_L2_EVICTED(hdr
) &&
6184 !(l2arc_noprefetch
&& HDR_PREFETCH(hdr
))) {
6185 l2arc_read_callback_t
*cb
;
6189 DTRACE_PROBE1(l2arc__hit
, arc_buf_hdr_t
*, hdr
);
6190 ARCSTAT_BUMP(arcstat_l2_hits
);
6191 atomic_inc_32(&hdr
->b_l2hdr
.b_hits
);
6193 cb
= kmem_zalloc(sizeof (l2arc_read_callback_t
),
6195 cb
->l2rcb_hdr
= hdr
;
6198 cb
->l2rcb_flags
= zio_flags
;
6200 asize
= vdev_psize_to_asize(vd
, size
);
6201 if (asize
!= size
) {
6202 abd
= abd_alloc_for_io(asize
,
6203 HDR_ISTYPE_METADATA(hdr
));
6204 cb
->l2rcb_abd
= abd
;
6209 ASSERT(addr
>= VDEV_LABEL_START_SIZE
&&
6210 addr
+ asize
<= vd
->vdev_psize
-
6211 VDEV_LABEL_END_SIZE
);
6214 * l2arc read. The SCL_L2ARC lock will be
6215 * released by l2arc_read_done().
6216 * Issue a null zio if the underlying buffer
6217 * was squashed to zero size by compression.
6219 ASSERT3U(arc_hdr_get_compress(hdr
), !=,
6220 ZIO_COMPRESS_EMPTY
);
6221 rzio
= zio_read_phys(pio
, vd
, addr
,
6224 l2arc_read_done
, cb
, priority
,
6225 zio_flags
| ZIO_FLAG_DONT_CACHE
|
6227 ZIO_FLAG_DONT_PROPAGATE
|
6228 ZIO_FLAG_DONT_RETRY
, B_FALSE
);
6230 DTRACE_PROBE2(l2arc__read
, vdev_t
*, vd
,
6232 ARCSTAT_INCR(arcstat_l2_read_bytes
,
6233 HDR_GET_PSIZE(hdr
));
6235 if (*arc_flags
& ARC_FLAG_NOWAIT
) {
6240 ASSERT(*arc_flags
& ARC_FLAG_WAIT
);
6241 if (zio_wait(rzio
) == 0)
6244 /* l2arc read error; goto zio_read() */
6246 DTRACE_PROBE1(l2arc__miss
,
6247 arc_buf_hdr_t
*, hdr
);
6248 ARCSTAT_BUMP(arcstat_l2_misses
);
6249 if (HDR_L2_WRITING(hdr
))
6250 ARCSTAT_BUMP(arcstat_l2_rw_clash
);
6251 spa_config_exit(spa
, SCL_L2ARC
, vd
);
6255 spa_config_exit(spa
, SCL_L2ARC
, vd
);
6256 if (l2arc_ndev
!= 0) {
6257 DTRACE_PROBE1(l2arc__miss
,
6258 arc_buf_hdr_t
*, hdr
);
6259 ARCSTAT_BUMP(arcstat_l2_misses
);
6263 rzio
= zio_read(pio
, spa
, bp
, hdr_abd
, size
,
6264 arc_read_done
, hdr
, priority
, zio_flags
, zb
);
6266 if (*arc_flags
& ARC_FLAG_WAIT
) {
6267 rc
= zio_wait(rzio
);
6271 ASSERT(*arc_flags
& ARC_FLAG_NOWAIT
);
6276 spa_read_history_add(spa
, zb
, *arc_flags
);
6281 arc_add_prune_callback(arc_prune_func_t
*func
, void *private)
6285 p
= kmem_alloc(sizeof (*p
), KM_SLEEP
);
6287 p
->p_private
= private;
6288 list_link_init(&p
->p_node
);
6289 refcount_create(&p
->p_refcnt
);
6291 mutex_enter(&arc_prune_mtx
);
6292 refcount_add(&p
->p_refcnt
, &arc_prune_list
);
6293 list_insert_head(&arc_prune_list
, p
);
6294 mutex_exit(&arc_prune_mtx
);
6300 arc_remove_prune_callback(arc_prune_t
*p
)
6302 boolean_t wait
= B_FALSE
;
6303 mutex_enter(&arc_prune_mtx
);
6304 list_remove(&arc_prune_list
, p
);
6305 if (refcount_remove(&p
->p_refcnt
, &arc_prune_list
) > 0)
6307 mutex_exit(&arc_prune_mtx
);
6309 /* wait for arc_prune_task to finish */
6311 taskq_wait_outstanding(arc_prune_taskq
, 0);
6312 ASSERT0(refcount_count(&p
->p_refcnt
));
6313 refcount_destroy(&p
->p_refcnt
);
6314 kmem_free(p
, sizeof (*p
));
6318 * Notify the arc that a block was freed, and thus will never be used again.
6321 arc_freed(spa_t
*spa
, const blkptr_t
*bp
)
6324 kmutex_t
*hash_lock
;
6325 uint64_t guid
= spa_load_guid(spa
);
6327 ASSERT(!BP_IS_EMBEDDED(bp
));
6329 hdr
= buf_hash_find(guid
, bp
, &hash_lock
);
6334 * We might be trying to free a block that is still doing I/O
6335 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6336 * dmu_sync-ed block). If this block is being prefetched, then it
6337 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6338 * until the I/O completes. A block may also have a reference if it is
6339 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6340 * have written the new block to its final resting place on disk but
6341 * without the dedup flag set. This would have left the hdr in the MRU
6342 * state and discoverable. When the txg finally syncs it detects that
6343 * the block was overridden in open context and issues an override I/O.
6344 * Since this is a dedup block, the override I/O will determine if the
6345 * block is already in the DDT. If so, then it will replace the io_bp
6346 * with the bp from the DDT and allow the I/O to finish. When the I/O
6347 * reaches the done callback, dbuf_write_override_done, it will
6348 * check to see if the io_bp and io_bp_override are identical.
6349 * If they are not, then it indicates that the bp was replaced with
6350 * the bp in the DDT and the override bp is freed. This allows
6351 * us to arrive here with a reference on a block that is being
6352 * freed. So if we have an I/O in progress, or a reference to
6353 * this hdr, then we don't destroy the hdr.
6355 if (!HDR_HAS_L1HDR(hdr
) || (!HDR_IO_IN_PROGRESS(hdr
) &&
6356 refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
))) {
6357 arc_change_state(arc_anon
, hdr
, hash_lock
);
6358 arc_hdr_destroy(hdr
);
6359 mutex_exit(hash_lock
);
6361 mutex_exit(hash_lock
);
6367 * Release this buffer from the cache, making it an anonymous buffer. This
6368 * must be done after a read and prior to modifying the buffer contents.
6369 * If the buffer has more than one reference, we must make
6370 * a new hdr for the buffer.
6373 arc_release(arc_buf_t
*buf
, void *tag
)
6375 kmutex_t
*hash_lock
;
6377 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
6380 * It would be nice to assert that if its DMU metadata (level >
6381 * 0 || it's the dnode file), then it must be syncing context.
6382 * But we don't know that information at this level.
6385 mutex_enter(&buf
->b_evict_lock
);
6387 ASSERT(HDR_HAS_L1HDR(hdr
));
6390 * We don't grab the hash lock prior to this check, because if
6391 * the buffer's header is in the arc_anon state, it won't be
6392 * linked into the hash table.
6394 if (hdr
->b_l1hdr
.b_state
== arc_anon
) {
6395 mutex_exit(&buf
->b_evict_lock
);
6396 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
6397 ASSERT(!HDR_IN_HASH_TABLE(hdr
));
6398 ASSERT(!HDR_HAS_L2HDR(hdr
));
6399 ASSERT(HDR_EMPTY(hdr
));
6401 ASSERT3U(hdr
->b_l1hdr
.b_bufcnt
, ==, 1);
6402 ASSERT3S(refcount_count(&hdr
->b_l1hdr
.b_refcnt
), ==, 1);
6403 ASSERT(!list_link_active(&hdr
->b_l1hdr
.b_arc_node
));
6405 hdr
->b_l1hdr
.b_arc_access
= 0;
6408 * If the buf is being overridden then it may already
6409 * have a hdr that is not empty.
6411 buf_discard_identity(hdr
);
6417 hash_lock
= HDR_LOCK(hdr
);
6418 mutex_enter(hash_lock
);
6421 * This assignment is only valid as long as the hash_lock is
6422 * held, we must be careful not to reference state or the
6423 * b_state field after dropping the lock.
6425 state
= hdr
->b_l1hdr
.b_state
;
6426 ASSERT3P(hash_lock
, ==, HDR_LOCK(hdr
));
6427 ASSERT3P(state
, !=, arc_anon
);
6429 /* this buffer is not on any list */
6430 ASSERT3S(refcount_count(&hdr
->b_l1hdr
.b_refcnt
), >, 0);
6432 if (HDR_HAS_L2HDR(hdr
)) {
6433 mutex_enter(&hdr
->b_l2hdr
.b_dev
->l2ad_mtx
);
6436 * We have to recheck this conditional again now that
6437 * we're holding the l2ad_mtx to prevent a race with
6438 * another thread which might be concurrently calling
6439 * l2arc_evict(). In that case, l2arc_evict() might have
6440 * destroyed the header's L2 portion as we were waiting
6441 * to acquire the l2ad_mtx.
6443 if (HDR_HAS_L2HDR(hdr
))
6444 arc_hdr_l2hdr_destroy(hdr
);
6446 mutex_exit(&hdr
->b_l2hdr
.b_dev
->l2ad_mtx
);
6450 * Do we have more than one buf?
6452 if (hdr
->b_l1hdr
.b_bufcnt
> 1) {
6453 arc_buf_hdr_t
*nhdr
;
6454 uint64_t spa
= hdr
->b_spa
;
6455 uint64_t psize
= HDR_GET_PSIZE(hdr
);
6456 uint64_t lsize
= HDR_GET_LSIZE(hdr
);
6457 boolean_t
protected = HDR_PROTECTED(hdr
);
6458 enum zio_compress compress
= arc_hdr_get_compress(hdr
);
6459 arc_buf_contents_t type
= arc_buf_type(hdr
);
6460 VERIFY3U(hdr
->b_type
, ==, type
);
6462 ASSERT(hdr
->b_l1hdr
.b_buf
!= buf
|| buf
->b_next
!= NULL
);
6463 (void) remove_reference(hdr
, hash_lock
, tag
);
6465 if (arc_buf_is_shared(buf
) && !ARC_BUF_COMPRESSED(buf
)) {
6466 ASSERT3P(hdr
->b_l1hdr
.b_buf
, !=, buf
);
6467 ASSERT(ARC_BUF_LAST(buf
));
6471 * Pull the data off of this hdr and attach it to
6472 * a new anonymous hdr. Also find the last buffer
6473 * in the hdr's buffer list.
6475 arc_buf_t
*lastbuf
= arc_buf_remove(hdr
, buf
);
6476 ASSERT3P(lastbuf
, !=, NULL
);
6479 * If the current arc_buf_t and the hdr are sharing their data
6480 * buffer, then we must stop sharing that block.
6482 if (arc_buf_is_shared(buf
)) {
6483 ASSERT3P(hdr
->b_l1hdr
.b_buf
, !=, buf
);
6484 VERIFY(!arc_buf_is_shared(lastbuf
));
6487 * First, sever the block sharing relationship between
6488 * buf and the arc_buf_hdr_t.
6490 arc_unshare_buf(hdr
, buf
);
6493 * Now we need to recreate the hdr's b_pabd. Since we
6494 * have lastbuf handy, we try to share with it, but if
6495 * we can't then we allocate a new b_pabd and copy the
6496 * data from buf into it.
6498 if (arc_can_share(hdr
, lastbuf
)) {
6499 arc_share_buf(hdr
, lastbuf
);
6501 arc_hdr_alloc_abd(hdr
, B_FALSE
);
6502 abd_copy_from_buf(hdr
->b_l1hdr
.b_pabd
,
6503 buf
->b_data
, psize
);
6505 VERIFY3P(lastbuf
->b_data
, !=, NULL
);
6506 } else if (HDR_SHARED_DATA(hdr
)) {
6508 * Uncompressed shared buffers are always at the end
6509 * of the list. Compressed buffers don't have the
6510 * same requirements. This makes it hard to
6511 * simply assert that the lastbuf is shared so
6512 * we rely on the hdr's compression flags to determine
6513 * if we have a compressed, shared buffer.
6515 ASSERT(arc_buf_is_shared(lastbuf
) ||
6516 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
);
6517 ASSERT(!ARC_BUF_SHARED(buf
));
6520 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
|| HDR_HAS_RABD(hdr
));
6521 ASSERT3P(state
, !=, arc_l2c_only
);
6523 (void) refcount_remove_many(&state
->arcs_size
,
6524 arc_buf_size(buf
), buf
);
6526 if (refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
)) {
6527 ASSERT3P(state
, !=, arc_l2c_only
);
6528 (void) refcount_remove_many(&state
->arcs_esize
[type
],
6529 arc_buf_size(buf
), buf
);
6532 hdr
->b_l1hdr
.b_bufcnt
-= 1;
6533 if (ARC_BUF_ENCRYPTED(buf
))
6534 hdr
->b_crypt_hdr
.b_ebufcnt
-= 1;
6536 arc_cksum_verify(buf
);
6537 arc_buf_unwatch(buf
);
6539 /* if this is the last uncompressed buf free the checksum */
6540 if (!arc_hdr_has_uncompressed_buf(hdr
))
6541 arc_cksum_free(hdr
);
6543 mutex_exit(hash_lock
);
6546 * Allocate a new hdr. The new hdr will contain a b_pabd
6547 * buffer which will be freed in arc_write().
6549 nhdr
= arc_hdr_alloc(spa
, psize
, lsize
, protected,
6550 compress
, type
, HDR_HAS_RABD(hdr
));
6551 ASSERT3P(nhdr
->b_l1hdr
.b_buf
, ==, NULL
);
6552 ASSERT0(nhdr
->b_l1hdr
.b_bufcnt
);
6553 ASSERT0(refcount_count(&nhdr
->b_l1hdr
.b_refcnt
));
6554 VERIFY3U(nhdr
->b_type
, ==, type
);
6555 ASSERT(!HDR_SHARED_DATA(nhdr
));
6557 nhdr
->b_l1hdr
.b_buf
= buf
;
6558 nhdr
->b_l1hdr
.b_bufcnt
= 1;
6559 if (ARC_BUF_ENCRYPTED(buf
))
6560 nhdr
->b_crypt_hdr
.b_ebufcnt
= 1;
6561 nhdr
->b_l1hdr
.b_mru_hits
= 0;
6562 nhdr
->b_l1hdr
.b_mru_ghost_hits
= 0;
6563 nhdr
->b_l1hdr
.b_mfu_hits
= 0;
6564 nhdr
->b_l1hdr
.b_mfu_ghost_hits
= 0;
6565 nhdr
->b_l1hdr
.b_l2_hits
= 0;
6566 (void) refcount_add(&nhdr
->b_l1hdr
.b_refcnt
, tag
);
6569 mutex_exit(&buf
->b_evict_lock
);
6570 (void) refcount_add_many(&arc_anon
->arcs_size
,
6571 HDR_GET_LSIZE(nhdr
), buf
);
6573 mutex_exit(&buf
->b_evict_lock
);
6574 ASSERT(refcount_count(&hdr
->b_l1hdr
.b_refcnt
) == 1);
6575 /* protected by hash lock, or hdr is on arc_anon */
6576 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
6577 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
6578 hdr
->b_l1hdr
.b_mru_hits
= 0;
6579 hdr
->b_l1hdr
.b_mru_ghost_hits
= 0;
6580 hdr
->b_l1hdr
.b_mfu_hits
= 0;
6581 hdr
->b_l1hdr
.b_mfu_ghost_hits
= 0;
6582 hdr
->b_l1hdr
.b_l2_hits
= 0;
6583 arc_change_state(arc_anon
, hdr
, hash_lock
);
6584 hdr
->b_l1hdr
.b_arc_access
= 0;
6586 mutex_exit(hash_lock
);
6587 buf_discard_identity(hdr
);
6593 arc_released(arc_buf_t
*buf
)
6597 mutex_enter(&buf
->b_evict_lock
);
6598 released
= (buf
->b_data
!= NULL
&&
6599 buf
->b_hdr
->b_l1hdr
.b_state
== arc_anon
);
6600 mutex_exit(&buf
->b_evict_lock
);
6606 arc_referenced(arc_buf_t
*buf
)
6610 mutex_enter(&buf
->b_evict_lock
);
6611 referenced
= (refcount_count(&buf
->b_hdr
->b_l1hdr
.b_refcnt
));
6612 mutex_exit(&buf
->b_evict_lock
);
6613 return (referenced
);
6618 arc_write_ready(zio_t
*zio
)
6620 arc_write_callback_t
*callback
= zio
->io_private
;
6621 arc_buf_t
*buf
= callback
->awcb_buf
;
6622 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
6623 blkptr_t
*bp
= zio
->io_bp
;
6624 uint64_t psize
= BP_IS_HOLE(bp
) ? 0 : BP_GET_PSIZE(bp
);
6625 enum zio_compress compress
;
6626 fstrans_cookie_t cookie
= spl_fstrans_mark();
6628 ASSERT(HDR_HAS_L1HDR(hdr
));
6629 ASSERT(!refcount_is_zero(&buf
->b_hdr
->b_l1hdr
.b_refcnt
));
6630 ASSERT(hdr
->b_l1hdr
.b_bufcnt
> 0);
6633 * If we're reexecuting this zio because the pool suspended, then
6634 * cleanup any state that was previously set the first time the
6635 * callback was invoked.
6637 if (zio
->io_flags
& ZIO_FLAG_REEXECUTED
) {
6638 arc_cksum_free(hdr
);
6639 arc_buf_unwatch(buf
);
6640 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
6641 if (arc_buf_is_shared(buf
)) {
6642 arc_unshare_buf(hdr
, buf
);
6644 arc_hdr_free_abd(hdr
, B_FALSE
);
6648 if (HDR_HAS_RABD(hdr
))
6649 arc_hdr_free_abd(hdr
, B_TRUE
);
6651 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
6652 ASSERT(!HDR_HAS_RABD(hdr
));
6653 ASSERT(!HDR_SHARED_DATA(hdr
));
6654 ASSERT(!arc_buf_is_shared(buf
));
6656 callback
->awcb_ready(zio
, buf
, callback
->awcb_private
);
6658 if (HDR_IO_IN_PROGRESS(hdr
))
6659 ASSERT(zio
->io_flags
& ZIO_FLAG_REEXECUTED
);
6661 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
6663 if (BP_IS_PROTECTED(bp
) != !!HDR_PROTECTED(hdr
))
6664 hdr
= arc_hdr_realloc_crypt(hdr
, BP_IS_PROTECTED(bp
));
6666 if (BP_IS_PROTECTED(bp
)) {
6667 /* ZIL blocks are written through zio_rewrite */
6668 ASSERT3U(BP_GET_TYPE(bp
), !=, DMU_OT_INTENT_LOG
);
6669 ASSERT(HDR_PROTECTED(hdr
));
6671 hdr
->b_crypt_hdr
.b_ot
= BP_GET_TYPE(bp
);
6672 hdr
->b_crypt_hdr
.b_dsobj
= zio
->io_bookmark
.zb_objset
;
6673 zio_crypt_decode_params_bp(bp
, hdr
->b_crypt_hdr
.b_salt
,
6674 hdr
->b_crypt_hdr
.b_iv
);
6675 zio_crypt_decode_mac_bp(bp
, hdr
->b_crypt_hdr
.b_mac
);
6679 * If this block was written for raw encryption but the zio layer
6680 * ended up only authenticating it, adjust the buffer flags now.
6682 if (BP_IS_AUTHENTICATED(bp
) && ARC_BUF_ENCRYPTED(buf
)) {
6683 arc_hdr_set_flags(hdr
, ARC_FLAG_NOAUTH
);
6684 buf
->b_flags
&= ~ARC_BUF_FLAG_ENCRYPTED
;
6685 if (BP_GET_COMPRESS(bp
) == ZIO_COMPRESS_OFF
)
6686 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
6689 /* this must be done after the buffer flags are adjusted */
6690 arc_cksum_compute(buf
);
6692 if (BP_IS_HOLE(bp
) || BP_IS_EMBEDDED(bp
)) {
6693 compress
= ZIO_COMPRESS_OFF
;
6695 ASSERT3U(HDR_GET_LSIZE(hdr
), ==, BP_GET_LSIZE(bp
));
6696 compress
= BP_GET_COMPRESS(bp
);
6698 HDR_SET_PSIZE(hdr
, psize
);
6699 arc_hdr_set_compress(hdr
, compress
);
6701 if (zio
->io_error
!= 0 || psize
== 0)
6705 * Fill the hdr with data. If the buffer is encrypted we have no choice
6706 * but to copy the data into b_radb. If the hdr is compressed, the data
6707 * we want is available from the zio, otherwise we can take it from
6710 * We might be able to share the buf's data with the hdr here. However,
6711 * doing so would cause the ARC to be full of linear ABDs if we write a
6712 * lot of shareable data. As a compromise, we check whether scattered
6713 * ABDs are allowed, and assume that if they are then the user wants
6714 * the ARC to be primarily filled with them regardless of the data being
6715 * written. Therefore, if they're allowed then we allocate one and copy
6716 * the data into it; otherwise, we share the data directly if we can.
6718 if (ARC_BUF_ENCRYPTED(buf
)) {
6719 ASSERT3U(psize
, >, 0);
6720 ASSERT(ARC_BUF_COMPRESSED(buf
));
6721 arc_hdr_alloc_abd(hdr
, B_TRUE
);
6722 abd_copy(hdr
->b_crypt_hdr
.b_rabd
, zio
->io_abd
, psize
);
6723 } else if (zfs_abd_scatter_enabled
|| !arc_can_share(hdr
, buf
)) {
6725 * Ideally, we would always copy the io_abd into b_pabd, but the
6726 * user may have disabled compressed ARC, thus we must check the
6727 * hdr's compression setting rather than the io_bp's.
6729 if (BP_IS_ENCRYPTED(bp
)) {
6730 ASSERT3U(psize
, >, 0);
6731 arc_hdr_alloc_abd(hdr
, B_TRUE
);
6732 abd_copy(hdr
->b_crypt_hdr
.b_rabd
, zio
->io_abd
, psize
);
6733 } else if (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
&&
6734 !ARC_BUF_COMPRESSED(buf
)) {
6735 ASSERT3U(psize
, >, 0);
6736 arc_hdr_alloc_abd(hdr
, B_FALSE
);
6737 abd_copy(hdr
->b_l1hdr
.b_pabd
, zio
->io_abd
, psize
);
6739 ASSERT3U(zio
->io_orig_size
, ==, arc_hdr_size(hdr
));
6740 arc_hdr_alloc_abd(hdr
, B_FALSE
);
6741 abd_copy_from_buf(hdr
->b_l1hdr
.b_pabd
, buf
->b_data
,
6745 ASSERT3P(buf
->b_data
, ==, abd_to_buf(zio
->io_orig_abd
));
6746 ASSERT3U(zio
->io_orig_size
, ==, arc_buf_size(buf
));
6747 ASSERT3U(hdr
->b_l1hdr
.b_bufcnt
, ==, 1);
6749 arc_share_buf(hdr
, buf
);
6753 arc_hdr_verify(hdr
, bp
);
6754 spl_fstrans_unmark(cookie
);
6758 arc_write_children_ready(zio_t
*zio
)
6760 arc_write_callback_t
*callback
= zio
->io_private
;
6761 arc_buf_t
*buf
= callback
->awcb_buf
;
6763 callback
->awcb_children_ready(zio
, buf
, callback
->awcb_private
);
6767 * The SPA calls this callback for each physical write that happens on behalf
6768 * of a logical write. See the comment in dbuf_write_physdone() for details.
6771 arc_write_physdone(zio_t
*zio
)
6773 arc_write_callback_t
*cb
= zio
->io_private
;
6774 if (cb
->awcb_physdone
!= NULL
)
6775 cb
->awcb_physdone(zio
, cb
->awcb_buf
, cb
->awcb_private
);
6779 arc_write_done(zio_t
*zio
)
6781 arc_write_callback_t
*callback
= zio
->io_private
;
6782 arc_buf_t
*buf
= callback
->awcb_buf
;
6783 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
6785 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
6787 if (zio
->io_error
== 0) {
6788 arc_hdr_verify(hdr
, zio
->io_bp
);
6790 if (BP_IS_HOLE(zio
->io_bp
) || BP_IS_EMBEDDED(zio
->io_bp
)) {
6791 buf_discard_identity(hdr
);
6793 hdr
->b_dva
= *BP_IDENTITY(zio
->io_bp
);
6794 hdr
->b_birth
= BP_PHYSICAL_BIRTH(zio
->io_bp
);
6797 ASSERT(HDR_EMPTY(hdr
));
6801 * If the block to be written was all-zero or compressed enough to be
6802 * embedded in the BP, no write was performed so there will be no
6803 * dva/birth/checksum. The buffer must therefore remain anonymous
6806 if (!HDR_EMPTY(hdr
)) {
6807 arc_buf_hdr_t
*exists
;
6808 kmutex_t
*hash_lock
;
6810 ASSERT3U(zio
->io_error
, ==, 0);
6812 arc_cksum_verify(buf
);
6814 exists
= buf_hash_insert(hdr
, &hash_lock
);
6815 if (exists
!= NULL
) {
6817 * This can only happen if we overwrite for
6818 * sync-to-convergence, because we remove
6819 * buffers from the hash table when we arc_free().
6821 if (zio
->io_flags
& ZIO_FLAG_IO_REWRITE
) {
6822 if (!BP_EQUAL(&zio
->io_bp_orig
, zio
->io_bp
))
6823 panic("bad overwrite, hdr=%p exists=%p",
6824 (void *)hdr
, (void *)exists
);
6825 ASSERT(refcount_is_zero(
6826 &exists
->b_l1hdr
.b_refcnt
));
6827 arc_change_state(arc_anon
, exists
, hash_lock
);
6828 mutex_exit(hash_lock
);
6829 arc_hdr_destroy(exists
);
6830 exists
= buf_hash_insert(hdr
, &hash_lock
);
6831 ASSERT3P(exists
, ==, NULL
);
6832 } else if (zio
->io_flags
& ZIO_FLAG_NOPWRITE
) {
6834 ASSERT(zio
->io_prop
.zp_nopwrite
);
6835 if (!BP_EQUAL(&zio
->io_bp_orig
, zio
->io_bp
))
6836 panic("bad nopwrite, hdr=%p exists=%p",
6837 (void *)hdr
, (void *)exists
);
6840 ASSERT(hdr
->b_l1hdr
.b_bufcnt
== 1);
6841 ASSERT(hdr
->b_l1hdr
.b_state
== arc_anon
);
6842 ASSERT(BP_GET_DEDUP(zio
->io_bp
));
6843 ASSERT(BP_GET_LEVEL(zio
->io_bp
) == 0);
6846 arc_hdr_clear_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
6847 /* if it's not anon, we are doing a scrub */
6848 if (exists
== NULL
&& hdr
->b_l1hdr
.b_state
== arc_anon
)
6849 arc_access(hdr
, hash_lock
);
6850 mutex_exit(hash_lock
);
6852 arc_hdr_clear_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
6855 ASSERT(!refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
6856 callback
->awcb_done(zio
, buf
, callback
->awcb_private
);
6858 abd_put(zio
->io_abd
);
6859 kmem_free(callback
, sizeof (arc_write_callback_t
));
6863 arc_write(zio_t
*pio
, spa_t
*spa
, uint64_t txg
,
6864 blkptr_t
*bp
, arc_buf_t
*buf
, boolean_t l2arc
,
6865 const zio_prop_t
*zp
, arc_write_done_func_t
*ready
,
6866 arc_write_done_func_t
*children_ready
, arc_write_done_func_t
*physdone
,
6867 arc_write_done_func_t
*done
, void *private, zio_priority_t priority
,
6868 int zio_flags
, const zbookmark_phys_t
*zb
)
6870 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
6871 arc_write_callback_t
*callback
;
6873 zio_prop_t localprop
= *zp
;
6875 ASSERT3P(ready
, !=, NULL
);
6876 ASSERT3P(done
, !=, NULL
);
6877 ASSERT(!HDR_IO_ERROR(hdr
));
6878 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
6879 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
6880 ASSERT3U(hdr
->b_l1hdr
.b_bufcnt
, >, 0);
6882 arc_hdr_set_flags(hdr
, ARC_FLAG_L2CACHE
);
6884 if (ARC_BUF_ENCRYPTED(buf
)) {
6885 ASSERT(ARC_BUF_COMPRESSED(buf
));
6886 localprop
.zp_encrypt
= B_TRUE
;
6887 localprop
.zp_compress
= HDR_GET_COMPRESS(hdr
);
6888 localprop
.zp_byteorder
=
6889 (hdr
->b_l1hdr
.b_byteswap
== DMU_BSWAP_NUMFUNCS
) ?
6890 ZFS_HOST_BYTEORDER
: !ZFS_HOST_BYTEORDER
;
6891 bcopy(hdr
->b_crypt_hdr
.b_salt
, localprop
.zp_salt
,
6893 bcopy(hdr
->b_crypt_hdr
.b_iv
, localprop
.zp_iv
,
6895 bcopy(hdr
->b_crypt_hdr
.b_mac
, localprop
.zp_mac
,
6897 if (DMU_OT_IS_ENCRYPTED(localprop
.zp_type
)) {
6898 localprop
.zp_nopwrite
= B_FALSE
;
6899 localprop
.zp_copies
=
6900 MIN(localprop
.zp_copies
, SPA_DVAS_PER_BP
- 1);
6902 zio_flags
|= ZIO_FLAG_RAW
;
6903 } else if (ARC_BUF_COMPRESSED(buf
)) {
6904 ASSERT3U(HDR_GET_LSIZE(hdr
), !=, arc_buf_size(buf
));
6905 localprop
.zp_compress
= HDR_GET_COMPRESS(hdr
);
6906 zio_flags
|= ZIO_FLAG_RAW_COMPRESS
;
6908 callback
= kmem_zalloc(sizeof (arc_write_callback_t
), KM_SLEEP
);
6909 callback
->awcb_ready
= ready
;
6910 callback
->awcb_children_ready
= children_ready
;
6911 callback
->awcb_physdone
= physdone
;
6912 callback
->awcb_done
= done
;
6913 callback
->awcb_private
= private;
6914 callback
->awcb_buf
= buf
;
6917 * The hdr's b_pabd is now stale, free it now. A new data block
6918 * will be allocated when the zio pipeline calls arc_write_ready().
6920 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
6922 * If the buf is currently sharing the data block with
6923 * the hdr then we need to break that relationship here.
6924 * The hdr will remain with a NULL data pointer and the
6925 * buf will take sole ownership of the block.
6927 if (arc_buf_is_shared(buf
)) {
6928 arc_unshare_buf(hdr
, buf
);
6930 arc_hdr_free_abd(hdr
, B_FALSE
);
6932 VERIFY3P(buf
->b_data
, !=, NULL
);
6935 if (HDR_HAS_RABD(hdr
))
6936 arc_hdr_free_abd(hdr
, B_TRUE
);
6938 arc_hdr_set_compress(hdr
, ZIO_COMPRESS_OFF
);
6940 ASSERT(!arc_buf_is_shared(buf
));
6941 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
6943 zio
= zio_write(pio
, spa
, txg
, bp
,
6944 abd_get_from_buf(buf
->b_data
, HDR_GET_LSIZE(hdr
)),
6945 HDR_GET_LSIZE(hdr
), arc_buf_size(buf
), &localprop
, arc_write_ready
,
6946 (children_ready
!= NULL
) ? arc_write_children_ready
: NULL
,
6947 arc_write_physdone
, arc_write_done
, callback
,
6948 priority
, zio_flags
, zb
);
6954 arc_memory_throttle(uint64_t reserve
, uint64_t txg
)
6957 uint64_t available_memory
= arc_free_memory();
6958 static uint64_t page_load
= 0;
6959 static uint64_t last_txg
= 0;
6963 MIN(available_memory
, vmem_size(heap_arena
, VMEM_FREE
));
6966 if (available_memory
> arc_all_memory() * arc_lotsfree_percent
/ 100)
6969 if (txg
> last_txg
) {
6974 * If we are in pageout, we know that memory is already tight,
6975 * the arc is already going to be evicting, so we just want to
6976 * continue to let page writes occur as quickly as possible.
6978 if (current_is_kswapd()) {
6979 if (page_load
> MAX(arc_sys_free
/ 4, available_memory
) / 4) {
6980 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim
);
6981 return (SET_ERROR(ERESTART
));
6983 /* Note: reserve is inflated, so we deflate */
6984 page_load
+= reserve
/ 8;
6986 } else if (page_load
> 0 && arc_reclaim_needed()) {
6987 /* memory is low, delay before restarting */
6988 ARCSTAT_INCR(arcstat_memory_throttle_count
, 1);
6989 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim
);
6990 return (SET_ERROR(EAGAIN
));
6998 arc_tempreserve_clear(uint64_t reserve
)
7000 atomic_add_64(&arc_tempreserve
, -reserve
);
7001 ASSERT((int64_t)arc_tempreserve
>= 0);
7005 arc_tempreserve_space(uint64_t reserve
, uint64_t txg
)
7011 reserve
> arc_c
/4 &&
7012 reserve
* 4 > (2ULL << SPA_MAXBLOCKSHIFT
))
7013 arc_c
= MIN(arc_c_max
, reserve
* 4);
7016 * Throttle when the calculated memory footprint for the TXG
7017 * exceeds the target ARC size.
7019 if (reserve
> arc_c
) {
7020 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve
);
7021 return (SET_ERROR(ERESTART
));
7025 * Don't count loaned bufs as in flight dirty data to prevent long
7026 * network delays from blocking transactions that are ready to be
7027 * assigned to a txg.
7030 /* assert that it has not wrapped around */
7031 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes
, 0), >=, 0);
7033 anon_size
= MAX((int64_t)(refcount_count(&arc_anon
->arcs_size
) -
7034 arc_loaned_bytes
), 0);
7037 * Writes will, almost always, require additional memory allocations
7038 * in order to compress/encrypt/etc the data. We therefore need to
7039 * make sure that there is sufficient available memory for this.
7041 error
= arc_memory_throttle(reserve
, txg
);
7046 * Throttle writes when the amount of dirty data in the cache
7047 * gets too large. We try to keep the cache less than half full
7048 * of dirty blocks so that our sync times don't grow too large.
7049 * Note: if two requests come in concurrently, we might let them
7050 * both succeed, when one of them should fail. Not a huge deal.
7053 if (reserve
+ arc_tempreserve
+ anon_size
> arc_c
/ 2 &&
7054 anon_size
> arc_c
/ 4) {
7055 uint64_t meta_esize
=
7056 refcount_count(&arc_anon
->arcs_esize
[ARC_BUFC_METADATA
]);
7057 uint64_t data_esize
=
7058 refcount_count(&arc_anon
->arcs_esize
[ARC_BUFC_DATA
]);
7059 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7060 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
7061 arc_tempreserve
>> 10, meta_esize
>> 10,
7062 data_esize
>> 10, reserve
>> 10, arc_c
>> 10);
7063 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle
);
7064 return (SET_ERROR(ERESTART
));
7066 atomic_add_64(&arc_tempreserve
, reserve
);
7071 arc_kstat_update_state(arc_state_t
*state
, kstat_named_t
*size
,
7072 kstat_named_t
*evict_data
, kstat_named_t
*evict_metadata
)
7074 size
->value
.ui64
= refcount_count(&state
->arcs_size
);
7075 evict_data
->value
.ui64
=
7076 refcount_count(&state
->arcs_esize
[ARC_BUFC_DATA
]);
7077 evict_metadata
->value
.ui64
=
7078 refcount_count(&state
->arcs_esize
[ARC_BUFC_METADATA
]);
7082 arc_kstat_update(kstat_t
*ksp
, int rw
)
7084 arc_stats_t
*as
= ksp
->ks_data
;
7086 if (rw
== KSTAT_WRITE
) {
7087 return (SET_ERROR(EACCES
));
7089 arc_kstat_update_state(arc_anon
,
7090 &as
->arcstat_anon_size
,
7091 &as
->arcstat_anon_evictable_data
,
7092 &as
->arcstat_anon_evictable_metadata
);
7093 arc_kstat_update_state(arc_mru
,
7094 &as
->arcstat_mru_size
,
7095 &as
->arcstat_mru_evictable_data
,
7096 &as
->arcstat_mru_evictable_metadata
);
7097 arc_kstat_update_state(arc_mru_ghost
,
7098 &as
->arcstat_mru_ghost_size
,
7099 &as
->arcstat_mru_ghost_evictable_data
,
7100 &as
->arcstat_mru_ghost_evictable_metadata
);
7101 arc_kstat_update_state(arc_mfu
,
7102 &as
->arcstat_mfu_size
,
7103 &as
->arcstat_mfu_evictable_data
,
7104 &as
->arcstat_mfu_evictable_metadata
);
7105 arc_kstat_update_state(arc_mfu_ghost
,
7106 &as
->arcstat_mfu_ghost_size
,
7107 &as
->arcstat_mfu_ghost_evictable_data
,
7108 &as
->arcstat_mfu_ghost_evictable_metadata
);
7110 as
->arcstat_memory_all_bytes
.value
.ui64
=
7112 as
->arcstat_memory_free_bytes
.value
.ui64
=
7114 as
->arcstat_memory_available_bytes
.value
.i64
=
7115 arc_available_memory();
7122 * This function *must* return indices evenly distributed between all
7123 * sublists of the multilist. This is needed due to how the ARC eviction
7124 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7125 * distributed between all sublists and uses this assumption when
7126 * deciding which sublist to evict from and how much to evict from it.
7129 arc_state_multilist_index_func(multilist_t
*ml
, void *obj
)
7131 arc_buf_hdr_t
*hdr
= obj
;
7134 * We rely on b_dva to generate evenly distributed index
7135 * numbers using buf_hash below. So, as an added precaution,
7136 * let's make sure we never add empty buffers to the arc lists.
7138 ASSERT(!HDR_EMPTY(hdr
));
7141 * The assumption here, is the hash value for a given
7142 * arc_buf_hdr_t will remain constant throughout its lifetime
7143 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7144 * Thus, we don't need to store the header's sublist index
7145 * on insertion, as this index can be recalculated on removal.
7147 * Also, the low order bits of the hash value are thought to be
7148 * distributed evenly. Otherwise, in the case that the multilist
7149 * has a power of two number of sublists, each sublists' usage
7150 * would not be evenly distributed.
7152 return (buf_hash(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
) %
7153 multilist_get_num_sublists(ml
));
7157 * Called during module initialization and periodically thereafter to
7158 * apply reasonable changes to the exposed performance tunings. Non-zero
7159 * zfs_* values which differ from the currently set values will be applied.
7162 arc_tuning_update(void)
7164 uint64_t allmem
= arc_all_memory();
7165 unsigned long limit
;
7167 /* Valid range: 64M - <all physical memory> */
7168 if ((zfs_arc_max
) && (zfs_arc_max
!= arc_c_max
) &&
7169 (zfs_arc_max
> 64 << 20) && (zfs_arc_max
< allmem
) &&
7170 (zfs_arc_max
> arc_c_min
)) {
7171 arc_c_max
= zfs_arc_max
;
7173 arc_p
= (arc_c
>> 1);
7174 if (arc_meta_limit
> arc_c_max
)
7175 arc_meta_limit
= arc_c_max
;
7176 if (arc_dnode_limit
> arc_meta_limit
)
7177 arc_dnode_limit
= arc_meta_limit
;
7180 /* Valid range: 32M - <arc_c_max> */
7181 if ((zfs_arc_min
) && (zfs_arc_min
!= arc_c_min
) &&
7182 (zfs_arc_min
>= 2ULL << SPA_MAXBLOCKSHIFT
) &&
7183 (zfs_arc_min
<= arc_c_max
)) {
7184 arc_c_min
= zfs_arc_min
;
7185 arc_c
= MAX(arc_c
, arc_c_min
);
7188 /* Valid range: 16M - <arc_c_max> */
7189 if ((zfs_arc_meta_min
) && (zfs_arc_meta_min
!= arc_meta_min
) &&
7190 (zfs_arc_meta_min
>= 1ULL << SPA_MAXBLOCKSHIFT
) &&
7191 (zfs_arc_meta_min
<= arc_c_max
)) {
7192 arc_meta_min
= zfs_arc_meta_min
;
7193 if (arc_meta_limit
< arc_meta_min
)
7194 arc_meta_limit
= arc_meta_min
;
7195 if (arc_dnode_limit
< arc_meta_min
)
7196 arc_dnode_limit
= arc_meta_min
;
7199 /* Valid range: <arc_meta_min> - <arc_c_max> */
7200 limit
= zfs_arc_meta_limit
? zfs_arc_meta_limit
:
7201 MIN(zfs_arc_meta_limit_percent
, 100) * arc_c_max
/ 100;
7202 if ((limit
!= arc_meta_limit
) &&
7203 (limit
>= arc_meta_min
) &&
7204 (limit
<= arc_c_max
))
7205 arc_meta_limit
= limit
;
7207 /* Valid range: <arc_meta_min> - <arc_meta_limit> */
7208 limit
= zfs_arc_dnode_limit
? zfs_arc_dnode_limit
:
7209 MIN(zfs_arc_dnode_limit_percent
, 100) * arc_meta_limit
/ 100;
7210 if ((limit
!= arc_dnode_limit
) &&
7211 (limit
>= arc_meta_min
) &&
7212 (limit
<= arc_meta_limit
))
7213 arc_dnode_limit
= limit
;
7215 /* Valid range: 1 - N */
7216 if (zfs_arc_grow_retry
)
7217 arc_grow_retry
= zfs_arc_grow_retry
;
7219 /* Valid range: 1 - N */
7220 if (zfs_arc_shrink_shift
) {
7221 arc_shrink_shift
= zfs_arc_shrink_shift
;
7222 arc_no_grow_shift
= MIN(arc_no_grow_shift
, arc_shrink_shift
-1);
7225 /* Valid range: 1 - N */
7226 if (zfs_arc_p_min_shift
)
7227 arc_p_min_shift
= zfs_arc_p_min_shift
;
7229 /* Valid range: 1 - N ticks */
7230 if (zfs_arc_min_prefetch_lifespan
)
7231 arc_min_prefetch_lifespan
= zfs_arc_min_prefetch_lifespan
;
7233 /* Valid range: 0 - 100 */
7234 if ((zfs_arc_lotsfree_percent
>= 0) &&
7235 (zfs_arc_lotsfree_percent
<= 100))
7236 arc_lotsfree_percent
= zfs_arc_lotsfree_percent
;
7238 /* Valid range: 0 - <all physical memory> */
7239 if ((zfs_arc_sys_free
) && (zfs_arc_sys_free
!= arc_sys_free
))
7240 arc_sys_free
= MIN(MAX(zfs_arc_sys_free
, 0), allmem
);
7245 arc_state_init(void)
7247 arc_anon
= &ARC_anon
;
7249 arc_mru_ghost
= &ARC_mru_ghost
;
7251 arc_mfu_ghost
= &ARC_mfu_ghost
;
7252 arc_l2c_only
= &ARC_l2c_only
;
7254 arc_mru
->arcs_list
[ARC_BUFC_METADATA
] =
7255 multilist_create(sizeof (arc_buf_hdr_t
),
7256 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
),
7257 arc_state_multilist_index_func
);
7258 arc_mru
->arcs_list
[ARC_BUFC_DATA
] =
7259 multilist_create(sizeof (arc_buf_hdr_t
),
7260 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
),
7261 arc_state_multilist_index_func
);
7262 arc_mru_ghost
->arcs_list
[ARC_BUFC_METADATA
] =
7263 multilist_create(sizeof (arc_buf_hdr_t
),
7264 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
),
7265 arc_state_multilist_index_func
);
7266 arc_mru_ghost
->arcs_list
[ARC_BUFC_DATA
] =
7267 multilist_create(sizeof (arc_buf_hdr_t
),
7268 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
),
7269 arc_state_multilist_index_func
);
7270 arc_mfu
->arcs_list
[ARC_BUFC_METADATA
] =
7271 multilist_create(sizeof (arc_buf_hdr_t
),
7272 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
),
7273 arc_state_multilist_index_func
);
7274 arc_mfu
->arcs_list
[ARC_BUFC_DATA
] =
7275 multilist_create(sizeof (arc_buf_hdr_t
),
7276 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
),
7277 arc_state_multilist_index_func
);
7278 arc_mfu_ghost
->arcs_list
[ARC_BUFC_METADATA
] =
7279 multilist_create(sizeof (arc_buf_hdr_t
),
7280 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
),
7281 arc_state_multilist_index_func
);
7282 arc_mfu_ghost
->arcs_list
[ARC_BUFC_DATA
] =
7283 multilist_create(sizeof (arc_buf_hdr_t
),
7284 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
),
7285 arc_state_multilist_index_func
);
7286 arc_l2c_only
->arcs_list
[ARC_BUFC_METADATA
] =
7287 multilist_create(sizeof (arc_buf_hdr_t
),
7288 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
),
7289 arc_state_multilist_index_func
);
7290 arc_l2c_only
->arcs_list
[ARC_BUFC_DATA
] =
7291 multilist_create(sizeof (arc_buf_hdr_t
),
7292 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
),
7293 arc_state_multilist_index_func
);
7295 refcount_create(&arc_anon
->arcs_esize
[ARC_BUFC_METADATA
]);
7296 refcount_create(&arc_anon
->arcs_esize
[ARC_BUFC_DATA
]);
7297 refcount_create(&arc_mru
->arcs_esize
[ARC_BUFC_METADATA
]);
7298 refcount_create(&arc_mru
->arcs_esize
[ARC_BUFC_DATA
]);
7299 refcount_create(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7300 refcount_create(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7301 refcount_create(&arc_mfu
->arcs_esize
[ARC_BUFC_METADATA
]);
7302 refcount_create(&arc_mfu
->arcs_esize
[ARC_BUFC_DATA
]);
7303 refcount_create(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7304 refcount_create(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7305 refcount_create(&arc_l2c_only
->arcs_esize
[ARC_BUFC_METADATA
]);
7306 refcount_create(&arc_l2c_only
->arcs_esize
[ARC_BUFC_DATA
]);
7308 refcount_create(&arc_anon
->arcs_size
);
7309 refcount_create(&arc_mru
->arcs_size
);
7310 refcount_create(&arc_mru_ghost
->arcs_size
);
7311 refcount_create(&arc_mfu
->arcs_size
);
7312 refcount_create(&arc_mfu_ghost
->arcs_size
);
7313 refcount_create(&arc_l2c_only
->arcs_size
);
7315 arc_anon
->arcs_state
= ARC_STATE_ANON
;
7316 arc_mru
->arcs_state
= ARC_STATE_MRU
;
7317 arc_mru_ghost
->arcs_state
= ARC_STATE_MRU_GHOST
;
7318 arc_mfu
->arcs_state
= ARC_STATE_MFU
;
7319 arc_mfu_ghost
->arcs_state
= ARC_STATE_MFU_GHOST
;
7320 arc_l2c_only
->arcs_state
= ARC_STATE_L2C_ONLY
;
7324 arc_state_fini(void)
7326 refcount_destroy(&arc_anon
->arcs_esize
[ARC_BUFC_METADATA
]);
7327 refcount_destroy(&arc_anon
->arcs_esize
[ARC_BUFC_DATA
]);
7328 refcount_destroy(&arc_mru
->arcs_esize
[ARC_BUFC_METADATA
]);
7329 refcount_destroy(&arc_mru
->arcs_esize
[ARC_BUFC_DATA
]);
7330 refcount_destroy(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7331 refcount_destroy(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7332 refcount_destroy(&arc_mfu
->arcs_esize
[ARC_BUFC_METADATA
]);
7333 refcount_destroy(&arc_mfu
->arcs_esize
[ARC_BUFC_DATA
]);
7334 refcount_destroy(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7335 refcount_destroy(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7336 refcount_destroy(&arc_l2c_only
->arcs_esize
[ARC_BUFC_METADATA
]);
7337 refcount_destroy(&arc_l2c_only
->arcs_esize
[ARC_BUFC_DATA
]);
7339 refcount_destroy(&arc_anon
->arcs_size
);
7340 refcount_destroy(&arc_mru
->arcs_size
);
7341 refcount_destroy(&arc_mru_ghost
->arcs_size
);
7342 refcount_destroy(&arc_mfu
->arcs_size
);
7343 refcount_destroy(&arc_mfu_ghost
->arcs_size
);
7344 refcount_destroy(&arc_l2c_only
->arcs_size
);
7346 multilist_destroy(arc_mru
->arcs_list
[ARC_BUFC_METADATA
]);
7347 multilist_destroy(arc_mru_ghost
->arcs_list
[ARC_BUFC_METADATA
]);
7348 multilist_destroy(arc_mfu
->arcs_list
[ARC_BUFC_METADATA
]);
7349 multilist_destroy(arc_mfu_ghost
->arcs_list
[ARC_BUFC_METADATA
]);
7350 multilist_destroy(arc_mru
->arcs_list
[ARC_BUFC_DATA
]);
7351 multilist_destroy(arc_mru_ghost
->arcs_list
[ARC_BUFC_DATA
]);
7352 multilist_destroy(arc_mfu
->arcs_list
[ARC_BUFC_DATA
]);
7353 multilist_destroy(arc_mfu_ghost
->arcs_list
[ARC_BUFC_DATA
]);
7354 multilist_destroy(arc_l2c_only
->arcs_list
[ARC_BUFC_METADATA
]);
7355 multilist_destroy(arc_l2c_only
->arcs_list
[ARC_BUFC_DATA
]);
7359 arc_target_bytes(void)
7367 uint64_t percent
, allmem
= arc_all_memory();
7369 mutex_init(&arc_reclaim_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7370 cv_init(&arc_reclaim_thread_cv
, NULL
, CV_DEFAULT
, NULL
);
7371 cv_init(&arc_reclaim_waiters_cv
, NULL
, CV_DEFAULT
, NULL
);
7373 /* Convert seconds to clock ticks */
7374 arc_min_prefetch_lifespan
= 1 * hz
;
7378 * Register a shrinker to support synchronous (direct) memory
7379 * reclaim from the arc. This is done to prevent kswapd from
7380 * swapping out pages when it is preferable to shrink the arc.
7382 spl_register_shrinker(&arc_shrinker
);
7384 /* Set to 1/64 of all memory or a minimum of 512K */
7385 arc_sys_free
= MAX(allmem
/ 64, (512 * 1024));
7389 /* Set max to 1/2 of all memory */
7390 arc_c_max
= allmem
/ 2;
7393 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more */
7394 arc_c_min
= MAX(allmem
/ 32, 2ULL << SPA_MAXBLOCKSHIFT
);
7397 * In userland, there's only the memory pressure that we artificially
7398 * create (see arc_available_memory()). Don't let arc_c get too
7399 * small, because it can cause transactions to be larger than
7400 * arc_c, causing arc_tempreserve_space() to fail.
7402 arc_c_min
= MAX(arc_c_max
/ 2, 2ULL << SPA_MAXBLOCKSHIFT
);
7406 arc_p
= (arc_c
>> 1);
7409 /* Set min to 1/2 of arc_c_min */
7410 arc_meta_min
= 1ULL << SPA_MAXBLOCKSHIFT
;
7411 /* Initialize maximum observed usage to zero */
7414 * Set arc_meta_limit to a percent of arc_c_max with a floor of
7415 * arc_meta_min, and a ceiling of arc_c_max.
7417 percent
= MIN(zfs_arc_meta_limit_percent
, 100);
7418 arc_meta_limit
= MAX(arc_meta_min
, (percent
* arc_c_max
) / 100);
7419 percent
= MIN(zfs_arc_dnode_limit_percent
, 100);
7420 arc_dnode_limit
= (percent
* arc_meta_limit
) / 100;
7422 /* Apply user specified tunings */
7423 arc_tuning_update();
7425 /* if kmem_flags are set, lets try to use less memory */
7426 if (kmem_debugging())
7428 if (arc_c
< arc_c_min
)
7434 list_create(&arc_prune_list
, sizeof (arc_prune_t
),
7435 offsetof(arc_prune_t
, p_node
));
7436 mutex_init(&arc_prune_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
7438 arc_prune_taskq
= taskq_create("arc_prune", max_ncpus
, defclsyspri
,
7439 max_ncpus
, INT_MAX
, TASKQ_PREPOPULATE
| TASKQ_DYNAMIC
);
7441 arc_reclaim_thread_exit
= B_FALSE
;
7443 arc_ksp
= kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED
,
7444 sizeof (arc_stats
) / sizeof (kstat_named_t
), KSTAT_FLAG_VIRTUAL
);
7446 if (arc_ksp
!= NULL
) {
7447 arc_ksp
->ks_data
= &arc_stats
;
7448 arc_ksp
->ks_update
= arc_kstat_update
;
7449 kstat_install(arc_ksp
);
7452 (void) thread_create(NULL
, 0, arc_reclaim_thread
, NULL
, 0, &p0
,
7453 TS_RUN
, defclsyspri
);
7459 * Calculate maximum amount of dirty data per pool.
7461 * If it has been set by a module parameter, take that.
7462 * Otherwise, use a percentage of physical memory defined by
7463 * zfs_dirty_data_max_percent (default 10%) with a cap at
7464 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
7466 if (zfs_dirty_data_max_max
== 0)
7467 zfs_dirty_data_max_max
= MIN(4ULL * 1024 * 1024 * 1024,
7468 allmem
* zfs_dirty_data_max_max_percent
/ 100);
7470 if (zfs_dirty_data_max
== 0) {
7471 zfs_dirty_data_max
= allmem
*
7472 zfs_dirty_data_max_percent
/ 100;
7473 zfs_dirty_data_max
= MIN(zfs_dirty_data_max
,
7474 zfs_dirty_data_max_max
);
7484 spl_unregister_shrinker(&arc_shrinker
);
7485 #endif /* _KERNEL */
7487 mutex_enter(&arc_reclaim_lock
);
7488 arc_reclaim_thread_exit
= B_TRUE
;
7490 * The reclaim thread will set arc_reclaim_thread_exit back to
7491 * B_FALSE when it is finished exiting; we're waiting for that.
7493 while (arc_reclaim_thread_exit
) {
7494 cv_signal(&arc_reclaim_thread_cv
);
7495 cv_wait(&arc_reclaim_thread_cv
, &arc_reclaim_lock
);
7497 mutex_exit(&arc_reclaim_lock
);
7499 /* Use B_TRUE to ensure *all* buffers are evicted */
7500 arc_flush(NULL
, B_TRUE
);
7504 if (arc_ksp
!= NULL
) {
7505 kstat_delete(arc_ksp
);
7509 taskq_wait(arc_prune_taskq
);
7510 taskq_destroy(arc_prune_taskq
);
7512 mutex_enter(&arc_prune_mtx
);
7513 while ((p
= list_head(&arc_prune_list
)) != NULL
) {
7514 list_remove(&arc_prune_list
, p
);
7515 refcount_remove(&p
->p_refcnt
, &arc_prune_list
);
7516 refcount_destroy(&p
->p_refcnt
);
7517 kmem_free(p
, sizeof (*p
));
7519 mutex_exit(&arc_prune_mtx
);
7521 list_destroy(&arc_prune_list
);
7522 mutex_destroy(&arc_prune_mtx
);
7523 mutex_destroy(&arc_reclaim_lock
);
7524 cv_destroy(&arc_reclaim_thread_cv
);
7525 cv_destroy(&arc_reclaim_waiters_cv
);
7530 ASSERT0(arc_loaned_bytes
);
7536 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7537 * It uses dedicated storage devices to hold cached data, which are populated
7538 * using large infrequent writes. The main role of this cache is to boost
7539 * the performance of random read workloads. The intended L2ARC devices
7540 * include short-stroked disks, solid state disks, and other media with
7541 * substantially faster read latency than disk.
7543 * +-----------------------+
7545 * +-----------------------+
7548 * l2arc_feed_thread() arc_read()
7552 * +---------------+ |
7554 * +---------------+ |
7559 * +-------+ +-------+
7561 * | cache | | cache |
7562 * +-------+ +-------+
7563 * +=========+ .-----.
7564 * : L2ARC : |-_____-|
7565 * : devices : | Disks |
7566 * +=========+ `-_____-'
7568 * Read requests are satisfied from the following sources, in order:
7571 * 2) vdev cache of L2ARC devices
7573 * 4) vdev cache of disks
7576 * Some L2ARC device types exhibit extremely slow write performance.
7577 * To accommodate for this there are some significant differences between
7578 * the L2ARC and traditional cache design:
7580 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
7581 * the ARC behave as usual, freeing buffers and placing headers on ghost
7582 * lists. The ARC does not send buffers to the L2ARC during eviction as
7583 * this would add inflated write latencies for all ARC memory pressure.
7585 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7586 * It does this by periodically scanning buffers from the eviction-end of
7587 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
7588 * not already there. It scans until a headroom of buffers is satisfied,
7589 * which itself is a buffer for ARC eviction. If a compressible buffer is
7590 * found during scanning and selected for writing to an L2ARC device, we
7591 * temporarily boost scanning headroom during the next scan cycle to make
7592 * sure we adapt to compression effects (which might significantly reduce
7593 * the data volume we write to L2ARC). The thread that does this is
7594 * l2arc_feed_thread(), illustrated below; example sizes are included to
7595 * provide a better sense of ratio than this diagram:
7598 * +---------------------+----------+
7599 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
7600 * +---------------------+----------+ | o L2ARC eligible
7601 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
7602 * +---------------------+----------+ |
7603 * 15.9 Gbytes ^ 32 Mbytes |
7605 * l2arc_feed_thread()
7607 * l2arc write hand <--[oooo]--'
7611 * +==============================+
7612 * L2ARC dev |####|#|###|###| |####| ... |
7613 * +==============================+
7616 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7617 * evicted, then the L2ARC has cached a buffer much sooner than it probably
7618 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
7619 * safe to say that this is an uncommon case, since buffers at the end of
7620 * the ARC lists have moved there due to inactivity.
7622 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7623 * then the L2ARC simply misses copying some buffers. This serves as a
7624 * pressure valve to prevent heavy read workloads from both stalling the ARC
7625 * with waits and clogging the L2ARC with writes. This also helps prevent
7626 * the potential for the L2ARC to churn if it attempts to cache content too
7627 * quickly, such as during backups of the entire pool.
7629 * 5. After system boot and before the ARC has filled main memory, there are
7630 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7631 * lists can remain mostly static. Instead of searching from tail of these
7632 * lists as pictured, the l2arc_feed_thread() will search from the list heads
7633 * for eligible buffers, greatly increasing its chance of finding them.
7635 * The L2ARC device write speed is also boosted during this time so that
7636 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
7637 * there are no L2ARC reads, and no fear of degrading read performance
7638 * through increased writes.
7640 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7641 * the vdev queue can aggregate them into larger and fewer writes. Each
7642 * device is written to in a rotor fashion, sweeping writes through
7643 * available space then repeating.
7645 * 7. The L2ARC does not store dirty content. It never needs to flush
7646 * write buffers back to disk based storage.
7648 * 8. If an ARC buffer is written (and dirtied) which also exists in the
7649 * L2ARC, the now stale L2ARC buffer is immediately dropped.
7651 * The performance of the L2ARC can be tweaked by a number of tunables, which
7652 * may be necessary for different workloads:
7654 * l2arc_write_max max write bytes per interval
7655 * l2arc_write_boost extra write bytes during device warmup
7656 * l2arc_noprefetch skip caching prefetched buffers
7657 * l2arc_headroom number of max device writes to precache
7658 * l2arc_headroom_boost when we find compressed buffers during ARC
7659 * scanning, we multiply headroom by this
7660 * percentage factor for the next scan cycle,
7661 * since more compressed buffers are likely to
7663 * l2arc_feed_secs seconds between L2ARC writing
7665 * Tunables may be removed or added as future performance improvements are
7666 * integrated, and also may become zpool properties.
7668 * There are three key functions that control how the L2ARC warms up:
7670 * l2arc_write_eligible() check if a buffer is eligible to cache
7671 * l2arc_write_size() calculate how much to write
7672 * l2arc_write_interval() calculate sleep delay between writes
7674 * These three functions determine what to write, how much, and how quickly
7679 l2arc_write_eligible(uint64_t spa_guid
, arc_buf_hdr_t
*hdr
)
7682 * A buffer is *not* eligible for the L2ARC if it:
7683 * 1. belongs to a different spa.
7684 * 2. is already cached on the L2ARC.
7685 * 3. has an I/O in progress (it may be an incomplete read).
7686 * 4. is flagged not eligible (zfs property).
7688 if (hdr
->b_spa
!= spa_guid
|| HDR_HAS_L2HDR(hdr
) ||
7689 HDR_IO_IN_PROGRESS(hdr
) || !HDR_L2CACHE(hdr
))
7696 l2arc_write_size(void)
7701 * Make sure our globals have meaningful values in case the user
7704 size
= l2arc_write_max
;
7706 cmn_err(CE_NOTE
, "Bad value for l2arc_write_max, value must "
7707 "be greater than zero, resetting it to the default (%d)",
7709 size
= l2arc_write_max
= L2ARC_WRITE_SIZE
;
7712 if (arc_warm
== B_FALSE
)
7713 size
+= l2arc_write_boost
;
7720 l2arc_write_interval(clock_t began
, uint64_t wanted
, uint64_t wrote
)
7722 clock_t interval
, next
, now
;
7725 * If the ARC lists are busy, increase our write rate; if the
7726 * lists are stale, idle back. This is achieved by checking
7727 * how much we previously wrote - if it was more than half of
7728 * what we wanted, schedule the next write much sooner.
7730 if (l2arc_feed_again
&& wrote
> (wanted
/ 2))
7731 interval
= (hz
* l2arc_feed_min_ms
) / 1000;
7733 interval
= hz
* l2arc_feed_secs
;
7735 now
= ddi_get_lbolt();
7736 next
= MAX(now
, MIN(now
+ interval
, began
+ interval
));
7742 * Cycle through L2ARC devices. This is how L2ARC load balances.
7743 * If a device is returned, this also returns holding the spa config lock.
7745 static l2arc_dev_t
*
7746 l2arc_dev_get_next(void)
7748 l2arc_dev_t
*first
, *next
= NULL
;
7751 * Lock out the removal of spas (spa_namespace_lock), then removal
7752 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
7753 * both locks will be dropped and a spa config lock held instead.
7755 mutex_enter(&spa_namespace_lock
);
7756 mutex_enter(&l2arc_dev_mtx
);
7758 /* if there are no vdevs, there is nothing to do */
7759 if (l2arc_ndev
== 0)
7763 next
= l2arc_dev_last
;
7765 /* loop around the list looking for a non-faulted vdev */
7767 next
= list_head(l2arc_dev_list
);
7769 next
= list_next(l2arc_dev_list
, next
);
7771 next
= list_head(l2arc_dev_list
);
7774 /* if we have come back to the start, bail out */
7777 else if (next
== first
)
7780 } while (vdev_is_dead(next
->l2ad_vdev
));
7782 /* if we were unable to find any usable vdevs, return NULL */
7783 if (vdev_is_dead(next
->l2ad_vdev
))
7786 l2arc_dev_last
= next
;
7789 mutex_exit(&l2arc_dev_mtx
);
7792 * Grab the config lock to prevent the 'next' device from being
7793 * removed while we are writing to it.
7796 spa_config_enter(next
->l2ad_spa
, SCL_L2ARC
, next
, RW_READER
);
7797 mutex_exit(&spa_namespace_lock
);
7803 * Free buffers that were tagged for destruction.
7806 l2arc_do_free_on_write(void)
7809 l2arc_data_free_t
*df
, *df_prev
;
7811 mutex_enter(&l2arc_free_on_write_mtx
);
7812 buflist
= l2arc_free_on_write
;
7814 for (df
= list_tail(buflist
); df
; df
= df_prev
) {
7815 df_prev
= list_prev(buflist
, df
);
7816 ASSERT3P(df
->l2df_abd
, !=, NULL
);
7817 abd_free(df
->l2df_abd
);
7818 list_remove(buflist
, df
);
7819 kmem_free(df
, sizeof (l2arc_data_free_t
));
7822 mutex_exit(&l2arc_free_on_write_mtx
);
7826 * A write to a cache device has completed. Update all headers to allow
7827 * reads from these buffers to begin.
7830 l2arc_write_done(zio_t
*zio
)
7832 l2arc_write_callback_t
*cb
;
7835 arc_buf_hdr_t
*head
, *hdr
, *hdr_prev
;
7836 kmutex_t
*hash_lock
;
7837 int64_t bytes_dropped
= 0;
7839 cb
= zio
->io_private
;
7840 ASSERT3P(cb
, !=, NULL
);
7841 dev
= cb
->l2wcb_dev
;
7842 ASSERT3P(dev
, !=, NULL
);
7843 head
= cb
->l2wcb_head
;
7844 ASSERT3P(head
, !=, NULL
);
7845 buflist
= &dev
->l2ad_buflist
;
7846 ASSERT3P(buflist
, !=, NULL
);
7847 DTRACE_PROBE2(l2arc__iodone
, zio_t
*, zio
,
7848 l2arc_write_callback_t
*, cb
);
7850 if (zio
->io_error
!= 0)
7851 ARCSTAT_BUMP(arcstat_l2_writes_error
);
7854 * All writes completed, or an error was hit.
7857 mutex_enter(&dev
->l2ad_mtx
);
7858 for (hdr
= list_prev(buflist
, head
); hdr
; hdr
= hdr_prev
) {
7859 hdr_prev
= list_prev(buflist
, hdr
);
7861 hash_lock
= HDR_LOCK(hdr
);
7864 * We cannot use mutex_enter or else we can deadlock
7865 * with l2arc_write_buffers (due to swapping the order
7866 * the hash lock and l2ad_mtx are taken).
7868 if (!mutex_tryenter(hash_lock
)) {
7870 * Missed the hash lock. We must retry so we
7871 * don't leave the ARC_FLAG_L2_WRITING bit set.
7873 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry
);
7876 * We don't want to rescan the headers we've
7877 * already marked as having been written out, so
7878 * we reinsert the head node so we can pick up
7879 * where we left off.
7881 list_remove(buflist
, head
);
7882 list_insert_after(buflist
, hdr
, head
);
7884 mutex_exit(&dev
->l2ad_mtx
);
7887 * We wait for the hash lock to become available
7888 * to try and prevent busy waiting, and increase
7889 * the chance we'll be able to acquire the lock
7890 * the next time around.
7892 mutex_enter(hash_lock
);
7893 mutex_exit(hash_lock
);
7898 * We could not have been moved into the arc_l2c_only
7899 * state while in-flight due to our ARC_FLAG_L2_WRITING
7900 * bit being set. Let's just ensure that's being enforced.
7902 ASSERT(HDR_HAS_L1HDR(hdr
));
7905 * Skipped - drop L2ARC entry and mark the header as no
7906 * longer L2 eligibile.
7908 if (zio
->io_error
!= 0) {
7910 * Error - drop L2ARC entry.
7912 list_remove(buflist
, hdr
);
7913 arc_hdr_clear_flags(hdr
, ARC_FLAG_HAS_L2HDR
);
7915 ARCSTAT_INCR(arcstat_l2_psize
, -arc_hdr_size(hdr
));
7916 ARCSTAT_INCR(arcstat_l2_lsize
, -HDR_GET_LSIZE(hdr
));
7918 bytes_dropped
+= arc_hdr_size(hdr
);
7919 (void) refcount_remove_many(&dev
->l2ad_alloc
,
7920 arc_hdr_size(hdr
), hdr
);
7924 * Allow ARC to begin reads and ghost list evictions to
7927 arc_hdr_clear_flags(hdr
, ARC_FLAG_L2_WRITING
);
7929 mutex_exit(hash_lock
);
7932 atomic_inc_64(&l2arc_writes_done
);
7933 list_remove(buflist
, head
);
7934 ASSERT(!HDR_HAS_L1HDR(head
));
7935 kmem_cache_free(hdr_l2only_cache
, head
);
7936 mutex_exit(&dev
->l2ad_mtx
);
7938 vdev_space_update(dev
->l2ad_vdev
, -bytes_dropped
, 0, 0);
7940 l2arc_do_free_on_write();
7942 kmem_free(cb
, sizeof (l2arc_write_callback_t
));
7946 l2arc_untransform(zio_t
*zio
, l2arc_read_callback_t
*cb
)
7949 spa_t
*spa
= zio
->io_spa
;
7950 arc_buf_hdr_t
*hdr
= cb
->l2rcb_hdr
;
7951 blkptr_t
*bp
= zio
->io_bp
;
7952 dsl_crypto_key_t
*dck
= NULL
;
7953 uint8_t salt
[ZIO_DATA_SALT_LEN
];
7954 uint8_t iv
[ZIO_DATA_IV_LEN
];
7955 uint8_t mac
[ZIO_DATA_MAC_LEN
];
7956 boolean_t no_crypt
= B_FALSE
;
7959 * ZIL data is never be written to the L2ARC, so we don't need
7960 * special handling for its unique MAC storage.
7962 ASSERT3U(BP_GET_TYPE(bp
), !=, DMU_OT_INTENT_LOG
);
7963 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
7965 /* If the data was encrypted, decrypt it now */
7966 if (HDR_ENCRYPTED(hdr
)) {
7967 abd_t
*eabd
= arc_get_data_abd(hdr
,
7968 arc_hdr_size(hdr
), hdr
);
7970 zio_crypt_decode_params_bp(bp
, salt
, iv
);
7971 zio_crypt_decode_mac_bp(bp
, mac
);
7973 ret
= spa_keystore_lookup_key(spa
,
7974 cb
->l2rcb_zb
.zb_objset
, FTAG
, &dck
);
7976 arc_free_data_abd(hdr
, eabd
, arc_hdr_size(hdr
), hdr
);
7980 ret
= zio_do_crypt_abd(B_FALSE
, &dck
->dck_key
,
7981 salt
, BP_GET_TYPE(bp
), iv
, mac
, HDR_GET_PSIZE(hdr
),
7982 BP_SHOULD_BYTESWAP(bp
), eabd
, hdr
->b_l1hdr
.b_pabd
,
7985 arc_free_data_abd(hdr
, eabd
, arc_hdr_size(hdr
), hdr
);
7986 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
7990 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
7993 * If we actually performed decryption, replace b_pabd
7994 * with the decrypted data. Otherwise we can just throw
7995 * our decryption buffer away.
7998 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
,
7999 arc_hdr_size(hdr
), hdr
);
8000 hdr
->b_l1hdr
.b_pabd
= eabd
;
8003 arc_free_data_abd(hdr
, eabd
, arc_hdr_size(hdr
), hdr
);
8008 * If the L2ARC block was compressed, but ARC compression
8009 * is disabled we decompress the data into a new buffer and
8010 * replace the existing data.
8012 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
8013 !HDR_COMPRESSION_ENABLED(hdr
)) {
8014 abd_t
*cabd
= arc_get_data_abd(hdr
, arc_hdr_size(hdr
), hdr
);
8015 void *tmp
= abd_borrow_buf(cabd
, arc_hdr_size(hdr
));
8017 ret
= zio_decompress_data(HDR_GET_COMPRESS(hdr
),
8018 hdr
->b_l1hdr
.b_pabd
, tmp
, HDR_GET_PSIZE(hdr
),
8019 HDR_GET_LSIZE(hdr
));
8021 abd_return_buf_copy(cabd
, tmp
, arc_hdr_size(hdr
));
8022 arc_free_data_abd(hdr
, cabd
, arc_hdr_size(hdr
), hdr
);
8026 abd_return_buf_copy(cabd
, tmp
, arc_hdr_size(hdr
));
8027 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
,
8028 arc_hdr_size(hdr
), hdr
);
8029 hdr
->b_l1hdr
.b_pabd
= cabd
;
8031 zio
->io_size
= HDR_GET_LSIZE(hdr
);
8042 * A read to a cache device completed. Validate buffer contents before
8043 * handing over to the regular ARC routines.
8046 l2arc_read_done(zio_t
*zio
)
8049 l2arc_read_callback_t
*cb
;
8051 kmutex_t
*hash_lock
;
8052 boolean_t valid_cksum
, using_rdata
;
8054 ASSERT3P(zio
->io_vd
, !=, NULL
);
8055 ASSERT(zio
->io_flags
& ZIO_FLAG_DONT_PROPAGATE
);
8057 spa_config_exit(zio
->io_spa
, SCL_L2ARC
, zio
->io_vd
);
8059 cb
= zio
->io_private
;
8060 ASSERT3P(cb
, !=, NULL
);
8061 hdr
= cb
->l2rcb_hdr
;
8062 ASSERT3P(hdr
, !=, NULL
);
8064 hash_lock
= HDR_LOCK(hdr
);
8065 mutex_enter(hash_lock
);
8066 ASSERT3P(hash_lock
, ==, HDR_LOCK(hdr
));
8069 * If the data was read into a temporary buffer,
8070 * move it and free the buffer.
8072 if (cb
->l2rcb_abd
!= NULL
) {
8073 ASSERT3U(arc_hdr_size(hdr
), <, zio
->io_size
);
8074 if (zio
->io_error
== 0) {
8075 abd_copy(hdr
->b_l1hdr
.b_pabd
, cb
->l2rcb_abd
,
8080 * The following must be done regardless of whether
8081 * there was an error:
8082 * - free the temporary buffer
8083 * - point zio to the real ARC buffer
8084 * - set zio size accordingly
8085 * These are required because zio is either re-used for
8086 * an I/O of the block in the case of the error
8087 * or the zio is passed to arc_read_done() and it
8090 abd_free(cb
->l2rcb_abd
);
8091 zio
->io_size
= zio
->io_orig_size
= arc_hdr_size(hdr
);
8092 zio
->io_abd
= zio
->io_orig_abd
= hdr
->b_l1hdr
.b_pabd
;
8095 ASSERT3P(zio
->io_abd
, !=, NULL
);
8098 * Check this survived the L2ARC journey.
8100 ASSERT(zio
->io_abd
== hdr
->b_l1hdr
.b_pabd
||
8101 (HDR_HAS_RABD(hdr
) && zio
->io_abd
== hdr
->b_crypt_hdr
.b_rabd
));
8102 zio
->io_bp_copy
= cb
->l2rcb_bp
; /* XXX fix in L2ARC 2.0 */
8103 zio
->io_bp
= &zio
->io_bp_copy
; /* XXX fix in L2ARC 2.0 */
8105 valid_cksum
= arc_cksum_is_equal(hdr
, zio
);
8106 using_rdata
= (HDR_HAS_RABD(hdr
) &&
8107 zio
->io_abd
== hdr
->b_crypt_hdr
.b_rabd
);
8110 * b_rabd will always match the data as it exists on disk if it is
8111 * being used. Therefore if we are reading into b_rabd we do not
8112 * attempt to untransform the data.
8114 if (valid_cksum
&& !using_rdata
)
8115 tfm_error
= l2arc_untransform(zio
, cb
);
8117 if (valid_cksum
&& tfm_error
== 0 && zio
->io_error
== 0 &&
8118 !HDR_L2_EVICTED(hdr
)) {
8119 mutex_exit(hash_lock
);
8120 zio
->io_private
= hdr
;
8123 mutex_exit(hash_lock
);
8125 * Buffer didn't survive caching. Increment stats and
8126 * reissue to the original storage device.
8128 if (zio
->io_error
!= 0) {
8129 ARCSTAT_BUMP(arcstat_l2_io_error
);
8131 zio
->io_error
= SET_ERROR(EIO
);
8133 if (!valid_cksum
|| tfm_error
!= 0)
8134 ARCSTAT_BUMP(arcstat_l2_cksum_bad
);
8137 * If there's no waiter, issue an async i/o to the primary
8138 * storage now. If there *is* a waiter, the caller must
8139 * issue the i/o in a context where it's OK to block.
8141 if (zio
->io_waiter
== NULL
) {
8142 zio_t
*pio
= zio_unique_parent(zio
);
8143 void *abd
= (using_rdata
) ?
8144 hdr
->b_crypt_hdr
.b_rabd
: hdr
->b_l1hdr
.b_pabd
;
8146 ASSERT(!pio
|| pio
->io_child_type
== ZIO_CHILD_LOGICAL
);
8148 zio_nowait(zio_read(pio
, zio
->io_spa
, zio
->io_bp
,
8149 abd
, zio
->io_size
, arc_read_done
,
8150 hdr
, zio
->io_priority
, cb
->l2rcb_flags
,
8155 kmem_free(cb
, sizeof (l2arc_read_callback_t
));
8159 * This is the list priority from which the L2ARC will search for pages to
8160 * cache. This is used within loops (0..3) to cycle through lists in the
8161 * desired order. This order can have a significant effect on cache
8164 * Currently the metadata lists are hit first, MFU then MRU, followed by
8165 * the data lists. This function returns a locked list, and also returns
8168 static multilist_sublist_t
*
8169 l2arc_sublist_lock(int list_num
)
8171 multilist_t
*ml
= NULL
;
8174 ASSERT(list_num
>= 0 && list_num
< L2ARC_FEED_TYPES
);
8178 ml
= arc_mfu
->arcs_list
[ARC_BUFC_METADATA
];
8181 ml
= arc_mru
->arcs_list
[ARC_BUFC_METADATA
];
8184 ml
= arc_mfu
->arcs_list
[ARC_BUFC_DATA
];
8187 ml
= arc_mru
->arcs_list
[ARC_BUFC_DATA
];
8194 * Return a randomly-selected sublist. This is acceptable
8195 * because the caller feeds only a little bit of data for each
8196 * call (8MB). Subsequent calls will result in different
8197 * sublists being selected.
8199 idx
= multilist_get_random_index(ml
);
8200 return (multilist_sublist_lock(ml
, idx
));
8204 * Evict buffers from the device write hand to the distance specified in
8205 * bytes. This distance may span populated buffers, it may span nothing.
8206 * This is clearing a region on the L2ARC device ready for writing.
8207 * If the 'all' boolean is set, every buffer is evicted.
8210 l2arc_evict(l2arc_dev_t
*dev
, uint64_t distance
, boolean_t all
)
8213 arc_buf_hdr_t
*hdr
, *hdr_prev
;
8214 kmutex_t
*hash_lock
;
8217 buflist
= &dev
->l2ad_buflist
;
8219 if (!all
&& dev
->l2ad_first
) {
8221 * This is the first sweep through the device. There is
8227 if (dev
->l2ad_hand
>= (dev
->l2ad_end
- (2 * distance
))) {
8229 * When nearing the end of the device, evict to the end
8230 * before the device write hand jumps to the start.
8232 taddr
= dev
->l2ad_end
;
8234 taddr
= dev
->l2ad_hand
+ distance
;
8236 DTRACE_PROBE4(l2arc__evict
, l2arc_dev_t
*, dev
, list_t
*, buflist
,
8237 uint64_t, taddr
, boolean_t
, all
);
8240 mutex_enter(&dev
->l2ad_mtx
);
8241 for (hdr
= list_tail(buflist
); hdr
; hdr
= hdr_prev
) {
8242 hdr_prev
= list_prev(buflist
, hdr
);
8244 hash_lock
= HDR_LOCK(hdr
);
8247 * We cannot use mutex_enter or else we can deadlock
8248 * with l2arc_write_buffers (due to swapping the order
8249 * the hash lock and l2ad_mtx are taken).
8251 if (!mutex_tryenter(hash_lock
)) {
8253 * Missed the hash lock. Retry.
8255 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry
);
8256 mutex_exit(&dev
->l2ad_mtx
);
8257 mutex_enter(hash_lock
);
8258 mutex_exit(hash_lock
);
8263 * A header can't be on this list if it doesn't have L2 header.
8265 ASSERT(HDR_HAS_L2HDR(hdr
));
8267 /* Ensure this header has finished being written. */
8268 ASSERT(!HDR_L2_WRITING(hdr
));
8269 ASSERT(!HDR_L2_WRITE_HEAD(hdr
));
8271 if (!all
&& (hdr
->b_l2hdr
.b_daddr
>= taddr
||
8272 hdr
->b_l2hdr
.b_daddr
< dev
->l2ad_hand
)) {
8274 * We've evicted to the target address,
8275 * or the end of the device.
8277 mutex_exit(hash_lock
);
8281 if (!HDR_HAS_L1HDR(hdr
)) {
8282 ASSERT(!HDR_L2_READING(hdr
));
8284 * This doesn't exist in the ARC. Destroy.
8285 * arc_hdr_destroy() will call list_remove()
8286 * and decrement arcstat_l2_lsize.
8288 arc_change_state(arc_anon
, hdr
, hash_lock
);
8289 arc_hdr_destroy(hdr
);
8291 ASSERT(hdr
->b_l1hdr
.b_state
!= arc_l2c_only
);
8292 ARCSTAT_BUMP(arcstat_l2_evict_l1cached
);
8294 * Invalidate issued or about to be issued
8295 * reads, since we may be about to write
8296 * over this location.
8298 if (HDR_L2_READING(hdr
)) {
8299 ARCSTAT_BUMP(arcstat_l2_evict_reading
);
8300 arc_hdr_set_flags(hdr
, ARC_FLAG_L2_EVICTED
);
8303 arc_hdr_l2hdr_destroy(hdr
);
8305 mutex_exit(hash_lock
);
8307 mutex_exit(&dev
->l2ad_mtx
);
8311 * Handle any abd transforms that might be required for writing to the L2ARC.
8312 * If successful, this function will always return an abd with the data
8313 * transformed as it is on disk in a new abd of asize bytes.
8316 l2arc_apply_transforms(spa_t
*spa
, arc_buf_hdr_t
*hdr
, uint64_t asize
,
8321 abd_t
*cabd
= NULL
, *eabd
= NULL
, *to_write
= hdr
->b_l1hdr
.b_pabd
;
8322 enum zio_compress compress
= HDR_GET_COMPRESS(hdr
);
8323 uint64_t psize
= HDR_GET_PSIZE(hdr
);
8324 uint64_t size
= arc_hdr_size(hdr
);
8325 boolean_t ismd
= HDR_ISTYPE_METADATA(hdr
);
8326 boolean_t bswap
= (hdr
->b_l1hdr
.b_byteswap
!= DMU_BSWAP_NUMFUNCS
);
8327 dsl_crypto_key_t
*dck
= NULL
;
8328 uint8_t mac
[ZIO_DATA_MAC_LEN
] = { 0 };
8329 boolean_t no_crypt
= B_FALSE
;
8331 ASSERT((HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
8332 !HDR_COMPRESSION_ENABLED(hdr
)) ||
8333 HDR_ENCRYPTED(hdr
) || HDR_SHARED_DATA(hdr
) || psize
!= asize
);
8334 ASSERT3U(psize
, <=, asize
);
8337 * If this data simply needs its own buffer, we simply allocate it
8338 * and copy the data. This may be done to elimiate a depedency on a
8339 * shared buffer or to reallocate the buffer to match asize.
8341 if (HDR_HAS_RABD(hdr
) && asize
!= psize
) {
8342 ASSERT3U(size
, ==, psize
);
8343 to_write
= abd_alloc_for_io(asize
, ismd
);
8344 abd_copy(to_write
, hdr
->b_crypt_hdr
.b_rabd
, size
);
8346 abd_zero_off(to_write
, size
, asize
- size
);
8350 if ((compress
== ZIO_COMPRESS_OFF
|| HDR_COMPRESSION_ENABLED(hdr
)) &&
8351 !HDR_ENCRYPTED(hdr
)) {
8352 ASSERT3U(size
, ==, psize
);
8353 to_write
= abd_alloc_for_io(asize
, ismd
);
8354 abd_copy(to_write
, hdr
->b_l1hdr
.b_pabd
, size
);
8356 abd_zero_off(to_write
, size
, asize
- size
);
8360 if (compress
!= ZIO_COMPRESS_OFF
&& !HDR_COMPRESSION_ENABLED(hdr
)) {
8361 cabd
= abd_alloc_for_io(asize
, ismd
);
8362 tmp
= abd_borrow_buf(cabd
, asize
);
8364 psize
= zio_compress_data(compress
, to_write
, tmp
, size
);
8365 ASSERT3U(psize
, <=, HDR_GET_PSIZE(hdr
));
8367 bzero((char *)tmp
+ psize
, asize
- psize
);
8368 psize
= HDR_GET_PSIZE(hdr
);
8369 abd_return_buf_copy(cabd
, tmp
, asize
);
8373 if (HDR_ENCRYPTED(hdr
)) {
8374 eabd
= abd_alloc_for_io(asize
, ismd
);
8377 * If the dataset was disowned before the buffer
8378 * made it to this point, the key to re-encrypt
8379 * it won't be available. In this case we simply
8380 * won't write the buffer to the L2ARC.
8382 ret
= spa_keystore_lookup_key(spa
, hdr
->b_crypt_hdr
.b_dsobj
,
8387 ret
= zio_do_crypt_abd(B_TRUE
, &dck
->dck_key
,
8388 hdr
->b_crypt_hdr
.b_salt
, hdr
->b_crypt_hdr
.b_ot
,
8389 hdr
->b_crypt_hdr
.b_iv
, mac
, psize
, bswap
, to_write
,
8395 abd_copy(eabd
, to_write
, psize
);
8398 abd_zero_off(eabd
, psize
, asize
- psize
);
8400 /* assert that the MAC we got here matches the one we saved */
8401 ASSERT0(bcmp(mac
, hdr
->b_crypt_hdr
.b_mac
, ZIO_DATA_MAC_LEN
));
8402 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
8404 if (to_write
== cabd
)
8411 ASSERT3P(to_write
, !=, hdr
->b_l1hdr
.b_pabd
);
8412 *abd_out
= to_write
;
8417 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
8428 * Find and write ARC buffers to the L2ARC device.
8430 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
8431 * for reading until they have completed writing.
8432 * The headroom_boost is an in-out parameter used to maintain headroom boost
8433 * state between calls to this function.
8435 * Returns the number of bytes actually written (which may be smaller than
8436 * the delta by which the device hand has changed due to alignment).
8439 l2arc_write_buffers(spa_t
*spa
, l2arc_dev_t
*dev
, uint64_t target_sz
)
8441 arc_buf_hdr_t
*hdr
, *hdr_prev
, *head
;
8442 uint64_t write_asize
, write_psize
, write_lsize
, headroom
;
8444 l2arc_write_callback_t
*cb
;
8446 uint64_t guid
= spa_load_guid(spa
);
8449 ASSERT3P(dev
->l2ad_vdev
, !=, NULL
);
8452 write_lsize
= write_asize
= write_psize
= 0;
8454 head
= kmem_cache_alloc(hdr_l2only_cache
, KM_PUSHPAGE
);
8455 arc_hdr_set_flags(head
, ARC_FLAG_L2_WRITE_HEAD
| ARC_FLAG_HAS_L2HDR
);
8458 * Copy buffers for L2ARC writing.
8460 for (try = 0; try < L2ARC_FEED_TYPES
; try++) {
8461 multilist_sublist_t
*mls
= l2arc_sublist_lock(try);
8462 uint64_t passed_sz
= 0;
8464 VERIFY3P(mls
, !=, NULL
);
8467 * L2ARC fast warmup.
8469 * Until the ARC is warm and starts to evict, read from the
8470 * head of the ARC lists rather than the tail.
8472 if (arc_warm
== B_FALSE
)
8473 hdr
= multilist_sublist_head(mls
);
8475 hdr
= multilist_sublist_tail(mls
);
8477 headroom
= target_sz
* l2arc_headroom
;
8478 if (zfs_compressed_arc_enabled
)
8479 headroom
= (headroom
* l2arc_headroom_boost
) / 100;
8481 for (; hdr
; hdr
= hdr_prev
) {
8482 kmutex_t
*hash_lock
;
8483 abd_t
*to_write
= NULL
;
8485 if (arc_warm
== B_FALSE
)
8486 hdr_prev
= multilist_sublist_next(mls
, hdr
);
8488 hdr_prev
= multilist_sublist_prev(mls
, hdr
);
8490 hash_lock
= HDR_LOCK(hdr
);
8491 if (!mutex_tryenter(hash_lock
)) {
8493 * Skip this buffer rather than waiting.
8498 passed_sz
+= HDR_GET_LSIZE(hdr
);
8499 if (passed_sz
> headroom
) {
8503 mutex_exit(hash_lock
);
8507 if (!l2arc_write_eligible(guid
, hdr
)) {
8508 mutex_exit(hash_lock
);
8513 * We rely on the L1 portion of the header below, so
8514 * it's invalid for this header to have been evicted out
8515 * of the ghost cache, prior to being written out. The
8516 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8518 ASSERT(HDR_HAS_L1HDR(hdr
));
8520 ASSERT3U(HDR_GET_PSIZE(hdr
), >, 0);
8521 ASSERT3U(arc_hdr_size(hdr
), >, 0);
8522 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
||
8524 uint64_t psize
= HDR_GET_PSIZE(hdr
);
8525 uint64_t asize
= vdev_psize_to_asize(dev
->l2ad_vdev
,
8528 if ((write_asize
+ asize
) > target_sz
) {
8530 mutex_exit(hash_lock
);
8535 * We rely on the L1 portion of the header below, so
8536 * it's invalid for this header to have been evicted out
8537 * of the ghost cache, prior to being written out. The
8538 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8540 arc_hdr_set_flags(hdr
, ARC_FLAG_L2_WRITING
);
8541 ASSERT(HDR_HAS_L1HDR(hdr
));
8543 ASSERT3U(HDR_GET_PSIZE(hdr
), >, 0);
8544 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
||
8546 ASSERT3U(arc_hdr_size(hdr
), >, 0);
8549 * If this header has b_rabd, we can use this since it
8550 * must always match the data exactly as it exists on
8551 * disk. Otherwise, the L2ARC can normally use the
8552 * hdr's data, but if we're sharing data between the
8553 * hdr and one of its bufs, L2ARC needs its own copy of
8554 * the data so that the ZIO below can't race with the
8555 * buf consumer. To ensure that this copy will be
8556 * available for the lifetime of the ZIO and be cleaned
8557 * up afterwards, we add it to the l2arc_free_on_write
8558 * queue. If we need to apply any transforms to the
8559 * data (compression, encryption) we will also need the
8562 if (HDR_HAS_RABD(hdr
) && psize
== asize
) {
8563 to_write
= hdr
->b_crypt_hdr
.b_rabd
;
8564 } else if ((HDR_COMPRESSION_ENABLED(hdr
) ||
8565 HDR_GET_COMPRESS(hdr
) == ZIO_COMPRESS_OFF
) &&
8566 !HDR_ENCRYPTED(hdr
) && !HDR_SHARED_DATA(hdr
) &&
8568 to_write
= hdr
->b_l1hdr
.b_pabd
;
8571 arc_buf_contents_t type
= arc_buf_type(hdr
);
8573 ret
= l2arc_apply_transforms(spa
, hdr
, asize
,
8576 arc_hdr_clear_flags(hdr
,
8577 ARC_FLAG_L2_WRITING
);
8578 mutex_exit(hash_lock
);
8582 l2arc_free_abd_on_write(to_write
, asize
, type
);
8587 * Insert a dummy header on the buflist so
8588 * l2arc_write_done() can find where the
8589 * write buffers begin without searching.
8591 mutex_enter(&dev
->l2ad_mtx
);
8592 list_insert_head(&dev
->l2ad_buflist
, head
);
8593 mutex_exit(&dev
->l2ad_mtx
);
8596 sizeof (l2arc_write_callback_t
), KM_SLEEP
);
8597 cb
->l2wcb_dev
= dev
;
8598 cb
->l2wcb_head
= head
;
8599 pio
= zio_root(spa
, l2arc_write_done
, cb
,
8603 hdr
->b_l2hdr
.b_dev
= dev
;
8604 hdr
->b_l2hdr
.b_hits
= 0;
8606 hdr
->b_l2hdr
.b_daddr
= dev
->l2ad_hand
;
8607 arc_hdr_set_flags(hdr
, ARC_FLAG_HAS_L2HDR
);
8609 mutex_enter(&dev
->l2ad_mtx
);
8610 list_insert_head(&dev
->l2ad_buflist
, hdr
);
8611 mutex_exit(&dev
->l2ad_mtx
);
8613 (void) refcount_add_many(&dev
->l2ad_alloc
,
8614 arc_hdr_size(hdr
), hdr
);
8616 wzio
= zio_write_phys(pio
, dev
->l2ad_vdev
,
8617 hdr
->b_l2hdr
.b_daddr
, asize
, to_write
,
8618 ZIO_CHECKSUM_OFF
, NULL
, hdr
,
8619 ZIO_PRIORITY_ASYNC_WRITE
,
8620 ZIO_FLAG_CANFAIL
, B_FALSE
);
8622 write_lsize
+= HDR_GET_LSIZE(hdr
);
8623 DTRACE_PROBE2(l2arc__write
, vdev_t
*, dev
->l2ad_vdev
,
8626 write_psize
+= psize
;
8627 write_asize
+= asize
;
8628 dev
->l2ad_hand
+= asize
;
8630 mutex_exit(hash_lock
);
8632 (void) zio_nowait(wzio
);
8635 multilist_sublist_unlock(mls
);
8641 /* No buffers selected for writing? */
8643 ASSERT0(write_lsize
);
8644 ASSERT(!HDR_HAS_L1HDR(head
));
8645 kmem_cache_free(hdr_l2only_cache
, head
);
8649 ASSERT3U(write_asize
, <=, target_sz
);
8650 ARCSTAT_BUMP(arcstat_l2_writes_sent
);
8651 ARCSTAT_INCR(arcstat_l2_write_bytes
, write_psize
);
8652 ARCSTAT_INCR(arcstat_l2_lsize
, write_lsize
);
8653 ARCSTAT_INCR(arcstat_l2_psize
, write_psize
);
8654 vdev_space_update(dev
->l2ad_vdev
, write_psize
, 0, 0);
8657 * Bump device hand to the device start if it is approaching the end.
8658 * l2arc_evict() will already have evicted ahead for this case.
8660 if (dev
->l2ad_hand
>= (dev
->l2ad_end
- target_sz
)) {
8661 dev
->l2ad_hand
= dev
->l2ad_start
;
8662 dev
->l2ad_first
= B_FALSE
;
8665 dev
->l2ad_writing
= B_TRUE
;
8666 (void) zio_wait(pio
);
8667 dev
->l2ad_writing
= B_FALSE
;
8669 return (write_asize
);
8673 * This thread feeds the L2ARC at regular intervals. This is the beating
8674 * heart of the L2ARC.
8677 l2arc_feed_thread(void *unused
)
8682 uint64_t size
, wrote
;
8683 clock_t begin
, next
= ddi_get_lbolt();
8684 fstrans_cookie_t cookie
;
8686 CALLB_CPR_INIT(&cpr
, &l2arc_feed_thr_lock
, callb_generic_cpr
, FTAG
);
8688 mutex_enter(&l2arc_feed_thr_lock
);
8690 cookie
= spl_fstrans_mark();
8691 while (l2arc_thread_exit
== 0) {
8692 CALLB_CPR_SAFE_BEGIN(&cpr
);
8693 (void) cv_timedwait_sig(&l2arc_feed_thr_cv
,
8694 &l2arc_feed_thr_lock
, next
);
8695 CALLB_CPR_SAFE_END(&cpr
, &l2arc_feed_thr_lock
);
8696 next
= ddi_get_lbolt() + hz
;
8699 * Quick check for L2ARC devices.
8701 mutex_enter(&l2arc_dev_mtx
);
8702 if (l2arc_ndev
== 0) {
8703 mutex_exit(&l2arc_dev_mtx
);
8706 mutex_exit(&l2arc_dev_mtx
);
8707 begin
= ddi_get_lbolt();
8710 * This selects the next l2arc device to write to, and in
8711 * doing so the next spa to feed from: dev->l2ad_spa. This
8712 * will return NULL if there are now no l2arc devices or if
8713 * they are all faulted.
8715 * If a device is returned, its spa's config lock is also
8716 * held to prevent device removal. l2arc_dev_get_next()
8717 * will grab and release l2arc_dev_mtx.
8719 if ((dev
= l2arc_dev_get_next()) == NULL
)
8722 spa
= dev
->l2ad_spa
;
8723 ASSERT3P(spa
, !=, NULL
);
8726 * If the pool is read-only then force the feed thread to
8727 * sleep a little longer.
8729 if (!spa_writeable(spa
)) {
8730 next
= ddi_get_lbolt() + 5 * l2arc_feed_secs
* hz
;
8731 spa_config_exit(spa
, SCL_L2ARC
, dev
);
8736 * Avoid contributing to memory pressure.
8738 if (arc_reclaim_needed()) {
8739 ARCSTAT_BUMP(arcstat_l2_abort_lowmem
);
8740 spa_config_exit(spa
, SCL_L2ARC
, dev
);
8744 ARCSTAT_BUMP(arcstat_l2_feeds
);
8746 size
= l2arc_write_size();
8749 * Evict L2ARC buffers that will be overwritten.
8751 l2arc_evict(dev
, size
, B_FALSE
);
8754 * Write ARC buffers.
8756 wrote
= l2arc_write_buffers(spa
, dev
, size
);
8759 * Calculate interval between writes.
8761 next
= l2arc_write_interval(begin
, size
, wrote
);
8762 spa_config_exit(spa
, SCL_L2ARC
, dev
);
8764 spl_fstrans_unmark(cookie
);
8766 l2arc_thread_exit
= 0;
8767 cv_broadcast(&l2arc_feed_thr_cv
);
8768 CALLB_CPR_EXIT(&cpr
); /* drops l2arc_feed_thr_lock */
8773 l2arc_vdev_present(vdev_t
*vd
)
8777 mutex_enter(&l2arc_dev_mtx
);
8778 for (dev
= list_head(l2arc_dev_list
); dev
!= NULL
;
8779 dev
= list_next(l2arc_dev_list
, dev
)) {
8780 if (dev
->l2ad_vdev
== vd
)
8783 mutex_exit(&l2arc_dev_mtx
);
8785 return (dev
!= NULL
);
8789 * Add a vdev for use by the L2ARC. By this point the spa has already
8790 * validated the vdev and opened it.
8793 l2arc_add_vdev(spa_t
*spa
, vdev_t
*vd
)
8795 l2arc_dev_t
*adddev
;
8797 ASSERT(!l2arc_vdev_present(vd
));
8800 * Create a new l2arc device entry.
8802 adddev
= kmem_zalloc(sizeof (l2arc_dev_t
), KM_SLEEP
);
8803 adddev
->l2ad_spa
= spa
;
8804 adddev
->l2ad_vdev
= vd
;
8805 adddev
->l2ad_start
= VDEV_LABEL_START_SIZE
;
8806 adddev
->l2ad_end
= VDEV_LABEL_START_SIZE
+ vdev_get_min_asize(vd
);
8807 adddev
->l2ad_hand
= adddev
->l2ad_start
;
8808 adddev
->l2ad_first
= B_TRUE
;
8809 adddev
->l2ad_writing
= B_FALSE
;
8810 list_link_init(&adddev
->l2ad_node
);
8812 mutex_init(&adddev
->l2ad_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
8814 * This is a list of all ARC buffers that are still valid on the
8817 list_create(&adddev
->l2ad_buflist
, sizeof (arc_buf_hdr_t
),
8818 offsetof(arc_buf_hdr_t
, b_l2hdr
.b_l2node
));
8820 vdev_space_update(vd
, 0, 0, adddev
->l2ad_end
- adddev
->l2ad_hand
);
8821 refcount_create(&adddev
->l2ad_alloc
);
8824 * Add device to global list
8826 mutex_enter(&l2arc_dev_mtx
);
8827 list_insert_head(l2arc_dev_list
, adddev
);
8828 atomic_inc_64(&l2arc_ndev
);
8829 mutex_exit(&l2arc_dev_mtx
);
8833 * Remove a vdev from the L2ARC.
8836 l2arc_remove_vdev(vdev_t
*vd
)
8838 l2arc_dev_t
*dev
, *nextdev
, *remdev
= NULL
;
8841 * Find the device by vdev
8843 mutex_enter(&l2arc_dev_mtx
);
8844 for (dev
= list_head(l2arc_dev_list
); dev
; dev
= nextdev
) {
8845 nextdev
= list_next(l2arc_dev_list
, dev
);
8846 if (vd
== dev
->l2ad_vdev
) {
8851 ASSERT3P(remdev
, !=, NULL
);
8854 * Remove device from global list
8856 list_remove(l2arc_dev_list
, remdev
);
8857 l2arc_dev_last
= NULL
; /* may have been invalidated */
8858 atomic_dec_64(&l2arc_ndev
);
8859 mutex_exit(&l2arc_dev_mtx
);
8862 * Clear all buflists and ARC references. L2ARC device flush.
8864 l2arc_evict(remdev
, 0, B_TRUE
);
8865 list_destroy(&remdev
->l2ad_buflist
);
8866 mutex_destroy(&remdev
->l2ad_mtx
);
8867 refcount_destroy(&remdev
->l2ad_alloc
);
8868 kmem_free(remdev
, sizeof (l2arc_dev_t
));
8874 l2arc_thread_exit
= 0;
8876 l2arc_writes_sent
= 0;
8877 l2arc_writes_done
= 0;
8879 mutex_init(&l2arc_feed_thr_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8880 cv_init(&l2arc_feed_thr_cv
, NULL
, CV_DEFAULT
, NULL
);
8881 mutex_init(&l2arc_dev_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
8882 mutex_init(&l2arc_free_on_write_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
8884 l2arc_dev_list
= &L2ARC_dev_list
;
8885 l2arc_free_on_write
= &L2ARC_free_on_write
;
8886 list_create(l2arc_dev_list
, sizeof (l2arc_dev_t
),
8887 offsetof(l2arc_dev_t
, l2ad_node
));
8888 list_create(l2arc_free_on_write
, sizeof (l2arc_data_free_t
),
8889 offsetof(l2arc_data_free_t
, l2df_list_node
));
8896 * This is called from dmu_fini(), which is called from spa_fini();
8897 * Because of this, we can assume that all l2arc devices have
8898 * already been removed when the pools themselves were removed.
8901 l2arc_do_free_on_write();
8903 mutex_destroy(&l2arc_feed_thr_lock
);
8904 cv_destroy(&l2arc_feed_thr_cv
);
8905 mutex_destroy(&l2arc_dev_mtx
);
8906 mutex_destroy(&l2arc_free_on_write_mtx
);
8908 list_destroy(l2arc_dev_list
);
8909 list_destroy(l2arc_free_on_write
);
8915 if (!(spa_mode_global
& FWRITE
))
8918 (void) thread_create(NULL
, 0, l2arc_feed_thread
, NULL
, 0, &p0
,
8919 TS_RUN
, defclsyspri
);
8925 if (!(spa_mode_global
& FWRITE
))
8928 mutex_enter(&l2arc_feed_thr_lock
);
8929 cv_signal(&l2arc_feed_thr_cv
); /* kick thread out of startup */
8930 l2arc_thread_exit
= 1;
8931 while (l2arc_thread_exit
!= 0)
8932 cv_wait(&l2arc_feed_thr_cv
, &l2arc_feed_thr_lock
);
8933 mutex_exit(&l2arc_feed_thr_lock
);
8936 #if defined(_KERNEL) && defined(HAVE_SPL)
8937 EXPORT_SYMBOL(arc_buf_size
);
8938 EXPORT_SYMBOL(arc_write
);
8939 EXPORT_SYMBOL(arc_read
);
8940 EXPORT_SYMBOL(arc_buf_info
);
8941 EXPORT_SYMBOL(arc_getbuf_func
);
8942 EXPORT_SYMBOL(arc_add_prune_callback
);
8943 EXPORT_SYMBOL(arc_remove_prune_callback
);
8946 module_param(zfs_arc_min
, ulong
, 0644);
8947 MODULE_PARM_DESC(zfs_arc_min
, "Min arc size");
8949 module_param(zfs_arc_max
, ulong
, 0644);
8950 MODULE_PARM_DESC(zfs_arc_max
, "Max arc size");
8952 module_param(zfs_arc_meta_limit
, ulong
, 0644);
8953 MODULE_PARM_DESC(zfs_arc_meta_limit
, "Meta limit for arc size");
8955 module_param(zfs_arc_meta_limit_percent
, ulong
, 0644);
8956 MODULE_PARM_DESC(zfs_arc_meta_limit_percent
,
8957 "Percent of arc size for arc meta limit");
8959 module_param(zfs_arc_meta_min
, ulong
, 0644);
8960 MODULE_PARM_DESC(zfs_arc_meta_min
, "Min arc metadata");
8962 module_param(zfs_arc_meta_prune
, int, 0644);
8963 MODULE_PARM_DESC(zfs_arc_meta_prune
, "Meta objects to scan for prune");
8965 module_param(zfs_arc_meta_adjust_restarts
, int, 0644);
8966 MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts
,
8967 "Limit number of restarts in arc_adjust_meta");
8969 module_param(zfs_arc_meta_strategy
, int, 0644);
8970 MODULE_PARM_DESC(zfs_arc_meta_strategy
, "Meta reclaim strategy");
8972 module_param(zfs_arc_grow_retry
, int, 0644);
8973 MODULE_PARM_DESC(zfs_arc_grow_retry
, "Seconds before growing arc size");
8975 module_param(zfs_arc_p_aggressive_disable
, int, 0644);
8976 MODULE_PARM_DESC(zfs_arc_p_aggressive_disable
, "disable aggressive arc_p grow");
8978 module_param(zfs_arc_p_dampener_disable
, int, 0644);
8979 MODULE_PARM_DESC(zfs_arc_p_dampener_disable
, "disable arc_p adapt dampener");
8981 module_param(zfs_arc_shrink_shift
, int, 0644);
8982 MODULE_PARM_DESC(zfs_arc_shrink_shift
, "log2(fraction of arc to reclaim)");
8984 module_param(zfs_arc_pc_percent
, uint
, 0644);
8985 MODULE_PARM_DESC(zfs_arc_pc_percent
,
8986 "Percent of pagecache to reclaim arc to");
8988 module_param(zfs_arc_p_min_shift
, int, 0644);
8989 MODULE_PARM_DESC(zfs_arc_p_min_shift
, "arc_c shift to calc min/max arc_p");
8991 module_param(zfs_arc_average_blocksize
, int, 0444);
8992 MODULE_PARM_DESC(zfs_arc_average_blocksize
, "Target average block size");
8994 module_param(zfs_compressed_arc_enabled
, int, 0644);
8995 MODULE_PARM_DESC(zfs_compressed_arc_enabled
, "Disable compressed arc buffers");
8997 module_param(zfs_arc_min_prefetch_lifespan
, int, 0644);
8998 MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan
, "Min life of prefetch block");
9000 module_param(l2arc_write_max
, ulong
, 0644);
9001 MODULE_PARM_DESC(l2arc_write_max
, "Max write bytes per interval");
9003 module_param(l2arc_write_boost
, ulong
, 0644);
9004 MODULE_PARM_DESC(l2arc_write_boost
, "Extra write bytes during device warmup");
9006 module_param(l2arc_headroom
, ulong
, 0644);
9007 MODULE_PARM_DESC(l2arc_headroom
, "Number of max device writes to precache");
9009 module_param(l2arc_headroom_boost
, ulong
, 0644);
9010 MODULE_PARM_DESC(l2arc_headroom_boost
, "Compressed l2arc_headroom multiplier");
9012 module_param(l2arc_feed_secs
, ulong
, 0644);
9013 MODULE_PARM_DESC(l2arc_feed_secs
, "Seconds between L2ARC writing");
9015 module_param(l2arc_feed_min_ms
, ulong
, 0644);
9016 MODULE_PARM_DESC(l2arc_feed_min_ms
, "Min feed interval in milliseconds");
9018 module_param(l2arc_noprefetch
, int, 0644);
9019 MODULE_PARM_DESC(l2arc_noprefetch
, "Skip caching prefetched buffers");
9021 module_param(l2arc_feed_again
, int, 0644);
9022 MODULE_PARM_DESC(l2arc_feed_again
, "Turbo L2ARC warmup");
9024 module_param(l2arc_norw
, int, 0644);
9025 MODULE_PARM_DESC(l2arc_norw
, "No reads during writes");
9027 module_param(zfs_arc_lotsfree_percent
, int, 0644);
9028 MODULE_PARM_DESC(zfs_arc_lotsfree_percent
,
9029 "System free memory I/O throttle in bytes");
9031 module_param(zfs_arc_sys_free
, ulong
, 0644);
9032 MODULE_PARM_DESC(zfs_arc_sys_free
, "System free memory target size in bytes");
9034 module_param(zfs_arc_dnode_limit
, ulong
, 0644);
9035 MODULE_PARM_DESC(zfs_arc_dnode_limit
, "Minimum bytes of dnodes in arc");
9037 module_param(zfs_arc_dnode_limit_percent
, ulong
, 0644);
9038 MODULE_PARM_DESC(zfs_arc_dnode_limit_percent
,
9039 "Percent of ARC meta buffers for dnodes");
9041 module_param(zfs_arc_dnode_reduce_percent
, ulong
, 0644);
9042 MODULE_PARM_DESC(zfs_arc_dnode_reduce_percent
,
9043 "Percentage of excess dnodes to try to unpin");