]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/arc.c
OpenZFS 8607 - variable set but not used
[mirror_zfs.git] / module / zfs / arc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 /*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size. So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes). We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74 /*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
80 * uses method 1, while the internal ARC algorithms for
81 * adjusting the cache use method 2. We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * ARC list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each ARC state also has a mutex which is used to protect the
97 * buffer list associated with the state. When attempting to
98 * obtain a hash table lock while holding an ARC list lock you
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * It as also possible to register a callback which is run when the
103 * arc_meta_limit is reached and no buffers can be safely evicted. In
104 * this case the arc user should drop a reference on some arc buffers so
105 * they can be reclaimed and the arc_meta_limit honored. For example,
106 * when using the ZPL each dentry holds a references on a znode. These
107 * dentries must be pruned before the arc buffer holding the znode can
108 * be safely evicted.
109 *
110 * Note that the majority of the performance stats are manipulated
111 * with atomic operations.
112 *
113 * The L2ARC uses the l2ad_mtx on each vdev for the following:
114 *
115 * - L2ARC buflist creation
116 * - L2ARC buflist eviction
117 * - L2ARC write completion, which walks L2ARC buflists
118 * - ARC header destruction, as it removes from L2ARC buflists
119 * - ARC header release, as it removes from L2ARC buflists
120 */
121
122 /*
123 * ARC operation:
124 *
125 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
126 * This structure can point either to a block that is still in the cache or to
127 * one that is only accessible in an L2 ARC device, or it can provide
128 * information about a block that was recently evicted. If a block is
129 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
130 * information to retrieve it from the L2ARC device. This information is
131 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
132 * that is in this state cannot access the data directly.
133 *
134 * Blocks that are actively being referenced or have not been evicted
135 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
136 * the arc_buf_hdr_t that will point to the data block in memory. A block can
137 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
138 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
139 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
140 *
141 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
142 * ability to store the physical data (b_pabd) associated with the DVA of the
143 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
144 * it will match its on-disk compression characteristics. This behavior can be
145 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
146 * compressed ARC functionality is disabled, the b_pabd will point to an
147 * uncompressed version of the on-disk data.
148 *
149 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
150 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
151 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
152 * consumer. The ARC will provide references to this data and will keep it
153 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
154 * data block and will evict any arc_buf_t that is no longer referenced. The
155 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
156 * "overhead_size" kstat.
157 *
158 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
159 * compressed form. The typical case is that consumers will want uncompressed
160 * data, and when that happens a new data buffer is allocated where the data is
161 * decompressed for them to use. Currently the only consumer who wants
162 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
163 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
164 * with the arc_buf_hdr_t.
165 *
166 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
167 * first one is owned by a compressed send consumer (and therefore references
168 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
169 * used by any other consumer (and has its own uncompressed copy of the data
170 * buffer).
171 *
172 * arc_buf_hdr_t
173 * +-----------+
174 * | fields |
175 * | common to |
176 * | L1- and |
177 * | L2ARC |
178 * +-----------+
179 * | l2arc_buf_hdr_t
180 * | |
181 * +-----------+
182 * | l1arc_buf_hdr_t
183 * | | arc_buf_t
184 * | b_buf +------------>+-----------+ arc_buf_t
185 * | b_pabd +-+ |b_next +---->+-----------+
186 * +-----------+ | |-----------| |b_next +-->NULL
187 * | |b_comp = T | +-----------+
188 * | |b_data +-+ |b_comp = F |
189 * | +-----------+ | |b_data +-+
190 * +->+------+ | +-----------+ |
191 * compressed | | | |
192 * data | |<--------------+ | uncompressed
193 * +------+ compressed, | data
194 * shared +-->+------+
195 * data | |
196 * | |
197 * +------+
198 *
199 * When a consumer reads a block, the ARC must first look to see if the
200 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
201 * arc_buf_t and either copies uncompressed data into a new data buffer from an
202 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
203 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
204 * hdr is compressed and the desired compression characteristics of the
205 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
206 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
207 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
208 * be anywhere in the hdr's list.
209 *
210 * The diagram below shows an example of an uncompressed ARC hdr that is
211 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
212 * the last element in the buf list):
213 *
214 * arc_buf_hdr_t
215 * +-----------+
216 * | |
217 * | |
218 * | |
219 * +-----------+
220 * l2arc_buf_hdr_t| |
221 * | |
222 * +-----------+
223 * l1arc_buf_hdr_t| |
224 * | | arc_buf_t (shared)
225 * | b_buf +------------>+---------+ arc_buf_t
226 * | | |b_next +---->+---------+
227 * | b_pabd +-+ |---------| |b_next +-->NULL
228 * +-----------+ | | | +---------+
229 * | |b_data +-+ | |
230 * | +---------+ | |b_data +-+
231 * +->+------+ | +---------+ |
232 * | | | |
233 * uncompressed | | | |
234 * data +------+ | |
235 * ^ +->+------+ |
236 * | uncompressed | | |
237 * | data | | |
238 * | +------+ |
239 * +---------------------------------+
240 *
241 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
242 * since the physical block is about to be rewritten. The new data contents
243 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
244 * it may compress the data before writing it to disk. The ARC will be called
245 * with the transformed data and will bcopy the transformed on-disk block into
246 * a newly allocated b_pabd. Writes are always done into buffers which have
247 * either been loaned (and hence are new and don't have other readers) or
248 * buffers which have been released (and hence have their own hdr, if there
249 * were originally other readers of the buf's original hdr). This ensures that
250 * the ARC only needs to update a single buf and its hdr after a write occurs.
251 *
252 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
253 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
254 * that when compressed ARC is enabled that the L2ARC blocks are identical
255 * to the on-disk block in the main data pool. This provides a significant
256 * advantage since the ARC can leverage the bp's checksum when reading from the
257 * L2ARC to determine if the contents are valid. However, if the compressed
258 * ARC is disabled, then the L2ARC's block must be transformed to look
259 * like the physical block in the main data pool before comparing the
260 * checksum and determining its validity.
261 *
262 * The L1ARC has a slightly different system for storing encrypted data.
263 * Raw (encrypted + possibly compressed) data has a few subtle differences from
264 * data that is just compressed. The biggest difference is that it is not
265 * possible to decrypt encrypted data (or visa versa) if the keys aren't loaded.
266 * The other difference is that encryption cannot be treated as a suggestion.
267 * If a caller would prefer compressed data, but they actually wind up with
268 * uncompressed data the worst thing that could happen is there might be a
269 * performance hit. If the caller requests encrypted data, however, we must be
270 * sure they actually get it or else secret information could be leaked. Raw
271 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
272 * may have both an encrypted version and a decrypted version of its data at
273 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
274 * copied out of this header. To avoid complications with b_pabd, raw buffers
275 * cannot be shared.
276 */
277
278 #include <sys/spa.h>
279 #include <sys/zio.h>
280 #include <sys/spa_impl.h>
281 #include <sys/zio_compress.h>
282 #include <sys/zio_checksum.h>
283 #include <sys/zfs_context.h>
284 #include <sys/arc.h>
285 #include <sys/refcount.h>
286 #include <sys/vdev.h>
287 #include <sys/vdev_impl.h>
288 #include <sys/dsl_pool.h>
289 #include <sys/zio_checksum.h>
290 #include <sys/multilist.h>
291 #include <sys/abd.h>
292 #include <sys/zil.h>
293 #include <sys/fm/fs/zfs.h>
294 #ifdef _KERNEL
295 #include <sys/vmsystm.h>
296 #include <vm/anon.h>
297 #include <sys/fs/swapnode.h>
298 #include <sys/zpl.h>
299 #include <linux/mm_compat.h>
300 #endif
301 #include <sys/callb.h>
302 #include <sys/kstat.h>
303 #include <sys/dmu_tx.h>
304 #include <zfs_fletcher.h>
305 #include <sys/arc_impl.h>
306 #include <sys/trace_arc.h>
307
308 #ifndef _KERNEL
309 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
310 boolean_t arc_watch = B_FALSE;
311 #endif
312
313 static kmutex_t arc_reclaim_lock;
314 static kcondvar_t arc_reclaim_thread_cv;
315 static boolean_t arc_reclaim_thread_exit;
316 static kcondvar_t arc_reclaim_waiters_cv;
317
318 /*
319 * The number of headers to evict in arc_evict_state_impl() before
320 * dropping the sublist lock and evicting from another sublist. A lower
321 * value means we're more likely to evict the "correct" header (i.e. the
322 * oldest header in the arc state), but comes with higher overhead
323 * (i.e. more invocations of arc_evict_state_impl()).
324 */
325 int zfs_arc_evict_batch_limit = 10;
326
327 /* number of seconds before growing cache again */
328 static int arc_grow_retry = 5;
329
330 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
331 int zfs_arc_overflow_shift = 8;
332
333 /* shift of arc_c for calculating both min and max arc_p */
334 static int arc_p_min_shift = 4;
335
336 /* log2(fraction of arc to reclaim) */
337 static int arc_shrink_shift = 7;
338
339 /* percent of pagecache to reclaim arc to */
340 #ifdef _KERNEL
341 static uint_t zfs_arc_pc_percent = 0;
342 #endif
343
344 /*
345 * log2(fraction of ARC which must be free to allow growing).
346 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
347 * when reading a new block into the ARC, we will evict an equal-sized block
348 * from the ARC.
349 *
350 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
351 * we will still not allow it to grow.
352 */
353 int arc_no_grow_shift = 5;
354
355
356 /*
357 * minimum lifespan of a prefetch block in clock ticks
358 * (initialized in arc_init())
359 */
360 static int arc_min_prefetch_lifespan;
361
362 /*
363 * If this percent of memory is free, don't throttle.
364 */
365 int arc_lotsfree_percent = 10;
366
367 static int arc_dead;
368
369 /*
370 * The arc has filled available memory and has now warmed up.
371 */
372 static boolean_t arc_warm;
373
374 /*
375 * log2 fraction of the zio arena to keep free.
376 */
377 int arc_zio_arena_free_shift = 2;
378
379 /*
380 * These tunables are for performance analysis.
381 */
382 unsigned long zfs_arc_max = 0;
383 unsigned long zfs_arc_min = 0;
384 unsigned long zfs_arc_meta_limit = 0;
385 unsigned long zfs_arc_meta_min = 0;
386 unsigned long zfs_arc_dnode_limit = 0;
387 unsigned long zfs_arc_dnode_reduce_percent = 10;
388 int zfs_arc_grow_retry = 0;
389 int zfs_arc_shrink_shift = 0;
390 int zfs_arc_p_min_shift = 0;
391 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
392
393 int zfs_compressed_arc_enabled = B_TRUE;
394
395 /*
396 * ARC will evict meta buffers that exceed arc_meta_limit. This
397 * tunable make arc_meta_limit adjustable for different workloads.
398 */
399 unsigned long zfs_arc_meta_limit_percent = 75;
400
401 /*
402 * Percentage that can be consumed by dnodes of ARC meta buffers.
403 */
404 unsigned long zfs_arc_dnode_limit_percent = 10;
405
406 /*
407 * These tunables are Linux specific
408 */
409 unsigned long zfs_arc_sys_free = 0;
410 int zfs_arc_min_prefetch_lifespan = 0;
411 int zfs_arc_p_aggressive_disable = 1;
412 int zfs_arc_p_dampener_disable = 1;
413 int zfs_arc_meta_prune = 10000;
414 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
415 int zfs_arc_meta_adjust_restarts = 4096;
416 int zfs_arc_lotsfree_percent = 10;
417
418 /* The 6 states: */
419 static arc_state_t ARC_anon;
420 static arc_state_t ARC_mru;
421 static arc_state_t ARC_mru_ghost;
422 static arc_state_t ARC_mfu;
423 static arc_state_t ARC_mfu_ghost;
424 static arc_state_t ARC_l2c_only;
425
426 typedef struct arc_stats {
427 kstat_named_t arcstat_hits;
428 kstat_named_t arcstat_misses;
429 kstat_named_t arcstat_demand_data_hits;
430 kstat_named_t arcstat_demand_data_misses;
431 kstat_named_t arcstat_demand_metadata_hits;
432 kstat_named_t arcstat_demand_metadata_misses;
433 kstat_named_t arcstat_prefetch_data_hits;
434 kstat_named_t arcstat_prefetch_data_misses;
435 kstat_named_t arcstat_prefetch_metadata_hits;
436 kstat_named_t arcstat_prefetch_metadata_misses;
437 kstat_named_t arcstat_mru_hits;
438 kstat_named_t arcstat_mru_ghost_hits;
439 kstat_named_t arcstat_mfu_hits;
440 kstat_named_t arcstat_mfu_ghost_hits;
441 kstat_named_t arcstat_deleted;
442 /*
443 * Number of buffers that could not be evicted because the hash lock
444 * was held by another thread. The lock may not necessarily be held
445 * by something using the same buffer, since hash locks are shared
446 * by multiple buffers.
447 */
448 kstat_named_t arcstat_mutex_miss;
449 /*
450 * Number of buffers skipped because they have I/O in progress, are
451 * indrect prefetch buffers that have not lived long enough, or are
452 * not from the spa we're trying to evict from.
453 */
454 kstat_named_t arcstat_evict_skip;
455 /*
456 * Number of times arc_evict_state() was unable to evict enough
457 * buffers to reach its target amount.
458 */
459 kstat_named_t arcstat_evict_not_enough;
460 kstat_named_t arcstat_evict_l2_cached;
461 kstat_named_t arcstat_evict_l2_eligible;
462 kstat_named_t arcstat_evict_l2_ineligible;
463 kstat_named_t arcstat_evict_l2_skip;
464 kstat_named_t arcstat_hash_elements;
465 kstat_named_t arcstat_hash_elements_max;
466 kstat_named_t arcstat_hash_collisions;
467 kstat_named_t arcstat_hash_chains;
468 kstat_named_t arcstat_hash_chain_max;
469 kstat_named_t arcstat_p;
470 kstat_named_t arcstat_c;
471 kstat_named_t arcstat_c_min;
472 kstat_named_t arcstat_c_max;
473 kstat_named_t arcstat_size;
474 /*
475 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
476 * Note that the compressed bytes may match the uncompressed bytes
477 * if the block is either not compressed or compressed arc is disabled.
478 */
479 kstat_named_t arcstat_compressed_size;
480 /*
481 * Uncompressed size of the data stored in b_pabd. If compressed
482 * arc is disabled then this value will be identical to the stat
483 * above.
484 */
485 kstat_named_t arcstat_uncompressed_size;
486 /*
487 * Number of bytes stored in all the arc_buf_t's. This is classified
488 * as "overhead" since this data is typically short-lived and will
489 * be evicted from the arc when it becomes unreferenced unless the
490 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
491 * values have been set (see comment in dbuf.c for more information).
492 */
493 kstat_named_t arcstat_overhead_size;
494 /*
495 * Number of bytes consumed by internal ARC structures necessary
496 * for tracking purposes; these structures are not actually
497 * backed by ARC buffers. This includes arc_buf_hdr_t structures
498 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
499 * caches), and arc_buf_t structures (allocated via arc_buf_t
500 * cache).
501 */
502 kstat_named_t arcstat_hdr_size;
503 /*
504 * Number of bytes consumed by ARC buffers of type equal to
505 * ARC_BUFC_DATA. This is generally consumed by buffers backing
506 * on disk user data (e.g. plain file contents).
507 */
508 kstat_named_t arcstat_data_size;
509 /*
510 * Number of bytes consumed by ARC buffers of type equal to
511 * ARC_BUFC_METADATA. This is generally consumed by buffers
512 * backing on disk data that is used for internal ZFS
513 * structures (e.g. ZAP, dnode, indirect blocks, etc).
514 */
515 kstat_named_t arcstat_metadata_size;
516 /*
517 * Number of bytes consumed by dmu_buf_impl_t objects.
518 */
519 kstat_named_t arcstat_dbuf_size;
520 /*
521 * Number of bytes consumed by dnode_t objects.
522 */
523 kstat_named_t arcstat_dnode_size;
524 /*
525 * Number of bytes consumed by bonus buffers.
526 */
527 kstat_named_t arcstat_bonus_size;
528 /*
529 * Total number of bytes consumed by ARC buffers residing in the
530 * arc_anon state. This includes *all* buffers in the arc_anon
531 * state; e.g. data, metadata, evictable, and unevictable buffers
532 * are all included in this value.
533 */
534 kstat_named_t arcstat_anon_size;
535 /*
536 * Number of bytes consumed by ARC buffers that meet the
537 * following criteria: backing buffers of type ARC_BUFC_DATA,
538 * residing in the arc_anon state, and are eligible for eviction
539 * (e.g. have no outstanding holds on the buffer).
540 */
541 kstat_named_t arcstat_anon_evictable_data;
542 /*
543 * Number of bytes consumed by ARC buffers that meet the
544 * following criteria: backing buffers of type ARC_BUFC_METADATA,
545 * residing in the arc_anon state, and are eligible for eviction
546 * (e.g. have no outstanding holds on the buffer).
547 */
548 kstat_named_t arcstat_anon_evictable_metadata;
549 /*
550 * Total number of bytes consumed by ARC buffers residing in the
551 * arc_mru state. This includes *all* buffers in the arc_mru
552 * state; e.g. data, metadata, evictable, and unevictable buffers
553 * are all included in this value.
554 */
555 kstat_named_t arcstat_mru_size;
556 /*
557 * Number of bytes consumed by ARC buffers that meet the
558 * following criteria: backing buffers of type ARC_BUFC_DATA,
559 * residing in the arc_mru state, and are eligible for eviction
560 * (e.g. have no outstanding holds on the buffer).
561 */
562 kstat_named_t arcstat_mru_evictable_data;
563 /*
564 * Number of bytes consumed by ARC buffers that meet the
565 * following criteria: backing buffers of type ARC_BUFC_METADATA,
566 * residing in the arc_mru state, and are eligible for eviction
567 * (e.g. have no outstanding holds on the buffer).
568 */
569 kstat_named_t arcstat_mru_evictable_metadata;
570 /*
571 * Total number of bytes that *would have been* consumed by ARC
572 * buffers in the arc_mru_ghost state. The key thing to note
573 * here, is the fact that this size doesn't actually indicate
574 * RAM consumption. The ghost lists only consist of headers and
575 * don't actually have ARC buffers linked off of these headers.
576 * Thus, *if* the headers had associated ARC buffers, these
577 * buffers *would have* consumed this number of bytes.
578 */
579 kstat_named_t arcstat_mru_ghost_size;
580 /*
581 * Number of bytes that *would have been* consumed by ARC
582 * buffers that are eligible for eviction, of type
583 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
584 */
585 kstat_named_t arcstat_mru_ghost_evictable_data;
586 /*
587 * Number of bytes that *would have been* consumed by ARC
588 * buffers that are eligible for eviction, of type
589 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
590 */
591 kstat_named_t arcstat_mru_ghost_evictable_metadata;
592 /*
593 * Total number of bytes consumed by ARC buffers residing in the
594 * arc_mfu state. This includes *all* buffers in the arc_mfu
595 * state; e.g. data, metadata, evictable, and unevictable buffers
596 * are all included in this value.
597 */
598 kstat_named_t arcstat_mfu_size;
599 /*
600 * Number of bytes consumed by ARC buffers that are eligible for
601 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
602 * state.
603 */
604 kstat_named_t arcstat_mfu_evictable_data;
605 /*
606 * Number of bytes consumed by ARC buffers that are eligible for
607 * eviction, of type ARC_BUFC_METADATA, and reside in the
608 * arc_mfu state.
609 */
610 kstat_named_t arcstat_mfu_evictable_metadata;
611 /*
612 * Total number of bytes that *would have been* consumed by ARC
613 * buffers in the arc_mfu_ghost state. See the comment above
614 * arcstat_mru_ghost_size for more details.
615 */
616 kstat_named_t arcstat_mfu_ghost_size;
617 /*
618 * Number of bytes that *would have been* consumed by ARC
619 * buffers that are eligible for eviction, of type
620 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
621 */
622 kstat_named_t arcstat_mfu_ghost_evictable_data;
623 /*
624 * Number of bytes that *would have been* consumed by ARC
625 * buffers that are eligible for eviction, of type
626 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
627 */
628 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
629 kstat_named_t arcstat_l2_hits;
630 kstat_named_t arcstat_l2_misses;
631 kstat_named_t arcstat_l2_feeds;
632 kstat_named_t arcstat_l2_rw_clash;
633 kstat_named_t arcstat_l2_read_bytes;
634 kstat_named_t arcstat_l2_write_bytes;
635 kstat_named_t arcstat_l2_writes_sent;
636 kstat_named_t arcstat_l2_writes_done;
637 kstat_named_t arcstat_l2_writes_error;
638 kstat_named_t arcstat_l2_writes_lock_retry;
639 kstat_named_t arcstat_l2_evict_lock_retry;
640 kstat_named_t arcstat_l2_evict_reading;
641 kstat_named_t arcstat_l2_evict_l1cached;
642 kstat_named_t arcstat_l2_free_on_write;
643 kstat_named_t arcstat_l2_abort_lowmem;
644 kstat_named_t arcstat_l2_cksum_bad;
645 kstat_named_t arcstat_l2_io_error;
646 kstat_named_t arcstat_l2_lsize;
647 kstat_named_t arcstat_l2_psize;
648 kstat_named_t arcstat_l2_hdr_size;
649 kstat_named_t arcstat_memory_throttle_count;
650 kstat_named_t arcstat_memory_direct_count;
651 kstat_named_t arcstat_memory_indirect_count;
652 kstat_named_t arcstat_memory_all_bytes;
653 kstat_named_t arcstat_memory_free_bytes;
654 kstat_named_t arcstat_memory_available_bytes;
655 kstat_named_t arcstat_no_grow;
656 kstat_named_t arcstat_tempreserve;
657 kstat_named_t arcstat_loaned_bytes;
658 kstat_named_t arcstat_prune;
659 kstat_named_t arcstat_meta_used;
660 kstat_named_t arcstat_meta_limit;
661 kstat_named_t arcstat_dnode_limit;
662 kstat_named_t arcstat_meta_max;
663 kstat_named_t arcstat_meta_min;
664 kstat_named_t arcstat_sync_wait_for_async;
665 kstat_named_t arcstat_demand_hit_predictive_prefetch;
666 kstat_named_t arcstat_need_free;
667 kstat_named_t arcstat_sys_free;
668 kstat_named_t arcstat_raw_size;
669 } arc_stats_t;
670
671 static arc_stats_t arc_stats = {
672 { "hits", KSTAT_DATA_UINT64 },
673 { "misses", KSTAT_DATA_UINT64 },
674 { "demand_data_hits", KSTAT_DATA_UINT64 },
675 { "demand_data_misses", KSTAT_DATA_UINT64 },
676 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
677 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
678 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
679 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
680 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
681 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
682 { "mru_hits", KSTAT_DATA_UINT64 },
683 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
684 { "mfu_hits", KSTAT_DATA_UINT64 },
685 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
686 { "deleted", KSTAT_DATA_UINT64 },
687 { "mutex_miss", KSTAT_DATA_UINT64 },
688 { "evict_skip", KSTAT_DATA_UINT64 },
689 { "evict_not_enough", KSTAT_DATA_UINT64 },
690 { "evict_l2_cached", KSTAT_DATA_UINT64 },
691 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
692 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
693 { "evict_l2_skip", KSTAT_DATA_UINT64 },
694 { "hash_elements", KSTAT_DATA_UINT64 },
695 { "hash_elements_max", KSTAT_DATA_UINT64 },
696 { "hash_collisions", KSTAT_DATA_UINT64 },
697 { "hash_chains", KSTAT_DATA_UINT64 },
698 { "hash_chain_max", KSTAT_DATA_UINT64 },
699 { "p", KSTAT_DATA_UINT64 },
700 { "c", KSTAT_DATA_UINT64 },
701 { "c_min", KSTAT_DATA_UINT64 },
702 { "c_max", KSTAT_DATA_UINT64 },
703 { "size", KSTAT_DATA_UINT64 },
704 { "compressed_size", KSTAT_DATA_UINT64 },
705 { "uncompressed_size", KSTAT_DATA_UINT64 },
706 { "overhead_size", KSTAT_DATA_UINT64 },
707 { "hdr_size", KSTAT_DATA_UINT64 },
708 { "data_size", KSTAT_DATA_UINT64 },
709 { "metadata_size", KSTAT_DATA_UINT64 },
710 { "dbuf_size", KSTAT_DATA_UINT64 },
711 { "dnode_size", KSTAT_DATA_UINT64 },
712 { "bonus_size", KSTAT_DATA_UINT64 },
713 { "anon_size", KSTAT_DATA_UINT64 },
714 { "anon_evictable_data", KSTAT_DATA_UINT64 },
715 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
716 { "mru_size", KSTAT_DATA_UINT64 },
717 { "mru_evictable_data", KSTAT_DATA_UINT64 },
718 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
719 { "mru_ghost_size", KSTAT_DATA_UINT64 },
720 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
721 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
722 { "mfu_size", KSTAT_DATA_UINT64 },
723 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
724 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
725 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
726 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
727 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
728 { "l2_hits", KSTAT_DATA_UINT64 },
729 { "l2_misses", KSTAT_DATA_UINT64 },
730 { "l2_feeds", KSTAT_DATA_UINT64 },
731 { "l2_rw_clash", KSTAT_DATA_UINT64 },
732 { "l2_read_bytes", KSTAT_DATA_UINT64 },
733 { "l2_write_bytes", KSTAT_DATA_UINT64 },
734 { "l2_writes_sent", KSTAT_DATA_UINT64 },
735 { "l2_writes_done", KSTAT_DATA_UINT64 },
736 { "l2_writes_error", KSTAT_DATA_UINT64 },
737 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
738 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
739 { "l2_evict_reading", KSTAT_DATA_UINT64 },
740 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
741 { "l2_free_on_write", KSTAT_DATA_UINT64 },
742 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
743 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
744 { "l2_io_error", KSTAT_DATA_UINT64 },
745 { "l2_size", KSTAT_DATA_UINT64 },
746 { "l2_asize", KSTAT_DATA_UINT64 },
747 { "l2_hdr_size", KSTAT_DATA_UINT64 },
748 { "memory_throttle_count", KSTAT_DATA_UINT64 },
749 { "memory_direct_count", KSTAT_DATA_UINT64 },
750 { "memory_indirect_count", KSTAT_DATA_UINT64 },
751 { "memory_all_bytes", KSTAT_DATA_UINT64 },
752 { "memory_free_bytes", KSTAT_DATA_UINT64 },
753 { "memory_available_bytes", KSTAT_DATA_INT64 },
754 { "arc_no_grow", KSTAT_DATA_UINT64 },
755 { "arc_tempreserve", KSTAT_DATA_UINT64 },
756 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
757 { "arc_prune", KSTAT_DATA_UINT64 },
758 { "arc_meta_used", KSTAT_DATA_UINT64 },
759 { "arc_meta_limit", KSTAT_DATA_UINT64 },
760 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
761 { "arc_meta_max", KSTAT_DATA_UINT64 },
762 { "arc_meta_min", KSTAT_DATA_UINT64 },
763 { "sync_wait_for_async", KSTAT_DATA_UINT64 },
764 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
765 { "arc_need_free", KSTAT_DATA_UINT64 },
766 { "arc_sys_free", KSTAT_DATA_UINT64 },
767 { "arc_raw_size", KSTAT_DATA_UINT64 }
768 };
769
770 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
771
772 #define ARCSTAT_INCR(stat, val) \
773 atomic_add_64(&arc_stats.stat.value.ui64, (val))
774
775 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
776 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
777
778 #define ARCSTAT_MAX(stat, val) { \
779 uint64_t m; \
780 while ((val) > (m = arc_stats.stat.value.ui64) && \
781 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
782 continue; \
783 }
784
785 #define ARCSTAT_MAXSTAT(stat) \
786 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
787
788 /*
789 * We define a macro to allow ARC hits/misses to be easily broken down by
790 * two separate conditions, giving a total of four different subtypes for
791 * each of hits and misses (so eight statistics total).
792 */
793 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
794 if (cond1) { \
795 if (cond2) { \
796 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
797 } else { \
798 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
799 } \
800 } else { \
801 if (cond2) { \
802 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
803 } else { \
804 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
805 } \
806 }
807
808 kstat_t *arc_ksp;
809 static arc_state_t *arc_anon;
810 static arc_state_t *arc_mru;
811 static arc_state_t *arc_mru_ghost;
812 static arc_state_t *arc_mfu;
813 static arc_state_t *arc_mfu_ghost;
814 static arc_state_t *arc_l2c_only;
815
816 /*
817 * There are several ARC variables that are critical to export as kstats --
818 * but we don't want to have to grovel around in the kstat whenever we wish to
819 * manipulate them. For these variables, we therefore define them to be in
820 * terms of the statistic variable. This assures that we are not introducing
821 * the possibility of inconsistency by having shadow copies of the variables,
822 * while still allowing the code to be readable.
823 */
824 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
825 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
826 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
827 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
828 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
829 #define arc_no_grow ARCSTAT(arcstat_no_grow) /* do not grow cache size */
830 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
831 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
832 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
833 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
834 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
835 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
836 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
837 #define arc_dbuf_size ARCSTAT(arcstat_dbuf_size) /* dbuf metadata */
838 #define arc_dnode_size ARCSTAT(arcstat_dnode_size) /* dnode metadata */
839 #define arc_bonus_size ARCSTAT(arcstat_bonus_size) /* bonus buffer metadata */
840 #define arc_need_free ARCSTAT(arcstat_need_free) /* bytes to be freed */
841 #define arc_sys_free ARCSTAT(arcstat_sys_free) /* target system free bytes */
842
843 /* size of all b_rabd's in entire arc */
844 #define arc_raw_size ARCSTAT(arcstat_raw_size)
845 /* compressed size of entire arc */
846 #define arc_compressed_size ARCSTAT(arcstat_compressed_size)
847 /* uncompressed size of entire arc */
848 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size)
849 /* number of bytes in the arc from arc_buf_t's */
850 #define arc_overhead_size ARCSTAT(arcstat_overhead_size)
851
852 static list_t arc_prune_list;
853 static kmutex_t arc_prune_mtx;
854 static taskq_t *arc_prune_taskq;
855
856 #define GHOST_STATE(state) \
857 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
858 (state) == arc_l2c_only)
859
860 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
861 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
862 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
863 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
864 #define HDR_COMPRESSION_ENABLED(hdr) \
865 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
866
867 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
868 #define HDR_L2_READING(hdr) \
869 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
870 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
871 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
872 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
873 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
874 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
875 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
876 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
877
878 #define HDR_ISTYPE_METADATA(hdr) \
879 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
880 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
881
882 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
883 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
884 #define HDR_HAS_RABD(hdr) \
885 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
886 (hdr)->b_crypt_hdr.b_rabd != NULL)
887 #define HDR_ENCRYPTED(hdr) \
888 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
889 #define HDR_AUTHENTICATED(hdr) \
890 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
891
892 /* For storing compression mode in b_flags */
893 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
894
895 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
896 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
897 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
898 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
899
900 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
901 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
902 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
903 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
904
905 /*
906 * Other sizes
907 */
908
909 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
910 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
911 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
912
913 /*
914 * Hash table routines
915 */
916
917 #define HT_LOCK_ALIGN 64
918 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
919
920 struct ht_lock {
921 kmutex_t ht_lock;
922 #ifdef _KERNEL
923 unsigned char pad[HT_LOCK_PAD];
924 #endif
925 };
926
927 #define BUF_LOCKS 8192
928 typedef struct buf_hash_table {
929 uint64_t ht_mask;
930 arc_buf_hdr_t **ht_table;
931 struct ht_lock ht_locks[BUF_LOCKS];
932 } buf_hash_table_t;
933
934 static buf_hash_table_t buf_hash_table;
935
936 #define BUF_HASH_INDEX(spa, dva, birth) \
937 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
938 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
939 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
940 #define HDR_LOCK(hdr) \
941 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
942
943 uint64_t zfs_crc64_table[256];
944
945 /*
946 * Level 2 ARC
947 */
948
949 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
950 #define L2ARC_HEADROOM 2 /* num of writes */
951
952 /*
953 * If we discover during ARC scan any buffers to be compressed, we boost
954 * our headroom for the next scanning cycle by this percentage multiple.
955 */
956 #define L2ARC_HEADROOM_BOOST 200
957 #define L2ARC_FEED_SECS 1 /* caching interval secs */
958 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
959
960 /*
961 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
962 * and each of the state has two types: data and metadata.
963 */
964 #define L2ARC_FEED_TYPES 4
965
966 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
967 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
968
969 /* L2ARC Performance Tunables */
970 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
971 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
972 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
973 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
974 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
975 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
976 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
977 int l2arc_feed_again = B_TRUE; /* turbo warmup */
978 int l2arc_norw = B_FALSE; /* no reads during writes */
979
980 /*
981 * L2ARC Internals
982 */
983 static list_t L2ARC_dev_list; /* device list */
984 static list_t *l2arc_dev_list; /* device list pointer */
985 static kmutex_t l2arc_dev_mtx; /* device list mutex */
986 static l2arc_dev_t *l2arc_dev_last; /* last device used */
987 static list_t L2ARC_free_on_write; /* free after write buf list */
988 static list_t *l2arc_free_on_write; /* free after write list ptr */
989 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
990 static uint64_t l2arc_ndev; /* number of devices */
991
992 typedef struct l2arc_read_callback {
993 arc_buf_hdr_t *l2rcb_hdr; /* read header */
994 blkptr_t l2rcb_bp; /* original blkptr */
995 zbookmark_phys_t l2rcb_zb; /* original bookmark */
996 int l2rcb_flags; /* original flags */
997 abd_t *l2rcb_abd; /* temporary buffer */
998 } l2arc_read_callback_t;
999
1000 typedef struct l2arc_data_free {
1001 /* protected by l2arc_free_on_write_mtx */
1002 abd_t *l2df_abd;
1003 size_t l2df_size;
1004 arc_buf_contents_t l2df_type;
1005 list_node_t l2df_list_node;
1006 } l2arc_data_free_t;
1007
1008 typedef enum arc_fill_flags {
1009 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */
1010 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */
1011 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */
1012 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */
1013 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */
1014 } arc_fill_flags_t;
1015
1016 static kmutex_t l2arc_feed_thr_lock;
1017 static kcondvar_t l2arc_feed_thr_cv;
1018 static uint8_t l2arc_thread_exit;
1019
1020 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
1021 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1022 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
1023 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
1024 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1025 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
1026 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
1027 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, boolean_t);
1028 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1029 static boolean_t arc_is_overflowing(void);
1030 static void arc_buf_watch(arc_buf_t *);
1031 static void arc_tuning_update(void);
1032 static void arc_prune_async(int64_t);
1033 static uint64_t arc_all_memory(void);
1034
1035 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1036 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1037 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1038 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1039
1040 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1041 static void l2arc_read_done(zio_t *);
1042
1043 static uint64_t
1044 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1045 {
1046 uint8_t *vdva = (uint8_t *)dva;
1047 uint64_t crc = -1ULL;
1048 int i;
1049
1050 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1051
1052 for (i = 0; i < sizeof (dva_t); i++)
1053 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1054
1055 crc ^= (spa>>8) ^ birth;
1056
1057 return (crc);
1058 }
1059
1060 #define HDR_EMPTY(hdr) \
1061 ((hdr)->b_dva.dva_word[0] == 0 && \
1062 (hdr)->b_dva.dva_word[1] == 0)
1063
1064 #define HDR_EQUAL(spa, dva, birth, hdr) \
1065 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1066 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1067 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1068
1069 static void
1070 buf_discard_identity(arc_buf_hdr_t *hdr)
1071 {
1072 hdr->b_dva.dva_word[0] = 0;
1073 hdr->b_dva.dva_word[1] = 0;
1074 hdr->b_birth = 0;
1075 }
1076
1077 static arc_buf_hdr_t *
1078 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1079 {
1080 const dva_t *dva = BP_IDENTITY(bp);
1081 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1082 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1083 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1084 arc_buf_hdr_t *hdr;
1085
1086 mutex_enter(hash_lock);
1087 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1088 hdr = hdr->b_hash_next) {
1089 if (HDR_EQUAL(spa, dva, birth, hdr)) {
1090 *lockp = hash_lock;
1091 return (hdr);
1092 }
1093 }
1094 mutex_exit(hash_lock);
1095 *lockp = NULL;
1096 return (NULL);
1097 }
1098
1099 /*
1100 * Insert an entry into the hash table. If there is already an element
1101 * equal to elem in the hash table, then the already existing element
1102 * will be returned and the new element will not be inserted.
1103 * Otherwise returns NULL.
1104 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1105 */
1106 static arc_buf_hdr_t *
1107 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1108 {
1109 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1110 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1111 arc_buf_hdr_t *fhdr;
1112 uint32_t i;
1113
1114 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1115 ASSERT(hdr->b_birth != 0);
1116 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1117
1118 if (lockp != NULL) {
1119 *lockp = hash_lock;
1120 mutex_enter(hash_lock);
1121 } else {
1122 ASSERT(MUTEX_HELD(hash_lock));
1123 }
1124
1125 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1126 fhdr = fhdr->b_hash_next, i++) {
1127 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1128 return (fhdr);
1129 }
1130
1131 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1132 buf_hash_table.ht_table[idx] = hdr;
1133 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1134
1135 /* collect some hash table performance data */
1136 if (i > 0) {
1137 ARCSTAT_BUMP(arcstat_hash_collisions);
1138 if (i == 1)
1139 ARCSTAT_BUMP(arcstat_hash_chains);
1140
1141 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1142 }
1143
1144 ARCSTAT_BUMP(arcstat_hash_elements);
1145 ARCSTAT_MAXSTAT(arcstat_hash_elements);
1146
1147 return (NULL);
1148 }
1149
1150 static void
1151 buf_hash_remove(arc_buf_hdr_t *hdr)
1152 {
1153 arc_buf_hdr_t *fhdr, **hdrp;
1154 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1155
1156 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1157 ASSERT(HDR_IN_HASH_TABLE(hdr));
1158
1159 hdrp = &buf_hash_table.ht_table[idx];
1160 while ((fhdr = *hdrp) != hdr) {
1161 ASSERT3P(fhdr, !=, NULL);
1162 hdrp = &fhdr->b_hash_next;
1163 }
1164 *hdrp = hdr->b_hash_next;
1165 hdr->b_hash_next = NULL;
1166 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1167
1168 /* collect some hash table performance data */
1169 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1170
1171 if (buf_hash_table.ht_table[idx] &&
1172 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1173 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1174 }
1175
1176 /*
1177 * Global data structures and functions for the buf kmem cache.
1178 */
1179
1180 static kmem_cache_t *hdr_full_cache;
1181 static kmem_cache_t *hdr_full_crypt_cache;
1182 static kmem_cache_t *hdr_l2only_cache;
1183 static kmem_cache_t *buf_cache;
1184
1185 static void
1186 buf_fini(void)
1187 {
1188 int i;
1189
1190 #if defined(_KERNEL) && defined(HAVE_SPL)
1191 /*
1192 * Large allocations which do not require contiguous pages
1193 * should be using vmem_free() in the linux kernel\
1194 */
1195 vmem_free(buf_hash_table.ht_table,
1196 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1197 #else
1198 kmem_free(buf_hash_table.ht_table,
1199 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1200 #endif
1201 for (i = 0; i < BUF_LOCKS; i++)
1202 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1203 kmem_cache_destroy(hdr_full_cache);
1204 kmem_cache_destroy(hdr_full_crypt_cache);
1205 kmem_cache_destroy(hdr_l2only_cache);
1206 kmem_cache_destroy(buf_cache);
1207 }
1208
1209 /*
1210 * Constructor callback - called when the cache is empty
1211 * and a new buf is requested.
1212 */
1213 /* ARGSUSED */
1214 static int
1215 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1216 {
1217 arc_buf_hdr_t *hdr = vbuf;
1218
1219 bzero(hdr, HDR_FULL_SIZE);
1220 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1221 refcount_create(&hdr->b_l1hdr.b_refcnt);
1222 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1223 list_link_init(&hdr->b_l1hdr.b_arc_node);
1224 list_link_init(&hdr->b_l2hdr.b_l2node);
1225 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1226 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1227
1228 return (0);
1229 }
1230
1231 /* ARGSUSED */
1232 static int
1233 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag)
1234 {
1235 arc_buf_hdr_t *hdr = vbuf;
1236
1237 hdr_full_cons(vbuf, unused, kmflag);
1238 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr));
1239 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1240
1241 return (0);
1242 }
1243
1244 /* ARGSUSED */
1245 static int
1246 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1247 {
1248 arc_buf_hdr_t *hdr = vbuf;
1249
1250 bzero(hdr, HDR_L2ONLY_SIZE);
1251 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1252
1253 return (0);
1254 }
1255
1256 /* ARGSUSED */
1257 static int
1258 buf_cons(void *vbuf, void *unused, int kmflag)
1259 {
1260 arc_buf_t *buf = vbuf;
1261
1262 bzero(buf, sizeof (arc_buf_t));
1263 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1264 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1265
1266 return (0);
1267 }
1268
1269 /*
1270 * Destructor callback - called when a cached buf is
1271 * no longer required.
1272 */
1273 /* ARGSUSED */
1274 static void
1275 hdr_full_dest(void *vbuf, void *unused)
1276 {
1277 arc_buf_hdr_t *hdr = vbuf;
1278
1279 ASSERT(HDR_EMPTY(hdr));
1280 cv_destroy(&hdr->b_l1hdr.b_cv);
1281 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1282 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1283 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1284 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1285 }
1286
1287 /* ARGSUSED */
1288 static void
1289 hdr_full_crypt_dest(void *vbuf, void *unused)
1290 {
1291 arc_buf_hdr_t *hdr = vbuf;
1292
1293 hdr_full_dest(vbuf, unused);
1294 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1295 }
1296
1297 /* ARGSUSED */
1298 static void
1299 hdr_l2only_dest(void *vbuf, void *unused)
1300 {
1301 ASSERTV(arc_buf_hdr_t *hdr = vbuf);
1302
1303 ASSERT(HDR_EMPTY(hdr));
1304 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1305 }
1306
1307 /* ARGSUSED */
1308 static void
1309 buf_dest(void *vbuf, void *unused)
1310 {
1311 arc_buf_t *buf = vbuf;
1312
1313 mutex_destroy(&buf->b_evict_lock);
1314 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1315 }
1316
1317 /*
1318 * Reclaim callback -- invoked when memory is low.
1319 */
1320 /* ARGSUSED */
1321 static void
1322 hdr_recl(void *unused)
1323 {
1324 dprintf("hdr_recl called\n");
1325 /*
1326 * umem calls the reclaim func when we destroy the buf cache,
1327 * which is after we do arc_fini().
1328 */
1329 if (!arc_dead)
1330 cv_signal(&arc_reclaim_thread_cv);
1331 }
1332
1333 static void
1334 buf_init(void)
1335 {
1336 uint64_t *ct = NULL;
1337 uint64_t hsize = 1ULL << 12;
1338 int i, j;
1339
1340 /*
1341 * The hash table is big enough to fill all of physical memory
1342 * with an average block size of zfs_arc_average_blocksize (default 8K).
1343 * By default, the table will take up
1344 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1345 */
1346 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1347 hsize <<= 1;
1348 retry:
1349 buf_hash_table.ht_mask = hsize - 1;
1350 #if defined(_KERNEL) && defined(HAVE_SPL)
1351 /*
1352 * Large allocations which do not require contiguous pages
1353 * should be using vmem_alloc() in the linux kernel
1354 */
1355 buf_hash_table.ht_table =
1356 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1357 #else
1358 buf_hash_table.ht_table =
1359 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1360 #endif
1361 if (buf_hash_table.ht_table == NULL) {
1362 ASSERT(hsize > (1ULL << 8));
1363 hsize >>= 1;
1364 goto retry;
1365 }
1366
1367 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1368 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1369 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt",
1370 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest,
1371 hdr_recl, NULL, NULL, 0);
1372 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1373 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1374 NULL, NULL, 0);
1375 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1376 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1377
1378 for (i = 0; i < 256; i++)
1379 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1380 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1381
1382 for (i = 0; i < BUF_LOCKS; i++) {
1383 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1384 NULL, MUTEX_DEFAULT, NULL);
1385 }
1386 }
1387
1388 #define ARC_MINTIME (hz>>4) /* 62 ms */
1389
1390 /*
1391 * This is the size that the buf occupies in memory. If the buf is compressed,
1392 * it will correspond to the compressed size. You should use this method of
1393 * getting the buf size unless you explicitly need the logical size.
1394 */
1395 uint64_t
1396 arc_buf_size(arc_buf_t *buf)
1397 {
1398 return (ARC_BUF_COMPRESSED(buf) ?
1399 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1400 }
1401
1402 uint64_t
1403 arc_buf_lsize(arc_buf_t *buf)
1404 {
1405 return (HDR_GET_LSIZE(buf->b_hdr));
1406 }
1407
1408 /*
1409 * This function will return B_TRUE if the buffer is encrypted in memory.
1410 * This buffer can be decrypted by calling arc_untransform().
1411 */
1412 boolean_t
1413 arc_is_encrypted(arc_buf_t *buf)
1414 {
1415 return (ARC_BUF_ENCRYPTED(buf) != 0);
1416 }
1417
1418 /*
1419 * Returns B_TRUE if the buffer represents data that has not had its MAC
1420 * verified yet.
1421 */
1422 boolean_t
1423 arc_is_unauthenticated(arc_buf_t *buf)
1424 {
1425 return (HDR_NOAUTH(buf->b_hdr) != 0);
1426 }
1427
1428 void
1429 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1430 uint8_t *iv, uint8_t *mac)
1431 {
1432 arc_buf_hdr_t *hdr = buf->b_hdr;
1433
1434 ASSERT(HDR_PROTECTED(hdr));
1435
1436 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
1437 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
1438 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
1439 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1440 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1441 }
1442
1443 /*
1444 * Indicates how this buffer is compressed in memory. If it is not compressed
1445 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1446 * arc_untransform() as long as it is also unencrypted.
1447 */
1448 enum zio_compress
1449 arc_get_compression(arc_buf_t *buf)
1450 {
1451 return (ARC_BUF_COMPRESSED(buf) ?
1452 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1453 }
1454
1455 /*
1456 * Return the compression algorithm used to store this data in the ARC. If ARC
1457 * compression is enabled or this is an encrypted block, this will be the same
1458 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1459 */
1460 static inline enum zio_compress
1461 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1462 {
1463 return (HDR_COMPRESSION_ENABLED(hdr) ?
1464 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1465 }
1466
1467 static inline boolean_t
1468 arc_buf_is_shared(arc_buf_t *buf)
1469 {
1470 boolean_t shared = (buf->b_data != NULL &&
1471 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1472 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1473 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1474 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1475 IMPLY(shared, ARC_BUF_SHARED(buf));
1476 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1477
1478 /*
1479 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1480 * already being shared" requirement prevents us from doing that.
1481 */
1482
1483 return (shared);
1484 }
1485
1486 /*
1487 * Free the checksum associated with this header. If there is no checksum, this
1488 * is a no-op.
1489 */
1490 static inline void
1491 arc_cksum_free(arc_buf_hdr_t *hdr)
1492 {
1493 ASSERT(HDR_HAS_L1HDR(hdr));
1494
1495 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1496 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1497 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1498 hdr->b_l1hdr.b_freeze_cksum = NULL;
1499 }
1500 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1501 }
1502
1503 /*
1504 * Return true iff at least one of the bufs on hdr is not compressed.
1505 * Encrypted buffers count as compressed.
1506 */
1507 static boolean_t
1508 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1509 {
1510 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1511 if (!ARC_BUF_COMPRESSED(b)) {
1512 return (B_TRUE);
1513 }
1514 }
1515 return (B_FALSE);
1516 }
1517
1518
1519 /*
1520 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1521 * matches the checksum that is stored in the hdr. If there is no checksum,
1522 * or if the buf is compressed, this is a no-op.
1523 */
1524 static void
1525 arc_cksum_verify(arc_buf_t *buf)
1526 {
1527 arc_buf_hdr_t *hdr = buf->b_hdr;
1528 zio_cksum_t zc;
1529
1530 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1531 return;
1532
1533 if (ARC_BUF_COMPRESSED(buf)) {
1534 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1535 arc_hdr_has_uncompressed_buf(hdr));
1536 return;
1537 }
1538
1539 ASSERT(HDR_HAS_L1HDR(hdr));
1540
1541 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1542 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1543 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1544 return;
1545 }
1546
1547 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1548 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1549 panic("buffer modified while frozen!");
1550 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1551 }
1552
1553 /*
1554 * This function makes the assumption that data stored in the L2ARC
1555 * will be transformed exactly as it is in the main pool. Because of
1556 * this we can verify the checksum against the reading process's bp.
1557 */
1558 static boolean_t
1559 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1560 {
1561 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1562 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1563
1564 /*
1565 * Block pointers always store the checksum for the logical data.
1566 * If the block pointer has the gang bit set, then the checksum
1567 * it represents is for the reconstituted data and not for an
1568 * individual gang member. The zio pipeline, however, must be able to
1569 * determine the checksum of each of the gang constituents so it
1570 * treats the checksum comparison differently than what we need
1571 * for l2arc blocks. This prevents us from using the
1572 * zio_checksum_error() interface directly. Instead we must call the
1573 * zio_checksum_error_impl() so that we can ensure the checksum is
1574 * generated using the correct checksum algorithm and accounts for the
1575 * logical I/O size and not just a gang fragment.
1576 */
1577 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1578 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1579 zio->io_offset, NULL) == 0);
1580 }
1581
1582 /*
1583 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1584 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1585 * isn't modified later on. If buf is compressed or there is already a checksum
1586 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1587 */
1588 static void
1589 arc_cksum_compute(arc_buf_t *buf)
1590 {
1591 arc_buf_hdr_t *hdr = buf->b_hdr;
1592
1593 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1594 return;
1595
1596 ASSERT(HDR_HAS_L1HDR(hdr));
1597
1598 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1599 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1600 ASSERT(arc_hdr_has_uncompressed_buf(hdr));
1601 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1602 return;
1603 } else if (ARC_BUF_COMPRESSED(buf)) {
1604 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1605 return;
1606 }
1607
1608 ASSERT(!ARC_BUF_ENCRYPTED(buf));
1609 ASSERT(!ARC_BUF_COMPRESSED(buf));
1610 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1611 KM_SLEEP);
1612 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1613 hdr->b_l1hdr.b_freeze_cksum);
1614 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1615 arc_buf_watch(buf);
1616 }
1617
1618 #ifndef _KERNEL
1619 void
1620 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1621 {
1622 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1623 }
1624 #endif
1625
1626 /* ARGSUSED */
1627 static void
1628 arc_buf_unwatch(arc_buf_t *buf)
1629 {
1630 #ifndef _KERNEL
1631 if (arc_watch) {
1632 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1633 PROT_READ | PROT_WRITE));
1634 }
1635 #endif
1636 }
1637
1638 /* ARGSUSED */
1639 static void
1640 arc_buf_watch(arc_buf_t *buf)
1641 {
1642 #ifndef _KERNEL
1643 if (arc_watch)
1644 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1645 PROT_READ));
1646 #endif
1647 }
1648
1649 static arc_buf_contents_t
1650 arc_buf_type(arc_buf_hdr_t *hdr)
1651 {
1652 arc_buf_contents_t type;
1653 if (HDR_ISTYPE_METADATA(hdr)) {
1654 type = ARC_BUFC_METADATA;
1655 } else {
1656 type = ARC_BUFC_DATA;
1657 }
1658 VERIFY3U(hdr->b_type, ==, type);
1659 return (type);
1660 }
1661
1662 boolean_t
1663 arc_is_metadata(arc_buf_t *buf)
1664 {
1665 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1666 }
1667
1668 static uint32_t
1669 arc_bufc_to_flags(arc_buf_contents_t type)
1670 {
1671 switch (type) {
1672 case ARC_BUFC_DATA:
1673 /* metadata field is 0 if buffer contains normal data */
1674 return (0);
1675 case ARC_BUFC_METADATA:
1676 return (ARC_FLAG_BUFC_METADATA);
1677 default:
1678 break;
1679 }
1680 panic("undefined ARC buffer type!");
1681 return ((uint32_t)-1);
1682 }
1683
1684 void
1685 arc_buf_thaw(arc_buf_t *buf)
1686 {
1687 arc_buf_hdr_t *hdr = buf->b_hdr;
1688
1689 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1690 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1691
1692 arc_cksum_verify(buf);
1693
1694 /*
1695 * Compressed buffers do not manipulate the b_freeze_cksum or
1696 * allocate b_thawed.
1697 */
1698 if (ARC_BUF_COMPRESSED(buf)) {
1699 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1700 arc_hdr_has_uncompressed_buf(hdr));
1701 return;
1702 }
1703
1704 ASSERT(HDR_HAS_L1HDR(hdr));
1705 arc_cksum_free(hdr);
1706 arc_buf_unwatch(buf);
1707 }
1708
1709 void
1710 arc_buf_freeze(arc_buf_t *buf)
1711 {
1712 arc_buf_hdr_t *hdr = buf->b_hdr;
1713 kmutex_t *hash_lock;
1714
1715 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1716 return;
1717
1718 if (ARC_BUF_COMPRESSED(buf)) {
1719 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1720 arc_hdr_has_uncompressed_buf(hdr));
1721 return;
1722 }
1723
1724 hash_lock = HDR_LOCK(hdr);
1725 mutex_enter(hash_lock);
1726
1727 ASSERT(HDR_HAS_L1HDR(hdr));
1728 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1729 hdr->b_l1hdr.b_state == arc_anon);
1730 arc_cksum_compute(buf);
1731 mutex_exit(hash_lock);
1732 }
1733
1734 /*
1735 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1736 * the following functions should be used to ensure that the flags are
1737 * updated in a thread-safe way. When manipulating the flags either
1738 * the hash_lock must be held or the hdr must be undiscoverable. This
1739 * ensures that we're not racing with any other threads when updating
1740 * the flags.
1741 */
1742 static inline void
1743 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1744 {
1745 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1746 hdr->b_flags |= flags;
1747 }
1748
1749 static inline void
1750 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1751 {
1752 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1753 hdr->b_flags &= ~flags;
1754 }
1755
1756 /*
1757 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1758 * done in a special way since we have to clear and set bits
1759 * at the same time. Consumers that wish to set the compression bits
1760 * must use this function to ensure that the flags are updated in
1761 * thread-safe manner.
1762 */
1763 static void
1764 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1765 {
1766 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1767
1768 /*
1769 * Holes and embedded blocks will always have a psize = 0 so
1770 * we ignore the compression of the blkptr and set the
1771 * want to uncompress them. Mark them as uncompressed.
1772 */
1773 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1774 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1775 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1776 } else {
1777 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1778 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1779 }
1780
1781 HDR_SET_COMPRESS(hdr, cmp);
1782 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1783 }
1784
1785 /*
1786 * Looks for another buf on the same hdr which has the data decompressed, copies
1787 * from it, and returns true. If no such buf exists, returns false.
1788 */
1789 static boolean_t
1790 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1791 {
1792 arc_buf_hdr_t *hdr = buf->b_hdr;
1793 boolean_t copied = B_FALSE;
1794
1795 ASSERT(HDR_HAS_L1HDR(hdr));
1796 ASSERT3P(buf->b_data, !=, NULL);
1797 ASSERT(!ARC_BUF_COMPRESSED(buf));
1798
1799 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1800 from = from->b_next) {
1801 /* can't use our own data buffer */
1802 if (from == buf) {
1803 continue;
1804 }
1805
1806 if (!ARC_BUF_COMPRESSED(from)) {
1807 bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1808 copied = B_TRUE;
1809 break;
1810 }
1811 }
1812
1813 /*
1814 * There were no decompressed bufs, so there should not be a
1815 * checksum on the hdr either.
1816 */
1817 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1818
1819 return (copied);
1820 }
1821
1822 /*
1823 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1824 */
1825 static uint64_t
1826 arc_hdr_size(arc_buf_hdr_t *hdr)
1827 {
1828 uint64_t size;
1829
1830 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1831 HDR_GET_PSIZE(hdr) > 0) {
1832 size = HDR_GET_PSIZE(hdr);
1833 } else {
1834 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1835 size = HDR_GET_LSIZE(hdr);
1836 }
1837 return (size);
1838 }
1839
1840 static int
1841 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1842 {
1843 int ret;
1844 uint64_t csize;
1845 uint64_t lsize = HDR_GET_LSIZE(hdr);
1846 uint64_t psize = HDR_GET_PSIZE(hdr);
1847 void *tmpbuf = NULL;
1848 abd_t *abd = hdr->b_l1hdr.b_pabd;
1849
1850 ASSERT(HDR_LOCK(hdr) == NULL || MUTEX_HELD(HDR_LOCK(hdr)));
1851 ASSERT(HDR_AUTHENTICATED(hdr));
1852 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1853
1854 /*
1855 * The MAC is calculated on the compressed data that is stored on disk.
1856 * However, if compressed arc is disabled we will only have the
1857 * decompressed data available to us now. Compress it into a temporary
1858 * abd so we can verify the MAC. The performance overhead of this will
1859 * be relatively low, since most objects in an encrypted objset will
1860 * be encrypted (instead of authenticated) anyway.
1861 */
1862 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1863 !HDR_COMPRESSION_ENABLED(hdr)) {
1864 tmpbuf = zio_buf_alloc(lsize);
1865 abd = abd_get_from_buf(tmpbuf, lsize);
1866 abd_take_ownership_of_buf(abd, B_TRUE);
1867
1868 csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1869 hdr->b_l1hdr.b_pabd, tmpbuf, lsize);
1870 ASSERT3U(csize, <=, psize);
1871 abd_zero_off(abd, csize, psize - csize);
1872 }
1873
1874 /*
1875 * Authentication is best effort. We authenticate whenever the key is
1876 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1877 */
1878 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1879 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1880 ASSERT3U(lsize, ==, psize);
1881 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1882 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1883 } else {
1884 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1885 hdr->b_crypt_hdr.b_mac);
1886 }
1887
1888 if (ret == 0)
1889 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1890 else if (ret != ENOENT)
1891 goto error;
1892
1893 if (tmpbuf != NULL)
1894 abd_free(abd);
1895
1896 return (0);
1897
1898 error:
1899 if (tmpbuf != NULL)
1900 abd_free(abd);
1901
1902 return (ret);
1903 }
1904
1905 /*
1906 * This function will take a header that only has raw encrypted data in
1907 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1908 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1909 * also decompress the data.
1910 */
1911 static int
1912 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1913 {
1914 int ret;
1915 dsl_crypto_key_t *dck = NULL;
1916 abd_t *cabd = NULL;
1917 void *tmp = NULL;
1918 boolean_t no_crypt = B_FALSE;
1919 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1920
1921 ASSERT(HDR_LOCK(hdr) == NULL || MUTEX_HELD(HDR_LOCK(hdr)));
1922 ASSERT(HDR_ENCRYPTED(hdr));
1923
1924 arc_hdr_alloc_abd(hdr, B_FALSE);
1925
1926 /*
1927 * We must be careful to use the passed-in dsobj value here and
1928 * not the value in b_dsobj. b_dsobj is meant to be a best guess for
1929 * the L2ARC, which has the luxury of being able to fail without real
1930 * consequences (the data simply won't make it to the L2ARC). In
1931 * reality, the dsobj stored in the header may belong to a dataset
1932 * that has been unmounted or otherwise disowned, meaning the key
1933 * won't be accessible via that dsobj anymore.
1934 */
1935 ret = spa_keystore_lookup_key(spa, dsobj, FTAG, &dck);
1936 if (ret != 0) {
1937 ret = SET_ERROR(EACCES);
1938 goto error;
1939 }
1940
1941 ret = zio_do_crypt_abd(B_FALSE, &dck->dck_key,
1942 hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_ot,
1943 hdr->b_crypt_hdr.b_iv, hdr->b_crypt_hdr.b_mac,
1944 HDR_GET_PSIZE(hdr), bswap, hdr->b_l1hdr.b_pabd,
1945 hdr->b_crypt_hdr.b_rabd, &no_crypt);
1946 if (ret != 0)
1947 goto error;
1948
1949 if (no_crypt) {
1950 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1951 HDR_GET_PSIZE(hdr));
1952 }
1953
1954 /*
1955 * If this header has disabled arc compression but the b_pabd is
1956 * compressed after decrypting it, we need to decompress the newly
1957 * decrypted data.
1958 */
1959 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1960 !HDR_COMPRESSION_ENABLED(hdr)) {
1961 /*
1962 * We want to make sure that we are correctly honoring the
1963 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1964 * and then loan a buffer from it, rather than allocating a
1965 * linear buffer and wrapping it in an abd later.
1966 */
1967 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
1968 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
1969
1970 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1971 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
1972 HDR_GET_LSIZE(hdr));
1973 if (ret != 0) {
1974 abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
1975 goto error;
1976 }
1977
1978 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
1979 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1980 arc_hdr_size(hdr), hdr);
1981 hdr->b_l1hdr.b_pabd = cabd;
1982 }
1983
1984 spa_keystore_dsl_key_rele(spa, dck, FTAG);
1985
1986 return (0);
1987
1988 error:
1989 arc_hdr_free_abd(hdr, B_FALSE);
1990 if (dck != NULL)
1991 spa_keystore_dsl_key_rele(spa, dck, FTAG);
1992 if (cabd != NULL)
1993 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1994
1995 return (ret);
1996 }
1997
1998 /*
1999 * This function is called during arc_buf_fill() to prepare the header's
2000 * abd plaintext pointer for use. This involves authenticated protected
2001 * data and decrypting encrypted data into the plaintext abd.
2002 */
2003 static int
2004 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
2005 uint64_t dsobj, boolean_t noauth)
2006 {
2007 int ret;
2008
2009 ASSERT(HDR_PROTECTED(hdr));
2010
2011 if (hash_lock != NULL)
2012 mutex_enter(hash_lock);
2013
2014 if (HDR_NOAUTH(hdr) && !noauth) {
2015 /*
2016 * The caller requested authenticated data but our data has
2017 * not been authenticated yet. Verify the MAC now if we can.
2018 */
2019 ret = arc_hdr_authenticate(hdr, spa, dsobj);
2020 if (ret != 0)
2021 goto error;
2022 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
2023 /*
2024 * If we only have the encrypted version of the data, but the
2025 * unencrypted version was requested we take this opportunity
2026 * to store the decrypted version in the header for future use.
2027 */
2028 ret = arc_hdr_decrypt(hdr, spa, dsobj);
2029 if (ret != 0)
2030 goto error;
2031 }
2032
2033 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2034
2035 if (hash_lock != NULL)
2036 mutex_exit(hash_lock);
2037
2038 return (0);
2039
2040 error:
2041 if (hash_lock != NULL)
2042 mutex_exit(hash_lock);
2043
2044 return (ret);
2045 }
2046
2047 /*
2048 * This function is used by the dbuf code to decrypt bonus buffers in place.
2049 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
2050 * block, so we use the hash lock here to protect against concurrent calls to
2051 * arc_buf_fill().
2052 */
2053 static void
2054 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock)
2055 {
2056 arc_buf_hdr_t *hdr = buf->b_hdr;
2057
2058 ASSERT(HDR_ENCRYPTED(hdr));
2059 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2060 ASSERT(HDR_LOCK(hdr) == NULL || MUTEX_HELD(HDR_LOCK(hdr)));
2061 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2062
2063 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
2064 arc_buf_size(buf));
2065 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
2066 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2067 hdr->b_crypt_hdr.b_ebufcnt -= 1;
2068 }
2069
2070 /*
2071 * Given a buf that has a data buffer attached to it, this function will
2072 * efficiently fill the buf with data of the specified compression setting from
2073 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
2074 * are already sharing a data buf, no copy is performed.
2075 *
2076 * If the buf is marked as compressed but uncompressed data was requested, this
2077 * will allocate a new data buffer for the buf, remove that flag, and fill the
2078 * buf with uncompressed data. You can't request a compressed buf on a hdr with
2079 * uncompressed data, and (since we haven't added support for it yet) if you
2080 * want compressed data your buf must already be marked as compressed and have
2081 * the correct-sized data buffer.
2082 */
2083 static int
2084 arc_buf_fill(arc_buf_t *buf, spa_t *spa, uint64_t dsobj, arc_fill_flags_t flags)
2085 {
2086 int error = 0;
2087 arc_buf_hdr_t *hdr = buf->b_hdr;
2088 boolean_t hdr_compressed =
2089 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
2090 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
2091 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
2092 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2093 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
2094
2095 ASSERT3P(buf->b_data, !=, NULL);
2096 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
2097 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2098 IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2099 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2100 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2101 IMPLY(encrypted, !ARC_BUF_SHARED(buf));
2102
2103 /*
2104 * If the caller wanted encrypted data we just need to copy it from
2105 * b_rabd and potentially byteswap it. We won't be able to do any
2106 * further transforms on it.
2107 */
2108 if (encrypted) {
2109 ASSERT(HDR_HAS_RABD(hdr));
2110 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2111 HDR_GET_PSIZE(hdr));
2112 goto byteswap;
2113 }
2114
2115 /*
2116 * Adjust encrypted and authenticated headers to accomodate the
2117 * request if needed.
2118 */
2119 if (HDR_PROTECTED(hdr)) {
2120 error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2121 dsobj, !!(flags & ARC_FILL_NOAUTH));
2122 if (error != 0)
2123 return (error);
2124 }
2125
2126 /*
2127 * There is a special case here for dnode blocks which are
2128 * decrypting their bonus buffers. These blocks may request to
2129 * be decrypted in-place. This is necessary because there may
2130 * be many dnodes pointing into this buffer and there is
2131 * currently no method to synchronize replacing the backing
2132 * b_data buffer and updating all of the pointers. Here we use
2133 * the hash lock to ensure there are no races. If the need
2134 * arises for other types to be decrypted in-place, they must
2135 * add handling here as well.
2136 */
2137 if ((flags & ARC_FILL_IN_PLACE) != 0) {
2138 ASSERT(!hdr_compressed);
2139 ASSERT(!compressed);
2140 ASSERT(!encrypted);
2141
2142 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2143 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2144
2145 if (hash_lock != NULL)
2146 mutex_enter(hash_lock);
2147 arc_buf_untransform_in_place(buf, hash_lock);
2148 if (hash_lock != NULL)
2149 mutex_exit(hash_lock);
2150
2151 /* Compute the hdr's checksum if necessary */
2152 arc_cksum_compute(buf);
2153 }
2154
2155 return (0);
2156 }
2157
2158 if (hdr_compressed == compressed) {
2159 if (!arc_buf_is_shared(buf)) {
2160 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2161 arc_buf_size(buf));
2162 }
2163 } else {
2164 ASSERT(hdr_compressed);
2165 ASSERT(!compressed);
2166 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2167
2168 /*
2169 * If the buf is sharing its data with the hdr, unlink it and
2170 * allocate a new data buffer for the buf.
2171 */
2172 if (arc_buf_is_shared(buf)) {
2173 ASSERT(ARC_BUF_COMPRESSED(buf));
2174
2175 /* We need to give the buf it's own b_data */
2176 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2177 buf->b_data =
2178 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2179 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2180
2181 /* Previously overhead was 0; just add new overhead */
2182 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2183 } else if (ARC_BUF_COMPRESSED(buf)) {
2184 /* We need to reallocate the buf's b_data */
2185 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2186 buf);
2187 buf->b_data =
2188 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2189
2190 /* We increased the size of b_data; update overhead */
2191 ARCSTAT_INCR(arcstat_overhead_size,
2192 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2193 }
2194
2195 /*
2196 * Regardless of the buf's previous compression settings, it
2197 * should not be compressed at the end of this function.
2198 */
2199 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2200
2201 /*
2202 * Try copying the data from another buf which already has a
2203 * decompressed version. If that's not possible, it's time to
2204 * bite the bullet and decompress the data from the hdr.
2205 */
2206 if (arc_buf_try_copy_decompressed_data(buf)) {
2207 /* Skip byteswapping and checksumming (already done) */
2208 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
2209 return (0);
2210 } else {
2211 error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2212 hdr->b_l1hdr.b_pabd, buf->b_data,
2213 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2214
2215 /*
2216 * Absent hardware errors or software bugs, this should
2217 * be impossible, but log it anyway so we can debug it.
2218 */
2219 if (error != 0) {
2220 zfs_dbgmsg(
2221 "hdr %p, compress %d, psize %d, lsize %d",
2222 hdr, arc_hdr_get_compress(hdr),
2223 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2224 return (SET_ERROR(EIO));
2225 }
2226 }
2227 }
2228
2229 byteswap:
2230 /* Byteswap the buf's data if necessary */
2231 if (bswap != DMU_BSWAP_NUMFUNCS) {
2232 ASSERT(!HDR_SHARED_DATA(hdr));
2233 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2234 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2235 }
2236
2237 /* Compute the hdr's checksum if necessary */
2238 arc_cksum_compute(buf);
2239
2240 return (0);
2241 }
2242
2243 /*
2244 * If this function is being called to decrypt an encrypted buffer or verify an
2245 * authenticated one, the key must be loaded and a mapping must be made
2246 * available in the keystore via spa_keystore_create_mapping() or one of its
2247 * callers.
2248 */
2249 int
2250 arc_untransform(arc_buf_t *buf, spa_t *spa, uint64_t dsobj, boolean_t in_place)
2251 {
2252 arc_fill_flags_t flags = 0;
2253
2254 if (in_place)
2255 flags |= ARC_FILL_IN_PLACE;
2256
2257 return (arc_buf_fill(buf, spa, dsobj, flags));
2258 }
2259
2260 /*
2261 * Increment the amount of evictable space in the arc_state_t's refcount.
2262 * We account for the space used by the hdr and the arc buf individually
2263 * so that we can add and remove them from the refcount individually.
2264 */
2265 static void
2266 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2267 {
2268 arc_buf_contents_t type = arc_buf_type(hdr);
2269
2270 ASSERT(HDR_HAS_L1HDR(hdr));
2271
2272 if (GHOST_STATE(state)) {
2273 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2274 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2275 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2276 ASSERT(!HDR_HAS_RABD(hdr));
2277 (void) refcount_add_many(&state->arcs_esize[type],
2278 HDR_GET_LSIZE(hdr), hdr);
2279 return;
2280 }
2281
2282 ASSERT(!GHOST_STATE(state));
2283 if (hdr->b_l1hdr.b_pabd != NULL) {
2284 (void) refcount_add_many(&state->arcs_esize[type],
2285 arc_hdr_size(hdr), hdr);
2286 }
2287 if (HDR_HAS_RABD(hdr)) {
2288 (void) refcount_add_many(&state->arcs_esize[type],
2289 HDR_GET_PSIZE(hdr), hdr);
2290 }
2291
2292 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2293 buf = buf->b_next) {
2294 if (arc_buf_is_shared(buf))
2295 continue;
2296 (void) refcount_add_many(&state->arcs_esize[type],
2297 arc_buf_size(buf), buf);
2298 }
2299 }
2300
2301 /*
2302 * Decrement the amount of evictable space in the arc_state_t's refcount.
2303 * We account for the space used by the hdr and the arc buf individually
2304 * so that we can add and remove them from the refcount individually.
2305 */
2306 static void
2307 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2308 {
2309 arc_buf_contents_t type = arc_buf_type(hdr);
2310
2311 ASSERT(HDR_HAS_L1HDR(hdr));
2312
2313 if (GHOST_STATE(state)) {
2314 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2315 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2316 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2317 ASSERT(!HDR_HAS_RABD(hdr));
2318 (void) refcount_remove_many(&state->arcs_esize[type],
2319 HDR_GET_LSIZE(hdr), hdr);
2320 return;
2321 }
2322
2323 ASSERT(!GHOST_STATE(state));
2324 if (hdr->b_l1hdr.b_pabd != NULL) {
2325 (void) refcount_remove_many(&state->arcs_esize[type],
2326 arc_hdr_size(hdr), hdr);
2327 }
2328 if (HDR_HAS_RABD(hdr)) {
2329 (void) refcount_remove_many(&state->arcs_esize[type],
2330 HDR_GET_PSIZE(hdr), hdr);
2331 }
2332
2333 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2334 buf = buf->b_next) {
2335 if (arc_buf_is_shared(buf))
2336 continue;
2337 (void) refcount_remove_many(&state->arcs_esize[type],
2338 arc_buf_size(buf), buf);
2339 }
2340 }
2341
2342 /*
2343 * Add a reference to this hdr indicating that someone is actively
2344 * referencing that memory. When the refcount transitions from 0 to 1,
2345 * we remove it from the respective arc_state_t list to indicate that
2346 * it is not evictable.
2347 */
2348 static void
2349 add_reference(arc_buf_hdr_t *hdr, void *tag)
2350 {
2351 arc_state_t *state;
2352
2353 ASSERT(HDR_HAS_L1HDR(hdr));
2354 if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2355 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2356 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2357 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2358 }
2359
2360 state = hdr->b_l1hdr.b_state;
2361
2362 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2363 (state != arc_anon)) {
2364 /* We don't use the L2-only state list. */
2365 if (state != arc_l2c_only) {
2366 multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2367 hdr);
2368 arc_evictable_space_decrement(hdr, state);
2369 }
2370 /* remove the prefetch flag if we get a reference */
2371 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2372 }
2373 }
2374
2375 /*
2376 * Remove a reference from this hdr. When the reference transitions from
2377 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2378 * list making it eligible for eviction.
2379 */
2380 static int
2381 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2382 {
2383 int cnt;
2384 arc_state_t *state = hdr->b_l1hdr.b_state;
2385
2386 ASSERT(HDR_HAS_L1HDR(hdr));
2387 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2388 ASSERT(!GHOST_STATE(state));
2389
2390 /*
2391 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2392 * check to prevent usage of the arc_l2c_only list.
2393 */
2394 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2395 (state != arc_anon)) {
2396 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2397 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2398 arc_evictable_space_increment(hdr, state);
2399 }
2400 return (cnt);
2401 }
2402
2403 /*
2404 * Returns detailed information about a specific arc buffer. When the
2405 * state_index argument is set the function will calculate the arc header
2406 * list position for its arc state. Since this requires a linear traversal
2407 * callers are strongly encourage not to do this. However, it can be helpful
2408 * for targeted analysis so the functionality is provided.
2409 */
2410 void
2411 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2412 {
2413 arc_buf_hdr_t *hdr = ab->b_hdr;
2414 l1arc_buf_hdr_t *l1hdr = NULL;
2415 l2arc_buf_hdr_t *l2hdr = NULL;
2416 arc_state_t *state = NULL;
2417
2418 memset(abi, 0, sizeof (arc_buf_info_t));
2419
2420 if (hdr == NULL)
2421 return;
2422
2423 abi->abi_flags = hdr->b_flags;
2424
2425 if (HDR_HAS_L1HDR(hdr)) {
2426 l1hdr = &hdr->b_l1hdr;
2427 state = l1hdr->b_state;
2428 }
2429 if (HDR_HAS_L2HDR(hdr))
2430 l2hdr = &hdr->b_l2hdr;
2431
2432 if (l1hdr) {
2433 abi->abi_bufcnt = l1hdr->b_bufcnt;
2434 abi->abi_access = l1hdr->b_arc_access;
2435 abi->abi_mru_hits = l1hdr->b_mru_hits;
2436 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2437 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2438 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2439 abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
2440 }
2441
2442 if (l2hdr) {
2443 abi->abi_l2arc_dattr = l2hdr->b_daddr;
2444 abi->abi_l2arc_hits = l2hdr->b_hits;
2445 }
2446
2447 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2448 abi->abi_state_contents = arc_buf_type(hdr);
2449 abi->abi_size = arc_hdr_size(hdr);
2450 }
2451
2452 /*
2453 * Move the supplied buffer to the indicated state. The hash lock
2454 * for the buffer must be held by the caller.
2455 */
2456 static void
2457 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2458 kmutex_t *hash_lock)
2459 {
2460 arc_state_t *old_state;
2461 int64_t refcnt;
2462 uint32_t bufcnt;
2463 boolean_t update_old, update_new;
2464 arc_buf_contents_t buftype = arc_buf_type(hdr);
2465
2466 /*
2467 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2468 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2469 * L1 hdr doesn't always exist when we change state to arc_anon before
2470 * destroying a header, in which case reallocating to add the L1 hdr is
2471 * pointless.
2472 */
2473 if (HDR_HAS_L1HDR(hdr)) {
2474 old_state = hdr->b_l1hdr.b_state;
2475 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2476 bufcnt = hdr->b_l1hdr.b_bufcnt;
2477 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL ||
2478 HDR_HAS_RABD(hdr));
2479 } else {
2480 old_state = arc_l2c_only;
2481 refcnt = 0;
2482 bufcnt = 0;
2483 update_old = B_FALSE;
2484 }
2485 update_new = update_old;
2486
2487 ASSERT(MUTEX_HELD(hash_lock));
2488 ASSERT3P(new_state, !=, old_state);
2489 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2490 ASSERT(old_state != arc_anon || bufcnt <= 1);
2491
2492 /*
2493 * If this buffer is evictable, transfer it from the
2494 * old state list to the new state list.
2495 */
2496 if (refcnt == 0) {
2497 if (old_state != arc_anon && old_state != arc_l2c_only) {
2498 ASSERT(HDR_HAS_L1HDR(hdr));
2499 multilist_remove(old_state->arcs_list[buftype], hdr);
2500
2501 if (GHOST_STATE(old_state)) {
2502 ASSERT0(bufcnt);
2503 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2504 update_old = B_TRUE;
2505 }
2506 arc_evictable_space_decrement(hdr, old_state);
2507 }
2508 if (new_state != arc_anon && new_state != arc_l2c_only) {
2509 /*
2510 * An L1 header always exists here, since if we're
2511 * moving to some L1-cached state (i.e. not l2c_only or
2512 * anonymous), we realloc the header to add an L1hdr
2513 * beforehand.
2514 */
2515 ASSERT(HDR_HAS_L1HDR(hdr));
2516 multilist_insert(new_state->arcs_list[buftype], hdr);
2517
2518 if (GHOST_STATE(new_state)) {
2519 ASSERT0(bufcnt);
2520 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2521 update_new = B_TRUE;
2522 }
2523 arc_evictable_space_increment(hdr, new_state);
2524 }
2525 }
2526
2527 ASSERT(!HDR_EMPTY(hdr));
2528 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2529 buf_hash_remove(hdr);
2530
2531 /* adjust state sizes (ignore arc_l2c_only) */
2532
2533 if (update_new && new_state != arc_l2c_only) {
2534 ASSERT(HDR_HAS_L1HDR(hdr));
2535 if (GHOST_STATE(new_state)) {
2536 ASSERT0(bufcnt);
2537
2538 /*
2539 * When moving a header to a ghost state, we first
2540 * remove all arc buffers. Thus, we'll have a
2541 * bufcnt of zero, and no arc buffer to use for
2542 * the reference. As a result, we use the arc
2543 * header pointer for the reference.
2544 */
2545 (void) refcount_add_many(&new_state->arcs_size,
2546 HDR_GET_LSIZE(hdr), hdr);
2547 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2548 ASSERT(!HDR_HAS_RABD(hdr));
2549 } else {
2550 uint32_t buffers = 0;
2551
2552 /*
2553 * Each individual buffer holds a unique reference,
2554 * thus we must remove each of these references one
2555 * at a time.
2556 */
2557 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2558 buf = buf->b_next) {
2559 ASSERT3U(bufcnt, !=, 0);
2560 buffers++;
2561
2562 /*
2563 * When the arc_buf_t is sharing the data
2564 * block with the hdr, the owner of the
2565 * reference belongs to the hdr. Only
2566 * add to the refcount if the arc_buf_t is
2567 * not shared.
2568 */
2569 if (arc_buf_is_shared(buf))
2570 continue;
2571
2572 (void) refcount_add_many(&new_state->arcs_size,
2573 arc_buf_size(buf), buf);
2574 }
2575 ASSERT3U(bufcnt, ==, buffers);
2576
2577 if (hdr->b_l1hdr.b_pabd != NULL) {
2578 (void) refcount_add_many(&new_state->arcs_size,
2579 arc_hdr_size(hdr), hdr);
2580 }
2581
2582 if (HDR_HAS_RABD(hdr)) {
2583 (void) refcount_add_many(&new_state->arcs_size,
2584 HDR_GET_PSIZE(hdr), hdr);
2585 }
2586 }
2587 }
2588
2589 if (update_old && old_state != arc_l2c_only) {
2590 ASSERT(HDR_HAS_L1HDR(hdr));
2591 if (GHOST_STATE(old_state)) {
2592 ASSERT0(bufcnt);
2593 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2594 ASSERT(!HDR_HAS_RABD(hdr));
2595
2596 /*
2597 * When moving a header off of a ghost state,
2598 * the header will not contain any arc buffers.
2599 * We use the arc header pointer for the reference
2600 * which is exactly what we did when we put the
2601 * header on the ghost state.
2602 */
2603
2604 (void) refcount_remove_many(&old_state->arcs_size,
2605 HDR_GET_LSIZE(hdr), hdr);
2606 } else {
2607 uint32_t buffers = 0;
2608
2609 /*
2610 * Each individual buffer holds a unique reference,
2611 * thus we must remove each of these references one
2612 * at a time.
2613 */
2614 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2615 buf = buf->b_next) {
2616 ASSERT3U(bufcnt, !=, 0);
2617 buffers++;
2618
2619 /*
2620 * When the arc_buf_t is sharing the data
2621 * block with the hdr, the owner of the
2622 * reference belongs to the hdr. Only
2623 * add to the refcount if the arc_buf_t is
2624 * not shared.
2625 */
2626 if (arc_buf_is_shared(buf))
2627 continue;
2628
2629 (void) refcount_remove_many(
2630 &old_state->arcs_size, arc_buf_size(buf),
2631 buf);
2632 }
2633 ASSERT3U(bufcnt, ==, buffers);
2634 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2635 HDR_HAS_RABD(hdr));
2636
2637 if (hdr->b_l1hdr.b_pabd != NULL) {
2638 (void) refcount_remove_many(
2639 &old_state->arcs_size, arc_hdr_size(hdr),
2640 hdr);
2641 }
2642
2643 if (HDR_HAS_RABD(hdr)) {
2644 (void) refcount_remove_many(
2645 &old_state->arcs_size, HDR_GET_PSIZE(hdr),
2646 hdr);
2647 }
2648 }
2649 }
2650
2651 if (HDR_HAS_L1HDR(hdr))
2652 hdr->b_l1hdr.b_state = new_state;
2653
2654 /*
2655 * L2 headers should never be on the L2 state list since they don't
2656 * have L1 headers allocated.
2657 */
2658 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2659 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2660 }
2661
2662 void
2663 arc_space_consume(uint64_t space, arc_space_type_t type)
2664 {
2665 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2666
2667 switch (type) {
2668 default:
2669 break;
2670 case ARC_SPACE_DATA:
2671 ARCSTAT_INCR(arcstat_data_size, space);
2672 break;
2673 case ARC_SPACE_META:
2674 ARCSTAT_INCR(arcstat_metadata_size, space);
2675 break;
2676 case ARC_SPACE_BONUS:
2677 ARCSTAT_INCR(arcstat_bonus_size, space);
2678 break;
2679 case ARC_SPACE_DNODE:
2680 ARCSTAT_INCR(arcstat_dnode_size, space);
2681 break;
2682 case ARC_SPACE_DBUF:
2683 ARCSTAT_INCR(arcstat_dbuf_size, space);
2684 break;
2685 case ARC_SPACE_HDRS:
2686 ARCSTAT_INCR(arcstat_hdr_size, space);
2687 break;
2688 case ARC_SPACE_L2HDRS:
2689 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2690 break;
2691 }
2692
2693 if (type != ARC_SPACE_DATA)
2694 ARCSTAT_INCR(arcstat_meta_used, space);
2695
2696 atomic_add_64(&arc_size, space);
2697 }
2698
2699 void
2700 arc_space_return(uint64_t space, arc_space_type_t type)
2701 {
2702 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2703
2704 switch (type) {
2705 default:
2706 break;
2707 case ARC_SPACE_DATA:
2708 ARCSTAT_INCR(arcstat_data_size, -space);
2709 break;
2710 case ARC_SPACE_META:
2711 ARCSTAT_INCR(arcstat_metadata_size, -space);
2712 break;
2713 case ARC_SPACE_BONUS:
2714 ARCSTAT_INCR(arcstat_bonus_size, -space);
2715 break;
2716 case ARC_SPACE_DNODE:
2717 ARCSTAT_INCR(arcstat_dnode_size, -space);
2718 break;
2719 case ARC_SPACE_DBUF:
2720 ARCSTAT_INCR(arcstat_dbuf_size, -space);
2721 break;
2722 case ARC_SPACE_HDRS:
2723 ARCSTAT_INCR(arcstat_hdr_size, -space);
2724 break;
2725 case ARC_SPACE_L2HDRS:
2726 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2727 break;
2728 }
2729
2730 if (type != ARC_SPACE_DATA) {
2731 ASSERT(arc_meta_used >= space);
2732 if (arc_meta_max < arc_meta_used)
2733 arc_meta_max = arc_meta_used;
2734 ARCSTAT_INCR(arcstat_meta_used, -space);
2735 }
2736
2737 ASSERT(arc_size >= space);
2738 atomic_add_64(&arc_size, -space);
2739 }
2740
2741 /*
2742 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2743 * with the hdr's b_pabd.
2744 */
2745 static boolean_t
2746 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2747 {
2748 /*
2749 * The criteria for sharing a hdr's data are:
2750 * 1. the buffer is not encrypted
2751 * 2. the hdr's compression matches the buf's compression
2752 * 3. the hdr doesn't need to be byteswapped
2753 * 4. the hdr isn't already being shared
2754 * 5. the buf is either compressed or it is the last buf in the hdr list
2755 *
2756 * Criterion #5 maintains the invariant that shared uncompressed
2757 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2758 * might ask, "if a compressed buf is allocated first, won't that be the
2759 * last thing in the list?", but in that case it's impossible to create
2760 * a shared uncompressed buf anyway (because the hdr must be compressed
2761 * to have the compressed buf). You might also think that #3 is
2762 * sufficient to make this guarantee, however it's possible
2763 * (specifically in the rare L2ARC write race mentioned in
2764 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2765 * is sharable, but wasn't at the time of its allocation. Rather than
2766 * allow a new shared uncompressed buf to be created and then shuffle
2767 * the list around to make it the last element, this simply disallows
2768 * sharing if the new buf isn't the first to be added.
2769 */
2770 ASSERT3P(buf->b_hdr, ==, hdr);
2771 boolean_t hdr_compressed =
2772 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
2773 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2774 return (!ARC_BUF_ENCRYPTED(buf) &&
2775 buf_compressed == hdr_compressed &&
2776 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2777 !HDR_SHARED_DATA(hdr) &&
2778 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2779 }
2780
2781 /*
2782 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2783 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2784 * copy was made successfully, or an error code otherwise.
2785 */
2786 static int
2787 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj, void *tag,
2788 boolean_t encrypted, boolean_t compressed, boolean_t noauth,
2789 boolean_t fill, arc_buf_t **ret)
2790 {
2791 arc_buf_t *buf;
2792 arc_fill_flags_t flags = ARC_FILL_LOCKED;
2793
2794 ASSERT(HDR_HAS_L1HDR(hdr));
2795 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2796 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2797 hdr->b_type == ARC_BUFC_METADATA);
2798 ASSERT3P(ret, !=, NULL);
2799 ASSERT3P(*ret, ==, NULL);
2800 IMPLY(encrypted, compressed);
2801
2802 hdr->b_l1hdr.b_mru_hits = 0;
2803 hdr->b_l1hdr.b_mru_ghost_hits = 0;
2804 hdr->b_l1hdr.b_mfu_hits = 0;
2805 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
2806 hdr->b_l1hdr.b_l2_hits = 0;
2807
2808 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2809 buf->b_hdr = hdr;
2810 buf->b_data = NULL;
2811 buf->b_next = hdr->b_l1hdr.b_buf;
2812 buf->b_flags = 0;
2813
2814 add_reference(hdr, tag);
2815
2816 /*
2817 * We're about to change the hdr's b_flags. We must either
2818 * hold the hash_lock or be undiscoverable.
2819 */
2820 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2821
2822 /*
2823 * Only honor requests for compressed bufs if the hdr is actually
2824 * compressed. This must be overriden if the buffer is encrypted since
2825 * encrypted buffers cannot be decompressed.
2826 */
2827 if (encrypted) {
2828 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2829 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2830 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2831 } else if (compressed &&
2832 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2833 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2834 flags |= ARC_FILL_COMPRESSED;
2835 }
2836
2837 if (noauth) {
2838 ASSERT0(encrypted);
2839 flags |= ARC_FILL_NOAUTH;
2840 }
2841
2842 /*
2843 * If the hdr's data can be shared then we share the data buffer and
2844 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2845 * allocate a new buffer to store the buf's data.
2846 *
2847 * There are two additional restrictions here because we're sharing
2848 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2849 * actively involved in an L2ARC write, because if this buf is used by
2850 * an arc_write() then the hdr's data buffer will be released when the
2851 * write completes, even though the L2ARC write might still be using it.
2852 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2853 * need to be ABD-aware.
2854 */
2855 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2856 hdr->b_l1hdr.b_pabd != NULL && abd_is_linear(hdr->b_l1hdr.b_pabd);
2857
2858 /* Set up b_data and sharing */
2859 if (can_share) {
2860 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2861 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2862 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2863 } else {
2864 buf->b_data =
2865 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2866 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2867 }
2868 VERIFY3P(buf->b_data, !=, NULL);
2869
2870 hdr->b_l1hdr.b_buf = buf;
2871 hdr->b_l1hdr.b_bufcnt += 1;
2872 if (encrypted)
2873 hdr->b_crypt_hdr.b_ebufcnt += 1;
2874
2875 /*
2876 * If the user wants the data from the hdr, we need to either copy or
2877 * decompress the data.
2878 */
2879 if (fill) {
2880 return (arc_buf_fill(buf, spa, dsobj, flags));
2881 }
2882
2883 return (0);
2884 }
2885
2886 static char *arc_onloan_tag = "onloan";
2887
2888 static inline void
2889 arc_loaned_bytes_update(int64_t delta)
2890 {
2891 atomic_add_64(&arc_loaned_bytes, delta);
2892
2893 /* assert that it did not wrap around */
2894 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2895 }
2896
2897 /*
2898 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2899 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2900 * buffers must be returned to the arc before they can be used by the DMU or
2901 * freed.
2902 */
2903 arc_buf_t *
2904 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2905 {
2906 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2907 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2908
2909 arc_loaned_bytes_update(size);
2910
2911 return (buf);
2912 }
2913
2914 arc_buf_t *
2915 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2916 enum zio_compress compression_type)
2917 {
2918 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2919 psize, lsize, compression_type);
2920
2921 arc_loaned_bytes_update(psize);
2922
2923 return (buf);
2924 }
2925
2926 arc_buf_t *
2927 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2928 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2929 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2930 enum zio_compress compression_type)
2931 {
2932 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2933 byteorder, salt, iv, mac, ot, psize, lsize, compression_type);
2934
2935 atomic_add_64(&arc_loaned_bytes, psize);
2936 return (buf);
2937 }
2938
2939
2940 /*
2941 * Return a loaned arc buffer to the arc.
2942 */
2943 void
2944 arc_return_buf(arc_buf_t *buf, void *tag)
2945 {
2946 arc_buf_hdr_t *hdr = buf->b_hdr;
2947
2948 ASSERT3P(buf->b_data, !=, NULL);
2949 ASSERT(HDR_HAS_L1HDR(hdr));
2950 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2951 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2952
2953 arc_loaned_bytes_update(-arc_buf_size(buf));
2954 }
2955
2956 /* Detach an arc_buf from a dbuf (tag) */
2957 void
2958 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2959 {
2960 arc_buf_hdr_t *hdr = buf->b_hdr;
2961
2962 ASSERT3P(buf->b_data, !=, NULL);
2963 ASSERT(HDR_HAS_L1HDR(hdr));
2964 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2965 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2966
2967 arc_loaned_bytes_update(arc_buf_size(buf));
2968 }
2969
2970 static void
2971 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2972 {
2973 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2974
2975 df->l2df_abd = abd;
2976 df->l2df_size = size;
2977 df->l2df_type = type;
2978 mutex_enter(&l2arc_free_on_write_mtx);
2979 list_insert_head(l2arc_free_on_write, df);
2980 mutex_exit(&l2arc_free_on_write_mtx);
2981 }
2982
2983 static void
2984 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2985 {
2986 arc_state_t *state = hdr->b_l1hdr.b_state;
2987 arc_buf_contents_t type = arc_buf_type(hdr);
2988 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2989
2990 /* protected by hash lock, if in the hash table */
2991 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2992 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2993 ASSERT(state != arc_anon && state != arc_l2c_only);
2994
2995 (void) refcount_remove_many(&state->arcs_esize[type],
2996 size, hdr);
2997 }
2998 (void) refcount_remove_many(&state->arcs_size, size, hdr);
2999 if (type == ARC_BUFC_METADATA) {
3000 arc_space_return(size, ARC_SPACE_META);
3001 } else {
3002 ASSERT(type == ARC_BUFC_DATA);
3003 arc_space_return(size, ARC_SPACE_DATA);
3004 }
3005
3006 if (free_rdata) {
3007 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
3008 } else {
3009 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
3010 }
3011 }
3012
3013 /*
3014 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
3015 * data buffer, we transfer the refcount ownership to the hdr and update
3016 * the appropriate kstats.
3017 */
3018 static void
3019 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3020 {
3021 ASSERT(arc_can_share(hdr, buf));
3022 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3023 ASSERT(!ARC_BUF_ENCRYPTED(buf));
3024 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3025
3026 /*
3027 * Start sharing the data buffer. We transfer the
3028 * refcount ownership to the hdr since it always owns
3029 * the refcount whenever an arc_buf_t is shared.
3030 */
3031 refcount_transfer_ownership(&hdr->b_l1hdr.b_state->arcs_size, buf, hdr);
3032 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
3033 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
3034 HDR_ISTYPE_METADATA(hdr));
3035 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
3036 buf->b_flags |= ARC_BUF_FLAG_SHARED;
3037
3038 /*
3039 * Since we've transferred ownership to the hdr we need
3040 * to increment its compressed and uncompressed kstats and
3041 * decrement the overhead size.
3042 */
3043 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3044 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3045 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
3046 }
3047
3048 static void
3049 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3050 {
3051 ASSERT(arc_buf_is_shared(buf));
3052 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3053 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3054
3055 /*
3056 * We are no longer sharing this buffer so we need
3057 * to transfer its ownership to the rightful owner.
3058 */
3059 refcount_transfer_ownership(&hdr->b_l1hdr.b_state->arcs_size, hdr, buf);
3060 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3061 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3062 abd_put(hdr->b_l1hdr.b_pabd);
3063 hdr->b_l1hdr.b_pabd = NULL;
3064 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
3065
3066 /*
3067 * Since the buffer is no longer shared between
3068 * the arc buf and the hdr, count it as overhead.
3069 */
3070 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3071 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3072 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3073 }
3074
3075 /*
3076 * Remove an arc_buf_t from the hdr's buf list and return the last
3077 * arc_buf_t on the list. If no buffers remain on the list then return
3078 * NULL.
3079 */
3080 static arc_buf_t *
3081 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3082 {
3083 ASSERT(HDR_HAS_L1HDR(hdr));
3084 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3085
3086 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3087 arc_buf_t *lastbuf = NULL;
3088
3089 /*
3090 * Remove the buf from the hdr list and locate the last
3091 * remaining buffer on the list.
3092 */
3093 while (*bufp != NULL) {
3094 if (*bufp == buf)
3095 *bufp = buf->b_next;
3096
3097 /*
3098 * If we've removed a buffer in the middle of
3099 * the list then update the lastbuf and update
3100 * bufp.
3101 */
3102 if (*bufp != NULL) {
3103 lastbuf = *bufp;
3104 bufp = &(*bufp)->b_next;
3105 }
3106 }
3107 buf->b_next = NULL;
3108 ASSERT3P(lastbuf, !=, buf);
3109 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
3110 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
3111 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3112
3113 return (lastbuf);
3114 }
3115
3116 /*
3117 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
3118 * list and free it.
3119 */
3120 static void
3121 arc_buf_destroy_impl(arc_buf_t *buf)
3122 {
3123 arc_buf_hdr_t *hdr = buf->b_hdr;
3124
3125 /*
3126 * Free up the data associated with the buf but only if we're not
3127 * sharing this with the hdr. If we are sharing it with the hdr, the
3128 * hdr is responsible for doing the free.
3129 */
3130 if (buf->b_data != NULL) {
3131 /*
3132 * We're about to change the hdr's b_flags. We must either
3133 * hold the hash_lock or be undiscoverable.
3134 */
3135 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3136
3137 arc_cksum_verify(buf);
3138 arc_buf_unwatch(buf);
3139
3140 if (arc_buf_is_shared(buf)) {
3141 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3142 } else {
3143 uint64_t size = arc_buf_size(buf);
3144 arc_free_data_buf(hdr, buf->b_data, size, buf);
3145 ARCSTAT_INCR(arcstat_overhead_size, -size);
3146 }
3147 buf->b_data = NULL;
3148
3149 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3150 hdr->b_l1hdr.b_bufcnt -= 1;
3151
3152 if (ARC_BUF_ENCRYPTED(buf))
3153 hdr->b_crypt_hdr.b_ebufcnt -= 1;
3154
3155 /*
3156 * If we have no more encrypted buffers and we've already
3157 * gotten a copy of the decrypted data we can free b_rabd to
3158 * save some space.
3159 */
3160 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && HDR_HAS_RABD(hdr) &&
3161 hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) {
3162 arc_hdr_free_abd(hdr, B_TRUE);
3163 }
3164 }
3165
3166 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3167
3168 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3169 /*
3170 * If the current arc_buf_t is sharing its data buffer with the
3171 * hdr, then reassign the hdr's b_pabd to share it with the new
3172 * buffer at the end of the list. The shared buffer is always
3173 * the last one on the hdr's buffer list.
3174 *
3175 * There is an equivalent case for compressed bufs, but since
3176 * they aren't guaranteed to be the last buf in the list and
3177 * that is an exceedingly rare case, we just allow that space be
3178 * wasted temporarily. We must also be careful not to share
3179 * encrypted buffers, since they cannot be shared.
3180 */
3181 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3182 /* Only one buf can be shared at once */
3183 VERIFY(!arc_buf_is_shared(lastbuf));
3184 /* hdr is uncompressed so can't have compressed buf */
3185 VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
3186
3187 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3188 arc_hdr_free_abd(hdr, B_FALSE);
3189
3190 /*
3191 * We must setup a new shared block between the
3192 * last buffer and the hdr. The data would have
3193 * been allocated by the arc buf so we need to transfer
3194 * ownership to the hdr since it's now being shared.
3195 */
3196 arc_share_buf(hdr, lastbuf);
3197 }
3198 } else if (HDR_SHARED_DATA(hdr)) {
3199 /*
3200 * Uncompressed shared buffers are always at the end
3201 * of the list. Compressed buffers don't have the
3202 * same requirements. This makes it hard to
3203 * simply assert that the lastbuf is shared so
3204 * we rely on the hdr's compression flags to determine
3205 * if we have a compressed, shared buffer.
3206 */
3207 ASSERT3P(lastbuf, !=, NULL);
3208 ASSERT(arc_buf_is_shared(lastbuf) ||
3209 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3210 }
3211
3212 /*
3213 * Free the checksum if we're removing the last uncompressed buf from
3214 * this hdr.
3215 */
3216 if (!arc_hdr_has_uncompressed_buf(hdr)) {
3217 arc_cksum_free(hdr);
3218 }
3219
3220 /* clean up the buf */
3221 buf->b_hdr = NULL;
3222 kmem_cache_free(buf_cache, buf);
3223 }
3224
3225 static void
3226 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, boolean_t alloc_rdata)
3227 {
3228 uint64_t size;
3229
3230 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3231 ASSERT(HDR_HAS_L1HDR(hdr));
3232 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3233 IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3234
3235 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3236 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3237
3238 if (alloc_rdata) {
3239 size = HDR_GET_PSIZE(hdr);
3240 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3241 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr);
3242 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3243 ARCSTAT_INCR(arcstat_raw_size, size);
3244 } else {
3245 size = arc_hdr_size(hdr);
3246 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3247 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr);
3248 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3249 }
3250
3251 ARCSTAT_INCR(arcstat_compressed_size, size);
3252 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3253 }
3254
3255 static void
3256 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3257 {
3258 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3259
3260 ASSERT(HDR_HAS_L1HDR(hdr));
3261 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3262 IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3263
3264 /*
3265 * If the hdr is currently being written to the l2arc then
3266 * we defer freeing the data by adding it to the l2arc_free_on_write
3267 * list. The l2arc will free the data once it's finished
3268 * writing it to the l2arc device.
3269 */
3270 if (HDR_L2_WRITING(hdr)) {
3271 arc_hdr_free_on_write(hdr, free_rdata);
3272 ARCSTAT_BUMP(arcstat_l2_free_on_write);
3273 } else if (free_rdata) {
3274 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3275 } else {
3276 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
3277 }
3278
3279 if (free_rdata) {
3280 hdr->b_crypt_hdr.b_rabd = NULL;
3281 ARCSTAT_INCR(arcstat_raw_size, -size);
3282 } else {
3283 hdr->b_l1hdr.b_pabd = NULL;
3284 }
3285
3286 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3287 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3288
3289 ARCSTAT_INCR(arcstat_compressed_size, -size);
3290 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3291 }
3292
3293 static arc_buf_hdr_t *
3294 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3295 boolean_t protected, enum zio_compress compression_type,
3296 arc_buf_contents_t type, boolean_t alloc_rdata)
3297 {
3298 arc_buf_hdr_t *hdr;
3299
3300 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3301 if (protected) {
3302 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE);
3303 } else {
3304 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3305 }
3306
3307 ASSERT(HDR_EMPTY(hdr));
3308 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3309 HDR_SET_PSIZE(hdr, psize);
3310 HDR_SET_LSIZE(hdr, lsize);
3311 hdr->b_spa = spa;
3312 hdr->b_type = type;
3313 hdr->b_flags = 0;
3314 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3315 arc_hdr_set_compress(hdr, compression_type);
3316 if (protected)
3317 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3318
3319 hdr->b_l1hdr.b_state = arc_anon;
3320 hdr->b_l1hdr.b_arc_access = 0;
3321 hdr->b_l1hdr.b_bufcnt = 0;
3322 hdr->b_l1hdr.b_buf = NULL;
3323
3324 /*
3325 * Allocate the hdr's buffer. This will contain either
3326 * the compressed or uncompressed data depending on the block
3327 * it references and compressed arc enablement.
3328 */
3329 arc_hdr_alloc_abd(hdr, alloc_rdata);
3330 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3331
3332 return (hdr);
3333 }
3334
3335 /*
3336 * Transition between the two allocation states for the arc_buf_hdr struct.
3337 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3338 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3339 * version is used when a cache buffer is only in the L2ARC in order to reduce
3340 * memory usage.
3341 */
3342 static arc_buf_hdr_t *
3343 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3344 {
3345 ASSERT(HDR_HAS_L2HDR(hdr));
3346
3347 arc_buf_hdr_t *nhdr;
3348 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3349
3350 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3351 (old == hdr_l2only_cache && new == hdr_full_cache));
3352
3353 /*
3354 * if the caller wanted a new full header and the header is to be
3355 * encrypted we will actually allocate the header from the full crypt
3356 * cache instead. The same applies to freeing from the old cache.
3357 */
3358 if (HDR_PROTECTED(hdr) && new == hdr_full_cache)
3359 new = hdr_full_crypt_cache;
3360 if (HDR_PROTECTED(hdr) && old == hdr_full_cache)
3361 old = hdr_full_crypt_cache;
3362
3363 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3364
3365 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3366 buf_hash_remove(hdr);
3367
3368 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3369
3370 if (new == hdr_full_cache || new == hdr_full_crypt_cache) {
3371 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3372 /*
3373 * arc_access and arc_change_state need to be aware that a
3374 * header has just come out of L2ARC, so we set its state to
3375 * l2c_only even though it's about to change.
3376 */
3377 nhdr->b_l1hdr.b_state = arc_l2c_only;
3378
3379 /* Verify previous threads set to NULL before freeing */
3380 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3381 ASSERT(!HDR_HAS_RABD(hdr));
3382 } else {
3383 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3384 ASSERT0(hdr->b_l1hdr.b_bufcnt);
3385 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3386
3387 /*
3388 * If we've reached here, We must have been called from
3389 * arc_evict_hdr(), as such we should have already been
3390 * removed from any ghost list we were previously on
3391 * (which protects us from racing with arc_evict_state),
3392 * thus no locking is needed during this check.
3393 */
3394 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3395
3396 /*
3397 * A buffer must not be moved into the arc_l2c_only
3398 * state if it's not finished being written out to the
3399 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3400 * might try to be accessed, even though it was removed.
3401 */
3402 VERIFY(!HDR_L2_WRITING(hdr));
3403 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3404 ASSERT(!HDR_HAS_RABD(hdr));
3405
3406 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3407 }
3408 /*
3409 * The header has been reallocated so we need to re-insert it into any
3410 * lists it was on.
3411 */
3412 (void) buf_hash_insert(nhdr, NULL);
3413
3414 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3415
3416 mutex_enter(&dev->l2ad_mtx);
3417
3418 /*
3419 * We must place the realloc'ed header back into the list at
3420 * the same spot. Otherwise, if it's placed earlier in the list,
3421 * l2arc_write_buffers() could find it during the function's
3422 * write phase, and try to write it out to the l2arc.
3423 */
3424 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3425 list_remove(&dev->l2ad_buflist, hdr);
3426
3427 mutex_exit(&dev->l2ad_mtx);
3428
3429 /*
3430 * Since we're using the pointer address as the tag when
3431 * incrementing and decrementing the l2ad_alloc refcount, we
3432 * must remove the old pointer (that we're about to destroy) and
3433 * add the new pointer to the refcount. Otherwise we'd remove
3434 * the wrong pointer address when calling arc_hdr_destroy() later.
3435 */
3436
3437 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
3438 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
3439
3440 buf_discard_identity(hdr);
3441 kmem_cache_free(old, hdr);
3442
3443 return (nhdr);
3444 }
3445
3446 /*
3447 * This function allows an L1 header to be reallocated as a crypt
3448 * header and vice versa. If we are going to a crypt header, the
3449 * new fields will be zeroed out.
3450 */
3451 static arc_buf_hdr_t *
3452 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt)
3453 {
3454 arc_buf_hdr_t *nhdr;
3455 arc_buf_t *buf;
3456 kmem_cache_t *ncache, *ocache;
3457
3458 ASSERT(HDR_HAS_L1HDR(hdr));
3459 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt);
3460 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3461 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3462
3463 if (need_crypt) {
3464 ncache = hdr_full_crypt_cache;
3465 ocache = hdr_full_cache;
3466 } else {
3467 ncache = hdr_full_cache;
3468 ocache = hdr_full_crypt_cache;
3469 }
3470
3471 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE);
3472 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3473 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum;
3474 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt;
3475 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap;
3476 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state;
3477 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access;
3478 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits;
3479 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits;
3480 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits;
3481 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits;
3482 nhdr->b_l1hdr.b_l2_hits = hdr->b_l1hdr.b_l2_hits;
3483 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb;
3484 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd;
3485 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf;
3486
3487 /*
3488 * This refcount_add() exists only to ensure that the individual
3489 * arc buffers always point to a header that is referenced, avoiding
3490 * a small race condition that could trigger ASSERTs.
3491 */
3492 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG);
3493
3494 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
3495 mutex_enter(&buf->b_evict_lock);
3496 buf->b_hdr = nhdr;
3497 mutex_exit(&buf->b_evict_lock);
3498 }
3499
3500 refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt);
3501 (void) refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG);
3502
3503 if (need_crypt) {
3504 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED);
3505 } else {
3506 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED);
3507 }
3508
3509 buf_discard_identity(hdr);
3510 kmem_cache_free(ocache, hdr);
3511
3512 return (nhdr);
3513 }
3514
3515 /*
3516 * This function is used by the send / receive code to convert a newly
3517 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3518 * is also used to allow the root objset block to be uupdated without altering
3519 * its embedded MACs. Both block types will always be uncompressed so we do not
3520 * have to worry about compression type or psize.
3521 */
3522 void
3523 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3524 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3525 const uint8_t *mac)
3526 {
3527 arc_buf_hdr_t *hdr = buf->b_hdr;
3528
3529 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3530 ASSERT(HDR_HAS_L1HDR(hdr));
3531 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3532
3533 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3534 if (!HDR_PROTECTED(hdr))
3535 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE);
3536 hdr->b_crypt_hdr.b_dsobj = dsobj;
3537 hdr->b_crypt_hdr.b_ot = ot;
3538 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3539 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3540 if (!arc_hdr_has_uncompressed_buf(hdr))
3541 arc_cksum_free(hdr);
3542
3543 if (salt != NULL)
3544 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3545 if (iv != NULL)
3546 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3547 if (mac != NULL)
3548 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3549 }
3550
3551 /*
3552 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3553 * The buf is returned thawed since we expect the consumer to modify it.
3554 */
3555 arc_buf_t *
3556 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3557 {
3558 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3559 B_FALSE, ZIO_COMPRESS_OFF, type, B_FALSE);
3560 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3561
3562 arc_buf_t *buf = NULL;
3563 VERIFY0(arc_buf_alloc_impl(hdr, spa, 0, tag, B_FALSE, B_FALSE,
3564 B_FALSE, B_FALSE, &buf));
3565 arc_buf_thaw(buf);
3566
3567 return (buf);
3568 }
3569
3570 /*
3571 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3572 * for bufs containing metadata.
3573 */
3574 arc_buf_t *
3575 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3576 enum zio_compress compression_type)
3577 {
3578 ASSERT3U(lsize, >, 0);
3579 ASSERT3U(lsize, >=, psize);
3580 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3581 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3582
3583 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3584 B_FALSE, compression_type, ARC_BUFC_DATA, B_FALSE);
3585 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3586
3587 arc_buf_t *buf = NULL;
3588 VERIFY0(arc_buf_alloc_impl(hdr, spa, 0, tag, B_FALSE,
3589 B_TRUE, B_FALSE, B_FALSE, &buf));
3590 arc_buf_thaw(buf);
3591 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3592
3593 if (!arc_buf_is_shared(buf)) {
3594 /*
3595 * To ensure that the hdr has the correct data in it if we call
3596 * arc_untransform() on this buf before it's been written to
3597 * disk, it's easiest if we just set up sharing between the
3598 * buf and the hdr.
3599 */
3600 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3601 arc_hdr_free_abd(hdr, B_FALSE);
3602 arc_share_buf(hdr, buf);
3603 }
3604
3605 return (buf);
3606 }
3607
3608 arc_buf_t *
3609 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder,
3610 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3611 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3612 enum zio_compress compression_type)
3613 {
3614 arc_buf_hdr_t *hdr;
3615 arc_buf_t *buf;
3616 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3617 ARC_BUFC_METADATA : ARC_BUFC_DATA;
3618
3619 ASSERT3U(lsize, >, 0);
3620 ASSERT3U(lsize, >=, psize);
3621 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3622 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3623
3624 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3625 compression_type, type, B_TRUE);
3626 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3627
3628 hdr->b_crypt_hdr.b_dsobj = dsobj;
3629 hdr->b_crypt_hdr.b_ot = ot;
3630 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3631 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3632 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3633 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3634 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3635
3636 /*
3637 * This buffer will be considered encrypted even if the ot is not an
3638 * encrypted type. It will become authenticated instead in
3639 * arc_write_ready().
3640 */
3641 buf = NULL;
3642 VERIFY0(arc_buf_alloc_impl(hdr, spa, dsobj, tag, B_TRUE, B_TRUE,
3643 B_FALSE, B_FALSE, &buf));
3644 arc_buf_thaw(buf);
3645 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3646
3647 return (buf);
3648 }
3649
3650 static void
3651 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3652 {
3653 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3654 l2arc_dev_t *dev = l2hdr->b_dev;
3655 uint64_t psize = arc_hdr_size(hdr);
3656
3657 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3658 ASSERT(HDR_HAS_L2HDR(hdr));
3659
3660 list_remove(&dev->l2ad_buflist, hdr);
3661
3662 ARCSTAT_INCR(arcstat_l2_psize, -psize);
3663 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3664
3665 vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
3666
3667 (void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
3668 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3669 }
3670
3671 static void
3672 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3673 {
3674 if (HDR_HAS_L1HDR(hdr)) {
3675 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3676 hdr->b_l1hdr.b_bufcnt > 0);
3677 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3678 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3679 }
3680 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3681 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3682
3683 if (!HDR_EMPTY(hdr))
3684 buf_discard_identity(hdr);
3685
3686 if (HDR_HAS_L2HDR(hdr)) {
3687 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3688 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3689
3690 if (!buflist_held)
3691 mutex_enter(&dev->l2ad_mtx);
3692
3693 /*
3694 * Even though we checked this conditional above, we
3695 * need to check this again now that we have the
3696 * l2ad_mtx. This is because we could be racing with
3697 * another thread calling l2arc_evict() which might have
3698 * destroyed this header's L2 portion as we were waiting
3699 * to acquire the l2ad_mtx. If that happens, we don't
3700 * want to re-destroy the header's L2 portion.
3701 */
3702 if (HDR_HAS_L2HDR(hdr))
3703 arc_hdr_l2hdr_destroy(hdr);
3704
3705 if (!buflist_held)
3706 mutex_exit(&dev->l2ad_mtx);
3707 }
3708
3709 if (HDR_HAS_L1HDR(hdr)) {
3710 arc_cksum_free(hdr);
3711
3712 while (hdr->b_l1hdr.b_buf != NULL)
3713 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3714
3715 if (hdr->b_l1hdr.b_pabd != NULL) {
3716 arc_hdr_free_abd(hdr, B_FALSE);
3717 }
3718
3719 if (HDR_HAS_RABD(hdr))
3720 arc_hdr_free_abd(hdr, B_TRUE);
3721 }
3722
3723 ASSERT3P(hdr->b_hash_next, ==, NULL);
3724 if (HDR_HAS_L1HDR(hdr)) {
3725 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3726 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3727
3728 if (!HDR_PROTECTED(hdr)) {
3729 kmem_cache_free(hdr_full_cache, hdr);
3730 } else {
3731 kmem_cache_free(hdr_full_crypt_cache, hdr);
3732 }
3733 } else {
3734 kmem_cache_free(hdr_l2only_cache, hdr);
3735 }
3736 }
3737
3738 void
3739 arc_buf_destroy(arc_buf_t *buf, void* tag)
3740 {
3741 arc_buf_hdr_t *hdr = buf->b_hdr;
3742 kmutex_t *hash_lock = HDR_LOCK(hdr);
3743
3744 if (hdr->b_l1hdr.b_state == arc_anon) {
3745 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3746 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3747 VERIFY0(remove_reference(hdr, NULL, tag));
3748 arc_hdr_destroy(hdr);
3749 return;
3750 }
3751
3752 mutex_enter(hash_lock);
3753 ASSERT3P(hdr, ==, buf->b_hdr);
3754 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3755 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3756 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3757 ASSERT3P(buf->b_data, !=, NULL);
3758
3759 (void) remove_reference(hdr, hash_lock, tag);
3760 arc_buf_destroy_impl(buf);
3761 mutex_exit(hash_lock);
3762 }
3763
3764 /*
3765 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3766 * state of the header is dependent on its state prior to entering this
3767 * function. The following transitions are possible:
3768 *
3769 * - arc_mru -> arc_mru_ghost
3770 * - arc_mfu -> arc_mfu_ghost
3771 * - arc_mru_ghost -> arc_l2c_only
3772 * - arc_mru_ghost -> deleted
3773 * - arc_mfu_ghost -> arc_l2c_only
3774 * - arc_mfu_ghost -> deleted
3775 */
3776 static int64_t
3777 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3778 {
3779 arc_state_t *evicted_state, *state;
3780 int64_t bytes_evicted = 0;
3781
3782 ASSERT(MUTEX_HELD(hash_lock));
3783 ASSERT(HDR_HAS_L1HDR(hdr));
3784
3785 state = hdr->b_l1hdr.b_state;
3786 if (GHOST_STATE(state)) {
3787 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3788 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3789
3790 /*
3791 * l2arc_write_buffers() relies on a header's L1 portion
3792 * (i.e. its b_pabd field) during it's write phase.
3793 * Thus, we cannot push a header onto the arc_l2c_only
3794 * state (removing its L1 piece) until the header is
3795 * done being written to the l2arc.
3796 */
3797 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3798 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3799 return (bytes_evicted);
3800 }
3801
3802 ARCSTAT_BUMP(arcstat_deleted);
3803 bytes_evicted += HDR_GET_LSIZE(hdr);
3804
3805 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3806
3807 if (HDR_HAS_L2HDR(hdr)) {
3808 ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3809 ASSERT(!HDR_HAS_RABD(hdr));
3810 /*
3811 * This buffer is cached on the 2nd Level ARC;
3812 * don't destroy the header.
3813 */
3814 arc_change_state(arc_l2c_only, hdr, hash_lock);
3815 /*
3816 * dropping from L1+L2 cached to L2-only,
3817 * realloc to remove the L1 header.
3818 */
3819 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3820 hdr_l2only_cache);
3821 } else {
3822 arc_change_state(arc_anon, hdr, hash_lock);
3823 arc_hdr_destroy(hdr);
3824 }
3825 return (bytes_evicted);
3826 }
3827
3828 ASSERT(state == arc_mru || state == arc_mfu);
3829 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3830
3831 /* prefetch buffers have a minimum lifespan */
3832 if (HDR_IO_IN_PROGRESS(hdr) ||
3833 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3834 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3835 arc_min_prefetch_lifespan)) {
3836 ARCSTAT_BUMP(arcstat_evict_skip);
3837 return (bytes_evicted);
3838 }
3839
3840 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3841 while (hdr->b_l1hdr.b_buf) {
3842 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3843 if (!mutex_tryenter(&buf->b_evict_lock)) {
3844 ARCSTAT_BUMP(arcstat_mutex_miss);
3845 break;
3846 }
3847 if (buf->b_data != NULL)
3848 bytes_evicted += HDR_GET_LSIZE(hdr);
3849 mutex_exit(&buf->b_evict_lock);
3850 arc_buf_destroy_impl(buf);
3851 }
3852
3853 if (HDR_HAS_L2HDR(hdr)) {
3854 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3855 } else {
3856 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3857 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3858 HDR_GET_LSIZE(hdr));
3859 } else {
3860 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3861 HDR_GET_LSIZE(hdr));
3862 }
3863 }
3864
3865 if (hdr->b_l1hdr.b_bufcnt == 0) {
3866 arc_cksum_free(hdr);
3867
3868 bytes_evicted += arc_hdr_size(hdr);
3869
3870 /*
3871 * If this hdr is being evicted and has a compressed
3872 * buffer then we discard it here before we change states.
3873 * This ensures that the accounting is updated correctly
3874 * in arc_free_data_impl().
3875 */
3876 if (hdr->b_l1hdr.b_pabd != NULL)
3877 arc_hdr_free_abd(hdr, B_FALSE);
3878
3879 if (HDR_HAS_RABD(hdr))
3880 arc_hdr_free_abd(hdr, B_TRUE);
3881
3882 arc_change_state(evicted_state, hdr, hash_lock);
3883 ASSERT(HDR_IN_HASH_TABLE(hdr));
3884 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3885 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3886 }
3887
3888 return (bytes_evicted);
3889 }
3890
3891 static uint64_t
3892 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3893 uint64_t spa, int64_t bytes)
3894 {
3895 multilist_sublist_t *mls;
3896 uint64_t bytes_evicted = 0;
3897 arc_buf_hdr_t *hdr;
3898 kmutex_t *hash_lock;
3899 int evict_count = 0;
3900
3901 ASSERT3P(marker, !=, NULL);
3902 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3903
3904 mls = multilist_sublist_lock(ml, idx);
3905
3906 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3907 hdr = multilist_sublist_prev(mls, marker)) {
3908 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3909 (evict_count >= zfs_arc_evict_batch_limit))
3910 break;
3911
3912 /*
3913 * To keep our iteration location, move the marker
3914 * forward. Since we're not holding hdr's hash lock, we
3915 * must be very careful and not remove 'hdr' from the
3916 * sublist. Otherwise, other consumers might mistake the
3917 * 'hdr' as not being on a sublist when they call the
3918 * multilist_link_active() function (they all rely on
3919 * the hash lock protecting concurrent insertions and
3920 * removals). multilist_sublist_move_forward() was
3921 * specifically implemented to ensure this is the case
3922 * (only 'marker' will be removed and re-inserted).
3923 */
3924 multilist_sublist_move_forward(mls, marker);
3925
3926 /*
3927 * The only case where the b_spa field should ever be
3928 * zero, is the marker headers inserted by
3929 * arc_evict_state(). It's possible for multiple threads
3930 * to be calling arc_evict_state() concurrently (e.g.
3931 * dsl_pool_close() and zio_inject_fault()), so we must
3932 * skip any markers we see from these other threads.
3933 */
3934 if (hdr->b_spa == 0)
3935 continue;
3936
3937 /* we're only interested in evicting buffers of a certain spa */
3938 if (spa != 0 && hdr->b_spa != spa) {
3939 ARCSTAT_BUMP(arcstat_evict_skip);
3940 continue;
3941 }
3942
3943 hash_lock = HDR_LOCK(hdr);
3944
3945 /*
3946 * We aren't calling this function from any code path
3947 * that would already be holding a hash lock, so we're
3948 * asserting on this assumption to be defensive in case
3949 * this ever changes. Without this check, it would be
3950 * possible to incorrectly increment arcstat_mutex_miss
3951 * below (e.g. if the code changed such that we called
3952 * this function with a hash lock held).
3953 */
3954 ASSERT(!MUTEX_HELD(hash_lock));
3955
3956 if (mutex_tryenter(hash_lock)) {
3957 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3958 mutex_exit(hash_lock);
3959
3960 bytes_evicted += evicted;
3961
3962 /*
3963 * If evicted is zero, arc_evict_hdr() must have
3964 * decided to skip this header, don't increment
3965 * evict_count in this case.
3966 */
3967 if (evicted != 0)
3968 evict_count++;
3969
3970 /*
3971 * If arc_size isn't overflowing, signal any
3972 * threads that might happen to be waiting.
3973 *
3974 * For each header evicted, we wake up a single
3975 * thread. If we used cv_broadcast, we could
3976 * wake up "too many" threads causing arc_size
3977 * to significantly overflow arc_c; since
3978 * arc_get_data_impl() doesn't check for overflow
3979 * when it's woken up (it doesn't because it's
3980 * possible for the ARC to be overflowing while
3981 * full of un-evictable buffers, and the
3982 * function should proceed in this case).
3983 *
3984 * If threads are left sleeping, due to not
3985 * using cv_broadcast, they will be woken up
3986 * just before arc_reclaim_thread() sleeps.
3987 */
3988 mutex_enter(&arc_reclaim_lock);
3989 if (!arc_is_overflowing())
3990 cv_signal(&arc_reclaim_waiters_cv);
3991 mutex_exit(&arc_reclaim_lock);
3992 } else {
3993 ARCSTAT_BUMP(arcstat_mutex_miss);
3994 }
3995 }
3996
3997 multilist_sublist_unlock(mls);
3998
3999 return (bytes_evicted);
4000 }
4001
4002 /*
4003 * Evict buffers from the given arc state, until we've removed the
4004 * specified number of bytes. Move the removed buffers to the
4005 * appropriate evict state.
4006 *
4007 * This function makes a "best effort". It skips over any buffers
4008 * it can't get a hash_lock on, and so, may not catch all candidates.
4009 * It may also return without evicting as much space as requested.
4010 *
4011 * If bytes is specified using the special value ARC_EVICT_ALL, this
4012 * will evict all available (i.e. unlocked and evictable) buffers from
4013 * the given arc state; which is used by arc_flush().
4014 */
4015 static uint64_t
4016 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
4017 arc_buf_contents_t type)
4018 {
4019 uint64_t total_evicted = 0;
4020 multilist_t *ml = state->arcs_list[type];
4021 int num_sublists;
4022 arc_buf_hdr_t **markers;
4023
4024 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
4025
4026 num_sublists = multilist_get_num_sublists(ml);
4027
4028 /*
4029 * If we've tried to evict from each sublist, made some
4030 * progress, but still have not hit the target number of bytes
4031 * to evict, we want to keep trying. The markers allow us to
4032 * pick up where we left off for each individual sublist, rather
4033 * than starting from the tail each time.
4034 */
4035 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
4036 for (int i = 0; i < num_sublists; i++) {
4037 multilist_sublist_t *mls;
4038
4039 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4040
4041 /*
4042 * A b_spa of 0 is used to indicate that this header is
4043 * a marker. This fact is used in arc_adjust_type() and
4044 * arc_evict_state_impl().
4045 */
4046 markers[i]->b_spa = 0;
4047
4048 mls = multilist_sublist_lock(ml, i);
4049 multilist_sublist_insert_tail(mls, markers[i]);
4050 multilist_sublist_unlock(mls);
4051 }
4052
4053 /*
4054 * While we haven't hit our target number of bytes to evict, or
4055 * we're evicting all available buffers.
4056 */
4057 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
4058 int sublist_idx = multilist_get_random_index(ml);
4059 uint64_t scan_evicted = 0;
4060
4061 /*
4062 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
4063 * Request that 10% of the LRUs be scanned by the superblock
4064 * shrinker.
4065 */
4066 if (type == ARC_BUFC_DATA && arc_dnode_size > arc_dnode_limit)
4067 arc_prune_async((arc_dnode_size - arc_dnode_limit) /
4068 sizeof (dnode_t) / zfs_arc_dnode_reduce_percent);
4069
4070 /*
4071 * Start eviction using a randomly selected sublist,
4072 * this is to try and evenly balance eviction across all
4073 * sublists. Always starting at the same sublist
4074 * (e.g. index 0) would cause evictions to favor certain
4075 * sublists over others.
4076 */
4077 for (int i = 0; i < num_sublists; i++) {
4078 uint64_t bytes_remaining;
4079 uint64_t bytes_evicted;
4080
4081 if (bytes == ARC_EVICT_ALL)
4082 bytes_remaining = ARC_EVICT_ALL;
4083 else if (total_evicted < bytes)
4084 bytes_remaining = bytes - total_evicted;
4085 else
4086 break;
4087
4088 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4089 markers[sublist_idx], spa, bytes_remaining);
4090
4091 scan_evicted += bytes_evicted;
4092 total_evicted += bytes_evicted;
4093
4094 /* we've reached the end, wrap to the beginning */
4095 if (++sublist_idx >= num_sublists)
4096 sublist_idx = 0;
4097 }
4098
4099 /*
4100 * If we didn't evict anything during this scan, we have
4101 * no reason to believe we'll evict more during another
4102 * scan, so break the loop.
4103 */
4104 if (scan_evicted == 0) {
4105 /* This isn't possible, let's make that obvious */
4106 ASSERT3S(bytes, !=, 0);
4107
4108 /*
4109 * When bytes is ARC_EVICT_ALL, the only way to
4110 * break the loop is when scan_evicted is zero.
4111 * In that case, we actually have evicted enough,
4112 * so we don't want to increment the kstat.
4113 */
4114 if (bytes != ARC_EVICT_ALL) {
4115 ASSERT3S(total_evicted, <, bytes);
4116 ARCSTAT_BUMP(arcstat_evict_not_enough);
4117 }
4118
4119 break;
4120 }
4121 }
4122
4123 for (int i = 0; i < num_sublists; i++) {
4124 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4125 multilist_sublist_remove(mls, markers[i]);
4126 multilist_sublist_unlock(mls);
4127
4128 kmem_cache_free(hdr_full_cache, markers[i]);
4129 }
4130 kmem_free(markers, sizeof (*markers) * num_sublists);
4131
4132 return (total_evicted);
4133 }
4134
4135 /*
4136 * Flush all "evictable" data of the given type from the arc state
4137 * specified. This will not evict any "active" buffers (i.e. referenced).
4138 *
4139 * When 'retry' is set to B_FALSE, the function will make a single pass
4140 * over the state and evict any buffers that it can. Since it doesn't
4141 * continually retry the eviction, it might end up leaving some buffers
4142 * in the ARC due to lock misses.
4143 *
4144 * When 'retry' is set to B_TRUE, the function will continually retry the
4145 * eviction until *all* evictable buffers have been removed from the
4146 * state. As a result, if concurrent insertions into the state are
4147 * allowed (e.g. if the ARC isn't shutting down), this function might
4148 * wind up in an infinite loop, continually trying to evict buffers.
4149 */
4150 static uint64_t
4151 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4152 boolean_t retry)
4153 {
4154 uint64_t evicted = 0;
4155
4156 while (refcount_count(&state->arcs_esize[type]) != 0) {
4157 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4158
4159 if (!retry)
4160 break;
4161 }
4162
4163 return (evicted);
4164 }
4165
4166 /*
4167 * Helper function for arc_prune_async() it is responsible for safely
4168 * handling the execution of a registered arc_prune_func_t.
4169 */
4170 static void
4171 arc_prune_task(void *ptr)
4172 {
4173 arc_prune_t *ap = (arc_prune_t *)ptr;
4174 arc_prune_func_t *func = ap->p_pfunc;
4175
4176 if (func != NULL)
4177 func(ap->p_adjust, ap->p_private);
4178
4179 refcount_remove(&ap->p_refcnt, func);
4180 }
4181
4182 /*
4183 * Notify registered consumers they must drop holds on a portion of the ARC
4184 * buffered they reference. This provides a mechanism to ensure the ARC can
4185 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
4186 * is analogous to dnlc_reduce_cache() but more generic.
4187 *
4188 * This operation is performed asynchronously so it may be safely called
4189 * in the context of the arc_reclaim_thread(). A reference is taken here
4190 * for each registered arc_prune_t and the arc_prune_task() is responsible
4191 * for releasing it once the registered arc_prune_func_t has completed.
4192 */
4193 static void
4194 arc_prune_async(int64_t adjust)
4195 {
4196 arc_prune_t *ap;
4197
4198 mutex_enter(&arc_prune_mtx);
4199 for (ap = list_head(&arc_prune_list); ap != NULL;
4200 ap = list_next(&arc_prune_list, ap)) {
4201
4202 if (refcount_count(&ap->p_refcnt) >= 2)
4203 continue;
4204
4205 refcount_add(&ap->p_refcnt, ap->p_pfunc);
4206 ap->p_adjust = adjust;
4207 if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
4208 ap, TQ_SLEEP) == TASKQID_INVALID) {
4209 refcount_remove(&ap->p_refcnt, ap->p_pfunc);
4210 continue;
4211 }
4212 ARCSTAT_BUMP(arcstat_prune);
4213 }
4214 mutex_exit(&arc_prune_mtx);
4215 }
4216
4217 /*
4218 * Evict the specified number of bytes from the state specified,
4219 * restricting eviction to the spa and type given. This function
4220 * prevents us from trying to evict more from a state's list than
4221 * is "evictable", and to skip evicting altogether when passed a
4222 * negative value for "bytes". In contrast, arc_evict_state() will
4223 * evict everything it can, when passed a negative value for "bytes".
4224 */
4225 static uint64_t
4226 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
4227 arc_buf_contents_t type)
4228 {
4229 int64_t delta;
4230
4231 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
4232 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
4233 return (arc_evict_state(state, spa, delta, type));
4234 }
4235
4236 return (0);
4237 }
4238
4239 /*
4240 * The goal of this function is to evict enough meta data buffers from the
4241 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
4242 * more complicated than it appears because it is common for data buffers
4243 * to have holds on meta data buffers. In addition, dnode meta data buffers
4244 * will be held by the dnodes in the block preventing them from being freed.
4245 * This means we can't simply traverse the ARC and expect to always find
4246 * enough unheld meta data buffer to release.
4247 *
4248 * Therefore, this function has been updated to make alternating passes
4249 * over the ARC releasing data buffers and then newly unheld meta data
4250 * buffers. This ensures forward progress is maintained and arc_meta_used
4251 * will decrease. Normally this is sufficient, but if required the ARC
4252 * will call the registered prune callbacks causing dentry and inodes to
4253 * be dropped from the VFS cache. This will make dnode meta data buffers
4254 * available for reclaim.
4255 */
4256 static uint64_t
4257 arc_adjust_meta_balanced(void)
4258 {
4259 int64_t delta, prune = 0, adjustmnt;
4260 uint64_t total_evicted = 0;
4261 arc_buf_contents_t type = ARC_BUFC_DATA;
4262 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
4263
4264 restart:
4265 /*
4266 * This slightly differs than the way we evict from the mru in
4267 * arc_adjust because we don't have a "target" value (i.e. no
4268 * "meta" arc_p). As a result, I think we can completely
4269 * cannibalize the metadata in the MRU before we evict the
4270 * metadata from the MFU. I think we probably need to implement a
4271 * "metadata arc_p" value to do this properly.
4272 */
4273 adjustmnt = arc_meta_used - arc_meta_limit;
4274
4275 if (adjustmnt > 0 && refcount_count(&arc_mru->arcs_esize[type]) > 0) {
4276 delta = MIN(refcount_count(&arc_mru->arcs_esize[type]),
4277 adjustmnt);
4278 total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
4279 adjustmnt -= delta;
4280 }
4281
4282 /*
4283 * We can't afford to recalculate adjustmnt here. If we do,
4284 * new metadata buffers can sneak into the MRU or ANON lists,
4285 * thus penalize the MFU metadata. Although the fudge factor is
4286 * small, it has been empirically shown to be significant for
4287 * certain workloads (e.g. creating many empty directories). As
4288 * such, we use the original calculation for adjustmnt, and
4289 * simply decrement the amount of data evicted from the MRU.
4290 */
4291
4292 if (adjustmnt > 0 && refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
4293 delta = MIN(refcount_count(&arc_mfu->arcs_esize[type]),
4294 adjustmnt);
4295 total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
4296 }
4297
4298 adjustmnt = arc_meta_used - arc_meta_limit;
4299
4300 if (adjustmnt > 0 &&
4301 refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
4302 delta = MIN(adjustmnt,
4303 refcount_count(&arc_mru_ghost->arcs_esize[type]));
4304 total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
4305 adjustmnt -= delta;
4306 }
4307
4308 if (adjustmnt > 0 &&
4309 refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
4310 delta = MIN(adjustmnt,
4311 refcount_count(&arc_mfu_ghost->arcs_esize[type]));
4312 total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
4313 }
4314
4315 /*
4316 * If after attempting to make the requested adjustment to the ARC
4317 * the meta limit is still being exceeded then request that the
4318 * higher layers drop some cached objects which have holds on ARC
4319 * meta buffers. Requests to the upper layers will be made with
4320 * increasingly large scan sizes until the ARC is below the limit.
4321 */
4322 if (arc_meta_used > arc_meta_limit) {
4323 if (type == ARC_BUFC_DATA) {
4324 type = ARC_BUFC_METADATA;
4325 } else {
4326 type = ARC_BUFC_DATA;
4327
4328 if (zfs_arc_meta_prune) {
4329 prune += zfs_arc_meta_prune;
4330 arc_prune_async(prune);
4331 }
4332 }
4333
4334 if (restarts > 0) {
4335 restarts--;
4336 goto restart;
4337 }
4338 }
4339 return (total_evicted);
4340 }
4341
4342 /*
4343 * Evict metadata buffers from the cache, such that arc_meta_used is
4344 * capped by the arc_meta_limit tunable.
4345 */
4346 static uint64_t
4347 arc_adjust_meta_only(void)
4348 {
4349 uint64_t total_evicted = 0;
4350 int64_t target;
4351
4352 /*
4353 * If we're over the meta limit, we want to evict enough
4354 * metadata to get back under the meta limit. We don't want to
4355 * evict so much that we drop the MRU below arc_p, though. If
4356 * we're over the meta limit more than we're over arc_p, we
4357 * evict some from the MRU here, and some from the MFU below.
4358 */
4359 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
4360 (int64_t)(refcount_count(&arc_anon->arcs_size) +
4361 refcount_count(&arc_mru->arcs_size) - arc_p));
4362
4363 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4364
4365 /*
4366 * Similar to the above, we want to evict enough bytes to get us
4367 * below the meta limit, but not so much as to drop us below the
4368 * space allotted to the MFU (which is defined as arc_c - arc_p).
4369 */
4370 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
4371 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
4372
4373 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4374
4375 return (total_evicted);
4376 }
4377
4378 static uint64_t
4379 arc_adjust_meta(void)
4380 {
4381 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
4382 return (arc_adjust_meta_only());
4383 else
4384 return (arc_adjust_meta_balanced());
4385 }
4386
4387 /*
4388 * Return the type of the oldest buffer in the given arc state
4389 *
4390 * This function will select a random sublist of type ARC_BUFC_DATA and
4391 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4392 * is compared, and the type which contains the "older" buffer will be
4393 * returned.
4394 */
4395 static arc_buf_contents_t
4396 arc_adjust_type(arc_state_t *state)
4397 {
4398 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
4399 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
4400 int data_idx = multilist_get_random_index(data_ml);
4401 int meta_idx = multilist_get_random_index(meta_ml);
4402 multilist_sublist_t *data_mls;
4403 multilist_sublist_t *meta_mls;
4404 arc_buf_contents_t type;
4405 arc_buf_hdr_t *data_hdr;
4406 arc_buf_hdr_t *meta_hdr;
4407
4408 /*
4409 * We keep the sublist lock until we're finished, to prevent
4410 * the headers from being destroyed via arc_evict_state().
4411 */
4412 data_mls = multilist_sublist_lock(data_ml, data_idx);
4413 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4414
4415 /*
4416 * These two loops are to ensure we skip any markers that
4417 * might be at the tail of the lists due to arc_evict_state().
4418 */
4419
4420 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4421 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4422 if (data_hdr->b_spa != 0)
4423 break;
4424 }
4425
4426 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4427 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4428 if (meta_hdr->b_spa != 0)
4429 break;
4430 }
4431
4432 if (data_hdr == NULL && meta_hdr == NULL) {
4433 type = ARC_BUFC_DATA;
4434 } else if (data_hdr == NULL) {
4435 ASSERT3P(meta_hdr, !=, NULL);
4436 type = ARC_BUFC_METADATA;
4437 } else if (meta_hdr == NULL) {
4438 ASSERT3P(data_hdr, !=, NULL);
4439 type = ARC_BUFC_DATA;
4440 } else {
4441 ASSERT3P(data_hdr, !=, NULL);
4442 ASSERT3P(meta_hdr, !=, NULL);
4443
4444 /* The headers can't be on the sublist without an L1 header */
4445 ASSERT(HDR_HAS_L1HDR(data_hdr));
4446 ASSERT(HDR_HAS_L1HDR(meta_hdr));
4447
4448 if (data_hdr->b_l1hdr.b_arc_access <
4449 meta_hdr->b_l1hdr.b_arc_access) {
4450 type = ARC_BUFC_DATA;
4451 } else {
4452 type = ARC_BUFC_METADATA;
4453 }
4454 }
4455
4456 multilist_sublist_unlock(meta_mls);
4457 multilist_sublist_unlock(data_mls);
4458
4459 return (type);
4460 }
4461
4462 /*
4463 * Evict buffers from the cache, such that arc_size is capped by arc_c.
4464 */
4465 static uint64_t
4466 arc_adjust(void)
4467 {
4468 uint64_t total_evicted = 0;
4469 uint64_t bytes;
4470 int64_t target;
4471
4472 /*
4473 * If we're over arc_meta_limit, we want to correct that before
4474 * potentially evicting data buffers below.
4475 */
4476 total_evicted += arc_adjust_meta();
4477
4478 /*
4479 * Adjust MRU size
4480 *
4481 * If we're over the target cache size, we want to evict enough
4482 * from the list to get back to our target size. We don't want
4483 * to evict too much from the MRU, such that it drops below
4484 * arc_p. So, if we're over our target cache size more than
4485 * the MRU is over arc_p, we'll evict enough to get back to
4486 * arc_p here, and then evict more from the MFU below.
4487 */
4488 target = MIN((int64_t)(arc_size - arc_c),
4489 (int64_t)(refcount_count(&arc_anon->arcs_size) +
4490 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
4491
4492 /*
4493 * If we're below arc_meta_min, always prefer to evict data.
4494 * Otherwise, try to satisfy the requested number of bytes to
4495 * evict from the type which contains older buffers; in an
4496 * effort to keep newer buffers in the cache regardless of their
4497 * type. If we cannot satisfy the number of bytes from this
4498 * type, spill over into the next type.
4499 */
4500 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
4501 arc_meta_used > arc_meta_min) {
4502 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4503 total_evicted += bytes;
4504
4505 /*
4506 * If we couldn't evict our target number of bytes from
4507 * metadata, we try to get the rest from data.
4508 */
4509 target -= bytes;
4510
4511 total_evicted +=
4512 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4513 } else {
4514 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4515 total_evicted += bytes;
4516
4517 /*
4518 * If we couldn't evict our target number of bytes from
4519 * data, we try to get the rest from metadata.
4520 */
4521 target -= bytes;
4522
4523 total_evicted +=
4524 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4525 }
4526
4527 /*
4528 * Adjust MFU size
4529 *
4530 * Now that we've tried to evict enough from the MRU to get its
4531 * size back to arc_p, if we're still above the target cache
4532 * size, we evict the rest from the MFU.
4533 */
4534 target = arc_size - arc_c;
4535
4536 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
4537 arc_meta_used > arc_meta_min) {
4538 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4539 total_evicted += bytes;
4540
4541 /*
4542 * If we couldn't evict our target number of bytes from
4543 * metadata, we try to get the rest from data.
4544 */
4545 target -= bytes;
4546
4547 total_evicted +=
4548 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4549 } else {
4550 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4551 total_evicted += bytes;
4552
4553 /*
4554 * If we couldn't evict our target number of bytes from
4555 * data, we try to get the rest from data.
4556 */
4557 target -= bytes;
4558
4559 total_evicted +=
4560 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4561 }
4562
4563 /*
4564 * Adjust ghost lists
4565 *
4566 * In addition to the above, the ARC also defines target values
4567 * for the ghost lists. The sum of the mru list and mru ghost
4568 * list should never exceed the target size of the cache, and
4569 * the sum of the mru list, mfu list, mru ghost list, and mfu
4570 * ghost list should never exceed twice the target size of the
4571 * cache. The following logic enforces these limits on the ghost
4572 * caches, and evicts from them as needed.
4573 */
4574 target = refcount_count(&arc_mru->arcs_size) +
4575 refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
4576
4577 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4578 total_evicted += bytes;
4579
4580 target -= bytes;
4581
4582 total_evicted +=
4583 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4584
4585 /*
4586 * We assume the sum of the mru list and mfu list is less than
4587 * or equal to arc_c (we enforced this above), which means we
4588 * can use the simpler of the two equations below:
4589 *
4590 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4591 * mru ghost + mfu ghost <= arc_c
4592 */
4593 target = refcount_count(&arc_mru_ghost->arcs_size) +
4594 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
4595
4596 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4597 total_evicted += bytes;
4598
4599 target -= bytes;
4600
4601 total_evicted +=
4602 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4603
4604 return (total_evicted);
4605 }
4606
4607 void
4608 arc_flush(spa_t *spa, boolean_t retry)
4609 {
4610 uint64_t guid = 0;
4611
4612 /*
4613 * If retry is B_TRUE, a spa must not be specified since we have
4614 * no good way to determine if all of a spa's buffers have been
4615 * evicted from an arc state.
4616 */
4617 ASSERT(!retry || spa == 0);
4618
4619 if (spa != NULL)
4620 guid = spa_load_guid(spa);
4621
4622 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4623 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4624
4625 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4626 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4627
4628 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4629 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4630
4631 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4632 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4633 }
4634
4635 void
4636 arc_shrink(int64_t to_free)
4637 {
4638 uint64_t c = arc_c;
4639
4640 if (c > to_free && c - to_free > arc_c_min) {
4641 arc_c = c - to_free;
4642 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
4643 if (arc_c > arc_size)
4644 arc_c = MAX(arc_size, arc_c_min);
4645 if (arc_p > arc_c)
4646 arc_p = (arc_c >> 1);
4647 ASSERT(arc_c >= arc_c_min);
4648 ASSERT((int64_t)arc_p >= 0);
4649 } else {
4650 arc_c = arc_c_min;
4651 }
4652
4653 if (arc_size > arc_c)
4654 (void) arc_adjust();
4655 }
4656
4657 /*
4658 * Return maximum amount of memory that we could possibly use. Reduced
4659 * to half of all memory in user space which is primarily used for testing.
4660 */
4661 static uint64_t
4662 arc_all_memory(void)
4663 {
4664 #ifdef _KERNEL
4665 #ifdef CONFIG_HIGHMEM
4666 return (ptob(totalram_pages - totalhigh_pages));
4667 #else
4668 return (ptob(totalram_pages));
4669 #endif /* CONFIG_HIGHMEM */
4670 #else
4671 return (ptob(physmem) / 2);
4672 #endif /* _KERNEL */
4673 }
4674
4675 /*
4676 * Return the amount of memory that is considered free. In user space
4677 * which is primarily used for testing we pretend that free memory ranges
4678 * from 0-20% of all memory.
4679 */
4680 static uint64_t
4681 arc_free_memory(void)
4682 {
4683 #ifdef _KERNEL
4684 #ifdef CONFIG_HIGHMEM
4685 struct sysinfo si;
4686 si_meminfo(&si);
4687 return (ptob(si.freeram - si.freehigh));
4688 #else
4689 #ifdef ZFS_GLOBAL_NODE_PAGE_STATE
4690 return (ptob(nr_free_pages() +
4691 global_node_page_state(NR_INACTIVE_FILE) +
4692 global_node_page_state(NR_INACTIVE_ANON) +
4693 global_node_page_state(NR_SLAB_RECLAIMABLE)));
4694 #else
4695 return (ptob(nr_free_pages() +
4696 global_page_state(NR_INACTIVE_FILE) +
4697 global_page_state(NR_INACTIVE_ANON) +
4698 global_page_state(NR_SLAB_RECLAIMABLE)));
4699 #endif /* ZFS_GLOBAL_NODE_PAGE_STATE */
4700 #endif /* CONFIG_HIGHMEM */
4701 #else
4702 return (spa_get_random(arc_all_memory() * 20 / 100));
4703 #endif /* _KERNEL */
4704 }
4705
4706 typedef enum free_memory_reason_t {
4707 FMR_UNKNOWN,
4708 FMR_NEEDFREE,
4709 FMR_LOTSFREE,
4710 FMR_SWAPFS_MINFREE,
4711 FMR_PAGES_PP_MAXIMUM,
4712 FMR_HEAP_ARENA,
4713 FMR_ZIO_ARENA,
4714 } free_memory_reason_t;
4715
4716 int64_t last_free_memory;
4717 free_memory_reason_t last_free_reason;
4718
4719 #ifdef _KERNEL
4720 /*
4721 * Additional reserve of pages for pp_reserve.
4722 */
4723 int64_t arc_pages_pp_reserve = 64;
4724
4725 /*
4726 * Additional reserve of pages for swapfs.
4727 */
4728 int64_t arc_swapfs_reserve = 64;
4729 #endif /* _KERNEL */
4730
4731 /*
4732 * Return the amount of memory that can be consumed before reclaim will be
4733 * needed. Positive if there is sufficient free memory, negative indicates
4734 * the amount of memory that needs to be freed up.
4735 */
4736 static int64_t
4737 arc_available_memory(void)
4738 {
4739 int64_t lowest = INT64_MAX;
4740 free_memory_reason_t r = FMR_UNKNOWN;
4741 #ifdef _KERNEL
4742 int64_t n;
4743 #ifdef __linux__
4744 #ifdef freemem
4745 #undef freemem
4746 #endif
4747 pgcnt_t needfree = btop(arc_need_free);
4748 pgcnt_t lotsfree = btop(arc_sys_free);
4749 pgcnt_t desfree = 0;
4750 pgcnt_t freemem = btop(arc_free_memory());
4751 #endif
4752
4753 if (needfree > 0) {
4754 n = PAGESIZE * (-needfree);
4755 if (n < lowest) {
4756 lowest = n;
4757 r = FMR_NEEDFREE;
4758 }
4759 }
4760
4761 /*
4762 * check that we're out of range of the pageout scanner. It starts to
4763 * schedule paging if freemem is less than lotsfree and needfree.
4764 * lotsfree is the high-water mark for pageout, and needfree is the
4765 * number of needed free pages. We add extra pages here to make sure
4766 * the scanner doesn't start up while we're freeing memory.
4767 */
4768 n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
4769 if (n < lowest) {
4770 lowest = n;
4771 r = FMR_LOTSFREE;
4772 }
4773
4774 #ifndef __linux__
4775 /*
4776 * check to make sure that swapfs has enough space so that anon
4777 * reservations can still succeed. anon_resvmem() checks that the
4778 * availrmem is greater than swapfs_minfree, and the number of reserved
4779 * swap pages. We also add a bit of extra here just to prevent
4780 * circumstances from getting really dire.
4781 */
4782 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4783 desfree - arc_swapfs_reserve);
4784 if (n < lowest) {
4785 lowest = n;
4786 r = FMR_SWAPFS_MINFREE;
4787 }
4788
4789 /*
4790 * Check that we have enough availrmem that memory locking (e.g., via
4791 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
4792 * stores the number of pages that cannot be locked; when availrmem
4793 * drops below pages_pp_maximum, page locking mechanisms such as
4794 * page_pp_lock() will fail.)
4795 */
4796 n = PAGESIZE * (availrmem - pages_pp_maximum -
4797 arc_pages_pp_reserve);
4798 if (n < lowest) {
4799 lowest = n;
4800 r = FMR_PAGES_PP_MAXIMUM;
4801 }
4802 #endif
4803
4804 #if defined(_ILP32)
4805 /*
4806 * If we're on a 32-bit platform, it's possible that we'll exhaust the
4807 * kernel heap space before we ever run out of available physical
4808 * memory. Most checks of the size of the heap_area compare against
4809 * tune.t_minarmem, which is the minimum available real memory that we
4810 * can have in the system. However, this is generally fixed at 25 pages
4811 * which is so low that it's useless. In this comparison, we seek to
4812 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4813 * heap is allocated. (Or, in the calculation, if less than 1/4th is
4814 * free)
4815 */
4816 n = vmem_size(heap_arena, VMEM_FREE) -
4817 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4818 if (n < lowest) {
4819 lowest = n;
4820 r = FMR_HEAP_ARENA;
4821 }
4822 #endif
4823
4824 /*
4825 * If zio data pages are being allocated out of a separate heap segment,
4826 * then enforce that the size of available vmem for this arena remains
4827 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4828 *
4829 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4830 * memory (in the zio_arena) free, which can avoid memory
4831 * fragmentation issues.
4832 */
4833 if (zio_arena != NULL) {
4834 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4835 (vmem_size(zio_arena, VMEM_ALLOC) >>
4836 arc_zio_arena_free_shift);
4837 if (n < lowest) {
4838 lowest = n;
4839 r = FMR_ZIO_ARENA;
4840 }
4841 }
4842 #else /* _KERNEL */
4843 /* Every 100 calls, free a small amount */
4844 if (spa_get_random(100) == 0)
4845 lowest = -1024;
4846 #endif /* _KERNEL */
4847
4848 last_free_memory = lowest;
4849 last_free_reason = r;
4850
4851 return (lowest);
4852 }
4853
4854 /*
4855 * Determine if the system is under memory pressure and is asking
4856 * to reclaim memory. A return value of B_TRUE indicates that the system
4857 * is under memory pressure and that the arc should adjust accordingly.
4858 */
4859 static boolean_t
4860 arc_reclaim_needed(void)
4861 {
4862 return (arc_available_memory() < 0);
4863 }
4864
4865 static void
4866 arc_kmem_reap_now(void)
4867 {
4868 size_t i;
4869 kmem_cache_t *prev_cache = NULL;
4870 kmem_cache_t *prev_data_cache = NULL;
4871 extern kmem_cache_t *zio_buf_cache[];
4872 extern kmem_cache_t *zio_data_buf_cache[];
4873 extern kmem_cache_t *range_seg_cache;
4874
4875 #ifdef _KERNEL
4876 if ((arc_meta_used >= arc_meta_limit) && zfs_arc_meta_prune) {
4877 /*
4878 * We are exceeding our meta-data cache limit.
4879 * Prune some entries to release holds on meta-data.
4880 */
4881 arc_prune_async(zfs_arc_meta_prune);
4882 }
4883 #if defined(_ILP32)
4884 /*
4885 * Reclaim unused memory from all kmem caches.
4886 */
4887 kmem_reap();
4888 #endif
4889 #endif
4890
4891 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4892 #if defined(_ILP32)
4893 /* reach upper limit of cache size on 32-bit */
4894 if (zio_buf_cache[i] == NULL)
4895 break;
4896 #endif
4897 if (zio_buf_cache[i] != prev_cache) {
4898 prev_cache = zio_buf_cache[i];
4899 kmem_cache_reap_now(zio_buf_cache[i]);
4900 }
4901 if (zio_data_buf_cache[i] != prev_data_cache) {
4902 prev_data_cache = zio_data_buf_cache[i];
4903 kmem_cache_reap_now(zio_data_buf_cache[i]);
4904 }
4905 }
4906 kmem_cache_reap_now(buf_cache);
4907 kmem_cache_reap_now(hdr_full_cache);
4908 kmem_cache_reap_now(hdr_l2only_cache);
4909 kmem_cache_reap_now(range_seg_cache);
4910
4911 if (zio_arena != NULL) {
4912 /*
4913 * Ask the vmem arena to reclaim unused memory from its
4914 * quantum caches.
4915 */
4916 vmem_qcache_reap(zio_arena);
4917 }
4918 }
4919
4920 /*
4921 * Threads can block in arc_get_data_impl() waiting for this thread to evict
4922 * enough data and signal them to proceed. When this happens, the threads in
4923 * arc_get_data_impl() are sleeping while holding the hash lock for their
4924 * particular arc header. Thus, we must be careful to never sleep on a
4925 * hash lock in this thread. This is to prevent the following deadlock:
4926 *
4927 * - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L",
4928 * waiting for the reclaim thread to signal it.
4929 *
4930 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4931 * fails, and goes to sleep forever.
4932 *
4933 * This possible deadlock is avoided by always acquiring a hash lock
4934 * using mutex_tryenter() from arc_reclaim_thread().
4935 */
4936 /* ARGSUSED */
4937 static void
4938 arc_reclaim_thread(void *unused)
4939 {
4940 fstrans_cookie_t cookie = spl_fstrans_mark();
4941 hrtime_t growtime = 0;
4942 callb_cpr_t cpr;
4943
4944 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4945
4946 mutex_enter(&arc_reclaim_lock);
4947 while (!arc_reclaim_thread_exit) {
4948 uint64_t evicted = 0;
4949 uint64_t need_free = arc_need_free;
4950 arc_tuning_update();
4951
4952 /*
4953 * This is necessary in order for the mdb ::arc dcmd to
4954 * show up to date information. Since the ::arc command
4955 * does not call the kstat's update function, without
4956 * this call, the command may show stale stats for the
4957 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4958 * with this change, the data might be up to 1 second
4959 * out of date; but that should suffice. The arc_state_t
4960 * structures can be queried directly if more accurate
4961 * information is needed.
4962 */
4963 #ifndef __linux__
4964 if (arc_ksp != NULL)
4965 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4966 #endif
4967 mutex_exit(&arc_reclaim_lock);
4968
4969 /*
4970 * We call arc_adjust() before (possibly) calling
4971 * arc_kmem_reap_now(), so that we can wake up
4972 * arc_get_data_buf() sooner.
4973 */
4974 evicted = arc_adjust();
4975
4976 int64_t free_memory = arc_available_memory();
4977 if (free_memory < 0) {
4978
4979 arc_no_grow = B_TRUE;
4980 arc_warm = B_TRUE;
4981
4982 /*
4983 * Wait at least zfs_grow_retry (default 5) seconds
4984 * before considering growing.
4985 */
4986 growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4987
4988 arc_kmem_reap_now();
4989
4990 /*
4991 * If we are still low on memory, shrink the ARC
4992 * so that we have arc_shrink_min free space.
4993 */
4994 free_memory = arc_available_memory();
4995
4996 int64_t to_free =
4997 (arc_c >> arc_shrink_shift) - free_memory;
4998 if (to_free > 0) {
4999 #ifdef _KERNEL
5000 to_free = MAX(to_free, need_free);
5001 #endif
5002 arc_shrink(to_free);
5003 }
5004 } else if (free_memory < arc_c >> arc_no_grow_shift) {
5005 arc_no_grow = B_TRUE;
5006 } else if (gethrtime() >= growtime) {
5007 arc_no_grow = B_FALSE;
5008 }
5009
5010 mutex_enter(&arc_reclaim_lock);
5011
5012 /*
5013 * If evicted is zero, we couldn't evict anything via
5014 * arc_adjust(). This could be due to hash lock
5015 * collisions, but more likely due to the majority of
5016 * arc buffers being unevictable. Therefore, even if
5017 * arc_size is above arc_c, another pass is unlikely to
5018 * be helpful and could potentially cause us to enter an
5019 * infinite loop.
5020 */
5021 if (arc_size <= arc_c || evicted == 0) {
5022 /*
5023 * We're either no longer overflowing, or we
5024 * can't evict anything more, so we should wake
5025 * up any threads before we go to sleep and remove
5026 * the bytes we were working on from arc_need_free
5027 * since nothing more will be done here.
5028 */
5029 cv_broadcast(&arc_reclaim_waiters_cv);
5030 ARCSTAT_INCR(arcstat_need_free, -need_free);
5031
5032 /*
5033 * Block until signaled, or after one second (we
5034 * might need to perform arc_kmem_reap_now()
5035 * even if we aren't being signalled)
5036 */
5037 CALLB_CPR_SAFE_BEGIN(&cpr);
5038 (void) cv_timedwait_sig_hires(&arc_reclaim_thread_cv,
5039 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
5040 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
5041 }
5042 }
5043
5044 arc_reclaim_thread_exit = B_FALSE;
5045 cv_broadcast(&arc_reclaim_thread_cv);
5046 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
5047 spl_fstrans_unmark(cookie);
5048 thread_exit();
5049 }
5050
5051 #ifdef _KERNEL
5052 /*
5053 * Determine the amount of memory eligible for eviction contained in the
5054 * ARC. All clean data reported by the ghost lists can always be safely
5055 * evicted. Due to arc_c_min, the same does not hold for all clean data
5056 * contained by the regular mru and mfu lists.
5057 *
5058 * In the case of the regular mru and mfu lists, we need to report as
5059 * much clean data as possible, such that evicting that same reported
5060 * data will not bring arc_size below arc_c_min. Thus, in certain
5061 * circumstances, the total amount of clean data in the mru and mfu
5062 * lists might not actually be evictable.
5063 *
5064 * The following two distinct cases are accounted for:
5065 *
5066 * 1. The sum of the amount of dirty data contained by both the mru and
5067 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5068 * is greater than or equal to arc_c_min.
5069 * (i.e. amount of dirty data >= arc_c_min)
5070 *
5071 * This is the easy case; all clean data contained by the mru and mfu
5072 * lists is evictable. Evicting all clean data can only drop arc_size
5073 * to the amount of dirty data, which is greater than arc_c_min.
5074 *
5075 * 2. The sum of the amount of dirty data contained by both the mru and
5076 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5077 * is less than arc_c_min.
5078 * (i.e. arc_c_min > amount of dirty data)
5079 *
5080 * 2.1. arc_size is greater than or equal arc_c_min.
5081 * (i.e. arc_size >= arc_c_min > amount of dirty data)
5082 *
5083 * In this case, not all clean data from the regular mru and mfu
5084 * lists is actually evictable; we must leave enough clean data
5085 * to keep arc_size above arc_c_min. Thus, the maximum amount of
5086 * evictable data from the two lists combined, is exactly the
5087 * difference between arc_size and arc_c_min.
5088 *
5089 * 2.2. arc_size is less than arc_c_min
5090 * (i.e. arc_c_min > arc_size > amount of dirty data)
5091 *
5092 * In this case, none of the data contained in the mru and mfu
5093 * lists is evictable, even if it's clean. Since arc_size is
5094 * already below arc_c_min, evicting any more would only
5095 * increase this negative difference.
5096 */
5097 static uint64_t
5098 arc_evictable_memory(void)
5099 {
5100 uint64_t arc_clean =
5101 refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
5102 refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
5103 refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
5104 refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5105 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
5106
5107 /*
5108 * Scale reported evictable memory in proportion to page cache, cap
5109 * at specified min/max.
5110 */
5111 #ifdef ZFS_GLOBAL_NODE_PAGE_STATE
5112 uint64_t min = (ptob(global_node_page_state(NR_FILE_PAGES)) / 100) *
5113 zfs_arc_pc_percent;
5114 #else
5115 uint64_t min = (ptob(global_page_state(NR_FILE_PAGES)) / 100) *
5116 zfs_arc_pc_percent;
5117 #endif
5118 min = MAX(arc_c_min, MIN(arc_c_max, min));
5119
5120 if (arc_dirty >= min)
5121 return (arc_clean);
5122
5123 return (MAX((int64_t)arc_size - (int64_t)min, 0));
5124 }
5125
5126 /*
5127 * If sc->nr_to_scan is zero, the caller is requesting a query of the
5128 * number of objects which can potentially be freed. If it is nonzero,
5129 * the request is to free that many objects.
5130 *
5131 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
5132 * in struct shrinker and also require the shrinker to return the number
5133 * of objects freed.
5134 *
5135 * Older kernels require the shrinker to return the number of freeable
5136 * objects following the freeing of nr_to_free.
5137 */
5138 static spl_shrinker_t
5139 __arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
5140 {
5141 int64_t pages;
5142
5143 /* The arc is considered warm once reclaim has occurred */
5144 if (unlikely(arc_warm == B_FALSE))
5145 arc_warm = B_TRUE;
5146
5147 /* Return the potential number of reclaimable pages */
5148 pages = btop((int64_t)arc_evictable_memory());
5149 if (sc->nr_to_scan == 0)
5150 return (pages);
5151
5152 /* Not allowed to perform filesystem reclaim */
5153 if (!(sc->gfp_mask & __GFP_FS))
5154 return (SHRINK_STOP);
5155
5156 /* Reclaim in progress */
5157 if (mutex_tryenter(&arc_reclaim_lock) == 0) {
5158 ARCSTAT_INCR(arcstat_need_free, ptob(sc->nr_to_scan));
5159 return (0);
5160 }
5161
5162 mutex_exit(&arc_reclaim_lock);
5163
5164 /*
5165 * Evict the requested number of pages by shrinking arc_c the
5166 * requested amount.
5167 */
5168 if (pages > 0) {
5169 arc_shrink(ptob(sc->nr_to_scan));
5170 if (current_is_kswapd())
5171 arc_kmem_reap_now();
5172 #ifdef HAVE_SPLIT_SHRINKER_CALLBACK
5173 pages = MAX((int64_t)pages -
5174 (int64_t)btop(arc_evictable_memory()), 0);
5175 #else
5176 pages = btop(arc_evictable_memory());
5177 #endif
5178 /*
5179 * We've shrunk what we can, wake up threads.
5180 */
5181 cv_broadcast(&arc_reclaim_waiters_cv);
5182 } else
5183 pages = SHRINK_STOP;
5184
5185 /*
5186 * When direct reclaim is observed it usually indicates a rapid
5187 * increase in memory pressure. This occurs because the kswapd
5188 * threads were unable to asynchronously keep enough free memory
5189 * available. In this case set arc_no_grow to briefly pause arc
5190 * growth to avoid compounding the memory pressure.
5191 */
5192 if (current_is_kswapd()) {
5193 ARCSTAT_BUMP(arcstat_memory_indirect_count);
5194 } else {
5195 arc_no_grow = B_TRUE;
5196 arc_kmem_reap_now();
5197 ARCSTAT_BUMP(arcstat_memory_direct_count);
5198 }
5199
5200 return (pages);
5201 }
5202 SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
5203
5204 SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
5205 #endif /* _KERNEL */
5206
5207 /*
5208 * Adapt arc info given the number of bytes we are trying to add and
5209 * the state that we are coming from. This function is only called
5210 * when we are adding new content to the cache.
5211 */
5212 static void
5213 arc_adapt(int bytes, arc_state_t *state)
5214 {
5215 int mult;
5216 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
5217 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
5218 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
5219
5220 if (state == arc_l2c_only)
5221 return;
5222
5223 ASSERT(bytes > 0);
5224 /*
5225 * Adapt the target size of the MRU list:
5226 * - if we just hit in the MRU ghost list, then increase
5227 * the target size of the MRU list.
5228 * - if we just hit in the MFU ghost list, then increase
5229 * the target size of the MFU list by decreasing the
5230 * target size of the MRU list.
5231 */
5232 if (state == arc_mru_ghost) {
5233 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
5234 if (!zfs_arc_p_dampener_disable)
5235 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
5236
5237 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
5238 } else if (state == arc_mfu_ghost) {
5239 uint64_t delta;
5240
5241 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
5242 if (!zfs_arc_p_dampener_disable)
5243 mult = MIN(mult, 10);
5244
5245 delta = MIN(bytes * mult, arc_p);
5246 arc_p = MAX(arc_p_min, arc_p - delta);
5247 }
5248 ASSERT((int64_t)arc_p >= 0);
5249
5250 if (arc_reclaim_needed()) {
5251 cv_signal(&arc_reclaim_thread_cv);
5252 return;
5253 }
5254
5255 if (arc_no_grow)
5256 return;
5257
5258 if (arc_c >= arc_c_max)
5259 return;
5260
5261 /*
5262 * If we're within (2 * maxblocksize) bytes of the target
5263 * cache size, increment the target cache size
5264 */
5265 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
5266 if (arc_size >= arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
5267 atomic_add_64(&arc_c, (int64_t)bytes);
5268 if (arc_c > arc_c_max)
5269 arc_c = arc_c_max;
5270 else if (state == arc_anon)
5271 atomic_add_64(&arc_p, (int64_t)bytes);
5272 if (arc_p > arc_c)
5273 arc_p = arc_c;
5274 }
5275 ASSERT((int64_t)arc_p >= 0);
5276 }
5277
5278 /*
5279 * Check if arc_size has grown past our upper threshold, determined by
5280 * zfs_arc_overflow_shift.
5281 */
5282 static boolean_t
5283 arc_is_overflowing(void)
5284 {
5285 /* Always allow at least one block of overflow */
5286 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
5287 arc_c >> zfs_arc_overflow_shift);
5288
5289 return (arc_size >= arc_c + overflow);
5290 }
5291
5292 static abd_t *
5293 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5294 {
5295 arc_buf_contents_t type = arc_buf_type(hdr);
5296
5297 arc_get_data_impl(hdr, size, tag);
5298 if (type == ARC_BUFC_METADATA) {
5299 return (abd_alloc(size, B_TRUE));
5300 } else {
5301 ASSERT(type == ARC_BUFC_DATA);
5302 return (abd_alloc(size, B_FALSE));
5303 }
5304 }
5305
5306 static void *
5307 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5308 {
5309 arc_buf_contents_t type = arc_buf_type(hdr);
5310
5311 arc_get_data_impl(hdr, size, tag);
5312 if (type == ARC_BUFC_METADATA) {
5313 return (zio_buf_alloc(size));
5314 } else {
5315 ASSERT(type == ARC_BUFC_DATA);
5316 return (zio_data_buf_alloc(size));
5317 }
5318 }
5319
5320 /*
5321 * Allocate a block and return it to the caller. If we are hitting the
5322 * hard limit for the cache size, we must sleep, waiting for the eviction
5323 * thread to catch up. If we're past the target size but below the hard
5324 * limit, we'll only signal the reclaim thread and continue on.
5325 */
5326 static void
5327 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5328 {
5329 arc_state_t *state = hdr->b_l1hdr.b_state;
5330 arc_buf_contents_t type = arc_buf_type(hdr);
5331
5332 arc_adapt(size, state);
5333
5334 /*
5335 * If arc_size is currently overflowing, and has grown past our
5336 * upper limit, we must be adding data faster than the evict
5337 * thread can evict. Thus, to ensure we don't compound the
5338 * problem by adding more data and forcing arc_size to grow even
5339 * further past it's target size, we halt and wait for the
5340 * eviction thread to catch up.
5341 *
5342 * It's also possible that the reclaim thread is unable to evict
5343 * enough buffers to get arc_size below the overflow limit (e.g.
5344 * due to buffers being un-evictable, or hash lock collisions).
5345 * In this case, we want to proceed regardless if we're
5346 * overflowing; thus we don't use a while loop here.
5347 */
5348 if (arc_is_overflowing()) {
5349 mutex_enter(&arc_reclaim_lock);
5350
5351 /*
5352 * Now that we've acquired the lock, we may no longer be
5353 * over the overflow limit, lets check.
5354 *
5355 * We're ignoring the case of spurious wake ups. If that
5356 * were to happen, it'd let this thread consume an ARC
5357 * buffer before it should have (i.e. before we're under
5358 * the overflow limit and were signalled by the reclaim
5359 * thread). As long as that is a rare occurrence, it
5360 * shouldn't cause any harm.
5361 */
5362 if (arc_is_overflowing()) {
5363 cv_signal(&arc_reclaim_thread_cv);
5364 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
5365 }
5366
5367 mutex_exit(&arc_reclaim_lock);
5368 }
5369
5370 VERIFY3U(hdr->b_type, ==, type);
5371 if (type == ARC_BUFC_METADATA) {
5372 arc_space_consume(size, ARC_SPACE_META);
5373 } else {
5374 arc_space_consume(size, ARC_SPACE_DATA);
5375 }
5376
5377 /*
5378 * Update the state size. Note that ghost states have a
5379 * "ghost size" and so don't need to be updated.
5380 */
5381 if (!GHOST_STATE(state)) {
5382
5383 (void) refcount_add_many(&state->arcs_size, size, tag);
5384
5385 /*
5386 * If this is reached via arc_read, the link is
5387 * protected by the hash lock. If reached via
5388 * arc_buf_alloc, the header should not be accessed by
5389 * any other thread. And, if reached via arc_read_done,
5390 * the hash lock will protect it if it's found in the
5391 * hash table; otherwise no other thread should be
5392 * trying to [add|remove]_reference it.
5393 */
5394 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5395 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5396 (void) refcount_add_many(&state->arcs_esize[type],
5397 size, tag);
5398 }
5399
5400 /*
5401 * If we are growing the cache, and we are adding anonymous
5402 * data, and we have outgrown arc_p, update arc_p
5403 */
5404 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
5405 (refcount_count(&arc_anon->arcs_size) +
5406 refcount_count(&arc_mru->arcs_size) > arc_p))
5407 arc_p = MIN(arc_c, arc_p + size);
5408 }
5409 }
5410
5411 static void
5412 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
5413 {
5414 arc_free_data_impl(hdr, size, tag);
5415 abd_free(abd);
5416 }
5417
5418 static void
5419 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
5420 {
5421 arc_buf_contents_t type = arc_buf_type(hdr);
5422
5423 arc_free_data_impl(hdr, size, tag);
5424 if (type == ARC_BUFC_METADATA) {
5425 zio_buf_free(buf, size);
5426 } else {
5427 ASSERT(type == ARC_BUFC_DATA);
5428 zio_data_buf_free(buf, size);
5429 }
5430 }
5431
5432 /*
5433 * Free the arc data buffer.
5434 */
5435 static void
5436 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5437 {
5438 arc_state_t *state = hdr->b_l1hdr.b_state;
5439 arc_buf_contents_t type = arc_buf_type(hdr);
5440
5441 /* protected by hash lock, if in the hash table */
5442 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5443 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5444 ASSERT(state != arc_anon && state != arc_l2c_only);
5445
5446 (void) refcount_remove_many(&state->arcs_esize[type],
5447 size, tag);
5448 }
5449 (void) refcount_remove_many(&state->arcs_size, size, tag);
5450
5451 VERIFY3U(hdr->b_type, ==, type);
5452 if (type == ARC_BUFC_METADATA) {
5453 arc_space_return(size, ARC_SPACE_META);
5454 } else {
5455 ASSERT(type == ARC_BUFC_DATA);
5456 arc_space_return(size, ARC_SPACE_DATA);
5457 }
5458 }
5459
5460 /*
5461 * This routine is called whenever a buffer is accessed.
5462 * NOTE: the hash lock is dropped in this function.
5463 */
5464 static void
5465 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
5466 {
5467 clock_t now;
5468
5469 ASSERT(MUTEX_HELD(hash_lock));
5470 ASSERT(HDR_HAS_L1HDR(hdr));
5471
5472 if (hdr->b_l1hdr.b_state == arc_anon) {
5473 /*
5474 * This buffer is not in the cache, and does not
5475 * appear in our "ghost" list. Add the new buffer
5476 * to the MRU state.
5477 */
5478
5479 ASSERT0(hdr->b_l1hdr.b_arc_access);
5480 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5481 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5482 arc_change_state(arc_mru, hdr, hash_lock);
5483
5484 } else if (hdr->b_l1hdr.b_state == arc_mru) {
5485 now = ddi_get_lbolt();
5486
5487 /*
5488 * If this buffer is here because of a prefetch, then either:
5489 * - clear the flag if this is a "referencing" read
5490 * (any subsequent access will bump this into the MFU state).
5491 * or
5492 * - move the buffer to the head of the list if this is
5493 * another prefetch (to make it less likely to be evicted).
5494 */
5495 if (HDR_PREFETCH(hdr)) {
5496 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5497 /* link protected by hash lock */
5498 ASSERT(multilist_link_active(
5499 &hdr->b_l1hdr.b_arc_node));
5500 } else {
5501 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
5502 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
5503 ARCSTAT_BUMP(arcstat_mru_hits);
5504 }
5505 hdr->b_l1hdr.b_arc_access = now;
5506 return;
5507 }
5508
5509 /*
5510 * This buffer has been "accessed" only once so far,
5511 * but it is still in the cache. Move it to the MFU
5512 * state.
5513 */
5514 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5515 ARC_MINTIME)) {
5516 /*
5517 * More than 125ms have passed since we
5518 * instantiated this buffer. Move it to the
5519 * most frequently used state.
5520 */
5521 hdr->b_l1hdr.b_arc_access = now;
5522 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5523 arc_change_state(arc_mfu, hdr, hash_lock);
5524 }
5525 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
5526 ARCSTAT_BUMP(arcstat_mru_hits);
5527 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5528 arc_state_t *new_state;
5529 /*
5530 * This buffer has been "accessed" recently, but
5531 * was evicted from the cache. Move it to the
5532 * MFU state.
5533 */
5534
5535 if (HDR_PREFETCH(hdr)) {
5536 new_state = arc_mru;
5537 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
5538 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
5539 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5540 } else {
5541 new_state = arc_mfu;
5542 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5543 }
5544
5545 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5546 arc_change_state(new_state, hdr, hash_lock);
5547
5548 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
5549 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5550 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
5551 /*
5552 * This buffer has been accessed more than once and is
5553 * still in the cache. Keep it in the MFU state.
5554 *
5555 * NOTE: an add_reference() that occurred when we did
5556 * the arc_read() will have kicked this off the list.
5557 * If it was a prefetch, we will explicitly move it to
5558 * the head of the list now.
5559 */
5560 if ((HDR_PREFETCH(hdr)) != 0) {
5561 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5562 /* link protected by hash_lock */
5563 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5564 }
5565 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
5566 ARCSTAT_BUMP(arcstat_mfu_hits);
5567 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5568 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5569 arc_state_t *new_state = arc_mfu;
5570 /*
5571 * This buffer has been accessed more than once but has
5572 * been evicted from the cache. Move it back to the
5573 * MFU state.
5574 */
5575
5576 if (HDR_PREFETCH(hdr)) {
5577 /*
5578 * This is a prefetch access...
5579 * move this block back to the MRU state.
5580 */
5581 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
5582 new_state = arc_mru;
5583 }
5584
5585 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5586 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5587 arc_change_state(new_state, hdr, hash_lock);
5588
5589 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
5590 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5591 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5592 /*
5593 * This buffer is on the 2nd Level ARC.
5594 */
5595
5596 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5597 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5598 arc_change_state(arc_mfu, hdr, hash_lock);
5599 } else {
5600 cmn_err(CE_PANIC, "invalid arc state 0x%p",
5601 hdr->b_l1hdr.b_state);
5602 }
5603 }
5604
5605 /* a generic arc_read_done_func_t which you can use */
5606 /* ARGSUSED */
5607 void
5608 arc_bcopy_func(zio_t *zio, int error, arc_buf_t *buf, void *arg)
5609 {
5610 if (error == 0)
5611 bcopy(buf->b_data, arg, arc_buf_size(buf));
5612 arc_buf_destroy(buf, arg);
5613 }
5614
5615 /* a generic arc_read_done_func_t */
5616 void
5617 arc_getbuf_func(zio_t *zio, int error, arc_buf_t *buf, void *arg)
5618 {
5619 arc_buf_t **bufp = arg;
5620 if (error != 0) {
5621 arc_buf_destroy(buf, arg);
5622 *bufp = NULL;
5623 } else {
5624 *bufp = buf;
5625 ASSERT(buf->b_data);
5626 }
5627 }
5628
5629 static void
5630 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5631 {
5632 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5633 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5634 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5635 } else {
5636 if (HDR_COMPRESSION_ENABLED(hdr)) {
5637 ASSERT3U(arc_hdr_get_compress(hdr), ==,
5638 BP_GET_COMPRESS(bp));
5639 }
5640 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5641 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5642 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5643 }
5644 }
5645
5646 static void
5647 arc_read_done(zio_t *zio)
5648 {
5649 blkptr_t *bp = zio->io_bp;
5650 arc_buf_hdr_t *hdr = zio->io_private;
5651 kmutex_t *hash_lock = NULL;
5652 arc_callback_t *callback_list;
5653 arc_callback_t *acb;
5654 boolean_t freeable = B_FALSE;
5655 boolean_t no_zio_error = (zio->io_error == 0);
5656
5657 /*
5658 * The hdr was inserted into hash-table and removed from lists
5659 * prior to starting I/O. We should find this header, since
5660 * it's in the hash table, and it should be legit since it's
5661 * not possible to evict it during the I/O. The only possible
5662 * reason for it not to be found is if we were freed during the
5663 * read.
5664 */
5665 if (HDR_IN_HASH_TABLE(hdr)) {
5666 arc_buf_hdr_t *found;
5667
5668 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5669 ASSERT3U(hdr->b_dva.dva_word[0], ==,
5670 BP_IDENTITY(zio->io_bp)->dva_word[0]);
5671 ASSERT3U(hdr->b_dva.dva_word[1], ==,
5672 BP_IDENTITY(zio->io_bp)->dva_word[1]);
5673
5674 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5675
5676 ASSERT((found == hdr &&
5677 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5678 (found == hdr && HDR_L2_READING(hdr)));
5679 ASSERT3P(hash_lock, !=, NULL);
5680 }
5681
5682 if (BP_IS_PROTECTED(bp)) {
5683 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5684 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5685 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5686 hdr->b_crypt_hdr.b_iv);
5687
5688 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5689 void *tmpbuf;
5690
5691 tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5692 sizeof (zil_chain_t));
5693 zio_crypt_decode_mac_zil(tmpbuf,
5694 hdr->b_crypt_hdr.b_mac);
5695 abd_return_buf(zio->io_abd, tmpbuf,
5696 sizeof (zil_chain_t));
5697 } else {
5698 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
5699 }
5700 }
5701
5702 if (no_zio_error) {
5703 /* byteswap if necessary */
5704 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5705 if (BP_GET_LEVEL(zio->io_bp) > 0) {
5706 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5707 } else {
5708 hdr->b_l1hdr.b_byteswap =
5709 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5710 }
5711 } else {
5712 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5713 }
5714 }
5715
5716 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5717 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5718 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5719
5720 callback_list = hdr->b_l1hdr.b_acb;
5721 ASSERT3P(callback_list, !=, NULL);
5722
5723 if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
5724 /*
5725 * Only call arc_access on anonymous buffers. This is because
5726 * if we've issued an I/O for an evicted buffer, we've already
5727 * called arc_access (to prevent any simultaneous readers from
5728 * getting confused).
5729 */
5730 arc_access(hdr, hash_lock);
5731 }
5732
5733 /*
5734 * If a read request has a callback (i.e. acb_done is not NULL), then we
5735 * make a buf containing the data according to the parameters which were
5736 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5737 * aren't needlessly decompressing the data multiple times.
5738 */
5739 int callback_cnt = 0;
5740 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5741 if (!acb->acb_done)
5742 continue;
5743
5744 /* This is a demand read since prefetches don't use callbacks */
5745 callback_cnt++;
5746
5747 int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5748 acb->acb_dsobj, acb->acb_private, acb->acb_encrypted,
5749 acb->acb_compressed, acb->acb_noauth, no_zio_error,
5750 &acb->acb_buf);
5751
5752 /*
5753 * Assert non-speculative zios didn't fail because an
5754 * encryption key wasn't loaded
5755 */
5756 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || error == 0);
5757
5758 /*
5759 * If we failed to decrypt, report an error now (as the zio
5760 * layer would have done if it had done the transforms).
5761 */
5762 if (error == ECKSUM) {
5763 ASSERT(BP_IS_PROTECTED(bp));
5764 error = SET_ERROR(EIO);
5765 spa_log_error(zio->io_spa, &zio->io_bookmark);
5766 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5767 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
5768 zio->io_spa, NULL, &zio->io_bookmark, zio,
5769 0, 0);
5770 }
5771 }
5772
5773 if (no_zio_error) {
5774 zio->io_error = error;
5775 }
5776 }
5777 hdr->b_l1hdr.b_acb = NULL;
5778 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5779 if (callback_cnt == 0)
5780 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
5781
5782 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5783 callback_list != NULL);
5784
5785 if (no_zio_error) {
5786 arc_hdr_verify(hdr, zio->io_bp);
5787 } else {
5788 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5789 if (hdr->b_l1hdr.b_state != arc_anon)
5790 arc_change_state(arc_anon, hdr, hash_lock);
5791 if (HDR_IN_HASH_TABLE(hdr))
5792 buf_hash_remove(hdr);
5793 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5794 }
5795
5796 /*
5797 * Broadcast before we drop the hash_lock to avoid the possibility
5798 * that the hdr (and hence the cv) might be freed before we get to
5799 * the cv_broadcast().
5800 */
5801 cv_broadcast(&hdr->b_l1hdr.b_cv);
5802
5803 if (hash_lock != NULL) {
5804 mutex_exit(hash_lock);
5805 } else {
5806 /*
5807 * This block was freed while we waited for the read to
5808 * complete. It has been removed from the hash table and
5809 * moved to the anonymous state (so that it won't show up
5810 * in the cache).
5811 */
5812 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5813 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5814 }
5815
5816 /* execute each callback and free its structure */
5817 while ((acb = callback_list) != NULL) {
5818 if (acb->acb_done) {
5819 acb->acb_done(zio, zio->io_error, acb->acb_buf,
5820 acb->acb_private);
5821 }
5822
5823 if (acb->acb_zio_dummy != NULL) {
5824 acb->acb_zio_dummy->io_error = zio->io_error;
5825 zio_nowait(acb->acb_zio_dummy);
5826 }
5827
5828 callback_list = acb->acb_next;
5829 kmem_free(acb, sizeof (arc_callback_t));
5830 }
5831
5832 if (freeable)
5833 arc_hdr_destroy(hdr);
5834 }
5835
5836 /*
5837 * "Read" the block at the specified DVA (in bp) via the
5838 * cache. If the block is found in the cache, invoke the provided
5839 * callback immediately and return. Note that the `zio' parameter
5840 * in the callback will be NULL in this case, since no IO was
5841 * required. If the block is not in the cache pass the read request
5842 * on to the spa with a substitute callback function, so that the
5843 * requested block will be added to the cache.
5844 *
5845 * If a read request arrives for a block that has a read in-progress,
5846 * either wait for the in-progress read to complete (and return the
5847 * results); or, if this is a read with a "done" func, add a record
5848 * to the read to invoke the "done" func when the read completes,
5849 * and return; or just return.
5850 *
5851 * arc_read_done() will invoke all the requested "done" functions
5852 * for readers of this block.
5853 */
5854 int
5855 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5856 arc_read_done_func_t *done, void *private, zio_priority_t priority,
5857 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5858 {
5859 arc_buf_hdr_t *hdr = NULL;
5860 kmutex_t *hash_lock = NULL;
5861 zio_t *rzio;
5862 uint64_t guid = spa_load_guid(spa);
5863 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5864 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5865 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5866 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5867 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5868 int rc = 0;
5869
5870 ASSERT(!BP_IS_EMBEDDED(bp) ||
5871 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5872
5873 top:
5874 if (!BP_IS_EMBEDDED(bp)) {
5875 /*
5876 * Embedded BP's have no DVA and require no I/O to "read".
5877 * Create an anonymous arc buf to back it.
5878 */
5879 hdr = buf_hash_find(guid, bp, &hash_lock);
5880 }
5881
5882 /*
5883 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5884 * we maintain encrypted data seperately from compressed / uncompressed
5885 * data. If the user is requesting raw encrypted data and we don't have
5886 * that in the header we will read from disk to guarantee that we can
5887 * get it even if the encryption keys aren't loaded.
5888 */
5889 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5890 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5891 arc_buf_t *buf = NULL;
5892 *arc_flags |= ARC_FLAG_CACHED;
5893
5894 if (HDR_IO_IN_PROGRESS(hdr)) {
5895
5896 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5897 priority == ZIO_PRIORITY_SYNC_READ) {
5898 /*
5899 * This sync read must wait for an
5900 * in-progress async read (e.g. a predictive
5901 * prefetch). Async reads are queued
5902 * separately at the vdev_queue layer, so
5903 * this is a form of priority inversion.
5904 * Ideally, we would "inherit" the demand
5905 * i/o's priority by moving the i/o from
5906 * the async queue to the synchronous queue,
5907 * but there is currently no mechanism to do
5908 * so. Track this so that we can evaluate
5909 * the magnitude of this potential performance
5910 * problem.
5911 *
5912 * Note that if the prefetch i/o is already
5913 * active (has been issued to the device),
5914 * the prefetch improved performance, because
5915 * we issued it sooner than we would have
5916 * without the prefetch.
5917 */
5918 DTRACE_PROBE1(arc__sync__wait__for__async,
5919 arc_buf_hdr_t *, hdr);
5920 ARCSTAT_BUMP(arcstat_sync_wait_for_async);
5921 }
5922 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5923 arc_hdr_clear_flags(hdr,
5924 ARC_FLAG_PREDICTIVE_PREFETCH);
5925 }
5926
5927 if (*arc_flags & ARC_FLAG_WAIT) {
5928 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5929 mutex_exit(hash_lock);
5930 goto top;
5931 }
5932 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5933
5934 if (done) {
5935 arc_callback_t *acb = NULL;
5936
5937 acb = kmem_zalloc(sizeof (arc_callback_t),
5938 KM_SLEEP);
5939 acb->acb_done = done;
5940 acb->acb_private = private;
5941 acb->acb_compressed = compressed_read;
5942 acb->acb_encrypted = encrypted_read;
5943 acb->acb_noauth = noauth_read;
5944 acb->acb_dsobj = zb->zb_objset;
5945 if (pio != NULL)
5946 acb->acb_zio_dummy = zio_null(pio,
5947 spa, NULL, NULL, NULL, zio_flags);
5948
5949 ASSERT3P(acb->acb_done, !=, NULL);
5950 acb->acb_next = hdr->b_l1hdr.b_acb;
5951 hdr->b_l1hdr.b_acb = acb;
5952 mutex_exit(hash_lock);
5953 goto out;
5954 }
5955 mutex_exit(hash_lock);
5956 goto out;
5957 }
5958
5959 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5960 hdr->b_l1hdr.b_state == arc_mfu);
5961
5962 if (done) {
5963 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5964 /*
5965 * This is a demand read which does not have to
5966 * wait for i/o because we did a predictive
5967 * prefetch i/o for it, which has completed.
5968 */
5969 DTRACE_PROBE1(
5970 arc__demand__hit__predictive__prefetch,
5971 arc_buf_hdr_t *, hdr);
5972 ARCSTAT_BUMP(
5973 arcstat_demand_hit_predictive_prefetch);
5974 arc_hdr_clear_flags(hdr,
5975 ARC_FLAG_PREDICTIVE_PREFETCH);
5976 }
5977 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5978
5979 /* Get a buf with the desired data in it. */
5980 rc = arc_buf_alloc_impl(hdr, spa, zb->zb_objset,
5981 private, encrypted_read, compressed_read,
5982 noauth_read, B_TRUE, &buf);
5983 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || rc == 0);
5984 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
5985 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5986 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5987 }
5988 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5989 arc_access(hdr, hash_lock);
5990 if (*arc_flags & ARC_FLAG_L2CACHE)
5991 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5992 mutex_exit(hash_lock);
5993 ARCSTAT_BUMP(arcstat_hits);
5994 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5995 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5996 data, metadata, hits);
5997
5998 if (done)
5999 done(NULL, rc, buf, private);
6000 } else {
6001 uint64_t lsize = BP_GET_LSIZE(bp);
6002 uint64_t psize = BP_GET_PSIZE(bp);
6003 arc_callback_t *acb;
6004 vdev_t *vd = NULL;
6005 uint64_t addr = 0;
6006 boolean_t devw = B_FALSE;
6007 uint64_t size;
6008 abd_t *hdr_abd;
6009
6010 /*
6011 * Gracefully handle a damaged logical block size as a
6012 * checksum error.
6013 */
6014 if (lsize > spa_maxblocksize(spa)) {
6015 rc = SET_ERROR(ECKSUM);
6016 goto out;
6017 }
6018
6019 if (hdr == NULL) {
6020 /* this block is not in the cache */
6021 arc_buf_hdr_t *exists = NULL;
6022 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
6023 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
6024 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), type,
6025 encrypted_read);
6026
6027 if (!BP_IS_EMBEDDED(bp)) {
6028 hdr->b_dva = *BP_IDENTITY(bp);
6029 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
6030 exists = buf_hash_insert(hdr, &hash_lock);
6031 }
6032 if (exists != NULL) {
6033 /* somebody beat us to the hash insert */
6034 mutex_exit(hash_lock);
6035 buf_discard_identity(hdr);
6036 arc_hdr_destroy(hdr);
6037 goto top; /* restart the IO request */
6038 }
6039 } else {
6040 /*
6041 * This block is in the ghost cache or encrypted data
6042 * was requested and we didn't have it. If it was
6043 * L2-only (and thus didn't have an L1 hdr),
6044 * we realloc the header to add an L1 hdr.
6045 */
6046 if (!HDR_HAS_L1HDR(hdr)) {
6047 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
6048 hdr_full_cache);
6049 }
6050
6051 if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
6052 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6053 ASSERT(!HDR_HAS_RABD(hdr));
6054 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6055 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
6056 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
6057 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
6058 } else if (HDR_IO_IN_PROGRESS(hdr)) {
6059 /*
6060 * If this header already had an IO in progress
6061 * and we are performing another IO to fetch
6062 * encrypted data we must wait until the first
6063 * IO completes so as not to confuse
6064 * arc_read_done(). This should be very rare
6065 * and so the performance impact shouldn't
6066 * matter.
6067 */
6068 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
6069 mutex_exit(hash_lock);
6070 goto top;
6071 }
6072
6073 /*
6074 * This is a delicate dance that we play here.
6075 * This hdr might be in the ghost list so we access
6076 * it to move it out of the ghost list before we
6077 * initiate the read. If it's a prefetch then
6078 * it won't have a callback so we'll remove the
6079 * reference that arc_buf_alloc_impl() created. We
6080 * do this after we've called arc_access() to
6081 * avoid hitting an assert in remove_reference().
6082 */
6083 arc_access(hdr, hash_lock);
6084 arc_hdr_alloc_abd(hdr, encrypted_read);
6085 }
6086
6087 if (encrypted_read) {
6088 ASSERT(HDR_HAS_RABD(hdr));
6089 size = HDR_GET_PSIZE(hdr);
6090 hdr_abd = hdr->b_crypt_hdr.b_rabd;
6091 zio_flags |= ZIO_FLAG_RAW;
6092 } else {
6093 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6094 size = arc_hdr_size(hdr);
6095 hdr_abd = hdr->b_l1hdr.b_pabd;
6096
6097 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6098 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6099 }
6100
6101 /*
6102 * For authenticated bp's, we do not ask the ZIO layer
6103 * to authenticate them since this will cause the entire
6104 * IO to fail if the key isn't loaded. Instead, we
6105 * defer authentication until arc_buf_fill(), which will
6106 * verify the data when the key is available.
6107 */
6108 if (BP_IS_AUTHENTICATED(bp))
6109 zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
6110 }
6111
6112 if (*arc_flags & ARC_FLAG_PREFETCH &&
6113 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))
6114 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
6115 if (*arc_flags & ARC_FLAG_L2CACHE)
6116 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6117 if (BP_IS_AUTHENTICATED(bp))
6118 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6119 if (BP_GET_LEVEL(bp) > 0)
6120 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
6121 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
6122 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
6123 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
6124
6125 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
6126 acb->acb_done = done;
6127 acb->acb_private = private;
6128 acb->acb_compressed = compressed_read;
6129 acb->acb_encrypted = encrypted_read;
6130 acb->acb_noauth = noauth_read;
6131 acb->acb_dsobj = zb->zb_objset;
6132
6133 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6134 hdr->b_l1hdr.b_acb = acb;
6135 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6136
6137 if (HDR_HAS_L2HDR(hdr) &&
6138 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6139 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6140 addr = hdr->b_l2hdr.b_daddr;
6141 /*
6142 * Lock out device removal.
6143 */
6144 if (vdev_is_dead(vd) ||
6145 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6146 vd = NULL;
6147 }
6148
6149 if (priority == ZIO_PRIORITY_ASYNC_READ)
6150 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6151 else
6152 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6153
6154 if (hash_lock != NULL)
6155 mutex_exit(hash_lock);
6156
6157 /*
6158 * At this point, we have a level 1 cache miss. Try again in
6159 * L2ARC if possible.
6160 */
6161 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6162
6163 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
6164 uint64_t, lsize, zbookmark_phys_t *, zb);
6165 ARCSTAT_BUMP(arcstat_misses);
6166 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6167 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
6168 data, metadata, misses);
6169
6170 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
6171 /*
6172 * Read from the L2ARC if the following are true:
6173 * 1. The L2ARC vdev was previously cached.
6174 * 2. This buffer still has L2ARC metadata.
6175 * 3. This buffer isn't currently writing to the L2ARC.
6176 * 4. The L2ARC entry wasn't evicted, which may
6177 * also have invalidated the vdev.
6178 * 5. This isn't prefetch and l2arc_noprefetch is set.
6179 */
6180 if (HDR_HAS_L2HDR(hdr) &&
6181 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
6182 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
6183 l2arc_read_callback_t *cb;
6184 abd_t *abd;
6185 uint64_t asize;
6186
6187 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6188 ARCSTAT_BUMP(arcstat_l2_hits);
6189 atomic_inc_32(&hdr->b_l2hdr.b_hits);
6190
6191 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
6192 KM_SLEEP);
6193 cb->l2rcb_hdr = hdr;
6194 cb->l2rcb_bp = *bp;
6195 cb->l2rcb_zb = *zb;
6196 cb->l2rcb_flags = zio_flags;
6197
6198 asize = vdev_psize_to_asize(vd, size);
6199 if (asize != size) {
6200 abd = abd_alloc_for_io(asize,
6201 HDR_ISTYPE_METADATA(hdr));
6202 cb->l2rcb_abd = abd;
6203 } else {
6204 abd = hdr_abd;
6205 }
6206
6207 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6208 addr + asize <= vd->vdev_psize -
6209 VDEV_LABEL_END_SIZE);
6210
6211 /*
6212 * l2arc read. The SCL_L2ARC lock will be
6213 * released by l2arc_read_done().
6214 * Issue a null zio if the underlying buffer
6215 * was squashed to zero size by compression.
6216 */
6217 ASSERT3U(arc_hdr_get_compress(hdr), !=,
6218 ZIO_COMPRESS_EMPTY);
6219 rzio = zio_read_phys(pio, vd, addr,
6220 asize, abd,
6221 ZIO_CHECKSUM_OFF,
6222 l2arc_read_done, cb, priority,
6223 zio_flags | ZIO_FLAG_DONT_CACHE |
6224 ZIO_FLAG_CANFAIL |
6225 ZIO_FLAG_DONT_PROPAGATE |
6226 ZIO_FLAG_DONT_RETRY, B_FALSE);
6227
6228 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6229 zio_t *, rzio);
6230 ARCSTAT_INCR(arcstat_l2_read_bytes,
6231 HDR_GET_PSIZE(hdr));
6232
6233 if (*arc_flags & ARC_FLAG_NOWAIT) {
6234 zio_nowait(rzio);
6235 goto out;
6236 }
6237
6238 ASSERT(*arc_flags & ARC_FLAG_WAIT);
6239 if (zio_wait(rzio) == 0)
6240 goto out;
6241
6242 /* l2arc read error; goto zio_read() */
6243 } else {
6244 DTRACE_PROBE1(l2arc__miss,
6245 arc_buf_hdr_t *, hdr);
6246 ARCSTAT_BUMP(arcstat_l2_misses);
6247 if (HDR_L2_WRITING(hdr))
6248 ARCSTAT_BUMP(arcstat_l2_rw_clash);
6249 spa_config_exit(spa, SCL_L2ARC, vd);
6250 }
6251 } else {
6252 if (vd != NULL)
6253 spa_config_exit(spa, SCL_L2ARC, vd);
6254 if (l2arc_ndev != 0) {
6255 DTRACE_PROBE1(l2arc__miss,
6256 arc_buf_hdr_t *, hdr);
6257 ARCSTAT_BUMP(arcstat_l2_misses);
6258 }
6259 }
6260
6261 rzio = zio_read(pio, spa, bp, hdr_abd, size,
6262 arc_read_done, hdr, priority, zio_flags, zb);
6263
6264 if (*arc_flags & ARC_FLAG_WAIT) {
6265 rc = zio_wait(rzio);
6266 goto out;
6267 }
6268
6269 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6270 zio_nowait(rzio);
6271 }
6272
6273 out:
6274 spa_read_history_add(spa, zb, *arc_flags);
6275 return (rc);
6276 }
6277
6278 arc_prune_t *
6279 arc_add_prune_callback(arc_prune_func_t *func, void *private)
6280 {
6281 arc_prune_t *p;
6282
6283 p = kmem_alloc(sizeof (*p), KM_SLEEP);
6284 p->p_pfunc = func;
6285 p->p_private = private;
6286 list_link_init(&p->p_node);
6287 refcount_create(&p->p_refcnt);
6288
6289 mutex_enter(&arc_prune_mtx);
6290 refcount_add(&p->p_refcnt, &arc_prune_list);
6291 list_insert_head(&arc_prune_list, p);
6292 mutex_exit(&arc_prune_mtx);
6293
6294 return (p);
6295 }
6296
6297 void
6298 arc_remove_prune_callback(arc_prune_t *p)
6299 {
6300 boolean_t wait = B_FALSE;
6301 mutex_enter(&arc_prune_mtx);
6302 list_remove(&arc_prune_list, p);
6303 if (refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6304 wait = B_TRUE;
6305 mutex_exit(&arc_prune_mtx);
6306
6307 /* wait for arc_prune_task to finish */
6308 if (wait)
6309 taskq_wait_outstanding(arc_prune_taskq, 0);
6310 ASSERT0(refcount_count(&p->p_refcnt));
6311 refcount_destroy(&p->p_refcnt);
6312 kmem_free(p, sizeof (*p));
6313 }
6314
6315 /*
6316 * Notify the arc that a block was freed, and thus will never be used again.
6317 */
6318 void
6319 arc_freed(spa_t *spa, const blkptr_t *bp)
6320 {
6321 arc_buf_hdr_t *hdr;
6322 kmutex_t *hash_lock;
6323 uint64_t guid = spa_load_guid(spa);
6324
6325 ASSERT(!BP_IS_EMBEDDED(bp));
6326
6327 hdr = buf_hash_find(guid, bp, &hash_lock);
6328 if (hdr == NULL)
6329 return;
6330
6331 /*
6332 * We might be trying to free a block that is still doing I/O
6333 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6334 * dmu_sync-ed block). If this block is being prefetched, then it
6335 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6336 * until the I/O completes. A block may also have a reference if it is
6337 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6338 * have written the new block to its final resting place on disk but
6339 * without the dedup flag set. This would have left the hdr in the MRU
6340 * state and discoverable. When the txg finally syncs it detects that
6341 * the block was overridden in open context and issues an override I/O.
6342 * Since this is a dedup block, the override I/O will determine if the
6343 * block is already in the DDT. If so, then it will replace the io_bp
6344 * with the bp from the DDT and allow the I/O to finish. When the I/O
6345 * reaches the done callback, dbuf_write_override_done, it will
6346 * check to see if the io_bp and io_bp_override are identical.
6347 * If they are not, then it indicates that the bp was replaced with
6348 * the bp in the DDT and the override bp is freed. This allows
6349 * us to arrive here with a reference on a block that is being
6350 * freed. So if we have an I/O in progress, or a reference to
6351 * this hdr, then we don't destroy the hdr.
6352 */
6353 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
6354 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
6355 arc_change_state(arc_anon, hdr, hash_lock);
6356 arc_hdr_destroy(hdr);
6357 mutex_exit(hash_lock);
6358 } else {
6359 mutex_exit(hash_lock);
6360 }
6361
6362 }
6363
6364 /*
6365 * Release this buffer from the cache, making it an anonymous buffer. This
6366 * must be done after a read and prior to modifying the buffer contents.
6367 * If the buffer has more than one reference, we must make
6368 * a new hdr for the buffer.
6369 */
6370 void
6371 arc_release(arc_buf_t *buf, void *tag)
6372 {
6373 arc_buf_hdr_t *hdr = buf->b_hdr;
6374
6375 /*
6376 * It would be nice to assert that if its DMU metadata (level >
6377 * 0 || it's the dnode file), then it must be syncing context.
6378 * But we don't know that information at this level.
6379 */
6380
6381 mutex_enter(&buf->b_evict_lock);
6382
6383 ASSERT(HDR_HAS_L1HDR(hdr));
6384
6385 /*
6386 * We don't grab the hash lock prior to this check, because if
6387 * the buffer's header is in the arc_anon state, it won't be
6388 * linked into the hash table.
6389 */
6390 if (hdr->b_l1hdr.b_state == arc_anon) {
6391 mutex_exit(&buf->b_evict_lock);
6392 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6393 ASSERT(!HDR_IN_HASH_TABLE(hdr));
6394 ASSERT(!HDR_HAS_L2HDR(hdr));
6395 ASSERT(HDR_EMPTY(hdr));
6396
6397 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6398 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6399 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
6400
6401 hdr->b_l1hdr.b_arc_access = 0;
6402
6403 /*
6404 * If the buf is being overridden then it may already
6405 * have a hdr that is not empty.
6406 */
6407 buf_discard_identity(hdr);
6408 arc_buf_thaw(buf);
6409
6410 return;
6411 }
6412
6413 kmutex_t *hash_lock = HDR_LOCK(hdr);
6414 mutex_enter(hash_lock);
6415
6416 /*
6417 * This assignment is only valid as long as the hash_lock is
6418 * held, we must be careful not to reference state or the
6419 * b_state field after dropping the lock.
6420 */
6421 arc_state_t *state = hdr->b_l1hdr.b_state;
6422 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6423 ASSERT3P(state, !=, arc_anon);
6424
6425 /* this buffer is not on any list */
6426 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6427
6428 if (HDR_HAS_L2HDR(hdr)) {
6429 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6430
6431 /*
6432 * We have to recheck this conditional again now that
6433 * we're holding the l2ad_mtx to prevent a race with
6434 * another thread which might be concurrently calling
6435 * l2arc_evict(). In that case, l2arc_evict() might have
6436 * destroyed the header's L2 portion as we were waiting
6437 * to acquire the l2ad_mtx.
6438 */
6439 if (HDR_HAS_L2HDR(hdr))
6440 arc_hdr_l2hdr_destroy(hdr);
6441
6442 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6443 }
6444
6445 /*
6446 * Do we have more than one buf?
6447 */
6448 if (hdr->b_l1hdr.b_bufcnt > 1) {
6449 arc_buf_hdr_t *nhdr;
6450 uint64_t spa = hdr->b_spa;
6451 uint64_t psize = HDR_GET_PSIZE(hdr);
6452 uint64_t lsize = HDR_GET_LSIZE(hdr);
6453 boolean_t protected = HDR_PROTECTED(hdr);
6454 enum zio_compress compress = arc_hdr_get_compress(hdr);
6455 arc_buf_contents_t type = arc_buf_type(hdr);
6456 VERIFY3U(hdr->b_type, ==, type);
6457
6458 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6459 (void) remove_reference(hdr, hash_lock, tag);
6460
6461 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
6462 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6463 ASSERT(ARC_BUF_LAST(buf));
6464 }
6465
6466 /*
6467 * Pull the data off of this hdr and attach it to
6468 * a new anonymous hdr. Also find the last buffer
6469 * in the hdr's buffer list.
6470 */
6471 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6472 ASSERT3P(lastbuf, !=, NULL);
6473
6474 /*
6475 * If the current arc_buf_t and the hdr are sharing their data
6476 * buffer, then we must stop sharing that block.
6477 */
6478 if (arc_buf_is_shared(buf)) {
6479 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6480 VERIFY(!arc_buf_is_shared(lastbuf));
6481
6482 /*
6483 * First, sever the block sharing relationship between
6484 * buf and the arc_buf_hdr_t.
6485 */
6486 arc_unshare_buf(hdr, buf);
6487
6488 /*
6489 * Now we need to recreate the hdr's b_pabd. Since we
6490 * have lastbuf handy, we try to share with it, but if
6491 * we can't then we allocate a new b_pabd and copy the
6492 * data from buf into it.
6493 */
6494 if (arc_can_share(hdr, lastbuf)) {
6495 arc_share_buf(hdr, lastbuf);
6496 } else {
6497 arc_hdr_alloc_abd(hdr, B_FALSE);
6498 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6499 buf->b_data, psize);
6500 }
6501 VERIFY3P(lastbuf->b_data, !=, NULL);
6502 } else if (HDR_SHARED_DATA(hdr)) {
6503 /*
6504 * Uncompressed shared buffers are always at the end
6505 * of the list. Compressed buffers don't have the
6506 * same requirements. This makes it hard to
6507 * simply assert that the lastbuf is shared so
6508 * we rely on the hdr's compression flags to determine
6509 * if we have a compressed, shared buffer.
6510 */
6511 ASSERT(arc_buf_is_shared(lastbuf) ||
6512 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6513 ASSERT(!ARC_BUF_SHARED(buf));
6514 }
6515
6516 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6517 ASSERT3P(state, !=, arc_l2c_only);
6518
6519 (void) refcount_remove_many(&state->arcs_size,
6520 arc_buf_size(buf), buf);
6521
6522 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6523 ASSERT3P(state, !=, arc_l2c_only);
6524 (void) refcount_remove_many(&state->arcs_esize[type],
6525 arc_buf_size(buf), buf);
6526 }
6527
6528 hdr->b_l1hdr.b_bufcnt -= 1;
6529 if (ARC_BUF_ENCRYPTED(buf))
6530 hdr->b_crypt_hdr.b_ebufcnt -= 1;
6531
6532 arc_cksum_verify(buf);
6533 arc_buf_unwatch(buf);
6534
6535 /* if this is the last uncompressed buf free the checksum */
6536 if (!arc_hdr_has_uncompressed_buf(hdr))
6537 arc_cksum_free(hdr);
6538
6539 mutex_exit(hash_lock);
6540
6541 /*
6542 * Allocate a new hdr. The new hdr will contain a b_pabd
6543 * buffer which will be freed in arc_write().
6544 */
6545 nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6546 compress, type, HDR_HAS_RABD(hdr));
6547 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6548 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
6549 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
6550 VERIFY3U(nhdr->b_type, ==, type);
6551 ASSERT(!HDR_SHARED_DATA(nhdr));
6552
6553 nhdr->b_l1hdr.b_buf = buf;
6554 nhdr->b_l1hdr.b_bufcnt = 1;
6555 if (ARC_BUF_ENCRYPTED(buf))
6556 nhdr->b_crypt_hdr.b_ebufcnt = 1;
6557 nhdr->b_l1hdr.b_mru_hits = 0;
6558 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
6559 nhdr->b_l1hdr.b_mfu_hits = 0;
6560 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
6561 nhdr->b_l1hdr.b_l2_hits = 0;
6562 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6563 buf->b_hdr = nhdr;
6564
6565 mutex_exit(&buf->b_evict_lock);
6566 (void) refcount_add_many(&arc_anon->arcs_size,
6567 HDR_GET_LSIZE(nhdr), buf);
6568 } else {
6569 mutex_exit(&buf->b_evict_lock);
6570 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6571 /* protected by hash lock, or hdr is on arc_anon */
6572 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6573 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6574 hdr->b_l1hdr.b_mru_hits = 0;
6575 hdr->b_l1hdr.b_mru_ghost_hits = 0;
6576 hdr->b_l1hdr.b_mfu_hits = 0;
6577 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6578 hdr->b_l1hdr.b_l2_hits = 0;
6579 arc_change_state(arc_anon, hdr, hash_lock);
6580 hdr->b_l1hdr.b_arc_access = 0;
6581
6582 mutex_exit(hash_lock);
6583 buf_discard_identity(hdr);
6584 arc_buf_thaw(buf);
6585 }
6586 }
6587
6588 int
6589 arc_released(arc_buf_t *buf)
6590 {
6591 int released;
6592
6593 mutex_enter(&buf->b_evict_lock);
6594 released = (buf->b_data != NULL &&
6595 buf->b_hdr->b_l1hdr.b_state == arc_anon);
6596 mutex_exit(&buf->b_evict_lock);
6597 return (released);
6598 }
6599
6600 #ifdef ZFS_DEBUG
6601 int
6602 arc_referenced(arc_buf_t *buf)
6603 {
6604 int referenced;
6605
6606 mutex_enter(&buf->b_evict_lock);
6607 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6608 mutex_exit(&buf->b_evict_lock);
6609 return (referenced);
6610 }
6611 #endif
6612
6613 static void
6614 arc_write_ready(zio_t *zio)
6615 {
6616 arc_write_callback_t *callback = zio->io_private;
6617 arc_buf_t *buf = callback->awcb_buf;
6618 arc_buf_hdr_t *hdr = buf->b_hdr;
6619 blkptr_t *bp = zio->io_bp;
6620 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6621 fstrans_cookie_t cookie = spl_fstrans_mark();
6622
6623 ASSERT(HDR_HAS_L1HDR(hdr));
6624 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6625 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
6626
6627 /*
6628 * If we're reexecuting this zio because the pool suspended, then
6629 * cleanup any state that was previously set the first time the
6630 * callback was invoked.
6631 */
6632 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6633 arc_cksum_free(hdr);
6634 arc_buf_unwatch(buf);
6635 if (hdr->b_l1hdr.b_pabd != NULL) {
6636 if (arc_buf_is_shared(buf)) {
6637 arc_unshare_buf(hdr, buf);
6638 } else {
6639 arc_hdr_free_abd(hdr, B_FALSE);
6640 }
6641 }
6642
6643 if (HDR_HAS_RABD(hdr))
6644 arc_hdr_free_abd(hdr, B_TRUE);
6645 }
6646 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6647 ASSERT(!HDR_HAS_RABD(hdr));
6648 ASSERT(!HDR_SHARED_DATA(hdr));
6649 ASSERT(!arc_buf_is_shared(buf));
6650
6651 callback->awcb_ready(zio, buf, callback->awcb_private);
6652
6653 if (HDR_IO_IN_PROGRESS(hdr))
6654 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6655
6656 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6657
6658 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr))
6659 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp));
6660
6661 if (BP_IS_PROTECTED(bp)) {
6662 /* ZIL blocks are written through zio_rewrite */
6663 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6664 ASSERT(HDR_PROTECTED(hdr));
6665
6666 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6667 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6668 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6669 hdr->b_crypt_hdr.b_iv);
6670 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6671 }
6672
6673 /*
6674 * If this block was written for raw encryption but the zio layer
6675 * ended up only authenticating it, adjust the buffer flags now.
6676 */
6677 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6678 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6679 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6680 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6681 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6682 }
6683
6684 /* this must be done after the buffer flags are adjusted */
6685 arc_cksum_compute(buf);
6686
6687 enum zio_compress compress;
6688 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6689 compress = ZIO_COMPRESS_OFF;
6690 } else {
6691 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6692 compress = BP_GET_COMPRESS(bp);
6693 }
6694 HDR_SET_PSIZE(hdr, psize);
6695 arc_hdr_set_compress(hdr, compress);
6696
6697 if (zio->io_error != 0 || psize == 0)
6698 goto out;
6699
6700 /*
6701 * Fill the hdr with data. If the buffer is encrypted we have no choice
6702 * but to copy the data into b_radb. If the hdr is compressed, the data
6703 * we want is available from the zio, otherwise we can take it from
6704 * the buf.
6705 *
6706 * We might be able to share the buf's data with the hdr here. However,
6707 * doing so would cause the ARC to be full of linear ABDs if we write a
6708 * lot of shareable data. As a compromise, we check whether scattered
6709 * ABDs are allowed, and assume that if they are then the user wants
6710 * the ARC to be primarily filled with them regardless of the data being
6711 * written. Therefore, if they're allowed then we allocate one and copy
6712 * the data into it; otherwise, we share the data directly if we can.
6713 */
6714 if (ARC_BUF_ENCRYPTED(buf)) {
6715 ASSERT3U(psize, >, 0);
6716 ASSERT(ARC_BUF_COMPRESSED(buf));
6717 arc_hdr_alloc_abd(hdr, B_TRUE);
6718 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6719 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
6720 /*
6721 * Ideally, we would always copy the io_abd into b_pabd, but the
6722 * user may have disabled compressed ARC, thus we must check the
6723 * hdr's compression setting rather than the io_bp's.
6724 */
6725 if (BP_IS_ENCRYPTED(bp)) {
6726 ASSERT3U(psize, >, 0);
6727 arc_hdr_alloc_abd(hdr, B_TRUE);
6728 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6729 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6730 !ARC_BUF_COMPRESSED(buf)) {
6731 ASSERT3U(psize, >, 0);
6732 arc_hdr_alloc_abd(hdr, B_FALSE);
6733 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6734 } else {
6735 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6736 arc_hdr_alloc_abd(hdr, B_FALSE);
6737 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6738 arc_buf_size(buf));
6739 }
6740 } else {
6741 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6742 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6743 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6744
6745 arc_share_buf(hdr, buf);
6746 }
6747
6748 out:
6749 arc_hdr_verify(hdr, bp);
6750 spl_fstrans_unmark(cookie);
6751 }
6752
6753 static void
6754 arc_write_children_ready(zio_t *zio)
6755 {
6756 arc_write_callback_t *callback = zio->io_private;
6757 arc_buf_t *buf = callback->awcb_buf;
6758
6759 callback->awcb_children_ready(zio, buf, callback->awcb_private);
6760 }
6761
6762 /*
6763 * The SPA calls this callback for each physical write that happens on behalf
6764 * of a logical write. See the comment in dbuf_write_physdone() for details.
6765 */
6766 static void
6767 arc_write_physdone(zio_t *zio)
6768 {
6769 arc_write_callback_t *cb = zio->io_private;
6770 if (cb->awcb_physdone != NULL)
6771 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6772 }
6773
6774 static void
6775 arc_write_done(zio_t *zio)
6776 {
6777 arc_write_callback_t *callback = zio->io_private;
6778 arc_buf_t *buf = callback->awcb_buf;
6779 arc_buf_hdr_t *hdr = buf->b_hdr;
6780
6781 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6782
6783 if (zio->io_error == 0) {
6784 arc_hdr_verify(hdr, zio->io_bp);
6785
6786 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6787 buf_discard_identity(hdr);
6788 } else {
6789 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6790 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
6791 }
6792 } else {
6793 ASSERT(HDR_EMPTY(hdr));
6794 }
6795
6796 /*
6797 * If the block to be written was all-zero or compressed enough to be
6798 * embedded in the BP, no write was performed so there will be no
6799 * dva/birth/checksum. The buffer must therefore remain anonymous
6800 * (and uncached).
6801 */
6802 if (!HDR_EMPTY(hdr)) {
6803 arc_buf_hdr_t *exists;
6804 kmutex_t *hash_lock;
6805
6806 ASSERT3U(zio->io_error, ==, 0);
6807
6808 arc_cksum_verify(buf);
6809
6810 exists = buf_hash_insert(hdr, &hash_lock);
6811 if (exists != NULL) {
6812 /*
6813 * This can only happen if we overwrite for
6814 * sync-to-convergence, because we remove
6815 * buffers from the hash table when we arc_free().
6816 */
6817 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6818 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6819 panic("bad overwrite, hdr=%p exists=%p",
6820 (void *)hdr, (void *)exists);
6821 ASSERT(refcount_is_zero(
6822 &exists->b_l1hdr.b_refcnt));
6823 arc_change_state(arc_anon, exists, hash_lock);
6824 mutex_exit(hash_lock);
6825 arc_hdr_destroy(exists);
6826 exists = buf_hash_insert(hdr, &hash_lock);
6827 ASSERT3P(exists, ==, NULL);
6828 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6829 /* nopwrite */
6830 ASSERT(zio->io_prop.zp_nopwrite);
6831 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6832 panic("bad nopwrite, hdr=%p exists=%p",
6833 (void *)hdr, (void *)exists);
6834 } else {
6835 /* Dedup */
6836 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
6837 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6838 ASSERT(BP_GET_DEDUP(zio->io_bp));
6839 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6840 }
6841 }
6842 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6843 /* if it's not anon, we are doing a scrub */
6844 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6845 arc_access(hdr, hash_lock);
6846 mutex_exit(hash_lock);
6847 } else {
6848 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6849 }
6850
6851 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
6852 callback->awcb_done(zio, buf, callback->awcb_private);
6853
6854 abd_put(zio->io_abd);
6855 kmem_free(callback, sizeof (arc_write_callback_t));
6856 }
6857
6858 zio_t *
6859 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
6860 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc,
6861 const zio_prop_t *zp, arc_write_done_func_t *ready,
6862 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
6863 arc_write_done_func_t *done, void *private, zio_priority_t priority,
6864 int zio_flags, const zbookmark_phys_t *zb)
6865 {
6866 arc_buf_hdr_t *hdr = buf->b_hdr;
6867 arc_write_callback_t *callback;
6868 zio_t *zio;
6869 zio_prop_t localprop = *zp;
6870
6871 ASSERT3P(ready, !=, NULL);
6872 ASSERT3P(done, !=, NULL);
6873 ASSERT(!HDR_IO_ERROR(hdr));
6874 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6875 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6876 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
6877 if (l2arc)
6878 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6879
6880 if (ARC_BUF_ENCRYPTED(buf)) {
6881 ASSERT(ARC_BUF_COMPRESSED(buf));
6882 localprop.zp_encrypt = B_TRUE;
6883 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6884 localprop.zp_byteorder =
6885 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
6886 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
6887 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt,
6888 ZIO_DATA_SALT_LEN);
6889 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv,
6890 ZIO_DATA_IV_LEN);
6891 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac,
6892 ZIO_DATA_MAC_LEN);
6893 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
6894 localprop.zp_nopwrite = B_FALSE;
6895 localprop.zp_copies =
6896 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
6897 }
6898 zio_flags |= ZIO_FLAG_RAW;
6899 } else if (ARC_BUF_COMPRESSED(buf)) {
6900 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6901 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6902 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6903 }
6904 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6905 callback->awcb_ready = ready;
6906 callback->awcb_children_ready = children_ready;
6907 callback->awcb_physdone = physdone;
6908 callback->awcb_done = done;
6909 callback->awcb_private = private;
6910 callback->awcb_buf = buf;
6911
6912 /*
6913 * The hdr's b_pabd is now stale, free it now. A new data block
6914 * will be allocated when the zio pipeline calls arc_write_ready().
6915 */
6916 if (hdr->b_l1hdr.b_pabd != NULL) {
6917 /*
6918 * If the buf is currently sharing the data block with
6919 * the hdr then we need to break that relationship here.
6920 * The hdr will remain with a NULL data pointer and the
6921 * buf will take sole ownership of the block.
6922 */
6923 if (arc_buf_is_shared(buf)) {
6924 arc_unshare_buf(hdr, buf);
6925 } else {
6926 arc_hdr_free_abd(hdr, B_FALSE);
6927 }
6928 VERIFY3P(buf->b_data, !=, NULL);
6929 }
6930
6931 if (HDR_HAS_RABD(hdr))
6932 arc_hdr_free_abd(hdr, B_TRUE);
6933
6934 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6935
6936 ASSERT(!arc_buf_is_shared(buf));
6937 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6938
6939 zio = zio_write(pio, spa, txg, bp,
6940 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6941 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6942 (children_ready != NULL) ? arc_write_children_ready : NULL,
6943 arc_write_physdone, arc_write_done, callback,
6944 priority, zio_flags, zb);
6945
6946 return (zio);
6947 }
6948
6949 static int
6950 arc_memory_throttle(uint64_t reserve, uint64_t txg)
6951 {
6952 #ifdef _KERNEL
6953 uint64_t available_memory = arc_free_memory();
6954 static uint64_t page_load = 0;
6955 static uint64_t last_txg = 0;
6956
6957 #if defined(_ILP32)
6958 available_memory =
6959 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
6960 #endif
6961
6962 if (available_memory > arc_all_memory() * arc_lotsfree_percent / 100)
6963 return (0);
6964
6965 if (txg > last_txg) {
6966 last_txg = txg;
6967 page_load = 0;
6968 }
6969 /*
6970 * If we are in pageout, we know that memory is already tight,
6971 * the arc is already going to be evicting, so we just want to
6972 * continue to let page writes occur as quickly as possible.
6973 */
6974 if (current_is_kswapd()) {
6975 if (page_load > MAX(arc_sys_free / 4, available_memory) / 4) {
6976 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
6977 return (SET_ERROR(ERESTART));
6978 }
6979 /* Note: reserve is inflated, so we deflate */
6980 page_load += reserve / 8;
6981 return (0);
6982 } else if (page_load > 0 && arc_reclaim_needed()) {
6983 /* memory is low, delay before restarting */
6984 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
6985 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
6986 return (SET_ERROR(EAGAIN));
6987 }
6988 page_load = 0;
6989 #endif
6990 return (0);
6991 }
6992
6993 void
6994 arc_tempreserve_clear(uint64_t reserve)
6995 {
6996 atomic_add_64(&arc_tempreserve, -reserve);
6997 ASSERT((int64_t)arc_tempreserve >= 0);
6998 }
6999
7000 int
7001 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
7002 {
7003 int error;
7004 uint64_t anon_size;
7005
7006 if (!arc_no_grow &&
7007 reserve > arc_c/4 &&
7008 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
7009 arc_c = MIN(arc_c_max, reserve * 4);
7010
7011 /*
7012 * Throttle when the calculated memory footprint for the TXG
7013 * exceeds the target ARC size.
7014 */
7015 if (reserve > arc_c) {
7016 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
7017 return (SET_ERROR(ERESTART));
7018 }
7019
7020 /*
7021 * Don't count loaned bufs as in flight dirty data to prevent long
7022 * network delays from blocking transactions that are ready to be
7023 * assigned to a txg.
7024 */
7025
7026 /* assert that it has not wrapped around */
7027 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
7028
7029 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
7030 arc_loaned_bytes), 0);
7031
7032 /*
7033 * Writes will, almost always, require additional memory allocations
7034 * in order to compress/encrypt/etc the data. We therefore need to
7035 * make sure that there is sufficient available memory for this.
7036 */
7037 error = arc_memory_throttle(reserve, txg);
7038 if (error != 0)
7039 return (error);
7040
7041 /*
7042 * Throttle writes when the amount of dirty data in the cache
7043 * gets too large. We try to keep the cache less than half full
7044 * of dirty blocks so that our sync times don't grow too large.
7045 * Note: if two requests come in concurrently, we might let them
7046 * both succeed, when one of them should fail. Not a huge deal.
7047 */
7048
7049 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
7050 anon_size > arc_c / 4) {
7051 uint64_t meta_esize =
7052 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7053 uint64_t data_esize =
7054 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7055 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7056 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
7057 arc_tempreserve >> 10, meta_esize >> 10,
7058 data_esize >> 10, reserve >> 10, arc_c >> 10);
7059 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
7060 return (SET_ERROR(ERESTART));
7061 }
7062 atomic_add_64(&arc_tempreserve, reserve);
7063 return (0);
7064 }
7065
7066 static void
7067 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7068 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7069 {
7070 size->value.ui64 = refcount_count(&state->arcs_size);
7071 evict_data->value.ui64 =
7072 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
7073 evict_metadata->value.ui64 =
7074 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
7075 }
7076
7077 static int
7078 arc_kstat_update(kstat_t *ksp, int rw)
7079 {
7080 arc_stats_t *as = ksp->ks_data;
7081
7082 if (rw == KSTAT_WRITE) {
7083 return (SET_ERROR(EACCES));
7084 } else {
7085 arc_kstat_update_state(arc_anon,
7086 &as->arcstat_anon_size,
7087 &as->arcstat_anon_evictable_data,
7088 &as->arcstat_anon_evictable_metadata);
7089 arc_kstat_update_state(arc_mru,
7090 &as->arcstat_mru_size,
7091 &as->arcstat_mru_evictable_data,
7092 &as->arcstat_mru_evictable_metadata);
7093 arc_kstat_update_state(arc_mru_ghost,
7094 &as->arcstat_mru_ghost_size,
7095 &as->arcstat_mru_ghost_evictable_data,
7096 &as->arcstat_mru_ghost_evictable_metadata);
7097 arc_kstat_update_state(arc_mfu,
7098 &as->arcstat_mfu_size,
7099 &as->arcstat_mfu_evictable_data,
7100 &as->arcstat_mfu_evictable_metadata);
7101 arc_kstat_update_state(arc_mfu_ghost,
7102 &as->arcstat_mfu_ghost_size,
7103 &as->arcstat_mfu_ghost_evictable_data,
7104 &as->arcstat_mfu_ghost_evictable_metadata);
7105
7106 as->arcstat_memory_all_bytes.value.ui64 =
7107 arc_all_memory();
7108 as->arcstat_memory_free_bytes.value.ui64 =
7109 arc_free_memory();
7110 as->arcstat_memory_available_bytes.value.i64 =
7111 arc_available_memory();
7112 }
7113
7114 return (0);
7115 }
7116
7117 /*
7118 * This function *must* return indices evenly distributed between all
7119 * sublists of the multilist. This is needed due to how the ARC eviction
7120 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7121 * distributed between all sublists and uses this assumption when
7122 * deciding which sublist to evict from and how much to evict from it.
7123 */
7124 unsigned int
7125 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7126 {
7127 arc_buf_hdr_t *hdr = obj;
7128
7129 /*
7130 * We rely on b_dva to generate evenly distributed index
7131 * numbers using buf_hash below. So, as an added precaution,
7132 * let's make sure we never add empty buffers to the arc lists.
7133 */
7134 ASSERT(!HDR_EMPTY(hdr));
7135
7136 /*
7137 * The assumption here, is the hash value for a given
7138 * arc_buf_hdr_t will remain constant throughout its lifetime
7139 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7140 * Thus, we don't need to store the header's sublist index
7141 * on insertion, as this index can be recalculated on removal.
7142 *
7143 * Also, the low order bits of the hash value are thought to be
7144 * distributed evenly. Otherwise, in the case that the multilist
7145 * has a power of two number of sublists, each sublists' usage
7146 * would not be evenly distributed.
7147 */
7148 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7149 multilist_get_num_sublists(ml));
7150 }
7151
7152 /*
7153 * Called during module initialization and periodically thereafter to
7154 * apply reasonable changes to the exposed performance tunings. Non-zero
7155 * zfs_* values which differ from the currently set values will be applied.
7156 */
7157 static void
7158 arc_tuning_update(void)
7159 {
7160 uint64_t allmem = arc_all_memory();
7161 unsigned long limit;
7162
7163 /* Valid range: 64M - <all physical memory> */
7164 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7165 (zfs_arc_max > 64 << 20) && (zfs_arc_max < allmem) &&
7166 (zfs_arc_max > arc_c_min)) {
7167 arc_c_max = zfs_arc_max;
7168 arc_c = arc_c_max;
7169 arc_p = (arc_c >> 1);
7170 if (arc_meta_limit > arc_c_max)
7171 arc_meta_limit = arc_c_max;
7172 if (arc_dnode_limit > arc_meta_limit)
7173 arc_dnode_limit = arc_meta_limit;
7174 }
7175
7176 /* Valid range: 32M - <arc_c_max> */
7177 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7178 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7179 (zfs_arc_min <= arc_c_max)) {
7180 arc_c_min = zfs_arc_min;
7181 arc_c = MAX(arc_c, arc_c_min);
7182 }
7183
7184 /* Valid range: 16M - <arc_c_max> */
7185 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
7186 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
7187 (zfs_arc_meta_min <= arc_c_max)) {
7188 arc_meta_min = zfs_arc_meta_min;
7189 if (arc_meta_limit < arc_meta_min)
7190 arc_meta_limit = arc_meta_min;
7191 if (arc_dnode_limit < arc_meta_min)
7192 arc_dnode_limit = arc_meta_min;
7193 }
7194
7195 /* Valid range: <arc_meta_min> - <arc_c_max> */
7196 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit :
7197 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100;
7198 if ((limit != arc_meta_limit) &&
7199 (limit >= arc_meta_min) &&
7200 (limit <= arc_c_max))
7201 arc_meta_limit = limit;
7202
7203 /* Valid range: <arc_meta_min> - <arc_meta_limit> */
7204 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7205 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100;
7206 if ((limit != arc_dnode_limit) &&
7207 (limit >= arc_meta_min) &&
7208 (limit <= arc_meta_limit))
7209 arc_dnode_limit = limit;
7210
7211 /* Valid range: 1 - N */
7212 if (zfs_arc_grow_retry)
7213 arc_grow_retry = zfs_arc_grow_retry;
7214
7215 /* Valid range: 1 - N */
7216 if (zfs_arc_shrink_shift) {
7217 arc_shrink_shift = zfs_arc_shrink_shift;
7218 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7219 }
7220
7221 /* Valid range: 1 - N */
7222 if (zfs_arc_p_min_shift)
7223 arc_p_min_shift = zfs_arc_p_min_shift;
7224
7225 /* Valid range: 1 - N ticks */
7226 if (zfs_arc_min_prefetch_lifespan)
7227 arc_min_prefetch_lifespan = zfs_arc_min_prefetch_lifespan;
7228
7229 /* Valid range: 0 - 100 */
7230 if ((zfs_arc_lotsfree_percent >= 0) &&
7231 (zfs_arc_lotsfree_percent <= 100))
7232 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7233
7234 /* Valid range: 0 - <all physical memory> */
7235 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
7236 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem);
7237
7238 }
7239
7240 static void
7241 arc_state_init(void)
7242 {
7243 arc_anon = &ARC_anon;
7244 arc_mru = &ARC_mru;
7245 arc_mru_ghost = &ARC_mru_ghost;
7246 arc_mfu = &ARC_mfu;
7247 arc_mfu_ghost = &ARC_mfu_ghost;
7248 arc_l2c_only = &ARC_l2c_only;
7249
7250 arc_mru->arcs_list[ARC_BUFC_METADATA] =
7251 multilist_create(sizeof (arc_buf_hdr_t),
7252 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7253 arc_state_multilist_index_func);
7254 arc_mru->arcs_list[ARC_BUFC_DATA] =
7255 multilist_create(sizeof (arc_buf_hdr_t),
7256 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7257 arc_state_multilist_index_func);
7258 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
7259 multilist_create(sizeof (arc_buf_hdr_t),
7260 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7261 arc_state_multilist_index_func);
7262 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
7263 multilist_create(sizeof (arc_buf_hdr_t),
7264 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7265 arc_state_multilist_index_func);
7266 arc_mfu->arcs_list[ARC_BUFC_METADATA] =
7267 multilist_create(sizeof (arc_buf_hdr_t),
7268 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7269 arc_state_multilist_index_func);
7270 arc_mfu->arcs_list[ARC_BUFC_DATA] =
7271 multilist_create(sizeof (arc_buf_hdr_t),
7272 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7273 arc_state_multilist_index_func);
7274 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
7275 multilist_create(sizeof (arc_buf_hdr_t),
7276 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7277 arc_state_multilist_index_func);
7278 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
7279 multilist_create(sizeof (arc_buf_hdr_t),
7280 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7281 arc_state_multilist_index_func);
7282 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
7283 multilist_create(sizeof (arc_buf_hdr_t),
7284 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7285 arc_state_multilist_index_func);
7286 arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
7287 multilist_create(sizeof (arc_buf_hdr_t),
7288 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7289 arc_state_multilist_index_func);
7290
7291 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7292 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7293 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7294 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7295 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7296 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7297 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7298 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7299 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7300 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7301 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7302 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7303
7304 refcount_create(&arc_anon->arcs_size);
7305 refcount_create(&arc_mru->arcs_size);
7306 refcount_create(&arc_mru_ghost->arcs_size);
7307 refcount_create(&arc_mfu->arcs_size);
7308 refcount_create(&arc_mfu_ghost->arcs_size);
7309 refcount_create(&arc_l2c_only->arcs_size);
7310
7311 arc_anon->arcs_state = ARC_STATE_ANON;
7312 arc_mru->arcs_state = ARC_STATE_MRU;
7313 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7314 arc_mfu->arcs_state = ARC_STATE_MFU;
7315 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7316 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7317 }
7318
7319 static void
7320 arc_state_fini(void)
7321 {
7322 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7323 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7324 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7325 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7326 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7327 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7328 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7329 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7330 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7331 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7332 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7333 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7334
7335 refcount_destroy(&arc_anon->arcs_size);
7336 refcount_destroy(&arc_mru->arcs_size);
7337 refcount_destroy(&arc_mru_ghost->arcs_size);
7338 refcount_destroy(&arc_mfu->arcs_size);
7339 refcount_destroy(&arc_mfu_ghost->arcs_size);
7340 refcount_destroy(&arc_l2c_only->arcs_size);
7341
7342 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
7343 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7344 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7345 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7346 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
7347 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7348 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
7349 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7350 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7351 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7352 }
7353
7354 uint64_t
7355 arc_target_bytes(void)
7356 {
7357 return (arc_c);
7358 }
7359
7360 void
7361 arc_init(void)
7362 {
7363 uint64_t percent, allmem = arc_all_memory();
7364
7365 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
7366 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
7367 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
7368
7369 /* Convert seconds to clock ticks */
7370 arc_min_prefetch_lifespan = 1 * hz;
7371
7372 #ifdef _KERNEL
7373 /*
7374 * Register a shrinker to support synchronous (direct) memory
7375 * reclaim from the arc. This is done to prevent kswapd from
7376 * swapping out pages when it is preferable to shrink the arc.
7377 */
7378 spl_register_shrinker(&arc_shrinker);
7379
7380 /* Set to 1/64 of all memory or a minimum of 512K */
7381 arc_sys_free = MAX(allmem / 64, (512 * 1024));
7382 arc_need_free = 0;
7383 #endif
7384
7385 /* Set max to 1/2 of all memory */
7386 arc_c_max = allmem / 2;
7387
7388 #ifdef _KERNEL
7389 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more */
7390 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7391 #else
7392 /*
7393 * In userland, there's only the memory pressure that we artificially
7394 * create (see arc_available_memory()). Don't let arc_c get too
7395 * small, because it can cause transactions to be larger than
7396 * arc_c, causing arc_tempreserve_space() to fail.
7397 */
7398 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
7399 #endif
7400
7401 arc_c = arc_c_max;
7402 arc_p = (arc_c >> 1);
7403 arc_size = 0;
7404
7405 /* Set min to 1/2 of arc_c_min */
7406 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
7407 /* Initialize maximum observed usage to zero */
7408 arc_meta_max = 0;
7409 /*
7410 * Set arc_meta_limit to a percent of arc_c_max with a floor of
7411 * arc_meta_min, and a ceiling of arc_c_max.
7412 */
7413 percent = MIN(zfs_arc_meta_limit_percent, 100);
7414 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
7415 percent = MIN(zfs_arc_dnode_limit_percent, 100);
7416 arc_dnode_limit = (percent * arc_meta_limit) / 100;
7417
7418 /* Apply user specified tunings */
7419 arc_tuning_update();
7420
7421 /* if kmem_flags are set, lets try to use less memory */
7422 if (kmem_debugging())
7423 arc_c = arc_c / 2;
7424 if (arc_c < arc_c_min)
7425 arc_c = arc_c_min;
7426
7427 arc_state_init();
7428 buf_init();
7429
7430 list_create(&arc_prune_list, sizeof (arc_prune_t),
7431 offsetof(arc_prune_t, p_node));
7432 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
7433
7434 arc_prune_taskq = taskq_create("arc_prune", max_ncpus, defclsyspri,
7435 max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
7436
7437 arc_reclaim_thread_exit = B_FALSE;
7438
7439 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7440 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7441
7442 if (arc_ksp != NULL) {
7443 arc_ksp->ks_data = &arc_stats;
7444 arc_ksp->ks_update = arc_kstat_update;
7445 kstat_install(arc_ksp);
7446 }
7447
7448 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
7449 TS_RUN, defclsyspri);
7450
7451 arc_dead = B_FALSE;
7452 arc_warm = B_FALSE;
7453
7454 /*
7455 * Calculate maximum amount of dirty data per pool.
7456 *
7457 * If it has been set by a module parameter, take that.
7458 * Otherwise, use a percentage of physical memory defined by
7459 * zfs_dirty_data_max_percent (default 10%) with a cap at
7460 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
7461 */
7462 if (zfs_dirty_data_max_max == 0)
7463 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
7464 allmem * zfs_dirty_data_max_max_percent / 100);
7465
7466 if (zfs_dirty_data_max == 0) {
7467 zfs_dirty_data_max = allmem *
7468 zfs_dirty_data_max_percent / 100;
7469 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7470 zfs_dirty_data_max_max);
7471 }
7472 }
7473
7474 void
7475 arc_fini(void)
7476 {
7477 arc_prune_t *p;
7478
7479 #ifdef _KERNEL
7480 spl_unregister_shrinker(&arc_shrinker);
7481 #endif /* _KERNEL */
7482
7483 mutex_enter(&arc_reclaim_lock);
7484 arc_reclaim_thread_exit = B_TRUE;
7485 /*
7486 * The reclaim thread will set arc_reclaim_thread_exit back to
7487 * B_FALSE when it is finished exiting; we're waiting for that.
7488 */
7489 while (arc_reclaim_thread_exit) {
7490 cv_signal(&arc_reclaim_thread_cv);
7491 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
7492 }
7493 mutex_exit(&arc_reclaim_lock);
7494
7495 /* Use B_TRUE to ensure *all* buffers are evicted */
7496 arc_flush(NULL, B_TRUE);
7497
7498 arc_dead = B_TRUE;
7499
7500 if (arc_ksp != NULL) {
7501 kstat_delete(arc_ksp);
7502 arc_ksp = NULL;
7503 }
7504
7505 taskq_wait(arc_prune_taskq);
7506 taskq_destroy(arc_prune_taskq);
7507
7508 mutex_enter(&arc_prune_mtx);
7509 while ((p = list_head(&arc_prune_list)) != NULL) {
7510 list_remove(&arc_prune_list, p);
7511 refcount_remove(&p->p_refcnt, &arc_prune_list);
7512 refcount_destroy(&p->p_refcnt);
7513 kmem_free(p, sizeof (*p));
7514 }
7515 mutex_exit(&arc_prune_mtx);
7516
7517 list_destroy(&arc_prune_list);
7518 mutex_destroy(&arc_prune_mtx);
7519 mutex_destroy(&arc_reclaim_lock);
7520 cv_destroy(&arc_reclaim_thread_cv);
7521 cv_destroy(&arc_reclaim_waiters_cv);
7522
7523 arc_state_fini();
7524 buf_fini();
7525
7526 ASSERT0(arc_loaned_bytes);
7527 }
7528
7529 /*
7530 * Level 2 ARC
7531 *
7532 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7533 * It uses dedicated storage devices to hold cached data, which are populated
7534 * using large infrequent writes. The main role of this cache is to boost
7535 * the performance of random read workloads. The intended L2ARC devices
7536 * include short-stroked disks, solid state disks, and other media with
7537 * substantially faster read latency than disk.
7538 *
7539 * +-----------------------+
7540 * | ARC |
7541 * +-----------------------+
7542 * | ^ ^
7543 * | | |
7544 * l2arc_feed_thread() arc_read()
7545 * | | |
7546 * | l2arc read |
7547 * V | |
7548 * +---------------+ |
7549 * | L2ARC | |
7550 * +---------------+ |
7551 * | ^ |
7552 * l2arc_write() | |
7553 * | | |
7554 * V | |
7555 * +-------+ +-------+
7556 * | vdev | | vdev |
7557 * | cache | | cache |
7558 * +-------+ +-------+
7559 * +=========+ .-----.
7560 * : L2ARC : |-_____-|
7561 * : devices : | Disks |
7562 * +=========+ `-_____-'
7563 *
7564 * Read requests are satisfied from the following sources, in order:
7565 *
7566 * 1) ARC
7567 * 2) vdev cache of L2ARC devices
7568 * 3) L2ARC devices
7569 * 4) vdev cache of disks
7570 * 5) disks
7571 *
7572 * Some L2ARC device types exhibit extremely slow write performance.
7573 * To accommodate for this there are some significant differences between
7574 * the L2ARC and traditional cache design:
7575 *
7576 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
7577 * the ARC behave as usual, freeing buffers and placing headers on ghost
7578 * lists. The ARC does not send buffers to the L2ARC during eviction as
7579 * this would add inflated write latencies for all ARC memory pressure.
7580 *
7581 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7582 * It does this by periodically scanning buffers from the eviction-end of
7583 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
7584 * not already there. It scans until a headroom of buffers is satisfied,
7585 * which itself is a buffer for ARC eviction. If a compressible buffer is
7586 * found during scanning and selected for writing to an L2ARC device, we
7587 * temporarily boost scanning headroom during the next scan cycle to make
7588 * sure we adapt to compression effects (which might significantly reduce
7589 * the data volume we write to L2ARC). The thread that does this is
7590 * l2arc_feed_thread(), illustrated below; example sizes are included to
7591 * provide a better sense of ratio than this diagram:
7592 *
7593 * head --> tail
7594 * +---------------------+----------+
7595 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
7596 * +---------------------+----------+ | o L2ARC eligible
7597 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
7598 * +---------------------+----------+ |
7599 * 15.9 Gbytes ^ 32 Mbytes |
7600 * headroom |
7601 * l2arc_feed_thread()
7602 * |
7603 * l2arc write hand <--[oooo]--'
7604 * | 8 Mbyte
7605 * | write max
7606 * V
7607 * +==============================+
7608 * L2ARC dev |####|#|###|###| |####| ... |
7609 * +==============================+
7610 * 32 Gbytes
7611 *
7612 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7613 * evicted, then the L2ARC has cached a buffer much sooner than it probably
7614 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
7615 * safe to say that this is an uncommon case, since buffers at the end of
7616 * the ARC lists have moved there due to inactivity.
7617 *
7618 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7619 * then the L2ARC simply misses copying some buffers. This serves as a
7620 * pressure valve to prevent heavy read workloads from both stalling the ARC
7621 * with waits and clogging the L2ARC with writes. This also helps prevent
7622 * the potential for the L2ARC to churn if it attempts to cache content too
7623 * quickly, such as during backups of the entire pool.
7624 *
7625 * 5. After system boot and before the ARC has filled main memory, there are
7626 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7627 * lists can remain mostly static. Instead of searching from tail of these
7628 * lists as pictured, the l2arc_feed_thread() will search from the list heads
7629 * for eligible buffers, greatly increasing its chance of finding them.
7630 *
7631 * The L2ARC device write speed is also boosted during this time so that
7632 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
7633 * there are no L2ARC reads, and no fear of degrading read performance
7634 * through increased writes.
7635 *
7636 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7637 * the vdev queue can aggregate them into larger and fewer writes. Each
7638 * device is written to in a rotor fashion, sweeping writes through
7639 * available space then repeating.
7640 *
7641 * 7. The L2ARC does not store dirty content. It never needs to flush
7642 * write buffers back to disk based storage.
7643 *
7644 * 8. If an ARC buffer is written (and dirtied) which also exists in the
7645 * L2ARC, the now stale L2ARC buffer is immediately dropped.
7646 *
7647 * The performance of the L2ARC can be tweaked by a number of tunables, which
7648 * may be necessary for different workloads:
7649 *
7650 * l2arc_write_max max write bytes per interval
7651 * l2arc_write_boost extra write bytes during device warmup
7652 * l2arc_noprefetch skip caching prefetched buffers
7653 * l2arc_headroom number of max device writes to precache
7654 * l2arc_headroom_boost when we find compressed buffers during ARC
7655 * scanning, we multiply headroom by this
7656 * percentage factor for the next scan cycle,
7657 * since more compressed buffers are likely to
7658 * be present
7659 * l2arc_feed_secs seconds between L2ARC writing
7660 *
7661 * Tunables may be removed or added as future performance improvements are
7662 * integrated, and also may become zpool properties.
7663 *
7664 * There are three key functions that control how the L2ARC warms up:
7665 *
7666 * l2arc_write_eligible() check if a buffer is eligible to cache
7667 * l2arc_write_size() calculate how much to write
7668 * l2arc_write_interval() calculate sleep delay between writes
7669 *
7670 * These three functions determine what to write, how much, and how quickly
7671 * to send writes.
7672 */
7673
7674 static boolean_t
7675 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
7676 {
7677 /*
7678 * A buffer is *not* eligible for the L2ARC if it:
7679 * 1. belongs to a different spa.
7680 * 2. is already cached on the L2ARC.
7681 * 3. has an I/O in progress (it may be an incomplete read).
7682 * 4. is flagged not eligible (zfs property).
7683 */
7684 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
7685 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
7686 return (B_FALSE);
7687
7688 return (B_TRUE);
7689 }
7690
7691 static uint64_t
7692 l2arc_write_size(void)
7693 {
7694 uint64_t size;
7695
7696 /*
7697 * Make sure our globals have meaningful values in case the user
7698 * altered them.
7699 */
7700 size = l2arc_write_max;
7701 if (size == 0) {
7702 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
7703 "be greater than zero, resetting it to the default (%d)",
7704 L2ARC_WRITE_SIZE);
7705 size = l2arc_write_max = L2ARC_WRITE_SIZE;
7706 }
7707
7708 if (arc_warm == B_FALSE)
7709 size += l2arc_write_boost;
7710
7711 return (size);
7712
7713 }
7714
7715 static clock_t
7716 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
7717 {
7718 clock_t interval, next, now;
7719
7720 /*
7721 * If the ARC lists are busy, increase our write rate; if the
7722 * lists are stale, idle back. This is achieved by checking
7723 * how much we previously wrote - if it was more than half of
7724 * what we wanted, schedule the next write much sooner.
7725 */
7726 if (l2arc_feed_again && wrote > (wanted / 2))
7727 interval = (hz * l2arc_feed_min_ms) / 1000;
7728 else
7729 interval = hz * l2arc_feed_secs;
7730
7731 now = ddi_get_lbolt();
7732 next = MAX(now, MIN(now + interval, began + interval));
7733
7734 return (next);
7735 }
7736
7737 /*
7738 * Cycle through L2ARC devices. This is how L2ARC load balances.
7739 * If a device is returned, this also returns holding the spa config lock.
7740 */
7741 static l2arc_dev_t *
7742 l2arc_dev_get_next(void)
7743 {
7744 l2arc_dev_t *first, *next = NULL;
7745
7746 /*
7747 * Lock out the removal of spas (spa_namespace_lock), then removal
7748 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
7749 * both locks will be dropped and a spa config lock held instead.
7750 */
7751 mutex_enter(&spa_namespace_lock);
7752 mutex_enter(&l2arc_dev_mtx);
7753
7754 /* if there are no vdevs, there is nothing to do */
7755 if (l2arc_ndev == 0)
7756 goto out;
7757
7758 first = NULL;
7759 next = l2arc_dev_last;
7760 do {
7761 /* loop around the list looking for a non-faulted vdev */
7762 if (next == NULL) {
7763 next = list_head(l2arc_dev_list);
7764 } else {
7765 next = list_next(l2arc_dev_list, next);
7766 if (next == NULL)
7767 next = list_head(l2arc_dev_list);
7768 }
7769
7770 /* if we have come back to the start, bail out */
7771 if (first == NULL)
7772 first = next;
7773 else if (next == first)
7774 break;
7775
7776 } while (vdev_is_dead(next->l2ad_vdev));
7777
7778 /* if we were unable to find any usable vdevs, return NULL */
7779 if (vdev_is_dead(next->l2ad_vdev))
7780 next = NULL;
7781
7782 l2arc_dev_last = next;
7783
7784 out:
7785 mutex_exit(&l2arc_dev_mtx);
7786
7787 /*
7788 * Grab the config lock to prevent the 'next' device from being
7789 * removed while we are writing to it.
7790 */
7791 if (next != NULL)
7792 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
7793 mutex_exit(&spa_namespace_lock);
7794
7795 return (next);
7796 }
7797
7798 /*
7799 * Free buffers that were tagged for destruction.
7800 */
7801 static void
7802 l2arc_do_free_on_write(void)
7803 {
7804 list_t *buflist;
7805 l2arc_data_free_t *df, *df_prev;
7806
7807 mutex_enter(&l2arc_free_on_write_mtx);
7808 buflist = l2arc_free_on_write;
7809
7810 for (df = list_tail(buflist); df; df = df_prev) {
7811 df_prev = list_prev(buflist, df);
7812 ASSERT3P(df->l2df_abd, !=, NULL);
7813 abd_free(df->l2df_abd);
7814 list_remove(buflist, df);
7815 kmem_free(df, sizeof (l2arc_data_free_t));
7816 }
7817
7818 mutex_exit(&l2arc_free_on_write_mtx);
7819 }
7820
7821 /*
7822 * A write to a cache device has completed. Update all headers to allow
7823 * reads from these buffers to begin.
7824 */
7825 static void
7826 l2arc_write_done(zio_t *zio)
7827 {
7828 l2arc_write_callback_t *cb;
7829 l2arc_dev_t *dev;
7830 list_t *buflist;
7831 arc_buf_hdr_t *head, *hdr, *hdr_prev;
7832 kmutex_t *hash_lock;
7833 int64_t bytes_dropped = 0;
7834
7835 cb = zio->io_private;
7836 ASSERT3P(cb, !=, NULL);
7837 dev = cb->l2wcb_dev;
7838 ASSERT3P(dev, !=, NULL);
7839 head = cb->l2wcb_head;
7840 ASSERT3P(head, !=, NULL);
7841 buflist = &dev->l2ad_buflist;
7842 ASSERT3P(buflist, !=, NULL);
7843 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
7844 l2arc_write_callback_t *, cb);
7845
7846 if (zio->io_error != 0)
7847 ARCSTAT_BUMP(arcstat_l2_writes_error);
7848
7849 /*
7850 * All writes completed, or an error was hit.
7851 */
7852 top:
7853 mutex_enter(&dev->l2ad_mtx);
7854 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
7855 hdr_prev = list_prev(buflist, hdr);
7856
7857 hash_lock = HDR_LOCK(hdr);
7858
7859 /*
7860 * We cannot use mutex_enter or else we can deadlock
7861 * with l2arc_write_buffers (due to swapping the order
7862 * the hash lock and l2ad_mtx are taken).
7863 */
7864 if (!mutex_tryenter(hash_lock)) {
7865 /*
7866 * Missed the hash lock. We must retry so we
7867 * don't leave the ARC_FLAG_L2_WRITING bit set.
7868 */
7869 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
7870
7871 /*
7872 * We don't want to rescan the headers we've
7873 * already marked as having been written out, so
7874 * we reinsert the head node so we can pick up
7875 * where we left off.
7876 */
7877 list_remove(buflist, head);
7878 list_insert_after(buflist, hdr, head);
7879
7880 mutex_exit(&dev->l2ad_mtx);
7881
7882 /*
7883 * We wait for the hash lock to become available
7884 * to try and prevent busy waiting, and increase
7885 * the chance we'll be able to acquire the lock
7886 * the next time around.
7887 */
7888 mutex_enter(hash_lock);
7889 mutex_exit(hash_lock);
7890 goto top;
7891 }
7892
7893 /*
7894 * We could not have been moved into the arc_l2c_only
7895 * state while in-flight due to our ARC_FLAG_L2_WRITING
7896 * bit being set. Let's just ensure that's being enforced.
7897 */
7898 ASSERT(HDR_HAS_L1HDR(hdr));
7899
7900 /*
7901 * Skipped - drop L2ARC entry and mark the header as no
7902 * longer L2 eligibile.
7903 */
7904 if (zio->io_error != 0) {
7905 /*
7906 * Error - drop L2ARC entry.
7907 */
7908 list_remove(buflist, hdr);
7909 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
7910
7911 ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
7912 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
7913
7914 bytes_dropped += arc_hdr_size(hdr);
7915 (void) refcount_remove_many(&dev->l2ad_alloc,
7916 arc_hdr_size(hdr), hdr);
7917 }
7918
7919 /*
7920 * Allow ARC to begin reads and ghost list evictions to
7921 * this L2ARC entry.
7922 */
7923 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
7924
7925 mutex_exit(hash_lock);
7926 }
7927
7928 atomic_inc_64(&l2arc_writes_done);
7929 list_remove(buflist, head);
7930 ASSERT(!HDR_HAS_L1HDR(head));
7931 kmem_cache_free(hdr_l2only_cache, head);
7932 mutex_exit(&dev->l2ad_mtx);
7933
7934 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
7935
7936 l2arc_do_free_on_write();
7937
7938 kmem_free(cb, sizeof (l2arc_write_callback_t));
7939 }
7940
7941 static int
7942 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
7943 {
7944 int ret;
7945 spa_t *spa = zio->io_spa;
7946 arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
7947 blkptr_t *bp = zio->io_bp;
7948 dsl_crypto_key_t *dck = NULL;
7949 uint8_t salt[ZIO_DATA_SALT_LEN];
7950 uint8_t iv[ZIO_DATA_IV_LEN];
7951 uint8_t mac[ZIO_DATA_MAC_LEN];
7952 boolean_t no_crypt = B_FALSE;
7953
7954 /*
7955 * ZIL data is never be written to the L2ARC, so we don't need
7956 * special handling for its unique MAC storage.
7957 */
7958 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
7959 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
7960 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
7961
7962 /*
7963 * If the data was encrypted, decrypt it now. Note that
7964 * we must check the bp here and not the hdr, since the
7965 * hdr does not have its encryption parameters updated
7966 * until arc_read_done().
7967 */
7968 if (BP_IS_ENCRYPTED(bp)) {
7969 abd_t *eabd = arc_get_data_abd(hdr,
7970 arc_hdr_size(hdr), hdr);
7971
7972 zio_crypt_decode_params_bp(bp, salt, iv);
7973 zio_crypt_decode_mac_bp(bp, mac);
7974
7975 ret = spa_keystore_lookup_key(spa,
7976 cb->l2rcb_zb.zb_objset, FTAG, &dck);
7977 if (ret != 0) {
7978 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
7979 goto error;
7980 }
7981
7982 ret = zio_do_crypt_abd(B_FALSE, &dck->dck_key,
7983 salt, BP_GET_TYPE(bp), iv, mac, HDR_GET_PSIZE(hdr),
7984 BP_SHOULD_BYTESWAP(bp), eabd, hdr->b_l1hdr.b_pabd,
7985 &no_crypt);
7986 if (ret != 0) {
7987 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
7988 spa_keystore_dsl_key_rele(spa, dck, FTAG);
7989 goto error;
7990 }
7991
7992 spa_keystore_dsl_key_rele(spa, dck, FTAG);
7993
7994 /*
7995 * If we actually performed decryption, replace b_pabd
7996 * with the decrypted data. Otherwise we can just throw
7997 * our decryption buffer away.
7998 */
7999 if (!no_crypt) {
8000 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8001 arc_hdr_size(hdr), hdr);
8002 hdr->b_l1hdr.b_pabd = eabd;
8003 zio->io_abd = eabd;
8004 } else {
8005 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8006 }
8007 }
8008
8009 /*
8010 * If the L2ARC block was compressed, but ARC compression
8011 * is disabled we decompress the data into a new buffer and
8012 * replace the existing data.
8013 */
8014 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8015 !HDR_COMPRESSION_ENABLED(hdr)) {
8016 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
8017 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
8018
8019 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8020 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
8021 HDR_GET_LSIZE(hdr));
8022 if (ret != 0) {
8023 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8024 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8025 goto error;
8026 }
8027
8028 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8029 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8030 arc_hdr_size(hdr), hdr);
8031 hdr->b_l1hdr.b_pabd = cabd;
8032 zio->io_abd = cabd;
8033 zio->io_size = HDR_GET_LSIZE(hdr);
8034 }
8035
8036 return (0);
8037
8038 error:
8039 return (ret);
8040 }
8041
8042
8043 /*
8044 * A read to a cache device completed. Validate buffer contents before
8045 * handing over to the regular ARC routines.
8046 */
8047 static void
8048 l2arc_read_done(zio_t *zio)
8049 {
8050 int tfm_error = 0;
8051 l2arc_read_callback_t *cb;
8052 arc_buf_hdr_t *hdr;
8053 kmutex_t *hash_lock;
8054 boolean_t valid_cksum, using_rdata;
8055
8056 ASSERT3P(zio->io_vd, !=, NULL);
8057 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8058
8059 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8060
8061 cb = zio->io_private;
8062 ASSERT3P(cb, !=, NULL);
8063 hdr = cb->l2rcb_hdr;
8064 ASSERT3P(hdr, !=, NULL);
8065
8066 hash_lock = HDR_LOCK(hdr);
8067 mutex_enter(hash_lock);
8068 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8069
8070 /*
8071 * If the data was read into a temporary buffer,
8072 * move it and free the buffer.
8073 */
8074 if (cb->l2rcb_abd != NULL) {
8075 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8076 if (zio->io_error == 0) {
8077 abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
8078 arc_hdr_size(hdr));
8079 }
8080
8081 /*
8082 * The following must be done regardless of whether
8083 * there was an error:
8084 * - free the temporary buffer
8085 * - point zio to the real ARC buffer
8086 * - set zio size accordingly
8087 * These are required because zio is either re-used for
8088 * an I/O of the block in the case of the error
8089 * or the zio is passed to arc_read_done() and it
8090 * needs real data.
8091 */
8092 abd_free(cb->l2rcb_abd);
8093 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8094
8095 if (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8096 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)) {
8097 ASSERT(HDR_HAS_RABD(hdr));
8098 zio->io_abd = zio->io_orig_abd =
8099 hdr->b_crypt_hdr.b_rabd;
8100 } else {
8101 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8102 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8103 }
8104 }
8105
8106 ASSERT3P(zio->io_abd, !=, NULL);
8107
8108 /*
8109 * Check this survived the L2ARC journey.
8110 */
8111 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8112 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8113 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
8114 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
8115
8116 valid_cksum = arc_cksum_is_equal(hdr, zio);
8117 using_rdata = (HDR_HAS_RABD(hdr) &&
8118 zio->io_abd == hdr->b_crypt_hdr.b_rabd);
8119
8120 /*
8121 * b_rabd will always match the data as it exists on disk if it is
8122 * being used. Therefore if we are reading into b_rabd we do not
8123 * attempt to untransform the data.
8124 */
8125 if (valid_cksum && !using_rdata)
8126 tfm_error = l2arc_untransform(zio, cb);
8127
8128 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8129 !HDR_L2_EVICTED(hdr)) {
8130 mutex_exit(hash_lock);
8131 zio->io_private = hdr;
8132 arc_read_done(zio);
8133 } else {
8134 mutex_exit(hash_lock);
8135 /*
8136 * Buffer didn't survive caching. Increment stats and
8137 * reissue to the original storage device.
8138 */
8139 if (zio->io_error != 0) {
8140 ARCSTAT_BUMP(arcstat_l2_io_error);
8141 } else {
8142 zio->io_error = SET_ERROR(EIO);
8143 }
8144 if (!valid_cksum || tfm_error != 0)
8145 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8146
8147 /*
8148 * If there's no waiter, issue an async i/o to the primary
8149 * storage now. If there *is* a waiter, the caller must
8150 * issue the i/o in a context where it's OK to block.
8151 */
8152 if (zio->io_waiter == NULL) {
8153 zio_t *pio = zio_unique_parent(zio);
8154 void *abd = (using_rdata) ?
8155 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
8156
8157 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8158
8159 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
8160 abd, zio->io_size, arc_read_done,
8161 hdr, zio->io_priority, cb->l2rcb_flags,
8162 &cb->l2rcb_zb));
8163 }
8164 }
8165
8166 kmem_free(cb, sizeof (l2arc_read_callback_t));
8167 }
8168
8169 /*
8170 * This is the list priority from which the L2ARC will search for pages to
8171 * cache. This is used within loops (0..3) to cycle through lists in the
8172 * desired order. This order can have a significant effect on cache
8173 * performance.
8174 *
8175 * Currently the metadata lists are hit first, MFU then MRU, followed by
8176 * the data lists. This function returns a locked list, and also returns
8177 * the lock pointer.
8178 */
8179 static multilist_sublist_t *
8180 l2arc_sublist_lock(int list_num)
8181 {
8182 multilist_t *ml = NULL;
8183 unsigned int idx;
8184
8185 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
8186
8187 switch (list_num) {
8188 case 0:
8189 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
8190 break;
8191 case 1:
8192 ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
8193 break;
8194 case 2:
8195 ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
8196 break;
8197 case 3:
8198 ml = arc_mru->arcs_list[ARC_BUFC_DATA];
8199 break;
8200 default:
8201 return (NULL);
8202 }
8203
8204 /*
8205 * Return a randomly-selected sublist. This is acceptable
8206 * because the caller feeds only a little bit of data for each
8207 * call (8MB). Subsequent calls will result in different
8208 * sublists being selected.
8209 */
8210 idx = multilist_get_random_index(ml);
8211 return (multilist_sublist_lock(ml, idx));
8212 }
8213
8214 /*
8215 * Evict buffers from the device write hand to the distance specified in
8216 * bytes. This distance may span populated buffers, it may span nothing.
8217 * This is clearing a region on the L2ARC device ready for writing.
8218 * If the 'all' boolean is set, every buffer is evicted.
8219 */
8220 static void
8221 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8222 {
8223 list_t *buflist;
8224 arc_buf_hdr_t *hdr, *hdr_prev;
8225 kmutex_t *hash_lock;
8226 uint64_t taddr;
8227
8228 buflist = &dev->l2ad_buflist;
8229
8230 if (!all && dev->l2ad_first) {
8231 /*
8232 * This is the first sweep through the device. There is
8233 * nothing to evict.
8234 */
8235 return;
8236 }
8237
8238 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
8239 /*
8240 * When nearing the end of the device, evict to the end
8241 * before the device write hand jumps to the start.
8242 */
8243 taddr = dev->l2ad_end;
8244 } else {
8245 taddr = dev->l2ad_hand + distance;
8246 }
8247 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8248 uint64_t, taddr, boolean_t, all);
8249
8250 top:
8251 mutex_enter(&dev->l2ad_mtx);
8252 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
8253 hdr_prev = list_prev(buflist, hdr);
8254
8255 hash_lock = HDR_LOCK(hdr);
8256
8257 /*
8258 * We cannot use mutex_enter or else we can deadlock
8259 * with l2arc_write_buffers (due to swapping the order
8260 * the hash lock and l2ad_mtx are taken).
8261 */
8262 if (!mutex_tryenter(hash_lock)) {
8263 /*
8264 * Missed the hash lock. Retry.
8265 */
8266 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
8267 mutex_exit(&dev->l2ad_mtx);
8268 mutex_enter(hash_lock);
8269 mutex_exit(hash_lock);
8270 goto top;
8271 }
8272
8273 /*
8274 * A header can't be on this list if it doesn't have L2 header.
8275 */
8276 ASSERT(HDR_HAS_L2HDR(hdr));
8277
8278 /* Ensure this header has finished being written. */
8279 ASSERT(!HDR_L2_WRITING(hdr));
8280 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
8281
8282 if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
8283 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
8284 /*
8285 * We've evicted to the target address,
8286 * or the end of the device.
8287 */
8288 mutex_exit(hash_lock);
8289 break;
8290 }
8291
8292 if (!HDR_HAS_L1HDR(hdr)) {
8293 ASSERT(!HDR_L2_READING(hdr));
8294 /*
8295 * This doesn't exist in the ARC. Destroy.
8296 * arc_hdr_destroy() will call list_remove()
8297 * and decrement arcstat_l2_lsize.
8298 */
8299 arc_change_state(arc_anon, hdr, hash_lock);
8300 arc_hdr_destroy(hdr);
8301 } else {
8302 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
8303 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
8304 /*
8305 * Invalidate issued or about to be issued
8306 * reads, since we may be about to write
8307 * over this location.
8308 */
8309 if (HDR_L2_READING(hdr)) {
8310 ARCSTAT_BUMP(arcstat_l2_evict_reading);
8311 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
8312 }
8313
8314 arc_hdr_l2hdr_destroy(hdr);
8315 }
8316 mutex_exit(hash_lock);
8317 }
8318 mutex_exit(&dev->l2ad_mtx);
8319 }
8320
8321 /*
8322 * Handle any abd transforms that might be required for writing to the L2ARC.
8323 * If successful, this function will always return an abd with the data
8324 * transformed as it is on disk in a new abd of asize bytes.
8325 */
8326 static int
8327 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
8328 abd_t **abd_out)
8329 {
8330 int ret;
8331 void *tmp = NULL;
8332 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
8333 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
8334 uint64_t psize = HDR_GET_PSIZE(hdr);
8335 uint64_t size = arc_hdr_size(hdr);
8336 boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
8337 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
8338 dsl_crypto_key_t *dck = NULL;
8339 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
8340 boolean_t no_crypt = B_FALSE;
8341
8342 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8343 !HDR_COMPRESSION_ENABLED(hdr)) ||
8344 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
8345 ASSERT3U(psize, <=, asize);
8346
8347 /*
8348 * If this data simply needs its own buffer, we simply allocate it
8349 * and copy the data. This may be done to elimiate a depedency on a
8350 * shared buffer or to reallocate the buffer to match asize.
8351 */
8352 if (HDR_HAS_RABD(hdr) && asize != psize) {
8353 ASSERT3U(size, ==, psize);
8354 to_write = abd_alloc_for_io(asize, ismd);
8355 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, size);
8356 if (size != asize)
8357 abd_zero_off(to_write, size, asize - size);
8358 goto out;
8359 }
8360
8361 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
8362 !HDR_ENCRYPTED(hdr)) {
8363 ASSERT3U(size, ==, psize);
8364 to_write = abd_alloc_for_io(asize, ismd);
8365 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
8366 if (size != asize)
8367 abd_zero_off(to_write, size, asize - size);
8368 goto out;
8369 }
8370
8371 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
8372 cabd = abd_alloc_for_io(asize, ismd);
8373 tmp = abd_borrow_buf(cabd, asize);
8374
8375 psize = zio_compress_data(compress, to_write, tmp, size);
8376 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr));
8377 if (psize < asize)
8378 bzero((char *)tmp + psize, asize - psize);
8379 psize = HDR_GET_PSIZE(hdr);
8380 abd_return_buf_copy(cabd, tmp, asize);
8381 to_write = cabd;
8382 }
8383
8384 if (HDR_ENCRYPTED(hdr)) {
8385 eabd = abd_alloc_for_io(asize, ismd);
8386
8387 /*
8388 * If the dataset was disowned before the buffer
8389 * made it to this point, the key to re-encrypt
8390 * it won't be available. In this case we simply
8391 * won't write the buffer to the L2ARC.
8392 */
8393 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
8394 FTAG, &dck);
8395 if (ret != 0)
8396 goto error;
8397
8398 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
8399 hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_ot,
8400 hdr->b_crypt_hdr.b_iv, mac, psize, bswap, to_write,
8401 eabd, &no_crypt);
8402 if (ret != 0)
8403 goto error;
8404
8405 if (no_crypt)
8406 abd_copy(eabd, to_write, psize);
8407
8408 if (psize != asize)
8409 abd_zero_off(eabd, psize, asize - psize);
8410
8411 /* assert that the MAC we got here matches the one we saved */
8412 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
8413 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8414
8415 if (to_write == cabd)
8416 abd_free(cabd);
8417
8418 to_write = eabd;
8419 }
8420
8421 out:
8422 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
8423 *abd_out = to_write;
8424 return (0);
8425
8426 error:
8427 if (dck != NULL)
8428 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8429 if (cabd != NULL)
8430 abd_free(cabd);
8431 if (eabd != NULL)
8432 abd_free(eabd);
8433
8434 *abd_out = NULL;
8435 return (ret);
8436 }
8437
8438 /*
8439 * Find and write ARC buffers to the L2ARC device.
8440 *
8441 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
8442 * for reading until they have completed writing.
8443 * The headroom_boost is an in-out parameter used to maintain headroom boost
8444 * state between calls to this function.
8445 *
8446 * Returns the number of bytes actually written (which may be smaller than
8447 * the delta by which the device hand has changed due to alignment).
8448 */
8449 static uint64_t
8450 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
8451 {
8452 arc_buf_hdr_t *hdr, *hdr_prev, *head;
8453 uint64_t write_asize, write_psize, write_lsize, headroom;
8454 boolean_t full;
8455 l2arc_write_callback_t *cb;
8456 zio_t *pio, *wzio;
8457 uint64_t guid = spa_load_guid(spa);
8458
8459 ASSERT3P(dev->l2ad_vdev, !=, NULL);
8460
8461 pio = NULL;
8462 write_lsize = write_asize = write_psize = 0;
8463 full = B_FALSE;
8464 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
8465 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
8466
8467 /*
8468 * Copy buffers for L2ARC writing.
8469 */
8470 for (int try = 0; try < L2ARC_FEED_TYPES; try++) {
8471 multilist_sublist_t *mls = l2arc_sublist_lock(try);
8472 uint64_t passed_sz = 0;
8473
8474 VERIFY3P(mls, !=, NULL);
8475
8476 /*
8477 * L2ARC fast warmup.
8478 *
8479 * Until the ARC is warm and starts to evict, read from the
8480 * head of the ARC lists rather than the tail.
8481 */
8482 if (arc_warm == B_FALSE)
8483 hdr = multilist_sublist_head(mls);
8484 else
8485 hdr = multilist_sublist_tail(mls);
8486
8487 headroom = target_sz * l2arc_headroom;
8488 if (zfs_compressed_arc_enabled)
8489 headroom = (headroom * l2arc_headroom_boost) / 100;
8490
8491 for (; hdr; hdr = hdr_prev) {
8492 kmutex_t *hash_lock;
8493 abd_t *to_write = NULL;
8494
8495 if (arc_warm == B_FALSE)
8496 hdr_prev = multilist_sublist_next(mls, hdr);
8497 else
8498 hdr_prev = multilist_sublist_prev(mls, hdr);
8499
8500 hash_lock = HDR_LOCK(hdr);
8501 if (!mutex_tryenter(hash_lock)) {
8502 /*
8503 * Skip this buffer rather than waiting.
8504 */
8505 continue;
8506 }
8507
8508 passed_sz += HDR_GET_LSIZE(hdr);
8509 if (passed_sz > headroom) {
8510 /*
8511 * Searched too far.
8512 */
8513 mutex_exit(hash_lock);
8514 break;
8515 }
8516
8517 if (!l2arc_write_eligible(guid, hdr)) {
8518 mutex_exit(hash_lock);
8519 continue;
8520 }
8521
8522 /*
8523 * We rely on the L1 portion of the header below, so
8524 * it's invalid for this header to have been evicted out
8525 * of the ghost cache, prior to being written out. The
8526 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8527 */
8528 ASSERT(HDR_HAS_L1HDR(hdr));
8529
8530 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8531 ASSERT3U(arc_hdr_size(hdr), >, 0);
8532 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8533 HDR_HAS_RABD(hdr));
8534 uint64_t psize = HDR_GET_PSIZE(hdr);
8535 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
8536 psize);
8537
8538 if ((write_asize + asize) > target_sz) {
8539 full = B_TRUE;
8540 mutex_exit(hash_lock);
8541 break;
8542 }
8543
8544 /*
8545 * We rely on the L1 portion of the header below, so
8546 * it's invalid for this header to have been evicted out
8547 * of the ghost cache, prior to being written out. The
8548 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8549 */
8550 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING);
8551 ASSERT(HDR_HAS_L1HDR(hdr));
8552
8553 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8554 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8555 HDR_HAS_RABD(hdr));
8556 ASSERT3U(arc_hdr_size(hdr), >, 0);
8557
8558 /*
8559 * If this header has b_rabd, we can use this since it
8560 * must always match the data exactly as it exists on
8561 * disk. Otherwise, the L2ARC can normally use the
8562 * hdr's data, but if we're sharing data between the
8563 * hdr and one of its bufs, L2ARC needs its own copy of
8564 * the data so that the ZIO below can't race with the
8565 * buf consumer. To ensure that this copy will be
8566 * available for the lifetime of the ZIO and be cleaned
8567 * up afterwards, we add it to the l2arc_free_on_write
8568 * queue. If we need to apply any transforms to the
8569 * data (compression, encryption) we will also need the
8570 * extra buffer.
8571 */
8572 if (HDR_HAS_RABD(hdr) && psize == asize) {
8573 to_write = hdr->b_crypt_hdr.b_rabd;
8574 } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
8575 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
8576 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
8577 psize == asize) {
8578 to_write = hdr->b_l1hdr.b_pabd;
8579 } else {
8580 int ret;
8581 arc_buf_contents_t type = arc_buf_type(hdr);
8582
8583 ret = l2arc_apply_transforms(spa, hdr, asize,
8584 &to_write);
8585 if (ret != 0) {
8586 arc_hdr_clear_flags(hdr,
8587 ARC_FLAG_L2_WRITING);
8588 mutex_exit(hash_lock);
8589 continue;
8590 }
8591
8592 l2arc_free_abd_on_write(to_write, asize, type);
8593 }
8594
8595 if (pio == NULL) {
8596 /*
8597 * Insert a dummy header on the buflist so
8598 * l2arc_write_done() can find where the
8599 * write buffers begin without searching.
8600 */
8601 mutex_enter(&dev->l2ad_mtx);
8602 list_insert_head(&dev->l2ad_buflist, head);
8603 mutex_exit(&dev->l2ad_mtx);
8604
8605 cb = kmem_alloc(
8606 sizeof (l2arc_write_callback_t), KM_SLEEP);
8607 cb->l2wcb_dev = dev;
8608 cb->l2wcb_head = head;
8609 pio = zio_root(spa, l2arc_write_done, cb,
8610 ZIO_FLAG_CANFAIL);
8611 }
8612
8613 hdr->b_l2hdr.b_dev = dev;
8614 hdr->b_l2hdr.b_hits = 0;
8615
8616 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
8617 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR);
8618
8619 mutex_enter(&dev->l2ad_mtx);
8620 list_insert_head(&dev->l2ad_buflist, hdr);
8621 mutex_exit(&dev->l2ad_mtx);
8622
8623 (void) refcount_add_many(&dev->l2ad_alloc,
8624 arc_hdr_size(hdr), hdr);
8625
8626 wzio = zio_write_phys(pio, dev->l2ad_vdev,
8627 hdr->b_l2hdr.b_daddr, asize, to_write,
8628 ZIO_CHECKSUM_OFF, NULL, hdr,
8629 ZIO_PRIORITY_ASYNC_WRITE,
8630 ZIO_FLAG_CANFAIL, B_FALSE);
8631
8632 write_lsize += HDR_GET_LSIZE(hdr);
8633 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
8634 zio_t *, wzio);
8635
8636 write_psize += psize;
8637 write_asize += asize;
8638 dev->l2ad_hand += asize;
8639
8640 mutex_exit(hash_lock);
8641
8642 (void) zio_nowait(wzio);
8643 }
8644
8645 multilist_sublist_unlock(mls);
8646
8647 if (full == B_TRUE)
8648 break;
8649 }
8650
8651 /* No buffers selected for writing? */
8652 if (pio == NULL) {
8653 ASSERT0(write_lsize);
8654 ASSERT(!HDR_HAS_L1HDR(head));
8655 kmem_cache_free(hdr_l2only_cache, head);
8656 return (0);
8657 }
8658
8659 ASSERT3U(write_asize, <=, target_sz);
8660 ARCSTAT_BUMP(arcstat_l2_writes_sent);
8661 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
8662 ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
8663 ARCSTAT_INCR(arcstat_l2_psize, write_psize);
8664 vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
8665
8666 /*
8667 * Bump device hand to the device start if it is approaching the end.
8668 * l2arc_evict() will already have evicted ahead for this case.
8669 */
8670 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
8671 dev->l2ad_hand = dev->l2ad_start;
8672 dev->l2ad_first = B_FALSE;
8673 }
8674
8675 dev->l2ad_writing = B_TRUE;
8676 (void) zio_wait(pio);
8677 dev->l2ad_writing = B_FALSE;
8678
8679 return (write_asize);
8680 }
8681
8682 /*
8683 * This thread feeds the L2ARC at regular intervals. This is the beating
8684 * heart of the L2ARC.
8685 */
8686 /* ARGSUSED */
8687 static void
8688 l2arc_feed_thread(void *unused)
8689 {
8690 callb_cpr_t cpr;
8691 l2arc_dev_t *dev;
8692 spa_t *spa;
8693 uint64_t size, wrote;
8694 clock_t begin, next = ddi_get_lbolt();
8695 fstrans_cookie_t cookie;
8696
8697 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
8698
8699 mutex_enter(&l2arc_feed_thr_lock);
8700
8701 cookie = spl_fstrans_mark();
8702 while (l2arc_thread_exit == 0) {
8703 CALLB_CPR_SAFE_BEGIN(&cpr);
8704 (void) cv_timedwait_sig(&l2arc_feed_thr_cv,
8705 &l2arc_feed_thr_lock, next);
8706 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
8707 next = ddi_get_lbolt() + hz;
8708
8709 /*
8710 * Quick check for L2ARC devices.
8711 */
8712 mutex_enter(&l2arc_dev_mtx);
8713 if (l2arc_ndev == 0) {
8714 mutex_exit(&l2arc_dev_mtx);
8715 continue;
8716 }
8717 mutex_exit(&l2arc_dev_mtx);
8718 begin = ddi_get_lbolt();
8719
8720 /*
8721 * This selects the next l2arc device to write to, and in
8722 * doing so the next spa to feed from: dev->l2ad_spa. This
8723 * will return NULL if there are now no l2arc devices or if
8724 * they are all faulted.
8725 *
8726 * If a device is returned, its spa's config lock is also
8727 * held to prevent device removal. l2arc_dev_get_next()
8728 * will grab and release l2arc_dev_mtx.
8729 */
8730 if ((dev = l2arc_dev_get_next()) == NULL)
8731 continue;
8732
8733 spa = dev->l2ad_spa;
8734 ASSERT3P(spa, !=, NULL);
8735
8736 /*
8737 * If the pool is read-only then force the feed thread to
8738 * sleep a little longer.
8739 */
8740 if (!spa_writeable(spa)) {
8741 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
8742 spa_config_exit(spa, SCL_L2ARC, dev);
8743 continue;
8744 }
8745
8746 /*
8747 * Avoid contributing to memory pressure.
8748 */
8749 if (arc_reclaim_needed()) {
8750 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
8751 spa_config_exit(spa, SCL_L2ARC, dev);
8752 continue;
8753 }
8754
8755 ARCSTAT_BUMP(arcstat_l2_feeds);
8756
8757 size = l2arc_write_size();
8758
8759 /*
8760 * Evict L2ARC buffers that will be overwritten.
8761 */
8762 l2arc_evict(dev, size, B_FALSE);
8763
8764 /*
8765 * Write ARC buffers.
8766 */
8767 wrote = l2arc_write_buffers(spa, dev, size);
8768
8769 /*
8770 * Calculate interval between writes.
8771 */
8772 next = l2arc_write_interval(begin, size, wrote);
8773 spa_config_exit(spa, SCL_L2ARC, dev);
8774 }
8775 spl_fstrans_unmark(cookie);
8776
8777 l2arc_thread_exit = 0;
8778 cv_broadcast(&l2arc_feed_thr_cv);
8779 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
8780 thread_exit();
8781 }
8782
8783 boolean_t
8784 l2arc_vdev_present(vdev_t *vd)
8785 {
8786 l2arc_dev_t *dev;
8787
8788 mutex_enter(&l2arc_dev_mtx);
8789 for (dev = list_head(l2arc_dev_list); dev != NULL;
8790 dev = list_next(l2arc_dev_list, dev)) {
8791 if (dev->l2ad_vdev == vd)
8792 break;
8793 }
8794 mutex_exit(&l2arc_dev_mtx);
8795
8796 return (dev != NULL);
8797 }
8798
8799 /*
8800 * Add a vdev for use by the L2ARC. By this point the spa has already
8801 * validated the vdev and opened it.
8802 */
8803 void
8804 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
8805 {
8806 l2arc_dev_t *adddev;
8807
8808 ASSERT(!l2arc_vdev_present(vd));
8809
8810 /*
8811 * Create a new l2arc device entry.
8812 */
8813 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
8814 adddev->l2ad_spa = spa;
8815 adddev->l2ad_vdev = vd;
8816 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
8817 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
8818 adddev->l2ad_hand = adddev->l2ad_start;
8819 adddev->l2ad_first = B_TRUE;
8820 adddev->l2ad_writing = B_FALSE;
8821 list_link_init(&adddev->l2ad_node);
8822
8823 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
8824 /*
8825 * This is a list of all ARC buffers that are still valid on the
8826 * device.
8827 */
8828 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
8829 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
8830
8831 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
8832 refcount_create(&adddev->l2ad_alloc);
8833
8834 /*
8835 * Add device to global list
8836 */
8837 mutex_enter(&l2arc_dev_mtx);
8838 list_insert_head(l2arc_dev_list, adddev);
8839 atomic_inc_64(&l2arc_ndev);
8840 mutex_exit(&l2arc_dev_mtx);
8841 }
8842
8843 /*
8844 * Remove a vdev from the L2ARC.
8845 */
8846 void
8847 l2arc_remove_vdev(vdev_t *vd)
8848 {
8849 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
8850
8851 /*
8852 * Find the device by vdev
8853 */
8854 mutex_enter(&l2arc_dev_mtx);
8855 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
8856 nextdev = list_next(l2arc_dev_list, dev);
8857 if (vd == dev->l2ad_vdev) {
8858 remdev = dev;
8859 break;
8860 }
8861 }
8862 ASSERT3P(remdev, !=, NULL);
8863
8864 /*
8865 * Remove device from global list
8866 */
8867 list_remove(l2arc_dev_list, remdev);
8868 l2arc_dev_last = NULL; /* may have been invalidated */
8869 atomic_dec_64(&l2arc_ndev);
8870 mutex_exit(&l2arc_dev_mtx);
8871
8872 /*
8873 * Clear all buflists and ARC references. L2ARC device flush.
8874 */
8875 l2arc_evict(remdev, 0, B_TRUE);
8876 list_destroy(&remdev->l2ad_buflist);
8877 mutex_destroy(&remdev->l2ad_mtx);
8878 refcount_destroy(&remdev->l2ad_alloc);
8879 kmem_free(remdev, sizeof (l2arc_dev_t));
8880 }
8881
8882 void
8883 l2arc_init(void)
8884 {
8885 l2arc_thread_exit = 0;
8886 l2arc_ndev = 0;
8887 l2arc_writes_sent = 0;
8888 l2arc_writes_done = 0;
8889
8890 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
8891 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
8892 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
8893 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
8894
8895 l2arc_dev_list = &L2ARC_dev_list;
8896 l2arc_free_on_write = &L2ARC_free_on_write;
8897 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
8898 offsetof(l2arc_dev_t, l2ad_node));
8899 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
8900 offsetof(l2arc_data_free_t, l2df_list_node));
8901 }
8902
8903 void
8904 l2arc_fini(void)
8905 {
8906 /*
8907 * This is called from dmu_fini(), which is called from spa_fini();
8908 * Because of this, we can assume that all l2arc devices have
8909 * already been removed when the pools themselves were removed.
8910 */
8911
8912 l2arc_do_free_on_write();
8913
8914 mutex_destroy(&l2arc_feed_thr_lock);
8915 cv_destroy(&l2arc_feed_thr_cv);
8916 mutex_destroy(&l2arc_dev_mtx);
8917 mutex_destroy(&l2arc_free_on_write_mtx);
8918
8919 list_destroy(l2arc_dev_list);
8920 list_destroy(l2arc_free_on_write);
8921 }
8922
8923 void
8924 l2arc_start(void)
8925 {
8926 if (!(spa_mode_global & FWRITE))
8927 return;
8928
8929 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
8930 TS_RUN, defclsyspri);
8931 }
8932
8933 void
8934 l2arc_stop(void)
8935 {
8936 if (!(spa_mode_global & FWRITE))
8937 return;
8938
8939 mutex_enter(&l2arc_feed_thr_lock);
8940 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
8941 l2arc_thread_exit = 1;
8942 while (l2arc_thread_exit != 0)
8943 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
8944 mutex_exit(&l2arc_feed_thr_lock);
8945 }
8946
8947 #if defined(_KERNEL) && defined(HAVE_SPL)
8948 EXPORT_SYMBOL(arc_buf_size);
8949 EXPORT_SYMBOL(arc_write);
8950 EXPORT_SYMBOL(arc_read);
8951 EXPORT_SYMBOL(arc_buf_info);
8952 EXPORT_SYMBOL(arc_getbuf_func);
8953 EXPORT_SYMBOL(arc_add_prune_callback);
8954 EXPORT_SYMBOL(arc_remove_prune_callback);
8955
8956 /* BEGIN CSTYLED */
8957 module_param(zfs_arc_min, ulong, 0644);
8958 MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
8959
8960 module_param(zfs_arc_max, ulong, 0644);
8961 MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
8962
8963 module_param(zfs_arc_meta_limit, ulong, 0644);
8964 MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
8965
8966 module_param(zfs_arc_meta_limit_percent, ulong, 0644);
8967 MODULE_PARM_DESC(zfs_arc_meta_limit_percent,
8968 "Percent of arc size for arc meta limit");
8969
8970 module_param(zfs_arc_meta_min, ulong, 0644);
8971 MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
8972
8973 module_param(zfs_arc_meta_prune, int, 0644);
8974 MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
8975
8976 module_param(zfs_arc_meta_adjust_restarts, int, 0644);
8977 MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
8978 "Limit number of restarts in arc_adjust_meta");
8979
8980 module_param(zfs_arc_meta_strategy, int, 0644);
8981 MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
8982
8983 module_param(zfs_arc_grow_retry, int, 0644);
8984 MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
8985
8986 module_param(zfs_arc_p_aggressive_disable, int, 0644);
8987 MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
8988
8989 module_param(zfs_arc_p_dampener_disable, int, 0644);
8990 MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
8991
8992 module_param(zfs_arc_shrink_shift, int, 0644);
8993 MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
8994
8995 module_param(zfs_arc_pc_percent, uint, 0644);
8996 MODULE_PARM_DESC(zfs_arc_pc_percent,
8997 "Percent of pagecache to reclaim arc to");
8998
8999 module_param(zfs_arc_p_min_shift, int, 0644);
9000 MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
9001
9002 module_param(zfs_arc_average_blocksize, int, 0444);
9003 MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
9004
9005 module_param(zfs_compressed_arc_enabled, int, 0644);
9006 MODULE_PARM_DESC(zfs_compressed_arc_enabled, "Disable compressed arc buffers");
9007
9008 module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
9009 MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
9010
9011 module_param(l2arc_write_max, ulong, 0644);
9012 MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
9013
9014 module_param(l2arc_write_boost, ulong, 0644);
9015 MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
9016
9017 module_param(l2arc_headroom, ulong, 0644);
9018 MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
9019
9020 module_param(l2arc_headroom_boost, ulong, 0644);
9021 MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
9022
9023 module_param(l2arc_feed_secs, ulong, 0644);
9024 MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
9025
9026 module_param(l2arc_feed_min_ms, ulong, 0644);
9027 MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
9028
9029 module_param(l2arc_noprefetch, int, 0644);
9030 MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
9031
9032 module_param(l2arc_feed_again, int, 0644);
9033 MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
9034
9035 module_param(l2arc_norw, int, 0644);
9036 MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
9037
9038 module_param(zfs_arc_lotsfree_percent, int, 0644);
9039 MODULE_PARM_DESC(zfs_arc_lotsfree_percent,
9040 "System free memory I/O throttle in bytes");
9041
9042 module_param(zfs_arc_sys_free, ulong, 0644);
9043 MODULE_PARM_DESC(zfs_arc_sys_free, "System free memory target size in bytes");
9044
9045 module_param(zfs_arc_dnode_limit, ulong, 0644);
9046 MODULE_PARM_DESC(zfs_arc_dnode_limit, "Minimum bytes of dnodes in arc");
9047
9048 module_param(zfs_arc_dnode_limit_percent, ulong, 0644);
9049 MODULE_PARM_DESC(zfs_arc_dnode_limit_percent,
9050 "Percent of ARC meta buffers for dnodes");
9051
9052 module_param(zfs_arc_dnode_reduce_percent, ulong, 0644);
9053 MODULE_PARM_DESC(zfs_arc_dnode_reduce_percent,
9054 "Percentage of excess dnodes to try to unpin");
9055 /* END CSTYLED */
9056 #endif