]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/arc.c
OpenZFS 7910 - l2arc_write_buffers() may write beyond target_sz
[mirror_zfs.git] / module / zfs / arc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 /*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size. So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes). We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74 /*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
80 * uses method 1, while the internal ARC algorithms for
81 * adjusting the cache use method 2. We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * ARC list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each ARC state also has a mutex which is used to protect the
97 * buffer list associated with the state. When attempting to
98 * obtain a hash table lock while holding an ARC list lock you
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * It as also possible to register a callback which is run when the
103 * arc_meta_limit is reached and no buffers can be safely evicted. In
104 * this case the arc user should drop a reference on some arc buffers so
105 * they can be reclaimed and the arc_meta_limit honored. For example,
106 * when using the ZPL each dentry holds a references on a znode. These
107 * dentries must be pruned before the arc buffer holding the znode can
108 * be safely evicted.
109 *
110 * Note that the majority of the performance stats are manipulated
111 * with atomic operations.
112 *
113 * The L2ARC uses the l2ad_mtx on each vdev for the following:
114 *
115 * - L2ARC buflist creation
116 * - L2ARC buflist eviction
117 * - L2ARC write completion, which walks L2ARC buflists
118 * - ARC header destruction, as it removes from L2ARC buflists
119 * - ARC header release, as it removes from L2ARC buflists
120 */
121
122 /*
123 * ARC operation:
124 *
125 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
126 * This structure can point either to a block that is still in the cache or to
127 * one that is only accessible in an L2 ARC device, or it can provide
128 * information about a block that was recently evicted. If a block is
129 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
130 * information to retrieve it from the L2ARC device. This information is
131 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
132 * that is in this state cannot access the data directly.
133 *
134 * Blocks that are actively being referenced or have not been evicted
135 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
136 * the arc_buf_hdr_t that will point to the data block in memory. A block can
137 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
138 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
139 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
140 *
141 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
142 * ability to store the physical data (b_pabd) associated with the DVA of the
143 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
144 * it will match its on-disk compression characteristics. This behavior can be
145 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
146 * compressed ARC functionality is disabled, the b_pabd will point to an
147 * uncompressed version of the on-disk data.
148 *
149 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
150 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
151 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
152 * consumer. The ARC will provide references to this data and will keep it
153 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
154 * data block and will evict any arc_buf_t that is no longer referenced. The
155 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
156 * "overhead_size" kstat.
157 *
158 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
159 * compressed form. The typical case is that consumers will want uncompressed
160 * data, and when that happens a new data buffer is allocated where the data is
161 * decompressed for them to use. Currently the only consumer who wants
162 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
163 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
164 * with the arc_buf_hdr_t.
165 *
166 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
167 * first one is owned by a compressed send consumer (and therefore references
168 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
169 * used by any other consumer (and has its own uncompressed copy of the data
170 * buffer).
171 *
172 * arc_buf_hdr_t
173 * +-----------+
174 * | fields |
175 * | common to |
176 * | L1- and |
177 * | L2ARC |
178 * +-----------+
179 * | l2arc_buf_hdr_t
180 * | |
181 * +-----------+
182 * | l1arc_buf_hdr_t
183 * | | arc_buf_t
184 * | b_buf +------------>+-----------+ arc_buf_t
185 * | b_pabd +-+ |b_next +---->+-----------+
186 * +-----------+ | |-----------| |b_next +-->NULL
187 * | |b_comp = T | +-----------+
188 * | |b_data +-+ |b_comp = F |
189 * | +-----------+ | |b_data +-+
190 * +->+------+ | +-----------+ |
191 * compressed | | | |
192 * data | |<--------------+ | uncompressed
193 * +------+ compressed, | data
194 * shared +-->+------+
195 * data | |
196 * | |
197 * +------+
198 *
199 * When a consumer reads a block, the ARC must first look to see if the
200 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
201 * arc_buf_t and either copies uncompressed data into a new data buffer from an
202 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
203 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
204 * hdr is compressed and the desired compression characteristics of the
205 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
206 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
207 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
208 * be anywhere in the hdr's list.
209 *
210 * The diagram below shows an example of an uncompressed ARC hdr that is
211 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
212 * the last element in the buf list):
213 *
214 * arc_buf_hdr_t
215 * +-----------+
216 * | |
217 * | |
218 * | |
219 * +-----------+
220 * l2arc_buf_hdr_t| |
221 * | |
222 * +-----------+
223 * l1arc_buf_hdr_t| |
224 * | | arc_buf_t (shared)
225 * | b_buf +------------>+---------+ arc_buf_t
226 * | | |b_next +---->+---------+
227 * | b_pabd +-+ |---------| |b_next +-->NULL
228 * +-----------+ | | | +---------+
229 * | |b_data +-+ | |
230 * | +---------+ | |b_data +-+
231 * +->+------+ | +---------+ |
232 * | | | |
233 * uncompressed | | | |
234 * data +------+ | |
235 * ^ +->+------+ |
236 * | uncompressed | | |
237 * | data | | |
238 * | +------+ |
239 * +---------------------------------+
240 *
241 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
242 * since the physical block is about to be rewritten. The new data contents
243 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
244 * it may compress the data before writing it to disk. The ARC will be called
245 * with the transformed data and will bcopy the transformed on-disk block into
246 * a newly allocated b_pabd. Writes are always done into buffers which have
247 * either been loaned (and hence are new and don't have other readers) or
248 * buffers which have been released (and hence have their own hdr, if there
249 * were originally other readers of the buf's original hdr). This ensures that
250 * the ARC only needs to update a single buf and its hdr after a write occurs.
251 *
252 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
253 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
254 * that when compressed ARC is enabled that the L2ARC blocks are identical
255 * to the on-disk block in the main data pool. This provides a significant
256 * advantage since the ARC can leverage the bp's checksum when reading from the
257 * L2ARC to determine if the contents are valid. However, if the compressed
258 * ARC is disabled, then the L2ARC's block must be transformed to look
259 * like the physical block in the main data pool before comparing the
260 * checksum and determining its validity.
261 */
262
263 #include <sys/spa.h>
264 #include <sys/zio.h>
265 #include <sys/spa_impl.h>
266 #include <sys/zio_compress.h>
267 #include <sys/zio_checksum.h>
268 #include <sys/zfs_context.h>
269 #include <sys/arc.h>
270 #include <sys/refcount.h>
271 #include <sys/vdev.h>
272 #include <sys/vdev_impl.h>
273 #include <sys/dsl_pool.h>
274 #include <sys/zio_checksum.h>
275 #include <sys/multilist.h>
276 #include <sys/abd.h>
277 #ifdef _KERNEL
278 #include <sys/vmsystm.h>
279 #include <vm/anon.h>
280 #include <sys/fs/swapnode.h>
281 #include <sys/zpl.h>
282 #include <linux/mm_compat.h>
283 #endif
284 #include <sys/callb.h>
285 #include <sys/kstat.h>
286 #include <sys/dmu_tx.h>
287 #include <zfs_fletcher.h>
288 #include <sys/arc_impl.h>
289 #include <sys/trace_arc.h>
290
291 #ifndef _KERNEL
292 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
293 boolean_t arc_watch = B_FALSE;
294 #endif
295
296 static kmutex_t arc_reclaim_lock;
297 static kcondvar_t arc_reclaim_thread_cv;
298 static boolean_t arc_reclaim_thread_exit;
299 static kcondvar_t arc_reclaim_waiters_cv;
300
301 /*
302 * The number of headers to evict in arc_evict_state_impl() before
303 * dropping the sublist lock and evicting from another sublist. A lower
304 * value means we're more likely to evict the "correct" header (i.e. the
305 * oldest header in the arc state), but comes with higher overhead
306 * (i.e. more invocations of arc_evict_state_impl()).
307 */
308 int zfs_arc_evict_batch_limit = 10;
309
310 /* number of seconds before growing cache again */
311 static int arc_grow_retry = 5;
312
313 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
314 int zfs_arc_overflow_shift = 8;
315
316 /* shift of arc_c for calculating both min and max arc_p */
317 static int arc_p_min_shift = 4;
318
319 /* log2(fraction of arc to reclaim) */
320 static int arc_shrink_shift = 7;
321
322 /* percent of pagecache to reclaim arc to */
323 #ifdef _KERNEL
324 static uint_t zfs_arc_pc_percent = 0;
325 #endif
326
327 /*
328 * log2(fraction of ARC which must be free to allow growing).
329 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
330 * when reading a new block into the ARC, we will evict an equal-sized block
331 * from the ARC.
332 *
333 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
334 * we will still not allow it to grow.
335 */
336 int arc_no_grow_shift = 5;
337
338
339 /*
340 * minimum lifespan of a prefetch block in clock ticks
341 * (initialized in arc_init())
342 */
343 static int arc_min_prefetch_lifespan;
344
345 /*
346 * If this percent of memory is free, don't throttle.
347 */
348 int arc_lotsfree_percent = 10;
349
350 static int arc_dead;
351
352 /*
353 * The arc has filled available memory and has now warmed up.
354 */
355 static boolean_t arc_warm;
356
357 /*
358 * log2 fraction of the zio arena to keep free.
359 */
360 int arc_zio_arena_free_shift = 2;
361
362 /*
363 * These tunables are for performance analysis.
364 */
365 unsigned long zfs_arc_max = 0;
366 unsigned long zfs_arc_min = 0;
367 unsigned long zfs_arc_meta_limit = 0;
368 unsigned long zfs_arc_meta_min = 0;
369 unsigned long zfs_arc_dnode_limit = 0;
370 unsigned long zfs_arc_dnode_reduce_percent = 10;
371 int zfs_arc_grow_retry = 0;
372 int zfs_arc_shrink_shift = 0;
373 int zfs_arc_p_min_shift = 0;
374 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
375
376 int zfs_compressed_arc_enabled = B_TRUE;
377
378 /*
379 * ARC will evict meta buffers that exceed arc_meta_limit. This
380 * tunable make arc_meta_limit adjustable for different workloads.
381 */
382 unsigned long zfs_arc_meta_limit_percent = 75;
383
384 /*
385 * Percentage that can be consumed by dnodes of ARC meta buffers.
386 */
387 unsigned long zfs_arc_dnode_limit_percent = 10;
388
389 /*
390 * These tunables are Linux specific
391 */
392 unsigned long zfs_arc_sys_free = 0;
393 int zfs_arc_min_prefetch_lifespan = 0;
394 int zfs_arc_p_aggressive_disable = 1;
395 int zfs_arc_p_dampener_disable = 1;
396 int zfs_arc_meta_prune = 10000;
397 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
398 int zfs_arc_meta_adjust_restarts = 4096;
399 int zfs_arc_lotsfree_percent = 10;
400
401 /* The 6 states: */
402 static arc_state_t ARC_anon;
403 static arc_state_t ARC_mru;
404 static arc_state_t ARC_mru_ghost;
405 static arc_state_t ARC_mfu;
406 static arc_state_t ARC_mfu_ghost;
407 static arc_state_t ARC_l2c_only;
408
409 typedef struct arc_stats {
410 kstat_named_t arcstat_hits;
411 kstat_named_t arcstat_misses;
412 kstat_named_t arcstat_demand_data_hits;
413 kstat_named_t arcstat_demand_data_misses;
414 kstat_named_t arcstat_demand_metadata_hits;
415 kstat_named_t arcstat_demand_metadata_misses;
416 kstat_named_t arcstat_prefetch_data_hits;
417 kstat_named_t arcstat_prefetch_data_misses;
418 kstat_named_t arcstat_prefetch_metadata_hits;
419 kstat_named_t arcstat_prefetch_metadata_misses;
420 kstat_named_t arcstat_mru_hits;
421 kstat_named_t arcstat_mru_ghost_hits;
422 kstat_named_t arcstat_mfu_hits;
423 kstat_named_t arcstat_mfu_ghost_hits;
424 kstat_named_t arcstat_deleted;
425 /*
426 * Number of buffers that could not be evicted because the hash lock
427 * was held by another thread. The lock may not necessarily be held
428 * by something using the same buffer, since hash locks are shared
429 * by multiple buffers.
430 */
431 kstat_named_t arcstat_mutex_miss;
432 /*
433 * Number of buffers skipped because they have I/O in progress, are
434 * indrect prefetch buffers that have not lived long enough, or are
435 * not from the spa we're trying to evict from.
436 */
437 kstat_named_t arcstat_evict_skip;
438 /*
439 * Number of times arc_evict_state() was unable to evict enough
440 * buffers to reach its target amount.
441 */
442 kstat_named_t arcstat_evict_not_enough;
443 kstat_named_t arcstat_evict_l2_cached;
444 kstat_named_t arcstat_evict_l2_eligible;
445 kstat_named_t arcstat_evict_l2_ineligible;
446 kstat_named_t arcstat_evict_l2_skip;
447 kstat_named_t arcstat_hash_elements;
448 kstat_named_t arcstat_hash_elements_max;
449 kstat_named_t arcstat_hash_collisions;
450 kstat_named_t arcstat_hash_chains;
451 kstat_named_t arcstat_hash_chain_max;
452 kstat_named_t arcstat_p;
453 kstat_named_t arcstat_c;
454 kstat_named_t arcstat_c_min;
455 kstat_named_t arcstat_c_max;
456 kstat_named_t arcstat_size;
457 /*
458 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
459 * Note that the compressed bytes may match the uncompressed bytes
460 * if the block is either not compressed or compressed arc is disabled.
461 */
462 kstat_named_t arcstat_compressed_size;
463 /*
464 * Uncompressed size of the data stored in b_pabd. If compressed
465 * arc is disabled then this value will be identical to the stat
466 * above.
467 */
468 kstat_named_t arcstat_uncompressed_size;
469 /*
470 * Number of bytes stored in all the arc_buf_t's. This is classified
471 * as "overhead" since this data is typically short-lived and will
472 * be evicted from the arc when it becomes unreferenced unless the
473 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
474 * values have been set (see comment in dbuf.c for more information).
475 */
476 kstat_named_t arcstat_overhead_size;
477 /*
478 * Number of bytes consumed by internal ARC structures necessary
479 * for tracking purposes; these structures are not actually
480 * backed by ARC buffers. This includes arc_buf_hdr_t structures
481 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
482 * caches), and arc_buf_t structures (allocated via arc_buf_t
483 * cache).
484 */
485 kstat_named_t arcstat_hdr_size;
486 /*
487 * Number of bytes consumed by ARC buffers of type equal to
488 * ARC_BUFC_DATA. This is generally consumed by buffers backing
489 * on disk user data (e.g. plain file contents).
490 */
491 kstat_named_t arcstat_data_size;
492 /*
493 * Number of bytes consumed by ARC buffers of type equal to
494 * ARC_BUFC_METADATA. This is generally consumed by buffers
495 * backing on disk data that is used for internal ZFS
496 * structures (e.g. ZAP, dnode, indirect blocks, etc).
497 */
498 kstat_named_t arcstat_metadata_size;
499 /*
500 * Number of bytes consumed by dmu_buf_impl_t objects.
501 */
502 kstat_named_t arcstat_dbuf_size;
503 /*
504 * Number of bytes consumed by dnode_t objects.
505 */
506 kstat_named_t arcstat_dnode_size;
507 /*
508 * Number of bytes consumed by bonus buffers.
509 */
510 kstat_named_t arcstat_bonus_size;
511 /*
512 * Total number of bytes consumed by ARC buffers residing in the
513 * arc_anon state. This includes *all* buffers in the arc_anon
514 * state; e.g. data, metadata, evictable, and unevictable buffers
515 * are all included in this value.
516 */
517 kstat_named_t arcstat_anon_size;
518 /*
519 * Number of bytes consumed by ARC buffers that meet the
520 * following criteria: backing buffers of type ARC_BUFC_DATA,
521 * residing in the arc_anon state, and are eligible for eviction
522 * (e.g. have no outstanding holds on the buffer).
523 */
524 kstat_named_t arcstat_anon_evictable_data;
525 /*
526 * Number of bytes consumed by ARC buffers that meet the
527 * following criteria: backing buffers of type ARC_BUFC_METADATA,
528 * residing in the arc_anon state, and are eligible for eviction
529 * (e.g. have no outstanding holds on the buffer).
530 */
531 kstat_named_t arcstat_anon_evictable_metadata;
532 /*
533 * Total number of bytes consumed by ARC buffers residing in the
534 * arc_mru state. This includes *all* buffers in the arc_mru
535 * state; e.g. data, metadata, evictable, and unevictable buffers
536 * are all included in this value.
537 */
538 kstat_named_t arcstat_mru_size;
539 /*
540 * Number of bytes consumed by ARC buffers that meet the
541 * following criteria: backing buffers of type ARC_BUFC_DATA,
542 * residing in the arc_mru state, and are eligible for eviction
543 * (e.g. have no outstanding holds on the buffer).
544 */
545 kstat_named_t arcstat_mru_evictable_data;
546 /*
547 * Number of bytes consumed by ARC buffers that meet the
548 * following criteria: backing buffers of type ARC_BUFC_METADATA,
549 * residing in the arc_mru state, and are eligible for eviction
550 * (e.g. have no outstanding holds on the buffer).
551 */
552 kstat_named_t arcstat_mru_evictable_metadata;
553 /*
554 * Total number of bytes that *would have been* consumed by ARC
555 * buffers in the arc_mru_ghost state. The key thing to note
556 * here, is the fact that this size doesn't actually indicate
557 * RAM consumption. The ghost lists only consist of headers and
558 * don't actually have ARC buffers linked off of these headers.
559 * Thus, *if* the headers had associated ARC buffers, these
560 * buffers *would have* consumed this number of bytes.
561 */
562 kstat_named_t arcstat_mru_ghost_size;
563 /*
564 * Number of bytes that *would have been* consumed by ARC
565 * buffers that are eligible for eviction, of type
566 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
567 */
568 kstat_named_t arcstat_mru_ghost_evictable_data;
569 /*
570 * Number of bytes that *would have been* consumed by ARC
571 * buffers that are eligible for eviction, of type
572 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
573 */
574 kstat_named_t arcstat_mru_ghost_evictable_metadata;
575 /*
576 * Total number of bytes consumed by ARC buffers residing in the
577 * arc_mfu state. This includes *all* buffers in the arc_mfu
578 * state; e.g. data, metadata, evictable, and unevictable buffers
579 * are all included in this value.
580 */
581 kstat_named_t arcstat_mfu_size;
582 /*
583 * Number of bytes consumed by ARC buffers that are eligible for
584 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
585 * state.
586 */
587 kstat_named_t arcstat_mfu_evictable_data;
588 /*
589 * Number of bytes consumed by ARC buffers that are eligible for
590 * eviction, of type ARC_BUFC_METADATA, and reside in the
591 * arc_mfu state.
592 */
593 kstat_named_t arcstat_mfu_evictable_metadata;
594 /*
595 * Total number of bytes that *would have been* consumed by ARC
596 * buffers in the arc_mfu_ghost state. See the comment above
597 * arcstat_mru_ghost_size for more details.
598 */
599 kstat_named_t arcstat_mfu_ghost_size;
600 /*
601 * Number of bytes that *would have been* consumed by ARC
602 * buffers that are eligible for eviction, of type
603 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
604 */
605 kstat_named_t arcstat_mfu_ghost_evictable_data;
606 /*
607 * Number of bytes that *would have been* consumed by ARC
608 * buffers that are eligible for eviction, of type
609 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
610 */
611 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
612 kstat_named_t arcstat_l2_hits;
613 kstat_named_t arcstat_l2_misses;
614 kstat_named_t arcstat_l2_feeds;
615 kstat_named_t arcstat_l2_rw_clash;
616 kstat_named_t arcstat_l2_read_bytes;
617 kstat_named_t arcstat_l2_write_bytes;
618 kstat_named_t arcstat_l2_writes_sent;
619 kstat_named_t arcstat_l2_writes_done;
620 kstat_named_t arcstat_l2_writes_error;
621 kstat_named_t arcstat_l2_writes_lock_retry;
622 kstat_named_t arcstat_l2_evict_lock_retry;
623 kstat_named_t arcstat_l2_evict_reading;
624 kstat_named_t arcstat_l2_evict_l1cached;
625 kstat_named_t arcstat_l2_free_on_write;
626 kstat_named_t arcstat_l2_abort_lowmem;
627 kstat_named_t arcstat_l2_cksum_bad;
628 kstat_named_t arcstat_l2_io_error;
629 kstat_named_t arcstat_l2_lsize;
630 kstat_named_t arcstat_l2_psize;
631 kstat_named_t arcstat_l2_hdr_size;
632 kstat_named_t arcstat_memory_throttle_count;
633 kstat_named_t arcstat_memory_direct_count;
634 kstat_named_t arcstat_memory_indirect_count;
635 kstat_named_t arcstat_no_grow;
636 kstat_named_t arcstat_tempreserve;
637 kstat_named_t arcstat_loaned_bytes;
638 kstat_named_t arcstat_prune;
639 kstat_named_t arcstat_meta_used;
640 kstat_named_t arcstat_meta_limit;
641 kstat_named_t arcstat_dnode_limit;
642 kstat_named_t arcstat_meta_max;
643 kstat_named_t arcstat_meta_min;
644 kstat_named_t arcstat_sync_wait_for_async;
645 kstat_named_t arcstat_demand_hit_predictive_prefetch;
646 kstat_named_t arcstat_need_free;
647 kstat_named_t arcstat_sys_free;
648 } arc_stats_t;
649
650 static arc_stats_t arc_stats = {
651 { "hits", KSTAT_DATA_UINT64 },
652 { "misses", KSTAT_DATA_UINT64 },
653 { "demand_data_hits", KSTAT_DATA_UINT64 },
654 { "demand_data_misses", KSTAT_DATA_UINT64 },
655 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
656 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
657 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
658 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
659 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
660 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
661 { "mru_hits", KSTAT_DATA_UINT64 },
662 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
663 { "mfu_hits", KSTAT_DATA_UINT64 },
664 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
665 { "deleted", KSTAT_DATA_UINT64 },
666 { "mutex_miss", KSTAT_DATA_UINT64 },
667 { "evict_skip", KSTAT_DATA_UINT64 },
668 { "evict_not_enough", KSTAT_DATA_UINT64 },
669 { "evict_l2_cached", KSTAT_DATA_UINT64 },
670 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
671 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
672 { "evict_l2_skip", KSTAT_DATA_UINT64 },
673 { "hash_elements", KSTAT_DATA_UINT64 },
674 { "hash_elements_max", KSTAT_DATA_UINT64 },
675 { "hash_collisions", KSTAT_DATA_UINT64 },
676 { "hash_chains", KSTAT_DATA_UINT64 },
677 { "hash_chain_max", KSTAT_DATA_UINT64 },
678 { "p", KSTAT_DATA_UINT64 },
679 { "c", KSTAT_DATA_UINT64 },
680 { "c_min", KSTAT_DATA_UINT64 },
681 { "c_max", KSTAT_DATA_UINT64 },
682 { "size", KSTAT_DATA_UINT64 },
683 { "compressed_size", KSTAT_DATA_UINT64 },
684 { "uncompressed_size", KSTAT_DATA_UINT64 },
685 { "overhead_size", KSTAT_DATA_UINT64 },
686 { "hdr_size", KSTAT_DATA_UINT64 },
687 { "data_size", KSTAT_DATA_UINT64 },
688 { "metadata_size", KSTAT_DATA_UINT64 },
689 { "dbuf_size", KSTAT_DATA_UINT64 },
690 { "dnode_size", KSTAT_DATA_UINT64 },
691 { "bonus_size", KSTAT_DATA_UINT64 },
692 { "anon_size", KSTAT_DATA_UINT64 },
693 { "anon_evictable_data", KSTAT_DATA_UINT64 },
694 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
695 { "mru_size", KSTAT_DATA_UINT64 },
696 { "mru_evictable_data", KSTAT_DATA_UINT64 },
697 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
698 { "mru_ghost_size", KSTAT_DATA_UINT64 },
699 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
700 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
701 { "mfu_size", KSTAT_DATA_UINT64 },
702 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
703 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
704 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
705 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
706 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
707 { "l2_hits", KSTAT_DATA_UINT64 },
708 { "l2_misses", KSTAT_DATA_UINT64 },
709 { "l2_feeds", KSTAT_DATA_UINT64 },
710 { "l2_rw_clash", KSTAT_DATA_UINT64 },
711 { "l2_read_bytes", KSTAT_DATA_UINT64 },
712 { "l2_write_bytes", KSTAT_DATA_UINT64 },
713 { "l2_writes_sent", KSTAT_DATA_UINT64 },
714 { "l2_writes_done", KSTAT_DATA_UINT64 },
715 { "l2_writes_error", KSTAT_DATA_UINT64 },
716 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
717 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
718 { "l2_evict_reading", KSTAT_DATA_UINT64 },
719 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
720 { "l2_free_on_write", KSTAT_DATA_UINT64 },
721 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
722 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
723 { "l2_io_error", KSTAT_DATA_UINT64 },
724 { "l2_size", KSTAT_DATA_UINT64 },
725 { "l2_asize", KSTAT_DATA_UINT64 },
726 { "l2_hdr_size", KSTAT_DATA_UINT64 },
727 { "memory_throttle_count", KSTAT_DATA_UINT64 },
728 { "memory_direct_count", KSTAT_DATA_UINT64 },
729 { "memory_indirect_count", KSTAT_DATA_UINT64 },
730 { "arc_no_grow", KSTAT_DATA_UINT64 },
731 { "arc_tempreserve", KSTAT_DATA_UINT64 },
732 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
733 { "arc_prune", KSTAT_DATA_UINT64 },
734 { "arc_meta_used", KSTAT_DATA_UINT64 },
735 { "arc_meta_limit", KSTAT_DATA_UINT64 },
736 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
737 { "arc_meta_max", KSTAT_DATA_UINT64 },
738 { "arc_meta_min", KSTAT_DATA_UINT64 },
739 { "sync_wait_for_async", KSTAT_DATA_UINT64 },
740 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
741 { "arc_need_free", KSTAT_DATA_UINT64 },
742 { "arc_sys_free", KSTAT_DATA_UINT64 }
743 };
744
745 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
746
747 #define ARCSTAT_INCR(stat, val) \
748 atomic_add_64(&arc_stats.stat.value.ui64, (val))
749
750 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
751 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
752
753 #define ARCSTAT_MAX(stat, val) { \
754 uint64_t m; \
755 while ((val) > (m = arc_stats.stat.value.ui64) && \
756 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
757 continue; \
758 }
759
760 #define ARCSTAT_MAXSTAT(stat) \
761 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
762
763 /*
764 * We define a macro to allow ARC hits/misses to be easily broken down by
765 * two separate conditions, giving a total of four different subtypes for
766 * each of hits and misses (so eight statistics total).
767 */
768 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
769 if (cond1) { \
770 if (cond2) { \
771 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
772 } else { \
773 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
774 } \
775 } else { \
776 if (cond2) { \
777 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
778 } else { \
779 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
780 } \
781 }
782
783 kstat_t *arc_ksp;
784 static arc_state_t *arc_anon;
785 static arc_state_t *arc_mru;
786 static arc_state_t *arc_mru_ghost;
787 static arc_state_t *arc_mfu;
788 static arc_state_t *arc_mfu_ghost;
789 static arc_state_t *arc_l2c_only;
790
791 /*
792 * There are several ARC variables that are critical to export as kstats --
793 * but we don't want to have to grovel around in the kstat whenever we wish to
794 * manipulate them. For these variables, we therefore define them to be in
795 * terms of the statistic variable. This assures that we are not introducing
796 * the possibility of inconsistency by having shadow copies of the variables,
797 * while still allowing the code to be readable.
798 */
799 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
800 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
801 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
802 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
803 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
804 #define arc_no_grow ARCSTAT(arcstat_no_grow) /* do not grow cache size */
805 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
806 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
807 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
808 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
809 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
810 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
811 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
812 #define arc_dbuf_size ARCSTAT(arcstat_dbuf_size) /* dbuf metadata */
813 #define arc_dnode_size ARCSTAT(arcstat_dnode_size) /* dnode metadata */
814 #define arc_bonus_size ARCSTAT(arcstat_bonus_size) /* bonus buffer metadata */
815 #define arc_need_free ARCSTAT(arcstat_need_free) /* bytes to be freed */
816 #define arc_sys_free ARCSTAT(arcstat_sys_free) /* target system free bytes */
817
818 /* compressed size of entire arc */
819 #define arc_compressed_size ARCSTAT(arcstat_compressed_size)
820 /* uncompressed size of entire arc */
821 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size)
822 /* number of bytes in the arc from arc_buf_t's */
823 #define arc_overhead_size ARCSTAT(arcstat_overhead_size)
824
825 static list_t arc_prune_list;
826 static kmutex_t arc_prune_mtx;
827 static taskq_t *arc_prune_taskq;
828
829 #define GHOST_STATE(state) \
830 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
831 (state) == arc_l2c_only)
832
833 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
834 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
835 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
836 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
837 #define HDR_COMPRESSION_ENABLED(hdr) \
838 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
839
840 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
841 #define HDR_L2_READING(hdr) \
842 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
843 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
844 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
845 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
846 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
847 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
848
849 #define HDR_ISTYPE_METADATA(hdr) \
850 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
851 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
852
853 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
854 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
855
856 /* For storing compression mode in b_flags */
857 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
858
859 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
860 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
861 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
862 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
863
864 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
865 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
866 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
867
868 /*
869 * Other sizes
870 */
871
872 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
873 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
874
875 /*
876 * Hash table routines
877 */
878
879 #define HT_LOCK_ALIGN 64
880 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
881
882 struct ht_lock {
883 kmutex_t ht_lock;
884 #ifdef _KERNEL
885 unsigned char pad[HT_LOCK_PAD];
886 #endif
887 };
888
889 #define BUF_LOCKS 8192
890 typedef struct buf_hash_table {
891 uint64_t ht_mask;
892 arc_buf_hdr_t **ht_table;
893 struct ht_lock ht_locks[BUF_LOCKS];
894 } buf_hash_table_t;
895
896 static buf_hash_table_t buf_hash_table;
897
898 #define BUF_HASH_INDEX(spa, dva, birth) \
899 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
900 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
901 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
902 #define HDR_LOCK(hdr) \
903 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
904
905 uint64_t zfs_crc64_table[256];
906
907 /*
908 * Level 2 ARC
909 */
910
911 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
912 #define L2ARC_HEADROOM 2 /* num of writes */
913
914 /*
915 * If we discover during ARC scan any buffers to be compressed, we boost
916 * our headroom for the next scanning cycle by this percentage multiple.
917 */
918 #define L2ARC_HEADROOM_BOOST 200
919 #define L2ARC_FEED_SECS 1 /* caching interval secs */
920 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
921
922 /*
923 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
924 * and each of the state has two types: data and metadata.
925 */
926 #define L2ARC_FEED_TYPES 4
927
928 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
929 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
930
931 /* L2ARC Performance Tunables */
932 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
933 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
934 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
935 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
936 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
937 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
938 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
939 int l2arc_feed_again = B_TRUE; /* turbo warmup */
940 int l2arc_norw = B_FALSE; /* no reads during writes */
941
942 /*
943 * L2ARC Internals
944 */
945 static list_t L2ARC_dev_list; /* device list */
946 static list_t *l2arc_dev_list; /* device list pointer */
947 static kmutex_t l2arc_dev_mtx; /* device list mutex */
948 static l2arc_dev_t *l2arc_dev_last; /* last device used */
949 static list_t L2ARC_free_on_write; /* free after write buf list */
950 static list_t *l2arc_free_on_write; /* free after write list ptr */
951 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
952 static uint64_t l2arc_ndev; /* number of devices */
953
954 typedef struct l2arc_read_callback {
955 arc_buf_hdr_t *l2rcb_hdr; /* read header */
956 blkptr_t l2rcb_bp; /* original blkptr */
957 zbookmark_phys_t l2rcb_zb; /* original bookmark */
958 int l2rcb_flags; /* original flags */
959 abd_t *l2rcb_abd; /* temporary buffer */
960 } l2arc_read_callback_t;
961
962 typedef struct l2arc_data_free {
963 /* protected by l2arc_free_on_write_mtx */
964 abd_t *l2df_abd;
965 size_t l2df_size;
966 arc_buf_contents_t l2df_type;
967 list_node_t l2df_list_node;
968 } l2arc_data_free_t;
969
970 static kmutex_t l2arc_feed_thr_lock;
971 static kcondvar_t l2arc_feed_thr_cv;
972 static uint8_t l2arc_thread_exit;
973
974 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
975 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
976 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
977 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
978 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
979 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
980 static void arc_hdr_free_pabd(arc_buf_hdr_t *);
981 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *);
982 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
983 static boolean_t arc_is_overflowing(void);
984 static void arc_buf_watch(arc_buf_t *);
985 static void arc_tuning_update(void);
986 static void arc_prune_async(int64_t);
987 static uint64_t arc_all_memory(void);
988
989 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
990 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
991 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
992 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
993
994 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
995 static void l2arc_read_done(zio_t *);
996
997 static uint64_t
998 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
999 {
1000 uint8_t *vdva = (uint8_t *)dva;
1001 uint64_t crc = -1ULL;
1002 int i;
1003
1004 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1005
1006 for (i = 0; i < sizeof (dva_t); i++)
1007 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1008
1009 crc ^= (spa>>8) ^ birth;
1010
1011 return (crc);
1012 }
1013
1014 #define HDR_EMPTY(hdr) \
1015 ((hdr)->b_dva.dva_word[0] == 0 && \
1016 (hdr)->b_dva.dva_word[1] == 0)
1017
1018 #define HDR_EQUAL(spa, dva, birth, hdr) \
1019 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1020 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1021 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1022
1023 static void
1024 buf_discard_identity(arc_buf_hdr_t *hdr)
1025 {
1026 hdr->b_dva.dva_word[0] = 0;
1027 hdr->b_dva.dva_word[1] = 0;
1028 hdr->b_birth = 0;
1029 }
1030
1031 static arc_buf_hdr_t *
1032 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1033 {
1034 const dva_t *dva = BP_IDENTITY(bp);
1035 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1036 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1037 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1038 arc_buf_hdr_t *hdr;
1039
1040 mutex_enter(hash_lock);
1041 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1042 hdr = hdr->b_hash_next) {
1043 if (HDR_EQUAL(spa, dva, birth, hdr)) {
1044 *lockp = hash_lock;
1045 return (hdr);
1046 }
1047 }
1048 mutex_exit(hash_lock);
1049 *lockp = NULL;
1050 return (NULL);
1051 }
1052
1053 /*
1054 * Insert an entry into the hash table. If there is already an element
1055 * equal to elem in the hash table, then the already existing element
1056 * will be returned and the new element will not be inserted.
1057 * Otherwise returns NULL.
1058 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1059 */
1060 static arc_buf_hdr_t *
1061 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1062 {
1063 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1064 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1065 arc_buf_hdr_t *fhdr;
1066 uint32_t i;
1067
1068 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1069 ASSERT(hdr->b_birth != 0);
1070 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1071
1072 if (lockp != NULL) {
1073 *lockp = hash_lock;
1074 mutex_enter(hash_lock);
1075 } else {
1076 ASSERT(MUTEX_HELD(hash_lock));
1077 }
1078
1079 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1080 fhdr = fhdr->b_hash_next, i++) {
1081 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1082 return (fhdr);
1083 }
1084
1085 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1086 buf_hash_table.ht_table[idx] = hdr;
1087 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1088
1089 /* collect some hash table performance data */
1090 if (i > 0) {
1091 ARCSTAT_BUMP(arcstat_hash_collisions);
1092 if (i == 1)
1093 ARCSTAT_BUMP(arcstat_hash_chains);
1094
1095 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1096 }
1097
1098 ARCSTAT_BUMP(arcstat_hash_elements);
1099 ARCSTAT_MAXSTAT(arcstat_hash_elements);
1100
1101 return (NULL);
1102 }
1103
1104 static void
1105 buf_hash_remove(arc_buf_hdr_t *hdr)
1106 {
1107 arc_buf_hdr_t *fhdr, **hdrp;
1108 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1109
1110 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1111 ASSERT(HDR_IN_HASH_TABLE(hdr));
1112
1113 hdrp = &buf_hash_table.ht_table[idx];
1114 while ((fhdr = *hdrp) != hdr) {
1115 ASSERT3P(fhdr, !=, NULL);
1116 hdrp = &fhdr->b_hash_next;
1117 }
1118 *hdrp = hdr->b_hash_next;
1119 hdr->b_hash_next = NULL;
1120 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1121
1122 /* collect some hash table performance data */
1123 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1124
1125 if (buf_hash_table.ht_table[idx] &&
1126 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1127 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1128 }
1129
1130 /*
1131 * Global data structures and functions for the buf kmem cache.
1132 */
1133 static kmem_cache_t *hdr_full_cache;
1134 static kmem_cache_t *hdr_l2only_cache;
1135 static kmem_cache_t *buf_cache;
1136
1137 static void
1138 buf_fini(void)
1139 {
1140 int i;
1141
1142 #if defined(_KERNEL) && defined(HAVE_SPL)
1143 /*
1144 * Large allocations which do not require contiguous pages
1145 * should be using vmem_free() in the linux kernel\
1146 */
1147 vmem_free(buf_hash_table.ht_table,
1148 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1149 #else
1150 kmem_free(buf_hash_table.ht_table,
1151 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1152 #endif
1153 for (i = 0; i < BUF_LOCKS; i++)
1154 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1155 kmem_cache_destroy(hdr_full_cache);
1156 kmem_cache_destroy(hdr_l2only_cache);
1157 kmem_cache_destroy(buf_cache);
1158 }
1159
1160 /*
1161 * Constructor callback - called when the cache is empty
1162 * and a new buf is requested.
1163 */
1164 /* ARGSUSED */
1165 static int
1166 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1167 {
1168 arc_buf_hdr_t *hdr = vbuf;
1169
1170 bzero(hdr, HDR_FULL_SIZE);
1171 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1172 refcount_create(&hdr->b_l1hdr.b_refcnt);
1173 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1174 list_link_init(&hdr->b_l1hdr.b_arc_node);
1175 list_link_init(&hdr->b_l2hdr.b_l2node);
1176 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1177 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1178
1179 return (0);
1180 }
1181
1182 /* ARGSUSED */
1183 static int
1184 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1185 {
1186 arc_buf_hdr_t *hdr = vbuf;
1187
1188 bzero(hdr, HDR_L2ONLY_SIZE);
1189 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1190
1191 return (0);
1192 }
1193
1194 /* ARGSUSED */
1195 static int
1196 buf_cons(void *vbuf, void *unused, int kmflag)
1197 {
1198 arc_buf_t *buf = vbuf;
1199
1200 bzero(buf, sizeof (arc_buf_t));
1201 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1202 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1203
1204 return (0);
1205 }
1206
1207 /*
1208 * Destructor callback - called when a cached buf is
1209 * no longer required.
1210 */
1211 /* ARGSUSED */
1212 static void
1213 hdr_full_dest(void *vbuf, void *unused)
1214 {
1215 arc_buf_hdr_t *hdr = vbuf;
1216
1217 ASSERT(HDR_EMPTY(hdr));
1218 cv_destroy(&hdr->b_l1hdr.b_cv);
1219 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1220 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1221 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1222 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1223 }
1224
1225 /* ARGSUSED */
1226 static void
1227 hdr_l2only_dest(void *vbuf, void *unused)
1228 {
1229 ASSERTV(arc_buf_hdr_t *hdr = vbuf);
1230
1231 ASSERT(HDR_EMPTY(hdr));
1232 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1233 }
1234
1235 /* ARGSUSED */
1236 static void
1237 buf_dest(void *vbuf, void *unused)
1238 {
1239 arc_buf_t *buf = vbuf;
1240
1241 mutex_destroy(&buf->b_evict_lock);
1242 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1243 }
1244
1245 /*
1246 * Reclaim callback -- invoked when memory is low.
1247 */
1248 /* ARGSUSED */
1249 static void
1250 hdr_recl(void *unused)
1251 {
1252 dprintf("hdr_recl called\n");
1253 /*
1254 * umem calls the reclaim func when we destroy the buf cache,
1255 * which is after we do arc_fini().
1256 */
1257 if (!arc_dead)
1258 cv_signal(&arc_reclaim_thread_cv);
1259 }
1260
1261 static void
1262 buf_init(void)
1263 {
1264 uint64_t *ct = NULL;
1265 uint64_t hsize = 1ULL << 12;
1266 int i, j;
1267
1268 /*
1269 * The hash table is big enough to fill all of physical memory
1270 * with an average block size of zfs_arc_average_blocksize (default 8K).
1271 * By default, the table will take up
1272 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1273 */
1274 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1275 hsize <<= 1;
1276 retry:
1277 buf_hash_table.ht_mask = hsize - 1;
1278 #if defined(_KERNEL) && defined(HAVE_SPL)
1279 /*
1280 * Large allocations which do not require contiguous pages
1281 * should be using vmem_alloc() in the linux kernel
1282 */
1283 buf_hash_table.ht_table =
1284 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1285 #else
1286 buf_hash_table.ht_table =
1287 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1288 #endif
1289 if (buf_hash_table.ht_table == NULL) {
1290 ASSERT(hsize > (1ULL << 8));
1291 hsize >>= 1;
1292 goto retry;
1293 }
1294
1295 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1296 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1297 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1298 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1299 NULL, NULL, 0);
1300 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1301 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1302
1303 for (i = 0; i < 256; i++)
1304 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1305 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1306
1307 for (i = 0; i < BUF_LOCKS; i++) {
1308 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1309 NULL, MUTEX_DEFAULT, NULL);
1310 }
1311 }
1312
1313 #define ARC_MINTIME (hz>>4) /* 62 ms */
1314
1315 /*
1316 * This is the size that the buf occupies in memory. If the buf is compressed,
1317 * it will correspond to the compressed size. You should use this method of
1318 * getting the buf size unless you explicitly need the logical size.
1319 */
1320 uint64_t
1321 arc_buf_size(arc_buf_t *buf)
1322 {
1323 return (ARC_BUF_COMPRESSED(buf) ?
1324 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1325 }
1326
1327 uint64_t
1328 arc_buf_lsize(arc_buf_t *buf)
1329 {
1330 return (HDR_GET_LSIZE(buf->b_hdr));
1331 }
1332
1333 enum zio_compress
1334 arc_get_compression(arc_buf_t *buf)
1335 {
1336 return (ARC_BUF_COMPRESSED(buf) ?
1337 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1338 }
1339
1340 static inline boolean_t
1341 arc_buf_is_shared(arc_buf_t *buf)
1342 {
1343 boolean_t shared = (buf->b_data != NULL &&
1344 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1345 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1346 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1347 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1348 IMPLY(shared, ARC_BUF_SHARED(buf));
1349 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1350
1351 /*
1352 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1353 * already being shared" requirement prevents us from doing that.
1354 */
1355
1356 return (shared);
1357 }
1358
1359 /*
1360 * Free the checksum associated with this header. If there is no checksum, this
1361 * is a no-op.
1362 */
1363 static inline void
1364 arc_cksum_free(arc_buf_hdr_t *hdr)
1365 {
1366 ASSERT(HDR_HAS_L1HDR(hdr));
1367 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1368 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1369 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1370 hdr->b_l1hdr.b_freeze_cksum = NULL;
1371 }
1372 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1373 }
1374
1375 /*
1376 * Return true iff at least one of the bufs on hdr is not compressed.
1377 */
1378 static boolean_t
1379 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1380 {
1381 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1382 if (!ARC_BUF_COMPRESSED(b)) {
1383 return (B_TRUE);
1384 }
1385 }
1386 return (B_FALSE);
1387 }
1388
1389
1390 /*
1391 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1392 * matches the checksum that is stored in the hdr. If there is no checksum,
1393 * or if the buf is compressed, this is a no-op.
1394 */
1395 static void
1396 arc_cksum_verify(arc_buf_t *buf)
1397 {
1398 arc_buf_hdr_t *hdr = buf->b_hdr;
1399 zio_cksum_t zc;
1400
1401 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1402 return;
1403
1404 if (ARC_BUF_COMPRESSED(buf)) {
1405 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1406 arc_hdr_has_uncompressed_buf(hdr));
1407 return;
1408 }
1409
1410 ASSERT(HDR_HAS_L1HDR(hdr));
1411
1412 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1413 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1414 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1415 return;
1416 }
1417
1418 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1419 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1420 panic("buffer modified while frozen!");
1421 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1422 }
1423
1424 static boolean_t
1425 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1426 {
1427 enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1428 boolean_t valid_cksum;
1429
1430 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1431 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1432
1433 /*
1434 * We rely on the blkptr's checksum to determine if the block
1435 * is valid or not. When compressed arc is enabled, the l2arc
1436 * writes the block to the l2arc just as it appears in the pool.
1437 * This allows us to use the blkptr's checksum to validate the
1438 * data that we just read off of the l2arc without having to store
1439 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1440 * arc is disabled, then the data written to the l2arc is always
1441 * uncompressed and won't match the block as it exists in the main
1442 * pool. When this is the case, we must first compress it if it is
1443 * compressed on the main pool before we can validate the checksum.
1444 */
1445 if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1446 uint64_t lsize;
1447 uint64_t csize;
1448 void *cbuf;
1449 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1450
1451 cbuf = zio_buf_alloc(HDR_GET_PSIZE(hdr));
1452 lsize = HDR_GET_LSIZE(hdr);
1453 csize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1454
1455 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1456 if (csize < HDR_GET_PSIZE(hdr)) {
1457 /*
1458 * Compressed blocks are always a multiple of the
1459 * smallest ashift in the pool. Ideally, we would
1460 * like to round up the csize to the next
1461 * spa_min_ashift but that value may have changed
1462 * since the block was last written. Instead,
1463 * we rely on the fact that the hdr's psize
1464 * was set to the psize of the block when it was
1465 * last written. We set the csize to that value
1466 * and zero out any part that should not contain
1467 * data.
1468 */
1469 bzero((char *)cbuf + csize, HDR_GET_PSIZE(hdr) - csize);
1470 csize = HDR_GET_PSIZE(hdr);
1471 }
1472 zio_push_transform(zio, cbuf, csize, HDR_GET_PSIZE(hdr), NULL);
1473 }
1474
1475 /*
1476 * Block pointers always store the checksum for the logical data.
1477 * If the block pointer has the gang bit set, then the checksum
1478 * it represents is for the reconstituted data and not for an
1479 * individual gang member. The zio pipeline, however, must be able to
1480 * determine the checksum of each of the gang constituents so it
1481 * treats the checksum comparison differently than what we need
1482 * for l2arc blocks. This prevents us from using the
1483 * zio_checksum_error() interface directly. Instead we must call the
1484 * zio_checksum_error_impl() so that we can ensure the checksum is
1485 * generated using the correct checksum algorithm and accounts for the
1486 * logical I/O size and not just a gang fragment.
1487 */
1488 valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1489 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1490 zio->io_offset, NULL) == 0);
1491 zio_pop_transforms(zio);
1492 return (valid_cksum);
1493 }
1494
1495 /*
1496 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1497 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1498 * isn't modified later on. If buf is compressed or there is already a checksum
1499 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1500 */
1501 static void
1502 arc_cksum_compute(arc_buf_t *buf)
1503 {
1504 arc_buf_hdr_t *hdr = buf->b_hdr;
1505
1506 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1507 return;
1508
1509 ASSERT(HDR_HAS_L1HDR(hdr));
1510
1511 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1512 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1513 ASSERT(arc_hdr_has_uncompressed_buf(hdr));
1514 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1515 return;
1516 } else if (ARC_BUF_COMPRESSED(buf)) {
1517 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1518 return;
1519 }
1520
1521 ASSERT(!ARC_BUF_COMPRESSED(buf));
1522 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1523 KM_SLEEP);
1524 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1525 hdr->b_l1hdr.b_freeze_cksum);
1526 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1527 arc_buf_watch(buf);
1528 }
1529
1530 #ifndef _KERNEL
1531 void
1532 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1533 {
1534 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1535 }
1536 #endif
1537
1538 /* ARGSUSED */
1539 static void
1540 arc_buf_unwatch(arc_buf_t *buf)
1541 {
1542 #ifndef _KERNEL
1543 if (arc_watch) {
1544 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1545 PROT_READ | PROT_WRITE));
1546 }
1547 #endif
1548 }
1549
1550 /* ARGSUSED */
1551 static void
1552 arc_buf_watch(arc_buf_t *buf)
1553 {
1554 #ifndef _KERNEL
1555 if (arc_watch)
1556 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1557 PROT_READ));
1558 #endif
1559 }
1560
1561 static arc_buf_contents_t
1562 arc_buf_type(arc_buf_hdr_t *hdr)
1563 {
1564 arc_buf_contents_t type;
1565 if (HDR_ISTYPE_METADATA(hdr)) {
1566 type = ARC_BUFC_METADATA;
1567 } else {
1568 type = ARC_BUFC_DATA;
1569 }
1570 VERIFY3U(hdr->b_type, ==, type);
1571 return (type);
1572 }
1573
1574 boolean_t
1575 arc_is_metadata(arc_buf_t *buf)
1576 {
1577 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1578 }
1579
1580 static uint32_t
1581 arc_bufc_to_flags(arc_buf_contents_t type)
1582 {
1583 switch (type) {
1584 case ARC_BUFC_DATA:
1585 /* metadata field is 0 if buffer contains normal data */
1586 return (0);
1587 case ARC_BUFC_METADATA:
1588 return (ARC_FLAG_BUFC_METADATA);
1589 default:
1590 break;
1591 }
1592 panic("undefined ARC buffer type!");
1593 return ((uint32_t)-1);
1594 }
1595
1596 void
1597 arc_buf_thaw(arc_buf_t *buf)
1598 {
1599 arc_buf_hdr_t *hdr = buf->b_hdr;
1600
1601 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1602 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1603
1604 arc_cksum_verify(buf);
1605
1606 /*
1607 * Compressed buffers do not manipulate the b_freeze_cksum or
1608 * allocate b_thawed.
1609 */
1610 if (ARC_BUF_COMPRESSED(buf)) {
1611 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1612 arc_hdr_has_uncompressed_buf(hdr));
1613 return;
1614 }
1615
1616 ASSERT(HDR_HAS_L1HDR(hdr));
1617 arc_cksum_free(hdr);
1618 arc_buf_unwatch(buf);
1619 }
1620
1621 void
1622 arc_buf_freeze(arc_buf_t *buf)
1623 {
1624 arc_buf_hdr_t *hdr = buf->b_hdr;
1625 kmutex_t *hash_lock;
1626
1627 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1628 return;
1629
1630 if (ARC_BUF_COMPRESSED(buf)) {
1631 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1632 arc_hdr_has_uncompressed_buf(hdr));
1633 return;
1634 }
1635
1636 hash_lock = HDR_LOCK(hdr);
1637 mutex_enter(hash_lock);
1638
1639 ASSERT(HDR_HAS_L1HDR(hdr));
1640 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1641 hdr->b_l1hdr.b_state == arc_anon);
1642 arc_cksum_compute(buf);
1643 mutex_exit(hash_lock);
1644 }
1645
1646 /*
1647 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1648 * the following functions should be used to ensure that the flags are
1649 * updated in a thread-safe way. When manipulating the flags either
1650 * the hash_lock must be held or the hdr must be undiscoverable. This
1651 * ensures that we're not racing with any other threads when updating
1652 * the flags.
1653 */
1654 static inline void
1655 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1656 {
1657 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1658 hdr->b_flags |= flags;
1659 }
1660
1661 static inline void
1662 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1663 {
1664 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1665 hdr->b_flags &= ~flags;
1666 }
1667
1668 /*
1669 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1670 * done in a special way since we have to clear and set bits
1671 * at the same time. Consumers that wish to set the compression bits
1672 * must use this function to ensure that the flags are updated in
1673 * thread-safe manner.
1674 */
1675 static void
1676 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1677 {
1678 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1679
1680 /*
1681 * Holes and embedded blocks will always have a psize = 0 so
1682 * we ignore the compression of the blkptr and set the
1683 * want to uncompress them. Mark them as uncompressed.
1684 */
1685 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1686 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1687 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
1688 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1689 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1690 } else {
1691 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1692 HDR_SET_COMPRESS(hdr, cmp);
1693 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1694 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1695 }
1696 }
1697
1698 /*
1699 * Looks for another buf on the same hdr which has the data decompressed, copies
1700 * from it, and returns true. If no such buf exists, returns false.
1701 */
1702 static boolean_t
1703 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1704 {
1705 arc_buf_hdr_t *hdr = buf->b_hdr;
1706 boolean_t copied = B_FALSE;
1707
1708 ASSERT(HDR_HAS_L1HDR(hdr));
1709 ASSERT3P(buf->b_data, !=, NULL);
1710 ASSERT(!ARC_BUF_COMPRESSED(buf));
1711
1712 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1713 from = from->b_next) {
1714 /* can't use our own data buffer */
1715 if (from == buf) {
1716 continue;
1717 }
1718
1719 if (!ARC_BUF_COMPRESSED(from)) {
1720 bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1721 copied = B_TRUE;
1722 break;
1723 }
1724 }
1725
1726 /*
1727 * There were no decompressed bufs, so there should not be a
1728 * checksum on the hdr either.
1729 */
1730 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1731
1732 return (copied);
1733 }
1734
1735 /*
1736 * Given a buf that has a data buffer attached to it, this function will
1737 * efficiently fill the buf with data of the specified compression setting from
1738 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1739 * are already sharing a data buf, no copy is performed.
1740 *
1741 * If the buf is marked as compressed but uncompressed data was requested, this
1742 * will allocate a new data buffer for the buf, remove that flag, and fill the
1743 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1744 * uncompressed data, and (since we haven't added support for it yet) if you
1745 * want compressed data your buf must already be marked as compressed and have
1746 * the correct-sized data buffer.
1747 */
1748 static int
1749 arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
1750 {
1751 arc_buf_hdr_t *hdr = buf->b_hdr;
1752 boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
1753 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1754
1755 ASSERT3P(buf->b_data, !=, NULL);
1756 IMPLY(compressed, hdr_compressed);
1757 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1758
1759 if (hdr_compressed == compressed) {
1760 if (!arc_buf_is_shared(buf)) {
1761 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
1762 arc_buf_size(buf));
1763 }
1764 } else {
1765 ASSERT(hdr_compressed);
1766 ASSERT(!compressed);
1767 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
1768
1769 /*
1770 * If the buf is sharing its data with the hdr, unlink it and
1771 * allocate a new data buffer for the buf.
1772 */
1773 if (arc_buf_is_shared(buf)) {
1774 ASSERT(ARC_BUF_COMPRESSED(buf));
1775
1776 /* We need to give the buf it's own b_data */
1777 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
1778 buf->b_data =
1779 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1780 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
1781
1782 /* Previously overhead was 0; just add new overhead */
1783 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
1784 } else if (ARC_BUF_COMPRESSED(buf)) {
1785 /* We need to reallocate the buf's b_data */
1786 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
1787 buf);
1788 buf->b_data =
1789 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1790
1791 /* We increased the size of b_data; update overhead */
1792 ARCSTAT_INCR(arcstat_overhead_size,
1793 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
1794 }
1795
1796 /*
1797 * Regardless of the buf's previous compression settings, it
1798 * should not be compressed at the end of this function.
1799 */
1800 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1801
1802 /*
1803 * Try copying the data from another buf which already has a
1804 * decompressed version. If that's not possible, it's time to
1805 * bite the bullet and decompress the data from the hdr.
1806 */
1807 if (arc_buf_try_copy_decompressed_data(buf)) {
1808 /* Skip byteswapping and checksumming (already done) */
1809 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
1810 return (0);
1811 } else {
1812 int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1813 hdr->b_l1hdr.b_pabd, buf->b_data,
1814 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1815
1816 /*
1817 * Absent hardware errors or software bugs, this should
1818 * be impossible, but log it anyway so we can debug it.
1819 */
1820 if (error != 0) {
1821 zfs_dbgmsg(
1822 "hdr %p, compress %d, psize %d, lsize %d",
1823 hdr, HDR_GET_COMPRESS(hdr),
1824 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1825 return (SET_ERROR(EIO));
1826 }
1827 }
1828 }
1829
1830 /* Byteswap the buf's data if necessary */
1831 if (bswap != DMU_BSWAP_NUMFUNCS) {
1832 ASSERT(!HDR_SHARED_DATA(hdr));
1833 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
1834 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
1835 }
1836
1837 /* Compute the hdr's checksum if necessary */
1838 arc_cksum_compute(buf);
1839
1840 return (0);
1841 }
1842
1843 int
1844 arc_decompress(arc_buf_t *buf)
1845 {
1846 return (arc_buf_fill(buf, B_FALSE));
1847 }
1848
1849 /*
1850 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1851 */
1852 static uint64_t
1853 arc_hdr_size(arc_buf_hdr_t *hdr)
1854 {
1855 uint64_t size;
1856
1857 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1858 HDR_GET_PSIZE(hdr) > 0) {
1859 size = HDR_GET_PSIZE(hdr);
1860 } else {
1861 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1862 size = HDR_GET_LSIZE(hdr);
1863 }
1864 return (size);
1865 }
1866
1867 /*
1868 * Increment the amount of evictable space in the arc_state_t's refcount.
1869 * We account for the space used by the hdr and the arc buf individually
1870 * so that we can add and remove them from the refcount individually.
1871 */
1872 static void
1873 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
1874 {
1875 arc_buf_contents_t type = arc_buf_type(hdr);
1876 arc_buf_t *buf;
1877
1878 ASSERT(HDR_HAS_L1HDR(hdr));
1879
1880 if (GHOST_STATE(state)) {
1881 ASSERT0(hdr->b_l1hdr.b_bufcnt);
1882 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1883 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
1884 (void) refcount_add_many(&state->arcs_esize[type],
1885 HDR_GET_LSIZE(hdr), hdr);
1886 return;
1887 }
1888
1889 ASSERT(!GHOST_STATE(state));
1890 if (hdr->b_l1hdr.b_pabd != NULL) {
1891 (void) refcount_add_many(&state->arcs_esize[type],
1892 arc_hdr_size(hdr), hdr);
1893 }
1894 for (buf = hdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
1895 if (arc_buf_is_shared(buf))
1896 continue;
1897 (void) refcount_add_many(&state->arcs_esize[type],
1898 arc_buf_size(buf), buf);
1899 }
1900 }
1901
1902 /*
1903 * Decrement the amount of evictable space in the arc_state_t's refcount.
1904 * We account for the space used by the hdr and the arc buf individually
1905 * so that we can add and remove them from the refcount individually.
1906 */
1907 static void
1908 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
1909 {
1910 arc_buf_contents_t type = arc_buf_type(hdr);
1911 arc_buf_t *buf;
1912
1913 ASSERT(HDR_HAS_L1HDR(hdr));
1914
1915 if (GHOST_STATE(state)) {
1916 ASSERT0(hdr->b_l1hdr.b_bufcnt);
1917 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1918 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
1919 (void) refcount_remove_many(&state->arcs_esize[type],
1920 HDR_GET_LSIZE(hdr), hdr);
1921 return;
1922 }
1923
1924 ASSERT(!GHOST_STATE(state));
1925 if (hdr->b_l1hdr.b_pabd != NULL) {
1926 (void) refcount_remove_many(&state->arcs_esize[type],
1927 arc_hdr_size(hdr), hdr);
1928 }
1929 for (buf = hdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
1930 if (arc_buf_is_shared(buf))
1931 continue;
1932 (void) refcount_remove_many(&state->arcs_esize[type],
1933 arc_buf_size(buf), buf);
1934 }
1935 }
1936
1937 /*
1938 * Add a reference to this hdr indicating that someone is actively
1939 * referencing that memory. When the refcount transitions from 0 to 1,
1940 * we remove it from the respective arc_state_t list to indicate that
1941 * it is not evictable.
1942 */
1943 static void
1944 add_reference(arc_buf_hdr_t *hdr, void *tag)
1945 {
1946 arc_state_t *state;
1947
1948 ASSERT(HDR_HAS_L1HDR(hdr));
1949 if (!MUTEX_HELD(HDR_LOCK(hdr))) {
1950 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
1951 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1952 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1953 }
1954
1955 state = hdr->b_l1hdr.b_state;
1956
1957 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1958 (state != arc_anon)) {
1959 /* We don't use the L2-only state list. */
1960 if (state != arc_l2c_only) {
1961 multilist_remove(state->arcs_list[arc_buf_type(hdr)],
1962 hdr);
1963 arc_evictable_space_decrement(hdr, state);
1964 }
1965 /* remove the prefetch flag if we get a reference */
1966 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
1967 }
1968 }
1969
1970 /*
1971 * Remove a reference from this hdr. When the reference transitions from
1972 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
1973 * list making it eligible for eviction.
1974 */
1975 static int
1976 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1977 {
1978 int cnt;
1979 arc_state_t *state = hdr->b_l1hdr.b_state;
1980
1981 ASSERT(HDR_HAS_L1HDR(hdr));
1982 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1983 ASSERT(!GHOST_STATE(state));
1984
1985 /*
1986 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1987 * check to prevent usage of the arc_l2c_only list.
1988 */
1989 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1990 (state != arc_anon)) {
1991 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
1992 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
1993 arc_evictable_space_increment(hdr, state);
1994 }
1995 return (cnt);
1996 }
1997
1998 /*
1999 * Returns detailed information about a specific arc buffer. When the
2000 * state_index argument is set the function will calculate the arc header
2001 * list position for its arc state. Since this requires a linear traversal
2002 * callers are strongly encourage not to do this. However, it can be helpful
2003 * for targeted analysis so the functionality is provided.
2004 */
2005 void
2006 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2007 {
2008 arc_buf_hdr_t *hdr = ab->b_hdr;
2009 l1arc_buf_hdr_t *l1hdr = NULL;
2010 l2arc_buf_hdr_t *l2hdr = NULL;
2011 arc_state_t *state = NULL;
2012
2013 memset(abi, 0, sizeof (arc_buf_info_t));
2014
2015 if (hdr == NULL)
2016 return;
2017
2018 abi->abi_flags = hdr->b_flags;
2019
2020 if (HDR_HAS_L1HDR(hdr)) {
2021 l1hdr = &hdr->b_l1hdr;
2022 state = l1hdr->b_state;
2023 }
2024 if (HDR_HAS_L2HDR(hdr))
2025 l2hdr = &hdr->b_l2hdr;
2026
2027 if (l1hdr) {
2028 abi->abi_bufcnt = l1hdr->b_bufcnt;
2029 abi->abi_access = l1hdr->b_arc_access;
2030 abi->abi_mru_hits = l1hdr->b_mru_hits;
2031 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2032 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2033 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2034 abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
2035 }
2036
2037 if (l2hdr) {
2038 abi->abi_l2arc_dattr = l2hdr->b_daddr;
2039 abi->abi_l2arc_hits = l2hdr->b_hits;
2040 }
2041
2042 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2043 abi->abi_state_contents = arc_buf_type(hdr);
2044 abi->abi_size = arc_hdr_size(hdr);
2045 }
2046
2047 /*
2048 * Move the supplied buffer to the indicated state. The hash lock
2049 * for the buffer must be held by the caller.
2050 */
2051 static void
2052 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2053 kmutex_t *hash_lock)
2054 {
2055 arc_state_t *old_state;
2056 int64_t refcnt;
2057 uint32_t bufcnt;
2058 boolean_t update_old, update_new;
2059 arc_buf_contents_t buftype = arc_buf_type(hdr);
2060
2061 /*
2062 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2063 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2064 * L1 hdr doesn't always exist when we change state to arc_anon before
2065 * destroying a header, in which case reallocating to add the L1 hdr is
2066 * pointless.
2067 */
2068 if (HDR_HAS_L1HDR(hdr)) {
2069 old_state = hdr->b_l1hdr.b_state;
2070 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2071 bufcnt = hdr->b_l1hdr.b_bufcnt;
2072 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
2073 } else {
2074 old_state = arc_l2c_only;
2075 refcnt = 0;
2076 bufcnt = 0;
2077 update_old = B_FALSE;
2078 }
2079 update_new = update_old;
2080
2081 ASSERT(MUTEX_HELD(hash_lock));
2082 ASSERT3P(new_state, !=, old_state);
2083 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2084 ASSERT(old_state != arc_anon || bufcnt <= 1);
2085
2086 /*
2087 * If this buffer is evictable, transfer it from the
2088 * old state list to the new state list.
2089 */
2090 if (refcnt == 0) {
2091 if (old_state != arc_anon && old_state != arc_l2c_only) {
2092 ASSERT(HDR_HAS_L1HDR(hdr));
2093 multilist_remove(old_state->arcs_list[buftype], hdr);
2094
2095 if (GHOST_STATE(old_state)) {
2096 ASSERT0(bufcnt);
2097 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2098 update_old = B_TRUE;
2099 }
2100 arc_evictable_space_decrement(hdr, old_state);
2101 }
2102 if (new_state != arc_anon && new_state != arc_l2c_only) {
2103 /*
2104 * An L1 header always exists here, since if we're
2105 * moving to some L1-cached state (i.e. not l2c_only or
2106 * anonymous), we realloc the header to add an L1hdr
2107 * beforehand.
2108 */
2109 ASSERT(HDR_HAS_L1HDR(hdr));
2110 multilist_insert(new_state->arcs_list[buftype], hdr);
2111
2112 if (GHOST_STATE(new_state)) {
2113 ASSERT0(bufcnt);
2114 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2115 update_new = B_TRUE;
2116 }
2117 arc_evictable_space_increment(hdr, new_state);
2118 }
2119 }
2120
2121 ASSERT(!HDR_EMPTY(hdr));
2122 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2123 buf_hash_remove(hdr);
2124
2125 /* adjust state sizes (ignore arc_l2c_only) */
2126
2127 if (update_new && new_state != arc_l2c_only) {
2128 ASSERT(HDR_HAS_L1HDR(hdr));
2129 if (GHOST_STATE(new_state)) {
2130 ASSERT0(bufcnt);
2131
2132 /*
2133 * When moving a header to a ghost state, we first
2134 * remove all arc buffers. Thus, we'll have a
2135 * bufcnt of zero, and no arc buffer to use for
2136 * the reference. As a result, we use the arc
2137 * header pointer for the reference.
2138 */
2139 (void) refcount_add_many(&new_state->arcs_size,
2140 HDR_GET_LSIZE(hdr), hdr);
2141 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2142 } else {
2143 arc_buf_t *buf;
2144 uint32_t buffers = 0;
2145
2146 /*
2147 * Each individual buffer holds a unique reference,
2148 * thus we must remove each of these references one
2149 * at a time.
2150 */
2151 for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
2152 buf = buf->b_next) {
2153 ASSERT3U(bufcnt, !=, 0);
2154 buffers++;
2155
2156 /*
2157 * When the arc_buf_t is sharing the data
2158 * block with the hdr, the owner of the
2159 * reference belongs to the hdr. Only
2160 * add to the refcount if the arc_buf_t is
2161 * not shared.
2162 */
2163 if (arc_buf_is_shared(buf))
2164 continue;
2165
2166 (void) refcount_add_many(&new_state->arcs_size,
2167 arc_buf_size(buf), buf);
2168 }
2169 ASSERT3U(bufcnt, ==, buffers);
2170
2171 if (hdr->b_l1hdr.b_pabd != NULL) {
2172 (void) refcount_add_many(&new_state->arcs_size,
2173 arc_hdr_size(hdr), hdr);
2174 } else {
2175 ASSERT(GHOST_STATE(old_state));
2176 }
2177 }
2178 }
2179
2180 if (update_old && old_state != arc_l2c_only) {
2181 ASSERT(HDR_HAS_L1HDR(hdr));
2182 if (GHOST_STATE(old_state)) {
2183 ASSERT0(bufcnt);
2184 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2185
2186 /*
2187 * When moving a header off of a ghost state,
2188 * the header will not contain any arc buffers.
2189 * We use the arc header pointer for the reference
2190 * which is exactly what we did when we put the
2191 * header on the ghost state.
2192 */
2193
2194 (void) refcount_remove_many(&old_state->arcs_size,
2195 HDR_GET_LSIZE(hdr), hdr);
2196 } else {
2197 arc_buf_t *buf;
2198 uint32_t buffers = 0;
2199
2200 /*
2201 * Each individual buffer holds a unique reference,
2202 * thus we must remove each of these references one
2203 * at a time.
2204 */
2205 for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
2206 buf = buf->b_next) {
2207 ASSERT3U(bufcnt, !=, 0);
2208 buffers++;
2209
2210 /*
2211 * When the arc_buf_t is sharing the data
2212 * block with the hdr, the owner of the
2213 * reference belongs to the hdr. Only
2214 * add to the refcount if the arc_buf_t is
2215 * not shared.
2216 */
2217 if (arc_buf_is_shared(buf))
2218 continue;
2219
2220 (void) refcount_remove_many(
2221 &old_state->arcs_size, arc_buf_size(buf),
2222 buf);
2223 }
2224 ASSERT3U(bufcnt, ==, buffers);
2225 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2226 (void) refcount_remove_many(
2227 &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2228 }
2229 }
2230
2231 if (HDR_HAS_L1HDR(hdr))
2232 hdr->b_l1hdr.b_state = new_state;
2233
2234 /*
2235 * L2 headers should never be on the L2 state list since they don't
2236 * have L1 headers allocated.
2237 */
2238 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2239 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2240 }
2241
2242 void
2243 arc_space_consume(uint64_t space, arc_space_type_t type)
2244 {
2245 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2246
2247 switch (type) {
2248 default:
2249 break;
2250 case ARC_SPACE_DATA:
2251 ARCSTAT_INCR(arcstat_data_size, space);
2252 break;
2253 case ARC_SPACE_META:
2254 ARCSTAT_INCR(arcstat_metadata_size, space);
2255 break;
2256 case ARC_SPACE_BONUS:
2257 ARCSTAT_INCR(arcstat_bonus_size, space);
2258 break;
2259 case ARC_SPACE_DNODE:
2260 ARCSTAT_INCR(arcstat_dnode_size, space);
2261 break;
2262 case ARC_SPACE_DBUF:
2263 ARCSTAT_INCR(arcstat_dbuf_size, space);
2264 break;
2265 case ARC_SPACE_HDRS:
2266 ARCSTAT_INCR(arcstat_hdr_size, space);
2267 break;
2268 case ARC_SPACE_L2HDRS:
2269 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2270 break;
2271 }
2272
2273 if (type != ARC_SPACE_DATA)
2274 ARCSTAT_INCR(arcstat_meta_used, space);
2275
2276 atomic_add_64(&arc_size, space);
2277 }
2278
2279 void
2280 arc_space_return(uint64_t space, arc_space_type_t type)
2281 {
2282 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2283
2284 switch (type) {
2285 default:
2286 break;
2287 case ARC_SPACE_DATA:
2288 ARCSTAT_INCR(arcstat_data_size, -space);
2289 break;
2290 case ARC_SPACE_META:
2291 ARCSTAT_INCR(arcstat_metadata_size, -space);
2292 break;
2293 case ARC_SPACE_BONUS:
2294 ARCSTAT_INCR(arcstat_bonus_size, -space);
2295 break;
2296 case ARC_SPACE_DNODE:
2297 ARCSTAT_INCR(arcstat_dnode_size, -space);
2298 break;
2299 case ARC_SPACE_DBUF:
2300 ARCSTAT_INCR(arcstat_dbuf_size, -space);
2301 break;
2302 case ARC_SPACE_HDRS:
2303 ARCSTAT_INCR(arcstat_hdr_size, -space);
2304 break;
2305 case ARC_SPACE_L2HDRS:
2306 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2307 break;
2308 }
2309
2310 if (type != ARC_SPACE_DATA) {
2311 ASSERT(arc_meta_used >= space);
2312 if (arc_meta_max < arc_meta_used)
2313 arc_meta_max = arc_meta_used;
2314 ARCSTAT_INCR(arcstat_meta_used, -space);
2315 }
2316
2317 ASSERT(arc_size >= space);
2318 atomic_add_64(&arc_size, -space);
2319 }
2320
2321 /*
2322 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2323 * with the hdr's b_pabd.
2324 */
2325 static boolean_t
2326 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2327 {
2328 /*
2329 * The criteria for sharing a hdr's data are:
2330 * 1. the hdr's compression matches the buf's compression
2331 * 2. the hdr doesn't need to be byteswapped
2332 * 3. the hdr isn't already being shared
2333 * 4. the buf is either compressed or it is the last buf in the hdr list
2334 *
2335 * Criterion #4 maintains the invariant that shared uncompressed
2336 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2337 * might ask, "if a compressed buf is allocated first, won't that be the
2338 * last thing in the list?", but in that case it's impossible to create
2339 * a shared uncompressed buf anyway (because the hdr must be compressed
2340 * to have the compressed buf). You might also think that #3 is
2341 * sufficient to make this guarantee, however it's possible
2342 * (specifically in the rare L2ARC write race mentioned in
2343 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2344 * is sharable, but wasn't at the time of its allocation. Rather than
2345 * allow a new shared uncompressed buf to be created and then shuffle
2346 * the list around to make it the last element, this simply disallows
2347 * sharing if the new buf isn't the first to be added.
2348 */
2349 ASSERT3P(buf->b_hdr, ==, hdr);
2350 boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2351 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2352 return (buf_compressed == hdr_compressed &&
2353 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2354 !HDR_SHARED_DATA(hdr) &&
2355 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2356 }
2357
2358 /*
2359 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2360 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2361 * copy was made successfully, or an error code otherwise.
2362 */
2363 static int
2364 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2365 boolean_t fill, arc_buf_t **ret)
2366 {
2367 arc_buf_t *buf;
2368
2369 ASSERT(HDR_HAS_L1HDR(hdr));
2370 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2371 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2372 hdr->b_type == ARC_BUFC_METADATA);
2373 ASSERT3P(ret, !=, NULL);
2374 ASSERT3P(*ret, ==, NULL);
2375
2376 hdr->b_l1hdr.b_mru_hits = 0;
2377 hdr->b_l1hdr.b_mru_ghost_hits = 0;
2378 hdr->b_l1hdr.b_mfu_hits = 0;
2379 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
2380 hdr->b_l1hdr.b_l2_hits = 0;
2381
2382 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2383 buf->b_hdr = hdr;
2384 buf->b_data = NULL;
2385 buf->b_next = hdr->b_l1hdr.b_buf;
2386 buf->b_flags = 0;
2387
2388 add_reference(hdr, tag);
2389
2390 /*
2391 * We're about to change the hdr's b_flags. We must either
2392 * hold the hash_lock or be undiscoverable.
2393 */
2394 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2395
2396 /*
2397 * Only honor requests for compressed bufs if the hdr is actually
2398 * compressed.
2399 */
2400 if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
2401 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2402
2403 /*
2404 * If the hdr's data can be shared then we share the data buffer and
2405 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2406 * allocate a new buffer to store the buf's data.
2407 *
2408 * There are two additional restrictions here because we're sharing
2409 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2410 * actively involved in an L2ARC write, because if this buf is used by
2411 * an arc_write() then the hdr's data buffer will be released when the
2412 * write completes, even though the L2ARC write might still be using it.
2413 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2414 * need to be ABD-aware.
2415 */
2416 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2417 abd_is_linear(hdr->b_l1hdr.b_pabd);
2418
2419 /* Set up b_data and sharing */
2420 if (can_share) {
2421 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2422 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2423 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2424 } else {
2425 buf->b_data =
2426 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2427 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2428 }
2429 VERIFY3P(buf->b_data, !=, NULL);
2430
2431 hdr->b_l1hdr.b_buf = buf;
2432 hdr->b_l1hdr.b_bufcnt += 1;
2433
2434 /*
2435 * If the user wants the data from the hdr, we need to either copy or
2436 * decompress the data.
2437 */
2438 if (fill) {
2439 return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
2440 }
2441
2442 return (0);
2443 }
2444
2445 static char *arc_onloan_tag = "onloan";
2446
2447 static inline void
2448 arc_loaned_bytes_update(int64_t delta)
2449 {
2450 atomic_add_64(&arc_loaned_bytes, delta);
2451
2452 /* assert that it did not wrap around */
2453 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2454 }
2455
2456 /*
2457 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2458 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2459 * buffers must be returned to the arc before they can be used by the DMU or
2460 * freed.
2461 */
2462 arc_buf_t *
2463 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2464 {
2465 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2466 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2467
2468 arc_loaned_bytes_update(size);
2469
2470 return (buf);
2471 }
2472
2473 arc_buf_t *
2474 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2475 enum zio_compress compression_type)
2476 {
2477 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2478 psize, lsize, compression_type);
2479
2480 arc_loaned_bytes_update(psize);
2481
2482 return (buf);
2483 }
2484
2485
2486 /*
2487 * Return a loaned arc buffer to the arc.
2488 */
2489 void
2490 arc_return_buf(arc_buf_t *buf, void *tag)
2491 {
2492 arc_buf_hdr_t *hdr = buf->b_hdr;
2493
2494 ASSERT3P(buf->b_data, !=, NULL);
2495 ASSERT(HDR_HAS_L1HDR(hdr));
2496 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2497 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2498
2499 arc_loaned_bytes_update(-arc_buf_size(buf));
2500 }
2501
2502 /* Detach an arc_buf from a dbuf (tag) */
2503 void
2504 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2505 {
2506 arc_buf_hdr_t *hdr = buf->b_hdr;
2507
2508 ASSERT3P(buf->b_data, !=, NULL);
2509 ASSERT(HDR_HAS_L1HDR(hdr));
2510 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2511 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2512
2513 arc_loaned_bytes_update(arc_buf_size(buf));
2514 }
2515
2516 static void
2517 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2518 {
2519 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2520
2521 df->l2df_abd = abd;
2522 df->l2df_size = size;
2523 df->l2df_type = type;
2524 mutex_enter(&l2arc_free_on_write_mtx);
2525 list_insert_head(l2arc_free_on_write, df);
2526 mutex_exit(&l2arc_free_on_write_mtx);
2527 }
2528
2529 static void
2530 arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2531 {
2532 arc_state_t *state = hdr->b_l1hdr.b_state;
2533 arc_buf_contents_t type = arc_buf_type(hdr);
2534 uint64_t size = arc_hdr_size(hdr);
2535
2536 /* protected by hash lock, if in the hash table */
2537 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2538 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2539 ASSERT(state != arc_anon && state != arc_l2c_only);
2540
2541 (void) refcount_remove_many(&state->arcs_esize[type],
2542 size, hdr);
2543 }
2544 (void) refcount_remove_many(&state->arcs_size, size, hdr);
2545 if (type == ARC_BUFC_METADATA) {
2546 arc_space_return(size, ARC_SPACE_META);
2547 } else {
2548 ASSERT(type == ARC_BUFC_DATA);
2549 arc_space_return(size, ARC_SPACE_DATA);
2550 }
2551
2552 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2553 }
2554
2555 /*
2556 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2557 * data buffer, we transfer the refcount ownership to the hdr and update
2558 * the appropriate kstats.
2559 */
2560 static void
2561 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2562 {
2563 ASSERT(arc_can_share(hdr, buf));
2564 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2565 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2566
2567 /*
2568 * Start sharing the data buffer. We transfer the
2569 * refcount ownership to the hdr since it always owns
2570 * the refcount whenever an arc_buf_t is shared.
2571 */
2572 refcount_transfer_ownership(&hdr->b_l1hdr.b_state->arcs_size, buf, hdr);
2573 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2574 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2575 HDR_ISTYPE_METADATA(hdr));
2576 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2577 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2578
2579 /*
2580 * Since we've transferred ownership to the hdr we need
2581 * to increment its compressed and uncompressed kstats and
2582 * decrement the overhead size.
2583 */
2584 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2585 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2586 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2587 }
2588
2589 static void
2590 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2591 {
2592 ASSERT(arc_buf_is_shared(buf));
2593 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2594 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2595
2596 /*
2597 * We are no longer sharing this buffer so we need
2598 * to transfer its ownership to the rightful owner.
2599 */
2600 refcount_transfer_ownership(&hdr->b_l1hdr.b_state->arcs_size, hdr, buf);
2601 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2602 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2603 abd_put(hdr->b_l1hdr.b_pabd);
2604 hdr->b_l1hdr.b_pabd = NULL;
2605 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2606
2607 /*
2608 * Since the buffer is no longer shared between
2609 * the arc buf and the hdr, count it as overhead.
2610 */
2611 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2612 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2613 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2614 }
2615
2616 /*
2617 * Remove an arc_buf_t from the hdr's buf list and return the last
2618 * arc_buf_t on the list. If no buffers remain on the list then return
2619 * NULL.
2620 */
2621 static arc_buf_t *
2622 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2623 {
2624 ASSERT(HDR_HAS_L1HDR(hdr));
2625 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2626
2627 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2628 arc_buf_t *lastbuf = NULL;
2629
2630 /*
2631 * Remove the buf from the hdr list and locate the last
2632 * remaining buffer on the list.
2633 */
2634 while (*bufp != NULL) {
2635 if (*bufp == buf)
2636 *bufp = buf->b_next;
2637
2638 /*
2639 * If we've removed a buffer in the middle of
2640 * the list then update the lastbuf and update
2641 * bufp.
2642 */
2643 if (*bufp != NULL) {
2644 lastbuf = *bufp;
2645 bufp = &(*bufp)->b_next;
2646 }
2647 }
2648 buf->b_next = NULL;
2649 ASSERT3P(lastbuf, !=, buf);
2650 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
2651 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
2652 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
2653
2654 return (lastbuf);
2655 }
2656
2657 /*
2658 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
2659 * list and free it.
2660 */
2661 static void
2662 arc_buf_destroy_impl(arc_buf_t *buf)
2663 {
2664 arc_buf_hdr_t *hdr = buf->b_hdr;
2665
2666 /*
2667 * Free up the data associated with the buf but only if we're not
2668 * sharing this with the hdr. If we are sharing it with the hdr, the
2669 * hdr is responsible for doing the free.
2670 */
2671 if (buf->b_data != NULL) {
2672 /*
2673 * We're about to change the hdr's b_flags. We must either
2674 * hold the hash_lock or be undiscoverable.
2675 */
2676 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2677
2678 arc_cksum_verify(buf);
2679 arc_buf_unwatch(buf);
2680
2681 if (arc_buf_is_shared(buf)) {
2682 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2683 } else {
2684 uint64_t size = arc_buf_size(buf);
2685 arc_free_data_buf(hdr, buf->b_data, size, buf);
2686 ARCSTAT_INCR(arcstat_overhead_size, -size);
2687 }
2688 buf->b_data = NULL;
2689
2690 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2691 hdr->b_l1hdr.b_bufcnt -= 1;
2692 }
2693
2694 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
2695
2696 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2697 /*
2698 * If the current arc_buf_t is sharing its data buffer with the
2699 * hdr, then reassign the hdr's b_pabd to share it with the new
2700 * buffer at the end of the list. The shared buffer is always
2701 * the last one on the hdr's buffer list.
2702 *
2703 * There is an equivalent case for compressed bufs, but since
2704 * they aren't guaranteed to be the last buf in the list and
2705 * that is an exceedingly rare case, we just allow that space be
2706 * wasted temporarily.
2707 */
2708 if (lastbuf != NULL) {
2709 /* Only one buf can be shared at once */
2710 VERIFY(!arc_buf_is_shared(lastbuf));
2711 /* hdr is uncompressed so can't have compressed buf */
2712 VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
2713
2714 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2715 arc_hdr_free_pabd(hdr);
2716
2717 /*
2718 * We must setup a new shared block between the
2719 * last buffer and the hdr. The data would have
2720 * been allocated by the arc buf so we need to transfer
2721 * ownership to the hdr since it's now being shared.
2722 */
2723 arc_share_buf(hdr, lastbuf);
2724 }
2725 } else if (HDR_SHARED_DATA(hdr)) {
2726 /*
2727 * Uncompressed shared buffers are always at the end
2728 * of the list. Compressed buffers don't have the
2729 * same requirements. This makes it hard to
2730 * simply assert that the lastbuf is shared so
2731 * we rely on the hdr's compression flags to determine
2732 * if we have a compressed, shared buffer.
2733 */
2734 ASSERT3P(lastbuf, !=, NULL);
2735 ASSERT(arc_buf_is_shared(lastbuf) ||
2736 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
2737 }
2738
2739 /*
2740 * Free the checksum if we're removing the last uncompressed buf from
2741 * this hdr.
2742 */
2743 if (!arc_hdr_has_uncompressed_buf(hdr)) {
2744 arc_cksum_free(hdr);
2745 }
2746
2747 /* clean up the buf */
2748 buf->b_hdr = NULL;
2749 kmem_cache_free(buf_cache, buf);
2750 }
2751
2752 static void
2753 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr)
2754 {
2755 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2756 ASSERT(HDR_HAS_L1HDR(hdr));
2757 ASSERT(!HDR_SHARED_DATA(hdr));
2758
2759 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2760 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
2761 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2762 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2763
2764 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2765 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2766 }
2767
2768 static void
2769 arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
2770 {
2771 ASSERT(HDR_HAS_L1HDR(hdr));
2772 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2773
2774 /*
2775 * If the hdr is currently being written to the l2arc then
2776 * we defer freeing the data by adding it to the l2arc_free_on_write
2777 * list. The l2arc will free the data once it's finished
2778 * writing it to the l2arc device.
2779 */
2780 if (HDR_L2_WRITING(hdr)) {
2781 arc_hdr_free_on_write(hdr);
2782 ARCSTAT_BUMP(arcstat_l2_free_on_write);
2783 } else {
2784 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
2785 arc_hdr_size(hdr), hdr);
2786 }
2787 hdr->b_l1hdr.b_pabd = NULL;
2788 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2789
2790 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2791 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2792 }
2793
2794 static arc_buf_hdr_t *
2795 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
2796 enum zio_compress compression_type, arc_buf_contents_t type)
2797 {
2798 arc_buf_hdr_t *hdr;
2799
2800 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
2801
2802 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2803 ASSERT(HDR_EMPTY(hdr));
2804 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2805 HDR_SET_PSIZE(hdr, psize);
2806 HDR_SET_LSIZE(hdr, lsize);
2807 hdr->b_spa = spa;
2808 hdr->b_type = type;
2809 hdr->b_flags = 0;
2810 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2811 arc_hdr_set_compress(hdr, compression_type);
2812
2813 hdr->b_l1hdr.b_state = arc_anon;
2814 hdr->b_l1hdr.b_arc_access = 0;
2815 hdr->b_l1hdr.b_bufcnt = 0;
2816 hdr->b_l1hdr.b_buf = NULL;
2817
2818 /*
2819 * Allocate the hdr's buffer. This will contain either
2820 * the compressed or uncompressed data depending on the block
2821 * it references and compressed arc enablement.
2822 */
2823 arc_hdr_alloc_pabd(hdr);
2824 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2825
2826 return (hdr);
2827 }
2828
2829 /*
2830 * Transition between the two allocation states for the arc_buf_hdr struct.
2831 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
2832 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
2833 * version is used when a cache buffer is only in the L2ARC in order to reduce
2834 * memory usage.
2835 */
2836 static arc_buf_hdr_t *
2837 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
2838 {
2839 arc_buf_hdr_t *nhdr;
2840 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2841
2842 ASSERT(HDR_HAS_L2HDR(hdr));
2843 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
2844 (old == hdr_l2only_cache && new == hdr_full_cache));
2845
2846 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
2847
2848 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2849 buf_hash_remove(hdr);
2850
2851 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
2852
2853 if (new == hdr_full_cache) {
2854 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2855 /*
2856 * arc_access and arc_change_state need to be aware that a
2857 * header has just come out of L2ARC, so we set its state to
2858 * l2c_only even though it's about to change.
2859 */
2860 nhdr->b_l1hdr.b_state = arc_l2c_only;
2861
2862 /* Verify previous threads set to NULL before freeing */
2863 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
2864 } else {
2865 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2866 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2867 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2868
2869 /*
2870 * If we've reached here, We must have been called from
2871 * arc_evict_hdr(), as such we should have already been
2872 * removed from any ghost list we were previously on
2873 * (which protects us from racing with arc_evict_state),
2874 * thus no locking is needed during this check.
2875 */
2876 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2877
2878 /*
2879 * A buffer must not be moved into the arc_l2c_only
2880 * state if it's not finished being written out to the
2881 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
2882 * might try to be accessed, even though it was removed.
2883 */
2884 VERIFY(!HDR_L2_WRITING(hdr));
2885 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2886
2887 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2888 }
2889 /*
2890 * The header has been reallocated so we need to re-insert it into any
2891 * lists it was on.
2892 */
2893 (void) buf_hash_insert(nhdr, NULL);
2894
2895 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
2896
2897 mutex_enter(&dev->l2ad_mtx);
2898
2899 /*
2900 * We must place the realloc'ed header back into the list at
2901 * the same spot. Otherwise, if it's placed earlier in the list,
2902 * l2arc_write_buffers() could find it during the function's
2903 * write phase, and try to write it out to the l2arc.
2904 */
2905 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
2906 list_remove(&dev->l2ad_buflist, hdr);
2907
2908 mutex_exit(&dev->l2ad_mtx);
2909
2910 /*
2911 * Since we're using the pointer address as the tag when
2912 * incrementing and decrementing the l2ad_alloc refcount, we
2913 * must remove the old pointer (that we're about to destroy) and
2914 * add the new pointer to the refcount. Otherwise we'd remove
2915 * the wrong pointer address when calling arc_hdr_destroy() later.
2916 */
2917
2918 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
2919 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
2920
2921 buf_discard_identity(hdr);
2922 kmem_cache_free(old, hdr);
2923
2924 return (nhdr);
2925 }
2926
2927 /*
2928 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
2929 * The buf is returned thawed since we expect the consumer to modify it.
2930 */
2931 arc_buf_t *
2932 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
2933 {
2934 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
2935 ZIO_COMPRESS_OFF, type);
2936 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
2937
2938 arc_buf_t *buf = NULL;
2939 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
2940 arc_buf_thaw(buf);
2941
2942 return (buf);
2943 }
2944
2945 /*
2946 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
2947 * for bufs containing metadata.
2948 */
2949 arc_buf_t *
2950 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
2951 enum zio_compress compression_type)
2952 {
2953 ASSERT3U(lsize, >, 0);
2954 ASSERT3U(lsize, >=, psize);
2955 ASSERT(compression_type > ZIO_COMPRESS_OFF);
2956 ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
2957
2958 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
2959 compression_type, ARC_BUFC_DATA);
2960 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
2961
2962 arc_buf_t *buf = NULL;
2963 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
2964 arc_buf_thaw(buf);
2965 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2966
2967 if (!arc_buf_is_shared(buf)) {
2968 /*
2969 * To ensure that the hdr has the correct data in it if we call
2970 * arc_decompress() on this buf before it's been written to
2971 * disk, it's easiest if we just set up sharing between the
2972 * buf and the hdr.
2973 */
2974 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
2975 arc_hdr_free_pabd(hdr);
2976 arc_share_buf(hdr, buf);
2977 }
2978
2979 return (buf);
2980 }
2981
2982 static void
2983 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2984 {
2985 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2986 l2arc_dev_t *dev = l2hdr->b_dev;
2987 uint64_t psize = arc_hdr_size(hdr);
2988
2989 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2990 ASSERT(HDR_HAS_L2HDR(hdr));
2991
2992 list_remove(&dev->l2ad_buflist, hdr);
2993
2994 ARCSTAT_INCR(arcstat_l2_psize, -psize);
2995 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
2996
2997 vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
2998
2999 (void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
3000 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3001 }
3002
3003 static void
3004 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3005 {
3006 if (HDR_HAS_L1HDR(hdr)) {
3007 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3008 hdr->b_l1hdr.b_bufcnt > 0);
3009 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3010 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3011 }
3012 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3013 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3014
3015 if (!HDR_EMPTY(hdr))
3016 buf_discard_identity(hdr);
3017
3018 if (HDR_HAS_L2HDR(hdr)) {
3019 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3020 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3021
3022 if (!buflist_held)
3023 mutex_enter(&dev->l2ad_mtx);
3024
3025 /*
3026 * Even though we checked this conditional above, we
3027 * need to check this again now that we have the
3028 * l2ad_mtx. This is because we could be racing with
3029 * another thread calling l2arc_evict() which might have
3030 * destroyed this header's L2 portion as we were waiting
3031 * to acquire the l2ad_mtx. If that happens, we don't
3032 * want to re-destroy the header's L2 portion.
3033 */
3034 if (HDR_HAS_L2HDR(hdr))
3035 arc_hdr_l2hdr_destroy(hdr);
3036
3037 if (!buflist_held)
3038 mutex_exit(&dev->l2ad_mtx);
3039 }
3040
3041 if (HDR_HAS_L1HDR(hdr)) {
3042 arc_cksum_free(hdr);
3043
3044 while (hdr->b_l1hdr.b_buf != NULL)
3045 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3046
3047 if (hdr->b_l1hdr.b_pabd != NULL)
3048 arc_hdr_free_pabd(hdr);
3049 }
3050
3051 ASSERT3P(hdr->b_hash_next, ==, NULL);
3052 if (HDR_HAS_L1HDR(hdr)) {
3053 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3054 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3055 kmem_cache_free(hdr_full_cache, hdr);
3056 } else {
3057 kmem_cache_free(hdr_l2only_cache, hdr);
3058 }
3059 }
3060
3061 void
3062 arc_buf_destroy(arc_buf_t *buf, void* tag)
3063 {
3064 arc_buf_hdr_t *hdr = buf->b_hdr;
3065 kmutex_t *hash_lock = HDR_LOCK(hdr);
3066
3067 if (hdr->b_l1hdr.b_state == arc_anon) {
3068 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3069 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3070 VERIFY0(remove_reference(hdr, NULL, tag));
3071 arc_hdr_destroy(hdr);
3072 return;
3073 }
3074
3075 mutex_enter(hash_lock);
3076 ASSERT3P(hdr, ==, buf->b_hdr);
3077 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3078 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3079 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3080 ASSERT3P(buf->b_data, !=, NULL);
3081
3082 (void) remove_reference(hdr, hash_lock, tag);
3083 arc_buf_destroy_impl(buf);
3084 mutex_exit(hash_lock);
3085 }
3086
3087 /*
3088 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3089 * state of the header is dependent on its state prior to entering this
3090 * function. The following transitions are possible:
3091 *
3092 * - arc_mru -> arc_mru_ghost
3093 * - arc_mfu -> arc_mfu_ghost
3094 * - arc_mru_ghost -> arc_l2c_only
3095 * - arc_mru_ghost -> deleted
3096 * - arc_mfu_ghost -> arc_l2c_only
3097 * - arc_mfu_ghost -> deleted
3098 */
3099 static int64_t
3100 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3101 {
3102 arc_state_t *evicted_state, *state;
3103 int64_t bytes_evicted = 0;
3104
3105 ASSERT(MUTEX_HELD(hash_lock));
3106 ASSERT(HDR_HAS_L1HDR(hdr));
3107
3108 state = hdr->b_l1hdr.b_state;
3109 if (GHOST_STATE(state)) {
3110 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3111 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3112
3113 /*
3114 * l2arc_write_buffers() relies on a header's L1 portion
3115 * (i.e. its b_pabd field) during it's write phase.
3116 * Thus, we cannot push a header onto the arc_l2c_only
3117 * state (removing its L1 piece) until the header is
3118 * done being written to the l2arc.
3119 */
3120 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3121 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3122 return (bytes_evicted);
3123 }
3124
3125 ARCSTAT_BUMP(arcstat_deleted);
3126 bytes_evicted += HDR_GET_LSIZE(hdr);
3127
3128 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3129
3130 if (HDR_HAS_L2HDR(hdr)) {
3131 ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3132 /*
3133 * This buffer is cached on the 2nd Level ARC;
3134 * don't destroy the header.
3135 */
3136 arc_change_state(arc_l2c_only, hdr, hash_lock);
3137 /*
3138 * dropping from L1+L2 cached to L2-only,
3139 * realloc to remove the L1 header.
3140 */
3141 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3142 hdr_l2only_cache);
3143 } else {
3144 arc_change_state(arc_anon, hdr, hash_lock);
3145 arc_hdr_destroy(hdr);
3146 }
3147 return (bytes_evicted);
3148 }
3149
3150 ASSERT(state == arc_mru || state == arc_mfu);
3151 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3152
3153 /* prefetch buffers have a minimum lifespan */
3154 if (HDR_IO_IN_PROGRESS(hdr) ||
3155 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3156 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3157 arc_min_prefetch_lifespan)) {
3158 ARCSTAT_BUMP(arcstat_evict_skip);
3159 return (bytes_evicted);
3160 }
3161
3162 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3163 while (hdr->b_l1hdr.b_buf) {
3164 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3165 if (!mutex_tryenter(&buf->b_evict_lock)) {
3166 ARCSTAT_BUMP(arcstat_mutex_miss);
3167 break;
3168 }
3169 if (buf->b_data != NULL)
3170 bytes_evicted += HDR_GET_LSIZE(hdr);
3171 mutex_exit(&buf->b_evict_lock);
3172 arc_buf_destroy_impl(buf);
3173 }
3174
3175 if (HDR_HAS_L2HDR(hdr)) {
3176 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3177 } else {
3178 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3179 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3180 HDR_GET_LSIZE(hdr));
3181 } else {
3182 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3183 HDR_GET_LSIZE(hdr));
3184 }
3185 }
3186
3187 if (hdr->b_l1hdr.b_bufcnt == 0) {
3188 arc_cksum_free(hdr);
3189
3190 bytes_evicted += arc_hdr_size(hdr);
3191
3192 /*
3193 * If this hdr is being evicted and has a compressed
3194 * buffer then we discard it here before we change states.
3195 * This ensures that the accounting is updated correctly
3196 * in arc_free_data_impl().
3197 */
3198 arc_hdr_free_pabd(hdr);
3199
3200 arc_change_state(evicted_state, hdr, hash_lock);
3201 ASSERT(HDR_IN_HASH_TABLE(hdr));
3202 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3203 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3204 }
3205
3206 return (bytes_evicted);
3207 }
3208
3209 static uint64_t
3210 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3211 uint64_t spa, int64_t bytes)
3212 {
3213 multilist_sublist_t *mls;
3214 uint64_t bytes_evicted = 0;
3215 arc_buf_hdr_t *hdr;
3216 kmutex_t *hash_lock;
3217 int evict_count = 0;
3218
3219 ASSERT3P(marker, !=, NULL);
3220 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3221
3222 mls = multilist_sublist_lock(ml, idx);
3223
3224 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3225 hdr = multilist_sublist_prev(mls, marker)) {
3226 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3227 (evict_count >= zfs_arc_evict_batch_limit))
3228 break;
3229
3230 /*
3231 * To keep our iteration location, move the marker
3232 * forward. Since we're not holding hdr's hash lock, we
3233 * must be very careful and not remove 'hdr' from the
3234 * sublist. Otherwise, other consumers might mistake the
3235 * 'hdr' as not being on a sublist when they call the
3236 * multilist_link_active() function (they all rely on
3237 * the hash lock protecting concurrent insertions and
3238 * removals). multilist_sublist_move_forward() was
3239 * specifically implemented to ensure this is the case
3240 * (only 'marker' will be removed and re-inserted).
3241 */
3242 multilist_sublist_move_forward(mls, marker);
3243
3244 /*
3245 * The only case where the b_spa field should ever be
3246 * zero, is the marker headers inserted by
3247 * arc_evict_state(). It's possible for multiple threads
3248 * to be calling arc_evict_state() concurrently (e.g.
3249 * dsl_pool_close() and zio_inject_fault()), so we must
3250 * skip any markers we see from these other threads.
3251 */
3252 if (hdr->b_spa == 0)
3253 continue;
3254
3255 /* we're only interested in evicting buffers of a certain spa */
3256 if (spa != 0 && hdr->b_spa != spa) {
3257 ARCSTAT_BUMP(arcstat_evict_skip);
3258 continue;
3259 }
3260
3261 hash_lock = HDR_LOCK(hdr);
3262
3263 /*
3264 * We aren't calling this function from any code path
3265 * that would already be holding a hash lock, so we're
3266 * asserting on this assumption to be defensive in case
3267 * this ever changes. Without this check, it would be
3268 * possible to incorrectly increment arcstat_mutex_miss
3269 * below (e.g. if the code changed such that we called
3270 * this function with a hash lock held).
3271 */
3272 ASSERT(!MUTEX_HELD(hash_lock));
3273
3274 if (mutex_tryenter(hash_lock)) {
3275 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3276 mutex_exit(hash_lock);
3277
3278 bytes_evicted += evicted;
3279
3280 /*
3281 * If evicted is zero, arc_evict_hdr() must have
3282 * decided to skip this header, don't increment
3283 * evict_count in this case.
3284 */
3285 if (evicted != 0)
3286 evict_count++;
3287
3288 /*
3289 * If arc_size isn't overflowing, signal any
3290 * threads that might happen to be waiting.
3291 *
3292 * For each header evicted, we wake up a single
3293 * thread. If we used cv_broadcast, we could
3294 * wake up "too many" threads causing arc_size
3295 * to significantly overflow arc_c; since
3296 * arc_get_data_impl() doesn't check for overflow
3297 * when it's woken up (it doesn't because it's
3298 * possible for the ARC to be overflowing while
3299 * full of un-evictable buffers, and the
3300 * function should proceed in this case).
3301 *
3302 * If threads are left sleeping, due to not
3303 * using cv_broadcast, they will be woken up
3304 * just before arc_reclaim_thread() sleeps.
3305 */
3306 mutex_enter(&arc_reclaim_lock);
3307 if (!arc_is_overflowing())
3308 cv_signal(&arc_reclaim_waiters_cv);
3309 mutex_exit(&arc_reclaim_lock);
3310 } else {
3311 ARCSTAT_BUMP(arcstat_mutex_miss);
3312 }
3313 }
3314
3315 multilist_sublist_unlock(mls);
3316
3317 return (bytes_evicted);
3318 }
3319
3320 /*
3321 * Evict buffers from the given arc state, until we've removed the
3322 * specified number of bytes. Move the removed buffers to the
3323 * appropriate evict state.
3324 *
3325 * This function makes a "best effort". It skips over any buffers
3326 * it can't get a hash_lock on, and so, may not catch all candidates.
3327 * It may also return without evicting as much space as requested.
3328 *
3329 * If bytes is specified using the special value ARC_EVICT_ALL, this
3330 * will evict all available (i.e. unlocked and evictable) buffers from
3331 * the given arc state; which is used by arc_flush().
3332 */
3333 static uint64_t
3334 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3335 arc_buf_contents_t type)
3336 {
3337 uint64_t total_evicted = 0;
3338 multilist_t *ml = state->arcs_list[type];
3339 int num_sublists;
3340 arc_buf_hdr_t **markers;
3341 int i;
3342
3343 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3344
3345 num_sublists = multilist_get_num_sublists(ml);
3346
3347 /*
3348 * If we've tried to evict from each sublist, made some
3349 * progress, but still have not hit the target number of bytes
3350 * to evict, we want to keep trying. The markers allow us to
3351 * pick up where we left off for each individual sublist, rather
3352 * than starting from the tail each time.
3353 */
3354 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3355 for (i = 0; i < num_sublists; i++) {
3356 multilist_sublist_t *mls;
3357
3358 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3359
3360 /*
3361 * A b_spa of 0 is used to indicate that this header is
3362 * a marker. This fact is used in arc_adjust_type() and
3363 * arc_evict_state_impl().
3364 */
3365 markers[i]->b_spa = 0;
3366
3367 mls = multilist_sublist_lock(ml, i);
3368 multilist_sublist_insert_tail(mls, markers[i]);
3369 multilist_sublist_unlock(mls);
3370 }
3371
3372 /*
3373 * While we haven't hit our target number of bytes to evict, or
3374 * we're evicting all available buffers.
3375 */
3376 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3377 int sublist_idx = multilist_get_random_index(ml);
3378 uint64_t scan_evicted = 0;
3379
3380 /*
3381 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
3382 * Request that 10% of the LRUs be scanned by the superblock
3383 * shrinker.
3384 */
3385 if (type == ARC_BUFC_DATA && arc_dnode_size > arc_dnode_limit)
3386 arc_prune_async((arc_dnode_size - arc_dnode_limit) /
3387 sizeof (dnode_t) / zfs_arc_dnode_reduce_percent);
3388
3389 /*
3390 * Start eviction using a randomly selected sublist,
3391 * this is to try and evenly balance eviction across all
3392 * sublists. Always starting at the same sublist
3393 * (e.g. index 0) would cause evictions to favor certain
3394 * sublists over others.
3395 */
3396 for (i = 0; i < num_sublists; i++) {
3397 uint64_t bytes_remaining;
3398 uint64_t bytes_evicted;
3399
3400 if (bytes == ARC_EVICT_ALL)
3401 bytes_remaining = ARC_EVICT_ALL;
3402 else if (total_evicted < bytes)
3403 bytes_remaining = bytes - total_evicted;
3404 else
3405 break;
3406
3407 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3408 markers[sublist_idx], spa, bytes_remaining);
3409
3410 scan_evicted += bytes_evicted;
3411 total_evicted += bytes_evicted;
3412
3413 /* we've reached the end, wrap to the beginning */
3414 if (++sublist_idx >= num_sublists)
3415 sublist_idx = 0;
3416 }
3417
3418 /*
3419 * If we didn't evict anything during this scan, we have
3420 * no reason to believe we'll evict more during another
3421 * scan, so break the loop.
3422 */
3423 if (scan_evicted == 0) {
3424 /* This isn't possible, let's make that obvious */
3425 ASSERT3S(bytes, !=, 0);
3426
3427 /*
3428 * When bytes is ARC_EVICT_ALL, the only way to
3429 * break the loop is when scan_evicted is zero.
3430 * In that case, we actually have evicted enough,
3431 * so we don't want to increment the kstat.
3432 */
3433 if (bytes != ARC_EVICT_ALL) {
3434 ASSERT3S(total_evicted, <, bytes);
3435 ARCSTAT_BUMP(arcstat_evict_not_enough);
3436 }
3437
3438 break;
3439 }
3440 }
3441
3442 for (i = 0; i < num_sublists; i++) {
3443 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3444 multilist_sublist_remove(mls, markers[i]);
3445 multilist_sublist_unlock(mls);
3446
3447 kmem_cache_free(hdr_full_cache, markers[i]);
3448 }
3449 kmem_free(markers, sizeof (*markers) * num_sublists);
3450
3451 return (total_evicted);
3452 }
3453
3454 /*
3455 * Flush all "evictable" data of the given type from the arc state
3456 * specified. This will not evict any "active" buffers (i.e. referenced).
3457 *
3458 * When 'retry' is set to B_FALSE, the function will make a single pass
3459 * over the state and evict any buffers that it can. Since it doesn't
3460 * continually retry the eviction, it might end up leaving some buffers
3461 * in the ARC due to lock misses.
3462 *
3463 * When 'retry' is set to B_TRUE, the function will continually retry the
3464 * eviction until *all* evictable buffers have been removed from the
3465 * state. As a result, if concurrent insertions into the state are
3466 * allowed (e.g. if the ARC isn't shutting down), this function might
3467 * wind up in an infinite loop, continually trying to evict buffers.
3468 */
3469 static uint64_t
3470 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3471 boolean_t retry)
3472 {
3473 uint64_t evicted = 0;
3474
3475 while (refcount_count(&state->arcs_esize[type]) != 0) {
3476 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3477
3478 if (!retry)
3479 break;
3480 }
3481
3482 return (evicted);
3483 }
3484
3485 /*
3486 * Helper function for arc_prune_async() it is responsible for safely
3487 * handling the execution of a registered arc_prune_func_t.
3488 */
3489 static void
3490 arc_prune_task(void *ptr)
3491 {
3492 arc_prune_t *ap = (arc_prune_t *)ptr;
3493 arc_prune_func_t *func = ap->p_pfunc;
3494
3495 if (func != NULL)
3496 func(ap->p_adjust, ap->p_private);
3497
3498 refcount_remove(&ap->p_refcnt, func);
3499 }
3500
3501 /*
3502 * Notify registered consumers they must drop holds on a portion of the ARC
3503 * buffered they reference. This provides a mechanism to ensure the ARC can
3504 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
3505 * is analogous to dnlc_reduce_cache() but more generic.
3506 *
3507 * This operation is performed asynchronously so it may be safely called
3508 * in the context of the arc_reclaim_thread(). A reference is taken here
3509 * for each registered arc_prune_t and the arc_prune_task() is responsible
3510 * for releasing it once the registered arc_prune_func_t has completed.
3511 */
3512 static void
3513 arc_prune_async(int64_t adjust)
3514 {
3515 arc_prune_t *ap;
3516
3517 mutex_enter(&arc_prune_mtx);
3518 for (ap = list_head(&arc_prune_list); ap != NULL;
3519 ap = list_next(&arc_prune_list, ap)) {
3520
3521 if (refcount_count(&ap->p_refcnt) >= 2)
3522 continue;
3523
3524 refcount_add(&ap->p_refcnt, ap->p_pfunc);
3525 ap->p_adjust = adjust;
3526 if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
3527 ap, TQ_SLEEP) == TASKQID_INVALID) {
3528 refcount_remove(&ap->p_refcnt, ap->p_pfunc);
3529 continue;
3530 }
3531 ARCSTAT_BUMP(arcstat_prune);
3532 }
3533 mutex_exit(&arc_prune_mtx);
3534 }
3535
3536 /*
3537 * Evict the specified number of bytes from the state specified,
3538 * restricting eviction to the spa and type given. This function
3539 * prevents us from trying to evict more from a state's list than
3540 * is "evictable", and to skip evicting altogether when passed a
3541 * negative value for "bytes". In contrast, arc_evict_state() will
3542 * evict everything it can, when passed a negative value for "bytes".
3543 */
3544 static uint64_t
3545 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3546 arc_buf_contents_t type)
3547 {
3548 int64_t delta;
3549
3550 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3551 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3552 return (arc_evict_state(state, spa, delta, type));
3553 }
3554
3555 return (0);
3556 }
3557
3558 /*
3559 * The goal of this function is to evict enough meta data buffers from the
3560 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
3561 * more complicated than it appears because it is common for data buffers
3562 * to have holds on meta data buffers. In addition, dnode meta data buffers
3563 * will be held by the dnodes in the block preventing them from being freed.
3564 * This means we can't simply traverse the ARC and expect to always find
3565 * enough unheld meta data buffer to release.
3566 *
3567 * Therefore, this function has been updated to make alternating passes
3568 * over the ARC releasing data buffers and then newly unheld meta data
3569 * buffers. This ensures forward progress is maintained and arc_meta_used
3570 * will decrease. Normally this is sufficient, but if required the ARC
3571 * will call the registered prune callbacks causing dentry and inodes to
3572 * be dropped from the VFS cache. This will make dnode meta data buffers
3573 * available for reclaim.
3574 */
3575 static uint64_t
3576 arc_adjust_meta_balanced(void)
3577 {
3578 int64_t delta, prune = 0, adjustmnt;
3579 uint64_t total_evicted = 0;
3580 arc_buf_contents_t type = ARC_BUFC_DATA;
3581 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
3582
3583 restart:
3584 /*
3585 * This slightly differs than the way we evict from the mru in
3586 * arc_adjust because we don't have a "target" value (i.e. no
3587 * "meta" arc_p). As a result, I think we can completely
3588 * cannibalize the metadata in the MRU before we evict the
3589 * metadata from the MFU. I think we probably need to implement a
3590 * "metadata arc_p" value to do this properly.
3591 */
3592 adjustmnt = arc_meta_used - arc_meta_limit;
3593
3594 if (adjustmnt > 0 && refcount_count(&arc_mru->arcs_esize[type]) > 0) {
3595 delta = MIN(refcount_count(&arc_mru->arcs_esize[type]),
3596 adjustmnt);
3597 total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
3598 adjustmnt -= delta;
3599 }
3600
3601 /*
3602 * We can't afford to recalculate adjustmnt here. If we do,
3603 * new metadata buffers can sneak into the MRU or ANON lists,
3604 * thus penalize the MFU metadata. Although the fudge factor is
3605 * small, it has been empirically shown to be significant for
3606 * certain workloads (e.g. creating many empty directories). As
3607 * such, we use the original calculation for adjustmnt, and
3608 * simply decrement the amount of data evicted from the MRU.
3609 */
3610
3611 if (adjustmnt > 0 && refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
3612 delta = MIN(refcount_count(&arc_mfu->arcs_esize[type]),
3613 adjustmnt);
3614 total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
3615 }
3616
3617 adjustmnt = arc_meta_used - arc_meta_limit;
3618
3619 if (adjustmnt > 0 &&
3620 refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
3621 delta = MIN(adjustmnt,
3622 refcount_count(&arc_mru_ghost->arcs_esize[type]));
3623 total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
3624 adjustmnt -= delta;
3625 }
3626
3627 if (adjustmnt > 0 &&
3628 refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
3629 delta = MIN(adjustmnt,
3630 refcount_count(&arc_mfu_ghost->arcs_esize[type]));
3631 total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
3632 }
3633
3634 /*
3635 * If after attempting to make the requested adjustment to the ARC
3636 * the meta limit is still being exceeded then request that the
3637 * higher layers drop some cached objects which have holds on ARC
3638 * meta buffers. Requests to the upper layers will be made with
3639 * increasingly large scan sizes until the ARC is below the limit.
3640 */
3641 if (arc_meta_used > arc_meta_limit) {
3642 if (type == ARC_BUFC_DATA) {
3643 type = ARC_BUFC_METADATA;
3644 } else {
3645 type = ARC_BUFC_DATA;
3646
3647 if (zfs_arc_meta_prune) {
3648 prune += zfs_arc_meta_prune;
3649 arc_prune_async(prune);
3650 }
3651 }
3652
3653 if (restarts > 0) {
3654 restarts--;
3655 goto restart;
3656 }
3657 }
3658 return (total_evicted);
3659 }
3660
3661 /*
3662 * Evict metadata buffers from the cache, such that arc_meta_used is
3663 * capped by the arc_meta_limit tunable.
3664 */
3665 static uint64_t
3666 arc_adjust_meta_only(void)
3667 {
3668 uint64_t total_evicted = 0;
3669 int64_t target;
3670
3671 /*
3672 * If we're over the meta limit, we want to evict enough
3673 * metadata to get back under the meta limit. We don't want to
3674 * evict so much that we drop the MRU below arc_p, though. If
3675 * we're over the meta limit more than we're over arc_p, we
3676 * evict some from the MRU here, and some from the MFU below.
3677 */
3678 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3679 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3680 refcount_count(&arc_mru->arcs_size) - arc_p));
3681
3682 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3683
3684 /*
3685 * Similar to the above, we want to evict enough bytes to get us
3686 * below the meta limit, but not so much as to drop us below the
3687 * space allotted to the MFU (which is defined as arc_c - arc_p).
3688 */
3689 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3690 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3691
3692 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3693
3694 return (total_evicted);
3695 }
3696
3697 static uint64_t
3698 arc_adjust_meta(void)
3699 {
3700 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
3701 return (arc_adjust_meta_only());
3702 else
3703 return (arc_adjust_meta_balanced());
3704 }
3705
3706 /*
3707 * Return the type of the oldest buffer in the given arc state
3708 *
3709 * This function will select a random sublist of type ARC_BUFC_DATA and
3710 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3711 * is compared, and the type which contains the "older" buffer will be
3712 * returned.
3713 */
3714 static arc_buf_contents_t
3715 arc_adjust_type(arc_state_t *state)
3716 {
3717 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
3718 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
3719 int data_idx = multilist_get_random_index(data_ml);
3720 int meta_idx = multilist_get_random_index(meta_ml);
3721 multilist_sublist_t *data_mls;
3722 multilist_sublist_t *meta_mls;
3723 arc_buf_contents_t type;
3724 arc_buf_hdr_t *data_hdr;
3725 arc_buf_hdr_t *meta_hdr;
3726
3727 /*
3728 * We keep the sublist lock until we're finished, to prevent
3729 * the headers from being destroyed via arc_evict_state().
3730 */
3731 data_mls = multilist_sublist_lock(data_ml, data_idx);
3732 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3733
3734 /*
3735 * These two loops are to ensure we skip any markers that
3736 * might be at the tail of the lists due to arc_evict_state().
3737 */
3738
3739 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3740 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3741 if (data_hdr->b_spa != 0)
3742 break;
3743 }
3744
3745 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3746 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3747 if (meta_hdr->b_spa != 0)
3748 break;
3749 }
3750
3751 if (data_hdr == NULL && meta_hdr == NULL) {
3752 type = ARC_BUFC_DATA;
3753 } else if (data_hdr == NULL) {
3754 ASSERT3P(meta_hdr, !=, NULL);
3755 type = ARC_BUFC_METADATA;
3756 } else if (meta_hdr == NULL) {
3757 ASSERT3P(data_hdr, !=, NULL);
3758 type = ARC_BUFC_DATA;
3759 } else {
3760 ASSERT3P(data_hdr, !=, NULL);
3761 ASSERT3P(meta_hdr, !=, NULL);
3762
3763 /* The headers can't be on the sublist without an L1 header */
3764 ASSERT(HDR_HAS_L1HDR(data_hdr));
3765 ASSERT(HDR_HAS_L1HDR(meta_hdr));
3766
3767 if (data_hdr->b_l1hdr.b_arc_access <
3768 meta_hdr->b_l1hdr.b_arc_access) {
3769 type = ARC_BUFC_DATA;
3770 } else {
3771 type = ARC_BUFC_METADATA;
3772 }
3773 }
3774
3775 multilist_sublist_unlock(meta_mls);
3776 multilist_sublist_unlock(data_mls);
3777
3778 return (type);
3779 }
3780
3781 /*
3782 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3783 */
3784 static uint64_t
3785 arc_adjust(void)
3786 {
3787 uint64_t total_evicted = 0;
3788 uint64_t bytes;
3789 int64_t target;
3790
3791 /*
3792 * If we're over arc_meta_limit, we want to correct that before
3793 * potentially evicting data buffers below.
3794 */
3795 total_evicted += arc_adjust_meta();
3796
3797 /*
3798 * Adjust MRU size
3799 *
3800 * If we're over the target cache size, we want to evict enough
3801 * from the list to get back to our target size. We don't want
3802 * to evict too much from the MRU, such that it drops below
3803 * arc_p. So, if we're over our target cache size more than
3804 * the MRU is over arc_p, we'll evict enough to get back to
3805 * arc_p here, and then evict more from the MFU below.
3806 */
3807 target = MIN((int64_t)(arc_size - arc_c),
3808 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3809 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3810
3811 /*
3812 * If we're below arc_meta_min, always prefer to evict data.
3813 * Otherwise, try to satisfy the requested number of bytes to
3814 * evict from the type which contains older buffers; in an
3815 * effort to keep newer buffers in the cache regardless of their
3816 * type. If we cannot satisfy the number of bytes from this
3817 * type, spill over into the next type.
3818 */
3819 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3820 arc_meta_used > arc_meta_min) {
3821 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3822 total_evicted += bytes;
3823
3824 /*
3825 * If we couldn't evict our target number of bytes from
3826 * metadata, we try to get the rest from data.
3827 */
3828 target -= bytes;
3829
3830 total_evicted +=
3831 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3832 } else {
3833 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3834 total_evicted += bytes;
3835
3836 /*
3837 * If we couldn't evict our target number of bytes from
3838 * data, we try to get the rest from metadata.
3839 */
3840 target -= bytes;
3841
3842 total_evicted +=
3843 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3844 }
3845
3846 /*
3847 * Adjust MFU size
3848 *
3849 * Now that we've tried to evict enough from the MRU to get its
3850 * size back to arc_p, if we're still above the target cache
3851 * size, we evict the rest from the MFU.
3852 */
3853 target = arc_size - arc_c;
3854
3855 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3856 arc_meta_used > arc_meta_min) {
3857 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3858 total_evicted += bytes;
3859
3860 /*
3861 * If we couldn't evict our target number of bytes from
3862 * metadata, we try to get the rest from data.
3863 */
3864 target -= bytes;
3865
3866 total_evicted +=
3867 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3868 } else {
3869 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3870 total_evicted += bytes;
3871
3872 /*
3873 * If we couldn't evict our target number of bytes from
3874 * data, we try to get the rest from data.
3875 */
3876 target -= bytes;
3877
3878 total_evicted +=
3879 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3880 }
3881
3882 /*
3883 * Adjust ghost lists
3884 *
3885 * In addition to the above, the ARC also defines target values
3886 * for the ghost lists. The sum of the mru list and mru ghost
3887 * list should never exceed the target size of the cache, and
3888 * the sum of the mru list, mfu list, mru ghost list, and mfu
3889 * ghost list should never exceed twice the target size of the
3890 * cache. The following logic enforces these limits on the ghost
3891 * caches, and evicts from them as needed.
3892 */
3893 target = refcount_count(&arc_mru->arcs_size) +
3894 refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3895
3896 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3897 total_evicted += bytes;
3898
3899 target -= bytes;
3900
3901 total_evicted +=
3902 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3903
3904 /*
3905 * We assume the sum of the mru list and mfu list is less than
3906 * or equal to arc_c (we enforced this above), which means we
3907 * can use the simpler of the two equations below:
3908 *
3909 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3910 * mru ghost + mfu ghost <= arc_c
3911 */
3912 target = refcount_count(&arc_mru_ghost->arcs_size) +
3913 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3914
3915 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3916 total_evicted += bytes;
3917
3918 target -= bytes;
3919
3920 total_evicted +=
3921 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3922
3923 return (total_evicted);
3924 }
3925
3926 void
3927 arc_flush(spa_t *spa, boolean_t retry)
3928 {
3929 uint64_t guid = 0;
3930
3931 /*
3932 * If retry is B_TRUE, a spa must not be specified since we have
3933 * no good way to determine if all of a spa's buffers have been
3934 * evicted from an arc state.
3935 */
3936 ASSERT(!retry || spa == 0);
3937
3938 if (spa != NULL)
3939 guid = spa_load_guid(spa);
3940
3941 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3942 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3943
3944 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3945 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3946
3947 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3948 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3949
3950 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3951 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3952 }
3953
3954 void
3955 arc_shrink(int64_t to_free)
3956 {
3957 uint64_t c = arc_c;
3958
3959 if (c > to_free && c - to_free > arc_c_min) {
3960 arc_c = c - to_free;
3961 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3962 if (arc_c > arc_size)
3963 arc_c = MAX(arc_size, arc_c_min);
3964 if (arc_p > arc_c)
3965 arc_p = (arc_c >> 1);
3966 ASSERT(arc_c >= arc_c_min);
3967 ASSERT((int64_t)arc_p >= 0);
3968 } else {
3969 arc_c = arc_c_min;
3970 }
3971
3972 if (arc_size > arc_c)
3973 (void) arc_adjust();
3974 }
3975
3976 /*
3977 * Return maximum amount of memory that we could possibly use. Reduced
3978 * to half of all memory in user space which is primarily used for testing.
3979 */
3980 static uint64_t
3981 arc_all_memory(void)
3982 {
3983 #ifdef _KERNEL
3984 return (MIN(ptob(physmem),
3985 vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)));
3986 #else
3987 return (ptob(physmem) / 2);
3988 #endif
3989 }
3990
3991 typedef enum free_memory_reason_t {
3992 FMR_UNKNOWN,
3993 FMR_NEEDFREE,
3994 FMR_LOTSFREE,
3995 FMR_SWAPFS_MINFREE,
3996 FMR_PAGES_PP_MAXIMUM,
3997 FMR_HEAP_ARENA,
3998 FMR_ZIO_ARENA,
3999 } free_memory_reason_t;
4000
4001 int64_t last_free_memory;
4002 free_memory_reason_t last_free_reason;
4003
4004 #ifdef _KERNEL
4005 /*
4006 * Additional reserve of pages for pp_reserve.
4007 */
4008 int64_t arc_pages_pp_reserve = 64;
4009
4010 /*
4011 * Additional reserve of pages for swapfs.
4012 */
4013 int64_t arc_swapfs_reserve = 64;
4014 #endif /* _KERNEL */
4015
4016 /*
4017 * Return the amount of memory that can be consumed before reclaim will be
4018 * needed. Positive if there is sufficient free memory, negative indicates
4019 * the amount of memory that needs to be freed up.
4020 */
4021 static int64_t
4022 arc_available_memory(void)
4023 {
4024 int64_t lowest = INT64_MAX;
4025 free_memory_reason_t r = FMR_UNKNOWN;
4026 #ifdef _KERNEL
4027 uint64_t available_memory = ptob(freemem);
4028 int64_t n;
4029 #ifdef __linux__
4030 pgcnt_t needfree = btop(arc_need_free);
4031 pgcnt_t lotsfree = btop(arc_sys_free);
4032 pgcnt_t desfree = 0;
4033 #endif
4034
4035 #if defined(__i386)
4036 available_memory =
4037 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
4038 #endif
4039
4040 if (needfree > 0) {
4041 n = PAGESIZE * (-needfree);
4042 if (n < lowest) {
4043 lowest = n;
4044 r = FMR_NEEDFREE;
4045 }
4046 }
4047
4048 /*
4049 * check that we're out of range of the pageout scanner. It starts to
4050 * schedule paging if freemem is less than lotsfree and needfree.
4051 * lotsfree is the high-water mark for pageout, and needfree is the
4052 * number of needed free pages. We add extra pages here to make sure
4053 * the scanner doesn't start up while we're freeing memory.
4054 */
4055 n = PAGESIZE * (btop(available_memory) - lotsfree - needfree - desfree);
4056 if (n < lowest) {
4057 lowest = n;
4058 r = FMR_LOTSFREE;
4059 }
4060
4061 #ifndef __linux__
4062 /*
4063 * check to make sure that swapfs has enough space so that anon
4064 * reservations can still succeed. anon_resvmem() checks that the
4065 * availrmem is greater than swapfs_minfree, and the number of reserved
4066 * swap pages. We also add a bit of extra here just to prevent
4067 * circumstances from getting really dire.
4068 */
4069 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4070 desfree - arc_swapfs_reserve);
4071 if (n < lowest) {
4072 lowest = n;
4073 r = FMR_SWAPFS_MINFREE;
4074 }
4075
4076
4077 /*
4078 * Check that we have enough availrmem that memory locking (e.g., via
4079 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
4080 * stores the number of pages that cannot be locked; when availrmem
4081 * drops below pages_pp_maximum, page locking mechanisms such as
4082 * page_pp_lock() will fail.)
4083 */
4084 n = PAGESIZE * (availrmem - pages_pp_maximum -
4085 arc_pages_pp_reserve);
4086 if (n < lowest) {
4087 lowest = n;
4088 r = FMR_PAGES_PP_MAXIMUM;
4089 }
4090 #endif
4091
4092 #if defined(__i386)
4093 /*
4094 * If we're on an i386 platform, it's possible that we'll exhaust the
4095 * kernel heap space before we ever run out of available physical
4096 * memory. Most checks of the size of the heap_area compare against
4097 * tune.t_minarmem, which is the minimum available real memory that we
4098 * can have in the system. However, this is generally fixed at 25 pages
4099 * which is so low that it's useless. In this comparison, we seek to
4100 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4101 * heap is allocated. (Or, in the calculation, if less than 1/4th is
4102 * free)
4103 */
4104 n = vmem_size(heap_arena, VMEM_FREE) -
4105 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4106 if (n < lowest) {
4107 lowest = n;
4108 r = FMR_HEAP_ARENA;
4109 }
4110 #endif
4111
4112 /*
4113 * If zio data pages are being allocated out of a separate heap segment,
4114 * then enforce that the size of available vmem for this arena remains
4115 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4116 *
4117 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4118 * memory (in the zio_arena) free, which can avoid memory
4119 * fragmentation issues.
4120 */
4121 if (zio_arena != NULL) {
4122 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4123 (vmem_size(zio_arena, VMEM_ALLOC) >>
4124 arc_zio_arena_free_shift);
4125 if (n < lowest) {
4126 lowest = n;
4127 r = FMR_ZIO_ARENA;
4128 }
4129 }
4130 #else /* _KERNEL */
4131 /* Every 100 calls, free a small amount */
4132 if (spa_get_random(100) == 0)
4133 lowest = -1024;
4134 #endif /* _KERNEL */
4135
4136 last_free_memory = lowest;
4137 last_free_reason = r;
4138
4139 return (lowest);
4140 }
4141
4142 /*
4143 * Determine if the system is under memory pressure and is asking
4144 * to reclaim memory. A return value of B_TRUE indicates that the system
4145 * is under memory pressure and that the arc should adjust accordingly.
4146 */
4147 static boolean_t
4148 arc_reclaim_needed(void)
4149 {
4150 return (arc_available_memory() < 0);
4151 }
4152
4153 static void
4154 arc_kmem_reap_now(void)
4155 {
4156 size_t i;
4157 kmem_cache_t *prev_cache = NULL;
4158 kmem_cache_t *prev_data_cache = NULL;
4159 extern kmem_cache_t *zio_buf_cache[];
4160 extern kmem_cache_t *zio_data_buf_cache[];
4161 extern kmem_cache_t *range_seg_cache;
4162
4163 if ((arc_meta_used >= arc_meta_limit) && zfs_arc_meta_prune) {
4164 /*
4165 * We are exceeding our meta-data cache limit.
4166 * Prune some entries to release holds on meta-data.
4167 */
4168 arc_prune_async(zfs_arc_meta_prune);
4169 }
4170
4171 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4172 #ifdef _ILP32
4173 /* reach upper limit of cache size on 32-bit */
4174 if (zio_buf_cache[i] == NULL)
4175 break;
4176 #endif
4177 if (zio_buf_cache[i] != prev_cache) {
4178 prev_cache = zio_buf_cache[i];
4179 kmem_cache_reap_now(zio_buf_cache[i]);
4180 }
4181 if (zio_data_buf_cache[i] != prev_data_cache) {
4182 prev_data_cache = zio_data_buf_cache[i];
4183 kmem_cache_reap_now(zio_data_buf_cache[i]);
4184 }
4185 }
4186 kmem_cache_reap_now(buf_cache);
4187 kmem_cache_reap_now(hdr_full_cache);
4188 kmem_cache_reap_now(hdr_l2only_cache);
4189 kmem_cache_reap_now(range_seg_cache);
4190
4191 if (zio_arena != NULL) {
4192 /*
4193 * Ask the vmem arena to reclaim unused memory from its
4194 * quantum caches.
4195 */
4196 vmem_qcache_reap(zio_arena);
4197 }
4198 }
4199
4200 /*
4201 * Threads can block in arc_get_data_impl() waiting for this thread to evict
4202 * enough data and signal them to proceed. When this happens, the threads in
4203 * arc_get_data_impl() are sleeping while holding the hash lock for their
4204 * particular arc header. Thus, we must be careful to never sleep on a
4205 * hash lock in this thread. This is to prevent the following deadlock:
4206 *
4207 * - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L",
4208 * waiting for the reclaim thread to signal it.
4209 *
4210 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4211 * fails, and goes to sleep forever.
4212 *
4213 * This possible deadlock is avoided by always acquiring a hash lock
4214 * using mutex_tryenter() from arc_reclaim_thread().
4215 */
4216 static void
4217 arc_reclaim_thread(void)
4218 {
4219 fstrans_cookie_t cookie = spl_fstrans_mark();
4220 hrtime_t growtime = 0;
4221 callb_cpr_t cpr;
4222
4223 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4224
4225 mutex_enter(&arc_reclaim_lock);
4226 while (!arc_reclaim_thread_exit) {
4227 int64_t to_free;
4228 uint64_t evicted = 0;
4229 uint64_t need_free = arc_need_free;
4230 arc_tuning_update();
4231
4232 /*
4233 * This is necessary in order for the mdb ::arc dcmd to
4234 * show up to date information. Since the ::arc command
4235 * does not call the kstat's update function, without
4236 * this call, the command may show stale stats for the
4237 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4238 * with this change, the data might be up to 1 second
4239 * out of date; but that should suffice. The arc_state_t
4240 * structures can be queried directly if more accurate
4241 * information is needed.
4242 */
4243 #ifndef __linux__
4244 if (arc_ksp != NULL)
4245 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4246 #endif
4247 mutex_exit(&arc_reclaim_lock);
4248
4249 /*
4250 * We call arc_adjust() before (possibly) calling
4251 * arc_kmem_reap_now(), so that we can wake up
4252 * arc_get_data_buf() sooner.
4253 */
4254 evicted = arc_adjust();
4255
4256 int64_t free_memory = arc_available_memory();
4257 if (free_memory < 0) {
4258
4259 arc_no_grow = B_TRUE;
4260 arc_warm = B_TRUE;
4261
4262 /*
4263 * Wait at least zfs_grow_retry (default 5) seconds
4264 * before considering growing.
4265 */
4266 growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4267
4268 arc_kmem_reap_now();
4269
4270 /*
4271 * If we are still low on memory, shrink the ARC
4272 * so that we have arc_shrink_min free space.
4273 */
4274 free_memory = arc_available_memory();
4275
4276 to_free = (arc_c >> arc_shrink_shift) - free_memory;
4277 if (to_free > 0) {
4278 #ifdef _KERNEL
4279 to_free = MAX(to_free, need_free);
4280 #endif
4281 arc_shrink(to_free);
4282 }
4283 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4284 arc_no_grow = B_TRUE;
4285 } else if (gethrtime() >= growtime) {
4286 arc_no_grow = B_FALSE;
4287 }
4288
4289 mutex_enter(&arc_reclaim_lock);
4290
4291 /*
4292 * If evicted is zero, we couldn't evict anything via
4293 * arc_adjust(). This could be due to hash lock
4294 * collisions, but more likely due to the majority of
4295 * arc buffers being unevictable. Therefore, even if
4296 * arc_size is above arc_c, another pass is unlikely to
4297 * be helpful and could potentially cause us to enter an
4298 * infinite loop.
4299 */
4300 if (arc_size <= arc_c || evicted == 0) {
4301 /*
4302 * We're either no longer overflowing, or we
4303 * can't evict anything more, so we should wake
4304 * up any threads before we go to sleep and remove
4305 * the bytes we were working on from arc_need_free
4306 * since nothing more will be done here.
4307 */
4308 cv_broadcast(&arc_reclaim_waiters_cv);
4309 ARCSTAT_INCR(arcstat_need_free, -need_free);
4310
4311 /*
4312 * Block until signaled, or after one second (we
4313 * might need to perform arc_kmem_reap_now()
4314 * even if we aren't being signalled)
4315 */
4316 CALLB_CPR_SAFE_BEGIN(&cpr);
4317 (void) cv_timedwait_sig_hires(&arc_reclaim_thread_cv,
4318 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
4319 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4320 }
4321 }
4322
4323 arc_reclaim_thread_exit = B_FALSE;
4324 cv_broadcast(&arc_reclaim_thread_cv);
4325 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
4326 spl_fstrans_unmark(cookie);
4327 thread_exit();
4328 }
4329
4330 #ifdef _KERNEL
4331 /*
4332 * Determine the amount of memory eligible for eviction contained in the
4333 * ARC. All clean data reported by the ghost lists can always be safely
4334 * evicted. Due to arc_c_min, the same does not hold for all clean data
4335 * contained by the regular mru and mfu lists.
4336 *
4337 * In the case of the regular mru and mfu lists, we need to report as
4338 * much clean data as possible, such that evicting that same reported
4339 * data will not bring arc_size below arc_c_min. Thus, in certain
4340 * circumstances, the total amount of clean data in the mru and mfu
4341 * lists might not actually be evictable.
4342 *
4343 * The following two distinct cases are accounted for:
4344 *
4345 * 1. The sum of the amount of dirty data contained by both the mru and
4346 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4347 * is greater than or equal to arc_c_min.
4348 * (i.e. amount of dirty data >= arc_c_min)
4349 *
4350 * This is the easy case; all clean data contained by the mru and mfu
4351 * lists is evictable. Evicting all clean data can only drop arc_size
4352 * to the amount of dirty data, which is greater than arc_c_min.
4353 *
4354 * 2. The sum of the amount of dirty data contained by both the mru and
4355 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4356 * is less than arc_c_min.
4357 * (i.e. arc_c_min > amount of dirty data)
4358 *
4359 * 2.1. arc_size is greater than or equal arc_c_min.
4360 * (i.e. arc_size >= arc_c_min > amount of dirty data)
4361 *
4362 * In this case, not all clean data from the regular mru and mfu
4363 * lists is actually evictable; we must leave enough clean data
4364 * to keep arc_size above arc_c_min. Thus, the maximum amount of
4365 * evictable data from the two lists combined, is exactly the
4366 * difference between arc_size and arc_c_min.
4367 *
4368 * 2.2. arc_size is less than arc_c_min
4369 * (i.e. arc_c_min > arc_size > amount of dirty data)
4370 *
4371 * In this case, none of the data contained in the mru and mfu
4372 * lists is evictable, even if it's clean. Since arc_size is
4373 * already below arc_c_min, evicting any more would only
4374 * increase this negative difference.
4375 */
4376 static uint64_t
4377 arc_evictable_memory(void)
4378 {
4379 uint64_t arc_clean =
4380 refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
4381 refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
4382 refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
4383 refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
4384 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
4385
4386 /*
4387 * Scale reported evictable memory in proportion to page cache, cap
4388 * at specified min/max.
4389 */
4390 uint64_t min = (ptob(global_page_state(NR_FILE_PAGES)) / 100) *
4391 zfs_arc_pc_percent;
4392 min = MAX(arc_c_min, MIN(arc_c_max, min));
4393
4394 if (arc_dirty >= min)
4395 return (arc_clean);
4396
4397 return (MAX((int64_t)arc_size - (int64_t)min, 0));
4398 }
4399
4400 /*
4401 * If sc->nr_to_scan is zero, the caller is requesting a query of the
4402 * number of objects which can potentially be freed. If it is nonzero,
4403 * the request is to free that many objects.
4404 *
4405 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
4406 * in struct shrinker and also require the shrinker to return the number
4407 * of objects freed.
4408 *
4409 * Older kernels require the shrinker to return the number of freeable
4410 * objects following the freeing of nr_to_free.
4411 */
4412 static spl_shrinker_t
4413 __arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
4414 {
4415 int64_t pages;
4416
4417 /* The arc is considered warm once reclaim has occurred */
4418 if (unlikely(arc_warm == B_FALSE))
4419 arc_warm = B_TRUE;
4420
4421 /* Return the potential number of reclaimable pages */
4422 pages = btop((int64_t)arc_evictable_memory());
4423 if (sc->nr_to_scan == 0)
4424 return (pages);
4425
4426 /* Not allowed to perform filesystem reclaim */
4427 if (!(sc->gfp_mask & __GFP_FS))
4428 return (SHRINK_STOP);
4429
4430 /* Reclaim in progress */
4431 if (mutex_tryenter(&arc_reclaim_lock) == 0) {
4432 ARCSTAT_INCR(arcstat_need_free, ptob(sc->nr_to_scan));
4433 return (0);
4434 }
4435
4436 mutex_exit(&arc_reclaim_lock);
4437
4438 /*
4439 * Evict the requested number of pages by shrinking arc_c the
4440 * requested amount.
4441 */
4442 if (pages > 0) {
4443 arc_shrink(ptob(sc->nr_to_scan));
4444 if (current_is_kswapd())
4445 arc_kmem_reap_now();
4446 #ifdef HAVE_SPLIT_SHRINKER_CALLBACK
4447 pages = MAX((int64_t)pages -
4448 (int64_t)btop(arc_evictable_memory()), 0);
4449 #else
4450 pages = btop(arc_evictable_memory());
4451 #endif
4452 /*
4453 * We've shrunk what we can, wake up threads.
4454 */
4455 cv_broadcast(&arc_reclaim_waiters_cv);
4456 } else
4457 pages = SHRINK_STOP;
4458
4459 /*
4460 * When direct reclaim is observed it usually indicates a rapid
4461 * increase in memory pressure. This occurs because the kswapd
4462 * threads were unable to asynchronously keep enough free memory
4463 * available. In this case set arc_no_grow to briefly pause arc
4464 * growth to avoid compounding the memory pressure.
4465 */
4466 if (current_is_kswapd()) {
4467 ARCSTAT_BUMP(arcstat_memory_indirect_count);
4468 } else {
4469 arc_no_grow = B_TRUE;
4470 arc_kmem_reap_now();
4471 ARCSTAT_BUMP(arcstat_memory_direct_count);
4472 }
4473
4474 return (pages);
4475 }
4476 SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
4477
4478 SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
4479 #endif /* _KERNEL */
4480
4481 /*
4482 * Adapt arc info given the number of bytes we are trying to add and
4483 * the state that we are coming from. This function is only called
4484 * when we are adding new content to the cache.
4485 */
4486 static void
4487 arc_adapt(int bytes, arc_state_t *state)
4488 {
4489 int mult;
4490 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4491 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4492 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4493
4494 if (state == arc_l2c_only)
4495 return;
4496
4497 ASSERT(bytes > 0);
4498 /*
4499 * Adapt the target size of the MRU list:
4500 * - if we just hit in the MRU ghost list, then increase
4501 * the target size of the MRU list.
4502 * - if we just hit in the MFU ghost list, then increase
4503 * the target size of the MFU list by decreasing the
4504 * target size of the MRU list.
4505 */
4506 if (state == arc_mru_ghost) {
4507 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4508 if (!zfs_arc_p_dampener_disable)
4509 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4510
4511 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4512 } else if (state == arc_mfu_ghost) {
4513 uint64_t delta;
4514
4515 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4516 if (!zfs_arc_p_dampener_disable)
4517 mult = MIN(mult, 10);
4518
4519 delta = MIN(bytes * mult, arc_p);
4520 arc_p = MAX(arc_p_min, arc_p - delta);
4521 }
4522 ASSERT((int64_t)arc_p >= 0);
4523
4524 if (arc_reclaim_needed()) {
4525 cv_signal(&arc_reclaim_thread_cv);
4526 return;
4527 }
4528
4529 if (arc_no_grow)
4530 return;
4531
4532 if (arc_c >= arc_c_max)
4533 return;
4534
4535 /*
4536 * If we're within (2 * maxblocksize) bytes of the target
4537 * cache size, increment the target cache size
4538 */
4539 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
4540 if (arc_size >= arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
4541 atomic_add_64(&arc_c, (int64_t)bytes);
4542 if (arc_c > arc_c_max)
4543 arc_c = arc_c_max;
4544 else if (state == arc_anon)
4545 atomic_add_64(&arc_p, (int64_t)bytes);
4546 if (arc_p > arc_c)
4547 arc_p = arc_c;
4548 }
4549 ASSERT((int64_t)arc_p >= 0);
4550 }
4551
4552 /*
4553 * Check if arc_size has grown past our upper threshold, determined by
4554 * zfs_arc_overflow_shift.
4555 */
4556 static boolean_t
4557 arc_is_overflowing(void)
4558 {
4559 /* Always allow at least one block of overflow */
4560 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4561 arc_c >> zfs_arc_overflow_shift);
4562
4563 return (arc_size >= arc_c + overflow);
4564 }
4565
4566 static abd_t *
4567 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4568 {
4569 arc_buf_contents_t type = arc_buf_type(hdr);
4570
4571 arc_get_data_impl(hdr, size, tag);
4572 if (type == ARC_BUFC_METADATA) {
4573 return (abd_alloc(size, B_TRUE));
4574 } else {
4575 ASSERT(type == ARC_BUFC_DATA);
4576 return (abd_alloc(size, B_FALSE));
4577 }
4578 }
4579
4580 static void *
4581 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4582 {
4583 arc_buf_contents_t type = arc_buf_type(hdr);
4584
4585 arc_get_data_impl(hdr, size, tag);
4586 if (type == ARC_BUFC_METADATA) {
4587 return (zio_buf_alloc(size));
4588 } else {
4589 ASSERT(type == ARC_BUFC_DATA);
4590 return (zio_data_buf_alloc(size));
4591 }
4592 }
4593
4594 /*
4595 * Allocate a block and return it to the caller. If we are hitting the
4596 * hard limit for the cache size, we must sleep, waiting for the eviction
4597 * thread to catch up. If we're past the target size but below the hard
4598 * limit, we'll only signal the reclaim thread and continue on.
4599 */
4600 static void
4601 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4602 {
4603 arc_state_t *state = hdr->b_l1hdr.b_state;
4604 arc_buf_contents_t type = arc_buf_type(hdr);
4605
4606 arc_adapt(size, state);
4607
4608 /*
4609 * If arc_size is currently overflowing, and has grown past our
4610 * upper limit, we must be adding data faster than the evict
4611 * thread can evict. Thus, to ensure we don't compound the
4612 * problem by adding more data and forcing arc_size to grow even
4613 * further past it's target size, we halt and wait for the
4614 * eviction thread to catch up.
4615 *
4616 * It's also possible that the reclaim thread is unable to evict
4617 * enough buffers to get arc_size below the overflow limit (e.g.
4618 * due to buffers being un-evictable, or hash lock collisions).
4619 * In this case, we want to proceed regardless if we're
4620 * overflowing; thus we don't use a while loop here.
4621 */
4622 if (arc_is_overflowing()) {
4623 mutex_enter(&arc_reclaim_lock);
4624
4625 /*
4626 * Now that we've acquired the lock, we may no longer be
4627 * over the overflow limit, lets check.
4628 *
4629 * We're ignoring the case of spurious wake ups. If that
4630 * were to happen, it'd let this thread consume an ARC
4631 * buffer before it should have (i.e. before we're under
4632 * the overflow limit and were signalled by the reclaim
4633 * thread). As long as that is a rare occurrence, it
4634 * shouldn't cause any harm.
4635 */
4636 if (arc_is_overflowing()) {
4637 cv_signal(&arc_reclaim_thread_cv);
4638 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4639 }
4640
4641 mutex_exit(&arc_reclaim_lock);
4642 }
4643
4644 VERIFY3U(hdr->b_type, ==, type);
4645 if (type == ARC_BUFC_METADATA) {
4646 arc_space_consume(size, ARC_SPACE_META);
4647 } else {
4648 arc_space_consume(size, ARC_SPACE_DATA);
4649 }
4650
4651 /*
4652 * Update the state size. Note that ghost states have a
4653 * "ghost size" and so don't need to be updated.
4654 */
4655 if (!GHOST_STATE(state)) {
4656
4657 (void) refcount_add_many(&state->arcs_size, size, tag);
4658
4659 /*
4660 * If this is reached via arc_read, the link is
4661 * protected by the hash lock. If reached via
4662 * arc_buf_alloc, the header should not be accessed by
4663 * any other thread. And, if reached via arc_read_done,
4664 * the hash lock will protect it if it's found in the
4665 * hash table; otherwise no other thread should be
4666 * trying to [add|remove]_reference it.
4667 */
4668 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4669 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4670 (void) refcount_add_many(&state->arcs_esize[type],
4671 size, tag);
4672 }
4673
4674 /*
4675 * If we are growing the cache, and we are adding anonymous
4676 * data, and we have outgrown arc_p, update arc_p
4677 */
4678 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4679 (refcount_count(&arc_anon->arcs_size) +
4680 refcount_count(&arc_mru->arcs_size) > arc_p))
4681 arc_p = MIN(arc_c, arc_p + size);
4682 }
4683 }
4684
4685 static void
4686 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
4687 {
4688 arc_free_data_impl(hdr, size, tag);
4689 abd_free(abd);
4690 }
4691
4692 static void
4693 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
4694 {
4695 arc_buf_contents_t type = arc_buf_type(hdr);
4696
4697 arc_free_data_impl(hdr, size, tag);
4698 if (type == ARC_BUFC_METADATA) {
4699 zio_buf_free(buf, size);
4700 } else {
4701 ASSERT(type == ARC_BUFC_DATA);
4702 zio_data_buf_free(buf, size);
4703 }
4704 }
4705
4706 /*
4707 * Free the arc data buffer.
4708 */
4709 static void
4710 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4711 {
4712 arc_state_t *state = hdr->b_l1hdr.b_state;
4713 arc_buf_contents_t type = arc_buf_type(hdr);
4714
4715 /* protected by hash lock, if in the hash table */
4716 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4717 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4718 ASSERT(state != arc_anon && state != arc_l2c_only);
4719
4720 (void) refcount_remove_many(&state->arcs_esize[type],
4721 size, tag);
4722 }
4723 (void) refcount_remove_many(&state->arcs_size, size, tag);
4724
4725 VERIFY3U(hdr->b_type, ==, type);
4726 if (type == ARC_BUFC_METADATA) {
4727 arc_space_return(size, ARC_SPACE_META);
4728 } else {
4729 ASSERT(type == ARC_BUFC_DATA);
4730 arc_space_return(size, ARC_SPACE_DATA);
4731 }
4732 }
4733
4734 /*
4735 * This routine is called whenever a buffer is accessed.
4736 * NOTE: the hash lock is dropped in this function.
4737 */
4738 static void
4739 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4740 {
4741 clock_t now;
4742
4743 ASSERT(MUTEX_HELD(hash_lock));
4744 ASSERT(HDR_HAS_L1HDR(hdr));
4745
4746 if (hdr->b_l1hdr.b_state == arc_anon) {
4747 /*
4748 * This buffer is not in the cache, and does not
4749 * appear in our "ghost" list. Add the new buffer
4750 * to the MRU state.
4751 */
4752
4753 ASSERT0(hdr->b_l1hdr.b_arc_access);
4754 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4755 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4756 arc_change_state(arc_mru, hdr, hash_lock);
4757
4758 } else if (hdr->b_l1hdr.b_state == arc_mru) {
4759 now = ddi_get_lbolt();
4760
4761 /*
4762 * If this buffer is here because of a prefetch, then either:
4763 * - clear the flag if this is a "referencing" read
4764 * (any subsequent access will bump this into the MFU state).
4765 * or
4766 * - move the buffer to the head of the list if this is
4767 * another prefetch (to make it less likely to be evicted).
4768 */
4769 if (HDR_PREFETCH(hdr)) {
4770 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4771 /* link protected by hash lock */
4772 ASSERT(multilist_link_active(
4773 &hdr->b_l1hdr.b_arc_node));
4774 } else {
4775 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4776 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
4777 ARCSTAT_BUMP(arcstat_mru_hits);
4778 }
4779 hdr->b_l1hdr.b_arc_access = now;
4780 return;
4781 }
4782
4783 /*
4784 * This buffer has been "accessed" only once so far,
4785 * but it is still in the cache. Move it to the MFU
4786 * state.
4787 */
4788 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
4789 ARC_MINTIME)) {
4790 /*
4791 * More than 125ms have passed since we
4792 * instantiated this buffer. Move it to the
4793 * most frequently used state.
4794 */
4795 hdr->b_l1hdr.b_arc_access = now;
4796 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4797 arc_change_state(arc_mfu, hdr, hash_lock);
4798 }
4799 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
4800 ARCSTAT_BUMP(arcstat_mru_hits);
4801 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4802 arc_state_t *new_state;
4803 /*
4804 * This buffer has been "accessed" recently, but
4805 * was evicted from the cache. Move it to the
4806 * MFU state.
4807 */
4808
4809 if (HDR_PREFETCH(hdr)) {
4810 new_state = arc_mru;
4811 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4812 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4813 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4814 } else {
4815 new_state = arc_mfu;
4816 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4817 }
4818
4819 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4820 arc_change_state(new_state, hdr, hash_lock);
4821
4822 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
4823 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4824 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
4825 /*
4826 * This buffer has been accessed more than once and is
4827 * still in the cache. Keep it in the MFU state.
4828 *
4829 * NOTE: an add_reference() that occurred when we did
4830 * the arc_read() will have kicked this off the list.
4831 * If it was a prefetch, we will explicitly move it to
4832 * the head of the list now.
4833 */
4834 if ((HDR_PREFETCH(hdr)) != 0) {
4835 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4836 /* link protected by hash_lock */
4837 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4838 }
4839 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
4840 ARCSTAT_BUMP(arcstat_mfu_hits);
4841 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4842 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4843 arc_state_t *new_state = arc_mfu;
4844 /*
4845 * This buffer has been accessed more than once but has
4846 * been evicted from the cache. Move it back to the
4847 * MFU state.
4848 */
4849
4850 if (HDR_PREFETCH(hdr)) {
4851 /*
4852 * This is a prefetch access...
4853 * move this block back to the MRU state.
4854 */
4855 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4856 new_state = arc_mru;
4857 }
4858
4859 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4860 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4861 arc_change_state(new_state, hdr, hash_lock);
4862
4863 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
4864 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4865 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4866 /*
4867 * This buffer is on the 2nd Level ARC.
4868 */
4869
4870 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4871 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4872 arc_change_state(arc_mfu, hdr, hash_lock);
4873 } else {
4874 cmn_err(CE_PANIC, "invalid arc state 0x%p",
4875 hdr->b_l1hdr.b_state);
4876 }
4877 }
4878
4879 /* a generic arc_done_func_t which you can use */
4880 /* ARGSUSED */
4881 void
4882 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4883 {
4884 if (zio == NULL || zio->io_error == 0)
4885 bcopy(buf->b_data, arg, arc_buf_size(buf));
4886 arc_buf_destroy(buf, arg);
4887 }
4888
4889 /* a generic arc_done_func_t */
4890 void
4891 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4892 {
4893 arc_buf_t **bufp = arg;
4894 if (zio && zio->io_error) {
4895 arc_buf_destroy(buf, arg);
4896 *bufp = NULL;
4897 } else {
4898 *bufp = buf;
4899 ASSERT(buf->b_data);
4900 }
4901 }
4902
4903 static void
4904 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
4905 {
4906 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
4907 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
4908 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
4909 } else {
4910 if (HDR_COMPRESSION_ENABLED(hdr)) {
4911 ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
4912 BP_GET_COMPRESS(bp));
4913 }
4914 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
4915 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
4916 }
4917 }
4918
4919 static void
4920 arc_read_done(zio_t *zio)
4921 {
4922 arc_buf_hdr_t *hdr = zio->io_private;
4923 kmutex_t *hash_lock = NULL;
4924 arc_callback_t *callback_list;
4925 arc_callback_t *acb;
4926 boolean_t freeable = B_FALSE;
4927 boolean_t no_zio_error = (zio->io_error == 0);
4928
4929 /*
4930 * The hdr was inserted into hash-table and removed from lists
4931 * prior to starting I/O. We should find this header, since
4932 * it's in the hash table, and it should be legit since it's
4933 * not possible to evict it during the I/O. The only possible
4934 * reason for it not to be found is if we were freed during the
4935 * read.
4936 */
4937 if (HDR_IN_HASH_TABLE(hdr)) {
4938 arc_buf_hdr_t *found;
4939
4940 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4941 ASSERT3U(hdr->b_dva.dva_word[0], ==,
4942 BP_IDENTITY(zio->io_bp)->dva_word[0]);
4943 ASSERT3U(hdr->b_dva.dva_word[1], ==,
4944 BP_IDENTITY(zio->io_bp)->dva_word[1]);
4945
4946 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
4947
4948 ASSERT((found == hdr &&
4949 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4950 (found == hdr && HDR_L2_READING(hdr)));
4951 ASSERT3P(hash_lock, !=, NULL);
4952 }
4953
4954 if (no_zio_error) {
4955 /* byteswap if necessary */
4956 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
4957 if (BP_GET_LEVEL(zio->io_bp) > 0) {
4958 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
4959 } else {
4960 hdr->b_l1hdr.b_byteswap =
4961 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4962 }
4963 } else {
4964 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
4965 }
4966 }
4967
4968 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
4969 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4970 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
4971
4972 callback_list = hdr->b_l1hdr.b_acb;
4973 ASSERT3P(callback_list, !=, NULL);
4974
4975 if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
4976 /*
4977 * Only call arc_access on anonymous buffers. This is because
4978 * if we've issued an I/O for an evicted buffer, we've already
4979 * called arc_access (to prevent any simultaneous readers from
4980 * getting confused).
4981 */
4982 arc_access(hdr, hash_lock);
4983 }
4984
4985 /*
4986 * If a read request has a callback (i.e. acb_done is not NULL), then we
4987 * make a buf containing the data according to the parameters which were
4988 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
4989 * aren't needlessly decompressing the data multiple times.
4990 */
4991 int callback_cnt = 0;
4992 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
4993 if (!acb->acb_done)
4994 continue;
4995
4996 /* This is a demand read since prefetches don't use callbacks */
4997 callback_cnt++;
4998
4999 int error = arc_buf_alloc_impl(hdr, acb->acb_private,
5000 acb->acb_compressed, no_zio_error, &acb->acb_buf);
5001 if (no_zio_error) {
5002 zio->io_error = error;
5003 }
5004 }
5005 hdr->b_l1hdr.b_acb = NULL;
5006 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5007 if (callback_cnt == 0) {
5008 ASSERT(HDR_PREFETCH(hdr));
5009 ASSERT0(hdr->b_l1hdr.b_bufcnt);
5010 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5011 }
5012
5013 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5014 callback_list != NULL);
5015
5016 if (no_zio_error) {
5017 arc_hdr_verify(hdr, zio->io_bp);
5018 } else {
5019 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5020 if (hdr->b_l1hdr.b_state != arc_anon)
5021 arc_change_state(arc_anon, hdr, hash_lock);
5022 if (HDR_IN_HASH_TABLE(hdr))
5023 buf_hash_remove(hdr);
5024 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5025 }
5026
5027 /*
5028 * Broadcast before we drop the hash_lock to avoid the possibility
5029 * that the hdr (and hence the cv) might be freed before we get to
5030 * the cv_broadcast().
5031 */
5032 cv_broadcast(&hdr->b_l1hdr.b_cv);
5033
5034 if (hash_lock != NULL) {
5035 mutex_exit(hash_lock);
5036 } else {
5037 /*
5038 * This block was freed while we waited for the read to
5039 * complete. It has been removed from the hash table and
5040 * moved to the anonymous state (so that it won't show up
5041 * in the cache).
5042 */
5043 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5044 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5045 }
5046
5047 /* execute each callback and free its structure */
5048 while ((acb = callback_list) != NULL) {
5049 if (acb->acb_done)
5050 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
5051
5052 if (acb->acb_zio_dummy != NULL) {
5053 acb->acb_zio_dummy->io_error = zio->io_error;
5054 zio_nowait(acb->acb_zio_dummy);
5055 }
5056
5057 callback_list = acb->acb_next;
5058 kmem_free(acb, sizeof (arc_callback_t));
5059 }
5060
5061 if (freeable)
5062 arc_hdr_destroy(hdr);
5063 }
5064
5065 /*
5066 * "Read" the block at the specified DVA (in bp) via the
5067 * cache. If the block is found in the cache, invoke the provided
5068 * callback immediately and return. Note that the `zio' parameter
5069 * in the callback will be NULL in this case, since no IO was
5070 * required. If the block is not in the cache pass the read request
5071 * on to the spa with a substitute callback function, so that the
5072 * requested block will be added to the cache.
5073 *
5074 * If a read request arrives for a block that has a read in-progress,
5075 * either wait for the in-progress read to complete (and return the
5076 * results); or, if this is a read with a "done" func, add a record
5077 * to the read to invoke the "done" func when the read completes,
5078 * and return; or just return.
5079 *
5080 * arc_read_done() will invoke all the requested "done" functions
5081 * for readers of this block.
5082 */
5083 int
5084 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
5085 void *private, zio_priority_t priority, int zio_flags,
5086 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5087 {
5088 arc_buf_hdr_t *hdr = NULL;
5089 kmutex_t *hash_lock = NULL;
5090 zio_t *rzio;
5091 uint64_t guid = spa_load_guid(spa);
5092 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
5093 int rc = 0;
5094
5095 ASSERT(!BP_IS_EMBEDDED(bp) ||
5096 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5097
5098 top:
5099 if (!BP_IS_EMBEDDED(bp)) {
5100 /*
5101 * Embedded BP's have no DVA and require no I/O to "read".
5102 * Create an anonymous arc buf to back it.
5103 */
5104 hdr = buf_hash_find(guid, bp, &hash_lock);
5105 }
5106
5107 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
5108 arc_buf_t *buf = NULL;
5109 *arc_flags |= ARC_FLAG_CACHED;
5110
5111 if (HDR_IO_IN_PROGRESS(hdr)) {
5112
5113 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5114 priority == ZIO_PRIORITY_SYNC_READ) {
5115 /*
5116 * This sync read must wait for an
5117 * in-progress async read (e.g. a predictive
5118 * prefetch). Async reads are queued
5119 * separately at the vdev_queue layer, so
5120 * this is a form of priority inversion.
5121 * Ideally, we would "inherit" the demand
5122 * i/o's priority by moving the i/o from
5123 * the async queue to the synchronous queue,
5124 * but there is currently no mechanism to do
5125 * so. Track this so that we can evaluate
5126 * the magnitude of this potential performance
5127 * problem.
5128 *
5129 * Note that if the prefetch i/o is already
5130 * active (has been issued to the device),
5131 * the prefetch improved performance, because
5132 * we issued it sooner than we would have
5133 * without the prefetch.
5134 */
5135 DTRACE_PROBE1(arc__sync__wait__for__async,
5136 arc_buf_hdr_t *, hdr);
5137 ARCSTAT_BUMP(arcstat_sync_wait_for_async);
5138 }
5139 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5140 arc_hdr_clear_flags(hdr,
5141 ARC_FLAG_PREDICTIVE_PREFETCH);
5142 }
5143
5144 if (*arc_flags & ARC_FLAG_WAIT) {
5145 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5146 mutex_exit(hash_lock);
5147 goto top;
5148 }
5149 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5150
5151 if (done) {
5152 arc_callback_t *acb = NULL;
5153
5154 acb = kmem_zalloc(sizeof (arc_callback_t),
5155 KM_SLEEP);
5156 acb->acb_done = done;
5157 acb->acb_private = private;
5158 acb->acb_compressed = compressed_read;
5159 if (pio != NULL)
5160 acb->acb_zio_dummy = zio_null(pio,
5161 spa, NULL, NULL, NULL, zio_flags);
5162
5163 ASSERT3P(acb->acb_done, !=, NULL);
5164 acb->acb_next = hdr->b_l1hdr.b_acb;
5165 hdr->b_l1hdr.b_acb = acb;
5166 mutex_exit(hash_lock);
5167 goto out;
5168 }
5169 mutex_exit(hash_lock);
5170 goto out;
5171 }
5172
5173 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5174 hdr->b_l1hdr.b_state == arc_mfu);
5175
5176 if (done) {
5177 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5178 /*
5179 * This is a demand read which does not have to
5180 * wait for i/o because we did a predictive
5181 * prefetch i/o for it, which has completed.
5182 */
5183 DTRACE_PROBE1(
5184 arc__demand__hit__predictive__prefetch,
5185 arc_buf_hdr_t *, hdr);
5186 ARCSTAT_BUMP(
5187 arcstat_demand_hit_predictive_prefetch);
5188 arc_hdr_clear_flags(hdr,
5189 ARC_FLAG_PREDICTIVE_PREFETCH);
5190 }
5191 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5192
5193 /* Get a buf with the desired data in it. */
5194 VERIFY0(arc_buf_alloc_impl(hdr, private,
5195 compressed_read, B_TRUE, &buf));
5196 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
5197 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5198 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5199 }
5200 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5201 arc_access(hdr, hash_lock);
5202 if (*arc_flags & ARC_FLAG_L2CACHE)
5203 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5204 mutex_exit(hash_lock);
5205 ARCSTAT_BUMP(arcstat_hits);
5206 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5207 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5208 data, metadata, hits);
5209
5210 if (done)
5211 done(NULL, buf, private);
5212 } else {
5213 uint64_t lsize = BP_GET_LSIZE(bp);
5214 uint64_t psize = BP_GET_PSIZE(bp);
5215 arc_callback_t *acb;
5216 vdev_t *vd = NULL;
5217 uint64_t addr = 0;
5218 boolean_t devw = B_FALSE;
5219 uint64_t size;
5220
5221 /*
5222 * Gracefully handle a damaged logical block size as a
5223 * checksum error.
5224 */
5225 if (lsize > spa_maxblocksize(spa)) {
5226 rc = SET_ERROR(ECKSUM);
5227 goto out;
5228 }
5229
5230 if (hdr == NULL) {
5231 /* this block is not in the cache */
5232 arc_buf_hdr_t *exists = NULL;
5233 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5234 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5235 BP_GET_COMPRESS(bp), type);
5236
5237 if (!BP_IS_EMBEDDED(bp)) {
5238 hdr->b_dva = *BP_IDENTITY(bp);
5239 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5240 exists = buf_hash_insert(hdr, &hash_lock);
5241 }
5242 if (exists != NULL) {
5243 /* somebody beat us to the hash insert */
5244 mutex_exit(hash_lock);
5245 buf_discard_identity(hdr);
5246 arc_hdr_destroy(hdr);
5247 goto top; /* restart the IO request */
5248 }
5249 } else {
5250 /*
5251 * This block is in the ghost cache. If it was L2-only
5252 * (and thus didn't have an L1 hdr), we realloc the
5253 * header to add an L1 hdr.
5254 */
5255 if (!HDR_HAS_L1HDR(hdr)) {
5256 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5257 hdr_full_cache);
5258 }
5259
5260 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5261 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
5262 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5263 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5264 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5265 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5266
5267 /*
5268 * This is a delicate dance that we play here.
5269 * This hdr is in the ghost list so we access it
5270 * to move it out of the ghost list before we
5271 * initiate the read. If it's a prefetch then
5272 * it won't have a callback so we'll remove the
5273 * reference that arc_buf_alloc_impl() created. We
5274 * do this after we've called arc_access() to
5275 * avoid hitting an assert in remove_reference().
5276 */
5277 arc_access(hdr, hash_lock);
5278 arc_hdr_alloc_pabd(hdr);
5279 }
5280 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5281 size = arc_hdr_size(hdr);
5282
5283 /*
5284 * If compression is enabled on the hdr, then will do
5285 * RAW I/O and will store the compressed data in the hdr's
5286 * data block. Otherwise, the hdr's data block will contain
5287 * the uncompressed data.
5288 */
5289 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5290 zio_flags |= ZIO_FLAG_RAW;
5291 }
5292
5293 if (*arc_flags & ARC_FLAG_PREFETCH)
5294 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5295 if (*arc_flags & ARC_FLAG_L2CACHE)
5296 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5297 if (BP_GET_LEVEL(bp) > 0)
5298 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5299 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5300 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5301 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5302
5303 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5304 acb->acb_done = done;
5305 acb->acb_private = private;
5306 acb->acb_compressed = compressed_read;
5307
5308 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5309 hdr->b_l1hdr.b_acb = acb;
5310 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5311
5312 if (HDR_HAS_L2HDR(hdr) &&
5313 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5314 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5315 addr = hdr->b_l2hdr.b_daddr;
5316 /*
5317 * Lock out device removal.
5318 */
5319 if (vdev_is_dead(vd) ||
5320 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5321 vd = NULL;
5322 }
5323
5324 if (priority == ZIO_PRIORITY_ASYNC_READ)
5325 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5326 else
5327 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5328
5329 if (hash_lock != NULL)
5330 mutex_exit(hash_lock);
5331
5332 /*
5333 * At this point, we have a level 1 cache miss. Try again in
5334 * L2ARC if possible.
5335 */
5336 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5337
5338 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5339 uint64_t, lsize, zbookmark_phys_t *, zb);
5340 ARCSTAT_BUMP(arcstat_misses);
5341 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5342 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5343 data, metadata, misses);
5344
5345 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5346 /*
5347 * Read from the L2ARC if the following are true:
5348 * 1. The L2ARC vdev was previously cached.
5349 * 2. This buffer still has L2ARC metadata.
5350 * 3. This buffer isn't currently writing to the L2ARC.
5351 * 4. The L2ARC entry wasn't evicted, which may
5352 * also have invalidated the vdev.
5353 * 5. This isn't prefetch and l2arc_noprefetch is set.
5354 */
5355 if (HDR_HAS_L2HDR(hdr) &&
5356 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5357 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5358 l2arc_read_callback_t *cb;
5359 abd_t *abd;
5360 uint64_t asize;
5361
5362 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5363 ARCSTAT_BUMP(arcstat_l2_hits);
5364 atomic_inc_32(&hdr->b_l2hdr.b_hits);
5365
5366 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5367 KM_SLEEP);
5368 cb->l2rcb_hdr = hdr;
5369 cb->l2rcb_bp = *bp;
5370 cb->l2rcb_zb = *zb;
5371 cb->l2rcb_flags = zio_flags;
5372
5373 asize = vdev_psize_to_asize(vd, size);
5374 if (asize != size) {
5375 abd = abd_alloc_for_io(asize,
5376 HDR_ISTYPE_METADATA(hdr));
5377 cb->l2rcb_abd = abd;
5378 } else {
5379 abd = hdr->b_l1hdr.b_pabd;
5380 }
5381
5382 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5383 addr + asize <= vd->vdev_psize -
5384 VDEV_LABEL_END_SIZE);
5385
5386 /*
5387 * l2arc read. The SCL_L2ARC lock will be
5388 * released by l2arc_read_done().
5389 * Issue a null zio if the underlying buffer
5390 * was squashed to zero size by compression.
5391 */
5392 ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5393 ZIO_COMPRESS_EMPTY);
5394 rzio = zio_read_phys(pio, vd, addr,
5395 asize, abd,
5396 ZIO_CHECKSUM_OFF,
5397 l2arc_read_done, cb, priority,
5398 zio_flags | ZIO_FLAG_DONT_CACHE |
5399 ZIO_FLAG_CANFAIL |
5400 ZIO_FLAG_DONT_PROPAGATE |
5401 ZIO_FLAG_DONT_RETRY, B_FALSE);
5402
5403 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5404 zio_t *, rzio);
5405 ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5406
5407 if (*arc_flags & ARC_FLAG_NOWAIT) {
5408 zio_nowait(rzio);
5409 goto out;
5410 }
5411
5412 ASSERT(*arc_flags & ARC_FLAG_WAIT);
5413 if (zio_wait(rzio) == 0)
5414 goto out;
5415
5416 /* l2arc read error; goto zio_read() */
5417 } else {
5418 DTRACE_PROBE1(l2arc__miss,
5419 arc_buf_hdr_t *, hdr);
5420 ARCSTAT_BUMP(arcstat_l2_misses);
5421 if (HDR_L2_WRITING(hdr))
5422 ARCSTAT_BUMP(arcstat_l2_rw_clash);
5423 spa_config_exit(spa, SCL_L2ARC, vd);
5424 }
5425 } else {
5426 if (vd != NULL)
5427 spa_config_exit(spa, SCL_L2ARC, vd);
5428 if (l2arc_ndev != 0) {
5429 DTRACE_PROBE1(l2arc__miss,
5430 arc_buf_hdr_t *, hdr);
5431 ARCSTAT_BUMP(arcstat_l2_misses);
5432 }
5433 }
5434
5435 rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
5436 arc_read_done, hdr, priority, zio_flags, zb);
5437
5438 if (*arc_flags & ARC_FLAG_WAIT) {
5439 rc = zio_wait(rzio);
5440 goto out;
5441 }
5442
5443 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5444 zio_nowait(rzio);
5445 }
5446
5447 out:
5448 spa_read_history_add(spa, zb, *arc_flags);
5449 return (rc);
5450 }
5451
5452 arc_prune_t *
5453 arc_add_prune_callback(arc_prune_func_t *func, void *private)
5454 {
5455 arc_prune_t *p;
5456
5457 p = kmem_alloc(sizeof (*p), KM_SLEEP);
5458 p->p_pfunc = func;
5459 p->p_private = private;
5460 list_link_init(&p->p_node);
5461 refcount_create(&p->p_refcnt);
5462
5463 mutex_enter(&arc_prune_mtx);
5464 refcount_add(&p->p_refcnt, &arc_prune_list);
5465 list_insert_head(&arc_prune_list, p);
5466 mutex_exit(&arc_prune_mtx);
5467
5468 return (p);
5469 }
5470
5471 void
5472 arc_remove_prune_callback(arc_prune_t *p)
5473 {
5474 boolean_t wait = B_FALSE;
5475 mutex_enter(&arc_prune_mtx);
5476 list_remove(&arc_prune_list, p);
5477 if (refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
5478 wait = B_TRUE;
5479 mutex_exit(&arc_prune_mtx);
5480
5481 /* wait for arc_prune_task to finish */
5482 if (wait)
5483 taskq_wait_outstanding(arc_prune_taskq, 0);
5484 ASSERT0(refcount_count(&p->p_refcnt));
5485 refcount_destroy(&p->p_refcnt);
5486 kmem_free(p, sizeof (*p));
5487 }
5488
5489 /*
5490 * Notify the arc that a block was freed, and thus will never be used again.
5491 */
5492 void
5493 arc_freed(spa_t *spa, const blkptr_t *bp)
5494 {
5495 arc_buf_hdr_t *hdr;
5496 kmutex_t *hash_lock;
5497 uint64_t guid = spa_load_guid(spa);
5498
5499 ASSERT(!BP_IS_EMBEDDED(bp));
5500
5501 hdr = buf_hash_find(guid, bp, &hash_lock);
5502 if (hdr == NULL)
5503 return;
5504
5505 /*
5506 * We might be trying to free a block that is still doing I/O
5507 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5508 * dmu_sync-ed block). If this block is being prefetched, then it
5509 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5510 * until the I/O completes. A block may also have a reference if it is
5511 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5512 * have written the new block to its final resting place on disk but
5513 * without the dedup flag set. This would have left the hdr in the MRU
5514 * state and discoverable. When the txg finally syncs it detects that
5515 * the block was overridden in open context and issues an override I/O.
5516 * Since this is a dedup block, the override I/O will determine if the
5517 * block is already in the DDT. If so, then it will replace the io_bp
5518 * with the bp from the DDT and allow the I/O to finish. When the I/O
5519 * reaches the done callback, dbuf_write_override_done, it will
5520 * check to see if the io_bp and io_bp_override are identical.
5521 * If they are not, then it indicates that the bp was replaced with
5522 * the bp in the DDT and the override bp is freed. This allows
5523 * us to arrive here with a reference on a block that is being
5524 * freed. So if we have an I/O in progress, or a reference to
5525 * this hdr, then we don't destroy the hdr.
5526 */
5527 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5528 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5529 arc_change_state(arc_anon, hdr, hash_lock);
5530 arc_hdr_destroy(hdr);
5531 mutex_exit(hash_lock);
5532 } else {
5533 mutex_exit(hash_lock);
5534 }
5535
5536 }
5537
5538 /*
5539 * Release this buffer from the cache, making it an anonymous buffer. This
5540 * must be done after a read and prior to modifying the buffer contents.
5541 * If the buffer has more than one reference, we must make
5542 * a new hdr for the buffer.
5543 */
5544 void
5545 arc_release(arc_buf_t *buf, void *tag)
5546 {
5547 kmutex_t *hash_lock;
5548 arc_state_t *state;
5549 arc_buf_hdr_t *hdr = buf->b_hdr;
5550
5551 /*
5552 * It would be nice to assert that if its DMU metadata (level >
5553 * 0 || it's the dnode file), then it must be syncing context.
5554 * But we don't know that information at this level.
5555 */
5556
5557 mutex_enter(&buf->b_evict_lock);
5558
5559 ASSERT(HDR_HAS_L1HDR(hdr));
5560
5561 /*
5562 * We don't grab the hash lock prior to this check, because if
5563 * the buffer's header is in the arc_anon state, it won't be
5564 * linked into the hash table.
5565 */
5566 if (hdr->b_l1hdr.b_state == arc_anon) {
5567 mutex_exit(&buf->b_evict_lock);
5568 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5569 ASSERT(!HDR_IN_HASH_TABLE(hdr));
5570 ASSERT(!HDR_HAS_L2HDR(hdr));
5571 ASSERT(HDR_EMPTY(hdr));
5572
5573 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5574 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5575 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5576
5577 hdr->b_l1hdr.b_arc_access = 0;
5578
5579 /*
5580 * If the buf is being overridden then it may already
5581 * have a hdr that is not empty.
5582 */
5583 buf_discard_identity(hdr);
5584 arc_buf_thaw(buf);
5585
5586 return;
5587 }
5588
5589 hash_lock = HDR_LOCK(hdr);
5590 mutex_enter(hash_lock);
5591
5592 /*
5593 * This assignment is only valid as long as the hash_lock is
5594 * held, we must be careful not to reference state or the
5595 * b_state field after dropping the lock.
5596 */
5597 state = hdr->b_l1hdr.b_state;
5598 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5599 ASSERT3P(state, !=, arc_anon);
5600
5601 /* this buffer is not on any list */
5602 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
5603
5604 if (HDR_HAS_L2HDR(hdr)) {
5605 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5606
5607 /*
5608 * We have to recheck this conditional again now that
5609 * we're holding the l2ad_mtx to prevent a race with
5610 * another thread which might be concurrently calling
5611 * l2arc_evict(). In that case, l2arc_evict() might have
5612 * destroyed the header's L2 portion as we were waiting
5613 * to acquire the l2ad_mtx.
5614 */
5615 if (HDR_HAS_L2HDR(hdr))
5616 arc_hdr_l2hdr_destroy(hdr);
5617
5618 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5619 }
5620
5621 /*
5622 * Do we have more than one buf?
5623 */
5624 if (hdr->b_l1hdr.b_bufcnt > 1) {
5625 arc_buf_hdr_t *nhdr;
5626 uint64_t spa = hdr->b_spa;
5627 uint64_t psize = HDR_GET_PSIZE(hdr);
5628 uint64_t lsize = HDR_GET_LSIZE(hdr);
5629 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5630 arc_buf_contents_t type = arc_buf_type(hdr);
5631 VERIFY3U(hdr->b_type, ==, type);
5632
5633 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5634 (void) remove_reference(hdr, hash_lock, tag);
5635
5636 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
5637 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5638 ASSERT(ARC_BUF_LAST(buf));
5639 }
5640
5641 /*
5642 * Pull the data off of this hdr and attach it to
5643 * a new anonymous hdr. Also find the last buffer
5644 * in the hdr's buffer list.
5645 */
5646 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
5647 ASSERT3P(lastbuf, !=, NULL);
5648
5649 /*
5650 * If the current arc_buf_t and the hdr are sharing their data
5651 * buffer, then we must stop sharing that block.
5652 */
5653 if (arc_buf_is_shared(buf)) {
5654 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5655 VERIFY(!arc_buf_is_shared(lastbuf));
5656
5657 /*
5658 * First, sever the block sharing relationship between
5659 * buf and the arc_buf_hdr_t.
5660 */
5661 arc_unshare_buf(hdr, buf);
5662
5663 /*
5664 * Now we need to recreate the hdr's b_pabd. Since we
5665 * have lastbuf handy, we try to share with it, but if
5666 * we can't then we allocate a new b_pabd and copy the
5667 * data from buf into it.
5668 */
5669 if (arc_can_share(hdr, lastbuf)) {
5670 arc_share_buf(hdr, lastbuf);
5671 } else {
5672 arc_hdr_alloc_pabd(hdr);
5673 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
5674 buf->b_data, psize);
5675 }
5676 VERIFY3P(lastbuf->b_data, !=, NULL);
5677 } else if (HDR_SHARED_DATA(hdr)) {
5678 /*
5679 * Uncompressed shared buffers are always at the end
5680 * of the list. Compressed buffers don't have the
5681 * same requirements. This makes it hard to
5682 * simply assert that the lastbuf is shared so
5683 * we rely on the hdr's compression flags to determine
5684 * if we have a compressed, shared buffer.
5685 */
5686 ASSERT(arc_buf_is_shared(lastbuf) ||
5687 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
5688 ASSERT(!ARC_BUF_SHARED(buf));
5689 }
5690 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5691 ASSERT3P(state, !=, arc_l2c_only);
5692
5693 (void) refcount_remove_many(&state->arcs_size,
5694 arc_buf_size(buf), buf);
5695
5696 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5697 ASSERT3P(state, !=, arc_l2c_only);
5698 (void) refcount_remove_many(&state->arcs_esize[type],
5699 arc_buf_size(buf), buf);
5700 }
5701
5702 hdr->b_l1hdr.b_bufcnt -= 1;
5703 arc_cksum_verify(buf);
5704 arc_buf_unwatch(buf);
5705
5706 /* if this is the last uncompressed buf free the checksum */
5707 if (!arc_hdr_has_uncompressed_buf(hdr))
5708 arc_cksum_free(hdr);
5709
5710 mutex_exit(hash_lock);
5711
5712 /*
5713 * Allocate a new hdr. The new hdr will contain a b_pabd
5714 * buffer which will be freed in arc_write().
5715 */
5716 nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5717 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5718 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5719 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5720 VERIFY3U(nhdr->b_type, ==, type);
5721 ASSERT(!HDR_SHARED_DATA(nhdr));
5722
5723 nhdr->b_l1hdr.b_buf = buf;
5724 nhdr->b_l1hdr.b_bufcnt = 1;
5725 nhdr->b_l1hdr.b_mru_hits = 0;
5726 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
5727 nhdr->b_l1hdr.b_mfu_hits = 0;
5728 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
5729 nhdr->b_l1hdr.b_l2_hits = 0;
5730 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5731 buf->b_hdr = nhdr;
5732
5733 mutex_exit(&buf->b_evict_lock);
5734 (void) refcount_add_many(&arc_anon->arcs_size,
5735 HDR_GET_LSIZE(nhdr), buf);
5736 } else {
5737 mutex_exit(&buf->b_evict_lock);
5738 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5739 /* protected by hash lock, or hdr is on arc_anon */
5740 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5741 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5742 hdr->b_l1hdr.b_mru_hits = 0;
5743 hdr->b_l1hdr.b_mru_ghost_hits = 0;
5744 hdr->b_l1hdr.b_mfu_hits = 0;
5745 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
5746 hdr->b_l1hdr.b_l2_hits = 0;
5747 arc_change_state(arc_anon, hdr, hash_lock);
5748 hdr->b_l1hdr.b_arc_access = 0;
5749 mutex_exit(hash_lock);
5750
5751 buf_discard_identity(hdr);
5752 arc_buf_thaw(buf);
5753 }
5754 }
5755
5756 int
5757 arc_released(arc_buf_t *buf)
5758 {
5759 int released;
5760
5761 mutex_enter(&buf->b_evict_lock);
5762 released = (buf->b_data != NULL &&
5763 buf->b_hdr->b_l1hdr.b_state == arc_anon);
5764 mutex_exit(&buf->b_evict_lock);
5765 return (released);
5766 }
5767
5768 #ifdef ZFS_DEBUG
5769 int
5770 arc_referenced(arc_buf_t *buf)
5771 {
5772 int referenced;
5773
5774 mutex_enter(&buf->b_evict_lock);
5775 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5776 mutex_exit(&buf->b_evict_lock);
5777 return (referenced);
5778 }
5779 #endif
5780
5781 static void
5782 arc_write_ready(zio_t *zio)
5783 {
5784 arc_write_callback_t *callback = zio->io_private;
5785 arc_buf_t *buf = callback->awcb_buf;
5786 arc_buf_hdr_t *hdr = buf->b_hdr;
5787 uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5788 enum zio_compress compress;
5789 fstrans_cookie_t cookie = spl_fstrans_mark();
5790
5791 ASSERT(HDR_HAS_L1HDR(hdr));
5792 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5793 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5794
5795 /*
5796 * If we're reexecuting this zio because the pool suspended, then
5797 * cleanup any state that was previously set the first time the
5798 * callback was invoked.
5799 */
5800 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5801 arc_cksum_free(hdr);
5802 arc_buf_unwatch(buf);
5803 if (hdr->b_l1hdr.b_pabd != NULL) {
5804 if (arc_buf_is_shared(buf)) {
5805 arc_unshare_buf(hdr, buf);
5806 } else {
5807 arc_hdr_free_pabd(hdr);
5808 }
5809 }
5810 }
5811 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5812 ASSERT(!HDR_SHARED_DATA(hdr));
5813 ASSERT(!arc_buf_is_shared(buf));
5814
5815 callback->awcb_ready(zio, buf, callback->awcb_private);
5816
5817 if (HDR_IO_IN_PROGRESS(hdr))
5818 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5819
5820 arc_cksum_compute(buf);
5821 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5822
5823 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5824 compress = ZIO_COMPRESS_OFF;
5825 } else {
5826 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5827 compress = BP_GET_COMPRESS(zio->io_bp);
5828 }
5829 HDR_SET_PSIZE(hdr, psize);
5830 arc_hdr_set_compress(hdr, compress);
5831
5832 /*
5833 * Fill the hdr with data. If the hdr is compressed, the data we want
5834 * is available from the zio, otherwise we can take it from the buf.
5835 *
5836 * We might be able to share the buf's data with the hdr here. However,
5837 * doing so would cause the ARC to be full of linear ABDs if we write a
5838 * lot of shareable data. As a compromise, we check whether scattered
5839 * ABDs are allowed, and assume that if they are then the user wants
5840 * the ARC to be primarily filled with them regardless of the data being
5841 * written. Therefore, if they're allowed then we allocate one and copy
5842 * the data into it; otherwise, we share the data directly if we can.
5843 */
5844 if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
5845 arc_hdr_alloc_pabd(hdr);
5846
5847 /*
5848 * Ideally, we would always copy the io_abd into b_pabd, but the
5849 * user may have disabled compressed ARC, thus we must check the
5850 * hdr's compression setting rather than the io_bp's.
5851 */
5852 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5853 ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
5854 ZIO_COMPRESS_OFF);
5855 ASSERT3U(psize, >, 0);
5856
5857 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
5858 } else {
5859 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
5860
5861 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
5862 arc_buf_size(buf));
5863 }
5864 } else {
5865 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
5866 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
5867 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5868
5869 arc_share_buf(hdr, buf);
5870 }
5871
5872 arc_hdr_verify(hdr, zio->io_bp);
5873 spl_fstrans_unmark(cookie);
5874 }
5875
5876 static void
5877 arc_write_children_ready(zio_t *zio)
5878 {
5879 arc_write_callback_t *callback = zio->io_private;
5880 arc_buf_t *buf = callback->awcb_buf;
5881
5882 callback->awcb_children_ready(zio, buf, callback->awcb_private);
5883 }
5884
5885 /*
5886 * The SPA calls this callback for each physical write that happens on behalf
5887 * of a logical write. See the comment in dbuf_write_physdone() for details.
5888 */
5889 static void
5890 arc_write_physdone(zio_t *zio)
5891 {
5892 arc_write_callback_t *cb = zio->io_private;
5893 if (cb->awcb_physdone != NULL)
5894 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5895 }
5896
5897 static void
5898 arc_write_done(zio_t *zio)
5899 {
5900 arc_write_callback_t *callback = zio->io_private;
5901 arc_buf_t *buf = callback->awcb_buf;
5902 arc_buf_hdr_t *hdr = buf->b_hdr;
5903
5904 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5905
5906 if (zio->io_error == 0) {
5907 arc_hdr_verify(hdr, zio->io_bp);
5908
5909 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5910 buf_discard_identity(hdr);
5911 } else {
5912 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5913 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5914 }
5915 } else {
5916 ASSERT(HDR_EMPTY(hdr));
5917 }
5918
5919 /*
5920 * If the block to be written was all-zero or compressed enough to be
5921 * embedded in the BP, no write was performed so there will be no
5922 * dva/birth/checksum. The buffer must therefore remain anonymous
5923 * (and uncached).
5924 */
5925 if (!HDR_EMPTY(hdr)) {
5926 arc_buf_hdr_t *exists;
5927 kmutex_t *hash_lock;
5928
5929 ASSERT3U(zio->io_error, ==, 0);
5930
5931 arc_cksum_verify(buf);
5932
5933 exists = buf_hash_insert(hdr, &hash_lock);
5934 if (exists != NULL) {
5935 /*
5936 * This can only happen if we overwrite for
5937 * sync-to-convergence, because we remove
5938 * buffers from the hash table when we arc_free().
5939 */
5940 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5941 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5942 panic("bad overwrite, hdr=%p exists=%p",
5943 (void *)hdr, (void *)exists);
5944 ASSERT(refcount_is_zero(
5945 &exists->b_l1hdr.b_refcnt));
5946 arc_change_state(arc_anon, exists, hash_lock);
5947 mutex_exit(hash_lock);
5948 arc_hdr_destroy(exists);
5949 exists = buf_hash_insert(hdr, &hash_lock);
5950 ASSERT3P(exists, ==, NULL);
5951 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5952 /* nopwrite */
5953 ASSERT(zio->io_prop.zp_nopwrite);
5954 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5955 panic("bad nopwrite, hdr=%p exists=%p",
5956 (void *)hdr, (void *)exists);
5957 } else {
5958 /* Dedup */
5959 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
5960 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5961 ASSERT(BP_GET_DEDUP(zio->io_bp));
5962 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5963 }
5964 }
5965 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5966 /* if it's not anon, we are doing a scrub */
5967 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5968 arc_access(hdr, hash_lock);
5969 mutex_exit(hash_lock);
5970 } else {
5971 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5972 }
5973
5974 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5975 callback->awcb_done(zio, buf, callback->awcb_private);
5976
5977 abd_put(zio->io_abd);
5978 kmem_free(callback, sizeof (arc_write_callback_t));
5979 }
5980
5981 zio_t *
5982 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
5983 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc,
5984 const zio_prop_t *zp, arc_done_func_t *ready,
5985 arc_done_func_t *children_ready, arc_done_func_t *physdone,
5986 arc_done_func_t *done, void *private, zio_priority_t priority,
5987 int zio_flags, const zbookmark_phys_t *zb)
5988 {
5989 arc_buf_hdr_t *hdr = buf->b_hdr;
5990 arc_write_callback_t *callback;
5991 zio_t *zio;
5992 zio_prop_t localprop = *zp;
5993
5994 ASSERT3P(ready, !=, NULL);
5995 ASSERT3P(done, !=, NULL);
5996 ASSERT(!HDR_IO_ERROR(hdr));
5997 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5998 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5999 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
6000 if (l2arc)
6001 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6002 if (ARC_BUF_COMPRESSED(buf)) {
6003 /*
6004 * We're writing a pre-compressed buffer. Make the
6005 * compression algorithm requested by the zio_prop_t match
6006 * the pre-compressed buffer's compression algorithm.
6007 */
6008 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6009
6010 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6011 zio_flags |= ZIO_FLAG_RAW;
6012 }
6013 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6014 callback->awcb_ready = ready;
6015 callback->awcb_children_ready = children_ready;
6016 callback->awcb_physdone = physdone;
6017 callback->awcb_done = done;
6018 callback->awcb_private = private;
6019 callback->awcb_buf = buf;
6020
6021 /*
6022 * The hdr's b_pabd is now stale, free it now. A new data block
6023 * will be allocated when the zio pipeline calls arc_write_ready().
6024 */
6025 if (hdr->b_l1hdr.b_pabd != NULL) {
6026 /*
6027 * If the buf is currently sharing the data block with
6028 * the hdr then we need to break that relationship here.
6029 * The hdr will remain with a NULL data pointer and the
6030 * buf will take sole ownership of the block.
6031 */
6032 if (arc_buf_is_shared(buf)) {
6033 arc_unshare_buf(hdr, buf);
6034 } else {
6035 arc_hdr_free_pabd(hdr);
6036 }
6037 VERIFY3P(buf->b_data, !=, NULL);
6038 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6039 }
6040 ASSERT(!arc_buf_is_shared(buf));
6041 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6042
6043 zio = zio_write(pio, spa, txg, bp,
6044 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6045 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6046 (children_ready != NULL) ? arc_write_children_ready : NULL,
6047 arc_write_physdone, arc_write_done, callback,
6048 priority, zio_flags, zb);
6049
6050 return (zio);
6051 }
6052
6053 static int
6054 arc_memory_throttle(uint64_t reserve, uint64_t txg)
6055 {
6056 #ifdef _KERNEL
6057 uint64_t available_memory = ptob(freemem);
6058 static uint64_t page_load = 0;
6059 static uint64_t last_txg = 0;
6060 #ifdef __linux__
6061 pgcnt_t minfree = btop(arc_sys_free / 4);
6062 #endif
6063
6064 #if defined(__i386)
6065 available_memory =
6066 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
6067 #endif
6068
6069 if (available_memory > arc_all_memory() * arc_lotsfree_percent / 100)
6070 return (0);
6071
6072 if (txg > last_txg) {
6073 last_txg = txg;
6074 page_load = 0;
6075 }
6076 /*
6077 * If we are in pageout, we know that memory is already tight,
6078 * the arc is already going to be evicting, so we just want to
6079 * continue to let page writes occur as quickly as possible.
6080 */
6081 if (current_is_kswapd()) {
6082 if (page_load > MAX(ptob(minfree), available_memory) / 4) {
6083 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
6084 return (SET_ERROR(ERESTART));
6085 }
6086 /* Note: reserve is inflated, so we deflate */
6087 page_load += reserve / 8;
6088 return (0);
6089 } else if (page_load > 0 && arc_reclaim_needed()) {
6090 /* memory is low, delay before restarting */
6091 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
6092 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
6093 return (SET_ERROR(EAGAIN));
6094 }
6095 page_load = 0;
6096 #endif
6097 return (0);
6098 }
6099
6100 void
6101 arc_tempreserve_clear(uint64_t reserve)
6102 {
6103 atomic_add_64(&arc_tempreserve, -reserve);
6104 ASSERT((int64_t)arc_tempreserve >= 0);
6105 }
6106
6107 int
6108 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
6109 {
6110 int error;
6111 uint64_t anon_size;
6112
6113 if (!arc_no_grow &&
6114 reserve > arc_c/4 &&
6115 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
6116 arc_c = MIN(arc_c_max, reserve * 4);
6117
6118 /*
6119 * Throttle when the calculated memory footprint for the TXG
6120 * exceeds the target ARC size.
6121 */
6122 if (reserve > arc_c) {
6123 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
6124 return (SET_ERROR(ERESTART));
6125 }
6126
6127 /*
6128 * Don't count loaned bufs as in flight dirty data to prevent long
6129 * network delays from blocking transactions that are ready to be
6130 * assigned to a txg.
6131 */
6132
6133 /* assert that it has not wrapped around */
6134 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6135
6136 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
6137 arc_loaned_bytes), 0);
6138
6139 /*
6140 * Writes will, almost always, require additional memory allocations
6141 * in order to compress/encrypt/etc the data. We therefore need to
6142 * make sure that there is sufficient available memory for this.
6143 */
6144 error = arc_memory_throttle(reserve, txg);
6145 if (error != 0)
6146 return (error);
6147
6148 /*
6149 * Throttle writes when the amount of dirty data in the cache
6150 * gets too large. We try to keep the cache less than half full
6151 * of dirty blocks so that our sync times don't grow too large.
6152 * Note: if two requests come in concurrently, we might let them
6153 * both succeed, when one of them should fail. Not a huge deal.
6154 */
6155
6156 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
6157 anon_size > arc_c / 4) {
6158 uint64_t meta_esize =
6159 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6160 uint64_t data_esize =
6161 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6162 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6163 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
6164 arc_tempreserve >> 10, meta_esize >> 10,
6165 data_esize >> 10, reserve >> 10, arc_c >> 10);
6166 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
6167 return (SET_ERROR(ERESTART));
6168 }
6169 atomic_add_64(&arc_tempreserve, reserve);
6170 return (0);
6171 }
6172
6173 static void
6174 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6175 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6176 {
6177 size->value.ui64 = refcount_count(&state->arcs_size);
6178 evict_data->value.ui64 =
6179 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6180 evict_metadata->value.ui64 =
6181 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6182 }
6183
6184 static int
6185 arc_kstat_update(kstat_t *ksp, int rw)
6186 {
6187 arc_stats_t *as = ksp->ks_data;
6188
6189 if (rw == KSTAT_WRITE) {
6190 return (EACCES);
6191 } else {
6192 arc_kstat_update_state(arc_anon,
6193 &as->arcstat_anon_size,
6194 &as->arcstat_anon_evictable_data,
6195 &as->arcstat_anon_evictable_metadata);
6196 arc_kstat_update_state(arc_mru,
6197 &as->arcstat_mru_size,
6198 &as->arcstat_mru_evictable_data,
6199 &as->arcstat_mru_evictable_metadata);
6200 arc_kstat_update_state(arc_mru_ghost,
6201 &as->arcstat_mru_ghost_size,
6202 &as->arcstat_mru_ghost_evictable_data,
6203 &as->arcstat_mru_ghost_evictable_metadata);
6204 arc_kstat_update_state(arc_mfu,
6205 &as->arcstat_mfu_size,
6206 &as->arcstat_mfu_evictable_data,
6207 &as->arcstat_mfu_evictable_metadata);
6208 arc_kstat_update_state(arc_mfu_ghost,
6209 &as->arcstat_mfu_ghost_size,
6210 &as->arcstat_mfu_ghost_evictable_data,
6211 &as->arcstat_mfu_ghost_evictable_metadata);
6212 }
6213
6214 return (0);
6215 }
6216
6217 /*
6218 * This function *must* return indices evenly distributed between all
6219 * sublists of the multilist. This is needed due to how the ARC eviction
6220 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
6221 * distributed between all sublists and uses this assumption when
6222 * deciding which sublist to evict from and how much to evict from it.
6223 */
6224 unsigned int
6225 arc_state_multilist_index_func(multilist_t *ml, void *obj)
6226 {
6227 arc_buf_hdr_t *hdr = obj;
6228
6229 /*
6230 * We rely on b_dva to generate evenly distributed index
6231 * numbers using buf_hash below. So, as an added precaution,
6232 * let's make sure we never add empty buffers to the arc lists.
6233 */
6234 ASSERT(!HDR_EMPTY(hdr));
6235
6236 /*
6237 * The assumption here, is the hash value for a given
6238 * arc_buf_hdr_t will remain constant throughout its lifetime
6239 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
6240 * Thus, we don't need to store the header's sublist index
6241 * on insertion, as this index can be recalculated on removal.
6242 *
6243 * Also, the low order bits of the hash value are thought to be
6244 * distributed evenly. Otherwise, in the case that the multilist
6245 * has a power of two number of sublists, each sublists' usage
6246 * would not be evenly distributed.
6247 */
6248 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
6249 multilist_get_num_sublists(ml));
6250 }
6251
6252 /*
6253 * Called during module initialization and periodically thereafter to
6254 * apply reasonable changes to the exposed performance tunings. Non-zero
6255 * zfs_* values which differ from the currently set values will be applied.
6256 */
6257 static void
6258 arc_tuning_update(void)
6259 {
6260 uint64_t allmem = arc_all_memory();
6261 unsigned long limit;
6262
6263 /* Valid range: 64M - <all physical memory> */
6264 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
6265 (zfs_arc_max > 64 << 20) && (zfs_arc_max < allmem) &&
6266 (zfs_arc_max > arc_c_min)) {
6267 arc_c_max = zfs_arc_max;
6268 arc_c = arc_c_max;
6269 arc_p = (arc_c >> 1);
6270 if (arc_meta_limit > arc_c_max)
6271 arc_meta_limit = arc_c_max;
6272 if (arc_dnode_limit > arc_meta_limit)
6273 arc_dnode_limit = arc_meta_limit;
6274 }
6275
6276 /* Valid range: 32M - <arc_c_max> */
6277 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
6278 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
6279 (zfs_arc_min <= arc_c_max)) {
6280 arc_c_min = zfs_arc_min;
6281 arc_c = MAX(arc_c, arc_c_min);
6282 }
6283
6284 /* Valid range: 16M - <arc_c_max> */
6285 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
6286 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
6287 (zfs_arc_meta_min <= arc_c_max)) {
6288 arc_meta_min = zfs_arc_meta_min;
6289 if (arc_meta_limit < arc_meta_min)
6290 arc_meta_limit = arc_meta_min;
6291 if (arc_dnode_limit < arc_meta_min)
6292 arc_dnode_limit = arc_meta_min;
6293 }
6294
6295 /* Valid range: <arc_meta_min> - <arc_c_max> */
6296 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit :
6297 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100;
6298 if ((limit != arc_meta_limit) &&
6299 (limit >= arc_meta_min) &&
6300 (limit <= arc_c_max))
6301 arc_meta_limit = limit;
6302
6303 /* Valid range: <arc_meta_min> - <arc_meta_limit> */
6304 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
6305 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100;
6306 if ((limit != arc_dnode_limit) &&
6307 (limit >= arc_meta_min) &&
6308 (limit <= arc_meta_limit))
6309 arc_dnode_limit = limit;
6310
6311 /* Valid range: 1 - N */
6312 if (zfs_arc_grow_retry)
6313 arc_grow_retry = zfs_arc_grow_retry;
6314
6315 /* Valid range: 1 - N */
6316 if (zfs_arc_shrink_shift) {
6317 arc_shrink_shift = zfs_arc_shrink_shift;
6318 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
6319 }
6320
6321 /* Valid range: 1 - N */
6322 if (zfs_arc_p_min_shift)
6323 arc_p_min_shift = zfs_arc_p_min_shift;
6324
6325 /* Valid range: 1 - N ticks */
6326 if (zfs_arc_min_prefetch_lifespan)
6327 arc_min_prefetch_lifespan = zfs_arc_min_prefetch_lifespan;
6328
6329 /* Valid range: 0 - 100 */
6330 if ((zfs_arc_lotsfree_percent >= 0) &&
6331 (zfs_arc_lotsfree_percent <= 100))
6332 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
6333
6334 /* Valid range: 0 - <all physical memory> */
6335 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
6336 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem);
6337
6338 }
6339
6340 static void
6341 arc_state_init(void)
6342 {
6343 arc_anon = &ARC_anon;
6344 arc_mru = &ARC_mru;
6345 arc_mru_ghost = &ARC_mru_ghost;
6346 arc_mfu = &ARC_mfu;
6347 arc_mfu_ghost = &ARC_mfu_ghost;
6348 arc_l2c_only = &ARC_l2c_only;
6349
6350 arc_mru->arcs_list[ARC_BUFC_METADATA] =
6351 multilist_create(sizeof (arc_buf_hdr_t),
6352 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6353 arc_state_multilist_index_func);
6354 arc_mru->arcs_list[ARC_BUFC_DATA] =
6355 multilist_create(sizeof (arc_buf_hdr_t),
6356 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6357 arc_state_multilist_index_func);
6358 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
6359 multilist_create(sizeof (arc_buf_hdr_t),
6360 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6361 arc_state_multilist_index_func);
6362 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
6363 multilist_create(sizeof (arc_buf_hdr_t),
6364 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6365 arc_state_multilist_index_func);
6366 arc_mfu->arcs_list[ARC_BUFC_METADATA] =
6367 multilist_create(sizeof (arc_buf_hdr_t),
6368 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6369 arc_state_multilist_index_func);
6370 arc_mfu->arcs_list[ARC_BUFC_DATA] =
6371 multilist_create(sizeof (arc_buf_hdr_t),
6372 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6373 arc_state_multilist_index_func);
6374 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
6375 multilist_create(sizeof (arc_buf_hdr_t),
6376 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6377 arc_state_multilist_index_func);
6378 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
6379 multilist_create(sizeof (arc_buf_hdr_t),
6380 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6381 arc_state_multilist_index_func);
6382 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
6383 multilist_create(sizeof (arc_buf_hdr_t),
6384 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6385 arc_state_multilist_index_func);
6386 arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
6387 multilist_create(sizeof (arc_buf_hdr_t),
6388 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6389 arc_state_multilist_index_func);
6390
6391 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6392 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6393 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6394 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6395 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6396 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6397 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6398 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6399 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6400 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6401 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6402 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6403
6404 refcount_create(&arc_anon->arcs_size);
6405 refcount_create(&arc_mru->arcs_size);
6406 refcount_create(&arc_mru_ghost->arcs_size);
6407 refcount_create(&arc_mfu->arcs_size);
6408 refcount_create(&arc_mfu_ghost->arcs_size);
6409 refcount_create(&arc_l2c_only->arcs_size);
6410
6411 arc_anon->arcs_state = ARC_STATE_ANON;
6412 arc_mru->arcs_state = ARC_STATE_MRU;
6413 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
6414 arc_mfu->arcs_state = ARC_STATE_MFU;
6415 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
6416 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
6417 }
6418
6419 static void
6420 arc_state_fini(void)
6421 {
6422 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6423 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6424 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6425 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6426 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6427 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6428 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6429 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6430 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6431 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6432 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6433 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6434
6435 refcount_destroy(&arc_anon->arcs_size);
6436 refcount_destroy(&arc_mru->arcs_size);
6437 refcount_destroy(&arc_mru_ghost->arcs_size);
6438 refcount_destroy(&arc_mfu->arcs_size);
6439 refcount_destroy(&arc_mfu_ghost->arcs_size);
6440 refcount_destroy(&arc_l2c_only->arcs_size);
6441
6442 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
6443 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
6444 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
6445 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
6446 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
6447 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
6448 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
6449 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
6450 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
6451 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
6452 }
6453
6454 uint64_t
6455 arc_max_bytes(void)
6456 {
6457 return (arc_c_max);
6458 }
6459
6460 void
6461 arc_init(void)
6462 {
6463 uint64_t percent, allmem = arc_all_memory();
6464
6465 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
6466 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
6467 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
6468
6469 /* Convert seconds to clock ticks */
6470 arc_min_prefetch_lifespan = 1 * hz;
6471
6472 #ifdef _KERNEL
6473 /*
6474 * Register a shrinker to support synchronous (direct) memory
6475 * reclaim from the arc. This is done to prevent kswapd from
6476 * swapping out pages when it is preferable to shrink the arc.
6477 */
6478 spl_register_shrinker(&arc_shrinker);
6479
6480 /* Set to 1/64 of all memory or a minimum of 512K */
6481 arc_sys_free = MAX(allmem / 64, (512 * 1024));
6482 arc_need_free = 0;
6483 #endif
6484
6485 /* Set max to 1/2 of all memory */
6486 arc_c_max = allmem / 2;
6487
6488 /*
6489 * In userland, there's only the memory pressure that we artificially
6490 * create (see arc_available_memory()). Don't let arc_c get too
6491 * small, because it can cause transactions to be larger than
6492 * arc_c, causing arc_tempreserve_space() to fail.
6493 */
6494 #ifndef _KERNEL
6495 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
6496 #else
6497 arc_c_min = 2ULL << SPA_MAXBLOCKSHIFT;
6498 #endif
6499
6500 arc_c = arc_c_max;
6501 arc_p = (arc_c >> 1);
6502 arc_size = 0;
6503
6504 /* Set min to 1/2 of arc_c_min */
6505 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
6506 /* Initialize maximum observed usage to zero */
6507 arc_meta_max = 0;
6508 /*
6509 * Set arc_meta_limit to a percent of arc_c_max with a floor of
6510 * arc_meta_min, and a ceiling of arc_c_max.
6511 */
6512 percent = MIN(zfs_arc_meta_limit_percent, 100);
6513 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
6514 percent = MIN(zfs_arc_dnode_limit_percent, 100);
6515 arc_dnode_limit = (percent * arc_meta_limit) / 100;
6516
6517 /* Apply user specified tunings */
6518 arc_tuning_update();
6519
6520 /* if kmem_flags are set, lets try to use less memory */
6521 if (kmem_debugging())
6522 arc_c = arc_c / 2;
6523 if (arc_c < arc_c_min)
6524 arc_c = arc_c_min;
6525
6526 arc_state_init();
6527 buf_init();
6528
6529 list_create(&arc_prune_list, sizeof (arc_prune_t),
6530 offsetof(arc_prune_t, p_node));
6531 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
6532
6533 arc_prune_taskq = taskq_create("arc_prune", max_ncpus, defclsyspri,
6534 max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
6535
6536 arc_reclaim_thread_exit = B_FALSE;
6537
6538 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6539 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6540
6541 if (arc_ksp != NULL) {
6542 arc_ksp->ks_data = &arc_stats;
6543 arc_ksp->ks_update = arc_kstat_update;
6544 kstat_install(arc_ksp);
6545 }
6546
6547 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
6548 TS_RUN, defclsyspri);
6549
6550 arc_dead = B_FALSE;
6551 arc_warm = B_FALSE;
6552
6553 /*
6554 * Calculate maximum amount of dirty data per pool.
6555 *
6556 * If it has been set by a module parameter, take that.
6557 * Otherwise, use a percentage of physical memory defined by
6558 * zfs_dirty_data_max_percent (default 10%) with a cap at
6559 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
6560 */
6561 if (zfs_dirty_data_max_max == 0)
6562 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
6563 allmem * zfs_dirty_data_max_max_percent / 100);
6564
6565 if (zfs_dirty_data_max == 0) {
6566 zfs_dirty_data_max = allmem *
6567 zfs_dirty_data_max_percent / 100;
6568 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6569 zfs_dirty_data_max_max);
6570 }
6571 }
6572
6573 void
6574 arc_fini(void)
6575 {
6576 arc_prune_t *p;
6577
6578 #ifdef _KERNEL
6579 spl_unregister_shrinker(&arc_shrinker);
6580 #endif /* _KERNEL */
6581
6582 mutex_enter(&arc_reclaim_lock);
6583 arc_reclaim_thread_exit = B_TRUE;
6584 /*
6585 * The reclaim thread will set arc_reclaim_thread_exit back to
6586 * B_FALSE when it is finished exiting; we're waiting for that.
6587 */
6588 while (arc_reclaim_thread_exit) {
6589 cv_signal(&arc_reclaim_thread_cv);
6590 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6591 }
6592 mutex_exit(&arc_reclaim_lock);
6593
6594 /* Use B_TRUE to ensure *all* buffers are evicted */
6595 arc_flush(NULL, B_TRUE);
6596
6597 arc_dead = B_TRUE;
6598
6599 if (arc_ksp != NULL) {
6600 kstat_delete(arc_ksp);
6601 arc_ksp = NULL;
6602 }
6603
6604 taskq_wait(arc_prune_taskq);
6605 taskq_destroy(arc_prune_taskq);
6606
6607 mutex_enter(&arc_prune_mtx);
6608 while ((p = list_head(&arc_prune_list)) != NULL) {
6609 list_remove(&arc_prune_list, p);
6610 refcount_remove(&p->p_refcnt, &arc_prune_list);
6611 refcount_destroy(&p->p_refcnt);
6612 kmem_free(p, sizeof (*p));
6613 }
6614 mutex_exit(&arc_prune_mtx);
6615
6616 list_destroy(&arc_prune_list);
6617 mutex_destroy(&arc_prune_mtx);
6618 mutex_destroy(&arc_reclaim_lock);
6619 cv_destroy(&arc_reclaim_thread_cv);
6620 cv_destroy(&arc_reclaim_waiters_cv);
6621
6622 arc_state_fini();
6623 buf_fini();
6624
6625 ASSERT0(arc_loaned_bytes);
6626 }
6627
6628 /*
6629 * Level 2 ARC
6630 *
6631 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6632 * It uses dedicated storage devices to hold cached data, which are populated
6633 * using large infrequent writes. The main role of this cache is to boost
6634 * the performance of random read workloads. The intended L2ARC devices
6635 * include short-stroked disks, solid state disks, and other media with
6636 * substantially faster read latency than disk.
6637 *
6638 * +-----------------------+
6639 * | ARC |
6640 * +-----------------------+
6641 * | ^ ^
6642 * | | |
6643 * l2arc_feed_thread() arc_read()
6644 * | | |
6645 * | l2arc read |
6646 * V | |
6647 * +---------------+ |
6648 * | L2ARC | |
6649 * +---------------+ |
6650 * | ^ |
6651 * l2arc_write() | |
6652 * | | |
6653 * V | |
6654 * +-------+ +-------+
6655 * | vdev | | vdev |
6656 * | cache | | cache |
6657 * +-------+ +-------+
6658 * +=========+ .-----.
6659 * : L2ARC : |-_____-|
6660 * : devices : | Disks |
6661 * +=========+ `-_____-'
6662 *
6663 * Read requests are satisfied from the following sources, in order:
6664 *
6665 * 1) ARC
6666 * 2) vdev cache of L2ARC devices
6667 * 3) L2ARC devices
6668 * 4) vdev cache of disks
6669 * 5) disks
6670 *
6671 * Some L2ARC device types exhibit extremely slow write performance.
6672 * To accommodate for this there are some significant differences between
6673 * the L2ARC and traditional cache design:
6674 *
6675 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
6676 * the ARC behave as usual, freeing buffers and placing headers on ghost
6677 * lists. The ARC does not send buffers to the L2ARC during eviction as
6678 * this would add inflated write latencies for all ARC memory pressure.
6679 *
6680 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6681 * It does this by periodically scanning buffers from the eviction-end of
6682 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6683 * not already there. It scans until a headroom of buffers is satisfied,
6684 * which itself is a buffer for ARC eviction. If a compressible buffer is
6685 * found during scanning and selected for writing to an L2ARC device, we
6686 * temporarily boost scanning headroom during the next scan cycle to make
6687 * sure we adapt to compression effects (which might significantly reduce
6688 * the data volume we write to L2ARC). The thread that does this is
6689 * l2arc_feed_thread(), illustrated below; example sizes are included to
6690 * provide a better sense of ratio than this diagram:
6691 *
6692 * head --> tail
6693 * +---------------------+----------+
6694 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
6695 * +---------------------+----------+ | o L2ARC eligible
6696 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
6697 * +---------------------+----------+ |
6698 * 15.9 Gbytes ^ 32 Mbytes |
6699 * headroom |
6700 * l2arc_feed_thread()
6701 * |
6702 * l2arc write hand <--[oooo]--'
6703 * | 8 Mbyte
6704 * | write max
6705 * V
6706 * +==============================+
6707 * L2ARC dev |####|#|###|###| |####| ... |
6708 * +==============================+
6709 * 32 Gbytes
6710 *
6711 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6712 * evicted, then the L2ARC has cached a buffer much sooner than it probably
6713 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
6714 * safe to say that this is an uncommon case, since buffers at the end of
6715 * the ARC lists have moved there due to inactivity.
6716 *
6717 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6718 * then the L2ARC simply misses copying some buffers. This serves as a
6719 * pressure valve to prevent heavy read workloads from both stalling the ARC
6720 * with waits and clogging the L2ARC with writes. This also helps prevent
6721 * the potential for the L2ARC to churn if it attempts to cache content too
6722 * quickly, such as during backups of the entire pool.
6723 *
6724 * 5. After system boot and before the ARC has filled main memory, there are
6725 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6726 * lists can remain mostly static. Instead of searching from tail of these
6727 * lists as pictured, the l2arc_feed_thread() will search from the list heads
6728 * for eligible buffers, greatly increasing its chance of finding them.
6729 *
6730 * The L2ARC device write speed is also boosted during this time so that
6731 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
6732 * there are no L2ARC reads, and no fear of degrading read performance
6733 * through increased writes.
6734 *
6735 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6736 * the vdev queue can aggregate them into larger and fewer writes. Each
6737 * device is written to in a rotor fashion, sweeping writes through
6738 * available space then repeating.
6739 *
6740 * 7. The L2ARC does not store dirty content. It never needs to flush
6741 * write buffers back to disk based storage.
6742 *
6743 * 8. If an ARC buffer is written (and dirtied) which also exists in the
6744 * L2ARC, the now stale L2ARC buffer is immediately dropped.
6745 *
6746 * The performance of the L2ARC can be tweaked by a number of tunables, which
6747 * may be necessary for different workloads:
6748 *
6749 * l2arc_write_max max write bytes per interval
6750 * l2arc_write_boost extra write bytes during device warmup
6751 * l2arc_noprefetch skip caching prefetched buffers
6752 * l2arc_headroom number of max device writes to precache
6753 * l2arc_headroom_boost when we find compressed buffers during ARC
6754 * scanning, we multiply headroom by this
6755 * percentage factor for the next scan cycle,
6756 * since more compressed buffers are likely to
6757 * be present
6758 * l2arc_feed_secs seconds between L2ARC writing
6759 *
6760 * Tunables may be removed or added as future performance improvements are
6761 * integrated, and also may become zpool properties.
6762 *
6763 * There are three key functions that control how the L2ARC warms up:
6764 *
6765 * l2arc_write_eligible() check if a buffer is eligible to cache
6766 * l2arc_write_size() calculate how much to write
6767 * l2arc_write_interval() calculate sleep delay between writes
6768 *
6769 * These three functions determine what to write, how much, and how quickly
6770 * to send writes.
6771 */
6772
6773 static boolean_t
6774 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6775 {
6776 /*
6777 * A buffer is *not* eligible for the L2ARC if it:
6778 * 1. belongs to a different spa.
6779 * 2. is already cached on the L2ARC.
6780 * 3. has an I/O in progress (it may be an incomplete read).
6781 * 4. is flagged not eligible (zfs property).
6782 */
6783 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
6784 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
6785 return (B_FALSE);
6786
6787 return (B_TRUE);
6788 }
6789
6790 static uint64_t
6791 l2arc_write_size(void)
6792 {
6793 uint64_t size;
6794
6795 /*
6796 * Make sure our globals have meaningful values in case the user
6797 * altered them.
6798 */
6799 size = l2arc_write_max;
6800 if (size == 0) {
6801 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6802 "be greater than zero, resetting it to the default (%d)",
6803 L2ARC_WRITE_SIZE);
6804 size = l2arc_write_max = L2ARC_WRITE_SIZE;
6805 }
6806
6807 if (arc_warm == B_FALSE)
6808 size += l2arc_write_boost;
6809
6810 return (size);
6811
6812 }
6813
6814 static clock_t
6815 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6816 {
6817 clock_t interval, next, now;
6818
6819 /*
6820 * If the ARC lists are busy, increase our write rate; if the
6821 * lists are stale, idle back. This is achieved by checking
6822 * how much we previously wrote - if it was more than half of
6823 * what we wanted, schedule the next write much sooner.
6824 */
6825 if (l2arc_feed_again && wrote > (wanted / 2))
6826 interval = (hz * l2arc_feed_min_ms) / 1000;
6827 else
6828 interval = hz * l2arc_feed_secs;
6829
6830 now = ddi_get_lbolt();
6831 next = MAX(now, MIN(now + interval, began + interval));
6832
6833 return (next);
6834 }
6835
6836 /*
6837 * Cycle through L2ARC devices. This is how L2ARC load balances.
6838 * If a device is returned, this also returns holding the spa config lock.
6839 */
6840 static l2arc_dev_t *
6841 l2arc_dev_get_next(void)
6842 {
6843 l2arc_dev_t *first, *next = NULL;
6844
6845 /*
6846 * Lock out the removal of spas (spa_namespace_lock), then removal
6847 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
6848 * both locks will be dropped and a spa config lock held instead.
6849 */
6850 mutex_enter(&spa_namespace_lock);
6851 mutex_enter(&l2arc_dev_mtx);
6852
6853 /* if there are no vdevs, there is nothing to do */
6854 if (l2arc_ndev == 0)
6855 goto out;
6856
6857 first = NULL;
6858 next = l2arc_dev_last;
6859 do {
6860 /* loop around the list looking for a non-faulted vdev */
6861 if (next == NULL) {
6862 next = list_head(l2arc_dev_list);
6863 } else {
6864 next = list_next(l2arc_dev_list, next);
6865 if (next == NULL)
6866 next = list_head(l2arc_dev_list);
6867 }
6868
6869 /* if we have come back to the start, bail out */
6870 if (first == NULL)
6871 first = next;
6872 else if (next == first)
6873 break;
6874
6875 } while (vdev_is_dead(next->l2ad_vdev));
6876
6877 /* if we were unable to find any usable vdevs, return NULL */
6878 if (vdev_is_dead(next->l2ad_vdev))
6879 next = NULL;
6880
6881 l2arc_dev_last = next;
6882
6883 out:
6884 mutex_exit(&l2arc_dev_mtx);
6885
6886 /*
6887 * Grab the config lock to prevent the 'next' device from being
6888 * removed while we are writing to it.
6889 */
6890 if (next != NULL)
6891 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6892 mutex_exit(&spa_namespace_lock);
6893
6894 return (next);
6895 }
6896
6897 /*
6898 * Free buffers that were tagged for destruction.
6899 */
6900 static void
6901 l2arc_do_free_on_write(void)
6902 {
6903 list_t *buflist;
6904 l2arc_data_free_t *df, *df_prev;
6905
6906 mutex_enter(&l2arc_free_on_write_mtx);
6907 buflist = l2arc_free_on_write;
6908
6909 for (df = list_tail(buflist); df; df = df_prev) {
6910 df_prev = list_prev(buflist, df);
6911 ASSERT3P(df->l2df_abd, !=, NULL);
6912 abd_free(df->l2df_abd);
6913 list_remove(buflist, df);
6914 kmem_free(df, sizeof (l2arc_data_free_t));
6915 }
6916
6917 mutex_exit(&l2arc_free_on_write_mtx);
6918 }
6919
6920 /*
6921 * A write to a cache device has completed. Update all headers to allow
6922 * reads from these buffers to begin.
6923 */
6924 static void
6925 l2arc_write_done(zio_t *zio)
6926 {
6927 l2arc_write_callback_t *cb;
6928 l2arc_dev_t *dev;
6929 list_t *buflist;
6930 arc_buf_hdr_t *head, *hdr, *hdr_prev;
6931 kmutex_t *hash_lock;
6932 int64_t bytes_dropped = 0;
6933
6934 cb = zio->io_private;
6935 ASSERT3P(cb, !=, NULL);
6936 dev = cb->l2wcb_dev;
6937 ASSERT3P(dev, !=, NULL);
6938 head = cb->l2wcb_head;
6939 ASSERT3P(head, !=, NULL);
6940 buflist = &dev->l2ad_buflist;
6941 ASSERT3P(buflist, !=, NULL);
6942 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6943 l2arc_write_callback_t *, cb);
6944
6945 if (zio->io_error != 0)
6946 ARCSTAT_BUMP(arcstat_l2_writes_error);
6947
6948 /*
6949 * All writes completed, or an error was hit.
6950 */
6951 top:
6952 mutex_enter(&dev->l2ad_mtx);
6953 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6954 hdr_prev = list_prev(buflist, hdr);
6955
6956 hash_lock = HDR_LOCK(hdr);
6957
6958 /*
6959 * We cannot use mutex_enter or else we can deadlock
6960 * with l2arc_write_buffers (due to swapping the order
6961 * the hash lock and l2ad_mtx are taken).
6962 */
6963 if (!mutex_tryenter(hash_lock)) {
6964 /*
6965 * Missed the hash lock. We must retry so we
6966 * don't leave the ARC_FLAG_L2_WRITING bit set.
6967 */
6968 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6969
6970 /*
6971 * We don't want to rescan the headers we've
6972 * already marked as having been written out, so
6973 * we reinsert the head node so we can pick up
6974 * where we left off.
6975 */
6976 list_remove(buflist, head);
6977 list_insert_after(buflist, hdr, head);
6978
6979 mutex_exit(&dev->l2ad_mtx);
6980
6981 /*
6982 * We wait for the hash lock to become available
6983 * to try and prevent busy waiting, and increase
6984 * the chance we'll be able to acquire the lock
6985 * the next time around.
6986 */
6987 mutex_enter(hash_lock);
6988 mutex_exit(hash_lock);
6989 goto top;
6990 }
6991
6992 /*
6993 * We could not have been moved into the arc_l2c_only
6994 * state while in-flight due to our ARC_FLAG_L2_WRITING
6995 * bit being set. Let's just ensure that's being enforced.
6996 */
6997 ASSERT(HDR_HAS_L1HDR(hdr));
6998
6999 /*
7000 * Skipped - drop L2ARC entry and mark the header as no
7001 * longer L2 eligibile.
7002 */
7003 if (zio->io_error != 0) {
7004 /*
7005 * Error - drop L2ARC entry.
7006 */
7007 list_remove(buflist, hdr);
7008 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
7009
7010 ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
7011 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
7012
7013 bytes_dropped += arc_hdr_size(hdr);
7014 (void) refcount_remove_many(&dev->l2ad_alloc,
7015 arc_hdr_size(hdr), hdr);
7016 }
7017
7018 /*
7019 * Allow ARC to begin reads and ghost list evictions to
7020 * this L2ARC entry.
7021 */
7022 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
7023
7024 mutex_exit(hash_lock);
7025 }
7026
7027 atomic_inc_64(&l2arc_writes_done);
7028 list_remove(buflist, head);
7029 ASSERT(!HDR_HAS_L1HDR(head));
7030 kmem_cache_free(hdr_l2only_cache, head);
7031 mutex_exit(&dev->l2ad_mtx);
7032
7033 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
7034
7035 l2arc_do_free_on_write();
7036
7037 kmem_free(cb, sizeof (l2arc_write_callback_t));
7038 }
7039
7040 /*
7041 * A read to a cache device completed. Validate buffer contents before
7042 * handing over to the regular ARC routines.
7043 */
7044 static void
7045 l2arc_read_done(zio_t *zio)
7046 {
7047 l2arc_read_callback_t *cb;
7048 arc_buf_hdr_t *hdr;
7049 kmutex_t *hash_lock;
7050 boolean_t valid_cksum;
7051
7052 ASSERT3P(zio->io_vd, !=, NULL);
7053 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
7054
7055 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
7056
7057 cb = zio->io_private;
7058 ASSERT3P(cb, !=, NULL);
7059 hdr = cb->l2rcb_hdr;
7060 ASSERT3P(hdr, !=, NULL);
7061
7062 hash_lock = HDR_LOCK(hdr);
7063 mutex_enter(hash_lock);
7064 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
7065
7066 /*
7067 * If the data was read into a temporary buffer,
7068 * move it and free the buffer.
7069 */
7070 if (cb->l2rcb_abd != NULL) {
7071 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
7072 if (zio->io_error == 0) {
7073 abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
7074 arc_hdr_size(hdr));
7075 }
7076
7077 /*
7078 * The following must be done regardless of whether
7079 * there was an error:
7080 * - free the temporary buffer
7081 * - point zio to the real ARC buffer
7082 * - set zio size accordingly
7083 * These are required because zio is either re-used for
7084 * an I/O of the block in the case of the error
7085 * or the zio is passed to arc_read_done() and it
7086 * needs real data.
7087 */
7088 abd_free(cb->l2rcb_abd);
7089 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
7090 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
7091 }
7092
7093 ASSERT3P(zio->io_abd, !=, NULL);
7094
7095 /*
7096 * Check this survived the L2ARC journey.
7097 */
7098 ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
7099 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
7100 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
7101
7102 valid_cksum = arc_cksum_is_equal(hdr, zio);
7103 if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
7104 mutex_exit(hash_lock);
7105 zio->io_private = hdr;
7106 arc_read_done(zio);
7107 } else {
7108 mutex_exit(hash_lock);
7109 /*
7110 * Buffer didn't survive caching. Increment stats and
7111 * reissue to the original storage device.
7112 */
7113 if (zio->io_error != 0) {
7114 ARCSTAT_BUMP(arcstat_l2_io_error);
7115 } else {
7116 zio->io_error = SET_ERROR(EIO);
7117 }
7118 if (!valid_cksum)
7119 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
7120
7121 /*
7122 * If there's no waiter, issue an async i/o to the primary
7123 * storage now. If there *is* a waiter, the caller must
7124 * issue the i/o in a context where it's OK to block.
7125 */
7126 if (zio->io_waiter == NULL) {
7127 zio_t *pio = zio_unique_parent(zio);
7128
7129 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
7130
7131 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
7132 hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
7133 hdr, zio->io_priority, cb->l2rcb_flags,
7134 &cb->l2rcb_zb));
7135 }
7136 }
7137
7138 kmem_free(cb, sizeof (l2arc_read_callback_t));
7139 }
7140
7141 /*
7142 * This is the list priority from which the L2ARC will search for pages to
7143 * cache. This is used within loops (0..3) to cycle through lists in the
7144 * desired order. This order can have a significant effect on cache
7145 * performance.
7146 *
7147 * Currently the metadata lists are hit first, MFU then MRU, followed by
7148 * the data lists. This function returns a locked list, and also returns
7149 * the lock pointer.
7150 */
7151 static multilist_sublist_t *
7152 l2arc_sublist_lock(int list_num)
7153 {
7154 multilist_t *ml = NULL;
7155 unsigned int idx;
7156
7157 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
7158
7159 switch (list_num) {
7160 case 0:
7161 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
7162 break;
7163 case 1:
7164 ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
7165 break;
7166 case 2:
7167 ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
7168 break;
7169 case 3:
7170 ml = arc_mru->arcs_list[ARC_BUFC_DATA];
7171 break;
7172 default:
7173 return (NULL);
7174 }
7175
7176 /*
7177 * Return a randomly-selected sublist. This is acceptable
7178 * because the caller feeds only a little bit of data for each
7179 * call (8MB). Subsequent calls will result in different
7180 * sublists being selected.
7181 */
7182 idx = multilist_get_random_index(ml);
7183 return (multilist_sublist_lock(ml, idx));
7184 }
7185
7186 /*
7187 * Evict buffers from the device write hand to the distance specified in
7188 * bytes. This distance may span populated buffers, it may span nothing.
7189 * This is clearing a region on the L2ARC device ready for writing.
7190 * If the 'all' boolean is set, every buffer is evicted.
7191 */
7192 static void
7193 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
7194 {
7195 list_t *buflist;
7196 arc_buf_hdr_t *hdr, *hdr_prev;
7197 kmutex_t *hash_lock;
7198 uint64_t taddr;
7199
7200 buflist = &dev->l2ad_buflist;
7201
7202 if (!all && dev->l2ad_first) {
7203 /*
7204 * This is the first sweep through the device. There is
7205 * nothing to evict.
7206 */
7207 return;
7208 }
7209
7210 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
7211 /*
7212 * When nearing the end of the device, evict to the end
7213 * before the device write hand jumps to the start.
7214 */
7215 taddr = dev->l2ad_end;
7216 } else {
7217 taddr = dev->l2ad_hand + distance;
7218 }
7219 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
7220 uint64_t, taddr, boolean_t, all);
7221
7222 top:
7223 mutex_enter(&dev->l2ad_mtx);
7224 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
7225 hdr_prev = list_prev(buflist, hdr);
7226
7227 hash_lock = HDR_LOCK(hdr);
7228
7229 /*
7230 * We cannot use mutex_enter or else we can deadlock
7231 * with l2arc_write_buffers (due to swapping the order
7232 * the hash lock and l2ad_mtx are taken).
7233 */
7234 if (!mutex_tryenter(hash_lock)) {
7235 /*
7236 * Missed the hash lock. Retry.
7237 */
7238 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
7239 mutex_exit(&dev->l2ad_mtx);
7240 mutex_enter(hash_lock);
7241 mutex_exit(hash_lock);
7242 goto top;
7243 }
7244
7245 if (HDR_L2_WRITE_HEAD(hdr)) {
7246 /*
7247 * We hit a write head node. Leave it for
7248 * l2arc_write_done().
7249 */
7250 list_remove(buflist, hdr);
7251 mutex_exit(hash_lock);
7252 continue;
7253 }
7254
7255 if (!all && HDR_HAS_L2HDR(hdr) &&
7256 (hdr->b_l2hdr.b_daddr > taddr ||
7257 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
7258 /*
7259 * We've evicted to the target address,
7260 * or the end of the device.
7261 */
7262 mutex_exit(hash_lock);
7263 break;
7264 }
7265
7266 ASSERT(HDR_HAS_L2HDR(hdr));
7267 if (!HDR_HAS_L1HDR(hdr)) {
7268 ASSERT(!HDR_L2_READING(hdr));
7269 /*
7270 * This doesn't exist in the ARC. Destroy.
7271 * arc_hdr_destroy() will call list_remove()
7272 * and decrement arcstat_l2_lsize.
7273 */
7274 arc_change_state(arc_anon, hdr, hash_lock);
7275 arc_hdr_destroy(hdr);
7276 } else {
7277 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
7278 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
7279 /*
7280 * Invalidate issued or about to be issued
7281 * reads, since we may be about to write
7282 * over this location.
7283 */
7284 if (HDR_L2_READING(hdr)) {
7285 ARCSTAT_BUMP(arcstat_l2_evict_reading);
7286 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
7287 }
7288
7289 /* Ensure this header has finished being written */
7290 ASSERT(!HDR_L2_WRITING(hdr));
7291
7292 arc_hdr_l2hdr_destroy(hdr);
7293 }
7294 mutex_exit(hash_lock);
7295 }
7296 mutex_exit(&dev->l2ad_mtx);
7297 }
7298
7299 /*
7300 * Find and write ARC buffers to the L2ARC device.
7301 *
7302 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
7303 * for reading until they have completed writing.
7304 * The headroom_boost is an in-out parameter used to maintain headroom boost
7305 * state between calls to this function.
7306 *
7307 * Returns the number of bytes actually written (which may be smaller than
7308 * the delta by which the device hand has changed due to alignment).
7309 */
7310 static uint64_t
7311 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
7312 {
7313 arc_buf_hdr_t *hdr, *hdr_prev, *head;
7314 uint64_t write_asize, write_psize, write_lsize, headroom;
7315 boolean_t full;
7316 l2arc_write_callback_t *cb;
7317 zio_t *pio, *wzio;
7318 uint64_t guid = spa_load_guid(spa);
7319 int try;
7320
7321 ASSERT3P(dev->l2ad_vdev, !=, NULL);
7322
7323 pio = NULL;
7324 write_lsize = write_asize = write_psize = 0;
7325 full = B_FALSE;
7326 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
7327 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
7328
7329 /*
7330 * Copy buffers for L2ARC writing.
7331 */
7332 for (try = 0; try < L2ARC_FEED_TYPES; try++) {
7333 multilist_sublist_t *mls = l2arc_sublist_lock(try);
7334 uint64_t passed_sz = 0;
7335
7336 VERIFY3P(mls, !=, NULL);
7337
7338 /*
7339 * L2ARC fast warmup.
7340 *
7341 * Until the ARC is warm and starts to evict, read from the
7342 * head of the ARC lists rather than the tail.
7343 */
7344 if (arc_warm == B_FALSE)
7345 hdr = multilist_sublist_head(mls);
7346 else
7347 hdr = multilist_sublist_tail(mls);
7348
7349 headroom = target_sz * l2arc_headroom;
7350 if (zfs_compressed_arc_enabled)
7351 headroom = (headroom * l2arc_headroom_boost) / 100;
7352
7353 for (; hdr; hdr = hdr_prev) {
7354 kmutex_t *hash_lock;
7355
7356 if (arc_warm == B_FALSE)
7357 hdr_prev = multilist_sublist_next(mls, hdr);
7358 else
7359 hdr_prev = multilist_sublist_prev(mls, hdr);
7360
7361 hash_lock = HDR_LOCK(hdr);
7362 if (!mutex_tryenter(hash_lock)) {
7363 /*
7364 * Skip this buffer rather than waiting.
7365 */
7366 continue;
7367 }
7368
7369 passed_sz += HDR_GET_LSIZE(hdr);
7370 if (passed_sz > headroom) {
7371 /*
7372 * Searched too far.
7373 */
7374 mutex_exit(hash_lock);
7375 break;
7376 }
7377
7378 if (!l2arc_write_eligible(guid, hdr)) {
7379 mutex_exit(hash_lock);
7380 continue;
7381 }
7382
7383 /*
7384 * We rely on the L1 portion of the header below, so
7385 * it's invalid for this header to have been evicted out
7386 * of the ghost cache, prior to being written out. The
7387 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
7388 */
7389 ASSERT(HDR_HAS_L1HDR(hdr));
7390
7391 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
7392 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
7393 ASSERT3U(arc_hdr_size(hdr), >, 0);
7394 uint64_t psize = arc_hdr_size(hdr);
7395 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
7396 psize);
7397
7398 if ((write_asize + asize) > target_sz) {
7399 full = B_TRUE;
7400 mutex_exit(hash_lock);
7401 break;
7402 }
7403
7404 if (pio == NULL) {
7405 /*
7406 * Insert a dummy header on the buflist so
7407 * l2arc_write_done() can find where the
7408 * write buffers begin without searching.
7409 */
7410 mutex_enter(&dev->l2ad_mtx);
7411 list_insert_head(&dev->l2ad_buflist, head);
7412 mutex_exit(&dev->l2ad_mtx);
7413
7414 cb = kmem_alloc(
7415 sizeof (l2arc_write_callback_t), KM_SLEEP);
7416 cb->l2wcb_dev = dev;
7417 cb->l2wcb_head = head;
7418 pio = zio_root(spa, l2arc_write_done, cb,
7419 ZIO_FLAG_CANFAIL);
7420 }
7421
7422 hdr->b_l2hdr.b_dev = dev;
7423 hdr->b_l2hdr.b_hits = 0;
7424
7425 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
7426 arc_hdr_set_flags(hdr,
7427 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
7428
7429 mutex_enter(&dev->l2ad_mtx);
7430 list_insert_head(&dev->l2ad_buflist, hdr);
7431 mutex_exit(&dev->l2ad_mtx);
7432
7433 (void) refcount_add_many(&dev->l2ad_alloc, psize, hdr);
7434
7435 /*
7436 * Normally the L2ARC can use the hdr's data, but if
7437 * we're sharing data between the hdr and one of its
7438 * bufs, L2ARC needs its own copy of the data so that
7439 * the ZIO below can't race with the buf consumer.
7440 * Another case where we need to create a copy of the
7441 * data is when the buffer size is not device-aligned
7442 * and we need to pad the block to make it such.
7443 * That also keeps the clock hand suitably aligned.
7444 *
7445 * To ensure that the copy will be available for the
7446 * lifetime of the ZIO and be cleaned up afterwards, we
7447 * add it to the l2arc_free_on_write queue.
7448 */
7449 abd_t *to_write;
7450 if (!HDR_SHARED_DATA(hdr) && psize == asize) {
7451 to_write = hdr->b_l1hdr.b_pabd;
7452 } else {
7453 to_write = abd_alloc_for_io(asize,
7454 HDR_ISTYPE_METADATA(hdr));
7455 abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize);
7456 if (asize != psize) {
7457 abd_zero_off(to_write, psize,
7458 asize - psize);
7459 }
7460 l2arc_free_abd_on_write(to_write, asize,
7461 arc_buf_type(hdr));
7462 }
7463 wzio = zio_write_phys(pio, dev->l2ad_vdev,
7464 hdr->b_l2hdr.b_daddr, asize, to_write,
7465 ZIO_CHECKSUM_OFF, NULL, hdr,
7466 ZIO_PRIORITY_ASYNC_WRITE,
7467 ZIO_FLAG_CANFAIL, B_FALSE);
7468
7469 write_lsize += HDR_GET_LSIZE(hdr);
7470 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7471 zio_t *, wzio);
7472
7473 write_psize += psize;
7474 write_asize += asize;
7475 dev->l2ad_hand += asize;
7476
7477 mutex_exit(hash_lock);
7478
7479 (void) zio_nowait(wzio);
7480 }
7481
7482 multilist_sublist_unlock(mls);
7483
7484 if (full == B_TRUE)
7485 break;
7486 }
7487
7488 /* No buffers selected for writing? */
7489 if (pio == NULL) {
7490 ASSERT0(write_lsize);
7491 ASSERT(!HDR_HAS_L1HDR(head));
7492 kmem_cache_free(hdr_l2only_cache, head);
7493 return (0);
7494 }
7495
7496 ASSERT3U(write_asize, <=, target_sz);
7497 ARCSTAT_BUMP(arcstat_l2_writes_sent);
7498 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
7499 ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
7500 ARCSTAT_INCR(arcstat_l2_psize, write_psize);
7501 vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
7502
7503 /*
7504 * Bump device hand to the device start if it is approaching the end.
7505 * l2arc_evict() will already have evicted ahead for this case.
7506 */
7507 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7508 dev->l2ad_hand = dev->l2ad_start;
7509 dev->l2ad_first = B_FALSE;
7510 }
7511
7512 dev->l2ad_writing = B_TRUE;
7513 (void) zio_wait(pio);
7514 dev->l2ad_writing = B_FALSE;
7515
7516 return (write_asize);
7517 }
7518
7519 /*
7520 * This thread feeds the L2ARC at regular intervals. This is the beating
7521 * heart of the L2ARC.
7522 */
7523 static void
7524 l2arc_feed_thread(void)
7525 {
7526 callb_cpr_t cpr;
7527 l2arc_dev_t *dev;
7528 spa_t *spa;
7529 uint64_t size, wrote;
7530 clock_t begin, next = ddi_get_lbolt();
7531 fstrans_cookie_t cookie;
7532
7533 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7534
7535 mutex_enter(&l2arc_feed_thr_lock);
7536
7537 cookie = spl_fstrans_mark();
7538 while (l2arc_thread_exit == 0) {
7539 CALLB_CPR_SAFE_BEGIN(&cpr);
7540 (void) cv_timedwait_sig(&l2arc_feed_thr_cv,
7541 &l2arc_feed_thr_lock, next);
7542 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7543 next = ddi_get_lbolt() + hz;
7544
7545 /*
7546 * Quick check for L2ARC devices.
7547 */
7548 mutex_enter(&l2arc_dev_mtx);
7549 if (l2arc_ndev == 0) {
7550 mutex_exit(&l2arc_dev_mtx);
7551 continue;
7552 }
7553 mutex_exit(&l2arc_dev_mtx);
7554 begin = ddi_get_lbolt();
7555
7556 /*
7557 * This selects the next l2arc device to write to, and in
7558 * doing so the next spa to feed from: dev->l2ad_spa. This
7559 * will return NULL if there are now no l2arc devices or if
7560 * they are all faulted.
7561 *
7562 * If a device is returned, its spa's config lock is also
7563 * held to prevent device removal. l2arc_dev_get_next()
7564 * will grab and release l2arc_dev_mtx.
7565 */
7566 if ((dev = l2arc_dev_get_next()) == NULL)
7567 continue;
7568
7569 spa = dev->l2ad_spa;
7570 ASSERT3P(spa, !=, NULL);
7571
7572 /*
7573 * If the pool is read-only then force the feed thread to
7574 * sleep a little longer.
7575 */
7576 if (!spa_writeable(spa)) {
7577 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7578 spa_config_exit(spa, SCL_L2ARC, dev);
7579 continue;
7580 }
7581
7582 /*
7583 * Avoid contributing to memory pressure.
7584 */
7585 if (arc_reclaim_needed()) {
7586 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7587 spa_config_exit(spa, SCL_L2ARC, dev);
7588 continue;
7589 }
7590
7591 ARCSTAT_BUMP(arcstat_l2_feeds);
7592
7593 size = l2arc_write_size();
7594
7595 /*
7596 * Evict L2ARC buffers that will be overwritten.
7597 */
7598 l2arc_evict(dev, size, B_FALSE);
7599
7600 /*
7601 * Write ARC buffers.
7602 */
7603 wrote = l2arc_write_buffers(spa, dev, size);
7604
7605 /*
7606 * Calculate interval between writes.
7607 */
7608 next = l2arc_write_interval(begin, size, wrote);
7609 spa_config_exit(spa, SCL_L2ARC, dev);
7610 }
7611 spl_fstrans_unmark(cookie);
7612
7613 l2arc_thread_exit = 0;
7614 cv_broadcast(&l2arc_feed_thr_cv);
7615 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
7616 thread_exit();
7617 }
7618
7619 boolean_t
7620 l2arc_vdev_present(vdev_t *vd)
7621 {
7622 l2arc_dev_t *dev;
7623
7624 mutex_enter(&l2arc_dev_mtx);
7625 for (dev = list_head(l2arc_dev_list); dev != NULL;
7626 dev = list_next(l2arc_dev_list, dev)) {
7627 if (dev->l2ad_vdev == vd)
7628 break;
7629 }
7630 mutex_exit(&l2arc_dev_mtx);
7631
7632 return (dev != NULL);
7633 }
7634
7635 /*
7636 * Add a vdev for use by the L2ARC. By this point the spa has already
7637 * validated the vdev and opened it.
7638 */
7639 void
7640 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7641 {
7642 l2arc_dev_t *adddev;
7643
7644 ASSERT(!l2arc_vdev_present(vd));
7645
7646 /*
7647 * Create a new l2arc device entry.
7648 */
7649 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7650 adddev->l2ad_spa = spa;
7651 adddev->l2ad_vdev = vd;
7652 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7653 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7654 adddev->l2ad_hand = adddev->l2ad_start;
7655 adddev->l2ad_first = B_TRUE;
7656 adddev->l2ad_writing = B_FALSE;
7657 list_link_init(&adddev->l2ad_node);
7658
7659 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7660 /*
7661 * This is a list of all ARC buffers that are still valid on the
7662 * device.
7663 */
7664 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7665 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7666
7667 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7668 refcount_create(&adddev->l2ad_alloc);
7669
7670 /*
7671 * Add device to global list
7672 */
7673 mutex_enter(&l2arc_dev_mtx);
7674 list_insert_head(l2arc_dev_list, adddev);
7675 atomic_inc_64(&l2arc_ndev);
7676 mutex_exit(&l2arc_dev_mtx);
7677 }
7678
7679 /*
7680 * Remove a vdev from the L2ARC.
7681 */
7682 void
7683 l2arc_remove_vdev(vdev_t *vd)
7684 {
7685 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7686
7687 /*
7688 * Find the device by vdev
7689 */
7690 mutex_enter(&l2arc_dev_mtx);
7691 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7692 nextdev = list_next(l2arc_dev_list, dev);
7693 if (vd == dev->l2ad_vdev) {
7694 remdev = dev;
7695 break;
7696 }
7697 }
7698 ASSERT3P(remdev, !=, NULL);
7699
7700 /*
7701 * Remove device from global list
7702 */
7703 list_remove(l2arc_dev_list, remdev);
7704 l2arc_dev_last = NULL; /* may have been invalidated */
7705 atomic_dec_64(&l2arc_ndev);
7706 mutex_exit(&l2arc_dev_mtx);
7707
7708 /*
7709 * Clear all buflists and ARC references. L2ARC device flush.
7710 */
7711 l2arc_evict(remdev, 0, B_TRUE);
7712 list_destroy(&remdev->l2ad_buflist);
7713 mutex_destroy(&remdev->l2ad_mtx);
7714 refcount_destroy(&remdev->l2ad_alloc);
7715 kmem_free(remdev, sizeof (l2arc_dev_t));
7716 }
7717
7718 void
7719 l2arc_init(void)
7720 {
7721 l2arc_thread_exit = 0;
7722 l2arc_ndev = 0;
7723 l2arc_writes_sent = 0;
7724 l2arc_writes_done = 0;
7725
7726 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7727 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7728 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7729 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7730
7731 l2arc_dev_list = &L2ARC_dev_list;
7732 l2arc_free_on_write = &L2ARC_free_on_write;
7733 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7734 offsetof(l2arc_dev_t, l2ad_node));
7735 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7736 offsetof(l2arc_data_free_t, l2df_list_node));
7737 }
7738
7739 void
7740 l2arc_fini(void)
7741 {
7742 /*
7743 * This is called from dmu_fini(), which is called from spa_fini();
7744 * Because of this, we can assume that all l2arc devices have
7745 * already been removed when the pools themselves were removed.
7746 */
7747
7748 l2arc_do_free_on_write();
7749
7750 mutex_destroy(&l2arc_feed_thr_lock);
7751 cv_destroy(&l2arc_feed_thr_cv);
7752 mutex_destroy(&l2arc_dev_mtx);
7753 mutex_destroy(&l2arc_free_on_write_mtx);
7754
7755 list_destroy(l2arc_dev_list);
7756 list_destroy(l2arc_free_on_write);
7757 }
7758
7759 void
7760 l2arc_start(void)
7761 {
7762 if (!(spa_mode_global & FWRITE))
7763 return;
7764
7765 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7766 TS_RUN, defclsyspri);
7767 }
7768
7769 void
7770 l2arc_stop(void)
7771 {
7772 if (!(spa_mode_global & FWRITE))
7773 return;
7774
7775 mutex_enter(&l2arc_feed_thr_lock);
7776 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
7777 l2arc_thread_exit = 1;
7778 while (l2arc_thread_exit != 0)
7779 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7780 mutex_exit(&l2arc_feed_thr_lock);
7781 }
7782
7783 #if defined(_KERNEL) && defined(HAVE_SPL)
7784 EXPORT_SYMBOL(arc_buf_size);
7785 EXPORT_SYMBOL(arc_write);
7786 EXPORT_SYMBOL(arc_read);
7787 EXPORT_SYMBOL(arc_buf_info);
7788 EXPORT_SYMBOL(arc_getbuf_func);
7789 EXPORT_SYMBOL(arc_add_prune_callback);
7790 EXPORT_SYMBOL(arc_remove_prune_callback);
7791
7792 /* BEGIN CSTYLED */
7793 module_param(zfs_arc_min, ulong, 0644);
7794 MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
7795
7796 module_param(zfs_arc_max, ulong, 0644);
7797 MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
7798
7799 module_param(zfs_arc_meta_limit, ulong, 0644);
7800 MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
7801
7802 module_param(zfs_arc_meta_limit_percent, ulong, 0644);
7803 MODULE_PARM_DESC(zfs_arc_meta_limit_percent,
7804 "Percent of arc size for arc meta limit");
7805
7806 module_param(zfs_arc_meta_min, ulong, 0644);
7807 MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
7808
7809 module_param(zfs_arc_meta_prune, int, 0644);
7810 MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
7811
7812 module_param(zfs_arc_meta_adjust_restarts, int, 0644);
7813 MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
7814 "Limit number of restarts in arc_adjust_meta");
7815
7816 module_param(zfs_arc_meta_strategy, int, 0644);
7817 MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
7818
7819 module_param(zfs_arc_grow_retry, int, 0644);
7820 MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
7821
7822 module_param(zfs_arc_p_aggressive_disable, int, 0644);
7823 MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
7824
7825 module_param(zfs_arc_p_dampener_disable, int, 0644);
7826 MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
7827
7828 module_param(zfs_arc_shrink_shift, int, 0644);
7829 MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
7830
7831 module_param(zfs_arc_pc_percent, uint, 0644);
7832 MODULE_PARM_DESC(zfs_arc_pc_percent,
7833 "Percent of pagecache to reclaim arc to");
7834
7835 module_param(zfs_arc_p_min_shift, int, 0644);
7836 MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
7837
7838 module_param(zfs_arc_average_blocksize, int, 0444);
7839 MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
7840
7841 module_param(zfs_compressed_arc_enabled, int, 0644);
7842 MODULE_PARM_DESC(zfs_compressed_arc_enabled, "Disable compressed arc buffers");
7843
7844 module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
7845 MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
7846
7847 module_param(l2arc_write_max, ulong, 0644);
7848 MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
7849
7850 module_param(l2arc_write_boost, ulong, 0644);
7851 MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
7852
7853 module_param(l2arc_headroom, ulong, 0644);
7854 MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
7855
7856 module_param(l2arc_headroom_boost, ulong, 0644);
7857 MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
7858
7859 module_param(l2arc_feed_secs, ulong, 0644);
7860 MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
7861
7862 module_param(l2arc_feed_min_ms, ulong, 0644);
7863 MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
7864
7865 module_param(l2arc_noprefetch, int, 0644);
7866 MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
7867
7868 module_param(l2arc_feed_again, int, 0644);
7869 MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
7870
7871 module_param(l2arc_norw, int, 0644);
7872 MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
7873
7874 module_param(zfs_arc_lotsfree_percent, int, 0644);
7875 MODULE_PARM_DESC(zfs_arc_lotsfree_percent,
7876 "System free memory I/O throttle in bytes");
7877
7878 module_param(zfs_arc_sys_free, ulong, 0644);
7879 MODULE_PARM_DESC(zfs_arc_sys_free, "System free memory target size in bytes");
7880
7881 module_param(zfs_arc_dnode_limit, ulong, 0644);
7882 MODULE_PARM_DESC(zfs_arc_dnode_limit, "Minimum bytes of dnodes in arc");
7883
7884 module_param(zfs_arc_dnode_limit_percent, ulong, 0644);
7885 MODULE_PARM_DESC(zfs_arc_dnode_limit_percent,
7886 "Percent of ARC meta buffers for dnodes");
7887
7888 module_param(zfs_arc_dnode_reduce_percent, ulong, 0644);
7889 MODULE_PARM_DESC(zfs_arc_dnode_reduce_percent,
7890 "Percentage of excess dnodes to try to unpin");
7891 /* END CSTYLED */
7892 #endif