]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/arc.c
Remove bcopy(), bzero(), bcmp()
[mirror_zfs.git] / module / zfs / arc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2018, Joyent, Inc.
24 * Copyright (c) 2011, 2020, Delphix. All rights reserved.
25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28 * Copyright (c) 2020, George Amanakis. All rights reserved.
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 * Copyright (c) 2020, The FreeBSD Foundation [1]
32 *
33 * [1] Portions of this software were developed by Allan Jude
34 * under sponsorship from the FreeBSD Foundation.
35 */
36
37 /*
38 * DVA-based Adjustable Replacement Cache
39 *
40 * While much of the theory of operation used here is
41 * based on the self-tuning, low overhead replacement cache
42 * presented by Megiddo and Modha at FAST 2003, there are some
43 * significant differences:
44 *
45 * 1. The Megiddo and Modha model assumes any page is evictable.
46 * Pages in its cache cannot be "locked" into memory. This makes
47 * the eviction algorithm simple: evict the last page in the list.
48 * This also make the performance characteristics easy to reason
49 * about. Our cache is not so simple. At any given moment, some
50 * subset of the blocks in the cache are un-evictable because we
51 * have handed out a reference to them. Blocks are only evictable
52 * when there are no external references active. This makes
53 * eviction far more problematic: we choose to evict the evictable
54 * blocks that are the "lowest" in the list.
55 *
56 * There are times when it is not possible to evict the requested
57 * space. In these circumstances we are unable to adjust the cache
58 * size. To prevent the cache growing unbounded at these times we
59 * implement a "cache throttle" that slows the flow of new data
60 * into the cache until we can make space available.
61 *
62 * 2. The Megiddo and Modha model assumes a fixed cache size.
63 * Pages are evicted when the cache is full and there is a cache
64 * miss. Our model has a variable sized cache. It grows with
65 * high use, but also tries to react to memory pressure from the
66 * operating system: decreasing its size when system memory is
67 * tight.
68 *
69 * 3. The Megiddo and Modha model assumes a fixed page size. All
70 * elements of the cache are therefore exactly the same size. So
71 * when adjusting the cache size following a cache miss, its simply
72 * a matter of choosing a single page to evict. In our model, we
73 * have variable sized cache blocks (ranging from 512 bytes to
74 * 128K bytes). We therefore choose a set of blocks to evict to make
75 * space for a cache miss that approximates as closely as possible
76 * the space used by the new block.
77 *
78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
79 * by N. Megiddo & D. Modha, FAST 2003
80 */
81
82 /*
83 * The locking model:
84 *
85 * A new reference to a cache buffer can be obtained in two
86 * ways: 1) via a hash table lookup using the DVA as a key,
87 * or 2) via one of the ARC lists. The arc_read() interface
88 * uses method 1, while the internal ARC algorithms for
89 * adjusting the cache use method 2. We therefore provide two
90 * types of locks: 1) the hash table lock array, and 2) the
91 * ARC list locks.
92 *
93 * Buffers do not have their own mutexes, rather they rely on the
94 * hash table mutexes for the bulk of their protection (i.e. most
95 * fields in the arc_buf_hdr_t are protected by these mutexes).
96 *
97 * buf_hash_find() returns the appropriate mutex (held) when it
98 * locates the requested buffer in the hash table. It returns
99 * NULL for the mutex if the buffer was not in the table.
100 *
101 * buf_hash_remove() expects the appropriate hash mutex to be
102 * already held before it is invoked.
103 *
104 * Each ARC state also has a mutex which is used to protect the
105 * buffer list associated with the state. When attempting to
106 * obtain a hash table lock while holding an ARC list lock you
107 * must use: mutex_tryenter() to avoid deadlock. Also note that
108 * the active state mutex must be held before the ghost state mutex.
109 *
110 * It as also possible to register a callback which is run when the
111 * arc_meta_limit is reached and no buffers can be safely evicted. In
112 * this case the arc user should drop a reference on some arc buffers so
113 * they can be reclaimed and the arc_meta_limit honored. For example,
114 * when using the ZPL each dentry holds a references on a znode. These
115 * dentries must be pruned before the arc buffer holding the znode can
116 * be safely evicted.
117 *
118 * Note that the majority of the performance stats are manipulated
119 * with atomic operations.
120 *
121 * The L2ARC uses the l2ad_mtx on each vdev for the following:
122 *
123 * - L2ARC buflist creation
124 * - L2ARC buflist eviction
125 * - L2ARC write completion, which walks L2ARC buflists
126 * - ARC header destruction, as it removes from L2ARC buflists
127 * - ARC header release, as it removes from L2ARC buflists
128 */
129
130 /*
131 * ARC operation:
132 *
133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
134 * This structure can point either to a block that is still in the cache or to
135 * one that is only accessible in an L2 ARC device, or it can provide
136 * information about a block that was recently evicted. If a block is
137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
138 * information to retrieve it from the L2ARC device. This information is
139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
140 * that is in this state cannot access the data directly.
141 *
142 * Blocks that are actively being referenced or have not been evicted
143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
144 * the arc_buf_hdr_t that will point to the data block in memory. A block can
145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
148 *
149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
150 * ability to store the physical data (b_pabd) associated with the DVA of the
151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
152 * it will match its on-disk compression characteristics. This behavior can be
153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
154 * compressed ARC functionality is disabled, the b_pabd will point to an
155 * uncompressed version of the on-disk data.
156 *
157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
160 * consumer. The ARC will provide references to this data and will keep it
161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
162 * data block and will evict any arc_buf_t that is no longer referenced. The
163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
164 * "overhead_size" kstat.
165 *
166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
167 * compressed form. The typical case is that consumers will want uncompressed
168 * data, and when that happens a new data buffer is allocated where the data is
169 * decompressed for them to use. Currently the only consumer who wants
170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
172 * with the arc_buf_hdr_t.
173 *
174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
175 * first one is owned by a compressed send consumer (and therefore references
176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
177 * used by any other consumer (and has its own uncompressed copy of the data
178 * buffer).
179 *
180 * arc_buf_hdr_t
181 * +-----------+
182 * | fields |
183 * | common to |
184 * | L1- and |
185 * | L2ARC |
186 * +-----------+
187 * | l2arc_buf_hdr_t
188 * | |
189 * +-----------+
190 * | l1arc_buf_hdr_t
191 * | | arc_buf_t
192 * | b_buf +------------>+-----------+ arc_buf_t
193 * | b_pabd +-+ |b_next +---->+-----------+
194 * +-----------+ | |-----------| |b_next +-->NULL
195 * | |b_comp = T | +-----------+
196 * | |b_data +-+ |b_comp = F |
197 * | +-----------+ | |b_data +-+
198 * +->+------+ | +-----------+ |
199 * compressed | | | |
200 * data | |<--------------+ | uncompressed
201 * +------+ compressed, | data
202 * shared +-->+------+
203 * data | |
204 * | |
205 * +------+
206 *
207 * When a consumer reads a block, the ARC must first look to see if the
208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
209 * arc_buf_t and either copies uncompressed data into a new data buffer from an
210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
212 * hdr is compressed and the desired compression characteristics of the
213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
216 * be anywhere in the hdr's list.
217 *
218 * The diagram below shows an example of an uncompressed ARC hdr that is
219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
220 * the last element in the buf list):
221 *
222 * arc_buf_hdr_t
223 * +-----------+
224 * | |
225 * | |
226 * | |
227 * +-----------+
228 * l2arc_buf_hdr_t| |
229 * | |
230 * +-----------+
231 * l1arc_buf_hdr_t| |
232 * | | arc_buf_t (shared)
233 * | b_buf +------------>+---------+ arc_buf_t
234 * | | |b_next +---->+---------+
235 * | b_pabd +-+ |---------| |b_next +-->NULL
236 * +-----------+ | | | +---------+
237 * | |b_data +-+ | |
238 * | +---------+ | |b_data +-+
239 * +->+------+ | +---------+ |
240 * | | | |
241 * uncompressed | | | |
242 * data +------+ | |
243 * ^ +->+------+ |
244 * | uncompressed | | |
245 * | data | | |
246 * | +------+ |
247 * +---------------------------------+
248 *
249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
250 * since the physical block is about to be rewritten. The new data contents
251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
252 * it may compress the data before writing it to disk. The ARC will be called
253 * with the transformed data and will memcpy the transformed on-disk block into
254 * a newly allocated b_pabd. Writes are always done into buffers which have
255 * either been loaned (and hence are new and don't have other readers) or
256 * buffers which have been released (and hence have their own hdr, if there
257 * were originally other readers of the buf's original hdr). This ensures that
258 * the ARC only needs to update a single buf and its hdr after a write occurs.
259 *
260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
262 * that when compressed ARC is enabled that the L2ARC blocks are identical
263 * to the on-disk block in the main data pool. This provides a significant
264 * advantage since the ARC can leverage the bp's checksum when reading from the
265 * L2ARC to determine if the contents are valid. However, if the compressed
266 * ARC is disabled, then the L2ARC's block must be transformed to look
267 * like the physical block in the main data pool before comparing the
268 * checksum and determining its validity.
269 *
270 * The L1ARC has a slightly different system for storing encrypted data.
271 * Raw (encrypted + possibly compressed) data has a few subtle differences from
272 * data that is just compressed. The biggest difference is that it is not
273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
274 * The other difference is that encryption cannot be treated as a suggestion.
275 * If a caller would prefer compressed data, but they actually wind up with
276 * uncompressed data the worst thing that could happen is there might be a
277 * performance hit. If the caller requests encrypted data, however, we must be
278 * sure they actually get it or else secret information could be leaked. Raw
279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
280 * may have both an encrypted version and a decrypted version of its data at
281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
282 * copied out of this header. To avoid complications with b_pabd, raw buffers
283 * cannot be shared.
284 */
285
286 #include <sys/spa.h>
287 #include <sys/zio.h>
288 #include <sys/spa_impl.h>
289 #include <sys/zio_compress.h>
290 #include <sys/zio_checksum.h>
291 #include <sys/zfs_context.h>
292 #include <sys/arc.h>
293 #include <sys/zfs_refcount.h>
294 #include <sys/vdev.h>
295 #include <sys/vdev_impl.h>
296 #include <sys/dsl_pool.h>
297 #include <sys/multilist.h>
298 #include <sys/abd.h>
299 #include <sys/zil.h>
300 #include <sys/fm/fs/zfs.h>
301 #include <sys/callb.h>
302 #include <sys/kstat.h>
303 #include <sys/zthr.h>
304 #include <zfs_fletcher.h>
305 #include <sys/arc_impl.h>
306 #include <sys/trace_zfs.h>
307 #include <sys/aggsum.h>
308 #include <sys/wmsum.h>
309 #include <cityhash.h>
310 #include <sys/vdev_trim.h>
311 #include <sys/zfs_racct.h>
312 #include <sys/zstd/zstd.h>
313
314 #ifndef _KERNEL
315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
316 boolean_t arc_watch = B_FALSE;
317 #endif
318
319 /*
320 * This thread's job is to keep enough free memory in the system, by
321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
322 * arc_available_memory().
323 */
324 static zthr_t *arc_reap_zthr;
325
326 /*
327 * This thread's job is to keep arc_size under arc_c, by calling
328 * arc_evict(), which improves arc_is_overflowing().
329 */
330 static zthr_t *arc_evict_zthr;
331 static arc_buf_hdr_t **arc_state_evict_markers;
332 static int arc_state_evict_marker_count;
333
334 static kmutex_t arc_evict_lock;
335 static boolean_t arc_evict_needed = B_FALSE;
336
337 /*
338 * Count of bytes evicted since boot.
339 */
340 static uint64_t arc_evict_count;
341
342 /*
343 * List of arc_evict_waiter_t's, representing threads waiting for the
344 * arc_evict_count to reach specific values.
345 */
346 static list_t arc_evict_waiters;
347
348 /*
349 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
350 * the requested amount of data to be evicted. For example, by default for
351 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
352 * Since this is above 100%, it ensures that progress is made towards getting
353 * arc_size under arc_c. Since this is finite, it ensures that allocations
354 * can still happen, even during the potentially long time that arc_size is
355 * more than arc_c.
356 */
357 static int zfs_arc_eviction_pct = 200;
358
359 /*
360 * The number of headers to evict in arc_evict_state_impl() before
361 * dropping the sublist lock and evicting from another sublist. A lower
362 * value means we're more likely to evict the "correct" header (i.e. the
363 * oldest header in the arc state), but comes with higher overhead
364 * (i.e. more invocations of arc_evict_state_impl()).
365 */
366 static int zfs_arc_evict_batch_limit = 10;
367
368 /* number of seconds before growing cache again */
369 int arc_grow_retry = 5;
370
371 /*
372 * Minimum time between calls to arc_kmem_reap_soon().
373 */
374 static const int arc_kmem_cache_reap_retry_ms = 1000;
375
376 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
377 static int zfs_arc_overflow_shift = 8;
378
379 /* shift of arc_c for calculating both min and max arc_p */
380 static int arc_p_min_shift = 4;
381
382 /* log2(fraction of arc to reclaim) */
383 int arc_shrink_shift = 7;
384
385 /* percent of pagecache to reclaim arc to */
386 #ifdef _KERNEL
387 uint_t zfs_arc_pc_percent = 0;
388 #endif
389
390 /*
391 * log2(fraction of ARC which must be free to allow growing).
392 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
393 * when reading a new block into the ARC, we will evict an equal-sized block
394 * from the ARC.
395 *
396 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
397 * we will still not allow it to grow.
398 */
399 int arc_no_grow_shift = 5;
400
401
402 /*
403 * minimum lifespan of a prefetch block in clock ticks
404 * (initialized in arc_init())
405 */
406 static int arc_min_prefetch_ms;
407 static int arc_min_prescient_prefetch_ms;
408
409 /*
410 * If this percent of memory is free, don't throttle.
411 */
412 int arc_lotsfree_percent = 10;
413
414 /*
415 * The arc has filled available memory and has now warmed up.
416 */
417 boolean_t arc_warm;
418
419 /*
420 * These tunables are for performance analysis.
421 */
422 unsigned long zfs_arc_max = 0;
423 unsigned long zfs_arc_min = 0;
424 unsigned long zfs_arc_meta_limit = 0;
425 unsigned long zfs_arc_meta_min = 0;
426 static unsigned long zfs_arc_dnode_limit = 0;
427 static unsigned long zfs_arc_dnode_reduce_percent = 10;
428 static int zfs_arc_grow_retry = 0;
429 static int zfs_arc_shrink_shift = 0;
430 static int zfs_arc_p_min_shift = 0;
431 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
432
433 /*
434 * ARC dirty data constraints for arc_tempreserve_space() throttle:
435 * * total dirty data limit
436 * * anon block dirty limit
437 * * each pool's anon allowance
438 */
439 static const unsigned long zfs_arc_dirty_limit_percent = 50;
440 static const unsigned long zfs_arc_anon_limit_percent = 25;
441 static const unsigned long zfs_arc_pool_dirty_percent = 20;
442
443 /*
444 * Enable or disable compressed arc buffers.
445 */
446 int zfs_compressed_arc_enabled = B_TRUE;
447
448 /*
449 * ARC will evict meta buffers that exceed arc_meta_limit. This
450 * tunable make arc_meta_limit adjustable for different workloads.
451 */
452 static unsigned long zfs_arc_meta_limit_percent = 75;
453
454 /*
455 * Percentage that can be consumed by dnodes of ARC meta buffers.
456 */
457 static unsigned long zfs_arc_dnode_limit_percent = 10;
458
459 /*
460 * These tunables are Linux-specific
461 */
462 static unsigned long zfs_arc_sys_free = 0;
463 static int zfs_arc_min_prefetch_ms = 0;
464 static int zfs_arc_min_prescient_prefetch_ms = 0;
465 static int zfs_arc_p_dampener_disable = 1;
466 static int zfs_arc_meta_prune = 10000;
467 static int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
468 static int zfs_arc_meta_adjust_restarts = 4096;
469 static int zfs_arc_lotsfree_percent = 10;
470
471 /*
472 * Number of arc_prune threads
473 */
474 static int zfs_arc_prune_task_threads = 1;
475
476 /* The 6 states: */
477 arc_state_t ARC_anon;
478 arc_state_t ARC_mru;
479 arc_state_t ARC_mru_ghost;
480 arc_state_t ARC_mfu;
481 arc_state_t ARC_mfu_ghost;
482 arc_state_t ARC_l2c_only;
483
484 arc_stats_t arc_stats = {
485 { "hits", KSTAT_DATA_UINT64 },
486 { "misses", KSTAT_DATA_UINT64 },
487 { "demand_data_hits", KSTAT_DATA_UINT64 },
488 { "demand_data_misses", KSTAT_DATA_UINT64 },
489 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
490 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
491 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
492 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
493 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
494 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
495 { "mru_hits", KSTAT_DATA_UINT64 },
496 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
497 { "mfu_hits", KSTAT_DATA_UINT64 },
498 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
499 { "deleted", KSTAT_DATA_UINT64 },
500 { "mutex_miss", KSTAT_DATA_UINT64 },
501 { "access_skip", KSTAT_DATA_UINT64 },
502 { "evict_skip", KSTAT_DATA_UINT64 },
503 { "evict_not_enough", KSTAT_DATA_UINT64 },
504 { "evict_l2_cached", KSTAT_DATA_UINT64 },
505 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
506 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 },
507 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 },
508 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
509 { "evict_l2_skip", KSTAT_DATA_UINT64 },
510 { "hash_elements", KSTAT_DATA_UINT64 },
511 { "hash_elements_max", KSTAT_DATA_UINT64 },
512 { "hash_collisions", KSTAT_DATA_UINT64 },
513 { "hash_chains", KSTAT_DATA_UINT64 },
514 { "hash_chain_max", KSTAT_DATA_UINT64 },
515 { "p", KSTAT_DATA_UINT64 },
516 { "c", KSTAT_DATA_UINT64 },
517 { "c_min", KSTAT_DATA_UINT64 },
518 { "c_max", KSTAT_DATA_UINT64 },
519 { "size", KSTAT_DATA_UINT64 },
520 { "compressed_size", KSTAT_DATA_UINT64 },
521 { "uncompressed_size", KSTAT_DATA_UINT64 },
522 { "overhead_size", KSTAT_DATA_UINT64 },
523 { "hdr_size", KSTAT_DATA_UINT64 },
524 { "data_size", KSTAT_DATA_UINT64 },
525 { "metadata_size", KSTAT_DATA_UINT64 },
526 { "dbuf_size", KSTAT_DATA_UINT64 },
527 { "dnode_size", KSTAT_DATA_UINT64 },
528 { "bonus_size", KSTAT_DATA_UINT64 },
529 #if defined(COMPAT_FREEBSD11)
530 { "other_size", KSTAT_DATA_UINT64 },
531 #endif
532 { "anon_size", KSTAT_DATA_UINT64 },
533 { "anon_evictable_data", KSTAT_DATA_UINT64 },
534 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
535 { "mru_size", KSTAT_DATA_UINT64 },
536 { "mru_evictable_data", KSTAT_DATA_UINT64 },
537 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
538 { "mru_ghost_size", KSTAT_DATA_UINT64 },
539 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
540 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
541 { "mfu_size", KSTAT_DATA_UINT64 },
542 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
543 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
544 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
545 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
546 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
547 { "l2_hits", KSTAT_DATA_UINT64 },
548 { "l2_misses", KSTAT_DATA_UINT64 },
549 { "l2_prefetch_asize", KSTAT_DATA_UINT64 },
550 { "l2_mru_asize", KSTAT_DATA_UINT64 },
551 { "l2_mfu_asize", KSTAT_DATA_UINT64 },
552 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 },
553 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 },
554 { "l2_feeds", KSTAT_DATA_UINT64 },
555 { "l2_rw_clash", KSTAT_DATA_UINT64 },
556 { "l2_read_bytes", KSTAT_DATA_UINT64 },
557 { "l2_write_bytes", KSTAT_DATA_UINT64 },
558 { "l2_writes_sent", KSTAT_DATA_UINT64 },
559 { "l2_writes_done", KSTAT_DATA_UINT64 },
560 { "l2_writes_error", KSTAT_DATA_UINT64 },
561 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
562 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
563 { "l2_evict_reading", KSTAT_DATA_UINT64 },
564 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
565 { "l2_free_on_write", KSTAT_DATA_UINT64 },
566 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
567 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
568 { "l2_io_error", KSTAT_DATA_UINT64 },
569 { "l2_size", KSTAT_DATA_UINT64 },
570 { "l2_asize", KSTAT_DATA_UINT64 },
571 { "l2_hdr_size", KSTAT_DATA_UINT64 },
572 { "l2_log_blk_writes", KSTAT_DATA_UINT64 },
573 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 },
574 { "l2_log_blk_asize", KSTAT_DATA_UINT64 },
575 { "l2_log_blk_count", KSTAT_DATA_UINT64 },
576 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 },
577 { "l2_rebuild_success", KSTAT_DATA_UINT64 },
578 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 },
579 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 },
580 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 },
581 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 },
582 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 },
583 { "l2_rebuild_size", KSTAT_DATA_UINT64 },
584 { "l2_rebuild_asize", KSTAT_DATA_UINT64 },
585 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 },
586 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 },
587 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 },
588 { "memory_throttle_count", KSTAT_DATA_UINT64 },
589 { "memory_direct_count", KSTAT_DATA_UINT64 },
590 { "memory_indirect_count", KSTAT_DATA_UINT64 },
591 { "memory_all_bytes", KSTAT_DATA_UINT64 },
592 { "memory_free_bytes", KSTAT_DATA_UINT64 },
593 { "memory_available_bytes", KSTAT_DATA_INT64 },
594 { "arc_no_grow", KSTAT_DATA_UINT64 },
595 { "arc_tempreserve", KSTAT_DATA_UINT64 },
596 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
597 { "arc_prune", KSTAT_DATA_UINT64 },
598 { "arc_meta_used", KSTAT_DATA_UINT64 },
599 { "arc_meta_limit", KSTAT_DATA_UINT64 },
600 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
601 { "arc_meta_max", KSTAT_DATA_UINT64 },
602 { "arc_meta_min", KSTAT_DATA_UINT64 },
603 { "async_upgrade_sync", KSTAT_DATA_UINT64 },
604 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
605 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
606 { "arc_need_free", KSTAT_DATA_UINT64 },
607 { "arc_sys_free", KSTAT_DATA_UINT64 },
608 { "arc_raw_size", KSTAT_DATA_UINT64 },
609 { "cached_only_in_progress", KSTAT_DATA_UINT64 },
610 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 },
611 };
612
613 arc_sums_t arc_sums;
614
615 #define ARCSTAT_MAX(stat, val) { \
616 uint64_t m; \
617 while ((val) > (m = arc_stats.stat.value.ui64) && \
618 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
619 continue; \
620 }
621
622 /*
623 * We define a macro to allow ARC hits/misses to be easily broken down by
624 * two separate conditions, giving a total of four different subtypes for
625 * each of hits and misses (so eight statistics total).
626 */
627 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
628 if (cond1) { \
629 if (cond2) { \
630 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
631 } else { \
632 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
633 } \
634 } else { \
635 if (cond2) { \
636 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
637 } else { \
638 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
639 } \
640 }
641
642 /*
643 * This macro allows us to use kstats as floating averages. Each time we
644 * update this kstat, we first factor it and the update value by
645 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
646 * average. This macro assumes that integer loads and stores are atomic, but
647 * is not safe for multiple writers updating the kstat in parallel (only the
648 * last writer's update will remain).
649 */
650 #define ARCSTAT_F_AVG_FACTOR 3
651 #define ARCSTAT_F_AVG(stat, value) \
652 do { \
653 uint64_t x = ARCSTAT(stat); \
654 x = x - x / ARCSTAT_F_AVG_FACTOR + \
655 (value) / ARCSTAT_F_AVG_FACTOR; \
656 ARCSTAT(stat) = x; \
657 } while (0)
658
659 static kstat_t *arc_ksp;
660
661 /*
662 * There are several ARC variables that are critical to export as kstats --
663 * but we don't want to have to grovel around in the kstat whenever we wish to
664 * manipulate them. For these variables, we therefore define them to be in
665 * terms of the statistic variable. This assures that we are not introducing
666 * the possibility of inconsistency by having shadow copies of the variables,
667 * while still allowing the code to be readable.
668 */
669 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
670 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
671 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
672 /* max size for dnodes */
673 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit)
674 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
675 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */
676
677 hrtime_t arc_growtime;
678 list_t arc_prune_list;
679 kmutex_t arc_prune_mtx;
680 taskq_t *arc_prune_taskq;
681
682 #define GHOST_STATE(state) \
683 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
684 (state) == arc_l2c_only)
685
686 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
687 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
688 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
689 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
690 #define HDR_PRESCIENT_PREFETCH(hdr) \
691 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
692 #define HDR_COMPRESSION_ENABLED(hdr) \
693 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
694
695 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
696 #define HDR_L2_READING(hdr) \
697 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
698 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
699 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
700 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
701 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
702 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
703 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
704 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
705
706 #define HDR_ISTYPE_METADATA(hdr) \
707 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
708 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
709
710 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
711 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
712 #define HDR_HAS_RABD(hdr) \
713 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
714 (hdr)->b_crypt_hdr.b_rabd != NULL)
715 #define HDR_ENCRYPTED(hdr) \
716 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
717 #define HDR_AUTHENTICATED(hdr) \
718 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
719
720 /* For storing compression mode in b_flags */
721 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
722
723 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
724 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
725 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
726 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
727
728 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
729 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
730 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
731 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
732
733 /*
734 * Other sizes
735 */
736
737 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
738 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
739 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
740
741 /*
742 * Hash table routines
743 */
744
745 #define BUF_LOCKS 2048
746 typedef struct buf_hash_table {
747 uint64_t ht_mask;
748 arc_buf_hdr_t **ht_table;
749 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned;
750 } buf_hash_table_t;
751
752 static buf_hash_table_t buf_hash_table;
753
754 #define BUF_HASH_INDEX(spa, dva, birth) \
755 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
756 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
757 #define HDR_LOCK(hdr) \
758 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
759
760 uint64_t zfs_crc64_table[256];
761
762 /*
763 * Level 2 ARC
764 */
765
766 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
767 #define L2ARC_HEADROOM 2 /* num of writes */
768
769 /*
770 * If we discover during ARC scan any buffers to be compressed, we boost
771 * our headroom for the next scanning cycle by this percentage multiple.
772 */
773 #define L2ARC_HEADROOM_BOOST 200
774 #define L2ARC_FEED_SECS 1 /* caching interval secs */
775 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
776
777 /*
778 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
779 * and each of the state has two types: data and metadata.
780 */
781 #define L2ARC_FEED_TYPES 4
782
783 /* L2ARC Performance Tunables */
784 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
785 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
786 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
787 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
788 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
789 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
790 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
791 int l2arc_feed_again = B_TRUE; /* turbo warmup */
792 int l2arc_norw = B_FALSE; /* no reads during writes */
793 static int l2arc_meta_percent = 33; /* limit on headers size */
794
795 /*
796 * L2ARC Internals
797 */
798 static list_t L2ARC_dev_list; /* device list */
799 static list_t *l2arc_dev_list; /* device list pointer */
800 static kmutex_t l2arc_dev_mtx; /* device list mutex */
801 static l2arc_dev_t *l2arc_dev_last; /* last device used */
802 static list_t L2ARC_free_on_write; /* free after write buf list */
803 static list_t *l2arc_free_on_write; /* free after write list ptr */
804 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
805 static uint64_t l2arc_ndev; /* number of devices */
806
807 typedef struct l2arc_read_callback {
808 arc_buf_hdr_t *l2rcb_hdr; /* read header */
809 blkptr_t l2rcb_bp; /* original blkptr */
810 zbookmark_phys_t l2rcb_zb; /* original bookmark */
811 int l2rcb_flags; /* original flags */
812 abd_t *l2rcb_abd; /* temporary buffer */
813 } l2arc_read_callback_t;
814
815 typedef struct l2arc_data_free {
816 /* protected by l2arc_free_on_write_mtx */
817 abd_t *l2df_abd;
818 size_t l2df_size;
819 arc_buf_contents_t l2df_type;
820 list_node_t l2df_list_node;
821 } l2arc_data_free_t;
822
823 typedef enum arc_fill_flags {
824 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */
825 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */
826 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */
827 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */
828 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */
829 } arc_fill_flags_t;
830
831 typedef enum arc_ovf_level {
832 ARC_OVF_NONE, /* ARC within target size. */
833 ARC_OVF_SOME, /* ARC is slightly overflowed. */
834 ARC_OVF_SEVERE /* ARC is severely overflowed. */
835 } arc_ovf_level_t;
836
837 static kmutex_t l2arc_feed_thr_lock;
838 static kcondvar_t l2arc_feed_thr_cv;
839 static uint8_t l2arc_thread_exit;
840
841 static kmutex_t l2arc_rebuild_thr_lock;
842 static kcondvar_t l2arc_rebuild_thr_cv;
843
844 enum arc_hdr_alloc_flags {
845 ARC_HDR_ALLOC_RDATA = 0x1,
846 ARC_HDR_DO_ADAPT = 0x2,
847 ARC_HDR_USE_RESERVE = 0x4,
848 };
849
850
851 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, int);
852 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
853 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, int);
854 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
855 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
856 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
857 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
858 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int);
859 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
860 static void arc_buf_watch(arc_buf_t *);
861
862 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
863 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
864 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
865 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
866
867 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
868 static void l2arc_read_done(zio_t *);
869 static void l2arc_do_free_on_write(void);
870 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
871 boolean_t state_only);
872
873 #define l2arc_hdr_arcstats_increment(hdr) \
874 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
875 #define l2arc_hdr_arcstats_decrement(hdr) \
876 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
877 #define l2arc_hdr_arcstats_increment_state(hdr) \
878 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
879 #define l2arc_hdr_arcstats_decrement_state(hdr) \
880 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
881
882 /*
883 * l2arc_exclude_special : A zfs module parameter that controls whether buffers
884 * present on special vdevs are eligibile for caching in L2ARC. If
885 * set to 1, exclude dbufs on special vdevs from being cached to
886 * L2ARC.
887 */
888 int l2arc_exclude_special = 0;
889
890 /*
891 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
892 * metadata and data are cached from ARC into L2ARC.
893 */
894 static int l2arc_mfuonly = 0;
895
896 /*
897 * L2ARC TRIM
898 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
899 * the current write size (l2arc_write_max) we should TRIM if we
900 * have filled the device. It is defined as a percentage of the
901 * write size. If set to 100 we trim twice the space required to
902 * accommodate upcoming writes. A minimum of 64MB will be trimmed.
903 * It also enables TRIM of the whole L2ARC device upon creation or
904 * addition to an existing pool or if the header of the device is
905 * invalid upon importing a pool or onlining a cache device. The
906 * default is 0, which disables TRIM on L2ARC altogether as it can
907 * put significant stress on the underlying storage devices. This
908 * will vary depending of how well the specific device handles
909 * these commands.
910 */
911 static unsigned long l2arc_trim_ahead = 0;
912
913 /*
914 * Performance tuning of L2ARC persistence:
915 *
916 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
917 * an L2ARC device (either at pool import or later) will attempt
918 * to rebuild L2ARC buffer contents.
919 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
920 * whether log blocks are written to the L2ARC device. If the L2ARC
921 * device is less than 1GB, the amount of data l2arc_evict()
922 * evicts is significant compared to the amount of restored L2ARC
923 * data. In this case do not write log blocks in L2ARC in order
924 * not to waste space.
925 */
926 static int l2arc_rebuild_enabled = B_TRUE;
927 static unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
928
929 /* L2ARC persistence rebuild control routines. */
930 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
931 static _Noreturn void l2arc_dev_rebuild_thread(void *arg);
932 static int l2arc_rebuild(l2arc_dev_t *dev);
933
934 /* L2ARC persistence read I/O routines. */
935 static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
936 static int l2arc_log_blk_read(l2arc_dev_t *dev,
937 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
938 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
939 zio_t *this_io, zio_t **next_io);
940 static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
941 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
942 static void l2arc_log_blk_fetch_abort(zio_t *zio);
943
944 /* L2ARC persistence block restoration routines. */
945 static void l2arc_log_blk_restore(l2arc_dev_t *dev,
946 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
947 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
948 l2arc_dev_t *dev);
949
950 /* L2ARC persistence write I/O routines. */
951 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
952 l2arc_write_callback_t *cb);
953
954 /* L2ARC persistence auxiliary routines. */
955 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
956 const l2arc_log_blkptr_t *lbp);
957 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
958 const arc_buf_hdr_t *ab);
959 boolean_t l2arc_range_check_overlap(uint64_t bottom,
960 uint64_t top, uint64_t check);
961 static void l2arc_blk_fetch_done(zio_t *zio);
962 static inline uint64_t
963 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
964
965 /*
966 * We use Cityhash for this. It's fast, and has good hash properties without
967 * requiring any large static buffers.
968 */
969 static uint64_t
970 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
971 {
972 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
973 }
974
975 #define HDR_EMPTY(hdr) \
976 ((hdr)->b_dva.dva_word[0] == 0 && \
977 (hdr)->b_dva.dva_word[1] == 0)
978
979 #define HDR_EMPTY_OR_LOCKED(hdr) \
980 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
981
982 #define HDR_EQUAL(spa, dva, birth, hdr) \
983 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
984 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
985 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
986
987 static void
988 buf_discard_identity(arc_buf_hdr_t *hdr)
989 {
990 hdr->b_dva.dva_word[0] = 0;
991 hdr->b_dva.dva_word[1] = 0;
992 hdr->b_birth = 0;
993 }
994
995 static arc_buf_hdr_t *
996 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
997 {
998 const dva_t *dva = BP_IDENTITY(bp);
999 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1000 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1001 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1002 arc_buf_hdr_t *hdr;
1003
1004 mutex_enter(hash_lock);
1005 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1006 hdr = hdr->b_hash_next) {
1007 if (HDR_EQUAL(spa, dva, birth, hdr)) {
1008 *lockp = hash_lock;
1009 return (hdr);
1010 }
1011 }
1012 mutex_exit(hash_lock);
1013 *lockp = NULL;
1014 return (NULL);
1015 }
1016
1017 /*
1018 * Insert an entry into the hash table. If there is already an element
1019 * equal to elem in the hash table, then the already existing element
1020 * will be returned and the new element will not be inserted.
1021 * Otherwise returns NULL.
1022 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1023 */
1024 static arc_buf_hdr_t *
1025 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1026 {
1027 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1028 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1029 arc_buf_hdr_t *fhdr;
1030 uint32_t i;
1031
1032 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1033 ASSERT(hdr->b_birth != 0);
1034 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1035
1036 if (lockp != NULL) {
1037 *lockp = hash_lock;
1038 mutex_enter(hash_lock);
1039 } else {
1040 ASSERT(MUTEX_HELD(hash_lock));
1041 }
1042
1043 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1044 fhdr = fhdr->b_hash_next, i++) {
1045 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1046 return (fhdr);
1047 }
1048
1049 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1050 buf_hash_table.ht_table[idx] = hdr;
1051 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1052
1053 /* collect some hash table performance data */
1054 if (i > 0) {
1055 ARCSTAT_BUMP(arcstat_hash_collisions);
1056 if (i == 1)
1057 ARCSTAT_BUMP(arcstat_hash_chains);
1058
1059 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1060 }
1061 uint64_t he = atomic_inc_64_nv(
1062 &arc_stats.arcstat_hash_elements.value.ui64);
1063 ARCSTAT_MAX(arcstat_hash_elements_max, he);
1064
1065 return (NULL);
1066 }
1067
1068 static void
1069 buf_hash_remove(arc_buf_hdr_t *hdr)
1070 {
1071 arc_buf_hdr_t *fhdr, **hdrp;
1072 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1073
1074 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1075 ASSERT(HDR_IN_HASH_TABLE(hdr));
1076
1077 hdrp = &buf_hash_table.ht_table[idx];
1078 while ((fhdr = *hdrp) != hdr) {
1079 ASSERT3P(fhdr, !=, NULL);
1080 hdrp = &fhdr->b_hash_next;
1081 }
1082 *hdrp = hdr->b_hash_next;
1083 hdr->b_hash_next = NULL;
1084 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1085
1086 /* collect some hash table performance data */
1087 atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64);
1088
1089 if (buf_hash_table.ht_table[idx] &&
1090 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1091 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1092 }
1093
1094 /*
1095 * Global data structures and functions for the buf kmem cache.
1096 */
1097
1098 static kmem_cache_t *hdr_full_cache;
1099 static kmem_cache_t *hdr_full_crypt_cache;
1100 static kmem_cache_t *hdr_l2only_cache;
1101 static kmem_cache_t *buf_cache;
1102
1103 static void
1104 buf_fini(void)
1105 {
1106 #if defined(_KERNEL)
1107 /*
1108 * Large allocations which do not require contiguous pages
1109 * should be using vmem_free() in the linux kernel\
1110 */
1111 vmem_free(buf_hash_table.ht_table,
1112 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1113 #else
1114 kmem_free(buf_hash_table.ht_table,
1115 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1116 #endif
1117 for (int i = 0; i < BUF_LOCKS; i++)
1118 mutex_destroy(BUF_HASH_LOCK(i));
1119 kmem_cache_destroy(hdr_full_cache);
1120 kmem_cache_destroy(hdr_full_crypt_cache);
1121 kmem_cache_destroy(hdr_l2only_cache);
1122 kmem_cache_destroy(buf_cache);
1123 }
1124
1125 /*
1126 * Constructor callback - called when the cache is empty
1127 * and a new buf is requested.
1128 */
1129 static int
1130 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1131 {
1132 (void) unused, (void) kmflag;
1133 arc_buf_hdr_t *hdr = vbuf;
1134
1135 memset(hdr, 0, HDR_FULL_SIZE);
1136 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1137 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1138 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1139 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1140 list_link_init(&hdr->b_l1hdr.b_arc_node);
1141 list_link_init(&hdr->b_l2hdr.b_l2node);
1142 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1143 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1144
1145 return (0);
1146 }
1147
1148 static int
1149 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag)
1150 {
1151 (void) unused;
1152 arc_buf_hdr_t *hdr = vbuf;
1153
1154 hdr_full_cons(vbuf, unused, kmflag);
1155 memset(&hdr->b_crypt_hdr, 0, sizeof (hdr->b_crypt_hdr));
1156 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1157
1158 return (0);
1159 }
1160
1161 static int
1162 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1163 {
1164 (void) unused, (void) kmflag;
1165 arc_buf_hdr_t *hdr = vbuf;
1166
1167 memset(hdr, 0, HDR_L2ONLY_SIZE);
1168 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1169
1170 return (0);
1171 }
1172
1173 static int
1174 buf_cons(void *vbuf, void *unused, int kmflag)
1175 {
1176 (void) unused, (void) kmflag;
1177 arc_buf_t *buf = vbuf;
1178
1179 memset(buf, 0, sizeof (arc_buf_t));
1180 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1181 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1182
1183 return (0);
1184 }
1185
1186 /*
1187 * Destructor callback - called when a cached buf is
1188 * no longer required.
1189 */
1190 static void
1191 hdr_full_dest(void *vbuf, void *unused)
1192 {
1193 (void) unused;
1194 arc_buf_hdr_t *hdr = vbuf;
1195
1196 ASSERT(HDR_EMPTY(hdr));
1197 cv_destroy(&hdr->b_l1hdr.b_cv);
1198 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1199 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1200 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1201 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1202 }
1203
1204 static void
1205 hdr_full_crypt_dest(void *vbuf, void *unused)
1206 {
1207 (void) unused;
1208 arc_buf_hdr_t *hdr = vbuf;
1209
1210 hdr_full_dest(vbuf, unused);
1211 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1212 }
1213
1214 static void
1215 hdr_l2only_dest(void *vbuf, void *unused)
1216 {
1217 (void) unused;
1218 arc_buf_hdr_t *hdr = vbuf;
1219
1220 ASSERT(HDR_EMPTY(hdr));
1221 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1222 }
1223
1224 static void
1225 buf_dest(void *vbuf, void *unused)
1226 {
1227 (void) unused;
1228 arc_buf_t *buf = vbuf;
1229
1230 mutex_destroy(&buf->b_evict_lock);
1231 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1232 }
1233
1234 static void
1235 buf_init(void)
1236 {
1237 uint64_t *ct = NULL;
1238 uint64_t hsize = 1ULL << 12;
1239 int i, j;
1240
1241 /*
1242 * The hash table is big enough to fill all of physical memory
1243 * with an average block size of zfs_arc_average_blocksize (default 8K).
1244 * By default, the table will take up
1245 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1246 */
1247 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1248 hsize <<= 1;
1249 retry:
1250 buf_hash_table.ht_mask = hsize - 1;
1251 #if defined(_KERNEL)
1252 /*
1253 * Large allocations which do not require contiguous pages
1254 * should be using vmem_alloc() in the linux kernel
1255 */
1256 buf_hash_table.ht_table =
1257 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1258 #else
1259 buf_hash_table.ht_table =
1260 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1261 #endif
1262 if (buf_hash_table.ht_table == NULL) {
1263 ASSERT(hsize > (1ULL << 8));
1264 hsize >>= 1;
1265 goto retry;
1266 }
1267
1268 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1269 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0);
1270 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt",
1271 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest,
1272 NULL, NULL, NULL, 0);
1273 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1274 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
1275 NULL, NULL, 0);
1276 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1277 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1278
1279 for (i = 0; i < 256; i++)
1280 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1281 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1282
1283 for (i = 0; i < BUF_LOCKS; i++)
1284 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL);
1285 }
1286
1287 #define ARC_MINTIME (hz>>4) /* 62 ms */
1288
1289 /*
1290 * This is the size that the buf occupies in memory. If the buf is compressed,
1291 * it will correspond to the compressed size. You should use this method of
1292 * getting the buf size unless you explicitly need the logical size.
1293 */
1294 uint64_t
1295 arc_buf_size(arc_buf_t *buf)
1296 {
1297 return (ARC_BUF_COMPRESSED(buf) ?
1298 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1299 }
1300
1301 uint64_t
1302 arc_buf_lsize(arc_buf_t *buf)
1303 {
1304 return (HDR_GET_LSIZE(buf->b_hdr));
1305 }
1306
1307 /*
1308 * This function will return B_TRUE if the buffer is encrypted in memory.
1309 * This buffer can be decrypted by calling arc_untransform().
1310 */
1311 boolean_t
1312 arc_is_encrypted(arc_buf_t *buf)
1313 {
1314 return (ARC_BUF_ENCRYPTED(buf) != 0);
1315 }
1316
1317 /*
1318 * Returns B_TRUE if the buffer represents data that has not had its MAC
1319 * verified yet.
1320 */
1321 boolean_t
1322 arc_is_unauthenticated(arc_buf_t *buf)
1323 {
1324 return (HDR_NOAUTH(buf->b_hdr) != 0);
1325 }
1326
1327 void
1328 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1329 uint8_t *iv, uint8_t *mac)
1330 {
1331 arc_buf_hdr_t *hdr = buf->b_hdr;
1332
1333 ASSERT(HDR_PROTECTED(hdr));
1334
1335 memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
1336 memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
1337 memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
1338 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1339 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1340 }
1341
1342 /*
1343 * Indicates how this buffer is compressed in memory. If it is not compressed
1344 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1345 * arc_untransform() as long as it is also unencrypted.
1346 */
1347 enum zio_compress
1348 arc_get_compression(arc_buf_t *buf)
1349 {
1350 return (ARC_BUF_COMPRESSED(buf) ?
1351 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1352 }
1353
1354 /*
1355 * Return the compression algorithm used to store this data in the ARC. If ARC
1356 * compression is enabled or this is an encrypted block, this will be the same
1357 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1358 */
1359 static inline enum zio_compress
1360 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1361 {
1362 return (HDR_COMPRESSION_ENABLED(hdr) ?
1363 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1364 }
1365
1366 uint8_t
1367 arc_get_complevel(arc_buf_t *buf)
1368 {
1369 return (buf->b_hdr->b_complevel);
1370 }
1371
1372 static inline boolean_t
1373 arc_buf_is_shared(arc_buf_t *buf)
1374 {
1375 boolean_t shared = (buf->b_data != NULL &&
1376 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1377 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1378 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1379 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1380 IMPLY(shared, ARC_BUF_SHARED(buf));
1381 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1382
1383 /*
1384 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1385 * already being shared" requirement prevents us from doing that.
1386 */
1387
1388 return (shared);
1389 }
1390
1391 /*
1392 * Free the checksum associated with this header. If there is no checksum, this
1393 * is a no-op.
1394 */
1395 static inline void
1396 arc_cksum_free(arc_buf_hdr_t *hdr)
1397 {
1398 ASSERT(HDR_HAS_L1HDR(hdr));
1399
1400 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1401 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1402 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1403 hdr->b_l1hdr.b_freeze_cksum = NULL;
1404 }
1405 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1406 }
1407
1408 /*
1409 * Return true iff at least one of the bufs on hdr is not compressed.
1410 * Encrypted buffers count as compressed.
1411 */
1412 static boolean_t
1413 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1414 {
1415 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1416
1417 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1418 if (!ARC_BUF_COMPRESSED(b)) {
1419 return (B_TRUE);
1420 }
1421 }
1422 return (B_FALSE);
1423 }
1424
1425
1426 /*
1427 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1428 * matches the checksum that is stored in the hdr. If there is no checksum,
1429 * or if the buf is compressed, this is a no-op.
1430 */
1431 static void
1432 arc_cksum_verify(arc_buf_t *buf)
1433 {
1434 arc_buf_hdr_t *hdr = buf->b_hdr;
1435 zio_cksum_t zc;
1436
1437 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1438 return;
1439
1440 if (ARC_BUF_COMPRESSED(buf))
1441 return;
1442
1443 ASSERT(HDR_HAS_L1HDR(hdr));
1444
1445 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1446
1447 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1448 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1449 return;
1450 }
1451
1452 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1453 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1454 panic("buffer modified while frozen!");
1455 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1456 }
1457
1458 /*
1459 * This function makes the assumption that data stored in the L2ARC
1460 * will be transformed exactly as it is in the main pool. Because of
1461 * this we can verify the checksum against the reading process's bp.
1462 */
1463 static boolean_t
1464 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1465 {
1466 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1467 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1468
1469 /*
1470 * Block pointers always store the checksum for the logical data.
1471 * If the block pointer has the gang bit set, then the checksum
1472 * it represents is for the reconstituted data and not for an
1473 * individual gang member. The zio pipeline, however, must be able to
1474 * determine the checksum of each of the gang constituents so it
1475 * treats the checksum comparison differently than what we need
1476 * for l2arc blocks. This prevents us from using the
1477 * zio_checksum_error() interface directly. Instead we must call the
1478 * zio_checksum_error_impl() so that we can ensure the checksum is
1479 * generated using the correct checksum algorithm and accounts for the
1480 * logical I/O size and not just a gang fragment.
1481 */
1482 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1483 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1484 zio->io_offset, NULL) == 0);
1485 }
1486
1487 /*
1488 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1489 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1490 * isn't modified later on. If buf is compressed or there is already a checksum
1491 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1492 */
1493 static void
1494 arc_cksum_compute(arc_buf_t *buf)
1495 {
1496 arc_buf_hdr_t *hdr = buf->b_hdr;
1497
1498 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1499 return;
1500
1501 ASSERT(HDR_HAS_L1HDR(hdr));
1502
1503 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1504 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1505 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1506 return;
1507 }
1508
1509 ASSERT(!ARC_BUF_ENCRYPTED(buf));
1510 ASSERT(!ARC_BUF_COMPRESSED(buf));
1511 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1512 KM_SLEEP);
1513 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1514 hdr->b_l1hdr.b_freeze_cksum);
1515 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1516 arc_buf_watch(buf);
1517 }
1518
1519 #ifndef _KERNEL
1520 void
1521 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1522 {
1523 (void) sig, (void) unused;
1524 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1525 }
1526 #endif
1527
1528 static void
1529 arc_buf_unwatch(arc_buf_t *buf)
1530 {
1531 #ifndef _KERNEL
1532 if (arc_watch) {
1533 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1534 PROT_READ | PROT_WRITE));
1535 }
1536 #else
1537 (void) buf;
1538 #endif
1539 }
1540
1541 static void
1542 arc_buf_watch(arc_buf_t *buf)
1543 {
1544 #ifndef _KERNEL
1545 if (arc_watch)
1546 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1547 PROT_READ));
1548 #else
1549 (void) buf;
1550 #endif
1551 }
1552
1553 static arc_buf_contents_t
1554 arc_buf_type(arc_buf_hdr_t *hdr)
1555 {
1556 arc_buf_contents_t type;
1557 if (HDR_ISTYPE_METADATA(hdr)) {
1558 type = ARC_BUFC_METADATA;
1559 } else {
1560 type = ARC_BUFC_DATA;
1561 }
1562 VERIFY3U(hdr->b_type, ==, type);
1563 return (type);
1564 }
1565
1566 boolean_t
1567 arc_is_metadata(arc_buf_t *buf)
1568 {
1569 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1570 }
1571
1572 static uint32_t
1573 arc_bufc_to_flags(arc_buf_contents_t type)
1574 {
1575 switch (type) {
1576 case ARC_BUFC_DATA:
1577 /* metadata field is 0 if buffer contains normal data */
1578 return (0);
1579 case ARC_BUFC_METADATA:
1580 return (ARC_FLAG_BUFC_METADATA);
1581 default:
1582 break;
1583 }
1584 panic("undefined ARC buffer type!");
1585 return ((uint32_t)-1);
1586 }
1587
1588 void
1589 arc_buf_thaw(arc_buf_t *buf)
1590 {
1591 arc_buf_hdr_t *hdr = buf->b_hdr;
1592
1593 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1594 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1595
1596 arc_cksum_verify(buf);
1597
1598 /*
1599 * Compressed buffers do not manipulate the b_freeze_cksum.
1600 */
1601 if (ARC_BUF_COMPRESSED(buf))
1602 return;
1603
1604 ASSERT(HDR_HAS_L1HDR(hdr));
1605 arc_cksum_free(hdr);
1606 arc_buf_unwatch(buf);
1607 }
1608
1609 void
1610 arc_buf_freeze(arc_buf_t *buf)
1611 {
1612 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1613 return;
1614
1615 if (ARC_BUF_COMPRESSED(buf))
1616 return;
1617
1618 ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1619 arc_cksum_compute(buf);
1620 }
1621
1622 /*
1623 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1624 * the following functions should be used to ensure that the flags are
1625 * updated in a thread-safe way. When manipulating the flags either
1626 * the hash_lock must be held or the hdr must be undiscoverable. This
1627 * ensures that we're not racing with any other threads when updating
1628 * the flags.
1629 */
1630 static inline void
1631 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1632 {
1633 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1634 hdr->b_flags |= flags;
1635 }
1636
1637 static inline void
1638 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1639 {
1640 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1641 hdr->b_flags &= ~flags;
1642 }
1643
1644 /*
1645 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1646 * done in a special way since we have to clear and set bits
1647 * at the same time. Consumers that wish to set the compression bits
1648 * must use this function to ensure that the flags are updated in
1649 * thread-safe manner.
1650 */
1651 static void
1652 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1653 {
1654 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1655
1656 /*
1657 * Holes and embedded blocks will always have a psize = 0 so
1658 * we ignore the compression of the blkptr and set the
1659 * want to uncompress them. Mark them as uncompressed.
1660 */
1661 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1662 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1663 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1664 } else {
1665 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1666 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1667 }
1668
1669 HDR_SET_COMPRESS(hdr, cmp);
1670 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1671 }
1672
1673 /*
1674 * Looks for another buf on the same hdr which has the data decompressed, copies
1675 * from it, and returns true. If no such buf exists, returns false.
1676 */
1677 static boolean_t
1678 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1679 {
1680 arc_buf_hdr_t *hdr = buf->b_hdr;
1681 boolean_t copied = B_FALSE;
1682
1683 ASSERT(HDR_HAS_L1HDR(hdr));
1684 ASSERT3P(buf->b_data, !=, NULL);
1685 ASSERT(!ARC_BUF_COMPRESSED(buf));
1686
1687 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1688 from = from->b_next) {
1689 /* can't use our own data buffer */
1690 if (from == buf) {
1691 continue;
1692 }
1693
1694 if (!ARC_BUF_COMPRESSED(from)) {
1695 memcpy(buf->b_data, from->b_data, arc_buf_size(buf));
1696 copied = B_TRUE;
1697 break;
1698 }
1699 }
1700
1701 /*
1702 * There were no decompressed bufs, so there should not be a
1703 * checksum on the hdr either.
1704 */
1705 if (zfs_flags & ZFS_DEBUG_MODIFY)
1706 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1707
1708 return (copied);
1709 }
1710
1711 /*
1712 * Allocates an ARC buf header that's in an evicted & L2-cached state.
1713 * This is used during l2arc reconstruction to make empty ARC buffers
1714 * which circumvent the regular disk->arc->l2arc path and instead come
1715 * into being in the reverse order, i.e. l2arc->arc.
1716 */
1717 static arc_buf_hdr_t *
1718 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
1719 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth,
1720 enum zio_compress compress, uint8_t complevel, boolean_t protected,
1721 boolean_t prefetch, arc_state_type_t arcs_state)
1722 {
1723 arc_buf_hdr_t *hdr;
1724
1725 ASSERT(size != 0);
1726 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
1727 hdr->b_birth = birth;
1728 hdr->b_type = type;
1729 hdr->b_flags = 0;
1730 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
1731 HDR_SET_LSIZE(hdr, size);
1732 HDR_SET_PSIZE(hdr, psize);
1733 arc_hdr_set_compress(hdr, compress);
1734 hdr->b_complevel = complevel;
1735 if (protected)
1736 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
1737 if (prefetch)
1738 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
1739 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
1740
1741 hdr->b_dva = dva;
1742
1743 hdr->b_l2hdr.b_dev = dev;
1744 hdr->b_l2hdr.b_daddr = daddr;
1745 hdr->b_l2hdr.b_arcs_state = arcs_state;
1746
1747 return (hdr);
1748 }
1749
1750 /*
1751 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1752 */
1753 static uint64_t
1754 arc_hdr_size(arc_buf_hdr_t *hdr)
1755 {
1756 uint64_t size;
1757
1758 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1759 HDR_GET_PSIZE(hdr) > 0) {
1760 size = HDR_GET_PSIZE(hdr);
1761 } else {
1762 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1763 size = HDR_GET_LSIZE(hdr);
1764 }
1765 return (size);
1766 }
1767
1768 static int
1769 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1770 {
1771 int ret;
1772 uint64_t csize;
1773 uint64_t lsize = HDR_GET_LSIZE(hdr);
1774 uint64_t psize = HDR_GET_PSIZE(hdr);
1775 void *tmpbuf = NULL;
1776 abd_t *abd = hdr->b_l1hdr.b_pabd;
1777
1778 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1779 ASSERT(HDR_AUTHENTICATED(hdr));
1780 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1781
1782 /*
1783 * The MAC is calculated on the compressed data that is stored on disk.
1784 * However, if compressed arc is disabled we will only have the
1785 * decompressed data available to us now. Compress it into a temporary
1786 * abd so we can verify the MAC. The performance overhead of this will
1787 * be relatively low, since most objects in an encrypted objset will
1788 * be encrypted (instead of authenticated) anyway.
1789 */
1790 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1791 !HDR_COMPRESSION_ENABLED(hdr)) {
1792 tmpbuf = zio_buf_alloc(lsize);
1793 abd = abd_get_from_buf(tmpbuf, lsize);
1794 abd_take_ownership_of_buf(abd, B_TRUE);
1795 csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1796 hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel);
1797 ASSERT3U(csize, <=, psize);
1798 abd_zero_off(abd, csize, psize - csize);
1799 }
1800
1801 /*
1802 * Authentication is best effort. We authenticate whenever the key is
1803 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1804 */
1805 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1806 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1807 ASSERT3U(lsize, ==, psize);
1808 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1809 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1810 } else {
1811 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1812 hdr->b_crypt_hdr.b_mac);
1813 }
1814
1815 if (ret == 0)
1816 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1817 else if (ret != ENOENT)
1818 goto error;
1819
1820 if (tmpbuf != NULL)
1821 abd_free(abd);
1822
1823 return (0);
1824
1825 error:
1826 if (tmpbuf != NULL)
1827 abd_free(abd);
1828
1829 return (ret);
1830 }
1831
1832 /*
1833 * This function will take a header that only has raw encrypted data in
1834 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1835 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1836 * also decompress the data.
1837 */
1838 static int
1839 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1840 {
1841 int ret;
1842 abd_t *cabd = NULL;
1843 void *tmp = NULL;
1844 boolean_t no_crypt = B_FALSE;
1845 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1846
1847 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1848 ASSERT(HDR_ENCRYPTED(hdr));
1849
1850 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT);
1851
1852 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1853 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1854 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1855 hdr->b_crypt_hdr.b_rabd, &no_crypt);
1856 if (ret != 0)
1857 goto error;
1858
1859 if (no_crypt) {
1860 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1861 HDR_GET_PSIZE(hdr));
1862 }
1863
1864 /*
1865 * If this header has disabled arc compression but the b_pabd is
1866 * compressed after decrypting it, we need to decompress the newly
1867 * decrypted data.
1868 */
1869 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1870 !HDR_COMPRESSION_ENABLED(hdr)) {
1871 /*
1872 * We want to make sure that we are correctly honoring the
1873 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1874 * and then loan a buffer from it, rather than allocating a
1875 * linear buffer and wrapping it in an abd later.
1876 */
1877 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
1878 ARC_HDR_DO_ADAPT);
1879 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
1880
1881 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1882 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
1883 HDR_GET_LSIZE(hdr), &hdr->b_complevel);
1884 if (ret != 0) {
1885 abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
1886 goto error;
1887 }
1888
1889 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
1890 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1891 arc_hdr_size(hdr), hdr);
1892 hdr->b_l1hdr.b_pabd = cabd;
1893 }
1894
1895 return (0);
1896
1897 error:
1898 arc_hdr_free_abd(hdr, B_FALSE);
1899 if (cabd != NULL)
1900 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1901
1902 return (ret);
1903 }
1904
1905 /*
1906 * This function is called during arc_buf_fill() to prepare the header's
1907 * abd plaintext pointer for use. This involves authenticated protected
1908 * data and decrypting encrypted data into the plaintext abd.
1909 */
1910 static int
1911 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1912 const zbookmark_phys_t *zb, boolean_t noauth)
1913 {
1914 int ret;
1915
1916 ASSERT(HDR_PROTECTED(hdr));
1917
1918 if (hash_lock != NULL)
1919 mutex_enter(hash_lock);
1920
1921 if (HDR_NOAUTH(hdr) && !noauth) {
1922 /*
1923 * The caller requested authenticated data but our data has
1924 * not been authenticated yet. Verify the MAC now if we can.
1925 */
1926 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1927 if (ret != 0)
1928 goto error;
1929 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1930 /*
1931 * If we only have the encrypted version of the data, but the
1932 * unencrypted version was requested we take this opportunity
1933 * to store the decrypted version in the header for future use.
1934 */
1935 ret = arc_hdr_decrypt(hdr, spa, zb);
1936 if (ret != 0)
1937 goto error;
1938 }
1939
1940 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1941
1942 if (hash_lock != NULL)
1943 mutex_exit(hash_lock);
1944
1945 return (0);
1946
1947 error:
1948 if (hash_lock != NULL)
1949 mutex_exit(hash_lock);
1950
1951 return (ret);
1952 }
1953
1954 /*
1955 * This function is used by the dbuf code to decrypt bonus buffers in place.
1956 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1957 * block, so we use the hash lock here to protect against concurrent calls to
1958 * arc_buf_fill().
1959 */
1960 static void
1961 arc_buf_untransform_in_place(arc_buf_t *buf)
1962 {
1963 arc_buf_hdr_t *hdr = buf->b_hdr;
1964
1965 ASSERT(HDR_ENCRYPTED(hdr));
1966 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1967 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1968 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1969
1970 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1971 arc_buf_size(buf));
1972 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1973 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1974 hdr->b_crypt_hdr.b_ebufcnt -= 1;
1975 }
1976
1977 /*
1978 * Given a buf that has a data buffer attached to it, this function will
1979 * efficiently fill the buf with data of the specified compression setting from
1980 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1981 * are already sharing a data buf, no copy is performed.
1982 *
1983 * If the buf is marked as compressed but uncompressed data was requested, this
1984 * will allocate a new data buffer for the buf, remove that flag, and fill the
1985 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1986 * uncompressed data, and (since we haven't added support for it yet) if you
1987 * want compressed data your buf must already be marked as compressed and have
1988 * the correct-sized data buffer.
1989 */
1990 static int
1991 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
1992 arc_fill_flags_t flags)
1993 {
1994 int error = 0;
1995 arc_buf_hdr_t *hdr = buf->b_hdr;
1996 boolean_t hdr_compressed =
1997 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
1998 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
1999 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
2000 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2001 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
2002
2003 ASSERT3P(buf->b_data, !=, NULL);
2004 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
2005 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2006 IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2007 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2008 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2009 IMPLY(encrypted, !ARC_BUF_SHARED(buf));
2010
2011 /*
2012 * If the caller wanted encrypted data we just need to copy it from
2013 * b_rabd and potentially byteswap it. We won't be able to do any
2014 * further transforms on it.
2015 */
2016 if (encrypted) {
2017 ASSERT(HDR_HAS_RABD(hdr));
2018 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2019 HDR_GET_PSIZE(hdr));
2020 goto byteswap;
2021 }
2022
2023 /*
2024 * Adjust encrypted and authenticated headers to accommodate
2025 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2026 * allowed to fail decryption due to keys not being loaded
2027 * without being marked as an IO error.
2028 */
2029 if (HDR_PROTECTED(hdr)) {
2030 error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2031 zb, !!(flags & ARC_FILL_NOAUTH));
2032 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2033 return (error);
2034 } else if (error != 0) {
2035 if (hash_lock != NULL)
2036 mutex_enter(hash_lock);
2037 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2038 if (hash_lock != NULL)
2039 mutex_exit(hash_lock);
2040 return (error);
2041 }
2042 }
2043
2044 /*
2045 * There is a special case here for dnode blocks which are
2046 * decrypting their bonus buffers. These blocks may request to
2047 * be decrypted in-place. This is necessary because there may
2048 * be many dnodes pointing into this buffer and there is
2049 * currently no method to synchronize replacing the backing
2050 * b_data buffer and updating all of the pointers. Here we use
2051 * the hash lock to ensure there are no races. If the need
2052 * arises for other types to be decrypted in-place, they must
2053 * add handling here as well.
2054 */
2055 if ((flags & ARC_FILL_IN_PLACE) != 0) {
2056 ASSERT(!hdr_compressed);
2057 ASSERT(!compressed);
2058 ASSERT(!encrypted);
2059
2060 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2061 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2062
2063 if (hash_lock != NULL)
2064 mutex_enter(hash_lock);
2065 arc_buf_untransform_in_place(buf);
2066 if (hash_lock != NULL)
2067 mutex_exit(hash_lock);
2068
2069 /* Compute the hdr's checksum if necessary */
2070 arc_cksum_compute(buf);
2071 }
2072
2073 return (0);
2074 }
2075
2076 if (hdr_compressed == compressed) {
2077 if (!arc_buf_is_shared(buf)) {
2078 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2079 arc_buf_size(buf));
2080 }
2081 } else {
2082 ASSERT(hdr_compressed);
2083 ASSERT(!compressed);
2084
2085 /*
2086 * If the buf is sharing its data with the hdr, unlink it and
2087 * allocate a new data buffer for the buf.
2088 */
2089 if (arc_buf_is_shared(buf)) {
2090 ASSERT(ARC_BUF_COMPRESSED(buf));
2091
2092 /* We need to give the buf its own b_data */
2093 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2094 buf->b_data =
2095 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2096 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2097
2098 /* Previously overhead was 0; just add new overhead */
2099 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2100 } else if (ARC_BUF_COMPRESSED(buf)) {
2101 /* We need to reallocate the buf's b_data */
2102 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2103 buf);
2104 buf->b_data =
2105 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2106
2107 /* We increased the size of b_data; update overhead */
2108 ARCSTAT_INCR(arcstat_overhead_size,
2109 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2110 }
2111
2112 /*
2113 * Regardless of the buf's previous compression settings, it
2114 * should not be compressed at the end of this function.
2115 */
2116 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2117
2118 /*
2119 * Try copying the data from another buf which already has a
2120 * decompressed version. If that's not possible, it's time to
2121 * bite the bullet and decompress the data from the hdr.
2122 */
2123 if (arc_buf_try_copy_decompressed_data(buf)) {
2124 /* Skip byteswapping and checksumming (already done) */
2125 return (0);
2126 } else {
2127 error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2128 hdr->b_l1hdr.b_pabd, buf->b_data,
2129 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr),
2130 &hdr->b_complevel);
2131
2132 /*
2133 * Absent hardware errors or software bugs, this should
2134 * be impossible, but log it anyway so we can debug it.
2135 */
2136 if (error != 0) {
2137 zfs_dbgmsg(
2138 "hdr %px, compress %d, psize %d, lsize %d",
2139 hdr, arc_hdr_get_compress(hdr),
2140 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2141 if (hash_lock != NULL)
2142 mutex_enter(hash_lock);
2143 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2144 if (hash_lock != NULL)
2145 mutex_exit(hash_lock);
2146 return (SET_ERROR(EIO));
2147 }
2148 }
2149 }
2150
2151 byteswap:
2152 /* Byteswap the buf's data if necessary */
2153 if (bswap != DMU_BSWAP_NUMFUNCS) {
2154 ASSERT(!HDR_SHARED_DATA(hdr));
2155 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2156 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2157 }
2158
2159 /* Compute the hdr's checksum if necessary */
2160 arc_cksum_compute(buf);
2161
2162 return (0);
2163 }
2164
2165 /*
2166 * If this function is being called to decrypt an encrypted buffer or verify an
2167 * authenticated one, the key must be loaded and a mapping must be made
2168 * available in the keystore via spa_keystore_create_mapping() or one of its
2169 * callers.
2170 */
2171 int
2172 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2173 boolean_t in_place)
2174 {
2175 int ret;
2176 arc_fill_flags_t flags = 0;
2177
2178 if (in_place)
2179 flags |= ARC_FILL_IN_PLACE;
2180
2181 ret = arc_buf_fill(buf, spa, zb, flags);
2182 if (ret == ECKSUM) {
2183 /*
2184 * Convert authentication and decryption errors to EIO
2185 * (and generate an ereport) before leaving the ARC.
2186 */
2187 ret = SET_ERROR(EIO);
2188 spa_log_error(spa, zb);
2189 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2190 spa, NULL, zb, NULL, 0);
2191 }
2192
2193 return (ret);
2194 }
2195
2196 /*
2197 * Increment the amount of evictable space in the arc_state_t's refcount.
2198 * We account for the space used by the hdr and the arc buf individually
2199 * so that we can add and remove them from the refcount individually.
2200 */
2201 static void
2202 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2203 {
2204 arc_buf_contents_t type = arc_buf_type(hdr);
2205
2206 ASSERT(HDR_HAS_L1HDR(hdr));
2207
2208 if (GHOST_STATE(state)) {
2209 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2210 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2211 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2212 ASSERT(!HDR_HAS_RABD(hdr));
2213 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2214 HDR_GET_LSIZE(hdr), hdr);
2215 return;
2216 }
2217
2218 if (hdr->b_l1hdr.b_pabd != NULL) {
2219 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2220 arc_hdr_size(hdr), hdr);
2221 }
2222 if (HDR_HAS_RABD(hdr)) {
2223 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2224 HDR_GET_PSIZE(hdr), hdr);
2225 }
2226
2227 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2228 buf = buf->b_next) {
2229 if (arc_buf_is_shared(buf))
2230 continue;
2231 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2232 arc_buf_size(buf), buf);
2233 }
2234 }
2235
2236 /*
2237 * Decrement the amount of evictable space in the arc_state_t's refcount.
2238 * We account for the space used by the hdr and the arc buf individually
2239 * so that we can add and remove them from the refcount individually.
2240 */
2241 static void
2242 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2243 {
2244 arc_buf_contents_t type = arc_buf_type(hdr);
2245
2246 ASSERT(HDR_HAS_L1HDR(hdr));
2247
2248 if (GHOST_STATE(state)) {
2249 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2250 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2251 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2252 ASSERT(!HDR_HAS_RABD(hdr));
2253 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2254 HDR_GET_LSIZE(hdr), hdr);
2255 return;
2256 }
2257
2258 if (hdr->b_l1hdr.b_pabd != NULL) {
2259 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2260 arc_hdr_size(hdr), hdr);
2261 }
2262 if (HDR_HAS_RABD(hdr)) {
2263 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2264 HDR_GET_PSIZE(hdr), hdr);
2265 }
2266
2267 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2268 buf = buf->b_next) {
2269 if (arc_buf_is_shared(buf))
2270 continue;
2271 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2272 arc_buf_size(buf), buf);
2273 }
2274 }
2275
2276 /*
2277 * Add a reference to this hdr indicating that someone is actively
2278 * referencing that memory. When the refcount transitions from 0 to 1,
2279 * we remove it from the respective arc_state_t list to indicate that
2280 * it is not evictable.
2281 */
2282 static void
2283 add_reference(arc_buf_hdr_t *hdr, void *tag)
2284 {
2285 arc_state_t *state;
2286
2287 ASSERT(HDR_HAS_L1HDR(hdr));
2288 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2289 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2290 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2291 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2292 }
2293
2294 state = hdr->b_l1hdr.b_state;
2295
2296 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2297 (state != arc_anon)) {
2298 /* We don't use the L2-only state list. */
2299 if (state != arc_l2c_only) {
2300 multilist_remove(&state->arcs_list[arc_buf_type(hdr)],
2301 hdr);
2302 arc_evictable_space_decrement(hdr, state);
2303 }
2304 /* remove the prefetch flag if we get a reference */
2305 if (HDR_HAS_L2HDR(hdr))
2306 l2arc_hdr_arcstats_decrement_state(hdr);
2307 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2308 if (HDR_HAS_L2HDR(hdr))
2309 l2arc_hdr_arcstats_increment_state(hdr);
2310 }
2311 }
2312
2313 /*
2314 * Remove a reference from this hdr. When the reference transitions from
2315 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2316 * list making it eligible for eviction.
2317 */
2318 static int
2319 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2320 {
2321 int cnt;
2322 arc_state_t *state = hdr->b_l1hdr.b_state;
2323
2324 ASSERT(HDR_HAS_L1HDR(hdr));
2325 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2326 ASSERT(!GHOST_STATE(state));
2327
2328 /*
2329 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2330 * check to prevent usage of the arc_l2c_only list.
2331 */
2332 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2333 (state != arc_anon)) {
2334 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2335 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2336 arc_evictable_space_increment(hdr, state);
2337 }
2338 return (cnt);
2339 }
2340
2341 /*
2342 * Returns detailed information about a specific arc buffer. When the
2343 * state_index argument is set the function will calculate the arc header
2344 * list position for its arc state. Since this requires a linear traversal
2345 * callers are strongly encourage not to do this. However, it can be helpful
2346 * for targeted analysis so the functionality is provided.
2347 */
2348 void
2349 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2350 {
2351 (void) state_index;
2352 arc_buf_hdr_t *hdr = ab->b_hdr;
2353 l1arc_buf_hdr_t *l1hdr = NULL;
2354 l2arc_buf_hdr_t *l2hdr = NULL;
2355 arc_state_t *state = NULL;
2356
2357 memset(abi, 0, sizeof (arc_buf_info_t));
2358
2359 if (hdr == NULL)
2360 return;
2361
2362 abi->abi_flags = hdr->b_flags;
2363
2364 if (HDR_HAS_L1HDR(hdr)) {
2365 l1hdr = &hdr->b_l1hdr;
2366 state = l1hdr->b_state;
2367 }
2368 if (HDR_HAS_L2HDR(hdr))
2369 l2hdr = &hdr->b_l2hdr;
2370
2371 if (l1hdr) {
2372 abi->abi_bufcnt = l1hdr->b_bufcnt;
2373 abi->abi_access = l1hdr->b_arc_access;
2374 abi->abi_mru_hits = l1hdr->b_mru_hits;
2375 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2376 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2377 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2378 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
2379 }
2380
2381 if (l2hdr) {
2382 abi->abi_l2arc_dattr = l2hdr->b_daddr;
2383 abi->abi_l2arc_hits = l2hdr->b_hits;
2384 }
2385
2386 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2387 abi->abi_state_contents = arc_buf_type(hdr);
2388 abi->abi_size = arc_hdr_size(hdr);
2389 }
2390
2391 /*
2392 * Move the supplied buffer to the indicated state. The hash lock
2393 * for the buffer must be held by the caller.
2394 */
2395 static void
2396 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2397 kmutex_t *hash_lock)
2398 {
2399 arc_state_t *old_state;
2400 int64_t refcnt;
2401 uint32_t bufcnt;
2402 boolean_t update_old, update_new;
2403 arc_buf_contents_t buftype = arc_buf_type(hdr);
2404
2405 /*
2406 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2407 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2408 * L1 hdr doesn't always exist when we change state to arc_anon before
2409 * destroying a header, in which case reallocating to add the L1 hdr is
2410 * pointless.
2411 */
2412 if (HDR_HAS_L1HDR(hdr)) {
2413 old_state = hdr->b_l1hdr.b_state;
2414 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2415 bufcnt = hdr->b_l1hdr.b_bufcnt;
2416 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL ||
2417 HDR_HAS_RABD(hdr));
2418 } else {
2419 old_state = arc_l2c_only;
2420 refcnt = 0;
2421 bufcnt = 0;
2422 update_old = B_FALSE;
2423 }
2424 update_new = update_old;
2425
2426 ASSERT(MUTEX_HELD(hash_lock));
2427 ASSERT3P(new_state, !=, old_state);
2428 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2429 ASSERT(old_state != arc_anon || bufcnt <= 1);
2430
2431 /*
2432 * If this buffer is evictable, transfer it from the
2433 * old state list to the new state list.
2434 */
2435 if (refcnt == 0) {
2436 if (old_state != arc_anon && old_state != arc_l2c_only) {
2437 ASSERT(HDR_HAS_L1HDR(hdr));
2438 multilist_remove(&old_state->arcs_list[buftype], hdr);
2439
2440 if (GHOST_STATE(old_state)) {
2441 ASSERT0(bufcnt);
2442 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2443 update_old = B_TRUE;
2444 }
2445 arc_evictable_space_decrement(hdr, old_state);
2446 }
2447 if (new_state != arc_anon && new_state != arc_l2c_only) {
2448 /*
2449 * An L1 header always exists here, since if we're
2450 * moving to some L1-cached state (i.e. not l2c_only or
2451 * anonymous), we realloc the header to add an L1hdr
2452 * beforehand.
2453 */
2454 ASSERT(HDR_HAS_L1HDR(hdr));
2455 multilist_insert(&new_state->arcs_list[buftype], hdr);
2456
2457 if (GHOST_STATE(new_state)) {
2458 ASSERT0(bufcnt);
2459 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2460 update_new = B_TRUE;
2461 }
2462 arc_evictable_space_increment(hdr, new_state);
2463 }
2464 }
2465
2466 ASSERT(!HDR_EMPTY(hdr));
2467 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2468 buf_hash_remove(hdr);
2469
2470 /* adjust state sizes (ignore arc_l2c_only) */
2471
2472 if (update_new && new_state != arc_l2c_only) {
2473 ASSERT(HDR_HAS_L1HDR(hdr));
2474 if (GHOST_STATE(new_state)) {
2475 ASSERT0(bufcnt);
2476
2477 /*
2478 * When moving a header to a ghost state, we first
2479 * remove all arc buffers. Thus, we'll have a
2480 * bufcnt of zero, and no arc buffer to use for
2481 * the reference. As a result, we use the arc
2482 * header pointer for the reference.
2483 */
2484 (void) zfs_refcount_add_many(&new_state->arcs_size,
2485 HDR_GET_LSIZE(hdr), hdr);
2486 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2487 ASSERT(!HDR_HAS_RABD(hdr));
2488 } else {
2489 uint32_t buffers = 0;
2490
2491 /*
2492 * Each individual buffer holds a unique reference,
2493 * thus we must remove each of these references one
2494 * at a time.
2495 */
2496 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2497 buf = buf->b_next) {
2498 ASSERT3U(bufcnt, !=, 0);
2499 buffers++;
2500
2501 /*
2502 * When the arc_buf_t is sharing the data
2503 * block with the hdr, the owner of the
2504 * reference belongs to the hdr. Only
2505 * add to the refcount if the arc_buf_t is
2506 * not shared.
2507 */
2508 if (arc_buf_is_shared(buf))
2509 continue;
2510
2511 (void) zfs_refcount_add_many(
2512 &new_state->arcs_size,
2513 arc_buf_size(buf), buf);
2514 }
2515 ASSERT3U(bufcnt, ==, buffers);
2516
2517 if (hdr->b_l1hdr.b_pabd != NULL) {
2518 (void) zfs_refcount_add_many(
2519 &new_state->arcs_size,
2520 arc_hdr_size(hdr), hdr);
2521 }
2522
2523 if (HDR_HAS_RABD(hdr)) {
2524 (void) zfs_refcount_add_many(
2525 &new_state->arcs_size,
2526 HDR_GET_PSIZE(hdr), hdr);
2527 }
2528 }
2529 }
2530
2531 if (update_old && old_state != arc_l2c_only) {
2532 ASSERT(HDR_HAS_L1HDR(hdr));
2533 if (GHOST_STATE(old_state)) {
2534 ASSERT0(bufcnt);
2535 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2536 ASSERT(!HDR_HAS_RABD(hdr));
2537
2538 /*
2539 * When moving a header off of a ghost state,
2540 * the header will not contain any arc buffers.
2541 * We use the arc header pointer for the reference
2542 * which is exactly what we did when we put the
2543 * header on the ghost state.
2544 */
2545
2546 (void) zfs_refcount_remove_many(&old_state->arcs_size,
2547 HDR_GET_LSIZE(hdr), hdr);
2548 } else {
2549 uint32_t buffers = 0;
2550
2551 /*
2552 * Each individual buffer holds a unique reference,
2553 * thus we must remove each of these references one
2554 * at a time.
2555 */
2556 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2557 buf = buf->b_next) {
2558 ASSERT3U(bufcnt, !=, 0);
2559 buffers++;
2560
2561 /*
2562 * When the arc_buf_t is sharing the data
2563 * block with the hdr, the owner of the
2564 * reference belongs to the hdr. Only
2565 * add to the refcount if the arc_buf_t is
2566 * not shared.
2567 */
2568 if (arc_buf_is_shared(buf))
2569 continue;
2570
2571 (void) zfs_refcount_remove_many(
2572 &old_state->arcs_size, arc_buf_size(buf),
2573 buf);
2574 }
2575 ASSERT3U(bufcnt, ==, buffers);
2576 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2577 HDR_HAS_RABD(hdr));
2578
2579 if (hdr->b_l1hdr.b_pabd != NULL) {
2580 (void) zfs_refcount_remove_many(
2581 &old_state->arcs_size, arc_hdr_size(hdr),
2582 hdr);
2583 }
2584
2585 if (HDR_HAS_RABD(hdr)) {
2586 (void) zfs_refcount_remove_many(
2587 &old_state->arcs_size, HDR_GET_PSIZE(hdr),
2588 hdr);
2589 }
2590 }
2591 }
2592
2593 if (HDR_HAS_L1HDR(hdr)) {
2594 hdr->b_l1hdr.b_state = new_state;
2595
2596 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2597 l2arc_hdr_arcstats_decrement_state(hdr);
2598 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2599 l2arc_hdr_arcstats_increment_state(hdr);
2600 }
2601 }
2602 }
2603
2604 void
2605 arc_space_consume(uint64_t space, arc_space_type_t type)
2606 {
2607 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2608
2609 switch (type) {
2610 default:
2611 break;
2612 case ARC_SPACE_DATA:
2613 ARCSTAT_INCR(arcstat_data_size, space);
2614 break;
2615 case ARC_SPACE_META:
2616 ARCSTAT_INCR(arcstat_metadata_size, space);
2617 break;
2618 case ARC_SPACE_BONUS:
2619 ARCSTAT_INCR(arcstat_bonus_size, space);
2620 break;
2621 case ARC_SPACE_DNODE:
2622 aggsum_add(&arc_sums.arcstat_dnode_size, space);
2623 break;
2624 case ARC_SPACE_DBUF:
2625 ARCSTAT_INCR(arcstat_dbuf_size, space);
2626 break;
2627 case ARC_SPACE_HDRS:
2628 ARCSTAT_INCR(arcstat_hdr_size, space);
2629 break;
2630 case ARC_SPACE_L2HDRS:
2631 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space);
2632 break;
2633 case ARC_SPACE_ABD_CHUNK_WASTE:
2634 /*
2635 * Note: this includes space wasted by all scatter ABD's, not
2636 * just those allocated by the ARC. But the vast majority of
2637 * scatter ABD's come from the ARC, because other users are
2638 * very short-lived.
2639 */
2640 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space);
2641 break;
2642 }
2643
2644 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2645 aggsum_add(&arc_sums.arcstat_meta_used, space);
2646
2647 aggsum_add(&arc_sums.arcstat_size, space);
2648 }
2649
2650 void
2651 arc_space_return(uint64_t space, arc_space_type_t type)
2652 {
2653 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2654
2655 switch (type) {
2656 default:
2657 break;
2658 case ARC_SPACE_DATA:
2659 ARCSTAT_INCR(arcstat_data_size, -space);
2660 break;
2661 case ARC_SPACE_META:
2662 ARCSTAT_INCR(arcstat_metadata_size, -space);
2663 break;
2664 case ARC_SPACE_BONUS:
2665 ARCSTAT_INCR(arcstat_bonus_size, -space);
2666 break;
2667 case ARC_SPACE_DNODE:
2668 aggsum_add(&arc_sums.arcstat_dnode_size, -space);
2669 break;
2670 case ARC_SPACE_DBUF:
2671 ARCSTAT_INCR(arcstat_dbuf_size, -space);
2672 break;
2673 case ARC_SPACE_HDRS:
2674 ARCSTAT_INCR(arcstat_hdr_size, -space);
2675 break;
2676 case ARC_SPACE_L2HDRS:
2677 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space);
2678 break;
2679 case ARC_SPACE_ABD_CHUNK_WASTE:
2680 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space);
2681 break;
2682 }
2683
2684 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) {
2685 ASSERT(aggsum_compare(&arc_sums.arcstat_meta_used,
2686 space) >= 0);
2687 ARCSTAT_MAX(arcstat_meta_max,
2688 aggsum_upper_bound(&arc_sums.arcstat_meta_used));
2689 aggsum_add(&arc_sums.arcstat_meta_used, -space);
2690 }
2691
2692 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0);
2693 aggsum_add(&arc_sums.arcstat_size, -space);
2694 }
2695
2696 /*
2697 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2698 * with the hdr's b_pabd.
2699 */
2700 static boolean_t
2701 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2702 {
2703 /*
2704 * The criteria for sharing a hdr's data are:
2705 * 1. the buffer is not encrypted
2706 * 2. the hdr's compression matches the buf's compression
2707 * 3. the hdr doesn't need to be byteswapped
2708 * 4. the hdr isn't already being shared
2709 * 5. the buf is either compressed or it is the last buf in the hdr list
2710 *
2711 * Criterion #5 maintains the invariant that shared uncompressed
2712 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2713 * might ask, "if a compressed buf is allocated first, won't that be the
2714 * last thing in the list?", but in that case it's impossible to create
2715 * a shared uncompressed buf anyway (because the hdr must be compressed
2716 * to have the compressed buf). You might also think that #3 is
2717 * sufficient to make this guarantee, however it's possible
2718 * (specifically in the rare L2ARC write race mentioned in
2719 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2720 * is shareable, but wasn't at the time of its allocation. Rather than
2721 * allow a new shared uncompressed buf to be created and then shuffle
2722 * the list around to make it the last element, this simply disallows
2723 * sharing if the new buf isn't the first to be added.
2724 */
2725 ASSERT3P(buf->b_hdr, ==, hdr);
2726 boolean_t hdr_compressed =
2727 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
2728 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2729 return (!ARC_BUF_ENCRYPTED(buf) &&
2730 buf_compressed == hdr_compressed &&
2731 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2732 !HDR_SHARED_DATA(hdr) &&
2733 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2734 }
2735
2736 /*
2737 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2738 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2739 * copy was made successfully, or an error code otherwise.
2740 */
2741 static int
2742 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2743 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth,
2744 boolean_t fill, arc_buf_t **ret)
2745 {
2746 arc_buf_t *buf;
2747 arc_fill_flags_t flags = ARC_FILL_LOCKED;
2748
2749 ASSERT(HDR_HAS_L1HDR(hdr));
2750 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2751 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2752 hdr->b_type == ARC_BUFC_METADATA);
2753 ASSERT3P(ret, !=, NULL);
2754 ASSERT3P(*ret, ==, NULL);
2755 IMPLY(encrypted, compressed);
2756
2757 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2758 buf->b_hdr = hdr;
2759 buf->b_data = NULL;
2760 buf->b_next = hdr->b_l1hdr.b_buf;
2761 buf->b_flags = 0;
2762
2763 add_reference(hdr, tag);
2764
2765 /*
2766 * We're about to change the hdr's b_flags. We must either
2767 * hold the hash_lock or be undiscoverable.
2768 */
2769 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2770
2771 /*
2772 * Only honor requests for compressed bufs if the hdr is actually
2773 * compressed. This must be overridden if the buffer is encrypted since
2774 * encrypted buffers cannot be decompressed.
2775 */
2776 if (encrypted) {
2777 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2778 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2779 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2780 } else if (compressed &&
2781 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2782 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2783 flags |= ARC_FILL_COMPRESSED;
2784 }
2785
2786 if (noauth) {
2787 ASSERT0(encrypted);
2788 flags |= ARC_FILL_NOAUTH;
2789 }
2790
2791 /*
2792 * If the hdr's data can be shared then we share the data buffer and
2793 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2794 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2795 * buffer to store the buf's data.
2796 *
2797 * There are two additional restrictions here because we're sharing
2798 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2799 * actively involved in an L2ARC write, because if this buf is used by
2800 * an arc_write() then the hdr's data buffer will be released when the
2801 * write completes, even though the L2ARC write might still be using it.
2802 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2803 * need to be ABD-aware. It must be allocated via
2804 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2805 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2806 * page" buffers because the ABD code needs to handle freeing them
2807 * specially.
2808 */
2809 boolean_t can_share = arc_can_share(hdr, buf) &&
2810 !HDR_L2_WRITING(hdr) &&
2811 hdr->b_l1hdr.b_pabd != NULL &&
2812 abd_is_linear(hdr->b_l1hdr.b_pabd) &&
2813 !abd_is_linear_page(hdr->b_l1hdr.b_pabd);
2814
2815 /* Set up b_data and sharing */
2816 if (can_share) {
2817 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2818 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2819 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2820 } else {
2821 buf->b_data =
2822 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2823 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2824 }
2825 VERIFY3P(buf->b_data, !=, NULL);
2826
2827 hdr->b_l1hdr.b_buf = buf;
2828 hdr->b_l1hdr.b_bufcnt += 1;
2829 if (encrypted)
2830 hdr->b_crypt_hdr.b_ebufcnt += 1;
2831
2832 /*
2833 * If the user wants the data from the hdr, we need to either copy or
2834 * decompress the data.
2835 */
2836 if (fill) {
2837 ASSERT3P(zb, !=, NULL);
2838 return (arc_buf_fill(buf, spa, zb, flags));
2839 }
2840
2841 return (0);
2842 }
2843
2844 static char *arc_onloan_tag = "onloan";
2845
2846 static inline void
2847 arc_loaned_bytes_update(int64_t delta)
2848 {
2849 atomic_add_64(&arc_loaned_bytes, delta);
2850
2851 /* assert that it did not wrap around */
2852 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2853 }
2854
2855 /*
2856 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2857 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2858 * buffers must be returned to the arc before they can be used by the DMU or
2859 * freed.
2860 */
2861 arc_buf_t *
2862 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2863 {
2864 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2865 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2866
2867 arc_loaned_bytes_update(arc_buf_size(buf));
2868
2869 return (buf);
2870 }
2871
2872 arc_buf_t *
2873 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2874 enum zio_compress compression_type, uint8_t complevel)
2875 {
2876 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2877 psize, lsize, compression_type, complevel);
2878
2879 arc_loaned_bytes_update(arc_buf_size(buf));
2880
2881 return (buf);
2882 }
2883
2884 arc_buf_t *
2885 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2886 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2887 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2888 enum zio_compress compression_type, uint8_t complevel)
2889 {
2890 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2891 byteorder, salt, iv, mac, ot, psize, lsize, compression_type,
2892 complevel);
2893
2894 atomic_add_64(&arc_loaned_bytes, psize);
2895 return (buf);
2896 }
2897
2898
2899 /*
2900 * Return a loaned arc buffer to the arc.
2901 */
2902 void
2903 arc_return_buf(arc_buf_t *buf, void *tag)
2904 {
2905 arc_buf_hdr_t *hdr = buf->b_hdr;
2906
2907 ASSERT3P(buf->b_data, !=, NULL);
2908 ASSERT(HDR_HAS_L1HDR(hdr));
2909 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2910 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2911
2912 arc_loaned_bytes_update(-arc_buf_size(buf));
2913 }
2914
2915 /* Detach an arc_buf from a dbuf (tag) */
2916 void
2917 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2918 {
2919 arc_buf_hdr_t *hdr = buf->b_hdr;
2920
2921 ASSERT3P(buf->b_data, !=, NULL);
2922 ASSERT(HDR_HAS_L1HDR(hdr));
2923 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2924 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2925
2926 arc_loaned_bytes_update(arc_buf_size(buf));
2927 }
2928
2929 static void
2930 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2931 {
2932 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2933
2934 df->l2df_abd = abd;
2935 df->l2df_size = size;
2936 df->l2df_type = type;
2937 mutex_enter(&l2arc_free_on_write_mtx);
2938 list_insert_head(l2arc_free_on_write, df);
2939 mutex_exit(&l2arc_free_on_write_mtx);
2940 }
2941
2942 static void
2943 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2944 {
2945 arc_state_t *state = hdr->b_l1hdr.b_state;
2946 arc_buf_contents_t type = arc_buf_type(hdr);
2947 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2948
2949 /* protected by hash lock, if in the hash table */
2950 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2951 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2952 ASSERT(state != arc_anon && state != arc_l2c_only);
2953
2954 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2955 size, hdr);
2956 }
2957 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr);
2958 if (type == ARC_BUFC_METADATA) {
2959 arc_space_return(size, ARC_SPACE_META);
2960 } else {
2961 ASSERT(type == ARC_BUFC_DATA);
2962 arc_space_return(size, ARC_SPACE_DATA);
2963 }
2964
2965 if (free_rdata) {
2966 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2967 } else {
2968 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2969 }
2970 }
2971
2972 /*
2973 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2974 * data buffer, we transfer the refcount ownership to the hdr and update
2975 * the appropriate kstats.
2976 */
2977 static void
2978 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2979 {
2980 ASSERT(arc_can_share(hdr, buf));
2981 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2982 ASSERT(!ARC_BUF_ENCRYPTED(buf));
2983 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2984
2985 /*
2986 * Start sharing the data buffer. We transfer the
2987 * refcount ownership to the hdr since it always owns
2988 * the refcount whenever an arc_buf_t is shared.
2989 */
2990 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
2991 arc_hdr_size(hdr), buf, hdr);
2992 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2993 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2994 HDR_ISTYPE_METADATA(hdr));
2995 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2996 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2997
2998 /*
2999 * Since we've transferred ownership to the hdr we need
3000 * to increment its compressed and uncompressed kstats and
3001 * decrement the overhead size.
3002 */
3003 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3004 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3005 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
3006 }
3007
3008 static void
3009 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3010 {
3011 ASSERT(arc_buf_is_shared(buf));
3012 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3013 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3014
3015 /*
3016 * We are no longer sharing this buffer so we need
3017 * to transfer its ownership to the rightful owner.
3018 */
3019 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
3020 arc_hdr_size(hdr), hdr, buf);
3021 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3022 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3023 abd_free(hdr->b_l1hdr.b_pabd);
3024 hdr->b_l1hdr.b_pabd = NULL;
3025 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
3026
3027 /*
3028 * Since the buffer is no longer shared between
3029 * the arc buf and the hdr, count it as overhead.
3030 */
3031 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3032 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3033 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3034 }
3035
3036 /*
3037 * Remove an arc_buf_t from the hdr's buf list and return the last
3038 * arc_buf_t on the list. If no buffers remain on the list then return
3039 * NULL.
3040 */
3041 static arc_buf_t *
3042 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3043 {
3044 ASSERT(HDR_HAS_L1HDR(hdr));
3045 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3046
3047 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3048 arc_buf_t *lastbuf = NULL;
3049
3050 /*
3051 * Remove the buf from the hdr list and locate the last
3052 * remaining buffer on the list.
3053 */
3054 while (*bufp != NULL) {
3055 if (*bufp == buf)
3056 *bufp = buf->b_next;
3057
3058 /*
3059 * If we've removed a buffer in the middle of
3060 * the list then update the lastbuf and update
3061 * bufp.
3062 */
3063 if (*bufp != NULL) {
3064 lastbuf = *bufp;
3065 bufp = &(*bufp)->b_next;
3066 }
3067 }
3068 buf->b_next = NULL;
3069 ASSERT3P(lastbuf, !=, buf);
3070 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
3071 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
3072 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3073
3074 return (lastbuf);
3075 }
3076
3077 /*
3078 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3079 * list and free it.
3080 */
3081 static void
3082 arc_buf_destroy_impl(arc_buf_t *buf)
3083 {
3084 arc_buf_hdr_t *hdr = buf->b_hdr;
3085
3086 /*
3087 * Free up the data associated with the buf but only if we're not
3088 * sharing this with the hdr. If we are sharing it with the hdr, the
3089 * hdr is responsible for doing the free.
3090 */
3091 if (buf->b_data != NULL) {
3092 /*
3093 * We're about to change the hdr's b_flags. We must either
3094 * hold the hash_lock or be undiscoverable.
3095 */
3096 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3097
3098 arc_cksum_verify(buf);
3099 arc_buf_unwatch(buf);
3100
3101 if (arc_buf_is_shared(buf)) {
3102 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3103 } else {
3104 uint64_t size = arc_buf_size(buf);
3105 arc_free_data_buf(hdr, buf->b_data, size, buf);
3106 ARCSTAT_INCR(arcstat_overhead_size, -size);
3107 }
3108 buf->b_data = NULL;
3109
3110 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3111 hdr->b_l1hdr.b_bufcnt -= 1;
3112
3113 if (ARC_BUF_ENCRYPTED(buf)) {
3114 hdr->b_crypt_hdr.b_ebufcnt -= 1;
3115
3116 /*
3117 * If we have no more encrypted buffers and we've
3118 * already gotten a copy of the decrypted data we can
3119 * free b_rabd to save some space.
3120 */
3121 if (hdr->b_crypt_hdr.b_ebufcnt == 0 &&
3122 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL &&
3123 !HDR_IO_IN_PROGRESS(hdr)) {
3124 arc_hdr_free_abd(hdr, B_TRUE);
3125 }
3126 }
3127 }
3128
3129 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3130
3131 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3132 /*
3133 * If the current arc_buf_t is sharing its data buffer with the
3134 * hdr, then reassign the hdr's b_pabd to share it with the new
3135 * buffer at the end of the list. The shared buffer is always
3136 * the last one on the hdr's buffer list.
3137 *
3138 * There is an equivalent case for compressed bufs, but since
3139 * they aren't guaranteed to be the last buf in the list and
3140 * that is an exceedingly rare case, we just allow that space be
3141 * wasted temporarily. We must also be careful not to share
3142 * encrypted buffers, since they cannot be shared.
3143 */
3144 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3145 /* Only one buf can be shared at once */
3146 VERIFY(!arc_buf_is_shared(lastbuf));
3147 /* hdr is uncompressed so can't have compressed buf */
3148 VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
3149
3150 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3151 arc_hdr_free_abd(hdr, B_FALSE);
3152
3153 /*
3154 * We must setup a new shared block between the
3155 * last buffer and the hdr. The data would have
3156 * been allocated by the arc buf so we need to transfer
3157 * ownership to the hdr since it's now being shared.
3158 */
3159 arc_share_buf(hdr, lastbuf);
3160 }
3161 } else if (HDR_SHARED_DATA(hdr)) {
3162 /*
3163 * Uncompressed shared buffers are always at the end
3164 * of the list. Compressed buffers don't have the
3165 * same requirements. This makes it hard to
3166 * simply assert that the lastbuf is shared so
3167 * we rely on the hdr's compression flags to determine
3168 * if we have a compressed, shared buffer.
3169 */
3170 ASSERT3P(lastbuf, !=, NULL);
3171 ASSERT(arc_buf_is_shared(lastbuf) ||
3172 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3173 }
3174
3175 /*
3176 * Free the checksum if we're removing the last uncompressed buf from
3177 * this hdr.
3178 */
3179 if (!arc_hdr_has_uncompressed_buf(hdr)) {
3180 arc_cksum_free(hdr);
3181 }
3182
3183 /* clean up the buf */
3184 buf->b_hdr = NULL;
3185 kmem_cache_free(buf_cache, buf);
3186 }
3187
3188 static void
3189 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags)
3190 {
3191 uint64_t size;
3192 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3193
3194 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3195 ASSERT(HDR_HAS_L1HDR(hdr));
3196 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3197 IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3198
3199 if (alloc_rdata) {
3200 size = HDR_GET_PSIZE(hdr);
3201 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3202 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3203 alloc_flags);
3204 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3205 ARCSTAT_INCR(arcstat_raw_size, size);
3206 } else {
3207 size = arc_hdr_size(hdr);
3208 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3209 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3210 alloc_flags);
3211 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3212 }
3213
3214 ARCSTAT_INCR(arcstat_compressed_size, size);
3215 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3216 }
3217
3218 static void
3219 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3220 {
3221 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3222
3223 ASSERT(HDR_HAS_L1HDR(hdr));
3224 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3225 IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3226
3227 /*
3228 * If the hdr is currently being written to the l2arc then
3229 * we defer freeing the data by adding it to the l2arc_free_on_write
3230 * list. The l2arc will free the data once it's finished
3231 * writing it to the l2arc device.
3232 */
3233 if (HDR_L2_WRITING(hdr)) {
3234 arc_hdr_free_on_write(hdr, free_rdata);
3235 ARCSTAT_BUMP(arcstat_l2_free_on_write);
3236 } else if (free_rdata) {
3237 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3238 } else {
3239 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
3240 }
3241
3242 if (free_rdata) {
3243 hdr->b_crypt_hdr.b_rabd = NULL;
3244 ARCSTAT_INCR(arcstat_raw_size, -size);
3245 } else {
3246 hdr->b_l1hdr.b_pabd = NULL;
3247 }
3248
3249 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3250 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3251
3252 ARCSTAT_INCR(arcstat_compressed_size, -size);
3253 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3254 }
3255
3256 /*
3257 * Allocate empty anonymous ARC header. The header will get its identity
3258 * assigned and buffers attached later as part of read or write operations.
3259 *
3260 * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3261 * inserts it into ARC hash to become globally visible and allocates physical
3262 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read
3263 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3264 * sharing one of them with the physical ABD buffer.
3265 *
3266 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3267 * data. Then after compression and/or encryption arc_write_ready() allocates
3268 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3269 * buffer. On disk write completion arc_write_done() assigns the header its
3270 * new identity (b_dva + b_birth) and inserts into ARC hash.
3271 *
3272 * In case of partial overwrite the old data is read first as described. Then
3273 * arc_release() either allocates new anonymous ARC header and moves the ARC
3274 * buffer to it, or reuses the old ARC header by discarding its identity and
3275 * removing it from ARC hash. After buffer modification normal write process
3276 * follows as described.
3277 */
3278 static arc_buf_hdr_t *
3279 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3280 boolean_t protected, enum zio_compress compression_type, uint8_t complevel,
3281 arc_buf_contents_t type)
3282 {
3283 arc_buf_hdr_t *hdr;
3284
3285 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3286 if (protected) {
3287 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE);
3288 } else {
3289 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3290 }
3291
3292 ASSERT(HDR_EMPTY(hdr));
3293 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3294 HDR_SET_PSIZE(hdr, psize);
3295 HDR_SET_LSIZE(hdr, lsize);
3296 hdr->b_spa = spa;
3297 hdr->b_type = type;
3298 hdr->b_flags = 0;
3299 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3300 arc_hdr_set_compress(hdr, compression_type);
3301 hdr->b_complevel = complevel;
3302 if (protected)
3303 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3304
3305 hdr->b_l1hdr.b_state = arc_anon;
3306 hdr->b_l1hdr.b_arc_access = 0;
3307 hdr->b_l1hdr.b_mru_hits = 0;
3308 hdr->b_l1hdr.b_mru_ghost_hits = 0;
3309 hdr->b_l1hdr.b_mfu_hits = 0;
3310 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3311 hdr->b_l1hdr.b_bufcnt = 0;
3312 hdr->b_l1hdr.b_buf = NULL;
3313
3314 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3315
3316 return (hdr);
3317 }
3318
3319 /*
3320 * Transition between the two allocation states for the arc_buf_hdr struct.
3321 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3322 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3323 * version is used when a cache buffer is only in the L2ARC in order to reduce
3324 * memory usage.
3325 */
3326 static arc_buf_hdr_t *
3327 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3328 {
3329 ASSERT(HDR_HAS_L2HDR(hdr));
3330
3331 arc_buf_hdr_t *nhdr;
3332 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3333
3334 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3335 (old == hdr_l2only_cache && new == hdr_full_cache));
3336
3337 /*
3338 * if the caller wanted a new full header and the header is to be
3339 * encrypted we will actually allocate the header from the full crypt
3340 * cache instead. The same applies to freeing from the old cache.
3341 */
3342 if (HDR_PROTECTED(hdr) && new == hdr_full_cache)
3343 new = hdr_full_crypt_cache;
3344 if (HDR_PROTECTED(hdr) && old == hdr_full_cache)
3345 old = hdr_full_crypt_cache;
3346
3347 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3348
3349 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3350 buf_hash_remove(hdr);
3351
3352 memcpy(nhdr, hdr, HDR_L2ONLY_SIZE);
3353
3354 if (new == hdr_full_cache || new == hdr_full_crypt_cache) {
3355 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3356 /*
3357 * arc_access and arc_change_state need to be aware that a
3358 * header has just come out of L2ARC, so we set its state to
3359 * l2c_only even though it's about to change.
3360 */
3361 nhdr->b_l1hdr.b_state = arc_l2c_only;
3362
3363 /* Verify previous threads set to NULL before freeing */
3364 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3365 ASSERT(!HDR_HAS_RABD(hdr));
3366 } else {
3367 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3368 ASSERT0(hdr->b_l1hdr.b_bufcnt);
3369 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3370
3371 /*
3372 * If we've reached here, We must have been called from
3373 * arc_evict_hdr(), as such we should have already been
3374 * removed from any ghost list we were previously on
3375 * (which protects us from racing with arc_evict_state),
3376 * thus no locking is needed during this check.
3377 */
3378 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3379
3380 /*
3381 * A buffer must not be moved into the arc_l2c_only
3382 * state if it's not finished being written out to the
3383 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3384 * might try to be accessed, even though it was removed.
3385 */
3386 VERIFY(!HDR_L2_WRITING(hdr));
3387 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3388 ASSERT(!HDR_HAS_RABD(hdr));
3389
3390 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3391 }
3392 /*
3393 * The header has been reallocated so we need to re-insert it into any
3394 * lists it was on.
3395 */
3396 (void) buf_hash_insert(nhdr, NULL);
3397
3398 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3399
3400 mutex_enter(&dev->l2ad_mtx);
3401
3402 /*
3403 * We must place the realloc'ed header back into the list at
3404 * the same spot. Otherwise, if it's placed earlier in the list,
3405 * l2arc_write_buffers() could find it during the function's
3406 * write phase, and try to write it out to the l2arc.
3407 */
3408 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3409 list_remove(&dev->l2ad_buflist, hdr);
3410
3411 mutex_exit(&dev->l2ad_mtx);
3412
3413 /*
3414 * Since we're using the pointer address as the tag when
3415 * incrementing and decrementing the l2ad_alloc refcount, we
3416 * must remove the old pointer (that we're about to destroy) and
3417 * add the new pointer to the refcount. Otherwise we'd remove
3418 * the wrong pointer address when calling arc_hdr_destroy() later.
3419 */
3420
3421 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3422 arc_hdr_size(hdr), hdr);
3423 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
3424 arc_hdr_size(nhdr), nhdr);
3425
3426 buf_discard_identity(hdr);
3427 kmem_cache_free(old, hdr);
3428
3429 return (nhdr);
3430 }
3431
3432 /*
3433 * This function allows an L1 header to be reallocated as a crypt
3434 * header and vice versa. If we are going to a crypt header, the
3435 * new fields will be zeroed out.
3436 */
3437 static arc_buf_hdr_t *
3438 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt)
3439 {
3440 arc_buf_hdr_t *nhdr;
3441 arc_buf_t *buf;
3442 kmem_cache_t *ncache, *ocache;
3443
3444 /*
3445 * This function requires that hdr is in the arc_anon state.
3446 * Therefore it won't have any L2ARC data for us to worry
3447 * about copying.
3448 */
3449 ASSERT(HDR_HAS_L1HDR(hdr));
3450 ASSERT(!HDR_HAS_L2HDR(hdr));
3451 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt);
3452 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3453 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3454 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node));
3455 ASSERT3P(hdr->b_hash_next, ==, NULL);
3456
3457 if (need_crypt) {
3458 ncache = hdr_full_crypt_cache;
3459 ocache = hdr_full_cache;
3460 } else {
3461 ncache = hdr_full_cache;
3462 ocache = hdr_full_crypt_cache;
3463 }
3464
3465 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE);
3466
3467 /*
3468 * Copy all members that aren't locks or condvars to the new header.
3469 * No lists are pointing to us (as we asserted above), so we don't
3470 * need to worry about the list nodes.
3471 */
3472 nhdr->b_dva = hdr->b_dva;
3473 nhdr->b_birth = hdr->b_birth;
3474 nhdr->b_type = hdr->b_type;
3475 nhdr->b_flags = hdr->b_flags;
3476 nhdr->b_psize = hdr->b_psize;
3477 nhdr->b_lsize = hdr->b_lsize;
3478 nhdr->b_spa = hdr->b_spa;
3479 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum;
3480 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt;
3481 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap;
3482 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state;
3483 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access;
3484 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits;
3485 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits;
3486 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits;
3487 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits;
3488 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb;
3489 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd;
3490
3491 /*
3492 * This zfs_refcount_add() exists only to ensure that the individual
3493 * arc buffers always point to a header that is referenced, avoiding
3494 * a small race condition that could trigger ASSERTs.
3495 */
3496 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG);
3497 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf;
3498 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
3499 mutex_enter(&buf->b_evict_lock);
3500 buf->b_hdr = nhdr;
3501 mutex_exit(&buf->b_evict_lock);
3502 }
3503
3504 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt);
3505 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG);
3506 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3507
3508 if (need_crypt) {
3509 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED);
3510 } else {
3511 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED);
3512 }
3513
3514 /* unset all members of the original hdr */
3515 memset(&hdr->b_dva, 0, sizeof (dva_t));
3516 hdr->b_birth = 0;
3517 hdr->b_type = ARC_BUFC_INVALID;
3518 hdr->b_flags = 0;
3519 hdr->b_psize = 0;
3520 hdr->b_lsize = 0;
3521 hdr->b_spa = 0;
3522 hdr->b_l1hdr.b_freeze_cksum = NULL;
3523 hdr->b_l1hdr.b_buf = NULL;
3524 hdr->b_l1hdr.b_bufcnt = 0;
3525 hdr->b_l1hdr.b_byteswap = 0;
3526 hdr->b_l1hdr.b_state = NULL;
3527 hdr->b_l1hdr.b_arc_access = 0;
3528 hdr->b_l1hdr.b_mru_hits = 0;
3529 hdr->b_l1hdr.b_mru_ghost_hits = 0;
3530 hdr->b_l1hdr.b_mfu_hits = 0;
3531 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3532 hdr->b_l1hdr.b_acb = NULL;
3533 hdr->b_l1hdr.b_pabd = NULL;
3534
3535 if (ocache == hdr_full_crypt_cache) {
3536 ASSERT(!HDR_HAS_RABD(hdr));
3537 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE;
3538 hdr->b_crypt_hdr.b_ebufcnt = 0;
3539 hdr->b_crypt_hdr.b_dsobj = 0;
3540 memset(hdr->b_crypt_hdr.b_salt, 0, ZIO_DATA_SALT_LEN);
3541 memset(hdr->b_crypt_hdr.b_iv, 0, ZIO_DATA_IV_LEN);
3542 memset(hdr->b_crypt_hdr.b_mac, 0, ZIO_DATA_MAC_LEN);
3543 }
3544
3545 buf_discard_identity(hdr);
3546 kmem_cache_free(ocache, hdr);
3547
3548 return (nhdr);
3549 }
3550
3551 /*
3552 * This function is used by the send / receive code to convert a newly
3553 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3554 * is also used to allow the root objset block to be updated without altering
3555 * its embedded MACs. Both block types will always be uncompressed so we do not
3556 * have to worry about compression type or psize.
3557 */
3558 void
3559 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3560 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3561 const uint8_t *mac)
3562 {
3563 arc_buf_hdr_t *hdr = buf->b_hdr;
3564
3565 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3566 ASSERT(HDR_HAS_L1HDR(hdr));
3567 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3568
3569 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3570 if (!HDR_PROTECTED(hdr))
3571 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE);
3572 hdr->b_crypt_hdr.b_dsobj = dsobj;
3573 hdr->b_crypt_hdr.b_ot = ot;
3574 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3575 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3576 if (!arc_hdr_has_uncompressed_buf(hdr))
3577 arc_cksum_free(hdr);
3578
3579 if (salt != NULL)
3580 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3581 if (iv != NULL)
3582 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3583 if (mac != NULL)
3584 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3585 }
3586
3587 /*
3588 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3589 * The buf is returned thawed since we expect the consumer to modify it.
3590 */
3591 arc_buf_t *
3592 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3593 {
3594 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3595 B_FALSE, ZIO_COMPRESS_OFF, 0, type);
3596
3597 arc_buf_t *buf = NULL;
3598 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3599 B_FALSE, B_FALSE, &buf));
3600 arc_buf_thaw(buf);
3601
3602 return (buf);
3603 }
3604
3605 /*
3606 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3607 * for bufs containing metadata.
3608 */
3609 arc_buf_t *
3610 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3611 enum zio_compress compression_type, uint8_t complevel)
3612 {
3613 ASSERT3U(lsize, >, 0);
3614 ASSERT3U(lsize, >=, psize);
3615 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3616 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3617
3618 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3619 B_FALSE, compression_type, complevel, ARC_BUFC_DATA);
3620
3621 arc_buf_t *buf = NULL;
3622 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3623 B_TRUE, B_FALSE, B_FALSE, &buf));
3624 arc_buf_thaw(buf);
3625 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3626
3627 /*
3628 * To ensure that the hdr has the correct data in it if we call
3629 * arc_untransform() on this buf before it's been written to disk,
3630 * it's easiest if we just set up sharing between the buf and the hdr.
3631 */
3632 arc_share_buf(hdr, buf);
3633
3634 return (buf);
3635 }
3636
3637 arc_buf_t *
3638 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder,
3639 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3640 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3641 enum zio_compress compression_type, uint8_t complevel)
3642 {
3643 arc_buf_hdr_t *hdr;
3644 arc_buf_t *buf;
3645 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3646 ARC_BUFC_METADATA : ARC_BUFC_DATA;
3647
3648 ASSERT3U(lsize, >, 0);
3649 ASSERT3U(lsize, >=, psize);
3650 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3651 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3652
3653 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3654 compression_type, complevel, type);
3655
3656 hdr->b_crypt_hdr.b_dsobj = dsobj;
3657 hdr->b_crypt_hdr.b_ot = ot;
3658 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3659 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3660 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3661 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3662 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3663
3664 /*
3665 * This buffer will be considered encrypted even if the ot is not an
3666 * encrypted type. It will become authenticated instead in
3667 * arc_write_ready().
3668 */
3669 buf = NULL;
3670 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3671 B_FALSE, B_FALSE, &buf));
3672 arc_buf_thaw(buf);
3673 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3674
3675 return (buf);
3676 }
3677
3678 static void
3679 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3680 boolean_t state_only)
3681 {
3682 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3683 l2arc_dev_t *dev = l2hdr->b_dev;
3684 uint64_t lsize = HDR_GET_LSIZE(hdr);
3685 uint64_t psize = HDR_GET_PSIZE(hdr);
3686 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3687 arc_buf_contents_t type = hdr->b_type;
3688 int64_t lsize_s;
3689 int64_t psize_s;
3690 int64_t asize_s;
3691
3692 if (incr) {
3693 lsize_s = lsize;
3694 psize_s = psize;
3695 asize_s = asize;
3696 } else {
3697 lsize_s = -lsize;
3698 psize_s = -psize;
3699 asize_s = -asize;
3700 }
3701
3702 /* If the buffer is a prefetch, count it as such. */
3703 if (HDR_PREFETCH(hdr)) {
3704 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3705 } else {
3706 /*
3707 * We use the value stored in the L2 header upon initial
3708 * caching in L2ARC. This value will be updated in case
3709 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3710 * metadata (log entry) cannot currently be updated. Having
3711 * the ARC state in the L2 header solves the problem of a
3712 * possibly absent L1 header (apparent in buffers restored
3713 * from persistent L2ARC).
3714 */
3715 switch (hdr->b_l2hdr.b_arcs_state) {
3716 case ARC_STATE_MRU_GHOST:
3717 case ARC_STATE_MRU:
3718 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3719 break;
3720 case ARC_STATE_MFU_GHOST:
3721 case ARC_STATE_MFU:
3722 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3723 break;
3724 default:
3725 break;
3726 }
3727 }
3728
3729 if (state_only)
3730 return;
3731
3732 ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3733 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3734
3735 switch (type) {
3736 case ARC_BUFC_DATA:
3737 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3738 break;
3739 case ARC_BUFC_METADATA:
3740 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3741 break;
3742 default:
3743 break;
3744 }
3745 }
3746
3747
3748 static void
3749 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3750 {
3751 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3752 l2arc_dev_t *dev = l2hdr->b_dev;
3753 uint64_t psize = HDR_GET_PSIZE(hdr);
3754 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3755
3756 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3757 ASSERT(HDR_HAS_L2HDR(hdr));
3758
3759 list_remove(&dev->l2ad_buflist, hdr);
3760
3761 l2arc_hdr_arcstats_decrement(hdr);
3762 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3763
3764 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3765 hdr);
3766 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3767 }
3768
3769 static void
3770 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3771 {
3772 if (HDR_HAS_L1HDR(hdr)) {
3773 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3774 hdr->b_l1hdr.b_bufcnt > 0);
3775 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3776 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3777 }
3778 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3779 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3780
3781 if (HDR_HAS_L2HDR(hdr)) {
3782 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3783 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3784
3785 if (!buflist_held)
3786 mutex_enter(&dev->l2ad_mtx);
3787
3788 /*
3789 * Even though we checked this conditional above, we
3790 * need to check this again now that we have the
3791 * l2ad_mtx. This is because we could be racing with
3792 * another thread calling l2arc_evict() which might have
3793 * destroyed this header's L2 portion as we were waiting
3794 * to acquire the l2ad_mtx. If that happens, we don't
3795 * want to re-destroy the header's L2 portion.
3796 */
3797 if (HDR_HAS_L2HDR(hdr)) {
3798
3799 if (!HDR_EMPTY(hdr))
3800 buf_discard_identity(hdr);
3801
3802 arc_hdr_l2hdr_destroy(hdr);
3803 }
3804
3805 if (!buflist_held)
3806 mutex_exit(&dev->l2ad_mtx);
3807 }
3808
3809 /*
3810 * The header's identify can only be safely discarded once it is no
3811 * longer discoverable. This requires removing it from the hash table
3812 * and the l2arc header list. After this point the hash lock can not
3813 * be used to protect the header.
3814 */
3815 if (!HDR_EMPTY(hdr))
3816 buf_discard_identity(hdr);
3817
3818 if (HDR_HAS_L1HDR(hdr)) {
3819 arc_cksum_free(hdr);
3820
3821 while (hdr->b_l1hdr.b_buf != NULL)
3822 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3823
3824 if (hdr->b_l1hdr.b_pabd != NULL)
3825 arc_hdr_free_abd(hdr, B_FALSE);
3826
3827 if (HDR_HAS_RABD(hdr))
3828 arc_hdr_free_abd(hdr, B_TRUE);
3829 }
3830
3831 ASSERT3P(hdr->b_hash_next, ==, NULL);
3832 if (HDR_HAS_L1HDR(hdr)) {
3833 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3834 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3835
3836 if (!HDR_PROTECTED(hdr)) {
3837 kmem_cache_free(hdr_full_cache, hdr);
3838 } else {
3839 kmem_cache_free(hdr_full_crypt_cache, hdr);
3840 }
3841 } else {
3842 kmem_cache_free(hdr_l2only_cache, hdr);
3843 }
3844 }
3845
3846 void
3847 arc_buf_destroy(arc_buf_t *buf, void* tag)
3848 {
3849 arc_buf_hdr_t *hdr = buf->b_hdr;
3850
3851 if (hdr->b_l1hdr.b_state == arc_anon) {
3852 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3853 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3854 VERIFY0(remove_reference(hdr, NULL, tag));
3855 arc_hdr_destroy(hdr);
3856 return;
3857 }
3858
3859 kmutex_t *hash_lock = HDR_LOCK(hdr);
3860 mutex_enter(hash_lock);
3861
3862 ASSERT3P(hdr, ==, buf->b_hdr);
3863 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3864 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3865 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3866 ASSERT3P(buf->b_data, !=, NULL);
3867
3868 (void) remove_reference(hdr, hash_lock, tag);
3869 arc_buf_destroy_impl(buf);
3870 mutex_exit(hash_lock);
3871 }
3872
3873 /*
3874 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3875 * state of the header is dependent on its state prior to entering this
3876 * function. The following transitions are possible:
3877 *
3878 * - arc_mru -> arc_mru_ghost
3879 * - arc_mfu -> arc_mfu_ghost
3880 * - arc_mru_ghost -> arc_l2c_only
3881 * - arc_mru_ghost -> deleted
3882 * - arc_mfu_ghost -> arc_l2c_only
3883 * - arc_mfu_ghost -> deleted
3884 *
3885 * Return total size of evicted data buffers for eviction progress tracking.
3886 * When evicting from ghost states return logical buffer size to make eviction
3887 * progress at the same (or at least comparable) rate as from non-ghost states.
3888 *
3889 * Return *real_evicted for actual ARC size reduction to wake up threads
3890 * waiting for it. For non-ghost states it includes size of evicted data
3891 * buffers (the headers are not freed there). For ghost states it includes
3892 * only the evicted headers size.
3893 */
3894 static int64_t
3895 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, uint64_t *real_evicted)
3896 {
3897 arc_state_t *evicted_state, *state;
3898 int64_t bytes_evicted = 0;
3899 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3900 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
3901
3902 ASSERT(MUTEX_HELD(hash_lock));
3903 ASSERT(HDR_HAS_L1HDR(hdr));
3904
3905 *real_evicted = 0;
3906 state = hdr->b_l1hdr.b_state;
3907 if (GHOST_STATE(state)) {
3908 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3909 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3910
3911 /*
3912 * l2arc_write_buffers() relies on a header's L1 portion
3913 * (i.e. its b_pabd field) during it's write phase.
3914 * Thus, we cannot push a header onto the arc_l2c_only
3915 * state (removing its L1 piece) until the header is
3916 * done being written to the l2arc.
3917 */
3918 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3919 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3920 return (bytes_evicted);
3921 }
3922
3923 ARCSTAT_BUMP(arcstat_deleted);
3924 bytes_evicted += HDR_GET_LSIZE(hdr);
3925
3926 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3927
3928 if (HDR_HAS_L2HDR(hdr)) {
3929 ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3930 ASSERT(!HDR_HAS_RABD(hdr));
3931 /*
3932 * This buffer is cached on the 2nd Level ARC;
3933 * don't destroy the header.
3934 */
3935 arc_change_state(arc_l2c_only, hdr, hash_lock);
3936 /*
3937 * dropping from L1+L2 cached to L2-only,
3938 * realloc to remove the L1 header.
3939 */
3940 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3941 hdr_l2only_cache);
3942 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE;
3943 } else {
3944 arc_change_state(arc_anon, hdr, hash_lock);
3945 arc_hdr_destroy(hdr);
3946 *real_evicted += HDR_FULL_SIZE;
3947 }
3948 return (bytes_evicted);
3949 }
3950
3951 ASSERT(state == arc_mru || state == arc_mfu);
3952 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3953
3954 /* prefetch buffers have a minimum lifespan */
3955 if (HDR_IO_IN_PROGRESS(hdr) ||
3956 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3957 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3958 MSEC_TO_TICK(min_lifetime))) {
3959 ARCSTAT_BUMP(arcstat_evict_skip);
3960 return (bytes_evicted);
3961 }
3962
3963 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3964 while (hdr->b_l1hdr.b_buf) {
3965 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3966 if (!mutex_tryenter(&buf->b_evict_lock)) {
3967 ARCSTAT_BUMP(arcstat_mutex_miss);
3968 break;
3969 }
3970 if (buf->b_data != NULL) {
3971 bytes_evicted += HDR_GET_LSIZE(hdr);
3972 *real_evicted += HDR_GET_LSIZE(hdr);
3973 }
3974 mutex_exit(&buf->b_evict_lock);
3975 arc_buf_destroy_impl(buf);
3976 }
3977
3978 if (HDR_HAS_L2HDR(hdr)) {
3979 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3980 } else {
3981 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3982 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3983 HDR_GET_LSIZE(hdr));
3984
3985 switch (state->arcs_state) {
3986 case ARC_STATE_MRU:
3987 ARCSTAT_INCR(
3988 arcstat_evict_l2_eligible_mru,
3989 HDR_GET_LSIZE(hdr));
3990 break;
3991 case ARC_STATE_MFU:
3992 ARCSTAT_INCR(
3993 arcstat_evict_l2_eligible_mfu,
3994 HDR_GET_LSIZE(hdr));
3995 break;
3996 default:
3997 break;
3998 }
3999 } else {
4000 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
4001 HDR_GET_LSIZE(hdr));
4002 }
4003 }
4004
4005 if (hdr->b_l1hdr.b_bufcnt == 0) {
4006 arc_cksum_free(hdr);
4007
4008 bytes_evicted += arc_hdr_size(hdr);
4009 *real_evicted += arc_hdr_size(hdr);
4010
4011 /*
4012 * If this hdr is being evicted and has a compressed
4013 * buffer then we discard it here before we change states.
4014 * This ensures that the accounting is updated correctly
4015 * in arc_free_data_impl().
4016 */
4017 if (hdr->b_l1hdr.b_pabd != NULL)
4018 arc_hdr_free_abd(hdr, B_FALSE);
4019
4020 if (HDR_HAS_RABD(hdr))
4021 arc_hdr_free_abd(hdr, B_TRUE);
4022
4023 arc_change_state(evicted_state, hdr, hash_lock);
4024 ASSERT(HDR_IN_HASH_TABLE(hdr));
4025 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
4026 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
4027 }
4028
4029 return (bytes_evicted);
4030 }
4031
4032 static void
4033 arc_set_need_free(void)
4034 {
4035 ASSERT(MUTEX_HELD(&arc_evict_lock));
4036 int64_t remaining = arc_free_memory() - arc_sys_free / 2;
4037 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters);
4038 if (aw == NULL) {
4039 arc_need_free = MAX(-remaining, 0);
4040 } else {
4041 arc_need_free =
4042 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count));
4043 }
4044 }
4045
4046 static uint64_t
4047 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
4048 uint64_t spa, uint64_t bytes)
4049 {
4050 multilist_sublist_t *mls;
4051 uint64_t bytes_evicted = 0, real_evicted = 0;
4052 arc_buf_hdr_t *hdr;
4053 kmutex_t *hash_lock;
4054 int evict_count = zfs_arc_evict_batch_limit;
4055
4056 ASSERT3P(marker, !=, NULL);
4057
4058 mls = multilist_sublist_lock(ml, idx);
4059
4060 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL);
4061 hdr = multilist_sublist_prev(mls, marker)) {
4062 if ((evict_count <= 0) || (bytes_evicted >= bytes))
4063 break;
4064
4065 /*
4066 * To keep our iteration location, move the marker
4067 * forward. Since we're not holding hdr's hash lock, we
4068 * must be very careful and not remove 'hdr' from the
4069 * sublist. Otherwise, other consumers might mistake the
4070 * 'hdr' as not being on a sublist when they call the
4071 * multilist_link_active() function (they all rely on
4072 * the hash lock protecting concurrent insertions and
4073 * removals). multilist_sublist_move_forward() was
4074 * specifically implemented to ensure this is the case
4075 * (only 'marker' will be removed and re-inserted).
4076 */
4077 multilist_sublist_move_forward(mls, marker);
4078
4079 /*
4080 * The only case where the b_spa field should ever be
4081 * zero, is the marker headers inserted by
4082 * arc_evict_state(). It's possible for multiple threads
4083 * to be calling arc_evict_state() concurrently (e.g.
4084 * dsl_pool_close() and zio_inject_fault()), so we must
4085 * skip any markers we see from these other threads.
4086 */
4087 if (hdr->b_spa == 0)
4088 continue;
4089
4090 /* we're only interested in evicting buffers of a certain spa */
4091 if (spa != 0 && hdr->b_spa != spa) {
4092 ARCSTAT_BUMP(arcstat_evict_skip);
4093 continue;
4094 }
4095
4096 hash_lock = HDR_LOCK(hdr);
4097
4098 /*
4099 * We aren't calling this function from any code path
4100 * that would already be holding a hash lock, so we're
4101 * asserting on this assumption to be defensive in case
4102 * this ever changes. Without this check, it would be
4103 * possible to incorrectly increment arcstat_mutex_miss
4104 * below (e.g. if the code changed such that we called
4105 * this function with a hash lock held).
4106 */
4107 ASSERT(!MUTEX_HELD(hash_lock));
4108
4109 if (mutex_tryenter(hash_lock)) {
4110 uint64_t revicted;
4111 uint64_t evicted = arc_evict_hdr(hdr, hash_lock,
4112 &revicted);
4113 mutex_exit(hash_lock);
4114
4115 bytes_evicted += evicted;
4116 real_evicted += revicted;
4117
4118 /*
4119 * If evicted is zero, arc_evict_hdr() must have
4120 * decided to skip this header, don't increment
4121 * evict_count in this case.
4122 */
4123 if (evicted != 0)
4124 evict_count--;
4125
4126 } else {
4127 ARCSTAT_BUMP(arcstat_mutex_miss);
4128 }
4129 }
4130
4131 multilist_sublist_unlock(mls);
4132
4133 /*
4134 * Increment the count of evicted bytes, and wake up any threads that
4135 * are waiting for the count to reach this value. Since the list is
4136 * ordered by ascending aew_count, we pop off the beginning of the
4137 * list until we reach the end, or a waiter that's past the current
4138 * "count". Doing this outside the loop reduces the number of times
4139 * we need to acquire the global arc_evict_lock.
4140 *
4141 * Only wake when there's sufficient free memory in the system
4142 * (specifically, arc_sys_free/2, which by default is a bit more than
4143 * 1/64th of RAM). See the comments in arc_wait_for_eviction().
4144 */
4145 mutex_enter(&arc_evict_lock);
4146 arc_evict_count += real_evicted;
4147
4148 if (arc_free_memory() > arc_sys_free / 2) {
4149 arc_evict_waiter_t *aw;
4150 while ((aw = list_head(&arc_evict_waiters)) != NULL &&
4151 aw->aew_count <= arc_evict_count) {
4152 list_remove(&arc_evict_waiters, aw);
4153 cv_broadcast(&aw->aew_cv);
4154 }
4155 }
4156 arc_set_need_free();
4157 mutex_exit(&arc_evict_lock);
4158
4159 /*
4160 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
4161 * if the average cached block is small), eviction can be on-CPU for
4162 * many seconds. To ensure that other threads that may be bound to
4163 * this CPU are able to make progress, make a voluntary preemption
4164 * call here.
4165 */
4166 cond_resched();
4167
4168 return (bytes_evicted);
4169 }
4170
4171 /*
4172 * Allocate an array of buffer headers used as placeholders during arc state
4173 * eviction.
4174 */
4175 static arc_buf_hdr_t **
4176 arc_state_alloc_markers(int count)
4177 {
4178 arc_buf_hdr_t **markers;
4179
4180 markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP);
4181 for (int i = 0; i < count; i++) {
4182 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4183
4184 /*
4185 * A b_spa of 0 is used to indicate that this header is
4186 * a marker. This fact is used in arc_evict_type() and
4187 * arc_evict_state_impl().
4188 */
4189 markers[i]->b_spa = 0;
4190
4191 }
4192 return (markers);
4193 }
4194
4195 static void
4196 arc_state_free_markers(arc_buf_hdr_t **markers, int count)
4197 {
4198 for (int i = 0; i < count; i++)
4199 kmem_cache_free(hdr_full_cache, markers[i]);
4200 kmem_free(markers, sizeof (*markers) * count);
4201 }
4202
4203 /*
4204 * Evict buffers from the given arc state, until we've removed the
4205 * specified number of bytes. Move the removed buffers to the
4206 * appropriate evict state.
4207 *
4208 * This function makes a "best effort". It skips over any buffers
4209 * it can't get a hash_lock on, and so, may not catch all candidates.
4210 * It may also return without evicting as much space as requested.
4211 *
4212 * If bytes is specified using the special value ARC_EVICT_ALL, this
4213 * will evict all available (i.e. unlocked and evictable) buffers from
4214 * the given arc state; which is used by arc_flush().
4215 */
4216 static uint64_t
4217 arc_evict_state(arc_state_t *state, uint64_t spa, uint64_t bytes,
4218 arc_buf_contents_t type)
4219 {
4220 uint64_t total_evicted = 0;
4221 multilist_t *ml = &state->arcs_list[type];
4222 int num_sublists;
4223 arc_buf_hdr_t **markers;
4224
4225 num_sublists = multilist_get_num_sublists(ml);
4226
4227 /*
4228 * If we've tried to evict from each sublist, made some
4229 * progress, but still have not hit the target number of bytes
4230 * to evict, we want to keep trying. The markers allow us to
4231 * pick up where we left off for each individual sublist, rather
4232 * than starting from the tail each time.
4233 */
4234 if (zthr_iscurthread(arc_evict_zthr)) {
4235 markers = arc_state_evict_markers;
4236 ASSERT3S(num_sublists, <=, arc_state_evict_marker_count);
4237 } else {
4238 markers = arc_state_alloc_markers(num_sublists);
4239 }
4240 for (int i = 0; i < num_sublists; i++) {
4241 multilist_sublist_t *mls;
4242
4243 mls = multilist_sublist_lock(ml, i);
4244 multilist_sublist_insert_tail(mls, markers[i]);
4245 multilist_sublist_unlock(mls);
4246 }
4247
4248 /*
4249 * While we haven't hit our target number of bytes to evict, or
4250 * we're evicting all available buffers.
4251 */
4252 while (total_evicted < bytes) {
4253 int sublist_idx = multilist_get_random_index(ml);
4254 uint64_t scan_evicted = 0;
4255
4256 /*
4257 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
4258 * Request that 10% of the LRUs be scanned by the superblock
4259 * shrinker.
4260 */
4261 if (type == ARC_BUFC_DATA && aggsum_compare(
4262 &arc_sums.arcstat_dnode_size, arc_dnode_size_limit) > 0) {
4263 arc_prune_async((aggsum_upper_bound(
4264 &arc_sums.arcstat_dnode_size) -
4265 arc_dnode_size_limit) / sizeof (dnode_t) /
4266 zfs_arc_dnode_reduce_percent);
4267 }
4268
4269 /*
4270 * Start eviction using a randomly selected sublist,
4271 * this is to try and evenly balance eviction across all
4272 * sublists. Always starting at the same sublist
4273 * (e.g. index 0) would cause evictions to favor certain
4274 * sublists over others.
4275 */
4276 for (int i = 0; i < num_sublists; i++) {
4277 uint64_t bytes_remaining;
4278 uint64_t bytes_evicted;
4279
4280 if (total_evicted < bytes)
4281 bytes_remaining = bytes - total_evicted;
4282 else
4283 break;
4284
4285 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4286 markers[sublist_idx], spa, bytes_remaining);
4287
4288 scan_evicted += bytes_evicted;
4289 total_evicted += bytes_evicted;
4290
4291 /* we've reached the end, wrap to the beginning */
4292 if (++sublist_idx >= num_sublists)
4293 sublist_idx = 0;
4294 }
4295
4296 /*
4297 * If we didn't evict anything during this scan, we have
4298 * no reason to believe we'll evict more during another
4299 * scan, so break the loop.
4300 */
4301 if (scan_evicted == 0) {
4302 /* This isn't possible, let's make that obvious */
4303 ASSERT3S(bytes, !=, 0);
4304
4305 /*
4306 * When bytes is ARC_EVICT_ALL, the only way to
4307 * break the loop is when scan_evicted is zero.
4308 * In that case, we actually have evicted enough,
4309 * so we don't want to increment the kstat.
4310 */
4311 if (bytes != ARC_EVICT_ALL) {
4312 ASSERT3S(total_evicted, <, bytes);
4313 ARCSTAT_BUMP(arcstat_evict_not_enough);
4314 }
4315
4316 break;
4317 }
4318 }
4319
4320 for (int i = 0; i < num_sublists; i++) {
4321 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4322 multilist_sublist_remove(mls, markers[i]);
4323 multilist_sublist_unlock(mls);
4324 }
4325 if (markers != arc_state_evict_markers)
4326 arc_state_free_markers(markers, num_sublists);
4327
4328 return (total_evicted);
4329 }
4330
4331 /*
4332 * Flush all "evictable" data of the given type from the arc state
4333 * specified. This will not evict any "active" buffers (i.e. referenced).
4334 *
4335 * When 'retry' is set to B_FALSE, the function will make a single pass
4336 * over the state and evict any buffers that it can. Since it doesn't
4337 * continually retry the eviction, it might end up leaving some buffers
4338 * in the ARC due to lock misses.
4339 *
4340 * When 'retry' is set to B_TRUE, the function will continually retry the
4341 * eviction until *all* evictable buffers have been removed from the
4342 * state. As a result, if concurrent insertions into the state are
4343 * allowed (e.g. if the ARC isn't shutting down), this function might
4344 * wind up in an infinite loop, continually trying to evict buffers.
4345 */
4346 static uint64_t
4347 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4348 boolean_t retry)
4349 {
4350 uint64_t evicted = 0;
4351
4352 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4353 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4354
4355 if (!retry)
4356 break;
4357 }
4358
4359 return (evicted);
4360 }
4361
4362 /*
4363 * Evict the specified number of bytes from the state specified,
4364 * restricting eviction to the spa and type given. This function
4365 * prevents us from trying to evict more from a state's list than
4366 * is "evictable", and to skip evicting altogether when passed a
4367 * negative value for "bytes". In contrast, arc_evict_state() will
4368 * evict everything it can, when passed a negative value for "bytes".
4369 */
4370 static uint64_t
4371 arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
4372 arc_buf_contents_t type)
4373 {
4374 uint64_t delta;
4375
4376 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4377 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4378 bytes);
4379 return (arc_evict_state(state, spa, delta, type));
4380 }
4381
4382 return (0);
4383 }
4384
4385 /*
4386 * The goal of this function is to evict enough meta data buffers from the
4387 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
4388 * more complicated than it appears because it is common for data buffers
4389 * to have holds on meta data buffers. In addition, dnode meta data buffers
4390 * will be held by the dnodes in the block preventing them from being freed.
4391 * This means we can't simply traverse the ARC and expect to always find
4392 * enough unheld meta data buffer to release.
4393 *
4394 * Therefore, this function has been updated to make alternating passes
4395 * over the ARC releasing data buffers and then newly unheld meta data
4396 * buffers. This ensures forward progress is maintained and meta_used
4397 * will decrease. Normally this is sufficient, but if required the ARC
4398 * will call the registered prune callbacks causing dentry and inodes to
4399 * be dropped from the VFS cache. This will make dnode meta data buffers
4400 * available for reclaim.
4401 */
4402 static uint64_t
4403 arc_evict_meta_balanced(uint64_t meta_used)
4404 {
4405 int64_t delta, prune = 0, adjustmnt;
4406 uint64_t total_evicted = 0;
4407 arc_buf_contents_t type = ARC_BUFC_DATA;
4408 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
4409
4410 restart:
4411 /*
4412 * This slightly differs than the way we evict from the mru in
4413 * arc_evict because we don't have a "target" value (i.e. no
4414 * "meta" arc_p). As a result, I think we can completely
4415 * cannibalize the metadata in the MRU before we evict the
4416 * metadata from the MFU. I think we probably need to implement a
4417 * "metadata arc_p" value to do this properly.
4418 */
4419 adjustmnt = meta_used - arc_meta_limit;
4420
4421 if (adjustmnt > 0 &&
4422 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) {
4423 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]),
4424 adjustmnt);
4425 total_evicted += arc_evict_impl(arc_mru, 0, delta, type);
4426 adjustmnt -= delta;
4427 }
4428
4429 /*
4430 * We can't afford to recalculate adjustmnt here. If we do,
4431 * new metadata buffers can sneak into the MRU or ANON lists,
4432 * thus penalize the MFU metadata. Although the fudge factor is
4433 * small, it has been empirically shown to be significant for
4434 * certain workloads (e.g. creating many empty directories). As
4435 * such, we use the original calculation for adjustmnt, and
4436 * simply decrement the amount of data evicted from the MRU.
4437 */
4438
4439 if (adjustmnt > 0 &&
4440 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
4441 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]),
4442 adjustmnt);
4443 total_evicted += arc_evict_impl(arc_mfu, 0, delta, type);
4444 }
4445
4446 adjustmnt = meta_used - arc_meta_limit;
4447
4448 if (adjustmnt > 0 &&
4449 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
4450 delta = MIN(adjustmnt,
4451 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]));
4452 total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type);
4453 adjustmnt -= delta;
4454 }
4455
4456 if (adjustmnt > 0 &&
4457 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
4458 delta = MIN(adjustmnt,
4459 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]));
4460 total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type);
4461 }
4462
4463 /*
4464 * If after attempting to make the requested adjustment to the ARC
4465 * the meta limit is still being exceeded then request that the
4466 * higher layers drop some cached objects which have holds on ARC
4467 * meta buffers. Requests to the upper layers will be made with
4468 * increasingly large scan sizes until the ARC is below the limit.
4469 */
4470 if (meta_used > arc_meta_limit) {
4471 if (type == ARC_BUFC_DATA) {
4472 type = ARC_BUFC_METADATA;
4473 } else {
4474 type = ARC_BUFC_DATA;
4475
4476 if (zfs_arc_meta_prune) {
4477 prune += zfs_arc_meta_prune;
4478 arc_prune_async(prune);
4479 }
4480 }
4481
4482 if (restarts > 0) {
4483 restarts--;
4484 goto restart;
4485 }
4486 }
4487 return (total_evicted);
4488 }
4489
4490 /*
4491 * Evict metadata buffers from the cache, such that arcstat_meta_used is
4492 * capped by the arc_meta_limit tunable.
4493 */
4494 static uint64_t
4495 arc_evict_meta_only(uint64_t meta_used)
4496 {
4497 uint64_t total_evicted = 0;
4498 int64_t target;
4499
4500 /*
4501 * If we're over the meta limit, we want to evict enough
4502 * metadata to get back under the meta limit. We don't want to
4503 * evict so much that we drop the MRU below arc_p, though. If
4504 * we're over the meta limit more than we're over arc_p, we
4505 * evict some from the MRU here, and some from the MFU below.
4506 */
4507 target = MIN((int64_t)(meta_used - arc_meta_limit),
4508 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4509 zfs_refcount_count(&arc_mru->arcs_size) - arc_p));
4510
4511 total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4512
4513 /*
4514 * Similar to the above, we want to evict enough bytes to get us
4515 * below the meta limit, but not so much as to drop us below the
4516 * space allotted to the MFU (which is defined as arc_c - arc_p).
4517 */
4518 target = MIN((int64_t)(meta_used - arc_meta_limit),
4519 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) -
4520 (arc_c - arc_p)));
4521
4522 total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4523
4524 return (total_evicted);
4525 }
4526
4527 static uint64_t
4528 arc_evict_meta(uint64_t meta_used)
4529 {
4530 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
4531 return (arc_evict_meta_only(meta_used));
4532 else
4533 return (arc_evict_meta_balanced(meta_used));
4534 }
4535
4536 /*
4537 * Return the type of the oldest buffer in the given arc state
4538 *
4539 * This function will select a random sublist of type ARC_BUFC_DATA and
4540 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4541 * is compared, and the type which contains the "older" buffer will be
4542 * returned.
4543 */
4544 static arc_buf_contents_t
4545 arc_evict_type(arc_state_t *state)
4546 {
4547 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
4548 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
4549 int data_idx = multilist_get_random_index(data_ml);
4550 int meta_idx = multilist_get_random_index(meta_ml);
4551 multilist_sublist_t *data_mls;
4552 multilist_sublist_t *meta_mls;
4553 arc_buf_contents_t type;
4554 arc_buf_hdr_t *data_hdr;
4555 arc_buf_hdr_t *meta_hdr;
4556
4557 /*
4558 * We keep the sublist lock until we're finished, to prevent
4559 * the headers from being destroyed via arc_evict_state().
4560 */
4561 data_mls = multilist_sublist_lock(data_ml, data_idx);
4562 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4563
4564 /*
4565 * These two loops are to ensure we skip any markers that
4566 * might be at the tail of the lists due to arc_evict_state().
4567 */
4568
4569 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4570 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4571 if (data_hdr->b_spa != 0)
4572 break;
4573 }
4574
4575 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4576 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4577 if (meta_hdr->b_spa != 0)
4578 break;
4579 }
4580
4581 if (data_hdr == NULL && meta_hdr == NULL) {
4582 type = ARC_BUFC_DATA;
4583 } else if (data_hdr == NULL) {
4584 ASSERT3P(meta_hdr, !=, NULL);
4585 type = ARC_BUFC_METADATA;
4586 } else if (meta_hdr == NULL) {
4587 ASSERT3P(data_hdr, !=, NULL);
4588 type = ARC_BUFC_DATA;
4589 } else {
4590 ASSERT3P(data_hdr, !=, NULL);
4591 ASSERT3P(meta_hdr, !=, NULL);
4592
4593 /* The headers can't be on the sublist without an L1 header */
4594 ASSERT(HDR_HAS_L1HDR(data_hdr));
4595 ASSERT(HDR_HAS_L1HDR(meta_hdr));
4596
4597 if (data_hdr->b_l1hdr.b_arc_access <
4598 meta_hdr->b_l1hdr.b_arc_access) {
4599 type = ARC_BUFC_DATA;
4600 } else {
4601 type = ARC_BUFC_METADATA;
4602 }
4603 }
4604
4605 multilist_sublist_unlock(meta_mls);
4606 multilist_sublist_unlock(data_mls);
4607
4608 return (type);
4609 }
4610
4611 /*
4612 * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4613 */
4614 static uint64_t
4615 arc_evict(void)
4616 {
4617 uint64_t total_evicted = 0;
4618 uint64_t bytes;
4619 int64_t target;
4620 uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4621 uint64_t ameta = aggsum_value(&arc_sums.arcstat_meta_used);
4622
4623 /*
4624 * If we're over arc_meta_limit, we want to correct that before
4625 * potentially evicting data buffers below.
4626 */
4627 total_evicted += arc_evict_meta(ameta);
4628
4629 /*
4630 * Adjust MRU size
4631 *
4632 * If we're over the target cache size, we want to evict enough
4633 * from the list to get back to our target size. We don't want
4634 * to evict too much from the MRU, such that it drops below
4635 * arc_p. So, if we're over our target cache size more than
4636 * the MRU is over arc_p, we'll evict enough to get back to
4637 * arc_p here, and then evict more from the MFU below.
4638 */
4639 target = MIN((int64_t)(asize - arc_c),
4640 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4641 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
4642
4643 /*
4644 * If we're below arc_meta_min, always prefer to evict data.
4645 * Otherwise, try to satisfy the requested number of bytes to
4646 * evict from the type which contains older buffers; in an
4647 * effort to keep newer buffers in the cache regardless of their
4648 * type. If we cannot satisfy the number of bytes from this
4649 * type, spill over into the next type.
4650 */
4651 if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA &&
4652 ameta > arc_meta_min) {
4653 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4654 total_evicted += bytes;
4655
4656 /*
4657 * If we couldn't evict our target number of bytes from
4658 * metadata, we try to get the rest from data.
4659 */
4660 target -= bytes;
4661
4662 total_evicted +=
4663 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4664 } else {
4665 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4666 total_evicted += bytes;
4667
4668 /*
4669 * If we couldn't evict our target number of bytes from
4670 * data, we try to get the rest from metadata.
4671 */
4672 target -= bytes;
4673
4674 total_evicted +=
4675 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4676 }
4677
4678 /*
4679 * Re-sum ARC stats after the first round of evictions.
4680 */
4681 asize = aggsum_value(&arc_sums.arcstat_size);
4682 ameta = aggsum_value(&arc_sums.arcstat_meta_used);
4683
4684
4685 /*
4686 * Adjust MFU size
4687 *
4688 * Now that we've tried to evict enough from the MRU to get its
4689 * size back to arc_p, if we're still above the target cache
4690 * size, we evict the rest from the MFU.
4691 */
4692 target = asize - arc_c;
4693
4694 if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA &&
4695 ameta > arc_meta_min) {
4696 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4697 total_evicted += bytes;
4698
4699 /*
4700 * If we couldn't evict our target number of bytes from
4701 * metadata, we try to get the rest from data.
4702 */
4703 target -= bytes;
4704
4705 total_evicted +=
4706 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4707 } else {
4708 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4709 total_evicted += bytes;
4710
4711 /*
4712 * If we couldn't evict our target number of bytes from
4713 * data, we try to get the rest from data.
4714 */
4715 target -= bytes;
4716
4717 total_evicted +=
4718 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4719 }
4720
4721 /*
4722 * Adjust ghost lists
4723 *
4724 * In addition to the above, the ARC also defines target values
4725 * for the ghost lists. The sum of the mru list and mru ghost
4726 * list should never exceed the target size of the cache, and
4727 * the sum of the mru list, mfu list, mru ghost list, and mfu
4728 * ghost list should never exceed twice the target size of the
4729 * cache. The following logic enforces these limits on the ghost
4730 * caches, and evicts from them as needed.
4731 */
4732 target = zfs_refcount_count(&arc_mru->arcs_size) +
4733 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
4734
4735 bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4736 total_evicted += bytes;
4737
4738 target -= bytes;
4739
4740 total_evicted +=
4741 arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4742
4743 /*
4744 * We assume the sum of the mru list and mfu list is less than
4745 * or equal to arc_c (we enforced this above), which means we
4746 * can use the simpler of the two equations below:
4747 *
4748 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4749 * mru ghost + mfu ghost <= arc_c
4750 */
4751 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) +
4752 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
4753
4754 bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4755 total_evicted += bytes;
4756
4757 target -= bytes;
4758
4759 total_evicted +=
4760 arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4761
4762 return (total_evicted);
4763 }
4764
4765 void
4766 arc_flush(spa_t *spa, boolean_t retry)
4767 {
4768 uint64_t guid = 0;
4769
4770 /*
4771 * If retry is B_TRUE, a spa must not be specified since we have
4772 * no good way to determine if all of a spa's buffers have been
4773 * evicted from an arc state.
4774 */
4775 ASSERT(!retry || spa == 0);
4776
4777 if (spa != NULL)
4778 guid = spa_load_guid(spa);
4779
4780 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4781 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4782
4783 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4784 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4785
4786 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4787 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4788
4789 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4790 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4791 }
4792
4793 void
4794 arc_reduce_target_size(int64_t to_free)
4795 {
4796 uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4797
4798 /*
4799 * All callers want the ARC to actually evict (at least) this much
4800 * memory. Therefore we reduce from the lower of the current size and
4801 * the target size. This way, even if arc_c is much higher than
4802 * arc_size (as can be the case after many calls to arc_freed(), we will
4803 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4804 * will evict.
4805 */
4806 uint64_t c = MIN(arc_c, asize);
4807
4808 if (c > to_free && c - to_free > arc_c_min) {
4809 arc_c = c - to_free;
4810 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
4811 if (arc_p > arc_c)
4812 arc_p = (arc_c >> 1);
4813 ASSERT(arc_c >= arc_c_min);
4814 ASSERT((int64_t)arc_p >= 0);
4815 } else {
4816 arc_c = arc_c_min;
4817 }
4818
4819 if (asize > arc_c) {
4820 /* See comment in arc_evict_cb_check() on why lock+flag */
4821 mutex_enter(&arc_evict_lock);
4822 arc_evict_needed = B_TRUE;
4823 mutex_exit(&arc_evict_lock);
4824 zthr_wakeup(arc_evict_zthr);
4825 }
4826 }
4827
4828 /*
4829 * Determine if the system is under memory pressure and is asking
4830 * to reclaim memory. A return value of B_TRUE indicates that the system
4831 * is under memory pressure and that the arc should adjust accordingly.
4832 */
4833 boolean_t
4834 arc_reclaim_needed(void)
4835 {
4836 return (arc_available_memory() < 0);
4837 }
4838
4839 void
4840 arc_kmem_reap_soon(void)
4841 {
4842 size_t i;
4843 kmem_cache_t *prev_cache = NULL;
4844 kmem_cache_t *prev_data_cache = NULL;
4845
4846 #ifdef _KERNEL
4847 if ((aggsum_compare(&arc_sums.arcstat_meta_used,
4848 arc_meta_limit) >= 0) && zfs_arc_meta_prune) {
4849 /*
4850 * We are exceeding our meta-data cache limit.
4851 * Prune some entries to release holds on meta-data.
4852 */
4853 arc_prune_async(zfs_arc_meta_prune);
4854 }
4855 #if defined(_ILP32)
4856 /*
4857 * Reclaim unused memory from all kmem caches.
4858 */
4859 kmem_reap();
4860 #endif
4861 #endif
4862
4863 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4864 #if defined(_ILP32)
4865 /* reach upper limit of cache size on 32-bit */
4866 if (zio_buf_cache[i] == NULL)
4867 break;
4868 #endif
4869 if (zio_buf_cache[i] != prev_cache) {
4870 prev_cache = zio_buf_cache[i];
4871 kmem_cache_reap_now(zio_buf_cache[i]);
4872 }
4873 if (zio_data_buf_cache[i] != prev_data_cache) {
4874 prev_data_cache = zio_data_buf_cache[i];
4875 kmem_cache_reap_now(zio_data_buf_cache[i]);
4876 }
4877 }
4878 kmem_cache_reap_now(buf_cache);
4879 kmem_cache_reap_now(hdr_full_cache);
4880 kmem_cache_reap_now(hdr_l2only_cache);
4881 kmem_cache_reap_now(zfs_btree_leaf_cache);
4882 abd_cache_reap_now();
4883 }
4884
4885 static boolean_t
4886 arc_evict_cb_check(void *arg, zthr_t *zthr)
4887 {
4888 (void) arg, (void) zthr;
4889
4890 #ifdef ZFS_DEBUG
4891 /*
4892 * This is necessary in order to keep the kstat information
4893 * up to date for tools that display kstat data such as the
4894 * mdb ::arc dcmd and the Linux crash utility. These tools
4895 * typically do not call kstat's update function, but simply
4896 * dump out stats from the most recent update. Without
4897 * this call, these commands may show stale stats for the
4898 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4899 * with this call, the data might be out of date if the
4900 * evict thread hasn't been woken recently; but that should
4901 * suffice. The arc_state_t structures can be queried
4902 * directly if more accurate information is needed.
4903 */
4904 if (arc_ksp != NULL)
4905 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4906 #endif
4907
4908 /*
4909 * We have to rely on arc_wait_for_eviction() to tell us when to
4910 * evict, rather than checking if we are overflowing here, so that we
4911 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4912 * If we have become "not overflowing" since arc_wait_for_eviction()
4913 * checked, we need to wake it up. We could broadcast the CV here,
4914 * but arc_wait_for_eviction() may have not yet gone to sleep. We
4915 * would need to use a mutex to ensure that this function doesn't
4916 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4917 * the arc_evict_lock). However, the lock ordering of such a lock
4918 * would necessarily be incorrect with respect to the zthr_lock,
4919 * which is held before this function is called, and is held by
4920 * arc_wait_for_eviction() when it calls zthr_wakeup().
4921 */
4922 return (arc_evict_needed);
4923 }
4924
4925 /*
4926 * Keep arc_size under arc_c by running arc_evict which evicts data
4927 * from the ARC.
4928 */
4929 static void
4930 arc_evict_cb(void *arg, zthr_t *zthr)
4931 {
4932 (void) arg, (void) zthr;
4933
4934 uint64_t evicted = 0;
4935 fstrans_cookie_t cookie = spl_fstrans_mark();
4936
4937 /* Evict from cache */
4938 evicted = arc_evict();
4939
4940 /*
4941 * If evicted is zero, we couldn't evict anything
4942 * via arc_evict(). This could be due to hash lock
4943 * collisions, but more likely due to the majority of
4944 * arc buffers being unevictable. Therefore, even if
4945 * arc_size is above arc_c, another pass is unlikely to
4946 * be helpful and could potentially cause us to enter an
4947 * infinite loop. Additionally, zthr_iscancelled() is
4948 * checked here so that if the arc is shutting down, the
4949 * broadcast will wake any remaining arc evict waiters.
4950 */
4951 mutex_enter(&arc_evict_lock);
4952 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) &&
4953 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0;
4954 if (!arc_evict_needed) {
4955 /*
4956 * We're either no longer overflowing, or we
4957 * can't evict anything more, so we should wake
4958 * arc_get_data_impl() sooner.
4959 */
4960 arc_evict_waiter_t *aw;
4961 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) {
4962 cv_broadcast(&aw->aew_cv);
4963 }
4964 arc_set_need_free();
4965 }
4966 mutex_exit(&arc_evict_lock);
4967 spl_fstrans_unmark(cookie);
4968 }
4969
4970 static boolean_t
4971 arc_reap_cb_check(void *arg, zthr_t *zthr)
4972 {
4973 (void) arg, (void) zthr;
4974
4975 int64_t free_memory = arc_available_memory();
4976 static int reap_cb_check_counter = 0;
4977
4978 /*
4979 * If a kmem reap is already active, don't schedule more. We must
4980 * check for this because kmem_cache_reap_soon() won't actually
4981 * block on the cache being reaped (this is to prevent callers from
4982 * becoming implicitly blocked by a system-wide kmem reap -- which,
4983 * on a system with many, many full magazines, can take minutes).
4984 */
4985 if (!kmem_cache_reap_active() && free_memory < 0) {
4986
4987 arc_no_grow = B_TRUE;
4988 arc_warm = B_TRUE;
4989 /*
4990 * Wait at least zfs_grow_retry (default 5) seconds
4991 * before considering growing.
4992 */
4993 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4994 return (B_TRUE);
4995 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4996 arc_no_grow = B_TRUE;
4997 } else if (gethrtime() >= arc_growtime) {
4998 arc_no_grow = B_FALSE;
4999 }
5000
5001 /*
5002 * Called unconditionally every 60 seconds to reclaim unused
5003 * zstd compression and decompression context. This is done
5004 * here to avoid the need for an independent thread.
5005 */
5006 if (!((reap_cb_check_counter++) % 60))
5007 zfs_zstd_cache_reap_now();
5008
5009 return (B_FALSE);
5010 }
5011
5012 /*
5013 * Keep enough free memory in the system by reaping the ARC's kmem
5014 * caches. To cause more slabs to be reapable, we may reduce the
5015 * target size of the cache (arc_c), causing the arc_evict_cb()
5016 * to free more buffers.
5017 */
5018 static void
5019 arc_reap_cb(void *arg, zthr_t *zthr)
5020 {
5021 (void) arg, (void) zthr;
5022
5023 int64_t free_memory;
5024 fstrans_cookie_t cookie = spl_fstrans_mark();
5025
5026 /*
5027 * Kick off asynchronous kmem_reap()'s of all our caches.
5028 */
5029 arc_kmem_reap_soon();
5030
5031 /*
5032 * Wait at least arc_kmem_cache_reap_retry_ms between
5033 * arc_kmem_reap_soon() calls. Without this check it is possible to
5034 * end up in a situation where we spend lots of time reaping
5035 * caches, while we're near arc_c_min. Waiting here also gives the
5036 * subsequent free memory check a chance of finding that the
5037 * asynchronous reap has already freed enough memory, and we don't
5038 * need to call arc_reduce_target_size().
5039 */
5040 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
5041
5042 /*
5043 * Reduce the target size as needed to maintain the amount of free
5044 * memory in the system at a fraction of the arc_size (1/128th by
5045 * default). If oversubscribed (free_memory < 0) then reduce the
5046 * target arc_size by the deficit amount plus the fractional
5047 * amount. If free memory is positive but less than the fractional
5048 * amount, reduce by what is needed to hit the fractional amount.
5049 */
5050 free_memory = arc_available_memory();
5051
5052 int64_t to_free =
5053 (arc_c >> arc_shrink_shift) - free_memory;
5054 if (to_free > 0) {
5055 arc_reduce_target_size(to_free);
5056 }
5057 spl_fstrans_unmark(cookie);
5058 }
5059
5060 #ifdef _KERNEL
5061 /*
5062 * Determine the amount of memory eligible for eviction contained in the
5063 * ARC. All clean data reported by the ghost lists can always be safely
5064 * evicted. Due to arc_c_min, the same does not hold for all clean data
5065 * contained by the regular mru and mfu lists.
5066 *
5067 * In the case of the regular mru and mfu lists, we need to report as
5068 * much clean data as possible, such that evicting that same reported
5069 * data will not bring arc_size below arc_c_min. Thus, in certain
5070 * circumstances, the total amount of clean data in the mru and mfu
5071 * lists might not actually be evictable.
5072 *
5073 * The following two distinct cases are accounted for:
5074 *
5075 * 1. The sum of the amount of dirty data contained by both the mru and
5076 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5077 * is greater than or equal to arc_c_min.
5078 * (i.e. amount of dirty data >= arc_c_min)
5079 *
5080 * This is the easy case; all clean data contained by the mru and mfu
5081 * lists is evictable. Evicting all clean data can only drop arc_size
5082 * to the amount of dirty data, which is greater than arc_c_min.
5083 *
5084 * 2. The sum of the amount of dirty data contained by both the mru and
5085 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5086 * is less than arc_c_min.
5087 * (i.e. arc_c_min > amount of dirty data)
5088 *
5089 * 2.1. arc_size is greater than or equal arc_c_min.
5090 * (i.e. arc_size >= arc_c_min > amount of dirty data)
5091 *
5092 * In this case, not all clean data from the regular mru and mfu
5093 * lists is actually evictable; we must leave enough clean data
5094 * to keep arc_size above arc_c_min. Thus, the maximum amount of
5095 * evictable data from the two lists combined, is exactly the
5096 * difference between arc_size and arc_c_min.
5097 *
5098 * 2.2. arc_size is less than arc_c_min
5099 * (i.e. arc_c_min > arc_size > amount of dirty data)
5100 *
5101 * In this case, none of the data contained in the mru and mfu
5102 * lists is evictable, even if it's clean. Since arc_size is
5103 * already below arc_c_min, evicting any more would only
5104 * increase this negative difference.
5105 */
5106
5107 #endif /* _KERNEL */
5108
5109 /*
5110 * Adapt arc info given the number of bytes we are trying to add and
5111 * the state that we are coming from. This function is only called
5112 * when we are adding new content to the cache.
5113 */
5114 static void
5115 arc_adapt(int bytes, arc_state_t *state)
5116 {
5117 int mult;
5118 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
5119 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size);
5120 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size);
5121
5122 ASSERT(bytes > 0);
5123 /*
5124 * Adapt the target size of the MRU list:
5125 * - if we just hit in the MRU ghost list, then increase
5126 * the target size of the MRU list.
5127 * - if we just hit in the MFU ghost list, then increase
5128 * the target size of the MFU list by decreasing the
5129 * target size of the MRU list.
5130 */
5131 if (state == arc_mru_ghost) {
5132 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
5133 if (!zfs_arc_p_dampener_disable)
5134 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
5135
5136 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
5137 } else if (state == arc_mfu_ghost) {
5138 uint64_t delta;
5139
5140 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
5141 if (!zfs_arc_p_dampener_disable)
5142 mult = MIN(mult, 10);
5143
5144 delta = MIN(bytes * mult, arc_p);
5145 arc_p = MAX(arc_p_min, arc_p - delta);
5146 }
5147 ASSERT((int64_t)arc_p >= 0);
5148
5149 /*
5150 * Wake reap thread if we do not have any available memory
5151 */
5152 if (arc_reclaim_needed()) {
5153 zthr_wakeup(arc_reap_zthr);
5154 return;
5155 }
5156
5157 if (arc_no_grow)
5158 return;
5159
5160 if (arc_c >= arc_c_max)
5161 return;
5162
5163 /*
5164 * If we're within (2 * maxblocksize) bytes of the target
5165 * cache size, increment the target cache size
5166 */
5167 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
5168 if (aggsum_upper_bound(&arc_sums.arcstat_size) >=
5169 arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
5170 atomic_add_64(&arc_c, (int64_t)bytes);
5171 if (arc_c > arc_c_max)
5172 arc_c = arc_c_max;
5173 else if (state == arc_anon)
5174 atomic_add_64(&arc_p, (int64_t)bytes);
5175 if (arc_p > arc_c)
5176 arc_p = arc_c;
5177 }
5178 ASSERT((int64_t)arc_p >= 0);
5179 }
5180
5181 /*
5182 * Check if arc_size has grown past our upper threshold, determined by
5183 * zfs_arc_overflow_shift.
5184 */
5185 static arc_ovf_level_t
5186 arc_is_overflowing(boolean_t use_reserve)
5187 {
5188 /* Always allow at least one block of overflow */
5189 int64_t overflow = MAX(SPA_MAXBLOCKSIZE,
5190 arc_c >> zfs_arc_overflow_shift);
5191
5192 /*
5193 * We just compare the lower bound here for performance reasons. Our
5194 * primary goals are to make sure that the arc never grows without
5195 * bound, and that it can reach its maximum size. This check
5196 * accomplishes both goals. The maximum amount we could run over by is
5197 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5198 * in the ARC. In practice, that's in the tens of MB, which is low
5199 * enough to be safe.
5200 */
5201 int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) -
5202 arc_c - overflow / 2;
5203 if (!use_reserve)
5204 overflow /= 2;
5205 return (over < 0 ? ARC_OVF_NONE :
5206 over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE);
5207 }
5208
5209 static abd_t *
5210 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag,
5211 int alloc_flags)
5212 {
5213 arc_buf_contents_t type = arc_buf_type(hdr);
5214
5215 arc_get_data_impl(hdr, size, tag, alloc_flags);
5216 if (type == ARC_BUFC_METADATA) {
5217 return (abd_alloc(size, B_TRUE));
5218 } else {
5219 ASSERT(type == ARC_BUFC_DATA);
5220 return (abd_alloc(size, B_FALSE));
5221 }
5222 }
5223
5224 static void *
5225 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5226 {
5227 arc_buf_contents_t type = arc_buf_type(hdr);
5228
5229 arc_get_data_impl(hdr, size, tag, ARC_HDR_DO_ADAPT);
5230 if (type == ARC_BUFC_METADATA) {
5231 return (zio_buf_alloc(size));
5232 } else {
5233 ASSERT(type == ARC_BUFC_DATA);
5234 return (zio_data_buf_alloc(size));
5235 }
5236 }
5237
5238 /*
5239 * Wait for the specified amount of data (in bytes) to be evicted from the
5240 * ARC, and for there to be sufficient free memory in the system. Waiting for
5241 * eviction ensures that the memory used by the ARC decreases. Waiting for
5242 * free memory ensures that the system won't run out of free pages, regardless
5243 * of ARC behavior and settings. See arc_lowmem_init().
5244 */
5245 void
5246 arc_wait_for_eviction(uint64_t amount, boolean_t use_reserve)
5247 {
5248 switch (arc_is_overflowing(use_reserve)) {
5249 case ARC_OVF_NONE:
5250 return;
5251 case ARC_OVF_SOME:
5252 /*
5253 * This is a bit racy without taking arc_evict_lock, but the
5254 * worst that can happen is we either call zthr_wakeup() extra
5255 * time due to race with other thread here, or the set flag
5256 * get cleared by arc_evict_cb(), which is unlikely due to
5257 * big hysteresis, but also not important since at this level
5258 * of overflow the eviction is purely advisory. Same time
5259 * taking the global lock here every time without waiting for
5260 * the actual eviction creates a significant lock contention.
5261 */
5262 if (!arc_evict_needed) {
5263 arc_evict_needed = B_TRUE;
5264 zthr_wakeup(arc_evict_zthr);
5265 }
5266 return;
5267 case ARC_OVF_SEVERE:
5268 default:
5269 {
5270 arc_evict_waiter_t aw;
5271 list_link_init(&aw.aew_node);
5272 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL);
5273
5274 uint64_t last_count = 0;
5275 mutex_enter(&arc_evict_lock);
5276 if (!list_is_empty(&arc_evict_waiters)) {
5277 arc_evict_waiter_t *last =
5278 list_tail(&arc_evict_waiters);
5279 last_count = last->aew_count;
5280 } else if (!arc_evict_needed) {
5281 arc_evict_needed = B_TRUE;
5282 zthr_wakeup(arc_evict_zthr);
5283 }
5284 /*
5285 * Note, the last waiter's count may be less than
5286 * arc_evict_count if we are low on memory in which
5287 * case arc_evict_state_impl() may have deferred
5288 * wakeups (but still incremented arc_evict_count).
5289 */
5290 aw.aew_count = MAX(last_count, arc_evict_count) + amount;
5291
5292 list_insert_tail(&arc_evict_waiters, &aw);
5293
5294 arc_set_need_free();
5295
5296 DTRACE_PROBE3(arc__wait__for__eviction,
5297 uint64_t, amount,
5298 uint64_t, arc_evict_count,
5299 uint64_t, aw.aew_count);
5300
5301 /*
5302 * We will be woken up either when arc_evict_count reaches
5303 * aew_count, or when the ARC is no longer overflowing and
5304 * eviction completes.
5305 * In case of "false" wakeup, we will still be on the list.
5306 */
5307 do {
5308 cv_wait(&aw.aew_cv, &arc_evict_lock);
5309 } while (list_link_active(&aw.aew_node));
5310 mutex_exit(&arc_evict_lock);
5311
5312 cv_destroy(&aw.aew_cv);
5313 }
5314 }
5315 }
5316
5317 /*
5318 * Allocate a block and return it to the caller. If we are hitting the
5319 * hard limit for the cache size, we must sleep, waiting for the eviction
5320 * thread to catch up. If we're past the target size but below the hard
5321 * limit, we'll only signal the reclaim thread and continue on.
5322 */
5323 static void
5324 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag,
5325 int alloc_flags)
5326 {
5327 arc_state_t *state = hdr->b_l1hdr.b_state;
5328 arc_buf_contents_t type = arc_buf_type(hdr);
5329
5330 if (alloc_flags & ARC_HDR_DO_ADAPT)
5331 arc_adapt(size, state);
5332
5333 /*
5334 * If arc_size is currently overflowing, we must be adding data
5335 * faster than we are evicting. To ensure we don't compound the
5336 * problem by adding more data and forcing arc_size to grow even
5337 * further past it's target size, we wait for the eviction thread to
5338 * make some progress. We also wait for there to be sufficient free
5339 * memory in the system, as measured by arc_free_memory().
5340 *
5341 * Specifically, we wait for zfs_arc_eviction_pct percent of the
5342 * requested size to be evicted. This should be more than 100%, to
5343 * ensure that that progress is also made towards getting arc_size
5344 * under arc_c. See the comment above zfs_arc_eviction_pct.
5345 */
5346 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100,
5347 alloc_flags & ARC_HDR_USE_RESERVE);
5348
5349 VERIFY3U(hdr->b_type, ==, type);
5350 if (type == ARC_BUFC_METADATA) {
5351 arc_space_consume(size, ARC_SPACE_META);
5352 } else {
5353 arc_space_consume(size, ARC_SPACE_DATA);
5354 }
5355
5356 /*
5357 * Update the state size. Note that ghost states have a
5358 * "ghost size" and so don't need to be updated.
5359 */
5360 if (!GHOST_STATE(state)) {
5361
5362 (void) zfs_refcount_add_many(&state->arcs_size, size, tag);
5363
5364 /*
5365 * If this is reached via arc_read, the link is
5366 * protected by the hash lock. If reached via
5367 * arc_buf_alloc, the header should not be accessed by
5368 * any other thread. And, if reached via arc_read_done,
5369 * the hash lock will protect it if it's found in the
5370 * hash table; otherwise no other thread should be
5371 * trying to [add|remove]_reference it.
5372 */
5373 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5374 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5375 (void) zfs_refcount_add_many(&state->arcs_esize[type],
5376 size, tag);
5377 }
5378
5379 /*
5380 * If we are growing the cache, and we are adding anonymous
5381 * data, and we have outgrown arc_p, update arc_p
5382 */
5383 if (aggsum_upper_bound(&arc_sums.arcstat_size) < arc_c &&
5384 hdr->b_l1hdr.b_state == arc_anon &&
5385 (zfs_refcount_count(&arc_anon->arcs_size) +
5386 zfs_refcount_count(&arc_mru->arcs_size) > arc_p))
5387 arc_p = MIN(arc_c, arc_p + size);
5388 }
5389 }
5390
5391 static void
5392 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
5393 {
5394 arc_free_data_impl(hdr, size, tag);
5395 abd_free(abd);
5396 }
5397
5398 static void
5399 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
5400 {
5401 arc_buf_contents_t type = arc_buf_type(hdr);
5402
5403 arc_free_data_impl(hdr, size, tag);
5404 if (type == ARC_BUFC_METADATA) {
5405 zio_buf_free(buf, size);
5406 } else {
5407 ASSERT(type == ARC_BUFC_DATA);
5408 zio_data_buf_free(buf, size);
5409 }
5410 }
5411
5412 /*
5413 * Free the arc data buffer.
5414 */
5415 static void
5416 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5417 {
5418 arc_state_t *state = hdr->b_l1hdr.b_state;
5419 arc_buf_contents_t type = arc_buf_type(hdr);
5420
5421 /* protected by hash lock, if in the hash table */
5422 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5423 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5424 ASSERT(state != arc_anon && state != arc_l2c_only);
5425
5426 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
5427 size, tag);
5428 }
5429 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag);
5430
5431 VERIFY3U(hdr->b_type, ==, type);
5432 if (type == ARC_BUFC_METADATA) {
5433 arc_space_return(size, ARC_SPACE_META);
5434 } else {
5435 ASSERT(type == ARC_BUFC_DATA);
5436 arc_space_return(size, ARC_SPACE_DATA);
5437 }
5438 }
5439
5440 /*
5441 * This routine is called whenever a buffer is accessed.
5442 * NOTE: the hash lock is dropped in this function.
5443 */
5444 static void
5445 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
5446 {
5447 clock_t now;
5448
5449 ASSERT(MUTEX_HELD(hash_lock));
5450 ASSERT(HDR_HAS_L1HDR(hdr));
5451
5452 if (hdr->b_l1hdr.b_state == arc_anon) {
5453 /*
5454 * This buffer is not in the cache, and does not
5455 * appear in our "ghost" list. Add the new buffer
5456 * to the MRU state.
5457 */
5458
5459 ASSERT0(hdr->b_l1hdr.b_arc_access);
5460 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5461 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5462 arc_change_state(arc_mru, hdr, hash_lock);
5463
5464 } else if (hdr->b_l1hdr.b_state == arc_mru) {
5465 now = ddi_get_lbolt();
5466
5467 /*
5468 * If this buffer is here because of a prefetch, then either:
5469 * - clear the flag if this is a "referencing" read
5470 * (any subsequent access will bump this into the MFU state).
5471 * or
5472 * - move the buffer to the head of the list if this is
5473 * another prefetch (to make it less likely to be evicted).
5474 */
5475 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5476 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5477 /* link protected by hash lock */
5478 ASSERT(multilist_link_active(
5479 &hdr->b_l1hdr.b_arc_node));
5480 } else {
5481 if (HDR_HAS_L2HDR(hdr))
5482 l2arc_hdr_arcstats_decrement_state(hdr);
5483 arc_hdr_clear_flags(hdr,
5484 ARC_FLAG_PREFETCH |
5485 ARC_FLAG_PRESCIENT_PREFETCH);
5486 hdr->b_l1hdr.b_mru_hits++;
5487 ARCSTAT_BUMP(arcstat_mru_hits);
5488 if (HDR_HAS_L2HDR(hdr))
5489 l2arc_hdr_arcstats_increment_state(hdr);
5490 }
5491 hdr->b_l1hdr.b_arc_access = now;
5492 return;
5493 }
5494
5495 /*
5496 * This buffer has been "accessed" only once so far,
5497 * but it is still in the cache. Move it to the MFU
5498 * state.
5499 */
5500 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5501 ARC_MINTIME)) {
5502 /*
5503 * More than 125ms have passed since we
5504 * instantiated this buffer. Move it to the
5505 * most frequently used state.
5506 */
5507 hdr->b_l1hdr.b_arc_access = now;
5508 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5509 arc_change_state(arc_mfu, hdr, hash_lock);
5510 }
5511 hdr->b_l1hdr.b_mru_hits++;
5512 ARCSTAT_BUMP(arcstat_mru_hits);
5513 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5514 arc_state_t *new_state;
5515 /*
5516 * This buffer has been "accessed" recently, but
5517 * was evicted from the cache. Move it to the
5518 * MFU state.
5519 */
5520 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5521 new_state = arc_mru;
5522 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
5523 if (HDR_HAS_L2HDR(hdr))
5524 l2arc_hdr_arcstats_decrement_state(hdr);
5525 arc_hdr_clear_flags(hdr,
5526 ARC_FLAG_PREFETCH |
5527 ARC_FLAG_PRESCIENT_PREFETCH);
5528 if (HDR_HAS_L2HDR(hdr))
5529 l2arc_hdr_arcstats_increment_state(hdr);
5530 }
5531 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5532 } else {
5533 new_state = arc_mfu;
5534 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5535 }
5536
5537 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5538 arc_change_state(new_state, hdr, hash_lock);
5539
5540 hdr->b_l1hdr.b_mru_ghost_hits++;
5541 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5542 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
5543 /*
5544 * This buffer has been accessed more than once and is
5545 * still in the cache. Keep it in the MFU state.
5546 *
5547 * NOTE: an add_reference() that occurred when we did
5548 * the arc_read() will have kicked this off the list.
5549 * If it was a prefetch, we will explicitly move it to
5550 * the head of the list now.
5551 */
5552
5553 hdr->b_l1hdr.b_mfu_hits++;
5554 ARCSTAT_BUMP(arcstat_mfu_hits);
5555 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5556 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5557 arc_state_t *new_state = arc_mfu;
5558 /*
5559 * This buffer has been accessed more than once but has
5560 * been evicted from the cache. Move it back to the
5561 * MFU state.
5562 */
5563
5564 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5565 /*
5566 * This is a prefetch access...
5567 * move this block back to the MRU state.
5568 */
5569 new_state = arc_mru;
5570 }
5571
5572 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5573 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5574 arc_change_state(new_state, hdr, hash_lock);
5575
5576 hdr->b_l1hdr.b_mfu_ghost_hits++;
5577 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5578 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5579 /*
5580 * This buffer is on the 2nd Level ARC.
5581 */
5582
5583 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5584 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5585 arc_change_state(arc_mfu, hdr, hash_lock);
5586 } else {
5587 cmn_err(CE_PANIC, "invalid arc state 0x%p",
5588 hdr->b_l1hdr.b_state);
5589 }
5590 }
5591
5592 /*
5593 * This routine is called by dbuf_hold() to update the arc_access() state
5594 * which otherwise would be skipped for entries in the dbuf cache.
5595 */
5596 void
5597 arc_buf_access(arc_buf_t *buf)
5598 {
5599 mutex_enter(&buf->b_evict_lock);
5600 arc_buf_hdr_t *hdr = buf->b_hdr;
5601
5602 /*
5603 * Avoid taking the hash_lock when possible as an optimization.
5604 * The header must be checked again under the hash_lock in order
5605 * to handle the case where it is concurrently being released.
5606 */
5607 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5608 mutex_exit(&buf->b_evict_lock);
5609 return;
5610 }
5611
5612 kmutex_t *hash_lock = HDR_LOCK(hdr);
5613 mutex_enter(hash_lock);
5614
5615 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5616 mutex_exit(hash_lock);
5617 mutex_exit(&buf->b_evict_lock);
5618 ARCSTAT_BUMP(arcstat_access_skip);
5619 return;
5620 }
5621
5622 mutex_exit(&buf->b_evict_lock);
5623
5624 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5625 hdr->b_l1hdr.b_state == arc_mfu);
5626
5627 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5628 arc_access(hdr, hash_lock);
5629 mutex_exit(hash_lock);
5630
5631 ARCSTAT_BUMP(arcstat_hits);
5632 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr),
5633 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5634 }
5635
5636 /* a generic arc_read_done_func_t which you can use */
5637 void
5638 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5639 arc_buf_t *buf, void *arg)
5640 {
5641 (void) zio, (void) zb, (void) bp;
5642
5643 if (buf == NULL)
5644 return;
5645
5646 memcpy(arg, buf->b_data, arc_buf_size(buf));
5647 arc_buf_destroy(buf, arg);
5648 }
5649
5650 /* a generic arc_read_done_func_t */
5651 void
5652 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5653 arc_buf_t *buf, void *arg)
5654 {
5655 (void) zb, (void) bp;
5656 arc_buf_t **bufp = arg;
5657
5658 if (buf == NULL) {
5659 ASSERT(zio == NULL || zio->io_error != 0);
5660 *bufp = NULL;
5661 } else {
5662 ASSERT(zio == NULL || zio->io_error == 0);
5663 *bufp = buf;
5664 ASSERT(buf->b_data != NULL);
5665 }
5666 }
5667
5668 static void
5669 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5670 {
5671 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5672 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5673 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5674 } else {
5675 if (HDR_COMPRESSION_ENABLED(hdr)) {
5676 ASSERT3U(arc_hdr_get_compress(hdr), ==,
5677 BP_GET_COMPRESS(bp));
5678 }
5679 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5680 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5681 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5682 }
5683 }
5684
5685 static void
5686 arc_read_done(zio_t *zio)
5687 {
5688 blkptr_t *bp = zio->io_bp;
5689 arc_buf_hdr_t *hdr = zio->io_private;
5690 kmutex_t *hash_lock = NULL;
5691 arc_callback_t *callback_list;
5692 arc_callback_t *acb;
5693 boolean_t freeable = B_FALSE;
5694
5695 /*
5696 * The hdr was inserted into hash-table and removed from lists
5697 * prior to starting I/O. We should find this header, since
5698 * it's in the hash table, and it should be legit since it's
5699 * not possible to evict it during the I/O. The only possible
5700 * reason for it not to be found is if we were freed during the
5701 * read.
5702 */
5703 if (HDR_IN_HASH_TABLE(hdr)) {
5704 arc_buf_hdr_t *found;
5705
5706 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5707 ASSERT3U(hdr->b_dva.dva_word[0], ==,
5708 BP_IDENTITY(zio->io_bp)->dva_word[0]);
5709 ASSERT3U(hdr->b_dva.dva_word[1], ==,
5710 BP_IDENTITY(zio->io_bp)->dva_word[1]);
5711
5712 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5713
5714 ASSERT((found == hdr &&
5715 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5716 (found == hdr && HDR_L2_READING(hdr)));
5717 ASSERT3P(hash_lock, !=, NULL);
5718 }
5719
5720 if (BP_IS_PROTECTED(bp)) {
5721 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5722 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5723 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5724 hdr->b_crypt_hdr.b_iv);
5725
5726 if (zio->io_error == 0) {
5727 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5728 void *tmpbuf;
5729
5730 tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5731 sizeof (zil_chain_t));
5732 zio_crypt_decode_mac_zil(tmpbuf,
5733 hdr->b_crypt_hdr.b_mac);
5734 abd_return_buf(zio->io_abd, tmpbuf,
5735 sizeof (zil_chain_t));
5736 } else {
5737 zio_crypt_decode_mac_bp(bp,
5738 hdr->b_crypt_hdr.b_mac);
5739 }
5740 }
5741 }
5742
5743 if (zio->io_error == 0) {
5744 /* byteswap if necessary */
5745 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5746 if (BP_GET_LEVEL(zio->io_bp) > 0) {
5747 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5748 } else {
5749 hdr->b_l1hdr.b_byteswap =
5750 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5751 }
5752 } else {
5753 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5754 }
5755 if (!HDR_L2_READING(hdr)) {
5756 hdr->b_complevel = zio->io_prop.zp_complevel;
5757 }
5758 }
5759
5760 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5761 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5762 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5763
5764 callback_list = hdr->b_l1hdr.b_acb;
5765 ASSERT3P(callback_list, !=, NULL);
5766
5767 if (hash_lock && zio->io_error == 0 &&
5768 hdr->b_l1hdr.b_state == arc_anon) {
5769 /*
5770 * Only call arc_access on anonymous buffers. This is because
5771 * if we've issued an I/O for an evicted buffer, we've already
5772 * called arc_access (to prevent any simultaneous readers from
5773 * getting confused).
5774 */
5775 arc_access(hdr, hash_lock);
5776 }
5777
5778 /*
5779 * If a read request has a callback (i.e. acb_done is not NULL), then we
5780 * make a buf containing the data according to the parameters which were
5781 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5782 * aren't needlessly decompressing the data multiple times.
5783 */
5784 int callback_cnt = 0;
5785 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5786 if (!acb->acb_done || acb->acb_nobuf)
5787 continue;
5788
5789 callback_cnt++;
5790
5791 if (zio->io_error != 0)
5792 continue;
5793
5794 int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5795 &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5796 acb->acb_compressed, acb->acb_noauth, B_TRUE,
5797 &acb->acb_buf);
5798
5799 /*
5800 * Assert non-speculative zios didn't fail because an
5801 * encryption key wasn't loaded
5802 */
5803 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5804 error != EACCES);
5805
5806 /*
5807 * If we failed to decrypt, report an error now (as the zio
5808 * layer would have done if it had done the transforms).
5809 */
5810 if (error == ECKSUM) {
5811 ASSERT(BP_IS_PROTECTED(bp));
5812 error = SET_ERROR(EIO);
5813 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5814 spa_log_error(zio->io_spa, &acb->acb_zb);
5815 (void) zfs_ereport_post(
5816 FM_EREPORT_ZFS_AUTHENTICATION,
5817 zio->io_spa, NULL, &acb->acb_zb, zio, 0);
5818 }
5819 }
5820
5821 if (error != 0) {
5822 /*
5823 * Decompression or decryption failed. Set
5824 * io_error so that when we call acb_done
5825 * (below), we will indicate that the read
5826 * failed. Note that in the unusual case
5827 * where one callback is compressed and another
5828 * uncompressed, we will mark all of them
5829 * as failed, even though the uncompressed
5830 * one can't actually fail. In this case,
5831 * the hdr will not be anonymous, because
5832 * if there are multiple callbacks, it's
5833 * because multiple threads found the same
5834 * arc buf in the hash table.
5835 */
5836 zio->io_error = error;
5837 }
5838 }
5839
5840 /*
5841 * If there are multiple callbacks, we must have the hash lock,
5842 * because the only way for multiple threads to find this hdr is
5843 * in the hash table. This ensures that if there are multiple
5844 * callbacks, the hdr is not anonymous. If it were anonymous,
5845 * we couldn't use arc_buf_destroy() in the error case below.
5846 */
5847 ASSERT(callback_cnt < 2 || hash_lock != NULL);
5848
5849 hdr->b_l1hdr.b_acb = NULL;
5850 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5851 if (callback_cnt == 0)
5852 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
5853
5854 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5855 callback_list != NULL);
5856
5857 if (zio->io_error == 0) {
5858 arc_hdr_verify(hdr, zio->io_bp);
5859 } else {
5860 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5861 if (hdr->b_l1hdr.b_state != arc_anon)
5862 arc_change_state(arc_anon, hdr, hash_lock);
5863 if (HDR_IN_HASH_TABLE(hdr))
5864 buf_hash_remove(hdr);
5865 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5866 }
5867
5868 /*
5869 * Broadcast before we drop the hash_lock to avoid the possibility
5870 * that the hdr (and hence the cv) might be freed before we get to
5871 * the cv_broadcast().
5872 */
5873 cv_broadcast(&hdr->b_l1hdr.b_cv);
5874
5875 if (hash_lock != NULL) {
5876 mutex_exit(hash_lock);
5877 } else {
5878 /*
5879 * This block was freed while we waited for the read to
5880 * complete. It has been removed from the hash table and
5881 * moved to the anonymous state (so that it won't show up
5882 * in the cache).
5883 */
5884 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5885 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5886 }
5887
5888 /* execute each callback and free its structure */
5889 while ((acb = callback_list) != NULL) {
5890 if (acb->acb_done != NULL) {
5891 if (zio->io_error != 0 && acb->acb_buf != NULL) {
5892 /*
5893 * If arc_buf_alloc_impl() fails during
5894 * decompression, the buf will still be
5895 * allocated, and needs to be freed here.
5896 */
5897 arc_buf_destroy(acb->acb_buf,
5898 acb->acb_private);
5899 acb->acb_buf = NULL;
5900 }
5901 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5902 acb->acb_buf, acb->acb_private);
5903 }
5904
5905 if (acb->acb_zio_dummy != NULL) {
5906 acb->acb_zio_dummy->io_error = zio->io_error;
5907 zio_nowait(acb->acb_zio_dummy);
5908 }
5909
5910 callback_list = acb->acb_next;
5911 kmem_free(acb, sizeof (arc_callback_t));
5912 }
5913
5914 if (freeable)
5915 arc_hdr_destroy(hdr);
5916 }
5917
5918 /*
5919 * "Read" the block at the specified DVA (in bp) via the
5920 * cache. If the block is found in the cache, invoke the provided
5921 * callback immediately and return. Note that the `zio' parameter
5922 * in the callback will be NULL in this case, since no IO was
5923 * required. If the block is not in the cache pass the read request
5924 * on to the spa with a substitute callback function, so that the
5925 * requested block will be added to the cache.
5926 *
5927 * If a read request arrives for a block that has a read in-progress,
5928 * either wait for the in-progress read to complete (and return the
5929 * results); or, if this is a read with a "done" func, add a record
5930 * to the read to invoke the "done" func when the read completes,
5931 * and return; or just return.
5932 *
5933 * arc_read_done() will invoke all the requested "done" functions
5934 * for readers of this block.
5935 */
5936 int
5937 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5938 arc_read_done_func_t *done, void *private, zio_priority_t priority,
5939 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5940 {
5941 arc_buf_hdr_t *hdr = NULL;
5942 kmutex_t *hash_lock = NULL;
5943 zio_t *rzio;
5944 uint64_t guid = spa_load_guid(spa);
5945 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5946 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5947 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5948 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5949 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5950 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
5951 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF;
5952 int rc = 0;
5953
5954 ASSERT(!embedded_bp ||
5955 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5956 ASSERT(!BP_IS_HOLE(bp));
5957 ASSERT(!BP_IS_REDACTED(bp));
5958
5959 /*
5960 * Normally SPL_FSTRANS will already be set since kernel threads which
5961 * expect to call the DMU interfaces will set it when created. System
5962 * calls are similarly handled by setting/cleaning the bit in the
5963 * registered callback (module/os/.../zfs/zpl_*).
5964 *
5965 * External consumers such as Lustre which call the exported DMU
5966 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock
5967 * on the hash_lock always set and clear the bit.
5968 */
5969 fstrans_cookie_t cookie = spl_fstrans_mark();
5970 top:
5971 /*
5972 * Verify the block pointer contents are reasonable. This should
5973 * always be the case since the blkptr is protected by a checksum.
5974 * However, if there is damage it's desirable to detect this early
5975 * and treat it as a checksum error. This allows an alternate blkptr
5976 * to be tried when one is available (e.g. ditto blocks).
5977 */
5978 if (!zfs_blkptr_verify(spa, bp, zio_flags & ZIO_FLAG_CONFIG_WRITER,
5979 BLK_VERIFY_LOG)) {
5980 rc = SET_ERROR(ECKSUM);
5981 goto out;
5982 }
5983
5984 if (!embedded_bp) {
5985 /*
5986 * Embedded BP's have no DVA and require no I/O to "read".
5987 * Create an anonymous arc buf to back it.
5988 */
5989 hdr = buf_hash_find(guid, bp, &hash_lock);
5990 }
5991
5992 /*
5993 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5994 * we maintain encrypted data separately from compressed / uncompressed
5995 * data. If the user is requesting raw encrypted data and we don't have
5996 * that in the header we will read from disk to guarantee that we can
5997 * get it even if the encryption keys aren't loaded.
5998 */
5999 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
6000 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
6001 arc_buf_t *buf = NULL;
6002 *arc_flags |= ARC_FLAG_CACHED;
6003
6004 if (HDR_IO_IN_PROGRESS(hdr)) {
6005 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
6006
6007 if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
6008 mutex_exit(hash_lock);
6009 ARCSTAT_BUMP(arcstat_cached_only_in_progress);
6010 rc = SET_ERROR(ENOENT);
6011 goto out;
6012 }
6013
6014 ASSERT3P(head_zio, !=, NULL);
6015 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
6016 priority == ZIO_PRIORITY_SYNC_READ) {
6017 /*
6018 * This is a sync read that needs to wait for
6019 * an in-flight async read. Request that the
6020 * zio have its priority upgraded.
6021 */
6022 zio_change_priority(head_zio, priority);
6023 DTRACE_PROBE1(arc__async__upgrade__sync,
6024 arc_buf_hdr_t *, hdr);
6025 ARCSTAT_BUMP(arcstat_async_upgrade_sync);
6026 }
6027 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
6028 arc_hdr_clear_flags(hdr,
6029 ARC_FLAG_PREDICTIVE_PREFETCH);
6030 }
6031
6032 if (*arc_flags & ARC_FLAG_WAIT) {
6033 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
6034 mutex_exit(hash_lock);
6035 goto top;
6036 }
6037 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6038
6039 if (done) {
6040 arc_callback_t *acb = NULL;
6041
6042 acb = kmem_zalloc(sizeof (arc_callback_t),
6043 KM_SLEEP);
6044 acb->acb_done = done;
6045 acb->acb_private = private;
6046 acb->acb_compressed = compressed_read;
6047 acb->acb_encrypted = encrypted_read;
6048 acb->acb_noauth = noauth_read;
6049 acb->acb_nobuf = no_buf;
6050 acb->acb_zb = *zb;
6051 if (pio != NULL)
6052 acb->acb_zio_dummy = zio_null(pio,
6053 spa, NULL, NULL, NULL, zio_flags);
6054
6055 ASSERT3P(acb->acb_done, !=, NULL);
6056 acb->acb_zio_head = head_zio;
6057 acb->acb_next = hdr->b_l1hdr.b_acb;
6058 hdr->b_l1hdr.b_acb = acb;
6059 }
6060 mutex_exit(hash_lock);
6061 goto out;
6062 }
6063
6064 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
6065 hdr->b_l1hdr.b_state == arc_mfu);
6066
6067 if (done && !no_buf) {
6068 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
6069 /*
6070 * This is a demand read which does not have to
6071 * wait for i/o because we did a predictive
6072 * prefetch i/o for it, which has completed.
6073 */
6074 DTRACE_PROBE1(
6075 arc__demand__hit__predictive__prefetch,
6076 arc_buf_hdr_t *, hdr);
6077 ARCSTAT_BUMP(
6078 arcstat_demand_hit_predictive_prefetch);
6079 arc_hdr_clear_flags(hdr,
6080 ARC_FLAG_PREDICTIVE_PREFETCH);
6081 }
6082
6083 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
6084 ARCSTAT_BUMP(
6085 arcstat_demand_hit_prescient_prefetch);
6086 arc_hdr_clear_flags(hdr,
6087 ARC_FLAG_PRESCIENT_PREFETCH);
6088 }
6089
6090 ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
6091
6092 /* Get a buf with the desired data in it. */
6093 rc = arc_buf_alloc_impl(hdr, spa, zb, private,
6094 encrypted_read, compressed_read, noauth_read,
6095 B_TRUE, &buf);
6096 if (rc == ECKSUM) {
6097 /*
6098 * Convert authentication and decryption errors
6099 * to EIO (and generate an ereport if needed)
6100 * before leaving the ARC.
6101 */
6102 rc = SET_ERROR(EIO);
6103 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
6104 spa_log_error(spa, zb);
6105 (void) zfs_ereport_post(
6106 FM_EREPORT_ZFS_AUTHENTICATION,
6107 spa, NULL, zb, NULL, 0);
6108 }
6109 }
6110 if (rc != 0) {
6111 (void) remove_reference(hdr, hash_lock,
6112 private);
6113 arc_buf_destroy_impl(buf);
6114 buf = NULL;
6115 }
6116
6117 /* assert any errors weren't due to unloaded keys */
6118 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
6119 rc != EACCES);
6120 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
6121 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6122 if (HDR_HAS_L2HDR(hdr))
6123 l2arc_hdr_arcstats_decrement_state(hdr);
6124 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
6125 if (HDR_HAS_L2HDR(hdr))
6126 l2arc_hdr_arcstats_increment_state(hdr);
6127 }
6128 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
6129 arc_access(hdr, hash_lock);
6130 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6131 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
6132 if (*arc_flags & ARC_FLAG_L2CACHE)
6133 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6134 mutex_exit(hash_lock);
6135 ARCSTAT_BUMP(arcstat_hits);
6136 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6137 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
6138 data, metadata, hits);
6139
6140 if (done)
6141 done(NULL, zb, bp, buf, private);
6142 } else {
6143 uint64_t lsize = BP_GET_LSIZE(bp);
6144 uint64_t psize = BP_GET_PSIZE(bp);
6145 arc_callback_t *acb;
6146 vdev_t *vd = NULL;
6147 uint64_t addr = 0;
6148 boolean_t devw = B_FALSE;
6149 uint64_t size;
6150 abd_t *hdr_abd;
6151 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
6152
6153 if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
6154 rc = SET_ERROR(ENOENT);
6155 if (hash_lock != NULL)
6156 mutex_exit(hash_lock);
6157 goto out;
6158 }
6159
6160 if (hdr == NULL) {
6161 /*
6162 * This block is not in the cache or it has
6163 * embedded data.
6164 */
6165 arc_buf_hdr_t *exists = NULL;
6166 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
6167 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
6168 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type);
6169
6170 if (!embedded_bp) {
6171 hdr->b_dva = *BP_IDENTITY(bp);
6172 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
6173 exists = buf_hash_insert(hdr, &hash_lock);
6174 }
6175 if (exists != NULL) {
6176 /* somebody beat us to the hash insert */
6177 mutex_exit(hash_lock);
6178 buf_discard_identity(hdr);
6179 arc_hdr_destroy(hdr);
6180 goto top; /* restart the IO request */
6181 }
6182 alloc_flags |= ARC_HDR_DO_ADAPT;
6183 } else {
6184 /*
6185 * This block is in the ghost cache or encrypted data
6186 * was requested and we didn't have it. If it was
6187 * L2-only (and thus didn't have an L1 hdr),
6188 * we realloc the header to add an L1 hdr.
6189 */
6190 if (!HDR_HAS_L1HDR(hdr)) {
6191 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
6192 hdr_full_cache);
6193 }
6194
6195 if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
6196 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6197 ASSERT(!HDR_HAS_RABD(hdr));
6198 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6199 ASSERT0(zfs_refcount_count(
6200 &hdr->b_l1hdr.b_refcnt));
6201 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
6202 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
6203 } else if (HDR_IO_IN_PROGRESS(hdr)) {
6204 /*
6205 * If this header already had an IO in progress
6206 * and we are performing another IO to fetch
6207 * encrypted data we must wait until the first
6208 * IO completes so as not to confuse
6209 * arc_read_done(). This should be very rare
6210 * and so the performance impact shouldn't
6211 * matter.
6212 */
6213 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
6214 mutex_exit(hash_lock);
6215 goto top;
6216 }
6217
6218 /*
6219 * This is a delicate dance that we play here.
6220 * This hdr might be in the ghost list so we access
6221 * it to move it out of the ghost list before we
6222 * initiate the read. If it's a prefetch then
6223 * it won't have a callback so we'll remove the
6224 * reference that arc_buf_alloc_impl() created. We
6225 * do this after we've called arc_access() to
6226 * avoid hitting an assert in remove_reference().
6227 */
6228 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state);
6229 arc_access(hdr, hash_lock);
6230 }
6231
6232 arc_hdr_alloc_abd(hdr, alloc_flags);
6233 if (encrypted_read) {
6234 ASSERT(HDR_HAS_RABD(hdr));
6235 size = HDR_GET_PSIZE(hdr);
6236 hdr_abd = hdr->b_crypt_hdr.b_rabd;
6237 zio_flags |= ZIO_FLAG_RAW;
6238 } else {
6239 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6240 size = arc_hdr_size(hdr);
6241 hdr_abd = hdr->b_l1hdr.b_pabd;
6242
6243 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6244 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6245 }
6246
6247 /*
6248 * For authenticated bp's, we do not ask the ZIO layer
6249 * to authenticate them since this will cause the entire
6250 * IO to fail if the key isn't loaded. Instead, we
6251 * defer authentication until arc_buf_fill(), which will
6252 * verify the data when the key is available.
6253 */
6254 if (BP_IS_AUTHENTICATED(bp))
6255 zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
6256 }
6257
6258 if (*arc_flags & ARC_FLAG_PREFETCH &&
6259 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6260 if (HDR_HAS_L2HDR(hdr))
6261 l2arc_hdr_arcstats_decrement_state(hdr);
6262 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
6263 if (HDR_HAS_L2HDR(hdr))
6264 l2arc_hdr_arcstats_increment_state(hdr);
6265 }
6266 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6267 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
6268 if (*arc_flags & ARC_FLAG_L2CACHE)
6269 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6270 if (BP_IS_AUTHENTICATED(bp))
6271 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6272 if (BP_GET_LEVEL(bp) > 0)
6273 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
6274 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
6275 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
6276 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
6277
6278 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
6279 acb->acb_done = done;
6280 acb->acb_private = private;
6281 acb->acb_compressed = compressed_read;
6282 acb->acb_encrypted = encrypted_read;
6283 acb->acb_noauth = noauth_read;
6284 acb->acb_zb = *zb;
6285
6286 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6287 hdr->b_l1hdr.b_acb = acb;
6288 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6289
6290 if (HDR_HAS_L2HDR(hdr) &&
6291 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6292 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6293 addr = hdr->b_l2hdr.b_daddr;
6294 /*
6295 * Lock out L2ARC device removal.
6296 */
6297 if (vdev_is_dead(vd) ||
6298 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6299 vd = NULL;
6300 }
6301
6302 /*
6303 * We count both async reads and scrub IOs as asynchronous so
6304 * that both can be upgraded in the event of a cache hit while
6305 * the read IO is still in-flight.
6306 */
6307 if (priority == ZIO_PRIORITY_ASYNC_READ ||
6308 priority == ZIO_PRIORITY_SCRUB)
6309 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6310 else
6311 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6312
6313 /*
6314 * At this point, we have a level 1 cache miss or a blkptr
6315 * with embedded data. Try again in L2ARC if possible.
6316 */
6317 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6318
6319 /*
6320 * Skip ARC stat bump for block pointers with embedded
6321 * data. The data are read from the blkptr itself via
6322 * decode_embedded_bp_compressed().
6323 */
6324 if (!embedded_bp) {
6325 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
6326 blkptr_t *, bp, uint64_t, lsize,
6327 zbookmark_phys_t *, zb);
6328 ARCSTAT_BUMP(arcstat_misses);
6329 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6330 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
6331 metadata, misses);
6332 zfs_racct_read(size, 1);
6333 }
6334
6335 /* Check if the spa even has l2 configured */
6336 const boolean_t spa_has_l2 = l2arc_ndev != 0 &&
6337 spa->spa_l2cache.sav_count > 0;
6338
6339 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) {
6340 /*
6341 * Read from the L2ARC if the following are true:
6342 * 1. The L2ARC vdev was previously cached.
6343 * 2. This buffer still has L2ARC metadata.
6344 * 3. This buffer isn't currently writing to the L2ARC.
6345 * 4. The L2ARC entry wasn't evicted, which may
6346 * also have invalidated the vdev.
6347 * 5. This isn't prefetch or l2arc_noprefetch is 0.
6348 */
6349 if (HDR_HAS_L2HDR(hdr) &&
6350 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
6351 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
6352 l2arc_read_callback_t *cb;
6353 abd_t *abd;
6354 uint64_t asize;
6355
6356 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6357 ARCSTAT_BUMP(arcstat_l2_hits);
6358 hdr->b_l2hdr.b_hits++;
6359
6360 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
6361 KM_SLEEP);
6362 cb->l2rcb_hdr = hdr;
6363 cb->l2rcb_bp = *bp;
6364 cb->l2rcb_zb = *zb;
6365 cb->l2rcb_flags = zio_flags;
6366
6367 /*
6368 * When Compressed ARC is disabled, but the
6369 * L2ARC block is compressed, arc_hdr_size()
6370 * will have returned LSIZE rather than PSIZE.
6371 */
6372 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
6373 !HDR_COMPRESSION_ENABLED(hdr) &&
6374 HDR_GET_PSIZE(hdr) != 0) {
6375 size = HDR_GET_PSIZE(hdr);
6376 }
6377
6378 asize = vdev_psize_to_asize(vd, size);
6379 if (asize != size) {
6380 abd = abd_alloc_for_io(asize,
6381 HDR_ISTYPE_METADATA(hdr));
6382 cb->l2rcb_abd = abd;
6383 } else {
6384 abd = hdr_abd;
6385 }
6386
6387 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6388 addr + asize <= vd->vdev_psize -
6389 VDEV_LABEL_END_SIZE);
6390
6391 /*
6392 * l2arc read. The SCL_L2ARC lock will be
6393 * released by l2arc_read_done().
6394 * Issue a null zio if the underlying buffer
6395 * was squashed to zero size by compression.
6396 */
6397 ASSERT3U(arc_hdr_get_compress(hdr), !=,
6398 ZIO_COMPRESS_EMPTY);
6399 rzio = zio_read_phys(pio, vd, addr,
6400 asize, abd,
6401 ZIO_CHECKSUM_OFF,
6402 l2arc_read_done, cb, priority,
6403 zio_flags | ZIO_FLAG_DONT_CACHE |
6404 ZIO_FLAG_CANFAIL |
6405 ZIO_FLAG_DONT_PROPAGATE |
6406 ZIO_FLAG_DONT_RETRY, B_FALSE);
6407 acb->acb_zio_head = rzio;
6408
6409 if (hash_lock != NULL)
6410 mutex_exit(hash_lock);
6411
6412 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6413 zio_t *, rzio);
6414 ARCSTAT_INCR(arcstat_l2_read_bytes,
6415 HDR_GET_PSIZE(hdr));
6416
6417 if (*arc_flags & ARC_FLAG_NOWAIT) {
6418 zio_nowait(rzio);
6419 goto out;
6420 }
6421
6422 ASSERT(*arc_flags & ARC_FLAG_WAIT);
6423 if (zio_wait(rzio) == 0)
6424 goto out;
6425
6426 /* l2arc read error; goto zio_read() */
6427 if (hash_lock != NULL)
6428 mutex_enter(hash_lock);
6429 } else {
6430 DTRACE_PROBE1(l2arc__miss,
6431 arc_buf_hdr_t *, hdr);
6432 ARCSTAT_BUMP(arcstat_l2_misses);
6433 if (HDR_L2_WRITING(hdr))
6434 ARCSTAT_BUMP(arcstat_l2_rw_clash);
6435 spa_config_exit(spa, SCL_L2ARC, vd);
6436 }
6437 } else {
6438 if (vd != NULL)
6439 spa_config_exit(spa, SCL_L2ARC, vd);
6440
6441 /*
6442 * Only a spa with l2 should contribute to l2
6443 * miss stats. (Including the case of having a
6444 * faulted cache device - that's also a miss.)
6445 */
6446 if (spa_has_l2) {
6447 /*
6448 * Skip ARC stat bump for block pointers with
6449 * embedded data. The data are read from the
6450 * blkptr itself via
6451 * decode_embedded_bp_compressed().
6452 */
6453 if (!embedded_bp) {
6454 DTRACE_PROBE1(l2arc__miss,
6455 arc_buf_hdr_t *, hdr);
6456 ARCSTAT_BUMP(arcstat_l2_misses);
6457 }
6458 }
6459 }
6460
6461 rzio = zio_read(pio, spa, bp, hdr_abd, size,
6462 arc_read_done, hdr, priority, zio_flags, zb);
6463 acb->acb_zio_head = rzio;
6464
6465 if (hash_lock != NULL)
6466 mutex_exit(hash_lock);
6467
6468 if (*arc_flags & ARC_FLAG_WAIT) {
6469 rc = zio_wait(rzio);
6470 goto out;
6471 }
6472
6473 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6474 zio_nowait(rzio);
6475 }
6476
6477 out:
6478 /* embedded bps don't actually go to disk */
6479 if (!embedded_bp)
6480 spa_read_history_add(spa, zb, *arc_flags);
6481 spl_fstrans_unmark(cookie);
6482 return (rc);
6483 }
6484
6485 arc_prune_t *
6486 arc_add_prune_callback(arc_prune_func_t *func, void *private)
6487 {
6488 arc_prune_t *p;
6489
6490 p = kmem_alloc(sizeof (*p), KM_SLEEP);
6491 p->p_pfunc = func;
6492 p->p_private = private;
6493 list_link_init(&p->p_node);
6494 zfs_refcount_create(&p->p_refcnt);
6495
6496 mutex_enter(&arc_prune_mtx);
6497 zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
6498 list_insert_head(&arc_prune_list, p);
6499 mutex_exit(&arc_prune_mtx);
6500
6501 return (p);
6502 }
6503
6504 void
6505 arc_remove_prune_callback(arc_prune_t *p)
6506 {
6507 boolean_t wait = B_FALSE;
6508 mutex_enter(&arc_prune_mtx);
6509 list_remove(&arc_prune_list, p);
6510 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6511 wait = B_TRUE;
6512 mutex_exit(&arc_prune_mtx);
6513
6514 /* wait for arc_prune_task to finish */
6515 if (wait)
6516 taskq_wait_outstanding(arc_prune_taskq, 0);
6517 ASSERT0(zfs_refcount_count(&p->p_refcnt));
6518 zfs_refcount_destroy(&p->p_refcnt);
6519 kmem_free(p, sizeof (*p));
6520 }
6521
6522 /*
6523 * Notify the arc that a block was freed, and thus will never be used again.
6524 */
6525 void
6526 arc_freed(spa_t *spa, const blkptr_t *bp)
6527 {
6528 arc_buf_hdr_t *hdr;
6529 kmutex_t *hash_lock;
6530 uint64_t guid = spa_load_guid(spa);
6531
6532 ASSERT(!BP_IS_EMBEDDED(bp));
6533
6534 hdr = buf_hash_find(guid, bp, &hash_lock);
6535 if (hdr == NULL)
6536 return;
6537
6538 /*
6539 * We might be trying to free a block that is still doing I/O
6540 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6541 * dmu_sync-ed block). If this block is being prefetched, then it
6542 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6543 * until the I/O completes. A block may also have a reference if it is
6544 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6545 * have written the new block to its final resting place on disk but
6546 * without the dedup flag set. This would have left the hdr in the MRU
6547 * state and discoverable. When the txg finally syncs it detects that
6548 * the block was overridden in open context and issues an override I/O.
6549 * Since this is a dedup block, the override I/O will determine if the
6550 * block is already in the DDT. If so, then it will replace the io_bp
6551 * with the bp from the DDT and allow the I/O to finish. When the I/O
6552 * reaches the done callback, dbuf_write_override_done, it will
6553 * check to see if the io_bp and io_bp_override are identical.
6554 * If they are not, then it indicates that the bp was replaced with
6555 * the bp in the DDT and the override bp is freed. This allows
6556 * us to arrive here with a reference on a block that is being
6557 * freed. So if we have an I/O in progress, or a reference to
6558 * this hdr, then we don't destroy the hdr.
6559 */
6560 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
6561 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
6562 arc_change_state(arc_anon, hdr, hash_lock);
6563 arc_hdr_destroy(hdr);
6564 mutex_exit(hash_lock);
6565 } else {
6566 mutex_exit(hash_lock);
6567 }
6568
6569 }
6570
6571 /*
6572 * Release this buffer from the cache, making it an anonymous buffer. This
6573 * must be done after a read and prior to modifying the buffer contents.
6574 * If the buffer has more than one reference, we must make
6575 * a new hdr for the buffer.
6576 */
6577 void
6578 arc_release(arc_buf_t *buf, void *tag)
6579 {
6580 arc_buf_hdr_t *hdr = buf->b_hdr;
6581
6582 /*
6583 * It would be nice to assert that if its DMU metadata (level >
6584 * 0 || it's the dnode file), then it must be syncing context.
6585 * But we don't know that information at this level.
6586 */
6587
6588 mutex_enter(&buf->b_evict_lock);
6589
6590 ASSERT(HDR_HAS_L1HDR(hdr));
6591
6592 /*
6593 * We don't grab the hash lock prior to this check, because if
6594 * the buffer's header is in the arc_anon state, it won't be
6595 * linked into the hash table.
6596 */
6597 if (hdr->b_l1hdr.b_state == arc_anon) {
6598 mutex_exit(&buf->b_evict_lock);
6599 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6600 ASSERT(!HDR_IN_HASH_TABLE(hdr));
6601 ASSERT(!HDR_HAS_L2HDR(hdr));
6602
6603 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6604 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6605 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
6606
6607 hdr->b_l1hdr.b_arc_access = 0;
6608
6609 /*
6610 * If the buf is being overridden then it may already
6611 * have a hdr that is not empty.
6612 */
6613 buf_discard_identity(hdr);
6614 arc_buf_thaw(buf);
6615
6616 return;
6617 }
6618
6619 kmutex_t *hash_lock = HDR_LOCK(hdr);
6620 mutex_enter(hash_lock);
6621
6622 /*
6623 * This assignment is only valid as long as the hash_lock is
6624 * held, we must be careful not to reference state or the
6625 * b_state field after dropping the lock.
6626 */
6627 arc_state_t *state = hdr->b_l1hdr.b_state;
6628 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6629 ASSERT3P(state, !=, arc_anon);
6630
6631 /* this buffer is not on any list */
6632 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6633
6634 if (HDR_HAS_L2HDR(hdr)) {
6635 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6636
6637 /*
6638 * We have to recheck this conditional again now that
6639 * we're holding the l2ad_mtx to prevent a race with
6640 * another thread which might be concurrently calling
6641 * l2arc_evict(). In that case, l2arc_evict() might have
6642 * destroyed the header's L2 portion as we were waiting
6643 * to acquire the l2ad_mtx.
6644 */
6645 if (HDR_HAS_L2HDR(hdr))
6646 arc_hdr_l2hdr_destroy(hdr);
6647
6648 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6649 }
6650
6651 /*
6652 * Do we have more than one buf?
6653 */
6654 if (hdr->b_l1hdr.b_bufcnt > 1) {
6655 arc_buf_hdr_t *nhdr;
6656 uint64_t spa = hdr->b_spa;
6657 uint64_t psize = HDR_GET_PSIZE(hdr);
6658 uint64_t lsize = HDR_GET_LSIZE(hdr);
6659 boolean_t protected = HDR_PROTECTED(hdr);
6660 enum zio_compress compress = arc_hdr_get_compress(hdr);
6661 arc_buf_contents_t type = arc_buf_type(hdr);
6662 VERIFY3U(hdr->b_type, ==, type);
6663
6664 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6665 (void) remove_reference(hdr, hash_lock, tag);
6666
6667 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
6668 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6669 ASSERT(ARC_BUF_LAST(buf));
6670 }
6671
6672 /*
6673 * Pull the data off of this hdr and attach it to
6674 * a new anonymous hdr. Also find the last buffer
6675 * in the hdr's buffer list.
6676 */
6677 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6678 ASSERT3P(lastbuf, !=, NULL);
6679
6680 /*
6681 * If the current arc_buf_t and the hdr are sharing their data
6682 * buffer, then we must stop sharing that block.
6683 */
6684 if (arc_buf_is_shared(buf)) {
6685 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6686 VERIFY(!arc_buf_is_shared(lastbuf));
6687
6688 /*
6689 * First, sever the block sharing relationship between
6690 * buf and the arc_buf_hdr_t.
6691 */
6692 arc_unshare_buf(hdr, buf);
6693
6694 /*
6695 * Now we need to recreate the hdr's b_pabd. Since we
6696 * have lastbuf handy, we try to share with it, but if
6697 * we can't then we allocate a new b_pabd and copy the
6698 * data from buf into it.
6699 */
6700 if (arc_can_share(hdr, lastbuf)) {
6701 arc_share_buf(hdr, lastbuf);
6702 } else {
6703 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT);
6704 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6705 buf->b_data, psize);
6706 }
6707 VERIFY3P(lastbuf->b_data, !=, NULL);
6708 } else if (HDR_SHARED_DATA(hdr)) {
6709 /*
6710 * Uncompressed shared buffers are always at the end
6711 * of the list. Compressed buffers don't have the
6712 * same requirements. This makes it hard to
6713 * simply assert that the lastbuf is shared so
6714 * we rely on the hdr's compression flags to determine
6715 * if we have a compressed, shared buffer.
6716 */
6717 ASSERT(arc_buf_is_shared(lastbuf) ||
6718 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6719 ASSERT(!ARC_BUF_SHARED(buf));
6720 }
6721
6722 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6723 ASSERT3P(state, !=, arc_l2c_only);
6724
6725 (void) zfs_refcount_remove_many(&state->arcs_size,
6726 arc_buf_size(buf), buf);
6727
6728 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6729 ASSERT3P(state, !=, arc_l2c_only);
6730 (void) zfs_refcount_remove_many(
6731 &state->arcs_esize[type],
6732 arc_buf_size(buf), buf);
6733 }
6734
6735 hdr->b_l1hdr.b_bufcnt -= 1;
6736 if (ARC_BUF_ENCRYPTED(buf))
6737 hdr->b_crypt_hdr.b_ebufcnt -= 1;
6738
6739 arc_cksum_verify(buf);
6740 arc_buf_unwatch(buf);
6741
6742 /* if this is the last uncompressed buf free the checksum */
6743 if (!arc_hdr_has_uncompressed_buf(hdr))
6744 arc_cksum_free(hdr);
6745
6746 mutex_exit(hash_lock);
6747
6748 /*
6749 * Allocate a new hdr. The new hdr will contain a b_pabd
6750 * buffer which will be freed in arc_write().
6751 */
6752 nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6753 compress, hdr->b_complevel, type);
6754 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6755 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
6756 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6757 VERIFY3U(nhdr->b_type, ==, type);
6758 ASSERT(!HDR_SHARED_DATA(nhdr));
6759
6760 nhdr->b_l1hdr.b_buf = buf;
6761 nhdr->b_l1hdr.b_bufcnt = 1;
6762 if (ARC_BUF_ENCRYPTED(buf))
6763 nhdr->b_crypt_hdr.b_ebufcnt = 1;
6764 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6765 buf->b_hdr = nhdr;
6766
6767 mutex_exit(&buf->b_evict_lock);
6768 (void) zfs_refcount_add_many(&arc_anon->arcs_size,
6769 arc_buf_size(buf), buf);
6770 } else {
6771 mutex_exit(&buf->b_evict_lock);
6772 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6773 /* protected by hash lock, or hdr is on arc_anon */
6774 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6775 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6776 hdr->b_l1hdr.b_mru_hits = 0;
6777 hdr->b_l1hdr.b_mru_ghost_hits = 0;
6778 hdr->b_l1hdr.b_mfu_hits = 0;
6779 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6780 arc_change_state(arc_anon, hdr, hash_lock);
6781 hdr->b_l1hdr.b_arc_access = 0;
6782
6783 mutex_exit(hash_lock);
6784 buf_discard_identity(hdr);
6785 arc_buf_thaw(buf);
6786 }
6787 }
6788
6789 int
6790 arc_released(arc_buf_t *buf)
6791 {
6792 int released;
6793
6794 mutex_enter(&buf->b_evict_lock);
6795 released = (buf->b_data != NULL &&
6796 buf->b_hdr->b_l1hdr.b_state == arc_anon);
6797 mutex_exit(&buf->b_evict_lock);
6798 return (released);
6799 }
6800
6801 #ifdef ZFS_DEBUG
6802 int
6803 arc_referenced(arc_buf_t *buf)
6804 {
6805 int referenced;
6806
6807 mutex_enter(&buf->b_evict_lock);
6808 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6809 mutex_exit(&buf->b_evict_lock);
6810 return (referenced);
6811 }
6812 #endif
6813
6814 static void
6815 arc_write_ready(zio_t *zio)
6816 {
6817 arc_write_callback_t *callback = zio->io_private;
6818 arc_buf_t *buf = callback->awcb_buf;
6819 arc_buf_hdr_t *hdr = buf->b_hdr;
6820 blkptr_t *bp = zio->io_bp;
6821 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6822 fstrans_cookie_t cookie = spl_fstrans_mark();
6823
6824 ASSERT(HDR_HAS_L1HDR(hdr));
6825 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6826 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
6827
6828 /*
6829 * If we're reexecuting this zio because the pool suspended, then
6830 * cleanup any state that was previously set the first time the
6831 * callback was invoked.
6832 */
6833 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6834 arc_cksum_free(hdr);
6835 arc_buf_unwatch(buf);
6836 if (hdr->b_l1hdr.b_pabd != NULL) {
6837 if (arc_buf_is_shared(buf)) {
6838 arc_unshare_buf(hdr, buf);
6839 } else {
6840 arc_hdr_free_abd(hdr, B_FALSE);
6841 }
6842 }
6843
6844 if (HDR_HAS_RABD(hdr))
6845 arc_hdr_free_abd(hdr, B_TRUE);
6846 }
6847 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6848 ASSERT(!HDR_HAS_RABD(hdr));
6849 ASSERT(!HDR_SHARED_DATA(hdr));
6850 ASSERT(!arc_buf_is_shared(buf));
6851
6852 callback->awcb_ready(zio, buf, callback->awcb_private);
6853
6854 if (HDR_IO_IN_PROGRESS(hdr))
6855 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6856
6857 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6858
6859 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr))
6860 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp));
6861
6862 if (BP_IS_PROTECTED(bp)) {
6863 /* ZIL blocks are written through zio_rewrite */
6864 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6865 ASSERT(HDR_PROTECTED(hdr));
6866
6867 if (BP_SHOULD_BYTESWAP(bp)) {
6868 if (BP_GET_LEVEL(bp) > 0) {
6869 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6870 } else {
6871 hdr->b_l1hdr.b_byteswap =
6872 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6873 }
6874 } else {
6875 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6876 }
6877
6878 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6879 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6880 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6881 hdr->b_crypt_hdr.b_iv);
6882 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6883 }
6884
6885 /*
6886 * If this block was written for raw encryption but the zio layer
6887 * ended up only authenticating it, adjust the buffer flags now.
6888 */
6889 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6890 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6891 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6892 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6893 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6894 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6895 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6896 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6897 }
6898
6899 /* this must be done after the buffer flags are adjusted */
6900 arc_cksum_compute(buf);
6901
6902 enum zio_compress compress;
6903 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6904 compress = ZIO_COMPRESS_OFF;
6905 } else {
6906 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6907 compress = BP_GET_COMPRESS(bp);
6908 }
6909 HDR_SET_PSIZE(hdr, psize);
6910 arc_hdr_set_compress(hdr, compress);
6911 hdr->b_complevel = zio->io_prop.zp_complevel;
6912
6913 if (zio->io_error != 0 || psize == 0)
6914 goto out;
6915
6916 /*
6917 * Fill the hdr with data. If the buffer is encrypted we have no choice
6918 * but to copy the data into b_radb. If the hdr is compressed, the data
6919 * we want is available from the zio, otherwise we can take it from
6920 * the buf.
6921 *
6922 * We might be able to share the buf's data with the hdr here. However,
6923 * doing so would cause the ARC to be full of linear ABDs if we write a
6924 * lot of shareable data. As a compromise, we check whether scattered
6925 * ABDs are allowed, and assume that if they are then the user wants
6926 * the ARC to be primarily filled with them regardless of the data being
6927 * written. Therefore, if they're allowed then we allocate one and copy
6928 * the data into it; otherwise, we share the data directly if we can.
6929 */
6930 if (ARC_BUF_ENCRYPTED(buf)) {
6931 ASSERT3U(psize, >, 0);
6932 ASSERT(ARC_BUF_COMPRESSED(buf));
6933 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | ARC_HDR_ALLOC_RDATA |
6934 ARC_HDR_USE_RESERVE);
6935 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6936 } else if (!abd_size_alloc_linear(arc_buf_size(buf)) ||
6937 !arc_can_share(hdr, buf)) {
6938 /*
6939 * Ideally, we would always copy the io_abd into b_pabd, but the
6940 * user may have disabled compressed ARC, thus we must check the
6941 * hdr's compression setting rather than the io_bp's.
6942 */
6943 if (BP_IS_ENCRYPTED(bp)) {
6944 ASSERT3U(psize, >, 0);
6945 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT |
6946 ARC_HDR_ALLOC_RDATA | ARC_HDR_USE_RESERVE);
6947 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6948 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6949 !ARC_BUF_COMPRESSED(buf)) {
6950 ASSERT3U(psize, >, 0);
6951 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT |
6952 ARC_HDR_USE_RESERVE);
6953 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6954 } else {
6955 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6956 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT |
6957 ARC_HDR_USE_RESERVE);
6958 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6959 arc_buf_size(buf));
6960 }
6961 } else {
6962 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6963 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6964 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6965
6966 arc_share_buf(hdr, buf);
6967 }
6968
6969 out:
6970 arc_hdr_verify(hdr, bp);
6971 spl_fstrans_unmark(cookie);
6972 }
6973
6974 static void
6975 arc_write_children_ready(zio_t *zio)
6976 {
6977 arc_write_callback_t *callback = zio->io_private;
6978 arc_buf_t *buf = callback->awcb_buf;
6979
6980 callback->awcb_children_ready(zio, buf, callback->awcb_private);
6981 }
6982
6983 /*
6984 * The SPA calls this callback for each physical write that happens on behalf
6985 * of a logical write. See the comment in dbuf_write_physdone() for details.
6986 */
6987 static void
6988 arc_write_physdone(zio_t *zio)
6989 {
6990 arc_write_callback_t *cb = zio->io_private;
6991 if (cb->awcb_physdone != NULL)
6992 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6993 }
6994
6995 static void
6996 arc_write_done(zio_t *zio)
6997 {
6998 arc_write_callback_t *callback = zio->io_private;
6999 arc_buf_t *buf = callback->awcb_buf;
7000 arc_buf_hdr_t *hdr = buf->b_hdr;
7001
7002 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
7003
7004 if (zio->io_error == 0) {
7005 arc_hdr_verify(hdr, zio->io_bp);
7006
7007 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
7008 buf_discard_identity(hdr);
7009 } else {
7010 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
7011 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
7012 }
7013 } else {
7014 ASSERT(HDR_EMPTY(hdr));
7015 }
7016
7017 /*
7018 * If the block to be written was all-zero or compressed enough to be
7019 * embedded in the BP, no write was performed so there will be no
7020 * dva/birth/checksum. The buffer must therefore remain anonymous
7021 * (and uncached).
7022 */
7023 if (!HDR_EMPTY(hdr)) {
7024 arc_buf_hdr_t *exists;
7025 kmutex_t *hash_lock;
7026
7027 ASSERT3U(zio->io_error, ==, 0);
7028
7029 arc_cksum_verify(buf);
7030
7031 exists = buf_hash_insert(hdr, &hash_lock);
7032 if (exists != NULL) {
7033 /*
7034 * This can only happen if we overwrite for
7035 * sync-to-convergence, because we remove
7036 * buffers from the hash table when we arc_free().
7037 */
7038 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
7039 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
7040 panic("bad overwrite, hdr=%p exists=%p",
7041 (void *)hdr, (void *)exists);
7042 ASSERT(zfs_refcount_is_zero(
7043 &exists->b_l1hdr.b_refcnt));
7044 arc_change_state(arc_anon, exists, hash_lock);
7045 arc_hdr_destroy(exists);
7046 mutex_exit(hash_lock);
7047 exists = buf_hash_insert(hdr, &hash_lock);
7048 ASSERT3P(exists, ==, NULL);
7049 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
7050 /* nopwrite */
7051 ASSERT(zio->io_prop.zp_nopwrite);
7052 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
7053 panic("bad nopwrite, hdr=%p exists=%p",
7054 (void *)hdr, (void *)exists);
7055 } else {
7056 /* Dedup */
7057 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
7058 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
7059 ASSERT(BP_GET_DEDUP(zio->io_bp));
7060 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
7061 }
7062 }
7063 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
7064 /* if it's not anon, we are doing a scrub */
7065 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
7066 arc_access(hdr, hash_lock);
7067 mutex_exit(hash_lock);
7068 } else {
7069 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
7070 }
7071
7072 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
7073 callback->awcb_done(zio, buf, callback->awcb_private);
7074
7075 abd_free(zio->io_abd);
7076 kmem_free(callback, sizeof (arc_write_callback_t));
7077 }
7078
7079 zio_t *
7080 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
7081 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc,
7082 const zio_prop_t *zp, arc_write_done_func_t *ready,
7083 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
7084 arc_write_done_func_t *done, void *private, zio_priority_t priority,
7085 int zio_flags, const zbookmark_phys_t *zb)
7086 {
7087 arc_buf_hdr_t *hdr = buf->b_hdr;
7088 arc_write_callback_t *callback;
7089 zio_t *zio;
7090 zio_prop_t localprop = *zp;
7091
7092 ASSERT3P(ready, !=, NULL);
7093 ASSERT3P(done, !=, NULL);
7094 ASSERT(!HDR_IO_ERROR(hdr));
7095 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
7096 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
7097 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
7098 if (l2arc)
7099 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
7100
7101 if (ARC_BUF_ENCRYPTED(buf)) {
7102 ASSERT(ARC_BUF_COMPRESSED(buf));
7103 localprop.zp_encrypt = B_TRUE;
7104 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7105 localprop.zp_complevel = hdr->b_complevel;
7106 localprop.zp_byteorder =
7107 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
7108 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
7109 memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt,
7110 ZIO_DATA_SALT_LEN);
7111 memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv,
7112 ZIO_DATA_IV_LEN);
7113 memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac,
7114 ZIO_DATA_MAC_LEN);
7115 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
7116 localprop.zp_nopwrite = B_FALSE;
7117 localprop.zp_copies =
7118 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
7119 }
7120 zio_flags |= ZIO_FLAG_RAW;
7121 } else if (ARC_BUF_COMPRESSED(buf)) {
7122 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
7123 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7124 localprop.zp_complevel = hdr->b_complevel;
7125 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
7126 }
7127 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
7128 callback->awcb_ready = ready;
7129 callback->awcb_children_ready = children_ready;
7130 callback->awcb_physdone = physdone;
7131 callback->awcb_done = done;
7132 callback->awcb_private = private;
7133 callback->awcb_buf = buf;
7134
7135 /*
7136 * The hdr's b_pabd is now stale, free it now. A new data block
7137 * will be allocated when the zio pipeline calls arc_write_ready().
7138 */
7139 if (hdr->b_l1hdr.b_pabd != NULL) {
7140 /*
7141 * If the buf is currently sharing the data block with
7142 * the hdr then we need to break that relationship here.
7143 * The hdr will remain with a NULL data pointer and the
7144 * buf will take sole ownership of the block.
7145 */
7146 if (arc_buf_is_shared(buf)) {
7147 arc_unshare_buf(hdr, buf);
7148 } else {
7149 arc_hdr_free_abd(hdr, B_FALSE);
7150 }
7151 VERIFY3P(buf->b_data, !=, NULL);
7152 }
7153
7154 if (HDR_HAS_RABD(hdr))
7155 arc_hdr_free_abd(hdr, B_TRUE);
7156
7157 if (!(zio_flags & ZIO_FLAG_RAW))
7158 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
7159
7160 ASSERT(!arc_buf_is_shared(buf));
7161 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
7162
7163 zio = zio_write(pio, spa, txg, bp,
7164 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
7165 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
7166 (children_ready != NULL) ? arc_write_children_ready : NULL,
7167 arc_write_physdone, arc_write_done, callback,
7168 priority, zio_flags, zb);
7169
7170 return (zio);
7171 }
7172
7173 void
7174 arc_tempreserve_clear(uint64_t reserve)
7175 {
7176 atomic_add_64(&arc_tempreserve, -reserve);
7177 ASSERT((int64_t)arc_tempreserve >= 0);
7178 }
7179
7180 int
7181 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
7182 {
7183 int error;
7184 uint64_t anon_size;
7185
7186 if (!arc_no_grow &&
7187 reserve > arc_c/4 &&
7188 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
7189 arc_c = MIN(arc_c_max, reserve * 4);
7190
7191 /*
7192 * Throttle when the calculated memory footprint for the TXG
7193 * exceeds the target ARC size.
7194 */
7195 if (reserve > arc_c) {
7196 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
7197 return (SET_ERROR(ERESTART));
7198 }
7199
7200 /*
7201 * Don't count loaned bufs as in flight dirty data to prevent long
7202 * network delays from blocking transactions that are ready to be
7203 * assigned to a txg.
7204 */
7205
7206 /* assert that it has not wrapped around */
7207 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
7208
7209 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) -
7210 arc_loaned_bytes), 0);
7211
7212 /*
7213 * Writes will, almost always, require additional memory allocations
7214 * in order to compress/encrypt/etc the data. We therefore need to
7215 * make sure that there is sufficient available memory for this.
7216 */
7217 error = arc_memory_throttle(spa, reserve, txg);
7218 if (error != 0)
7219 return (error);
7220
7221 /*
7222 * Throttle writes when the amount of dirty data in the cache
7223 * gets too large. We try to keep the cache less than half full
7224 * of dirty blocks so that our sync times don't grow too large.
7225 *
7226 * In the case of one pool being built on another pool, we want
7227 * to make sure we don't end up throttling the lower (backing)
7228 * pool when the upper pool is the majority contributor to dirty
7229 * data. To insure we make forward progress during throttling, we
7230 * also check the current pool's net dirty data and only throttle
7231 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
7232 * data in the cache.
7233 *
7234 * Note: if two requests come in concurrently, we might let them
7235 * both succeed, when one of them should fail. Not a huge deal.
7236 */
7237 uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
7238 uint64_t spa_dirty_anon = spa_dirty_data(spa);
7239 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max;
7240 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 &&
7241 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 &&
7242 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
7243 #ifdef ZFS_DEBUG
7244 uint64_t meta_esize = zfs_refcount_count(
7245 &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7246 uint64_t data_esize =
7247 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7248 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7249 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
7250 (u_longlong_t)arc_tempreserve >> 10,
7251 (u_longlong_t)meta_esize >> 10,
7252 (u_longlong_t)data_esize >> 10,
7253 (u_longlong_t)reserve >> 10,
7254 (u_longlong_t)rarc_c >> 10);
7255 #endif
7256 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
7257 return (SET_ERROR(ERESTART));
7258 }
7259 atomic_add_64(&arc_tempreserve, reserve);
7260 return (0);
7261 }
7262
7263 static void
7264 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7265 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7266 {
7267 size->value.ui64 = zfs_refcount_count(&state->arcs_size);
7268 evict_data->value.ui64 =
7269 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
7270 evict_metadata->value.ui64 =
7271 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
7272 }
7273
7274 static int
7275 arc_kstat_update(kstat_t *ksp, int rw)
7276 {
7277 arc_stats_t *as = ksp->ks_data;
7278
7279 if (rw == KSTAT_WRITE)
7280 return (SET_ERROR(EACCES));
7281
7282 as->arcstat_hits.value.ui64 =
7283 wmsum_value(&arc_sums.arcstat_hits);
7284 as->arcstat_misses.value.ui64 =
7285 wmsum_value(&arc_sums.arcstat_misses);
7286 as->arcstat_demand_data_hits.value.ui64 =
7287 wmsum_value(&arc_sums.arcstat_demand_data_hits);
7288 as->arcstat_demand_data_misses.value.ui64 =
7289 wmsum_value(&arc_sums.arcstat_demand_data_misses);
7290 as->arcstat_demand_metadata_hits.value.ui64 =
7291 wmsum_value(&arc_sums.arcstat_demand_metadata_hits);
7292 as->arcstat_demand_metadata_misses.value.ui64 =
7293 wmsum_value(&arc_sums.arcstat_demand_metadata_misses);
7294 as->arcstat_prefetch_data_hits.value.ui64 =
7295 wmsum_value(&arc_sums.arcstat_prefetch_data_hits);
7296 as->arcstat_prefetch_data_misses.value.ui64 =
7297 wmsum_value(&arc_sums.arcstat_prefetch_data_misses);
7298 as->arcstat_prefetch_metadata_hits.value.ui64 =
7299 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits);
7300 as->arcstat_prefetch_metadata_misses.value.ui64 =
7301 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses);
7302 as->arcstat_mru_hits.value.ui64 =
7303 wmsum_value(&arc_sums.arcstat_mru_hits);
7304 as->arcstat_mru_ghost_hits.value.ui64 =
7305 wmsum_value(&arc_sums.arcstat_mru_ghost_hits);
7306 as->arcstat_mfu_hits.value.ui64 =
7307 wmsum_value(&arc_sums.arcstat_mfu_hits);
7308 as->arcstat_mfu_ghost_hits.value.ui64 =
7309 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits);
7310 as->arcstat_deleted.value.ui64 =
7311 wmsum_value(&arc_sums.arcstat_deleted);
7312 as->arcstat_mutex_miss.value.ui64 =
7313 wmsum_value(&arc_sums.arcstat_mutex_miss);
7314 as->arcstat_access_skip.value.ui64 =
7315 wmsum_value(&arc_sums.arcstat_access_skip);
7316 as->arcstat_evict_skip.value.ui64 =
7317 wmsum_value(&arc_sums.arcstat_evict_skip);
7318 as->arcstat_evict_not_enough.value.ui64 =
7319 wmsum_value(&arc_sums.arcstat_evict_not_enough);
7320 as->arcstat_evict_l2_cached.value.ui64 =
7321 wmsum_value(&arc_sums.arcstat_evict_l2_cached);
7322 as->arcstat_evict_l2_eligible.value.ui64 =
7323 wmsum_value(&arc_sums.arcstat_evict_l2_eligible);
7324 as->arcstat_evict_l2_eligible_mfu.value.ui64 =
7325 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu);
7326 as->arcstat_evict_l2_eligible_mru.value.ui64 =
7327 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru);
7328 as->arcstat_evict_l2_ineligible.value.ui64 =
7329 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible);
7330 as->arcstat_evict_l2_skip.value.ui64 =
7331 wmsum_value(&arc_sums.arcstat_evict_l2_skip);
7332 as->arcstat_hash_collisions.value.ui64 =
7333 wmsum_value(&arc_sums.arcstat_hash_collisions);
7334 as->arcstat_hash_chains.value.ui64 =
7335 wmsum_value(&arc_sums.arcstat_hash_chains);
7336 as->arcstat_size.value.ui64 =
7337 aggsum_value(&arc_sums.arcstat_size);
7338 as->arcstat_compressed_size.value.ui64 =
7339 wmsum_value(&arc_sums.arcstat_compressed_size);
7340 as->arcstat_uncompressed_size.value.ui64 =
7341 wmsum_value(&arc_sums.arcstat_uncompressed_size);
7342 as->arcstat_overhead_size.value.ui64 =
7343 wmsum_value(&arc_sums.arcstat_overhead_size);
7344 as->arcstat_hdr_size.value.ui64 =
7345 wmsum_value(&arc_sums.arcstat_hdr_size);
7346 as->arcstat_data_size.value.ui64 =
7347 wmsum_value(&arc_sums.arcstat_data_size);
7348 as->arcstat_metadata_size.value.ui64 =
7349 wmsum_value(&arc_sums.arcstat_metadata_size);
7350 as->arcstat_dbuf_size.value.ui64 =
7351 wmsum_value(&arc_sums.arcstat_dbuf_size);
7352 #if defined(COMPAT_FREEBSD11)
7353 as->arcstat_other_size.value.ui64 =
7354 wmsum_value(&arc_sums.arcstat_bonus_size) +
7355 aggsum_value(&arc_sums.arcstat_dnode_size) +
7356 wmsum_value(&arc_sums.arcstat_dbuf_size);
7357 #endif
7358
7359 arc_kstat_update_state(arc_anon,
7360 &as->arcstat_anon_size,
7361 &as->arcstat_anon_evictable_data,
7362 &as->arcstat_anon_evictable_metadata);
7363 arc_kstat_update_state(arc_mru,
7364 &as->arcstat_mru_size,
7365 &as->arcstat_mru_evictable_data,
7366 &as->arcstat_mru_evictable_metadata);
7367 arc_kstat_update_state(arc_mru_ghost,
7368 &as->arcstat_mru_ghost_size,
7369 &as->arcstat_mru_ghost_evictable_data,
7370 &as->arcstat_mru_ghost_evictable_metadata);
7371 arc_kstat_update_state(arc_mfu,
7372 &as->arcstat_mfu_size,
7373 &as->arcstat_mfu_evictable_data,
7374 &as->arcstat_mfu_evictable_metadata);
7375 arc_kstat_update_state(arc_mfu_ghost,
7376 &as->arcstat_mfu_ghost_size,
7377 &as->arcstat_mfu_ghost_evictable_data,
7378 &as->arcstat_mfu_ghost_evictable_metadata);
7379
7380 as->arcstat_dnode_size.value.ui64 =
7381 aggsum_value(&arc_sums.arcstat_dnode_size);
7382 as->arcstat_bonus_size.value.ui64 =
7383 wmsum_value(&arc_sums.arcstat_bonus_size);
7384 as->arcstat_l2_hits.value.ui64 =
7385 wmsum_value(&arc_sums.arcstat_l2_hits);
7386 as->arcstat_l2_misses.value.ui64 =
7387 wmsum_value(&arc_sums.arcstat_l2_misses);
7388 as->arcstat_l2_prefetch_asize.value.ui64 =
7389 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize);
7390 as->arcstat_l2_mru_asize.value.ui64 =
7391 wmsum_value(&arc_sums.arcstat_l2_mru_asize);
7392 as->arcstat_l2_mfu_asize.value.ui64 =
7393 wmsum_value(&arc_sums.arcstat_l2_mfu_asize);
7394 as->arcstat_l2_bufc_data_asize.value.ui64 =
7395 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize);
7396 as->arcstat_l2_bufc_metadata_asize.value.ui64 =
7397 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize);
7398 as->arcstat_l2_feeds.value.ui64 =
7399 wmsum_value(&arc_sums.arcstat_l2_feeds);
7400 as->arcstat_l2_rw_clash.value.ui64 =
7401 wmsum_value(&arc_sums.arcstat_l2_rw_clash);
7402 as->arcstat_l2_read_bytes.value.ui64 =
7403 wmsum_value(&arc_sums.arcstat_l2_read_bytes);
7404 as->arcstat_l2_write_bytes.value.ui64 =
7405 wmsum_value(&arc_sums.arcstat_l2_write_bytes);
7406 as->arcstat_l2_writes_sent.value.ui64 =
7407 wmsum_value(&arc_sums.arcstat_l2_writes_sent);
7408 as->arcstat_l2_writes_done.value.ui64 =
7409 wmsum_value(&arc_sums.arcstat_l2_writes_done);
7410 as->arcstat_l2_writes_error.value.ui64 =
7411 wmsum_value(&arc_sums.arcstat_l2_writes_error);
7412 as->arcstat_l2_writes_lock_retry.value.ui64 =
7413 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry);
7414 as->arcstat_l2_evict_lock_retry.value.ui64 =
7415 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry);
7416 as->arcstat_l2_evict_reading.value.ui64 =
7417 wmsum_value(&arc_sums.arcstat_l2_evict_reading);
7418 as->arcstat_l2_evict_l1cached.value.ui64 =
7419 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached);
7420 as->arcstat_l2_free_on_write.value.ui64 =
7421 wmsum_value(&arc_sums.arcstat_l2_free_on_write);
7422 as->arcstat_l2_abort_lowmem.value.ui64 =
7423 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem);
7424 as->arcstat_l2_cksum_bad.value.ui64 =
7425 wmsum_value(&arc_sums.arcstat_l2_cksum_bad);
7426 as->arcstat_l2_io_error.value.ui64 =
7427 wmsum_value(&arc_sums.arcstat_l2_io_error);
7428 as->arcstat_l2_lsize.value.ui64 =
7429 wmsum_value(&arc_sums.arcstat_l2_lsize);
7430 as->arcstat_l2_psize.value.ui64 =
7431 wmsum_value(&arc_sums.arcstat_l2_psize);
7432 as->arcstat_l2_hdr_size.value.ui64 =
7433 aggsum_value(&arc_sums.arcstat_l2_hdr_size);
7434 as->arcstat_l2_log_blk_writes.value.ui64 =
7435 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes);
7436 as->arcstat_l2_log_blk_asize.value.ui64 =
7437 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize);
7438 as->arcstat_l2_log_blk_count.value.ui64 =
7439 wmsum_value(&arc_sums.arcstat_l2_log_blk_count);
7440 as->arcstat_l2_rebuild_success.value.ui64 =
7441 wmsum_value(&arc_sums.arcstat_l2_rebuild_success);
7442 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 =
7443 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7444 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 =
7445 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7446 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 =
7447 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7448 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 =
7449 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7450 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 =
7451 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7452 as->arcstat_l2_rebuild_size.value.ui64 =
7453 wmsum_value(&arc_sums.arcstat_l2_rebuild_size);
7454 as->arcstat_l2_rebuild_asize.value.ui64 =
7455 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize);
7456 as->arcstat_l2_rebuild_bufs.value.ui64 =
7457 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs);
7458 as->arcstat_l2_rebuild_bufs_precached.value.ui64 =
7459 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7460 as->arcstat_l2_rebuild_log_blks.value.ui64 =
7461 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks);
7462 as->arcstat_memory_throttle_count.value.ui64 =
7463 wmsum_value(&arc_sums.arcstat_memory_throttle_count);
7464 as->arcstat_memory_direct_count.value.ui64 =
7465 wmsum_value(&arc_sums.arcstat_memory_direct_count);
7466 as->arcstat_memory_indirect_count.value.ui64 =
7467 wmsum_value(&arc_sums.arcstat_memory_indirect_count);
7468
7469 as->arcstat_memory_all_bytes.value.ui64 =
7470 arc_all_memory();
7471 as->arcstat_memory_free_bytes.value.ui64 =
7472 arc_free_memory();
7473 as->arcstat_memory_available_bytes.value.i64 =
7474 arc_available_memory();
7475
7476 as->arcstat_prune.value.ui64 =
7477 wmsum_value(&arc_sums.arcstat_prune);
7478 as->arcstat_meta_used.value.ui64 =
7479 aggsum_value(&arc_sums.arcstat_meta_used);
7480 as->arcstat_async_upgrade_sync.value.ui64 =
7481 wmsum_value(&arc_sums.arcstat_async_upgrade_sync);
7482 as->arcstat_demand_hit_predictive_prefetch.value.ui64 =
7483 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7484 as->arcstat_demand_hit_prescient_prefetch.value.ui64 =
7485 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7486 as->arcstat_raw_size.value.ui64 =
7487 wmsum_value(&arc_sums.arcstat_raw_size);
7488 as->arcstat_cached_only_in_progress.value.ui64 =
7489 wmsum_value(&arc_sums.arcstat_cached_only_in_progress);
7490 as->arcstat_abd_chunk_waste_size.value.ui64 =
7491 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size);
7492
7493 return (0);
7494 }
7495
7496 /*
7497 * This function *must* return indices evenly distributed between all
7498 * sublists of the multilist. This is needed due to how the ARC eviction
7499 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7500 * distributed between all sublists and uses this assumption when
7501 * deciding which sublist to evict from and how much to evict from it.
7502 */
7503 static unsigned int
7504 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7505 {
7506 arc_buf_hdr_t *hdr = obj;
7507
7508 /*
7509 * We rely on b_dva to generate evenly distributed index
7510 * numbers using buf_hash below. So, as an added precaution,
7511 * let's make sure we never add empty buffers to the arc lists.
7512 */
7513 ASSERT(!HDR_EMPTY(hdr));
7514
7515 /*
7516 * The assumption here, is the hash value for a given
7517 * arc_buf_hdr_t will remain constant throughout its lifetime
7518 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7519 * Thus, we don't need to store the header's sublist index
7520 * on insertion, as this index can be recalculated on removal.
7521 *
7522 * Also, the low order bits of the hash value are thought to be
7523 * distributed evenly. Otherwise, in the case that the multilist
7524 * has a power of two number of sublists, each sublists' usage
7525 * would not be evenly distributed. In this context full 64bit
7526 * division would be a waste of time, so limit it to 32 bits.
7527 */
7528 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7529 multilist_get_num_sublists(ml));
7530 }
7531
7532 static unsigned int
7533 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj)
7534 {
7535 panic("Header %p insert into arc_l2c_only %p", obj, ml);
7536 }
7537
7538 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \
7539 if ((do_warn) && (tuning) && ((tuning) != (value))) { \
7540 cmn_err(CE_WARN, \
7541 "ignoring tunable %s (using %llu instead)", \
7542 (#tuning), (u_longlong_t)(value)); \
7543 } \
7544 } while (0)
7545
7546 /*
7547 * Called during module initialization and periodically thereafter to
7548 * apply reasonable changes to the exposed performance tunings. Can also be
7549 * called explicitly by param_set_arc_*() functions when ARC tunables are
7550 * updated manually. Non-zero zfs_* values which differ from the currently set
7551 * values will be applied.
7552 */
7553 void
7554 arc_tuning_update(boolean_t verbose)
7555 {
7556 uint64_t allmem = arc_all_memory();
7557 unsigned long limit;
7558
7559 /* Valid range: 32M - <arc_c_max> */
7560 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7561 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7562 (zfs_arc_min <= arc_c_max)) {
7563 arc_c_min = zfs_arc_min;
7564 arc_c = MAX(arc_c, arc_c_min);
7565 }
7566 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose);
7567
7568 /* Valid range: 64M - <all physical memory> */
7569 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7570 (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) &&
7571 (zfs_arc_max > arc_c_min)) {
7572 arc_c_max = zfs_arc_max;
7573 arc_c = MIN(arc_c, arc_c_max);
7574 arc_p = (arc_c >> 1);
7575 if (arc_meta_limit > arc_c_max)
7576 arc_meta_limit = arc_c_max;
7577 if (arc_dnode_size_limit > arc_meta_limit)
7578 arc_dnode_size_limit = arc_meta_limit;
7579 }
7580 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose);
7581
7582 /* Valid range: 16M - <arc_c_max> */
7583 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
7584 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
7585 (zfs_arc_meta_min <= arc_c_max)) {
7586 arc_meta_min = zfs_arc_meta_min;
7587 if (arc_meta_limit < arc_meta_min)
7588 arc_meta_limit = arc_meta_min;
7589 if (arc_dnode_size_limit < arc_meta_min)
7590 arc_dnode_size_limit = arc_meta_min;
7591 }
7592 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose);
7593
7594 /* Valid range: <arc_meta_min> - <arc_c_max> */
7595 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit :
7596 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100;
7597 if ((limit != arc_meta_limit) &&
7598 (limit >= arc_meta_min) &&
7599 (limit <= arc_c_max))
7600 arc_meta_limit = limit;
7601 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose);
7602
7603 /* Valid range: <arc_meta_min> - <arc_meta_limit> */
7604 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7605 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100;
7606 if ((limit != arc_dnode_size_limit) &&
7607 (limit >= arc_meta_min) &&
7608 (limit <= arc_meta_limit))
7609 arc_dnode_size_limit = limit;
7610 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit,
7611 verbose);
7612
7613 /* Valid range: 1 - N */
7614 if (zfs_arc_grow_retry)
7615 arc_grow_retry = zfs_arc_grow_retry;
7616
7617 /* Valid range: 1 - N */
7618 if (zfs_arc_shrink_shift) {
7619 arc_shrink_shift = zfs_arc_shrink_shift;
7620 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7621 }
7622
7623 /* Valid range: 1 - N */
7624 if (zfs_arc_p_min_shift)
7625 arc_p_min_shift = zfs_arc_p_min_shift;
7626
7627 /* Valid range: 1 - N ms */
7628 if (zfs_arc_min_prefetch_ms)
7629 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7630
7631 /* Valid range: 1 - N ms */
7632 if (zfs_arc_min_prescient_prefetch_ms) {
7633 arc_min_prescient_prefetch_ms =
7634 zfs_arc_min_prescient_prefetch_ms;
7635 }
7636
7637 /* Valid range: 0 - 100 */
7638 if ((zfs_arc_lotsfree_percent >= 0) &&
7639 (zfs_arc_lotsfree_percent <= 100))
7640 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7641 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent,
7642 verbose);
7643
7644 /* Valid range: 0 - <all physical memory> */
7645 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
7646 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem);
7647 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose);
7648 }
7649
7650 static void
7651 arc_state_multilist_init(multilist_t *ml,
7652 multilist_sublist_index_func_t *index_func, int *maxcountp)
7653 {
7654 multilist_create(ml, sizeof (arc_buf_hdr_t),
7655 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func);
7656 *maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml));
7657 }
7658
7659 static void
7660 arc_state_init(void)
7661 {
7662 int num_sublists = 0;
7663
7664 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA],
7665 arc_state_multilist_index_func, &num_sublists);
7666 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA],
7667 arc_state_multilist_index_func, &num_sublists);
7668 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
7669 arc_state_multilist_index_func, &num_sublists);
7670 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
7671 arc_state_multilist_index_func, &num_sublists);
7672 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
7673 arc_state_multilist_index_func, &num_sublists);
7674 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA],
7675 arc_state_multilist_index_func, &num_sublists);
7676 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
7677 arc_state_multilist_index_func, &num_sublists);
7678 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
7679 arc_state_multilist_index_func, &num_sublists);
7680
7681 /*
7682 * L2 headers should never be on the L2 state list since they don't
7683 * have L1 headers allocated. Special index function asserts that.
7684 */
7685 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
7686 arc_state_l2c_multilist_index_func, &num_sublists);
7687 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
7688 arc_state_l2c_multilist_index_func, &num_sublists);
7689
7690 /*
7691 * Keep track of the number of markers needed to reclaim buffers from
7692 * any ARC state. The markers will be pre-allocated so as to minimize
7693 * the number of memory allocations performed by the eviction thread.
7694 */
7695 arc_state_evict_marker_count = num_sublists;
7696
7697 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7698 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7699 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7700 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7701 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7702 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7703 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7704 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7705 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7706 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7707 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7708 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7709
7710 zfs_refcount_create(&arc_anon->arcs_size);
7711 zfs_refcount_create(&arc_mru->arcs_size);
7712 zfs_refcount_create(&arc_mru_ghost->arcs_size);
7713 zfs_refcount_create(&arc_mfu->arcs_size);
7714 zfs_refcount_create(&arc_mfu_ghost->arcs_size);
7715 zfs_refcount_create(&arc_l2c_only->arcs_size);
7716
7717 wmsum_init(&arc_sums.arcstat_hits, 0);
7718 wmsum_init(&arc_sums.arcstat_misses, 0);
7719 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0);
7720 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0);
7721 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0);
7722 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0);
7723 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0);
7724 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0);
7725 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0);
7726 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0);
7727 wmsum_init(&arc_sums.arcstat_mru_hits, 0);
7728 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0);
7729 wmsum_init(&arc_sums.arcstat_mfu_hits, 0);
7730 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0);
7731 wmsum_init(&arc_sums.arcstat_deleted, 0);
7732 wmsum_init(&arc_sums.arcstat_mutex_miss, 0);
7733 wmsum_init(&arc_sums.arcstat_access_skip, 0);
7734 wmsum_init(&arc_sums.arcstat_evict_skip, 0);
7735 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0);
7736 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0);
7737 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0);
7738 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0);
7739 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0);
7740 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0);
7741 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0);
7742 wmsum_init(&arc_sums.arcstat_hash_collisions, 0);
7743 wmsum_init(&arc_sums.arcstat_hash_chains, 0);
7744 aggsum_init(&arc_sums.arcstat_size, 0);
7745 wmsum_init(&arc_sums.arcstat_compressed_size, 0);
7746 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0);
7747 wmsum_init(&arc_sums.arcstat_overhead_size, 0);
7748 wmsum_init(&arc_sums.arcstat_hdr_size, 0);
7749 wmsum_init(&arc_sums.arcstat_data_size, 0);
7750 wmsum_init(&arc_sums.arcstat_metadata_size, 0);
7751 wmsum_init(&arc_sums.arcstat_dbuf_size, 0);
7752 aggsum_init(&arc_sums.arcstat_dnode_size, 0);
7753 wmsum_init(&arc_sums.arcstat_bonus_size, 0);
7754 wmsum_init(&arc_sums.arcstat_l2_hits, 0);
7755 wmsum_init(&arc_sums.arcstat_l2_misses, 0);
7756 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0);
7757 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0);
7758 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0);
7759 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0);
7760 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0);
7761 wmsum_init(&arc_sums.arcstat_l2_feeds, 0);
7762 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0);
7763 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0);
7764 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0);
7765 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0);
7766 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0);
7767 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0);
7768 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0);
7769 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0);
7770 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0);
7771 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0);
7772 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0);
7773 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0);
7774 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0);
7775 wmsum_init(&arc_sums.arcstat_l2_io_error, 0);
7776 wmsum_init(&arc_sums.arcstat_l2_lsize, 0);
7777 wmsum_init(&arc_sums.arcstat_l2_psize, 0);
7778 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0);
7779 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0);
7780 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0);
7781 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0);
7782 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0);
7783 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0);
7784 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0);
7785 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0);
7786 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0);
7787 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0);
7788 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0);
7789 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0);
7790 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0);
7791 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0);
7792 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0);
7793 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0);
7794 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0);
7795 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0);
7796 wmsum_init(&arc_sums.arcstat_prune, 0);
7797 aggsum_init(&arc_sums.arcstat_meta_used, 0);
7798 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0);
7799 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0);
7800 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0);
7801 wmsum_init(&arc_sums.arcstat_raw_size, 0);
7802 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0);
7803 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0);
7804
7805 arc_anon->arcs_state = ARC_STATE_ANON;
7806 arc_mru->arcs_state = ARC_STATE_MRU;
7807 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7808 arc_mfu->arcs_state = ARC_STATE_MFU;
7809 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7810 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7811 }
7812
7813 static void
7814 arc_state_fini(void)
7815 {
7816 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7817 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7818 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7819 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7820 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7821 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7822 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7823 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7824 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7825 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7826 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7827 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7828
7829 zfs_refcount_destroy(&arc_anon->arcs_size);
7830 zfs_refcount_destroy(&arc_mru->arcs_size);
7831 zfs_refcount_destroy(&arc_mru_ghost->arcs_size);
7832 zfs_refcount_destroy(&arc_mfu->arcs_size);
7833 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size);
7834 zfs_refcount_destroy(&arc_l2c_only->arcs_size);
7835
7836 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
7837 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7838 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7839 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7840 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
7841 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7842 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
7843 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7844 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7845 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7846
7847 wmsum_fini(&arc_sums.arcstat_hits);
7848 wmsum_fini(&arc_sums.arcstat_misses);
7849 wmsum_fini(&arc_sums.arcstat_demand_data_hits);
7850 wmsum_fini(&arc_sums.arcstat_demand_data_misses);
7851 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits);
7852 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses);
7853 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits);
7854 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses);
7855 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits);
7856 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses);
7857 wmsum_fini(&arc_sums.arcstat_mru_hits);
7858 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits);
7859 wmsum_fini(&arc_sums.arcstat_mfu_hits);
7860 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits);
7861 wmsum_fini(&arc_sums.arcstat_deleted);
7862 wmsum_fini(&arc_sums.arcstat_mutex_miss);
7863 wmsum_fini(&arc_sums.arcstat_access_skip);
7864 wmsum_fini(&arc_sums.arcstat_evict_skip);
7865 wmsum_fini(&arc_sums.arcstat_evict_not_enough);
7866 wmsum_fini(&arc_sums.arcstat_evict_l2_cached);
7867 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible);
7868 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu);
7869 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru);
7870 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible);
7871 wmsum_fini(&arc_sums.arcstat_evict_l2_skip);
7872 wmsum_fini(&arc_sums.arcstat_hash_collisions);
7873 wmsum_fini(&arc_sums.arcstat_hash_chains);
7874 aggsum_fini(&arc_sums.arcstat_size);
7875 wmsum_fini(&arc_sums.arcstat_compressed_size);
7876 wmsum_fini(&arc_sums.arcstat_uncompressed_size);
7877 wmsum_fini(&arc_sums.arcstat_overhead_size);
7878 wmsum_fini(&arc_sums.arcstat_hdr_size);
7879 wmsum_fini(&arc_sums.arcstat_data_size);
7880 wmsum_fini(&arc_sums.arcstat_metadata_size);
7881 wmsum_fini(&arc_sums.arcstat_dbuf_size);
7882 aggsum_fini(&arc_sums.arcstat_dnode_size);
7883 wmsum_fini(&arc_sums.arcstat_bonus_size);
7884 wmsum_fini(&arc_sums.arcstat_l2_hits);
7885 wmsum_fini(&arc_sums.arcstat_l2_misses);
7886 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize);
7887 wmsum_fini(&arc_sums.arcstat_l2_mru_asize);
7888 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize);
7889 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize);
7890 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize);
7891 wmsum_fini(&arc_sums.arcstat_l2_feeds);
7892 wmsum_fini(&arc_sums.arcstat_l2_rw_clash);
7893 wmsum_fini(&arc_sums.arcstat_l2_read_bytes);
7894 wmsum_fini(&arc_sums.arcstat_l2_write_bytes);
7895 wmsum_fini(&arc_sums.arcstat_l2_writes_sent);
7896 wmsum_fini(&arc_sums.arcstat_l2_writes_done);
7897 wmsum_fini(&arc_sums.arcstat_l2_writes_error);
7898 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry);
7899 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry);
7900 wmsum_fini(&arc_sums.arcstat_l2_evict_reading);
7901 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached);
7902 wmsum_fini(&arc_sums.arcstat_l2_free_on_write);
7903 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem);
7904 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad);
7905 wmsum_fini(&arc_sums.arcstat_l2_io_error);
7906 wmsum_fini(&arc_sums.arcstat_l2_lsize);
7907 wmsum_fini(&arc_sums.arcstat_l2_psize);
7908 aggsum_fini(&arc_sums.arcstat_l2_hdr_size);
7909 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes);
7910 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize);
7911 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count);
7912 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success);
7913 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7914 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7915 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7916 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7917 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7918 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size);
7919 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize);
7920 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs);
7921 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7922 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks);
7923 wmsum_fini(&arc_sums.arcstat_memory_throttle_count);
7924 wmsum_fini(&arc_sums.arcstat_memory_direct_count);
7925 wmsum_fini(&arc_sums.arcstat_memory_indirect_count);
7926 wmsum_fini(&arc_sums.arcstat_prune);
7927 aggsum_fini(&arc_sums.arcstat_meta_used);
7928 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync);
7929 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7930 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7931 wmsum_fini(&arc_sums.arcstat_raw_size);
7932 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress);
7933 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size);
7934 }
7935
7936 uint64_t
7937 arc_target_bytes(void)
7938 {
7939 return (arc_c);
7940 }
7941
7942 void
7943 arc_set_limits(uint64_t allmem)
7944 {
7945 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7946 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7947
7948 /* How to set default max varies by platform. */
7949 arc_c_max = arc_default_max(arc_c_min, allmem);
7950 }
7951 void
7952 arc_init(void)
7953 {
7954 uint64_t percent, allmem = arc_all_memory();
7955 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL);
7956 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t),
7957 offsetof(arc_evict_waiter_t, aew_node));
7958
7959 arc_min_prefetch_ms = 1000;
7960 arc_min_prescient_prefetch_ms = 6000;
7961
7962 #if defined(_KERNEL)
7963 arc_lowmem_init();
7964 #endif
7965
7966 arc_set_limits(allmem);
7967
7968 #ifdef _KERNEL
7969 /*
7970 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
7971 * environment before the module was loaded, don't block setting the
7972 * maximum because it is less than arc_c_min, instead, reset arc_c_min
7973 * to a lower value.
7974 * zfs_arc_min will be handled by arc_tuning_update().
7975 */
7976 if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX &&
7977 zfs_arc_max < allmem) {
7978 arc_c_max = zfs_arc_max;
7979 if (arc_c_min >= arc_c_max) {
7980 arc_c_min = MAX(zfs_arc_max / 2,
7981 2ULL << SPA_MAXBLOCKSHIFT);
7982 }
7983 }
7984 #else
7985 /*
7986 * In userland, there's only the memory pressure that we artificially
7987 * create (see arc_available_memory()). Don't let arc_c get too
7988 * small, because it can cause transactions to be larger than
7989 * arc_c, causing arc_tempreserve_space() to fail.
7990 */
7991 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
7992 #endif
7993
7994 arc_c = arc_c_min;
7995 arc_p = (arc_c >> 1);
7996
7997 /* Set min to 1/2 of arc_c_min */
7998 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
7999 /*
8000 * Set arc_meta_limit to a percent of arc_c_max with a floor of
8001 * arc_meta_min, and a ceiling of arc_c_max.
8002 */
8003 percent = MIN(zfs_arc_meta_limit_percent, 100);
8004 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
8005 percent = MIN(zfs_arc_dnode_limit_percent, 100);
8006 arc_dnode_size_limit = (percent * arc_meta_limit) / 100;
8007
8008 /* Apply user specified tunings */
8009 arc_tuning_update(B_TRUE);
8010
8011 /* if kmem_flags are set, lets try to use less memory */
8012 if (kmem_debugging())
8013 arc_c = arc_c / 2;
8014 if (arc_c < arc_c_min)
8015 arc_c = arc_c_min;
8016
8017 arc_register_hotplug();
8018
8019 arc_state_init();
8020
8021 buf_init();
8022
8023 list_create(&arc_prune_list, sizeof (arc_prune_t),
8024 offsetof(arc_prune_t, p_node));
8025 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
8026
8027 arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads,
8028 defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
8029
8030 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
8031 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
8032
8033 if (arc_ksp != NULL) {
8034 arc_ksp->ks_data = &arc_stats;
8035 arc_ksp->ks_update = arc_kstat_update;
8036 kstat_install(arc_ksp);
8037 }
8038
8039 arc_state_evict_markers =
8040 arc_state_alloc_markers(arc_state_evict_marker_count);
8041 arc_evict_zthr = zthr_create("arc_evict",
8042 arc_evict_cb_check, arc_evict_cb, NULL, defclsyspri);
8043 arc_reap_zthr = zthr_create_timer("arc_reap",
8044 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri);
8045
8046 arc_warm = B_FALSE;
8047
8048 /*
8049 * Calculate maximum amount of dirty data per pool.
8050 *
8051 * If it has been set by a module parameter, take that.
8052 * Otherwise, use a percentage of physical memory defined by
8053 * zfs_dirty_data_max_percent (default 10%) with a cap at
8054 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
8055 */
8056 #ifdef __LP64__
8057 if (zfs_dirty_data_max_max == 0)
8058 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
8059 allmem * zfs_dirty_data_max_max_percent / 100);
8060 #else
8061 if (zfs_dirty_data_max_max == 0)
8062 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
8063 allmem * zfs_dirty_data_max_max_percent / 100);
8064 #endif
8065
8066 if (zfs_dirty_data_max == 0) {
8067 zfs_dirty_data_max = allmem *
8068 zfs_dirty_data_max_percent / 100;
8069 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
8070 zfs_dirty_data_max_max);
8071 }
8072
8073 if (zfs_wrlog_data_max == 0) {
8074
8075 /*
8076 * dp_wrlog_total is reduced for each txg at the end of
8077 * spa_sync(). However, dp_dirty_total is reduced every time
8078 * a block is written out. Thus under normal operation,
8079 * dp_wrlog_total could grow 2 times as big as
8080 * zfs_dirty_data_max.
8081 */
8082 zfs_wrlog_data_max = zfs_dirty_data_max * 2;
8083 }
8084 }
8085
8086 void
8087 arc_fini(void)
8088 {
8089 arc_prune_t *p;
8090
8091 #ifdef _KERNEL
8092 arc_lowmem_fini();
8093 #endif /* _KERNEL */
8094
8095 /* Use B_TRUE to ensure *all* buffers are evicted */
8096 arc_flush(NULL, B_TRUE);
8097
8098 if (arc_ksp != NULL) {
8099 kstat_delete(arc_ksp);
8100 arc_ksp = NULL;
8101 }
8102
8103 taskq_wait(arc_prune_taskq);
8104 taskq_destroy(arc_prune_taskq);
8105
8106 mutex_enter(&arc_prune_mtx);
8107 while ((p = list_head(&arc_prune_list)) != NULL) {
8108 list_remove(&arc_prune_list, p);
8109 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
8110 zfs_refcount_destroy(&p->p_refcnt);
8111 kmem_free(p, sizeof (*p));
8112 }
8113 mutex_exit(&arc_prune_mtx);
8114
8115 list_destroy(&arc_prune_list);
8116 mutex_destroy(&arc_prune_mtx);
8117
8118 (void) zthr_cancel(arc_evict_zthr);
8119 (void) zthr_cancel(arc_reap_zthr);
8120 arc_state_free_markers(arc_state_evict_markers,
8121 arc_state_evict_marker_count);
8122
8123 mutex_destroy(&arc_evict_lock);
8124 list_destroy(&arc_evict_waiters);
8125
8126 /*
8127 * Free any buffers that were tagged for destruction. This needs
8128 * to occur before arc_state_fini() runs and destroys the aggsum
8129 * values which are updated when freeing scatter ABDs.
8130 */
8131 l2arc_do_free_on_write();
8132
8133 /*
8134 * buf_fini() must proceed arc_state_fini() because buf_fin() may
8135 * trigger the release of kmem magazines, which can callback to
8136 * arc_space_return() which accesses aggsums freed in act_state_fini().
8137 */
8138 buf_fini();
8139 arc_state_fini();
8140
8141 arc_unregister_hotplug();
8142
8143 /*
8144 * We destroy the zthrs after all the ARC state has been
8145 * torn down to avoid the case of them receiving any
8146 * wakeup() signals after they are destroyed.
8147 */
8148 zthr_destroy(arc_evict_zthr);
8149 zthr_destroy(arc_reap_zthr);
8150
8151 ASSERT0(arc_loaned_bytes);
8152 }
8153
8154 /*
8155 * Level 2 ARC
8156 *
8157 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
8158 * It uses dedicated storage devices to hold cached data, which are populated
8159 * using large infrequent writes. The main role of this cache is to boost
8160 * the performance of random read workloads. The intended L2ARC devices
8161 * include short-stroked disks, solid state disks, and other media with
8162 * substantially faster read latency than disk.
8163 *
8164 * +-----------------------+
8165 * | ARC |
8166 * +-----------------------+
8167 * | ^ ^
8168 * | | |
8169 * l2arc_feed_thread() arc_read()
8170 * | | |
8171 * | l2arc read |
8172 * V | |
8173 * +---------------+ |
8174 * | L2ARC | |
8175 * +---------------+ |
8176 * | ^ |
8177 * l2arc_write() | |
8178 * | | |
8179 * V | |
8180 * +-------+ +-------+
8181 * | vdev | | vdev |
8182 * | cache | | cache |
8183 * +-------+ +-------+
8184 * +=========+ .-----.
8185 * : L2ARC : |-_____-|
8186 * : devices : | Disks |
8187 * +=========+ `-_____-'
8188 *
8189 * Read requests are satisfied from the following sources, in order:
8190 *
8191 * 1) ARC
8192 * 2) vdev cache of L2ARC devices
8193 * 3) L2ARC devices
8194 * 4) vdev cache of disks
8195 * 5) disks
8196 *
8197 * Some L2ARC device types exhibit extremely slow write performance.
8198 * To accommodate for this there are some significant differences between
8199 * the L2ARC and traditional cache design:
8200 *
8201 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
8202 * the ARC behave as usual, freeing buffers and placing headers on ghost
8203 * lists. The ARC does not send buffers to the L2ARC during eviction as
8204 * this would add inflated write latencies for all ARC memory pressure.
8205 *
8206 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
8207 * It does this by periodically scanning buffers from the eviction-end of
8208 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
8209 * not already there. It scans until a headroom of buffers is satisfied,
8210 * which itself is a buffer for ARC eviction. If a compressible buffer is
8211 * found during scanning and selected for writing to an L2ARC device, we
8212 * temporarily boost scanning headroom during the next scan cycle to make
8213 * sure we adapt to compression effects (which might significantly reduce
8214 * the data volume we write to L2ARC). The thread that does this is
8215 * l2arc_feed_thread(), illustrated below; example sizes are included to
8216 * provide a better sense of ratio than this diagram:
8217 *
8218 * head --> tail
8219 * +---------------------+----------+
8220 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
8221 * +---------------------+----------+ | o L2ARC eligible
8222 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
8223 * +---------------------+----------+ |
8224 * 15.9 Gbytes ^ 32 Mbytes |
8225 * headroom |
8226 * l2arc_feed_thread()
8227 * |
8228 * l2arc write hand <--[oooo]--'
8229 * | 8 Mbyte
8230 * | write max
8231 * V
8232 * +==============================+
8233 * L2ARC dev |####|#|###|###| |####| ... |
8234 * +==============================+
8235 * 32 Gbytes
8236 *
8237 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
8238 * evicted, then the L2ARC has cached a buffer much sooner than it probably
8239 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
8240 * safe to say that this is an uncommon case, since buffers at the end of
8241 * the ARC lists have moved there due to inactivity.
8242 *
8243 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
8244 * then the L2ARC simply misses copying some buffers. This serves as a
8245 * pressure valve to prevent heavy read workloads from both stalling the ARC
8246 * with waits and clogging the L2ARC with writes. This also helps prevent
8247 * the potential for the L2ARC to churn if it attempts to cache content too
8248 * quickly, such as during backups of the entire pool.
8249 *
8250 * 5. After system boot and before the ARC has filled main memory, there are
8251 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
8252 * lists can remain mostly static. Instead of searching from tail of these
8253 * lists as pictured, the l2arc_feed_thread() will search from the list heads
8254 * for eligible buffers, greatly increasing its chance of finding them.
8255 *
8256 * The L2ARC device write speed is also boosted during this time so that
8257 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
8258 * there are no L2ARC reads, and no fear of degrading read performance
8259 * through increased writes.
8260 *
8261 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
8262 * the vdev queue can aggregate them into larger and fewer writes. Each
8263 * device is written to in a rotor fashion, sweeping writes through
8264 * available space then repeating.
8265 *
8266 * 7. The L2ARC does not store dirty content. It never needs to flush
8267 * write buffers back to disk based storage.
8268 *
8269 * 8. If an ARC buffer is written (and dirtied) which also exists in the
8270 * L2ARC, the now stale L2ARC buffer is immediately dropped.
8271 *
8272 * The performance of the L2ARC can be tweaked by a number of tunables, which
8273 * may be necessary for different workloads:
8274 *
8275 * l2arc_write_max max write bytes per interval
8276 * l2arc_write_boost extra write bytes during device warmup
8277 * l2arc_noprefetch skip caching prefetched buffers
8278 * l2arc_headroom number of max device writes to precache
8279 * l2arc_headroom_boost when we find compressed buffers during ARC
8280 * scanning, we multiply headroom by this
8281 * percentage factor for the next scan cycle,
8282 * since more compressed buffers are likely to
8283 * be present
8284 * l2arc_feed_secs seconds between L2ARC writing
8285 *
8286 * Tunables may be removed or added as future performance improvements are
8287 * integrated, and also may become zpool properties.
8288 *
8289 * There are three key functions that control how the L2ARC warms up:
8290 *
8291 * l2arc_write_eligible() check if a buffer is eligible to cache
8292 * l2arc_write_size() calculate how much to write
8293 * l2arc_write_interval() calculate sleep delay between writes
8294 *
8295 * These three functions determine what to write, how much, and how quickly
8296 * to send writes.
8297 *
8298 * L2ARC persistence:
8299 *
8300 * When writing buffers to L2ARC, we periodically add some metadata to
8301 * make sure we can pick them up after reboot, thus dramatically reducing
8302 * the impact that any downtime has on the performance of storage systems
8303 * with large caches.
8304 *
8305 * The implementation works fairly simply by integrating the following two
8306 * modifications:
8307 *
8308 * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
8309 * which is an additional piece of metadata which describes what's been
8310 * written. This allows us to rebuild the arc_buf_hdr_t structures of the
8311 * main ARC buffers. There are 2 linked-lists of log blocks headed by
8312 * dh_start_lbps[2]. We alternate which chain we append to, so they are
8313 * time-wise and offset-wise interleaved, but that is an optimization rather
8314 * than for correctness. The log block also includes a pointer to the
8315 * previous block in its chain.
8316 *
8317 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
8318 * for our header bookkeeping purposes. This contains a device header,
8319 * which contains our top-level reference structures. We update it each
8320 * time we write a new log block, so that we're able to locate it in the
8321 * L2ARC device. If this write results in an inconsistent device header
8322 * (e.g. due to power failure), we detect this by verifying the header's
8323 * checksum and simply fail to reconstruct the L2ARC after reboot.
8324 *
8325 * Implementation diagram:
8326 *
8327 * +=== L2ARC device (not to scale) ======================================+
8328 * | ___two newest log block pointers__.__________ |
8329 * | / \dh_start_lbps[1] |
8330 * | / \ \dh_start_lbps[0]|
8331 * |.___/__. V V |
8332 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
8333 * || hdr| ^ /^ /^ / / |
8334 * |+------+ ...--\-------/ \-----/--\------/ / |
8335 * | \--------------/ \--------------/ |
8336 * +======================================================================+
8337 *
8338 * As can be seen on the diagram, rather than using a simple linked list,
8339 * we use a pair of linked lists with alternating elements. This is a
8340 * performance enhancement due to the fact that we only find out the
8341 * address of the next log block access once the current block has been
8342 * completely read in. Obviously, this hurts performance, because we'd be
8343 * keeping the device's I/O queue at only a 1 operation deep, thus
8344 * incurring a large amount of I/O round-trip latency. Having two lists
8345 * allows us to fetch two log blocks ahead of where we are currently
8346 * rebuilding L2ARC buffers.
8347 *
8348 * On-device data structures:
8349 *
8350 * L2ARC device header: l2arc_dev_hdr_phys_t
8351 * L2ARC log block: l2arc_log_blk_phys_t
8352 *
8353 * L2ARC reconstruction:
8354 *
8355 * When writing data, we simply write in the standard rotary fashion,
8356 * evicting buffers as we go and simply writing new data over them (writing
8357 * a new log block every now and then). This obviously means that once we
8358 * loop around the end of the device, we will start cutting into an already
8359 * committed log block (and its referenced data buffers), like so:
8360 *
8361 * current write head__ __old tail
8362 * \ /
8363 * V V
8364 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |-->
8365 * ^ ^^^^^^^^^___________________________________
8366 * | \
8367 * <<nextwrite>> may overwrite this blk and/or its bufs --'
8368 *
8369 * When importing the pool, we detect this situation and use it to stop
8370 * our scanning process (see l2arc_rebuild).
8371 *
8372 * There is one significant caveat to consider when rebuilding ARC contents
8373 * from an L2ARC device: what about invalidated buffers? Given the above
8374 * construction, we cannot update blocks which we've already written to amend
8375 * them to remove buffers which were invalidated. Thus, during reconstruction,
8376 * we might be populating the cache with buffers for data that's not on the
8377 * main pool anymore, or may have been overwritten!
8378 *
8379 * As it turns out, this isn't a problem. Every arc_read request includes
8380 * both the DVA and, crucially, the birth TXG of the BP the caller is
8381 * looking for. So even if the cache were populated by completely rotten
8382 * blocks for data that had been long deleted and/or overwritten, we'll
8383 * never actually return bad data from the cache, since the DVA with the
8384 * birth TXG uniquely identify a block in space and time - once created,
8385 * a block is immutable on disk. The worst thing we have done is wasted
8386 * some time and memory at l2arc rebuild to reconstruct outdated ARC
8387 * entries that will get dropped from the l2arc as it is being updated
8388 * with new blocks.
8389 *
8390 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8391 * hand are not restored. This is done by saving the offset (in bytes)
8392 * l2arc_evict() has evicted to in the L2ARC device header and taking it
8393 * into account when restoring buffers.
8394 */
8395
8396 static boolean_t
8397 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
8398 {
8399 /*
8400 * A buffer is *not* eligible for the L2ARC if it:
8401 * 1. belongs to a different spa.
8402 * 2. is already cached on the L2ARC.
8403 * 3. has an I/O in progress (it may be an incomplete read).
8404 * 4. is flagged not eligible (zfs property).
8405 */
8406 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
8407 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
8408 return (B_FALSE);
8409
8410 return (B_TRUE);
8411 }
8412
8413 static uint64_t
8414 l2arc_write_size(l2arc_dev_t *dev)
8415 {
8416 uint64_t size, dev_size, tsize;
8417
8418 /*
8419 * Make sure our globals have meaningful values in case the user
8420 * altered them.
8421 */
8422 size = l2arc_write_max;
8423 if (size == 0) {
8424 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
8425 "be greater than zero, resetting it to the default (%d)",
8426 L2ARC_WRITE_SIZE);
8427 size = l2arc_write_max = L2ARC_WRITE_SIZE;
8428 }
8429
8430 if (arc_warm == B_FALSE)
8431 size += l2arc_write_boost;
8432
8433 /*
8434 * Make sure the write size does not exceed the size of the cache
8435 * device. This is important in l2arc_evict(), otherwise infinite
8436 * iteration can occur.
8437 */
8438 dev_size = dev->l2ad_end - dev->l2ad_start;
8439 tsize = size + l2arc_log_blk_overhead(size, dev);
8440 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0)
8441 tsize += MAX(64 * 1024 * 1024,
8442 (tsize * l2arc_trim_ahead) / 100);
8443
8444 if (tsize >= dev_size) {
8445 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost "
8446 "plus the overhead of log blocks (persistent L2ARC, "
8447 "%llu bytes) exceeds the size of the cache device "
8448 "(guid %llu), resetting them to the default (%d)",
8449 (u_longlong_t)l2arc_log_blk_overhead(size, dev),
8450 (u_longlong_t)dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE);
8451 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE;
8452
8453 if (arc_warm == B_FALSE)
8454 size += l2arc_write_boost;
8455 }
8456
8457 return (size);
8458
8459 }
8460
8461 static clock_t
8462 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
8463 {
8464 clock_t interval, next, now;
8465
8466 /*
8467 * If the ARC lists are busy, increase our write rate; if the
8468 * lists are stale, idle back. This is achieved by checking
8469 * how much we previously wrote - if it was more than half of
8470 * what we wanted, schedule the next write much sooner.
8471 */
8472 if (l2arc_feed_again && wrote > (wanted / 2))
8473 interval = (hz * l2arc_feed_min_ms) / 1000;
8474 else
8475 interval = hz * l2arc_feed_secs;
8476
8477 now = ddi_get_lbolt();
8478 next = MAX(now, MIN(now + interval, began + interval));
8479
8480 return (next);
8481 }
8482
8483 /*
8484 * Cycle through L2ARC devices. This is how L2ARC load balances.
8485 * If a device is returned, this also returns holding the spa config lock.
8486 */
8487 static l2arc_dev_t *
8488 l2arc_dev_get_next(void)
8489 {
8490 l2arc_dev_t *first, *next = NULL;
8491
8492 /*
8493 * Lock out the removal of spas (spa_namespace_lock), then removal
8494 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
8495 * both locks will be dropped and a spa config lock held instead.
8496 */
8497 mutex_enter(&spa_namespace_lock);
8498 mutex_enter(&l2arc_dev_mtx);
8499
8500 /* if there are no vdevs, there is nothing to do */
8501 if (l2arc_ndev == 0)
8502 goto out;
8503
8504 first = NULL;
8505 next = l2arc_dev_last;
8506 do {
8507 /* loop around the list looking for a non-faulted vdev */
8508 if (next == NULL) {
8509 next = list_head(l2arc_dev_list);
8510 } else {
8511 next = list_next(l2arc_dev_list, next);
8512 if (next == NULL)
8513 next = list_head(l2arc_dev_list);
8514 }
8515
8516 /* if we have come back to the start, bail out */
8517 if (first == NULL)
8518 first = next;
8519 else if (next == first)
8520 break;
8521
8522 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8523 next->l2ad_trim_all);
8524
8525 /* if we were unable to find any usable vdevs, return NULL */
8526 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8527 next->l2ad_trim_all)
8528 next = NULL;
8529
8530 l2arc_dev_last = next;
8531
8532 out:
8533 mutex_exit(&l2arc_dev_mtx);
8534
8535 /*
8536 * Grab the config lock to prevent the 'next' device from being
8537 * removed while we are writing to it.
8538 */
8539 if (next != NULL)
8540 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
8541 mutex_exit(&spa_namespace_lock);
8542
8543 return (next);
8544 }
8545
8546 /*
8547 * Free buffers that were tagged for destruction.
8548 */
8549 static void
8550 l2arc_do_free_on_write(void)
8551 {
8552 list_t *buflist;
8553 l2arc_data_free_t *df, *df_prev;
8554
8555 mutex_enter(&l2arc_free_on_write_mtx);
8556 buflist = l2arc_free_on_write;
8557
8558 for (df = list_tail(buflist); df; df = df_prev) {
8559 df_prev = list_prev(buflist, df);
8560 ASSERT3P(df->l2df_abd, !=, NULL);
8561 abd_free(df->l2df_abd);
8562 list_remove(buflist, df);
8563 kmem_free(df, sizeof (l2arc_data_free_t));
8564 }
8565
8566 mutex_exit(&l2arc_free_on_write_mtx);
8567 }
8568
8569 /*
8570 * A write to a cache device has completed. Update all headers to allow
8571 * reads from these buffers to begin.
8572 */
8573 static void
8574 l2arc_write_done(zio_t *zio)
8575 {
8576 l2arc_write_callback_t *cb;
8577 l2arc_lb_abd_buf_t *abd_buf;
8578 l2arc_lb_ptr_buf_t *lb_ptr_buf;
8579 l2arc_dev_t *dev;
8580 l2arc_dev_hdr_phys_t *l2dhdr;
8581 list_t *buflist;
8582 arc_buf_hdr_t *head, *hdr, *hdr_prev;
8583 kmutex_t *hash_lock;
8584 int64_t bytes_dropped = 0;
8585
8586 cb = zio->io_private;
8587 ASSERT3P(cb, !=, NULL);
8588 dev = cb->l2wcb_dev;
8589 l2dhdr = dev->l2ad_dev_hdr;
8590 ASSERT3P(dev, !=, NULL);
8591 head = cb->l2wcb_head;
8592 ASSERT3P(head, !=, NULL);
8593 buflist = &dev->l2ad_buflist;
8594 ASSERT3P(buflist, !=, NULL);
8595 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8596 l2arc_write_callback_t *, cb);
8597
8598 /*
8599 * All writes completed, or an error was hit.
8600 */
8601 top:
8602 mutex_enter(&dev->l2ad_mtx);
8603 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8604 hdr_prev = list_prev(buflist, hdr);
8605
8606 hash_lock = HDR_LOCK(hdr);
8607
8608 /*
8609 * We cannot use mutex_enter or else we can deadlock
8610 * with l2arc_write_buffers (due to swapping the order
8611 * the hash lock and l2ad_mtx are taken).
8612 */
8613 if (!mutex_tryenter(hash_lock)) {
8614 /*
8615 * Missed the hash lock. We must retry so we
8616 * don't leave the ARC_FLAG_L2_WRITING bit set.
8617 */
8618 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8619
8620 /*
8621 * We don't want to rescan the headers we've
8622 * already marked as having been written out, so
8623 * we reinsert the head node so we can pick up
8624 * where we left off.
8625 */
8626 list_remove(buflist, head);
8627 list_insert_after(buflist, hdr, head);
8628
8629 mutex_exit(&dev->l2ad_mtx);
8630
8631 /*
8632 * We wait for the hash lock to become available
8633 * to try and prevent busy waiting, and increase
8634 * the chance we'll be able to acquire the lock
8635 * the next time around.
8636 */
8637 mutex_enter(hash_lock);
8638 mutex_exit(hash_lock);
8639 goto top;
8640 }
8641
8642 /*
8643 * We could not have been moved into the arc_l2c_only
8644 * state while in-flight due to our ARC_FLAG_L2_WRITING
8645 * bit being set. Let's just ensure that's being enforced.
8646 */
8647 ASSERT(HDR_HAS_L1HDR(hdr));
8648
8649 /*
8650 * Skipped - drop L2ARC entry and mark the header as no
8651 * longer L2 eligibile.
8652 */
8653 if (zio->io_error != 0) {
8654 /*
8655 * Error - drop L2ARC entry.
8656 */
8657 list_remove(buflist, hdr);
8658 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
8659
8660 uint64_t psize = HDR_GET_PSIZE(hdr);
8661 l2arc_hdr_arcstats_decrement(hdr);
8662
8663 bytes_dropped +=
8664 vdev_psize_to_asize(dev->l2ad_vdev, psize);
8665 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
8666 arc_hdr_size(hdr), hdr);
8667 }
8668
8669 /*
8670 * Allow ARC to begin reads and ghost list evictions to
8671 * this L2ARC entry.
8672 */
8673 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
8674
8675 mutex_exit(hash_lock);
8676 }
8677
8678 /*
8679 * Free the allocated abd buffers for writing the log blocks.
8680 * If the zio failed reclaim the allocated space and remove the
8681 * pointers to these log blocks from the log block pointer list
8682 * of the L2ARC device.
8683 */
8684 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
8685 abd_free(abd_buf->abd);
8686 zio_buf_free(abd_buf, sizeof (*abd_buf));
8687 if (zio->io_error != 0) {
8688 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
8689 /*
8690 * L2BLK_GET_PSIZE returns aligned size for log
8691 * blocks.
8692 */
8693 uint64_t asize =
8694 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
8695 bytes_dropped += asize;
8696 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8697 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8698 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8699 lb_ptr_buf);
8700 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
8701 kmem_free(lb_ptr_buf->lb_ptr,
8702 sizeof (l2arc_log_blkptr_t));
8703 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8704 }
8705 }
8706 list_destroy(&cb->l2wcb_abd_list);
8707
8708 if (zio->io_error != 0) {
8709 ARCSTAT_BUMP(arcstat_l2_writes_error);
8710
8711 /*
8712 * Restore the lbps array in the header to its previous state.
8713 * If the list of log block pointers is empty, zero out the
8714 * log block pointers in the device header.
8715 */
8716 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
8717 for (int i = 0; i < 2; i++) {
8718 if (lb_ptr_buf == NULL) {
8719 /*
8720 * If the list is empty zero out the device
8721 * header. Otherwise zero out the second log
8722 * block pointer in the header.
8723 */
8724 if (i == 0) {
8725 memset(l2dhdr, 0,
8726 dev->l2ad_dev_hdr_asize);
8727 } else {
8728 memset(&l2dhdr->dh_start_lbps[i], 0,
8729 sizeof (l2arc_log_blkptr_t));
8730 }
8731 break;
8732 }
8733 memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr,
8734 sizeof (l2arc_log_blkptr_t));
8735 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
8736 lb_ptr_buf);
8737 }
8738 }
8739
8740 ARCSTAT_BUMP(arcstat_l2_writes_done);
8741 list_remove(buflist, head);
8742 ASSERT(!HDR_HAS_L1HDR(head));
8743 kmem_cache_free(hdr_l2only_cache, head);
8744 mutex_exit(&dev->l2ad_mtx);
8745
8746 ASSERT(dev->l2ad_vdev != NULL);
8747 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8748
8749 l2arc_do_free_on_write();
8750
8751 kmem_free(cb, sizeof (l2arc_write_callback_t));
8752 }
8753
8754 static int
8755 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8756 {
8757 int ret;
8758 spa_t *spa = zio->io_spa;
8759 arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8760 blkptr_t *bp = zio->io_bp;
8761 uint8_t salt[ZIO_DATA_SALT_LEN];
8762 uint8_t iv[ZIO_DATA_IV_LEN];
8763 uint8_t mac[ZIO_DATA_MAC_LEN];
8764 boolean_t no_crypt = B_FALSE;
8765
8766 /*
8767 * ZIL data is never be written to the L2ARC, so we don't need
8768 * special handling for its unique MAC storage.
8769 */
8770 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8771 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
8772 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8773
8774 /*
8775 * If the data was encrypted, decrypt it now. Note that
8776 * we must check the bp here and not the hdr, since the
8777 * hdr does not have its encryption parameters updated
8778 * until arc_read_done().
8779 */
8780 if (BP_IS_ENCRYPTED(bp)) {
8781 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8782 ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE);
8783
8784 zio_crypt_decode_params_bp(bp, salt, iv);
8785 zio_crypt_decode_mac_bp(bp, mac);
8786
8787 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8788 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8789 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8790 hdr->b_l1hdr.b_pabd, &no_crypt);
8791 if (ret != 0) {
8792 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8793 goto error;
8794 }
8795
8796 /*
8797 * If we actually performed decryption, replace b_pabd
8798 * with the decrypted data. Otherwise we can just throw
8799 * our decryption buffer away.
8800 */
8801 if (!no_crypt) {
8802 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8803 arc_hdr_size(hdr), hdr);
8804 hdr->b_l1hdr.b_pabd = eabd;
8805 zio->io_abd = eabd;
8806 } else {
8807 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8808 }
8809 }
8810
8811 /*
8812 * If the L2ARC block was compressed, but ARC compression
8813 * is disabled we decompress the data into a new buffer and
8814 * replace the existing data.
8815 */
8816 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8817 !HDR_COMPRESSION_ENABLED(hdr)) {
8818 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8819 ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE);
8820 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
8821
8822 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8823 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
8824 HDR_GET_LSIZE(hdr), &hdr->b_complevel);
8825 if (ret != 0) {
8826 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8827 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8828 goto error;
8829 }
8830
8831 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8832 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8833 arc_hdr_size(hdr), hdr);
8834 hdr->b_l1hdr.b_pabd = cabd;
8835 zio->io_abd = cabd;
8836 zio->io_size = HDR_GET_LSIZE(hdr);
8837 }
8838
8839 return (0);
8840
8841 error:
8842 return (ret);
8843 }
8844
8845
8846 /*
8847 * A read to a cache device completed. Validate buffer contents before
8848 * handing over to the regular ARC routines.
8849 */
8850 static void
8851 l2arc_read_done(zio_t *zio)
8852 {
8853 int tfm_error = 0;
8854 l2arc_read_callback_t *cb = zio->io_private;
8855 arc_buf_hdr_t *hdr;
8856 kmutex_t *hash_lock;
8857 boolean_t valid_cksum;
8858 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8859 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
8860
8861 ASSERT3P(zio->io_vd, !=, NULL);
8862 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8863
8864 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8865
8866 ASSERT3P(cb, !=, NULL);
8867 hdr = cb->l2rcb_hdr;
8868 ASSERT3P(hdr, !=, NULL);
8869
8870 hash_lock = HDR_LOCK(hdr);
8871 mutex_enter(hash_lock);
8872 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8873
8874 /*
8875 * If the data was read into a temporary buffer,
8876 * move it and free the buffer.
8877 */
8878 if (cb->l2rcb_abd != NULL) {
8879 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8880 if (zio->io_error == 0) {
8881 if (using_rdata) {
8882 abd_copy(hdr->b_crypt_hdr.b_rabd,
8883 cb->l2rcb_abd, arc_hdr_size(hdr));
8884 } else {
8885 abd_copy(hdr->b_l1hdr.b_pabd,
8886 cb->l2rcb_abd, arc_hdr_size(hdr));
8887 }
8888 }
8889
8890 /*
8891 * The following must be done regardless of whether
8892 * there was an error:
8893 * - free the temporary buffer
8894 * - point zio to the real ARC buffer
8895 * - set zio size accordingly
8896 * These are required because zio is either re-used for
8897 * an I/O of the block in the case of the error
8898 * or the zio is passed to arc_read_done() and it
8899 * needs real data.
8900 */
8901 abd_free(cb->l2rcb_abd);
8902 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8903
8904 if (using_rdata) {
8905 ASSERT(HDR_HAS_RABD(hdr));
8906 zio->io_abd = zio->io_orig_abd =
8907 hdr->b_crypt_hdr.b_rabd;
8908 } else {
8909 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8910 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8911 }
8912 }
8913
8914 ASSERT3P(zio->io_abd, !=, NULL);
8915
8916 /*
8917 * Check this survived the L2ARC journey.
8918 */
8919 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8920 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8921 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
8922 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
8923 zio->io_prop.zp_complevel = hdr->b_complevel;
8924
8925 valid_cksum = arc_cksum_is_equal(hdr, zio);
8926
8927 /*
8928 * b_rabd will always match the data as it exists on disk if it is
8929 * being used. Therefore if we are reading into b_rabd we do not
8930 * attempt to untransform the data.
8931 */
8932 if (valid_cksum && !using_rdata)
8933 tfm_error = l2arc_untransform(zio, cb);
8934
8935 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8936 !HDR_L2_EVICTED(hdr)) {
8937 mutex_exit(hash_lock);
8938 zio->io_private = hdr;
8939 arc_read_done(zio);
8940 } else {
8941 /*
8942 * Buffer didn't survive caching. Increment stats and
8943 * reissue to the original storage device.
8944 */
8945 if (zio->io_error != 0) {
8946 ARCSTAT_BUMP(arcstat_l2_io_error);
8947 } else {
8948 zio->io_error = SET_ERROR(EIO);
8949 }
8950 if (!valid_cksum || tfm_error != 0)
8951 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8952
8953 /*
8954 * If there's no waiter, issue an async i/o to the primary
8955 * storage now. If there *is* a waiter, the caller must
8956 * issue the i/o in a context where it's OK to block.
8957 */
8958 if (zio->io_waiter == NULL) {
8959 zio_t *pio = zio_unique_parent(zio);
8960 void *abd = (using_rdata) ?
8961 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
8962
8963 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8964
8965 zio = zio_read(pio, zio->io_spa, zio->io_bp,
8966 abd, zio->io_size, arc_read_done,
8967 hdr, zio->io_priority, cb->l2rcb_flags,
8968 &cb->l2rcb_zb);
8969
8970 /*
8971 * Original ZIO will be freed, so we need to update
8972 * ARC header with the new ZIO pointer to be used
8973 * by zio_change_priority() in arc_read().
8974 */
8975 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
8976 acb != NULL; acb = acb->acb_next)
8977 acb->acb_zio_head = zio;
8978
8979 mutex_exit(hash_lock);
8980 zio_nowait(zio);
8981 } else {
8982 mutex_exit(hash_lock);
8983 }
8984 }
8985
8986 kmem_free(cb, sizeof (l2arc_read_callback_t));
8987 }
8988
8989 /*
8990 * This is the list priority from which the L2ARC will search for pages to
8991 * cache. This is used within loops (0..3) to cycle through lists in the
8992 * desired order. This order can have a significant effect on cache
8993 * performance.
8994 *
8995 * Currently the metadata lists are hit first, MFU then MRU, followed by
8996 * the data lists. This function returns a locked list, and also returns
8997 * the lock pointer.
8998 */
8999 static multilist_sublist_t *
9000 l2arc_sublist_lock(int list_num)
9001 {
9002 multilist_t *ml = NULL;
9003 unsigned int idx;
9004
9005 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
9006
9007 switch (list_num) {
9008 case 0:
9009 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
9010 break;
9011 case 1:
9012 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
9013 break;
9014 case 2:
9015 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
9016 break;
9017 case 3:
9018 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
9019 break;
9020 default:
9021 return (NULL);
9022 }
9023
9024 /*
9025 * Return a randomly-selected sublist. This is acceptable
9026 * because the caller feeds only a little bit of data for each
9027 * call (8MB). Subsequent calls will result in different
9028 * sublists being selected.
9029 */
9030 idx = multilist_get_random_index(ml);
9031 return (multilist_sublist_lock(ml, idx));
9032 }
9033
9034 /*
9035 * Calculates the maximum overhead of L2ARC metadata log blocks for a given
9036 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
9037 * overhead in processing to make sure there is enough headroom available
9038 * when writing buffers.
9039 */
9040 static inline uint64_t
9041 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
9042 {
9043 if (dev->l2ad_log_entries == 0) {
9044 return (0);
9045 } else {
9046 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
9047
9048 uint64_t log_blocks = (log_entries +
9049 dev->l2ad_log_entries - 1) /
9050 dev->l2ad_log_entries;
9051
9052 return (vdev_psize_to_asize(dev->l2ad_vdev,
9053 sizeof (l2arc_log_blk_phys_t)) * log_blocks);
9054 }
9055 }
9056
9057 /*
9058 * Evict buffers from the device write hand to the distance specified in
9059 * bytes. This distance may span populated buffers, it may span nothing.
9060 * This is clearing a region on the L2ARC device ready for writing.
9061 * If the 'all' boolean is set, every buffer is evicted.
9062 */
9063 static void
9064 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
9065 {
9066 list_t *buflist;
9067 arc_buf_hdr_t *hdr, *hdr_prev;
9068 kmutex_t *hash_lock;
9069 uint64_t taddr;
9070 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
9071 vdev_t *vd = dev->l2ad_vdev;
9072 boolean_t rerun;
9073
9074 buflist = &dev->l2ad_buflist;
9075
9076 /*
9077 * We need to add in the worst case scenario of log block overhead.
9078 */
9079 distance += l2arc_log_blk_overhead(distance, dev);
9080 if (vd->vdev_has_trim && l2arc_trim_ahead > 0) {
9081 /*
9082 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
9083 * times the write size, whichever is greater.
9084 */
9085 distance += MAX(64 * 1024 * 1024,
9086 (distance * l2arc_trim_ahead) / 100);
9087 }
9088
9089 top:
9090 rerun = B_FALSE;
9091 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) {
9092 /*
9093 * When there is no space to accommodate upcoming writes,
9094 * evict to the end. Then bump the write and evict hands
9095 * to the start and iterate. This iteration does not
9096 * happen indefinitely as we make sure in
9097 * l2arc_write_size() that when the write hand is reset,
9098 * the write size does not exceed the end of the device.
9099 */
9100 rerun = B_TRUE;
9101 taddr = dev->l2ad_end;
9102 } else {
9103 taddr = dev->l2ad_hand + distance;
9104 }
9105 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
9106 uint64_t, taddr, boolean_t, all);
9107
9108 if (!all) {
9109 /*
9110 * This check has to be placed after deciding whether to
9111 * iterate (rerun).
9112 */
9113 if (dev->l2ad_first) {
9114 /*
9115 * This is the first sweep through the device. There is
9116 * nothing to evict. We have already trimmmed the
9117 * whole device.
9118 */
9119 goto out;
9120 } else {
9121 /*
9122 * Trim the space to be evicted.
9123 */
9124 if (vd->vdev_has_trim && dev->l2ad_evict < taddr &&
9125 l2arc_trim_ahead > 0) {
9126 /*
9127 * We have to drop the spa_config lock because
9128 * vdev_trim_range() will acquire it.
9129 * l2ad_evict already accounts for the label
9130 * size. To prevent vdev_trim_ranges() from
9131 * adding it again, we subtract it from
9132 * l2ad_evict.
9133 */
9134 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev);
9135 vdev_trim_simple(vd,
9136 dev->l2ad_evict - VDEV_LABEL_START_SIZE,
9137 taddr - dev->l2ad_evict);
9138 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev,
9139 RW_READER);
9140 }
9141
9142 /*
9143 * When rebuilding L2ARC we retrieve the evict hand
9144 * from the header of the device. Of note, l2arc_evict()
9145 * does not actually delete buffers from the cache
9146 * device, but trimming may do so depending on the
9147 * hardware implementation. Thus keeping track of the
9148 * evict hand is useful.
9149 */
9150 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
9151 }
9152 }
9153
9154 retry:
9155 mutex_enter(&dev->l2ad_mtx);
9156 /*
9157 * We have to account for evicted log blocks. Run vdev_space_update()
9158 * on log blocks whose offset (in bytes) is before the evicted offset
9159 * (in bytes) by searching in the list of pointers to log blocks
9160 * present in the L2ARC device.
9161 */
9162 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
9163 lb_ptr_buf = lb_ptr_buf_prev) {
9164
9165 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
9166
9167 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
9168 uint64_t asize = L2BLK_GET_PSIZE(
9169 (lb_ptr_buf->lb_ptr)->lbp_prop);
9170
9171 /*
9172 * We don't worry about log blocks left behind (ie
9173 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
9174 * will never write more than l2arc_evict() evicts.
9175 */
9176 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
9177 break;
9178 } else {
9179 vdev_space_update(vd, -asize, 0, 0);
9180 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
9181 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
9182 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
9183 lb_ptr_buf);
9184 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
9185 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
9186 kmem_free(lb_ptr_buf->lb_ptr,
9187 sizeof (l2arc_log_blkptr_t));
9188 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
9189 }
9190 }
9191
9192 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
9193 hdr_prev = list_prev(buflist, hdr);
9194
9195 ASSERT(!HDR_EMPTY(hdr));
9196 hash_lock = HDR_LOCK(hdr);
9197
9198 /*
9199 * We cannot use mutex_enter or else we can deadlock
9200 * with l2arc_write_buffers (due to swapping the order
9201 * the hash lock and l2ad_mtx are taken).
9202 */
9203 if (!mutex_tryenter(hash_lock)) {
9204 /*
9205 * Missed the hash lock. Retry.
9206 */
9207 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
9208 mutex_exit(&dev->l2ad_mtx);
9209 mutex_enter(hash_lock);
9210 mutex_exit(hash_lock);
9211 goto retry;
9212 }
9213
9214 /*
9215 * A header can't be on this list if it doesn't have L2 header.
9216 */
9217 ASSERT(HDR_HAS_L2HDR(hdr));
9218
9219 /* Ensure this header has finished being written. */
9220 ASSERT(!HDR_L2_WRITING(hdr));
9221 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
9222
9223 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
9224 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
9225 /*
9226 * We've evicted to the target address,
9227 * or the end of the device.
9228 */
9229 mutex_exit(hash_lock);
9230 break;
9231 }
9232
9233 if (!HDR_HAS_L1HDR(hdr)) {
9234 ASSERT(!HDR_L2_READING(hdr));
9235 /*
9236 * This doesn't exist in the ARC. Destroy.
9237 * arc_hdr_destroy() will call list_remove()
9238 * and decrement arcstat_l2_lsize.
9239 */
9240 arc_change_state(arc_anon, hdr, hash_lock);
9241 arc_hdr_destroy(hdr);
9242 } else {
9243 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
9244 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
9245 /*
9246 * Invalidate issued or about to be issued
9247 * reads, since we may be about to write
9248 * over this location.
9249 */
9250 if (HDR_L2_READING(hdr)) {
9251 ARCSTAT_BUMP(arcstat_l2_evict_reading);
9252 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
9253 }
9254
9255 arc_hdr_l2hdr_destroy(hdr);
9256 }
9257 mutex_exit(hash_lock);
9258 }
9259 mutex_exit(&dev->l2ad_mtx);
9260
9261 out:
9262 /*
9263 * We need to check if we evict all buffers, otherwise we may iterate
9264 * unnecessarily.
9265 */
9266 if (!all && rerun) {
9267 /*
9268 * Bump device hand to the device start if it is approaching the
9269 * end. l2arc_evict() has already evicted ahead for this case.
9270 */
9271 dev->l2ad_hand = dev->l2ad_start;
9272 dev->l2ad_evict = dev->l2ad_start;
9273 dev->l2ad_first = B_FALSE;
9274 goto top;
9275 }
9276
9277 if (!all) {
9278 /*
9279 * In case of cache device removal (all) the following
9280 * assertions may be violated without functional consequences
9281 * as the device is about to be removed.
9282 */
9283 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end);
9284 if (!dev->l2ad_first)
9285 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict);
9286 }
9287 }
9288
9289 /*
9290 * Handle any abd transforms that might be required for writing to the L2ARC.
9291 * If successful, this function will always return an abd with the data
9292 * transformed as it is on disk in a new abd of asize bytes.
9293 */
9294 static int
9295 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
9296 abd_t **abd_out)
9297 {
9298 int ret;
9299 void *tmp = NULL;
9300 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
9301 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
9302 uint64_t psize = HDR_GET_PSIZE(hdr);
9303 uint64_t size = arc_hdr_size(hdr);
9304 boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
9305 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
9306 dsl_crypto_key_t *dck = NULL;
9307 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
9308 boolean_t no_crypt = B_FALSE;
9309
9310 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
9311 !HDR_COMPRESSION_ENABLED(hdr)) ||
9312 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
9313 ASSERT3U(psize, <=, asize);
9314
9315 /*
9316 * If this data simply needs its own buffer, we simply allocate it
9317 * and copy the data. This may be done to eliminate a dependency on a
9318 * shared buffer or to reallocate the buffer to match asize.
9319 */
9320 if (HDR_HAS_RABD(hdr) && asize != psize) {
9321 ASSERT3U(asize, >=, psize);
9322 to_write = abd_alloc_for_io(asize, ismd);
9323 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
9324 if (psize != asize)
9325 abd_zero_off(to_write, psize, asize - psize);
9326 goto out;
9327 }
9328
9329 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
9330 !HDR_ENCRYPTED(hdr)) {
9331 ASSERT3U(size, ==, psize);
9332 to_write = abd_alloc_for_io(asize, ismd);
9333 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
9334 if (size != asize)
9335 abd_zero_off(to_write, size, asize - size);
9336 goto out;
9337 }
9338
9339 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
9340 cabd = abd_alloc_for_io(asize, ismd);
9341 tmp = abd_borrow_buf(cabd, asize);
9342
9343 psize = zio_compress_data(compress, to_write, tmp, size,
9344 hdr->b_complevel);
9345
9346 if (psize >= size) {
9347 abd_return_buf(cabd, tmp, asize);
9348 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
9349 to_write = cabd;
9350 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
9351 if (size != asize)
9352 abd_zero_off(to_write, size, asize - size);
9353 goto encrypt;
9354 }
9355 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr));
9356 if (psize < asize)
9357 memset((char *)tmp + psize, 0, asize - psize);
9358 psize = HDR_GET_PSIZE(hdr);
9359 abd_return_buf_copy(cabd, tmp, asize);
9360 to_write = cabd;
9361 }
9362
9363 encrypt:
9364 if (HDR_ENCRYPTED(hdr)) {
9365 eabd = abd_alloc_for_io(asize, ismd);
9366
9367 /*
9368 * If the dataset was disowned before the buffer
9369 * made it to this point, the key to re-encrypt
9370 * it won't be available. In this case we simply
9371 * won't write the buffer to the L2ARC.
9372 */
9373 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
9374 FTAG, &dck);
9375 if (ret != 0)
9376 goto error;
9377
9378 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
9379 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
9380 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
9381 &no_crypt);
9382 if (ret != 0)
9383 goto error;
9384
9385 if (no_crypt)
9386 abd_copy(eabd, to_write, psize);
9387
9388 if (psize != asize)
9389 abd_zero_off(eabd, psize, asize - psize);
9390
9391 /* assert that the MAC we got here matches the one we saved */
9392 ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
9393 spa_keystore_dsl_key_rele(spa, dck, FTAG);
9394
9395 if (to_write == cabd)
9396 abd_free(cabd);
9397
9398 to_write = eabd;
9399 }
9400
9401 out:
9402 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
9403 *abd_out = to_write;
9404 return (0);
9405
9406 error:
9407 if (dck != NULL)
9408 spa_keystore_dsl_key_rele(spa, dck, FTAG);
9409 if (cabd != NULL)
9410 abd_free(cabd);
9411 if (eabd != NULL)
9412 abd_free(eabd);
9413
9414 *abd_out = NULL;
9415 return (ret);
9416 }
9417
9418 static void
9419 l2arc_blk_fetch_done(zio_t *zio)
9420 {
9421 l2arc_read_callback_t *cb;
9422
9423 cb = zio->io_private;
9424 if (cb->l2rcb_abd != NULL)
9425 abd_free(cb->l2rcb_abd);
9426 kmem_free(cb, sizeof (l2arc_read_callback_t));
9427 }
9428
9429 /*
9430 * Find and write ARC buffers to the L2ARC device.
9431 *
9432 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9433 * for reading until they have completed writing.
9434 * The headroom_boost is an in-out parameter used to maintain headroom boost
9435 * state between calls to this function.
9436 *
9437 * Returns the number of bytes actually written (which may be smaller than
9438 * the delta by which the device hand has changed due to alignment and the
9439 * writing of log blocks).
9440 */
9441 static uint64_t
9442 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
9443 {
9444 arc_buf_hdr_t *hdr, *hdr_prev, *head;
9445 uint64_t write_asize, write_psize, write_lsize, headroom;
9446 boolean_t full;
9447 l2arc_write_callback_t *cb = NULL;
9448 zio_t *pio, *wzio;
9449 uint64_t guid = spa_load_guid(spa);
9450 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9451
9452 ASSERT3P(dev->l2ad_vdev, !=, NULL);
9453
9454 pio = NULL;
9455 write_lsize = write_asize = write_psize = 0;
9456 full = B_FALSE;
9457 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
9458 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
9459
9460 /*
9461 * Copy buffers for L2ARC writing.
9462 */
9463 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) {
9464 /*
9465 * If pass == 1 or 3, we cache MRU metadata and data
9466 * respectively.
9467 */
9468 if (l2arc_mfuonly) {
9469 if (pass == 1 || pass == 3)
9470 continue;
9471 }
9472
9473 multilist_sublist_t *mls = l2arc_sublist_lock(pass);
9474 uint64_t passed_sz = 0;
9475
9476 VERIFY3P(mls, !=, NULL);
9477
9478 /*
9479 * L2ARC fast warmup.
9480 *
9481 * Until the ARC is warm and starts to evict, read from the
9482 * head of the ARC lists rather than the tail.
9483 */
9484 if (arc_warm == B_FALSE)
9485 hdr = multilist_sublist_head(mls);
9486 else
9487 hdr = multilist_sublist_tail(mls);
9488
9489 headroom = target_sz * l2arc_headroom;
9490 if (zfs_compressed_arc_enabled)
9491 headroom = (headroom * l2arc_headroom_boost) / 100;
9492
9493 for (; hdr; hdr = hdr_prev) {
9494 kmutex_t *hash_lock;
9495 abd_t *to_write = NULL;
9496
9497 if (arc_warm == B_FALSE)
9498 hdr_prev = multilist_sublist_next(mls, hdr);
9499 else
9500 hdr_prev = multilist_sublist_prev(mls, hdr);
9501
9502 hash_lock = HDR_LOCK(hdr);
9503 if (!mutex_tryenter(hash_lock)) {
9504 /*
9505 * Skip this buffer rather than waiting.
9506 */
9507 continue;
9508 }
9509
9510 passed_sz += HDR_GET_LSIZE(hdr);
9511 if (l2arc_headroom != 0 && passed_sz > headroom) {
9512 /*
9513 * Searched too far.
9514 */
9515 mutex_exit(hash_lock);
9516 break;
9517 }
9518
9519 if (!l2arc_write_eligible(guid, hdr)) {
9520 mutex_exit(hash_lock);
9521 continue;
9522 }
9523
9524 ASSERT(HDR_HAS_L1HDR(hdr));
9525
9526 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
9527 ASSERT3U(arc_hdr_size(hdr), >, 0);
9528 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9529 HDR_HAS_RABD(hdr));
9530 uint64_t psize = HDR_GET_PSIZE(hdr);
9531 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
9532 psize);
9533
9534 if ((write_asize + asize) > target_sz) {
9535 full = B_TRUE;
9536 mutex_exit(hash_lock);
9537 break;
9538 }
9539
9540 /*
9541 * We rely on the L1 portion of the header below, so
9542 * it's invalid for this header to have been evicted out
9543 * of the ghost cache, prior to being written out. The
9544 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
9545 */
9546 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING);
9547
9548 /*
9549 * If this header has b_rabd, we can use this since it
9550 * must always match the data exactly as it exists on
9551 * disk. Otherwise, the L2ARC can normally use the
9552 * hdr's data, but if we're sharing data between the
9553 * hdr and one of its bufs, L2ARC needs its own copy of
9554 * the data so that the ZIO below can't race with the
9555 * buf consumer. To ensure that this copy will be
9556 * available for the lifetime of the ZIO and be cleaned
9557 * up afterwards, we add it to the l2arc_free_on_write
9558 * queue. If we need to apply any transforms to the
9559 * data (compression, encryption) we will also need the
9560 * extra buffer.
9561 */
9562 if (HDR_HAS_RABD(hdr) && psize == asize) {
9563 to_write = hdr->b_crypt_hdr.b_rabd;
9564 } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
9565 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
9566 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
9567 psize == asize) {
9568 to_write = hdr->b_l1hdr.b_pabd;
9569 } else {
9570 int ret;
9571 arc_buf_contents_t type = arc_buf_type(hdr);
9572
9573 ret = l2arc_apply_transforms(spa, hdr, asize,
9574 &to_write);
9575 if (ret != 0) {
9576 arc_hdr_clear_flags(hdr,
9577 ARC_FLAG_L2_WRITING);
9578 mutex_exit(hash_lock);
9579 continue;
9580 }
9581
9582 l2arc_free_abd_on_write(to_write, asize, type);
9583 }
9584
9585 if (pio == NULL) {
9586 /*
9587 * Insert a dummy header on the buflist so
9588 * l2arc_write_done() can find where the
9589 * write buffers begin without searching.
9590 */
9591 mutex_enter(&dev->l2ad_mtx);
9592 list_insert_head(&dev->l2ad_buflist, head);
9593 mutex_exit(&dev->l2ad_mtx);
9594
9595 cb = kmem_alloc(
9596 sizeof (l2arc_write_callback_t), KM_SLEEP);
9597 cb->l2wcb_dev = dev;
9598 cb->l2wcb_head = head;
9599 /*
9600 * Create a list to save allocated abd buffers
9601 * for l2arc_log_blk_commit().
9602 */
9603 list_create(&cb->l2wcb_abd_list,
9604 sizeof (l2arc_lb_abd_buf_t),
9605 offsetof(l2arc_lb_abd_buf_t, node));
9606 pio = zio_root(spa, l2arc_write_done, cb,
9607 ZIO_FLAG_CANFAIL);
9608 }
9609
9610 hdr->b_l2hdr.b_dev = dev;
9611 hdr->b_l2hdr.b_hits = 0;
9612
9613 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
9614 hdr->b_l2hdr.b_arcs_state =
9615 hdr->b_l1hdr.b_state->arcs_state;
9616 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR);
9617
9618 mutex_enter(&dev->l2ad_mtx);
9619 list_insert_head(&dev->l2ad_buflist, hdr);
9620 mutex_exit(&dev->l2ad_mtx);
9621
9622 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
9623 arc_hdr_size(hdr), hdr);
9624
9625 wzio = zio_write_phys(pio, dev->l2ad_vdev,
9626 hdr->b_l2hdr.b_daddr, asize, to_write,
9627 ZIO_CHECKSUM_OFF, NULL, hdr,
9628 ZIO_PRIORITY_ASYNC_WRITE,
9629 ZIO_FLAG_CANFAIL, B_FALSE);
9630
9631 write_lsize += HDR_GET_LSIZE(hdr);
9632 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9633 zio_t *, wzio);
9634
9635 write_psize += psize;
9636 write_asize += asize;
9637 dev->l2ad_hand += asize;
9638 l2arc_hdr_arcstats_increment(hdr);
9639 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9640
9641 mutex_exit(hash_lock);
9642
9643 /*
9644 * Append buf info to current log and commit if full.
9645 * arcstat_l2_{size,asize} kstats are updated
9646 * internally.
9647 */
9648 if (l2arc_log_blk_insert(dev, hdr))
9649 l2arc_log_blk_commit(dev, pio, cb);
9650
9651 zio_nowait(wzio);
9652 }
9653
9654 multilist_sublist_unlock(mls);
9655
9656 if (full == B_TRUE)
9657 break;
9658 }
9659
9660 /* No buffers selected for writing? */
9661 if (pio == NULL) {
9662 ASSERT0(write_lsize);
9663 ASSERT(!HDR_HAS_L1HDR(head));
9664 kmem_cache_free(hdr_l2only_cache, head);
9665
9666 /*
9667 * Although we did not write any buffers l2ad_evict may
9668 * have advanced.
9669 */
9670 if (dev->l2ad_evict != l2dhdr->dh_evict)
9671 l2arc_dev_hdr_update(dev);
9672
9673 return (0);
9674 }
9675
9676 if (!dev->l2ad_first)
9677 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9678
9679 ASSERT3U(write_asize, <=, target_sz);
9680 ARCSTAT_BUMP(arcstat_l2_writes_sent);
9681 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
9682
9683 dev->l2ad_writing = B_TRUE;
9684 (void) zio_wait(pio);
9685 dev->l2ad_writing = B_FALSE;
9686
9687 /*
9688 * Update the device header after the zio completes as
9689 * l2arc_write_done() may have updated the memory holding the log block
9690 * pointers in the device header.
9691 */
9692 l2arc_dev_hdr_update(dev);
9693
9694 return (write_asize);
9695 }
9696
9697 static boolean_t
9698 l2arc_hdr_limit_reached(void)
9699 {
9700 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size);
9701
9702 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) ||
9703 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
9704 }
9705
9706 /*
9707 * This thread feeds the L2ARC at regular intervals. This is the beating
9708 * heart of the L2ARC.
9709 */
9710 static _Noreturn void
9711 l2arc_feed_thread(void *unused)
9712 {
9713 (void) unused;
9714 callb_cpr_t cpr;
9715 l2arc_dev_t *dev;
9716 spa_t *spa;
9717 uint64_t size, wrote;
9718 clock_t begin, next = ddi_get_lbolt();
9719 fstrans_cookie_t cookie;
9720
9721 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9722
9723 mutex_enter(&l2arc_feed_thr_lock);
9724
9725 cookie = spl_fstrans_mark();
9726 while (l2arc_thread_exit == 0) {
9727 CALLB_CPR_SAFE_BEGIN(&cpr);
9728 (void) cv_timedwait_idle(&l2arc_feed_thr_cv,
9729 &l2arc_feed_thr_lock, next);
9730 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
9731 next = ddi_get_lbolt() + hz;
9732
9733 /*
9734 * Quick check for L2ARC devices.
9735 */
9736 mutex_enter(&l2arc_dev_mtx);
9737 if (l2arc_ndev == 0) {
9738 mutex_exit(&l2arc_dev_mtx);
9739 continue;
9740 }
9741 mutex_exit(&l2arc_dev_mtx);
9742 begin = ddi_get_lbolt();
9743
9744 /*
9745 * This selects the next l2arc device to write to, and in
9746 * doing so the next spa to feed from: dev->l2ad_spa. This
9747 * will return NULL if there are now no l2arc devices or if
9748 * they are all faulted.
9749 *
9750 * If a device is returned, its spa's config lock is also
9751 * held to prevent device removal. l2arc_dev_get_next()
9752 * will grab and release l2arc_dev_mtx.
9753 */
9754 if ((dev = l2arc_dev_get_next()) == NULL)
9755 continue;
9756
9757 spa = dev->l2ad_spa;
9758 ASSERT3P(spa, !=, NULL);
9759
9760 /*
9761 * If the pool is read-only then force the feed thread to
9762 * sleep a little longer.
9763 */
9764 if (!spa_writeable(spa)) {
9765 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9766 spa_config_exit(spa, SCL_L2ARC, dev);
9767 continue;
9768 }
9769
9770 /*
9771 * Avoid contributing to memory pressure.
9772 */
9773 if (l2arc_hdr_limit_reached()) {
9774 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9775 spa_config_exit(spa, SCL_L2ARC, dev);
9776 continue;
9777 }
9778
9779 ARCSTAT_BUMP(arcstat_l2_feeds);
9780
9781 size = l2arc_write_size(dev);
9782
9783 /*
9784 * Evict L2ARC buffers that will be overwritten.
9785 */
9786 l2arc_evict(dev, size, B_FALSE);
9787
9788 /*
9789 * Write ARC buffers.
9790 */
9791 wrote = l2arc_write_buffers(spa, dev, size);
9792
9793 /*
9794 * Calculate interval between writes.
9795 */
9796 next = l2arc_write_interval(begin, size, wrote);
9797 spa_config_exit(spa, SCL_L2ARC, dev);
9798 }
9799 spl_fstrans_unmark(cookie);
9800
9801 l2arc_thread_exit = 0;
9802 cv_broadcast(&l2arc_feed_thr_cv);
9803 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
9804 thread_exit();
9805 }
9806
9807 boolean_t
9808 l2arc_vdev_present(vdev_t *vd)
9809 {
9810 return (l2arc_vdev_get(vd) != NULL);
9811 }
9812
9813 /*
9814 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9815 * the vdev_t isn't an L2ARC device.
9816 */
9817 l2arc_dev_t *
9818 l2arc_vdev_get(vdev_t *vd)
9819 {
9820 l2arc_dev_t *dev;
9821
9822 mutex_enter(&l2arc_dev_mtx);
9823 for (dev = list_head(l2arc_dev_list); dev != NULL;
9824 dev = list_next(l2arc_dev_list, dev)) {
9825 if (dev->l2ad_vdev == vd)
9826 break;
9827 }
9828 mutex_exit(&l2arc_dev_mtx);
9829
9830 return (dev);
9831 }
9832
9833 static void
9834 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen)
9835 {
9836 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9837 uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9838 spa_t *spa = dev->l2ad_spa;
9839
9840 /*
9841 * The L2ARC has to hold at least the payload of one log block for
9842 * them to be restored (persistent L2ARC). The payload of a log block
9843 * depends on the amount of its log entries. We always write log blocks
9844 * with 1022 entries. How many of them are committed or restored depends
9845 * on the size of the L2ARC device. Thus the maximum payload of
9846 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9847 * is less than that, we reduce the amount of committed and restored
9848 * log entries per block so as to enable persistence.
9849 */
9850 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9851 dev->l2ad_log_entries = 0;
9852 } else {
9853 dev->l2ad_log_entries = MIN((dev->l2ad_end -
9854 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9855 L2ARC_LOG_BLK_MAX_ENTRIES);
9856 }
9857
9858 /*
9859 * Read the device header, if an error is returned do not rebuild L2ARC.
9860 */
9861 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
9862 /*
9863 * If we are onlining a cache device (vdev_reopen) that was
9864 * still present (l2arc_vdev_present()) and rebuild is enabled,
9865 * we should evict all ARC buffers and pointers to log blocks
9866 * and reclaim their space before restoring its contents to
9867 * L2ARC.
9868 */
9869 if (reopen) {
9870 if (!l2arc_rebuild_enabled) {
9871 return;
9872 } else {
9873 l2arc_evict(dev, 0, B_TRUE);
9874 /* start a new log block */
9875 dev->l2ad_log_ent_idx = 0;
9876 dev->l2ad_log_blk_payload_asize = 0;
9877 dev->l2ad_log_blk_payload_start = 0;
9878 }
9879 }
9880 /*
9881 * Just mark the device as pending for a rebuild. We won't
9882 * be starting a rebuild in line here as it would block pool
9883 * import. Instead spa_load_impl will hand that off to an
9884 * async task which will call l2arc_spa_rebuild_start.
9885 */
9886 dev->l2ad_rebuild = B_TRUE;
9887 } else if (spa_writeable(spa)) {
9888 /*
9889 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9890 * otherwise create a new header. We zero out the memory holding
9891 * the header to reset dh_start_lbps. If we TRIM the whole
9892 * device the new header will be written by
9893 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9894 * trim_state in the header too. When reading the header, if
9895 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9896 * we opt to TRIM the whole device again.
9897 */
9898 if (l2arc_trim_ahead > 0) {
9899 dev->l2ad_trim_all = B_TRUE;
9900 } else {
9901 memset(l2dhdr, 0, l2dhdr_asize);
9902 l2arc_dev_hdr_update(dev);
9903 }
9904 }
9905 }
9906
9907 /*
9908 * Add a vdev for use by the L2ARC. By this point the spa has already
9909 * validated the vdev and opened it.
9910 */
9911 void
9912 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
9913 {
9914 l2arc_dev_t *adddev;
9915 uint64_t l2dhdr_asize;
9916
9917 ASSERT(!l2arc_vdev_present(vd));
9918
9919 /*
9920 * Create a new l2arc device entry.
9921 */
9922 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9923 adddev->l2ad_spa = spa;
9924 adddev->l2ad_vdev = vd;
9925 /* leave extra size for an l2arc device header */
9926 l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9927 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9928 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9929 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
9930 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
9931 adddev->l2ad_hand = adddev->l2ad_start;
9932 adddev->l2ad_evict = adddev->l2ad_start;
9933 adddev->l2ad_first = B_TRUE;
9934 adddev->l2ad_writing = B_FALSE;
9935 adddev->l2ad_trim_all = B_FALSE;
9936 list_link_init(&adddev->l2ad_node);
9937 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
9938
9939 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
9940 /*
9941 * This is a list of all ARC buffers that are still valid on the
9942 * device.
9943 */
9944 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
9945 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
9946
9947 /*
9948 * This is a list of pointers to log blocks that are still present
9949 * on the device.
9950 */
9951 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
9952 offsetof(l2arc_lb_ptr_buf_t, node));
9953
9954 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
9955 zfs_refcount_create(&adddev->l2ad_alloc);
9956 zfs_refcount_create(&adddev->l2ad_lb_asize);
9957 zfs_refcount_create(&adddev->l2ad_lb_count);
9958
9959 /*
9960 * Decide if dev is eligible for L2ARC rebuild or whole device
9961 * trimming. This has to happen before the device is added in the
9962 * cache device list and l2arc_dev_mtx is released. Otherwise
9963 * l2arc_feed_thread() might already start writing on the
9964 * device.
9965 */
9966 l2arc_rebuild_dev(adddev, B_FALSE);
9967
9968 /*
9969 * Add device to global list
9970 */
9971 mutex_enter(&l2arc_dev_mtx);
9972 list_insert_head(l2arc_dev_list, adddev);
9973 atomic_inc_64(&l2arc_ndev);
9974 mutex_exit(&l2arc_dev_mtx);
9975 }
9976
9977 /*
9978 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
9979 * in case of onlining a cache device.
9980 */
9981 void
9982 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
9983 {
9984 l2arc_dev_t *dev = NULL;
9985
9986 dev = l2arc_vdev_get(vd);
9987 ASSERT3P(dev, !=, NULL);
9988
9989 /*
9990 * In contrast to l2arc_add_vdev() we do not have to worry about
9991 * l2arc_feed_thread() invalidating previous content when onlining a
9992 * cache device. The device parameters (l2ad*) are not cleared when
9993 * offlining the device and writing new buffers will not invalidate
9994 * all previous content. In worst case only buffers that have not had
9995 * their log block written to the device will be lost.
9996 * When onlining the cache device (ie offline->online without exporting
9997 * the pool in between) this happens:
9998 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
9999 * | |
10000 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE
10001 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
10002 * is set to B_TRUE we might write additional buffers to the device.
10003 */
10004 l2arc_rebuild_dev(dev, reopen);
10005 }
10006
10007 /*
10008 * Remove a vdev from the L2ARC.
10009 */
10010 void
10011 l2arc_remove_vdev(vdev_t *vd)
10012 {
10013 l2arc_dev_t *remdev = NULL;
10014
10015 /*
10016 * Find the device by vdev
10017 */
10018 remdev = l2arc_vdev_get(vd);
10019 ASSERT3P(remdev, !=, NULL);
10020
10021 /*
10022 * Cancel any ongoing or scheduled rebuild.
10023 */
10024 mutex_enter(&l2arc_rebuild_thr_lock);
10025 if (remdev->l2ad_rebuild_began == B_TRUE) {
10026 remdev->l2ad_rebuild_cancel = B_TRUE;
10027 while (remdev->l2ad_rebuild == B_TRUE)
10028 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
10029 }
10030 mutex_exit(&l2arc_rebuild_thr_lock);
10031
10032 /*
10033 * Remove device from global list
10034 */
10035 mutex_enter(&l2arc_dev_mtx);
10036 list_remove(l2arc_dev_list, remdev);
10037 l2arc_dev_last = NULL; /* may have been invalidated */
10038 atomic_dec_64(&l2arc_ndev);
10039 mutex_exit(&l2arc_dev_mtx);
10040
10041 /*
10042 * Clear all buflists and ARC references. L2ARC device flush.
10043 */
10044 l2arc_evict(remdev, 0, B_TRUE);
10045 list_destroy(&remdev->l2ad_buflist);
10046 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
10047 list_destroy(&remdev->l2ad_lbptr_list);
10048 mutex_destroy(&remdev->l2ad_mtx);
10049 zfs_refcount_destroy(&remdev->l2ad_alloc);
10050 zfs_refcount_destroy(&remdev->l2ad_lb_asize);
10051 zfs_refcount_destroy(&remdev->l2ad_lb_count);
10052 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
10053 vmem_free(remdev, sizeof (l2arc_dev_t));
10054 }
10055
10056 void
10057 l2arc_init(void)
10058 {
10059 l2arc_thread_exit = 0;
10060 l2arc_ndev = 0;
10061
10062 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
10063 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
10064 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
10065 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
10066 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
10067 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
10068
10069 l2arc_dev_list = &L2ARC_dev_list;
10070 l2arc_free_on_write = &L2ARC_free_on_write;
10071 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
10072 offsetof(l2arc_dev_t, l2ad_node));
10073 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
10074 offsetof(l2arc_data_free_t, l2df_list_node));
10075 }
10076
10077 void
10078 l2arc_fini(void)
10079 {
10080 mutex_destroy(&l2arc_feed_thr_lock);
10081 cv_destroy(&l2arc_feed_thr_cv);
10082 mutex_destroy(&l2arc_rebuild_thr_lock);
10083 cv_destroy(&l2arc_rebuild_thr_cv);
10084 mutex_destroy(&l2arc_dev_mtx);
10085 mutex_destroy(&l2arc_free_on_write_mtx);
10086
10087 list_destroy(l2arc_dev_list);
10088 list_destroy(l2arc_free_on_write);
10089 }
10090
10091 void
10092 l2arc_start(void)
10093 {
10094 if (!(spa_mode_global & SPA_MODE_WRITE))
10095 return;
10096
10097 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
10098 TS_RUN, defclsyspri);
10099 }
10100
10101 void
10102 l2arc_stop(void)
10103 {
10104 if (!(spa_mode_global & SPA_MODE_WRITE))
10105 return;
10106
10107 mutex_enter(&l2arc_feed_thr_lock);
10108 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
10109 l2arc_thread_exit = 1;
10110 while (l2arc_thread_exit != 0)
10111 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
10112 mutex_exit(&l2arc_feed_thr_lock);
10113 }
10114
10115 /*
10116 * Punches out rebuild threads for the L2ARC devices in a spa. This should
10117 * be called after pool import from the spa async thread, since starting
10118 * these threads directly from spa_import() will make them part of the
10119 * "zpool import" context and delay process exit (and thus pool import).
10120 */
10121 void
10122 l2arc_spa_rebuild_start(spa_t *spa)
10123 {
10124 ASSERT(MUTEX_HELD(&spa_namespace_lock));
10125
10126 /*
10127 * Locate the spa's l2arc devices and kick off rebuild threads.
10128 */
10129 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10130 l2arc_dev_t *dev =
10131 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10132 if (dev == NULL) {
10133 /* Don't attempt a rebuild if the vdev is UNAVAIL */
10134 continue;
10135 }
10136 mutex_enter(&l2arc_rebuild_thr_lock);
10137 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
10138 dev->l2ad_rebuild_began = B_TRUE;
10139 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread,
10140 dev, 0, &p0, TS_RUN, minclsyspri);
10141 }
10142 mutex_exit(&l2arc_rebuild_thr_lock);
10143 }
10144 }
10145
10146 /*
10147 * Main entry point for L2ARC rebuilding.
10148 */
10149 static _Noreturn void
10150 l2arc_dev_rebuild_thread(void *arg)
10151 {
10152 l2arc_dev_t *dev = arg;
10153
10154 VERIFY(!dev->l2ad_rebuild_cancel);
10155 VERIFY(dev->l2ad_rebuild);
10156 (void) l2arc_rebuild(dev);
10157 mutex_enter(&l2arc_rebuild_thr_lock);
10158 dev->l2ad_rebuild_began = B_FALSE;
10159 dev->l2ad_rebuild = B_FALSE;
10160 mutex_exit(&l2arc_rebuild_thr_lock);
10161
10162 thread_exit();
10163 }
10164
10165 /*
10166 * This function implements the actual L2ARC metadata rebuild. It:
10167 * starts reading the log block chain and restores each block's contents
10168 * to memory (reconstructing arc_buf_hdr_t's).
10169 *
10170 * Operation stops under any of the following conditions:
10171 *
10172 * 1) We reach the end of the log block chain.
10173 * 2) We encounter *any* error condition (cksum errors, io errors)
10174 */
10175 static int
10176 l2arc_rebuild(l2arc_dev_t *dev)
10177 {
10178 vdev_t *vd = dev->l2ad_vdev;
10179 spa_t *spa = vd->vdev_spa;
10180 int err = 0;
10181 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10182 l2arc_log_blk_phys_t *this_lb, *next_lb;
10183 zio_t *this_io = NULL, *next_io = NULL;
10184 l2arc_log_blkptr_t lbps[2];
10185 l2arc_lb_ptr_buf_t *lb_ptr_buf;
10186 boolean_t lock_held;
10187
10188 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP);
10189 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP);
10190
10191 /*
10192 * We prevent device removal while issuing reads to the device,
10193 * then during the rebuilding phases we drop this lock again so
10194 * that a spa_unload or device remove can be initiated - this is
10195 * safe, because the spa will signal us to stop before removing
10196 * our device and wait for us to stop.
10197 */
10198 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
10199 lock_held = B_TRUE;
10200
10201 /*
10202 * Retrieve the persistent L2ARC device state.
10203 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10204 */
10205 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
10206 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
10207 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
10208 dev->l2ad_start);
10209 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
10210
10211 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time;
10212 vd->vdev_trim_state = l2dhdr->dh_trim_state;
10213
10214 /*
10215 * In case the zfs module parameter l2arc_rebuild_enabled is false
10216 * we do not start the rebuild process.
10217 */
10218 if (!l2arc_rebuild_enabled)
10219 goto out;
10220
10221 /* Prepare the rebuild process */
10222 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
10223
10224 /* Start the rebuild process */
10225 for (;;) {
10226 if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
10227 break;
10228
10229 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
10230 this_lb, next_lb, this_io, &next_io)) != 0)
10231 goto out;
10232
10233 /*
10234 * Our memory pressure valve. If the system is running low
10235 * on memory, rather than swamping memory with new ARC buf
10236 * hdrs, we opt not to rebuild the L2ARC. At this point,
10237 * however, we have already set up our L2ARC dev to chain in
10238 * new metadata log blocks, so the user may choose to offline/
10239 * online the L2ARC dev at a later time (or re-import the pool)
10240 * to reconstruct it (when there's less memory pressure).
10241 */
10242 if (l2arc_hdr_limit_reached()) {
10243 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
10244 cmn_err(CE_NOTE, "System running low on memory, "
10245 "aborting L2ARC rebuild.");
10246 err = SET_ERROR(ENOMEM);
10247 goto out;
10248 }
10249
10250 spa_config_exit(spa, SCL_L2ARC, vd);
10251 lock_held = B_FALSE;
10252
10253 /*
10254 * Now that we know that the next_lb checks out alright, we
10255 * can start reconstruction from this log block.
10256 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10257 */
10258 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
10259 l2arc_log_blk_restore(dev, this_lb, asize);
10260
10261 /*
10262 * log block restored, include its pointer in the list of
10263 * pointers to log blocks present in the L2ARC device.
10264 */
10265 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10266 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
10267 KM_SLEEP);
10268 memcpy(lb_ptr_buf->lb_ptr, &lbps[0],
10269 sizeof (l2arc_log_blkptr_t));
10270 mutex_enter(&dev->l2ad_mtx);
10271 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
10272 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10273 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10274 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10275 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10276 mutex_exit(&dev->l2ad_mtx);
10277 vdev_space_update(vd, asize, 0, 0);
10278
10279 /*
10280 * Protection against loops of log blocks:
10281 *
10282 * l2ad_hand l2ad_evict
10283 * V V
10284 * l2ad_start |=======================================| l2ad_end
10285 * -----|||----|||---|||----|||
10286 * (3) (2) (1) (0)
10287 * ---|||---|||----|||---|||
10288 * (7) (6) (5) (4)
10289 *
10290 * In this situation the pointer of log block (4) passes
10291 * l2arc_log_blkptr_valid() but the log block should not be
10292 * restored as it is overwritten by the payload of log block
10293 * (0). Only log blocks (0)-(3) should be restored. We check
10294 * whether l2ad_evict lies in between the payload starting
10295 * offset of the next log block (lbps[1].lbp_payload_start)
10296 * and the payload starting offset of the present log block
10297 * (lbps[0].lbp_payload_start). If true and this isn't the
10298 * first pass, we are looping from the beginning and we should
10299 * stop.
10300 */
10301 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
10302 lbps[0].lbp_payload_start, dev->l2ad_evict) &&
10303 !dev->l2ad_first)
10304 goto out;
10305
10306 cond_resched();
10307 for (;;) {
10308 mutex_enter(&l2arc_rebuild_thr_lock);
10309 if (dev->l2ad_rebuild_cancel) {
10310 dev->l2ad_rebuild = B_FALSE;
10311 cv_signal(&l2arc_rebuild_thr_cv);
10312 mutex_exit(&l2arc_rebuild_thr_lock);
10313 err = SET_ERROR(ECANCELED);
10314 goto out;
10315 }
10316 mutex_exit(&l2arc_rebuild_thr_lock);
10317 if (spa_config_tryenter(spa, SCL_L2ARC, vd,
10318 RW_READER)) {
10319 lock_held = B_TRUE;
10320 break;
10321 }
10322 /*
10323 * L2ARC config lock held by somebody in writer,
10324 * possibly due to them trying to remove us. They'll
10325 * likely to want us to shut down, so after a little
10326 * delay, we check l2ad_rebuild_cancel and retry
10327 * the lock again.
10328 */
10329 delay(1);
10330 }
10331
10332 /*
10333 * Continue with the next log block.
10334 */
10335 lbps[0] = lbps[1];
10336 lbps[1] = this_lb->lb_prev_lbp;
10337 PTR_SWAP(this_lb, next_lb);
10338 this_io = next_io;
10339 next_io = NULL;
10340 }
10341
10342 if (this_io != NULL)
10343 l2arc_log_blk_fetch_abort(this_io);
10344 out:
10345 if (next_io != NULL)
10346 l2arc_log_blk_fetch_abort(next_io);
10347 vmem_free(this_lb, sizeof (*this_lb));
10348 vmem_free(next_lb, sizeof (*next_lb));
10349
10350 if (!l2arc_rebuild_enabled) {
10351 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10352 "disabled");
10353 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
10354 ARCSTAT_BUMP(arcstat_l2_rebuild_success);
10355 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10356 "successful, restored %llu blocks",
10357 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10358 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
10359 /*
10360 * No error but also nothing restored, meaning the lbps array
10361 * in the device header points to invalid/non-present log
10362 * blocks. Reset the header.
10363 */
10364 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10365 "no valid log blocks");
10366 memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize);
10367 l2arc_dev_hdr_update(dev);
10368 } else if (err == ECANCELED) {
10369 /*
10370 * In case the rebuild was canceled do not log to spa history
10371 * log as the pool may be in the process of being removed.
10372 */
10373 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
10374 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10375 } else if (err != 0) {
10376 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10377 "aborted, restored %llu blocks",
10378 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10379 }
10380
10381 if (lock_held)
10382 spa_config_exit(spa, SCL_L2ARC, vd);
10383
10384 return (err);
10385 }
10386
10387 /*
10388 * Attempts to read the device header on the provided L2ARC device and writes
10389 * it to `hdr'. On success, this function returns 0, otherwise the appropriate
10390 * error code is returned.
10391 */
10392 static int
10393 l2arc_dev_hdr_read(l2arc_dev_t *dev)
10394 {
10395 int err;
10396 uint64_t guid;
10397 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10398 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10399 abd_t *abd;
10400
10401 guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10402
10403 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10404
10405 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
10406 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
10407 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
10408 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
10409 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
10410 ZIO_FLAG_SPECULATIVE, B_FALSE));
10411
10412 abd_free(abd);
10413
10414 if (err != 0) {
10415 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
10416 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10417 "vdev guid: %llu", err,
10418 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10419 return (err);
10420 }
10421
10422 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
10423 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
10424
10425 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
10426 l2dhdr->dh_spa_guid != guid ||
10427 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
10428 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
10429 l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
10430 l2dhdr->dh_end != dev->l2ad_end ||
10431 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
10432 l2dhdr->dh_evict) ||
10433 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE &&
10434 l2arc_trim_ahead > 0)) {
10435 /*
10436 * Attempt to rebuild a device containing no actual dev hdr
10437 * or containing a header from some other pool or from another
10438 * version of persistent L2ARC.
10439 */
10440 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
10441 return (SET_ERROR(ENOTSUP));
10442 }
10443
10444 return (0);
10445 }
10446
10447 /*
10448 * Reads L2ARC log blocks from storage and validates their contents.
10449 *
10450 * This function implements a simple fetcher to make sure that while
10451 * we're processing one buffer the L2ARC is already fetching the next
10452 * one in the chain.
10453 *
10454 * The arguments this_lp and next_lp point to the current and next log block
10455 * address in the block chain. Similarly, this_lb and next_lb hold the
10456 * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10457 *
10458 * The `this_io' and `next_io' arguments are used for block fetching.
10459 * When issuing the first blk IO during rebuild, you should pass NULL for
10460 * `this_io'. This function will then issue a sync IO to read the block and
10461 * also issue an async IO to fetch the next block in the block chain. The
10462 * fetched IO is returned in `next_io'. On subsequent calls to this
10463 * function, pass the value returned in `next_io' from the previous call
10464 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10465 * Prior to the call, you should initialize your `next_io' pointer to be
10466 * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10467 *
10468 * On success, this function returns 0, otherwise it returns an appropriate
10469 * error code. On error the fetching IO is aborted and cleared before
10470 * returning from this function. Therefore, if we return `success', the
10471 * caller can assume that we have taken care of cleanup of fetch IOs.
10472 */
10473 static int
10474 l2arc_log_blk_read(l2arc_dev_t *dev,
10475 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
10476 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
10477 zio_t *this_io, zio_t **next_io)
10478 {
10479 int err = 0;
10480 zio_cksum_t cksum;
10481 abd_t *abd = NULL;
10482 uint64_t asize;
10483
10484 ASSERT(this_lbp != NULL && next_lbp != NULL);
10485 ASSERT(this_lb != NULL && next_lb != NULL);
10486 ASSERT(next_io != NULL && *next_io == NULL);
10487 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
10488
10489 /*
10490 * Check to see if we have issued the IO for this log block in a
10491 * previous run. If not, this is the first call, so issue it now.
10492 */
10493 if (this_io == NULL) {
10494 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
10495 this_lb);
10496 }
10497
10498 /*
10499 * Peek to see if we can start issuing the next IO immediately.
10500 */
10501 if (l2arc_log_blkptr_valid(dev, next_lbp)) {
10502 /*
10503 * Start issuing IO for the next log block early - this
10504 * should help keep the L2ARC device busy while we
10505 * decompress and restore this log block.
10506 */
10507 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
10508 next_lb);
10509 }
10510
10511 /* Wait for the IO to read this log block to complete */
10512 if ((err = zio_wait(this_io)) != 0) {
10513 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
10514 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10515 "offset: %llu, vdev guid: %llu", err,
10516 (u_longlong_t)this_lbp->lbp_daddr,
10517 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10518 goto cleanup;
10519 }
10520
10521 /*
10522 * Make sure the buffer checks out.
10523 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10524 */
10525 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
10526 fletcher_4_native(this_lb, asize, NULL, &cksum);
10527 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
10528 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
10529 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10530 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10531 (u_longlong_t)this_lbp->lbp_daddr,
10532 (u_longlong_t)dev->l2ad_vdev->vdev_guid,
10533 (u_longlong_t)dev->l2ad_hand,
10534 (u_longlong_t)dev->l2ad_evict);
10535 err = SET_ERROR(ECKSUM);
10536 goto cleanup;
10537 }
10538
10539 /* Now we can take our time decoding this buffer */
10540 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
10541 case ZIO_COMPRESS_OFF:
10542 break;
10543 case ZIO_COMPRESS_LZ4:
10544 abd = abd_alloc_for_io(asize, B_TRUE);
10545 abd_copy_from_buf_off(abd, this_lb, 0, asize);
10546 if ((err = zio_decompress_data(
10547 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
10548 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) {
10549 err = SET_ERROR(EINVAL);
10550 goto cleanup;
10551 }
10552 break;
10553 default:
10554 err = SET_ERROR(EINVAL);
10555 goto cleanup;
10556 }
10557 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
10558 byteswap_uint64_array(this_lb, sizeof (*this_lb));
10559 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
10560 err = SET_ERROR(EINVAL);
10561 goto cleanup;
10562 }
10563 cleanup:
10564 /* Abort an in-flight fetch I/O in case of error */
10565 if (err != 0 && *next_io != NULL) {
10566 l2arc_log_blk_fetch_abort(*next_io);
10567 *next_io = NULL;
10568 }
10569 if (abd != NULL)
10570 abd_free(abd);
10571 return (err);
10572 }
10573
10574 /*
10575 * Restores the payload of a log block to ARC. This creates empty ARC hdr
10576 * entries which only contain an l2arc hdr, essentially restoring the
10577 * buffers to their L2ARC evicted state. This function also updates space
10578 * usage on the L2ARC vdev to make sure it tracks restored buffers.
10579 */
10580 static void
10581 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
10582 uint64_t lb_asize)
10583 {
10584 uint64_t size = 0, asize = 0;
10585 uint64_t log_entries = dev->l2ad_log_entries;
10586
10587 /*
10588 * Usually arc_adapt() is called only for data, not headers, but
10589 * since we may allocate significant amount of memory here, let ARC
10590 * grow its arc_c.
10591 */
10592 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only);
10593
10594 for (int i = log_entries - 1; i >= 0; i--) {
10595 /*
10596 * Restore goes in the reverse temporal direction to preserve
10597 * correct temporal ordering of buffers in the l2ad_buflist.
10598 * l2arc_hdr_restore also does a list_insert_tail instead of
10599 * list_insert_head on the l2ad_buflist:
10600 *
10601 * LIST l2ad_buflist LIST
10602 * HEAD <------ (time) ------ TAIL
10603 * direction +-----+-----+-----+-----+-----+ direction
10604 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10605 * fill +-----+-----+-----+-----+-----+
10606 * ^ ^
10607 * | |
10608 * | |
10609 * l2arc_feed_thread l2arc_rebuild
10610 * will place new bufs here restores bufs here
10611 *
10612 * During l2arc_rebuild() the device is not used by
10613 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10614 */
10615 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
10616 asize += vdev_psize_to_asize(dev->l2ad_vdev,
10617 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
10618 l2arc_hdr_restore(&lb->lb_entries[i], dev);
10619 }
10620
10621 /*
10622 * Record rebuild stats:
10623 * size Logical size of restored buffers in the L2ARC
10624 * asize Aligned size of restored buffers in the L2ARC
10625 */
10626 ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
10627 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
10628 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
10629 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
10630 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
10631 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
10632 }
10633
10634 /*
10635 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10636 * into a state indicating that it has been evicted to L2ARC.
10637 */
10638 static void
10639 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
10640 {
10641 arc_buf_hdr_t *hdr, *exists;
10642 kmutex_t *hash_lock;
10643 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop);
10644 uint64_t asize;
10645
10646 /*
10647 * Do all the allocation before grabbing any locks, this lets us
10648 * sleep if memory is full and we don't have to deal with failed
10649 * allocations.
10650 */
10651 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
10652 dev, le->le_dva, le->le_daddr,
10653 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth,
10654 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel,
10655 L2BLK_GET_PROTECTED((le)->le_prop),
10656 L2BLK_GET_PREFETCH((le)->le_prop),
10657 L2BLK_GET_STATE((le)->le_prop));
10658 asize = vdev_psize_to_asize(dev->l2ad_vdev,
10659 L2BLK_GET_PSIZE((le)->le_prop));
10660
10661 /*
10662 * vdev_space_update() has to be called before arc_hdr_destroy() to
10663 * avoid underflow since the latter also calls vdev_space_update().
10664 */
10665 l2arc_hdr_arcstats_increment(hdr);
10666 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10667
10668 mutex_enter(&dev->l2ad_mtx);
10669 list_insert_tail(&dev->l2ad_buflist, hdr);
10670 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
10671 mutex_exit(&dev->l2ad_mtx);
10672
10673 exists = buf_hash_insert(hdr, &hash_lock);
10674 if (exists) {
10675 /* Buffer was already cached, no need to restore it. */
10676 arc_hdr_destroy(hdr);
10677 /*
10678 * If the buffer is already cached, check whether it has
10679 * L2ARC metadata. If not, enter them and update the flag.
10680 * This is important is case of onlining a cache device, since
10681 * we previously evicted all L2ARC metadata from ARC.
10682 */
10683 if (!HDR_HAS_L2HDR(exists)) {
10684 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
10685 exists->b_l2hdr.b_dev = dev;
10686 exists->b_l2hdr.b_daddr = le->le_daddr;
10687 exists->b_l2hdr.b_arcs_state =
10688 L2BLK_GET_STATE((le)->le_prop);
10689 mutex_enter(&dev->l2ad_mtx);
10690 list_insert_tail(&dev->l2ad_buflist, exists);
10691 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
10692 arc_hdr_size(exists), exists);
10693 mutex_exit(&dev->l2ad_mtx);
10694 l2arc_hdr_arcstats_increment(exists);
10695 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10696 }
10697 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
10698 }
10699
10700 mutex_exit(hash_lock);
10701 }
10702
10703 /*
10704 * Starts an asynchronous read IO to read a log block. This is used in log
10705 * block reconstruction to start reading the next block before we are done
10706 * decoding and reconstructing the current block, to keep the l2arc device
10707 * nice and hot with read IO to process.
10708 * The returned zio will contain a newly allocated memory buffers for the IO
10709 * data which should then be freed by the caller once the zio is no longer
10710 * needed (i.e. due to it having completed). If you wish to abort this
10711 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10712 * care of disposing of the allocated buffers correctly.
10713 */
10714 static zio_t *
10715 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
10716 l2arc_log_blk_phys_t *lb)
10717 {
10718 uint32_t asize;
10719 zio_t *pio;
10720 l2arc_read_callback_t *cb;
10721
10722 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10723 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10724 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
10725
10726 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
10727 cb->l2rcb_abd = abd_get_from_buf(lb, asize);
10728 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
10729 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
10730 ZIO_FLAG_DONT_RETRY);
10731 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
10732 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10733 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
10734 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
10735
10736 return (pio);
10737 }
10738
10739 /*
10740 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10741 * buffers allocated for it.
10742 */
10743 static void
10744 l2arc_log_blk_fetch_abort(zio_t *zio)
10745 {
10746 (void) zio_wait(zio);
10747 }
10748
10749 /*
10750 * Creates a zio to update the device header on an l2arc device.
10751 */
10752 void
10753 l2arc_dev_hdr_update(l2arc_dev_t *dev)
10754 {
10755 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10756 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10757 abd_t *abd;
10758 int err;
10759
10760 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
10761
10762 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
10763 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
10764 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10765 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
10766 l2dhdr->dh_log_entries = dev->l2ad_log_entries;
10767 l2dhdr->dh_evict = dev->l2ad_evict;
10768 l2dhdr->dh_start = dev->l2ad_start;
10769 l2dhdr->dh_end = dev->l2ad_end;
10770 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
10771 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
10772 l2dhdr->dh_flags = 0;
10773 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time;
10774 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state;
10775 if (dev->l2ad_first)
10776 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
10777
10778 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10779
10780 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
10781 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
10782 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
10783
10784 abd_free(abd);
10785
10786 if (err != 0) {
10787 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10788 "vdev guid: %llu", err,
10789 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10790 }
10791 }
10792
10793 /*
10794 * Commits a log block to the L2ARC device. This routine is invoked from
10795 * l2arc_write_buffers when the log block fills up.
10796 * This function allocates some memory to temporarily hold the serialized
10797 * buffer to be written. This is then released in l2arc_write_done.
10798 */
10799 static void
10800 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
10801 {
10802 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
10803 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10804 uint64_t psize, asize;
10805 zio_t *wzio;
10806 l2arc_lb_abd_buf_t *abd_buf;
10807 uint8_t *tmpbuf;
10808 l2arc_lb_ptr_buf_t *lb_ptr_buf;
10809
10810 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
10811
10812 tmpbuf = zio_buf_alloc(sizeof (*lb));
10813 abd_buf = zio_buf_alloc(sizeof (*abd_buf));
10814 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
10815 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10816 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
10817
10818 /* link the buffer into the block chain */
10819 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
10820 lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
10821
10822 /*
10823 * l2arc_log_blk_commit() may be called multiple times during a single
10824 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10825 * so we can free them in l2arc_write_done() later on.
10826 */
10827 list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
10828
10829 /* try to compress the buffer */
10830 psize = zio_compress_data(ZIO_COMPRESS_LZ4,
10831 abd_buf->abd, tmpbuf, sizeof (*lb), 0);
10832
10833 /* a log block is never entirely zero */
10834 ASSERT(psize != 0);
10835 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
10836 ASSERT(asize <= sizeof (*lb));
10837
10838 /*
10839 * Update the start log block pointer in the device header to point
10840 * to the log block we're about to write.
10841 */
10842 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
10843 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
10844 l2dhdr->dh_start_lbps[0].lbp_payload_asize =
10845 dev->l2ad_log_blk_payload_asize;
10846 l2dhdr->dh_start_lbps[0].lbp_payload_start =
10847 dev->l2ad_log_blk_payload_start;
10848 L2BLK_SET_LSIZE(
10849 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
10850 L2BLK_SET_PSIZE(
10851 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
10852 L2BLK_SET_CHECKSUM(
10853 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10854 ZIO_CHECKSUM_FLETCHER_4);
10855 if (asize < sizeof (*lb)) {
10856 /* compression succeeded */
10857 memset(tmpbuf + psize, 0, asize - psize);
10858 L2BLK_SET_COMPRESS(
10859 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10860 ZIO_COMPRESS_LZ4);
10861 } else {
10862 /* compression failed */
10863 memcpy(tmpbuf, lb, sizeof (*lb));
10864 L2BLK_SET_COMPRESS(
10865 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10866 ZIO_COMPRESS_OFF);
10867 }
10868
10869 /* checksum what we're about to write */
10870 fletcher_4_native(tmpbuf, asize, NULL,
10871 &l2dhdr->dh_start_lbps[0].lbp_cksum);
10872
10873 abd_free(abd_buf->abd);
10874
10875 /* perform the write itself */
10876 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb));
10877 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE);
10878 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
10879 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10880 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
10881 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
10882 (void) zio_nowait(wzio);
10883
10884 dev->l2ad_hand += asize;
10885 /*
10886 * Include the committed log block's pointer in the list of pointers
10887 * to log blocks present in the L2ARC device.
10888 */
10889 memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0],
10890 sizeof (l2arc_log_blkptr_t));
10891 mutex_enter(&dev->l2ad_mtx);
10892 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
10893 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10894 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10895 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10896 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10897 mutex_exit(&dev->l2ad_mtx);
10898 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10899
10900 /* bump the kstats */
10901 ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
10902 ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
10903 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
10904 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
10905 dev->l2ad_log_blk_payload_asize / asize);
10906
10907 /* start a new log block */
10908 dev->l2ad_log_ent_idx = 0;
10909 dev->l2ad_log_blk_payload_asize = 0;
10910 dev->l2ad_log_blk_payload_start = 0;
10911 }
10912
10913 /*
10914 * Validates an L2ARC log block address to make sure that it can be read
10915 * from the provided L2ARC device.
10916 */
10917 boolean_t
10918 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
10919 {
10920 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10921 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10922 uint64_t end = lbp->lbp_daddr + asize - 1;
10923 uint64_t start = lbp->lbp_payload_start;
10924 boolean_t evicted = B_FALSE;
10925
10926 /*
10927 * A log block is valid if all of the following conditions are true:
10928 * - it fits entirely (including its payload) between l2ad_start and
10929 * l2ad_end
10930 * - it has a valid size
10931 * - neither the log block itself nor part of its payload was evicted
10932 * by l2arc_evict():
10933 *
10934 * l2ad_hand l2ad_evict
10935 * | | lbp_daddr
10936 * | start | | end
10937 * | | | | |
10938 * V V V V V
10939 * l2ad_start ============================================ l2ad_end
10940 * --------------------------||||
10941 * ^ ^
10942 * | log block
10943 * payload
10944 */
10945
10946 evicted =
10947 l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
10948 l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
10949 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
10950 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
10951
10952 return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
10953 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
10954 (!evicted || dev->l2ad_first));
10955 }
10956
10957 /*
10958 * Inserts ARC buffer header `hdr' into the current L2ARC log block on
10959 * the device. The buffer being inserted must be present in L2ARC.
10960 * Returns B_TRUE if the L2ARC log block is full and needs to be committed
10961 * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
10962 */
10963 static boolean_t
10964 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
10965 {
10966 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
10967 l2arc_log_ent_phys_t *le;
10968
10969 if (dev->l2ad_log_entries == 0)
10970 return (B_FALSE);
10971
10972 int index = dev->l2ad_log_ent_idx++;
10973
10974 ASSERT3S(index, <, dev->l2ad_log_entries);
10975 ASSERT(HDR_HAS_L2HDR(hdr));
10976
10977 le = &lb->lb_entries[index];
10978 memset(le, 0, sizeof (*le));
10979 le->le_dva = hdr->b_dva;
10980 le->le_birth = hdr->b_birth;
10981 le->le_daddr = hdr->b_l2hdr.b_daddr;
10982 if (index == 0)
10983 dev->l2ad_log_blk_payload_start = le->le_daddr;
10984 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
10985 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
10986 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
10987 le->le_complevel = hdr->b_complevel;
10988 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
10989 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
10990 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
10991 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state);
10992
10993 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
10994 HDR_GET_PSIZE(hdr));
10995
10996 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
10997 }
10998
10999 /*
11000 * Checks whether a given L2ARC device address sits in a time-sequential
11001 * range. The trick here is that the L2ARC is a rotary buffer, so we can't
11002 * just do a range comparison, we need to handle the situation in which the
11003 * range wraps around the end of the L2ARC device. Arguments:
11004 * bottom -- Lower end of the range to check (written to earlier).
11005 * top -- Upper end of the range to check (written to later).
11006 * check -- The address for which we want to determine if it sits in
11007 * between the top and bottom.
11008 *
11009 * The 3-way conditional below represents the following cases:
11010 *
11011 * bottom < top : Sequentially ordered case:
11012 * <check>--------+-------------------+
11013 * | (overlap here?) |
11014 * L2ARC dev V V
11015 * |---------------<bottom>============<top>--------------|
11016 *
11017 * bottom > top: Looped-around case:
11018 * <check>--------+------------------+
11019 * | (overlap here?) |
11020 * L2ARC dev V V
11021 * |===============<top>---------------<bottom>===========|
11022 * ^ ^
11023 * | (or here?) |
11024 * +---------------+---------<check>
11025 *
11026 * top == bottom : Just a single address comparison.
11027 */
11028 boolean_t
11029 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
11030 {
11031 if (bottom < top)
11032 return (bottom <= check && check <= top);
11033 else if (bottom > top)
11034 return (check <= top || bottom <= check);
11035 else
11036 return (check == top);
11037 }
11038
11039 EXPORT_SYMBOL(arc_buf_size);
11040 EXPORT_SYMBOL(arc_write);
11041 EXPORT_SYMBOL(arc_read);
11042 EXPORT_SYMBOL(arc_buf_info);
11043 EXPORT_SYMBOL(arc_getbuf_func);
11044 EXPORT_SYMBOL(arc_add_prune_callback);
11045 EXPORT_SYMBOL(arc_remove_prune_callback);
11046
11047 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min,
11048 param_get_long, ZMOD_RW, "Min arc size");
11049
11050 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max,
11051 param_get_long, ZMOD_RW, "Max arc size");
11052
11053 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long,
11054 param_get_long, ZMOD_RW, "Metadata limit for arc size");
11055
11056 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent,
11057 param_set_arc_long, param_get_long, ZMOD_RW,
11058 "Percent of arc size for arc meta limit");
11059
11060 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long,
11061 param_get_long, ZMOD_RW, "Min arc metadata");
11062
11063 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW,
11064 "Meta objects to scan for prune");
11065
11066 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW,
11067 "Limit number of restarts in arc_evict_meta");
11068
11069 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW,
11070 "Meta reclaim strategy");
11071
11072 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int,
11073 param_get_int, ZMOD_RW, "Seconds before growing arc size");
11074
11075 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW,
11076 "Disable arc_p adapt dampener");
11077
11078 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int,
11079 param_get_int, ZMOD_RW, "log2(fraction of arc to reclaim)");
11080
11081 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW,
11082 "Percent of pagecache to reclaim arc to");
11083
11084 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int,
11085 param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p");
11086
11087 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD,
11088 "Target average block size");
11089
11090 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW,
11091 "Disable compressed arc buffers");
11092
11093 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int,
11094 param_get_int, ZMOD_RW, "Min life of prefetch block in ms");
11095
11096 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms,
11097 param_set_arc_int, param_get_int, ZMOD_RW,
11098 "Min life of prescient prefetched block in ms");
11099
11100 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW,
11101 "Max write bytes per interval");
11102
11103 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW,
11104 "Extra write bytes during device warmup");
11105
11106 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW,
11107 "Number of max device writes to precache");
11108
11109 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW,
11110 "Compressed l2arc_headroom multiplier");
11111
11112 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW,
11113 "TRIM ahead L2ARC write size multiplier");
11114
11115 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW,
11116 "Seconds between L2ARC writing");
11117
11118 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW,
11119 "Min feed interval in milliseconds");
11120
11121 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW,
11122 "Skip caching prefetched buffers");
11123
11124 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW,
11125 "Turbo L2ARC warmup");
11126
11127 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW,
11128 "No reads during writes");
11129
11130 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, INT, ZMOD_RW,
11131 "Percent of ARC size allowed for L2ARC-only headers");
11132
11133 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW,
11134 "Rebuild the L2ARC when importing a pool");
11135
11136 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW,
11137 "Min size in bytes to write rebuild log blocks in L2ARC");
11138
11139 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW,
11140 "Cache only MFU data from ARC into L2ARC");
11141
11142 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW,
11143 "Exclude dbufs on special vdevs from being cached to L2ARC if set.");
11144
11145 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int,
11146 param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes");
11147
11148 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long,
11149 param_get_long, ZMOD_RW, "System free memory target size in bytes");
11150
11151 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long,
11152 param_get_long, ZMOD_RW, "Minimum bytes of dnodes in arc");
11153
11154 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent,
11155 param_set_arc_long, param_get_long, ZMOD_RW,
11156 "Percent of ARC meta buffers for dnodes");
11157
11158 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW,
11159 "Percentage of excess dnodes to try to unpin");
11160
11161 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW,
11162 "When full, ARC allocation waits for eviction of this % of alloc size");
11163
11164 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, INT, ZMOD_RW,
11165 "The number of headers to evict per sublist before moving to the next");
11166
11167 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW,
11168 "Number of arc_prune threads");