]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/arc.c
Allow scaling of arc in proportion to pagecache
[mirror_zfs.git] / module / zfs / arc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 /*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size. So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes). We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74 /*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
80 * uses method 1, while the internal ARC algorithms for
81 * adjusting the cache use method 2. We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * ARC list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each ARC state also has a mutex which is used to protect the
97 * buffer list associated with the state. When attempting to
98 * obtain a hash table lock while holding an ARC list lock you
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * It as also possible to register a callback which is run when the
103 * arc_meta_limit is reached and no buffers can be safely evicted. In
104 * this case the arc user should drop a reference on some arc buffers so
105 * they can be reclaimed and the arc_meta_limit honored. For example,
106 * when using the ZPL each dentry holds a references on a znode. These
107 * dentries must be pruned before the arc buffer holding the znode can
108 * be safely evicted.
109 *
110 * Note that the majority of the performance stats are manipulated
111 * with atomic operations.
112 *
113 * The L2ARC uses the l2ad_mtx on each vdev for the following:
114 *
115 * - L2ARC buflist creation
116 * - L2ARC buflist eviction
117 * - L2ARC write completion, which walks L2ARC buflists
118 * - ARC header destruction, as it removes from L2ARC buflists
119 * - ARC header release, as it removes from L2ARC buflists
120 */
121
122 /*
123 * ARC operation:
124 *
125 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
126 * This structure can point either to a block that is still in the cache or to
127 * one that is only accessible in an L2 ARC device, or it can provide
128 * information about a block that was recently evicted. If a block is
129 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
130 * information to retrieve it from the L2ARC device. This information is
131 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
132 * that is in this state cannot access the data directly.
133 *
134 * Blocks that are actively being referenced or have not been evicted
135 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
136 * the arc_buf_hdr_t that will point to the data block in memory. A block can
137 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
138 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
139 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
140 *
141 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
142 * ability to store the physical data (b_pabd) associated with the DVA of the
143 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
144 * it will match its on-disk compression characteristics. This behavior can be
145 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
146 * compressed ARC functionality is disabled, the b_pabd will point to an
147 * uncompressed version of the on-disk data.
148 *
149 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
150 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
151 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
152 * consumer. The ARC will provide references to this data and will keep it
153 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
154 * data block and will evict any arc_buf_t that is no longer referenced. The
155 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
156 * "overhead_size" kstat.
157 *
158 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
159 * compressed form. The typical case is that consumers will want uncompressed
160 * data, and when that happens a new data buffer is allocated where the data is
161 * decompressed for them to use. Currently the only consumer who wants
162 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
163 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
164 * with the arc_buf_hdr_t.
165 *
166 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
167 * first one is owned by a compressed send consumer (and therefore references
168 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
169 * used by any other consumer (and has its own uncompressed copy of the data
170 * buffer).
171 *
172 * arc_buf_hdr_t
173 * +-----------+
174 * | fields |
175 * | common to |
176 * | L1- and |
177 * | L2ARC |
178 * +-----------+
179 * | l2arc_buf_hdr_t
180 * | |
181 * +-----------+
182 * | l1arc_buf_hdr_t
183 * | | arc_buf_t
184 * | b_buf +------------>+-----------+ arc_buf_t
185 * | b_pabd +-+ |b_next +---->+-----------+
186 * +-----------+ | |-----------| |b_next +-->NULL
187 * | |b_comp = T | +-----------+
188 * | |b_data +-+ |b_comp = F |
189 * | +-----------+ | |b_data +-+
190 * +->+------+ | +-----------+ |
191 * compressed | | | |
192 * data | |<--------------+ | uncompressed
193 * +------+ compressed, | data
194 * shared +-->+------+
195 * data | |
196 * | |
197 * +------+
198 *
199 * When a consumer reads a block, the ARC must first look to see if the
200 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
201 * arc_buf_t and either copies uncompressed data into a new data buffer from an
202 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
203 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
204 * hdr is compressed and the desired compression characteristics of the
205 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
206 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
207 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
208 * be anywhere in the hdr's list.
209 *
210 * The diagram below shows an example of an uncompressed ARC hdr that is
211 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
212 * the last element in the buf list):
213 *
214 * arc_buf_hdr_t
215 * +-----------+
216 * | |
217 * | |
218 * | |
219 * +-----------+
220 * l2arc_buf_hdr_t| |
221 * | |
222 * +-----------+
223 * l1arc_buf_hdr_t| |
224 * | | arc_buf_t (shared)
225 * | b_buf +------------>+---------+ arc_buf_t
226 * | | |b_next +---->+---------+
227 * | b_pabd +-+ |---------| |b_next +-->NULL
228 * +-----------+ | | | +---------+
229 * | |b_data +-+ | |
230 * | +---------+ | |b_data +-+
231 * +->+------+ | +---------+ |
232 * | | | |
233 * uncompressed | | | |
234 * data +------+ | |
235 * ^ +->+------+ |
236 * | uncompressed | | |
237 * | data | | |
238 * | +------+ |
239 * +---------------------------------+
240 *
241 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
242 * since the physical block is about to be rewritten. The new data contents
243 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
244 * it may compress the data before writing it to disk. The ARC will be called
245 * with the transformed data and will bcopy the transformed on-disk block into
246 * a newly allocated b_pabd. Writes are always done into buffers which have
247 * either been loaned (and hence are new and don't have other readers) or
248 * buffers which have been released (and hence have their own hdr, if there
249 * were originally other readers of the buf's original hdr). This ensures that
250 * the ARC only needs to update a single buf and its hdr after a write occurs.
251 *
252 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
253 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
254 * that when compressed ARC is enabled that the L2ARC blocks are identical
255 * to the on-disk block in the main data pool. This provides a significant
256 * advantage since the ARC can leverage the bp's checksum when reading from the
257 * L2ARC to determine if the contents are valid. However, if the compressed
258 * ARC is disabled, then the L2ARC's block must be transformed to look
259 * like the physical block in the main data pool before comparing the
260 * checksum and determining its validity.
261 */
262
263 #include <sys/spa.h>
264 #include <sys/zio.h>
265 #include <sys/spa_impl.h>
266 #include <sys/zio_compress.h>
267 #include <sys/zio_checksum.h>
268 #include <sys/zfs_context.h>
269 #include <sys/arc.h>
270 #include <sys/refcount.h>
271 #include <sys/vdev.h>
272 #include <sys/vdev_impl.h>
273 #include <sys/dsl_pool.h>
274 #include <sys/zio_checksum.h>
275 #include <sys/multilist.h>
276 #include <sys/abd.h>
277 #ifdef _KERNEL
278 #include <sys/vmsystm.h>
279 #include <vm/anon.h>
280 #include <sys/fs/swapnode.h>
281 #include <sys/zpl.h>
282 #include <linux/mm_compat.h>
283 #endif
284 #include <sys/callb.h>
285 #include <sys/kstat.h>
286 #include <sys/dmu_tx.h>
287 #include <zfs_fletcher.h>
288 #include <sys/arc_impl.h>
289 #include <sys/trace_arc.h>
290
291 #ifndef _KERNEL
292 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
293 boolean_t arc_watch = B_FALSE;
294 #endif
295
296 static kmutex_t arc_reclaim_lock;
297 static kcondvar_t arc_reclaim_thread_cv;
298 static boolean_t arc_reclaim_thread_exit;
299 static kcondvar_t arc_reclaim_waiters_cv;
300
301 /*
302 * The number of headers to evict in arc_evict_state_impl() before
303 * dropping the sublist lock and evicting from another sublist. A lower
304 * value means we're more likely to evict the "correct" header (i.e. the
305 * oldest header in the arc state), but comes with higher overhead
306 * (i.e. more invocations of arc_evict_state_impl()).
307 */
308 int zfs_arc_evict_batch_limit = 10;
309
310 /* number of seconds before growing cache again */
311 static int arc_grow_retry = 5;
312
313 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
314 int zfs_arc_overflow_shift = 8;
315
316 /* shift of arc_c for calculating both min and max arc_p */
317 static int arc_p_min_shift = 4;
318
319 /* log2(fraction of arc to reclaim) */
320 static int arc_shrink_shift = 7;
321
322 /* percent of pagecache to reclaim arc to */
323 #ifdef _KERNEL
324 static uint_t zfs_arc_pc_percent = 0;
325 #endif
326
327 /*
328 * log2(fraction of ARC which must be free to allow growing).
329 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
330 * when reading a new block into the ARC, we will evict an equal-sized block
331 * from the ARC.
332 *
333 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
334 * we will still not allow it to grow.
335 */
336 int arc_no_grow_shift = 5;
337
338
339 /*
340 * minimum lifespan of a prefetch block in clock ticks
341 * (initialized in arc_init())
342 */
343 static int arc_min_prefetch_lifespan;
344
345 /*
346 * If this percent of memory is free, don't throttle.
347 */
348 int arc_lotsfree_percent = 10;
349
350 static int arc_dead;
351
352 /*
353 * The arc has filled available memory and has now warmed up.
354 */
355 static boolean_t arc_warm;
356
357 /*
358 * log2 fraction of the zio arena to keep free.
359 */
360 int arc_zio_arena_free_shift = 2;
361
362 /*
363 * These tunables are for performance analysis.
364 */
365 unsigned long zfs_arc_max = 0;
366 unsigned long zfs_arc_min = 0;
367 unsigned long zfs_arc_meta_limit = 0;
368 unsigned long zfs_arc_meta_min = 0;
369 unsigned long zfs_arc_dnode_limit = 0;
370 unsigned long zfs_arc_dnode_reduce_percent = 10;
371 int zfs_arc_grow_retry = 0;
372 int zfs_arc_shrink_shift = 0;
373 int zfs_arc_p_min_shift = 0;
374 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
375
376 int zfs_compressed_arc_enabled = B_TRUE;
377
378 /*
379 * ARC will evict meta buffers that exceed arc_meta_limit. This
380 * tunable make arc_meta_limit adjustable for different workloads.
381 */
382 unsigned long zfs_arc_meta_limit_percent = 75;
383
384 /*
385 * Percentage that can be consumed by dnodes of ARC meta buffers.
386 */
387 unsigned long zfs_arc_dnode_limit_percent = 10;
388
389 /*
390 * These tunables are Linux specific
391 */
392 unsigned long zfs_arc_sys_free = 0;
393 int zfs_arc_min_prefetch_lifespan = 0;
394 int zfs_arc_p_aggressive_disable = 1;
395 int zfs_arc_p_dampener_disable = 1;
396 int zfs_arc_meta_prune = 10000;
397 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
398 int zfs_arc_meta_adjust_restarts = 4096;
399 int zfs_arc_lotsfree_percent = 10;
400
401 /* The 6 states: */
402 static arc_state_t ARC_anon;
403 static arc_state_t ARC_mru;
404 static arc_state_t ARC_mru_ghost;
405 static arc_state_t ARC_mfu;
406 static arc_state_t ARC_mfu_ghost;
407 static arc_state_t ARC_l2c_only;
408
409 typedef struct arc_stats {
410 kstat_named_t arcstat_hits;
411 kstat_named_t arcstat_misses;
412 kstat_named_t arcstat_demand_data_hits;
413 kstat_named_t arcstat_demand_data_misses;
414 kstat_named_t arcstat_demand_metadata_hits;
415 kstat_named_t arcstat_demand_metadata_misses;
416 kstat_named_t arcstat_prefetch_data_hits;
417 kstat_named_t arcstat_prefetch_data_misses;
418 kstat_named_t arcstat_prefetch_metadata_hits;
419 kstat_named_t arcstat_prefetch_metadata_misses;
420 kstat_named_t arcstat_mru_hits;
421 kstat_named_t arcstat_mru_ghost_hits;
422 kstat_named_t arcstat_mfu_hits;
423 kstat_named_t arcstat_mfu_ghost_hits;
424 kstat_named_t arcstat_deleted;
425 /*
426 * Number of buffers that could not be evicted because the hash lock
427 * was held by another thread. The lock may not necessarily be held
428 * by something using the same buffer, since hash locks are shared
429 * by multiple buffers.
430 */
431 kstat_named_t arcstat_mutex_miss;
432 /*
433 * Number of buffers skipped because they have I/O in progress, are
434 * indrect prefetch buffers that have not lived long enough, or are
435 * not from the spa we're trying to evict from.
436 */
437 kstat_named_t arcstat_evict_skip;
438 /*
439 * Number of times arc_evict_state() was unable to evict enough
440 * buffers to reach its target amount.
441 */
442 kstat_named_t arcstat_evict_not_enough;
443 kstat_named_t arcstat_evict_l2_cached;
444 kstat_named_t arcstat_evict_l2_eligible;
445 kstat_named_t arcstat_evict_l2_ineligible;
446 kstat_named_t arcstat_evict_l2_skip;
447 kstat_named_t arcstat_hash_elements;
448 kstat_named_t arcstat_hash_elements_max;
449 kstat_named_t arcstat_hash_collisions;
450 kstat_named_t arcstat_hash_chains;
451 kstat_named_t arcstat_hash_chain_max;
452 kstat_named_t arcstat_p;
453 kstat_named_t arcstat_c;
454 kstat_named_t arcstat_c_min;
455 kstat_named_t arcstat_c_max;
456 kstat_named_t arcstat_size;
457 /*
458 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
459 * Note that the compressed bytes may match the uncompressed bytes
460 * if the block is either not compressed or compressed arc is disabled.
461 */
462 kstat_named_t arcstat_compressed_size;
463 /*
464 * Uncompressed size of the data stored in b_pabd. If compressed
465 * arc is disabled then this value will be identical to the stat
466 * above.
467 */
468 kstat_named_t arcstat_uncompressed_size;
469 /*
470 * Number of bytes stored in all the arc_buf_t's. This is classified
471 * as "overhead" since this data is typically short-lived and will
472 * be evicted from the arc when it becomes unreferenced unless the
473 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
474 * values have been set (see comment in dbuf.c for more information).
475 */
476 kstat_named_t arcstat_overhead_size;
477 /*
478 * Number of bytes consumed by internal ARC structures necessary
479 * for tracking purposes; these structures are not actually
480 * backed by ARC buffers. This includes arc_buf_hdr_t structures
481 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
482 * caches), and arc_buf_t structures (allocated via arc_buf_t
483 * cache).
484 */
485 kstat_named_t arcstat_hdr_size;
486 /*
487 * Number of bytes consumed by ARC buffers of type equal to
488 * ARC_BUFC_DATA. This is generally consumed by buffers backing
489 * on disk user data (e.g. plain file contents).
490 */
491 kstat_named_t arcstat_data_size;
492 /*
493 * Number of bytes consumed by ARC buffers of type equal to
494 * ARC_BUFC_METADATA. This is generally consumed by buffers
495 * backing on disk data that is used for internal ZFS
496 * structures (e.g. ZAP, dnode, indirect blocks, etc).
497 */
498 kstat_named_t arcstat_metadata_size;
499 /*
500 * Number of bytes consumed by dmu_buf_impl_t objects.
501 */
502 kstat_named_t arcstat_dbuf_size;
503 /*
504 * Number of bytes consumed by dnode_t objects.
505 */
506 kstat_named_t arcstat_dnode_size;
507 /*
508 * Number of bytes consumed by bonus buffers.
509 */
510 kstat_named_t arcstat_bonus_size;
511 /*
512 * Total number of bytes consumed by ARC buffers residing in the
513 * arc_anon state. This includes *all* buffers in the arc_anon
514 * state; e.g. data, metadata, evictable, and unevictable buffers
515 * are all included in this value.
516 */
517 kstat_named_t arcstat_anon_size;
518 /*
519 * Number of bytes consumed by ARC buffers that meet the
520 * following criteria: backing buffers of type ARC_BUFC_DATA,
521 * residing in the arc_anon state, and are eligible for eviction
522 * (e.g. have no outstanding holds on the buffer).
523 */
524 kstat_named_t arcstat_anon_evictable_data;
525 /*
526 * Number of bytes consumed by ARC buffers that meet the
527 * following criteria: backing buffers of type ARC_BUFC_METADATA,
528 * residing in the arc_anon state, and are eligible for eviction
529 * (e.g. have no outstanding holds on the buffer).
530 */
531 kstat_named_t arcstat_anon_evictable_metadata;
532 /*
533 * Total number of bytes consumed by ARC buffers residing in the
534 * arc_mru state. This includes *all* buffers in the arc_mru
535 * state; e.g. data, metadata, evictable, and unevictable buffers
536 * are all included in this value.
537 */
538 kstat_named_t arcstat_mru_size;
539 /*
540 * Number of bytes consumed by ARC buffers that meet the
541 * following criteria: backing buffers of type ARC_BUFC_DATA,
542 * residing in the arc_mru state, and are eligible for eviction
543 * (e.g. have no outstanding holds on the buffer).
544 */
545 kstat_named_t arcstat_mru_evictable_data;
546 /*
547 * Number of bytes consumed by ARC buffers that meet the
548 * following criteria: backing buffers of type ARC_BUFC_METADATA,
549 * residing in the arc_mru state, and are eligible for eviction
550 * (e.g. have no outstanding holds on the buffer).
551 */
552 kstat_named_t arcstat_mru_evictable_metadata;
553 /*
554 * Total number of bytes that *would have been* consumed by ARC
555 * buffers in the arc_mru_ghost state. The key thing to note
556 * here, is the fact that this size doesn't actually indicate
557 * RAM consumption. The ghost lists only consist of headers and
558 * don't actually have ARC buffers linked off of these headers.
559 * Thus, *if* the headers had associated ARC buffers, these
560 * buffers *would have* consumed this number of bytes.
561 */
562 kstat_named_t arcstat_mru_ghost_size;
563 /*
564 * Number of bytes that *would have been* consumed by ARC
565 * buffers that are eligible for eviction, of type
566 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
567 */
568 kstat_named_t arcstat_mru_ghost_evictable_data;
569 /*
570 * Number of bytes that *would have been* consumed by ARC
571 * buffers that are eligible for eviction, of type
572 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
573 */
574 kstat_named_t arcstat_mru_ghost_evictable_metadata;
575 /*
576 * Total number of bytes consumed by ARC buffers residing in the
577 * arc_mfu state. This includes *all* buffers in the arc_mfu
578 * state; e.g. data, metadata, evictable, and unevictable buffers
579 * are all included in this value.
580 */
581 kstat_named_t arcstat_mfu_size;
582 /*
583 * Number of bytes consumed by ARC buffers that are eligible for
584 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
585 * state.
586 */
587 kstat_named_t arcstat_mfu_evictable_data;
588 /*
589 * Number of bytes consumed by ARC buffers that are eligible for
590 * eviction, of type ARC_BUFC_METADATA, and reside in the
591 * arc_mfu state.
592 */
593 kstat_named_t arcstat_mfu_evictable_metadata;
594 /*
595 * Total number of bytes that *would have been* consumed by ARC
596 * buffers in the arc_mfu_ghost state. See the comment above
597 * arcstat_mru_ghost_size for more details.
598 */
599 kstat_named_t arcstat_mfu_ghost_size;
600 /*
601 * Number of bytes that *would have been* consumed by ARC
602 * buffers that are eligible for eviction, of type
603 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
604 */
605 kstat_named_t arcstat_mfu_ghost_evictable_data;
606 /*
607 * Number of bytes that *would have been* consumed by ARC
608 * buffers that are eligible for eviction, of type
609 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
610 */
611 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
612 kstat_named_t arcstat_l2_hits;
613 kstat_named_t arcstat_l2_misses;
614 kstat_named_t arcstat_l2_feeds;
615 kstat_named_t arcstat_l2_rw_clash;
616 kstat_named_t arcstat_l2_read_bytes;
617 kstat_named_t arcstat_l2_write_bytes;
618 kstat_named_t arcstat_l2_writes_sent;
619 kstat_named_t arcstat_l2_writes_done;
620 kstat_named_t arcstat_l2_writes_error;
621 kstat_named_t arcstat_l2_writes_lock_retry;
622 kstat_named_t arcstat_l2_evict_lock_retry;
623 kstat_named_t arcstat_l2_evict_reading;
624 kstat_named_t arcstat_l2_evict_l1cached;
625 kstat_named_t arcstat_l2_free_on_write;
626 kstat_named_t arcstat_l2_abort_lowmem;
627 kstat_named_t arcstat_l2_cksum_bad;
628 kstat_named_t arcstat_l2_io_error;
629 kstat_named_t arcstat_l2_size;
630 kstat_named_t arcstat_l2_asize;
631 kstat_named_t arcstat_l2_hdr_size;
632 kstat_named_t arcstat_memory_throttle_count;
633 kstat_named_t arcstat_memory_direct_count;
634 kstat_named_t arcstat_memory_indirect_count;
635 kstat_named_t arcstat_no_grow;
636 kstat_named_t arcstat_tempreserve;
637 kstat_named_t arcstat_loaned_bytes;
638 kstat_named_t arcstat_prune;
639 kstat_named_t arcstat_meta_used;
640 kstat_named_t arcstat_meta_limit;
641 kstat_named_t arcstat_dnode_limit;
642 kstat_named_t arcstat_meta_max;
643 kstat_named_t arcstat_meta_min;
644 kstat_named_t arcstat_sync_wait_for_async;
645 kstat_named_t arcstat_demand_hit_predictive_prefetch;
646 kstat_named_t arcstat_need_free;
647 kstat_named_t arcstat_sys_free;
648 } arc_stats_t;
649
650 static arc_stats_t arc_stats = {
651 { "hits", KSTAT_DATA_UINT64 },
652 { "misses", KSTAT_DATA_UINT64 },
653 { "demand_data_hits", KSTAT_DATA_UINT64 },
654 { "demand_data_misses", KSTAT_DATA_UINT64 },
655 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
656 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
657 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
658 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
659 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
660 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
661 { "mru_hits", KSTAT_DATA_UINT64 },
662 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
663 { "mfu_hits", KSTAT_DATA_UINT64 },
664 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
665 { "deleted", KSTAT_DATA_UINT64 },
666 { "mutex_miss", KSTAT_DATA_UINT64 },
667 { "evict_skip", KSTAT_DATA_UINT64 },
668 { "evict_not_enough", KSTAT_DATA_UINT64 },
669 { "evict_l2_cached", KSTAT_DATA_UINT64 },
670 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
671 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
672 { "evict_l2_skip", KSTAT_DATA_UINT64 },
673 { "hash_elements", KSTAT_DATA_UINT64 },
674 { "hash_elements_max", KSTAT_DATA_UINT64 },
675 { "hash_collisions", KSTAT_DATA_UINT64 },
676 { "hash_chains", KSTAT_DATA_UINT64 },
677 { "hash_chain_max", KSTAT_DATA_UINT64 },
678 { "p", KSTAT_DATA_UINT64 },
679 { "c", KSTAT_DATA_UINT64 },
680 { "c_min", KSTAT_DATA_UINT64 },
681 { "c_max", KSTAT_DATA_UINT64 },
682 { "size", KSTAT_DATA_UINT64 },
683 { "compressed_size", KSTAT_DATA_UINT64 },
684 { "uncompressed_size", KSTAT_DATA_UINT64 },
685 { "overhead_size", KSTAT_DATA_UINT64 },
686 { "hdr_size", KSTAT_DATA_UINT64 },
687 { "data_size", KSTAT_DATA_UINT64 },
688 { "metadata_size", KSTAT_DATA_UINT64 },
689 { "dbuf_size", KSTAT_DATA_UINT64 },
690 { "dnode_size", KSTAT_DATA_UINT64 },
691 { "bonus_size", KSTAT_DATA_UINT64 },
692 { "anon_size", KSTAT_DATA_UINT64 },
693 { "anon_evictable_data", KSTAT_DATA_UINT64 },
694 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
695 { "mru_size", KSTAT_DATA_UINT64 },
696 { "mru_evictable_data", KSTAT_DATA_UINT64 },
697 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
698 { "mru_ghost_size", KSTAT_DATA_UINT64 },
699 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
700 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
701 { "mfu_size", KSTAT_DATA_UINT64 },
702 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
703 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
704 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
705 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
706 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
707 { "l2_hits", KSTAT_DATA_UINT64 },
708 { "l2_misses", KSTAT_DATA_UINT64 },
709 { "l2_feeds", KSTAT_DATA_UINT64 },
710 { "l2_rw_clash", KSTAT_DATA_UINT64 },
711 { "l2_read_bytes", KSTAT_DATA_UINT64 },
712 { "l2_write_bytes", KSTAT_DATA_UINT64 },
713 { "l2_writes_sent", KSTAT_DATA_UINT64 },
714 { "l2_writes_done", KSTAT_DATA_UINT64 },
715 { "l2_writes_error", KSTAT_DATA_UINT64 },
716 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
717 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
718 { "l2_evict_reading", KSTAT_DATA_UINT64 },
719 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
720 { "l2_free_on_write", KSTAT_DATA_UINT64 },
721 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
722 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
723 { "l2_io_error", KSTAT_DATA_UINT64 },
724 { "l2_size", KSTAT_DATA_UINT64 },
725 { "l2_asize", KSTAT_DATA_UINT64 },
726 { "l2_hdr_size", KSTAT_DATA_UINT64 },
727 { "memory_throttle_count", KSTAT_DATA_UINT64 },
728 { "memory_direct_count", KSTAT_DATA_UINT64 },
729 { "memory_indirect_count", KSTAT_DATA_UINT64 },
730 { "arc_no_grow", KSTAT_DATA_UINT64 },
731 { "arc_tempreserve", KSTAT_DATA_UINT64 },
732 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
733 { "arc_prune", KSTAT_DATA_UINT64 },
734 { "arc_meta_used", KSTAT_DATA_UINT64 },
735 { "arc_meta_limit", KSTAT_DATA_UINT64 },
736 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
737 { "arc_meta_max", KSTAT_DATA_UINT64 },
738 { "arc_meta_min", KSTAT_DATA_UINT64 },
739 { "sync_wait_for_async", KSTAT_DATA_UINT64 },
740 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
741 { "arc_need_free", KSTAT_DATA_UINT64 },
742 { "arc_sys_free", KSTAT_DATA_UINT64 }
743 };
744
745 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
746
747 #define ARCSTAT_INCR(stat, val) \
748 atomic_add_64(&arc_stats.stat.value.ui64, (val))
749
750 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
751 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
752
753 #define ARCSTAT_MAX(stat, val) { \
754 uint64_t m; \
755 while ((val) > (m = arc_stats.stat.value.ui64) && \
756 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
757 continue; \
758 }
759
760 #define ARCSTAT_MAXSTAT(stat) \
761 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
762
763 /*
764 * We define a macro to allow ARC hits/misses to be easily broken down by
765 * two separate conditions, giving a total of four different subtypes for
766 * each of hits and misses (so eight statistics total).
767 */
768 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
769 if (cond1) { \
770 if (cond2) { \
771 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
772 } else { \
773 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
774 } \
775 } else { \
776 if (cond2) { \
777 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
778 } else { \
779 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
780 } \
781 }
782
783 kstat_t *arc_ksp;
784 static arc_state_t *arc_anon;
785 static arc_state_t *arc_mru;
786 static arc_state_t *arc_mru_ghost;
787 static arc_state_t *arc_mfu;
788 static arc_state_t *arc_mfu_ghost;
789 static arc_state_t *arc_l2c_only;
790
791 /*
792 * There are several ARC variables that are critical to export as kstats --
793 * but we don't want to have to grovel around in the kstat whenever we wish to
794 * manipulate them. For these variables, we therefore define them to be in
795 * terms of the statistic variable. This assures that we are not introducing
796 * the possibility of inconsistency by having shadow copies of the variables,
797 * while still allowing the code to be readable.
798 */
799 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
800 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
801 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
802 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
803 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
804 #define arc_no_grow ARCSTAT(arcstat_no_grow) /* do not grow cache size */
805 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
806 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
807 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
808 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
809 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
810 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
811 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
812 #define arc_dbuf_size ARCSTAT(arcstat_dbuf_size) /* dbuf metadata */
813 #define arc_dnode_size ARCSTAT(arcstat_dnode_size) /* dnode metadata */
814 #define arc_bonus_size ARCSTAT(arcstat_bonus_size) /* bonus buffer metadata */
815 #define arc_need_free ARCSTAT(arcstat_need_free) /* bytes to be freed */
816 #define arc_sys_free ARCSTAT(arcstat_sys_free) /* target system free bytes */
817
818 /* compressed size of entire arc */
819 #define arc_compressed_size ARCSTAT(arcstat_compressed_size)
820 /* uncompressed size of entire arc */
821 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size)
822 /* number of bytes in the arc from arc_buf_t's */
823 #define arc_overhead_size ARCSTAT(arcstat_overhead_size)
824
825 static list_t arc_prune_list;
826 static kmutex_t arc_prune_mtx;
827 static taskq_t *arc_prune_taskq;
828
829 #define GHOST_STATE(state) \
830 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
831 (state) == arc_l2c_only)
832
833 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
834 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
835 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
836 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
837 #define HDR_COMPRESSION_ENABLED(hdr) \
838 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
839
840 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
841 #define HDR_L2_READING(hdr) \
842 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
843 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
844 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
845 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
846 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
847 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
848
849 #define HDR_ISTYPE_METADATA(hdr) \
850 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
851 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
852
853 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
854 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
855
856 /* For storing compression mode in b_flags */
857 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
858
859 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
860 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
861 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
862 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
863
864 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
865 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
866 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
867
868 /*
869 * Other sizes
870 */
871
872 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
873 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
874
875 /*
876 * Hash table routines
877 */
878
879 #define HT_LOCK_ALIGN 64
880 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
881
882 struct ht_lock {
883 kmutex_t ht_lock;
884 #ifdef _KERNEL
885 unsigned char pad[HT_LOCK_PAD];
886 #endif
887 };
888
889 #define BUF_LOCKS 8192
890 typedef struct buf_hash_table {
891 uint64_t ht_mask;
892 arc_buf_hdr_t **ht_table;
893 struct ht_lock ht_locks[BUF_LOCKS];
894 } buf_hash_table_t;
895
896 static buf_hash_table_t buf_hash_table;
897
898 #define BUF_HASH_INDEX(spa, dva, birth) \
899 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
900 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
901 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
902 #define HDR_LOCK(hdr) \
903 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
904
905 uint64_t zfs_crc64_table[256];
906
907 /*
908 * Level 2 ARC
909 */
910
911 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
912 #define L2ARC_HEADROOM 2 /* num of writes */
913
914 /*
915 * If we discover during ARC scan any buffers to be compressed, we boost
916 * our headroom for the next scanning cycle by this percentage multiple.
917 */
918 #define L2ARC_HEADROOM_BOOST 200
919 #define L2ARC_FEED_SECS 1 /* caching interval secs */
920 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
921
922 /*
923 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
924 * and each of the state has two types: data and metadata.
925 */
926 #define L2ARC_FEED_TYPES 4
927
928 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
929 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
930
931 /* L2ARC Performance Tunables */
932 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
933 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
934 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
935 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
936 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
937 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
938 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
939 int l2arc_feed_again = B_TRUE; /* turbo warmup */
940 int l2arc_norw = B_FALSE; /* no reads during writes */
941
942 /*
943 * L2ARC Internals
944 */
945 static list_t L2ARC_dev_list; /* device list */
946 static list_t *l2arc_dev_list; /* device list pointer */
947 static kmutex_t l2arc_dev_mtx; /* device list mutex */
948 static l2arc_dev_t *l2arc_dev_last; /* last device used */
949 static list_t L2ARC_free_on_write; /* free after write buf list */
950 static list_t *l2arc_free_on_write; /* free after write list ptr */
951 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
952 static uint64_t l2arc_ndev; /* number of devices */
953
954 typedef struct l2arc_read_callback {
955 arc_buf_hdr_t *l2rcb_hdr; /* read header */
956 blkptr_t l2rcb_bp; /* original blkptr */
957 zbookmark_phys_t l2rcb_zb; /* original bookmark */
958 int l2rcb_flags; /* original flags */
959 } l2arc_read_callback_t;
960
961 typedef struct l2arc_data_free {
962 /* protected by l2arc_free_on_write_mtx */
963 abd_t *l2df_abd;
964 size_t l2df_size;
965 arc_buf_contents_t l2df_type;
966 list_node_t l2df_list_node;
967 } l2arc_data_free_t;
968
969 static kmutex_t l2arc_feed_thr_lock;
970 static kcondvar_t l2arc_feed_thr_cv;
971 static uint8_t l2arc_thread_exit;
972
973 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
974 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
975 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
976 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
977 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
978 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
979 static void arc_hdr_free_pabd(arc_buf_hdr_t *);
980 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *);
981 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
982 static boolean_t arc_is_overflowing(void);
983 static void arc_buf_watch(arc_buf_t *);
984 static void arc_tuning_update(void);
985 static void arc_prune_async(int64_t);
986 static uint64_t arc_all_memory(void);
987
988 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
989 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
990 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
991 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
992
993 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
994 static void l2arc_read_done(zio_t *);
995
996 static uint64_t
997 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
998 {
999 uint8_t *vdva = (uint8_t *)dva;
1000 uint64_t crc = -1ULL;
1001 int i;
1002
1003 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1004
1005 for (i = 0; i < sizeof (dva_t); i++)
1006 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1007
1008 crc ^= (spa>>8) ^ birth;
1009
1010 return (crc);
1011 }
1012
1013 #define HDR_EMPTY(hdr) \
1014 ((hdr)->b_dva.dva_word[0] == 0 && \
1015 (hdr)->b_dva.dva_word[1] == 0)
1016
1017 #define HDR_EQUAL(spa, dva, birth, hdr) \
1018 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1019 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1020 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1021
1022 static void
1023 buf_discard_identity(arc_buf_hdr_t *hdr)
1024 {
1025 hdr->b_dva.dva_word[0] = 0;
1026 hdr->b_dva.dva_word[1] = 0;
1027 hdr->b_birth = 0;
1028 }
1029
1030 static arc_buf_hdr_t *
1031 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1032 {
1033 const dva_t *dva = BP_IDENTITY(bp);
1034 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1035 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1036 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1037 arc_buf_hdr_t *hdr;
1038
1039 mutex_enter(hash_lock);
1040 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1041 hdr = hdr->b_hash_next) {
1042 if (HDR_EQUAL(spa, dva, birth, hdr)) {
1043 *lockp = hash_lock;
1044 return (hdr);
1045 }
1046 }
1047 mutex_exit(hash_lock);
1048 *lockp = NULL;
1049 return (NULL);
1050 }
1051
1052 /*
1053 * Insert an entry into the hash table. If there is already an element
1054 * equal to elem in the hash table, then the already existing element
1055 * will be returned and the new element will not be inserted.
1056 * Otherwise returns NULL.
1057 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1058 */
1059 static arc_buf_hdr_t *
1060 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1061 {
1062 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1063 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1064 arc_buf_hdr_t *fhdr;
1065 uint32_t i;
1066
1067 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1068 ASSERT(hdr->b_birth != 0);
1069 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1070
1071 if (lockp != NULL) {
1072 *lockp = hash_lock;
1073 mutex_enter(hash_lock);
1074 } else {
1075 ASSERT(MUTEX_HELD(hash_lock));
1076 }
1077
1078 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1079 fhdr = fhdr->b_hash_next, i++) {
1080 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1081 return (fhdr);
1082 }
1083
1084 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1085 buf_hash_table.ht_table[idx] = hdr;
1086 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1087
1088 /* collect some hash table performance data */
1089 if (i > 0) {
1090 ARCSTAT_BUMP(arcstat_hash_collisions);
1091 if (i == 1)
1092 ARCSTAT_BUMP(arcstat_hash_chains);
1093
1094 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1095 }
1096
1097 ARCSTAT_BUMP(arcstat_hash_elements);
1098 ARCSTAT_MAXSTAT(arcstat_hash_elements);
1099
1100 return (NULL);
1101 }
1102
1103 static void
1104 buf_hash_remove(arc_buf_hdr_t *hdr)
1105 {
1106 arc_buf_hdr_t *fhdr, **hdrp;
1107 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1108
1109 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1110 ASSERT(HDR_IN_HASH_TABLE(hdr));
1111
1112 hdrp = &buf_hash_table.ht_table[idx];
1113 while ((fhdr = *hdrp) != hdr) {
1114 ASSERT3P(fhdr, !=, NULL);
1115 hdrp = &fhdr->b_hash_next;
1116 }
1117 *hdrp = hdr->b_hash_next;
1118 hdr->b_hash_next = NULL;
1119 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1120
1121 /* collect some hash table performance data */
1122 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1123
1124 if (buf_hash_table.ht_table[idx] &&
1125 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1126 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1127 }
1128
1129 /*
1130 * Global data structures and functions for the buf kmem cache.
1131 */
1132 static kmem_cache_t *hdr_full_cache;
1133 static kmem_cache_t *hdr_l2only_cache;
1134 static kmem_cache_t *buf_cache;
1135
1136 static void
1137 buf_fini(void)
1138 {
1139 int i;
1140
1141 #if defined(_KERNEL) && defined(HAVE_SPL)
1142 /*
1143 * Large allocations which do not require contiguous pages
1144 * should be using vmem_free() in the linux kernel\
1145 */
1146 vmem_free(buf_hash_table.ht_table,
1147 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1148 #else
1149 kmem_free(buf_hash_table.ht_table,
1150 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1151 #endif
1152 for (i = 0; i < BUF_LOCKS; i++)
1153 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1154 kmem_cache_destroy(hdr_full_cache);
1155 kmem_cache_destroy(hdr_l2only_cache);
1156 kmem_cache_destroy(buf_cache);
1157 }
1158
1159 /*
1160 * Constructor callback - called when the cache is empty
1161 * and a new buf is requested.
1162 */
1163 /* ARGSUSED */
1164 static int
1165 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1166 {
1167 arc_buf_hdr_t *hdr = vbuf;
1168
1169 bzero(hdr, HDR_FULL_SIZE);
1170 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1171 refcount_create(&hdr->b_l1hdr.b_refcnt);
1172 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1173 list_link_init(&hdr->b_l1hdr.b_arc_node);
1174 list_link_init(&hdr->b_l2hdr.b_l2node);
1175 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1176 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1177
1178 return (0);
1179 }
1180
1181 /* ARGSUSED */
1182 static int
1183 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1184 {
1185 arc_buf_hdr_t *hdr = vbuf;
1186
1187 bzero(hdr, HDR_L2ONLY_SIZE);
1188 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1189
1190 return (0);
1191 }
1192
1193 /* ARGSUSED */
1194 static int
1195 buf_cons(void *vbuf, void *unused, int kmflag)
1196 {
1197 arc_buf_t *buf = vbuf;
1198
1199 bzero(buf, sizeof (arc_buf_t));
1200 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1201 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1202
1203 return (0);
1204 }
1205
1206 /*
1207 * Destructor callback - called when a cached buf is
1208 * no longer required.
1209 */
1210 /* ARGSUSED */
1211 static void
1212 hdr_full_dest(void *vbuf, void *unused)
1213 {
1214 arc_buf_hdr_t *hdr = vbuf;
1215
1216 ASSERT(HDR_EMPTY(hdr));
1217 cv_destroy(&hdr->b_l1hdr.b_cv);
1218 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1219 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1220 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1221 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1222 }
1223
1224 /* ARGSUSED */
1225 static void
1226 hdr_l2only_dest(void *vbuf, void *unused)
1227 {
1228 ASSERTV(arc_buf_hdr_t *hdr = vbuf);
1229
1230 ASSERT(HDR_EMPTY(hdr));
1231 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1232 }
1233
1234 /* ARGSUSED */
1235 static void
1236 buf_dest(void *vbuf, void *unused)
1237 {
1238 arc_buf_t *buf = vbuf;
1239
1240 mutex_destroy(&buf->b_evict_lock);
1241 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1242 }
1243
1244 /*
1245 * Reclaim callback -- invoked when memory is low.
1246 */
1247 /* ARGSUSED */
1248 static void
1249 hdr_recl(void *unused)
1250 {
1251 dprintf("hdr_recl called\n");
1252 /*
1253 * umem calls the reclaim func when we destroy the buf cache,
1254 * which is after we do arc_fini().
1255 */
1256 if (!arc_dead)
1257 cv_signal(&arc_reclaim_thread_cv);
1258 }
1259
1260 static void
1261 buf_init(void)
1262 {
1263 uint64_t *ct = NULL;
1264 uint64_t hsize = 1ULL << 12;
1265 int i, j;
1266
1267 /*
1268 * The hash table is big enough to fill all of physical memory
1269 * with an average block size of zfs_arc_average_blocksize (default 8K).
1270 * By default, the table will take up
1271 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1272 */
1273 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1274 hsize <<= 1;
1275 retry:
1276 buf_hash_table.ht_mask = hsize - 1;
1277 #if defined(_KERNEL) && defined(HAVE_SPL)
1278 /*
1279 * Large allocations which do not require contiguous pages
1280 * should be using vmem_alloc() in the linux kernel
1281 */
1282 buf_hash_table.ht_table =
1283 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1284 #else
1285 buf_hash_table.ht_table =
1286 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1287 #endif
1288 if (buf_hash_table.ht_table == NULL) {
1289 ASSERT(hsize > (1ULL << 8));
1290 hsize >>= 1;
1291 goto retry;
1292 }
1293
1294 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1295 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1296 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1297 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1298 NULL, NULL, 0);
1299 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1300 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1301
1302 for (i = 0; i < 256; i++)
1303 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1304 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1305
1306 for (i = 0; i < BUF_LOCKS; i++) {
1307 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1308 NULL, MUTEX_DEFAULT, NULL);
1309 }
1310 }
1311
1312 #define ARC_MINTIME (hz>>4) /* 62 ms */
1313
1314 /*
1315 * This is the size that the buf occupies in memory. If the buf is compressed,
1316 * it will correspond to the compressed size. You should use this method of
1317 * getting the buf size unless you explicitly need the logical size.
1318 */
1319 uint64_t
1320 arc_buf_size(arc_buf_t *buf)
1321 {
1322 return (ARC_BUF_COMPRESSED(buf) ?
1323 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1324 }
1325
1326 uint64_t
1327 arc_buf_lsize(arc_buf_t *buf)
1328 {
1329 return (HDR_GET_LSIZE(buf->b_hdr));
1330 }
1331
1332 enum zio_compress
1333 arc_get_compression(arc_buf_t *buf)
1334 {
1335 return (ARC_BUF_COMPRESSED(buf) ?
1336 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1337 }
1338
1339 static inline boolean_t
1340 arc_buf_is_shared(arc_buf_t *buf)
1341 {
1342 boolean_t shared = (buf->b_data != NULL &&
1343 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1344 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1345 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1346 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1347 IMPLY(shared, ARC_BUF_SHARED(buf));
1348 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1349
1350 /*
1351 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1352 * already being shared" requirement prevents us from doing that.
1353 */
1354
1355 return (shared);
1356 }
1357
1358 /*
1359 * Free the checksum associated with this header. If there is no checksum, this
1360 * is a no-op.
1361 */
1362 static inline void
1363 arc_cksum_free(arc_buf_hdr_t *hdr)
1364 {
1365 ASSERT(HDR_HAS_L1HDR(hdr));
1366 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1367 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1368 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1369 hdr->b_l1hdr.b_freeze_cksum = NULL;
1370 }
1371 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1372 }
1373
1374 /*
1375 * Return true iff at least one of the bufs on hdr is not compressed.
1376 */
1377 static boolean_t
1378 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1379 {
1380 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1381 if (!ARC_BUF_COMPRESSED(b)) {
1382 return (B_TRUE);
1383 }
1384 }
1385 return (B_FALSE);
1386 }
1387
1388
1389 /*
1390 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1391 * matches the checksum that is stored in the hdr. If there is no checksum,
1392 * or if the buf is compressed, this is a no-op.
1393 */
1394 static void
1395 arc_cksum_verify(arc_buf_t *buf)
1396 {
1397 arc_buf_hdr_t *hdr = buf->b_hdr;
1398 zio_cksum_t zc;
1399
1400 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1401 return;
1402
1403 if (ARC_BUF_COMPRESSED(buf)) {
1404 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1405 arc_hdr_has_uncompressed_buf(hdr));
1406 return;
1407 }
1408
1409 ASSERT(HDR_HAS_L1HDR(hdr));
1410
1411 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1412 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1413 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1414 return;
1415 }
1416
1417 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1418 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1419 panic("buffer modified while frozen!");
1420 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1421 }
1422
1423 static boolean_t
1424 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1425 {
1426 enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1427 boolean_t valid_cksum;
1428
1429 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1430 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1431
1432 /*
1433 * We rely on the blkptr's checksum to determine if the block
1434 * is valid or not. When compressed arc is enabled, the l2arc
1435 * writes the block to the l2arc just as it appears in the pool.
1436 * This allows us to use the blkptr's checksum to validate the
1437 * data that we just read off of the l2arc without having to store
1438 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1439 * arc is disabled, then the data written to the l2arc is always
1440 * uncompressed and won't match the block as it exists in the main
1441 * pool. When this is the case, we must first compress it if it is
1442 * compressed on the main pool before we can validate the checksum.
1443 */
1444 if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1445 uint64_t lsize;
1446 uint64_t csize;
1447 void *cbuf;
1448 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1449
1450 cbuf = zio_buf_alloc(HDR_GET_PSIZE(hdr));
1451 lsize = HDR_GET_LSIZE(hdr);
1452 csize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1453
1454 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1455 if (csize < HDR_GET_PSIZE(hdr)) {
1456 /*
1457 * Compressed blocks are always a multiple of the
1458 * smallest ashift in the pool. Ideally, we would
1459 * like to round up the csize to the next
1460 * spa_min_ashift but that value may have changed
1461 * since the block was last written. Instead,
1462 * we rely on the fact that the hdr's psize
1463 * was set to the psize of the block when it was
1464 * last written. We set the csize to that value
1465 * and zero out any part that should not contain
1466 * data.
1467 */
1468 bzero((char *)cbuf + csize, HDR_GET_PSIZE(hdr) - csize);
1469 csize = HDR_GET_PSIZE(hdr);
1470 }
1471 zio_push_transform(zio, cbuf, csize, HDR_GET_PSIZE(hdr), NULL);
1472 }
1473
1474 /*
1475 * Block pointers always store the checksum for the logical data.
1476 * If the block pointer has the gang bit set, then the checksum
1477 * it represents is for the reconstituted data and not for an
1478 * individual gang member. The zio pipeline, however, must be able to
1479 * determine the checksum of each of the gang constituents so it
1480 * treats the checksum comparison differently than what we need
1481 * for l2arc blocks. This prevents us from using the
1482 * zio_checksum_error() interface directly. Instead we must call the
1483 * zio_checksum_error_impl() so that we can ensure the checksum is
1484 * generated using the correct checksum algorithm and accounts for the
1485 * logical I/O size and not just a gang fragment.
1486 */
1487 valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1488 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1489 zio->io_offset, NULL) == 0);
1490 zio_pop_transforms(zio);
1491 return (valid_cksum);
1492 }
1493
1494 /*
1495 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1496 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1497 * isn't modified later on. If buf is compressed or there is already a checksum
1498 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1499 */
1500 static void
1501 arc_cksum_compute(arc_buf_t *buf)
1502 {
1503 arc_buf_hdr_t *hdr = buf->b_hdr;
1504
1505 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1506 return;
1507
1508 ASSERT(HDR_HAS_L1HDR(hdr));
1509
1510 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1511 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1512 ASSERT(arc_hdr_has_uncompressed_buf(hdr));
1513 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1514 return;
1515 } else if (ARC_BUF_COMPRESSED(buf)) {
1516 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1517 return;
1518 }
1519
1520 ASSERT(!ARC_BUF_COMPRESSED(buf));
1521 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1522 KM_SLEEP);
1523 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1524 hdr->b_l1hdr.b_freeze_cksum);
1525 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1526 arc_buf_watch(buf);
1527 }
1528
1529 #ifndef _KERNEL
1530 void
1531 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1532 {
1533 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1534 }
1535 #endif
1536
1537 /* ARGSUSED */
1538 static void
1539 arc_buf_unwatch(arc_buf_t *buf)
1540 {
1541 #ifndef _KERNEL
1542 if (arc_watch) {
1543 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1544 PROT_READ | PROT_WRITE));
1545 }
1546 #endif
1547 }
1548
1549 /* ARGSUSED */
1550 static void
1551 arc_buf_watch(arc_buf_t *buf)
1552 {
1553 #ifndef _KERNEL
1554 if (arc_watch)
1555 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1556 PROT_READ));
1557 #endif
1558 }
1559
1560 static arc_buf_contents_t
1561 arc_buf_type(arc_buf_hdr_t *hdr)
1562 {
1563 arc_buf_contents_t type;
1564 if (HDR_ISTYPE_METADATA(hdr)) {
1565 type = ARC_BUFC_METADATA;
1566 } else {
1567 type = ARC_BUFC_DATA;
1568 }
1569 VERIFY3U(hdr->b_type, ==, type);
1570 return (type);
1571 }
1572
1573 boolean_t
1574 arc_is_metadata(arc_buf_t *buf)
1575 {
1576 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1577 }
1578
1579 static uint32_t
1580 arc_bufc_to_flags(arc_buf_contents_t type)
1581 {
1582 switch (type) {
1583 case ARC_BUFC_DATA:
1584 /* metadata field is 0 if buffer contains normal data */
1585 return (0);
1586 case ARC_BUFC_METADATA:
1587 return (ARC_FLAG_BUFC_METADATA);
1588 default:
1589 break;
1590 }
1591 panic("undefined ARC buffer type!");
1592 return ((uint32_t)-1);
1593 }
1594
1595 void
1596 arc_buf_thaw(arc_buf_t *buf)
1597 {
1598 arc_buf_hdr_t *hdr = buf->b_hdr;
1599
1600 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1601 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1602
1603 arc_cksum_verify(buf);
1604
1605 /*
1606 * Compressed buffers do not manipulate the b_freeze_cksum or
1607 * allocate b_thawed.
1608 */
1609 if (ARC_BUF_COMPRESSED(buf)) {
1610 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1611 arc_hdr_has_uncompressed_buf(hdr));
1612 return;
1613 }
1614
1615 ASSERT(HDR_HAS_L1HDR(hdr));
1616 arc_cksum_free(hdr);
1617 arc_buf_unwatch(buf);
1618 }
1619
1620 void
1621 arc_buf_freeze(arc_buf_t *buf)
1622 {
1623 arc_buf_hdr_t *hdr = buf->b_hdr;
1624 kmutex_t *hash_lock;
1625
1626 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1627 return;
1628
1629 if (ARC_BUF_COMPRESSED(buf)) {
1630 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1631 arc_hdr_has_uncompressed_buf(hdr));
1632 return;
1633 }
1634
1635 hash_lock = HDR_LOCK(hdr);
1636 mutex_enter(hash_lock);
1637
1638 ASSERT(HDR_HAS_L1HDR(hdr));
1639 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1640 hdr->b_l1hdr.b_state == arc_anon);
1641 arc_cksum_compute(buf);
1642 mutex_exit(hash_lock);
1643 }
1644
1645 /*
1646 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1647 * the following functions should be used to ensure that the flags are
1648 * updated in a thread-safe way. When manipulating the flags either
1649 * the hash_lock must be held or the hdr must be undiscoverable. This
1650 * ensures that we're not racing with any other threads when updating
1651 * the flags.
1652 */
1653 static inline void
1654 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1655 {
1656 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1657 hdr->b_flags |= flags;
1658 }
1659
1660 static inline void
1661 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1662 {
1663 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1664 hdr->b_flags &= ~flags;
1665 }
1666
1667 /*
1668 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1669 * done in a special way since we have to clear and set bits
1670 * at the same time. Consumers that wish to set the compression bits
1671 * must use this function to ensure that the flags are updated in
1672 * thread-safe manner.
1673 */
1674 static void
1675 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1676 {
1677 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1678
1679 /*
1680 * Holes and embedded blocks will always have a psize = 0 so
1681 * we ignore the compression of the blkptr and set the
1682 * want to uncompress them. Mark them as uncompressed.
1683 */
1684 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1685 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1686 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
1687 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1688 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1689 } else {
1690 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1691 HDR_SET_COMPRESS(hdr, cmp);
1692 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1693 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1694 }
1695 }
1696
1697 /*
1698 * Looks for another buf on the same hdr which has the data decompressed, copies
1699 * from it, and returns true. If no such buf exists, returns false.
1700 */
1701 static boolean_t
1702 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1703 {
1704 arc_buf_hdr_t *hdr = buf->b_hdr;
1705 boolean_t copied = B_FALSE;
1706
1707 ASSERT(HDR_HAS_L1HDR(hdr));
1708 ASSERT3P(buf->b_data, !=, NULL);
1709 ASSERT(!ARC_BUF_COMPRESSED(buf));
1710
1711 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1712 from = from->b_next) {
1713 /* can't use our own data buffer */
1714 if (from == buf) {
1715 continue;
1716 }
1717
1718 if (!ARC_BUF_COMPRESSED(from)) {
1719 bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1720 copied = B_TRUE;
1721 break;
1722 }
1723 }
1724
1725 /*
1726 * There were no decompressed bufs, so there should not be a
1727 * checksum on the hdr either.
1728 */
1729 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1730
1731 return (copied);
1732 }
1733
1734 /*
1735 * Given a buf that has a data buffer attached to it, this function will
1736 * efficiently fill the buf with data of the specified compression setting from
1737 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1738 * are already sharing a data buf, no copy is performed.
1739 *
1740 * If the buf is marked as compressed but uncompressed data was requested, this
1741 * will allocate a new data buffer for the buf, remove that flag, and fill the
1742 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1743 * uncompressed data, and (since we haven't added support for it yet) if you
1744 * want compressed data your buf must already be marked as compressed and have
1745 * the correct-sized data buffer.
1746 */
1747 static int
1748 arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
1749 {
1750 arc_buf_hdr_t *hdr = buf->b_hdr;
1751 boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
1752 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1753
1754 ASSERT3P(buf->b_data, !=, NULL);
1755 IMPLY(compressed, hdr_compressed);
1756 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1757
1758 if (hdr_compressed == compressed) {
1759 if (!arc_buf_is_shared(buf)) {
1760 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
1761 arc_buf_size(buf));
1762 }
1763 } else {
1764 ASSERT(hdr_compressed);
1765 ASSERT(!compressed);
1766 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
1767
1768 /*
1769 * If the buf is sharing its data with the hdr, unlink it and
1770 * allocate a new data buffer for the buf.
1771 */
1772 if (arc_buf_is_shared(buf)) {
1773 ASSERT(ARC_BUF_COMPRESSED(buf));
1774
1775 /* We need to give the buf it's own b_data */
1776 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
1777 buf->b_data =
1778 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1779 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
1780
1781 /* Previously overhead was 0; just add new overhead */
1782 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
1783 } else if (ARC_BUF_COMPRESSED(buf)) {
1784 /* We need to reallocate the buf's b_data */
1785 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
1786 buf);
1787 buf->b_data =
1788 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1789
1790 /* We increased the size of b_data; update overhead */
1791 ARCSTAT_INCR(arcstat_overhead_size,
1792 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
1793 }
1794
1795 /*
1796 * Regardless of the buf's previous compression settings, it
1797 * should not be compressed at the end of this function.
1798 */
1799 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1800
1801 /*
1802 * Try copying the data from another buf which already has a
1803 * decompressed version. If that's not possible, it's time to
1804 * bite the bullet and decompress the data from the hdr.
1805 */
1806 if (arc_buf_try_copy_decompressed_data(buf)) {
1807 /* Skip byteswapping and checksumming (already done) */
1808 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
1809 return (0);
1810 } else {
1811 int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1812 hdr->b_l1hdr.b_pabd, buf->b_data,
1813 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1814
1815 /*
1816 * Absent hardware errors or software bugs, this should
1817 * be impossible, but log it anyway so we can debug it.
1818 */
1819 if (error != 0) {
1820 zfs_dbgmsg(
1821 "hdr %p, compress %d, psize %d, lsize %d",
1822 hdr, HDR_GET_COMPRESS(hdr),
1823 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1824 return (SET_ERROR(EIO));
1825 }
1826 }
1827 }
1828
1829 /* Byteswap the buf's data if necessary */
1830 if (bswap != DMU_BSWAP_NUMFUNCS) {
1831 ASSERT(!HDR_SHARED_DATA(hdr));
1832 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
1833 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
1834 }
1835
1836 /* Compute the hdr's checksum if necessary */
1837 arc_cksum_compute(buf);
1838
1839 return (0);
1840 }
1841
1842 int
1843 arc_decompress(arc_buf_t *buf)
1844 {
1845 return (arc_buf_fill(buf, B_FALSE));
1846 }
1847
1848 /*
1849 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1850 */
1851 static uint64_t
1852 arc_hdr_size(arc_buf_hdr_t *hdr)
1853 {
1854 uint64_t size;
1855
1856 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1857 HDR_GET_PSIZE(hdr) > 0) {
1858 size = HDR_GET_PSIZE(hdr);
1859 } else {
1860 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1861 size = HDR_GET_LSIZE(hdr);
1862 }
1863 return (size);
1864 }
1865
1866 /*
1867 * Increment the amount of evictable space in the arc_state_t's refcount.
1868 * We account for the space used by the hdr and the arc buf individually
1869 * so that we can add and remove them from the refcount individually.
1870 */
1871 static void
1872 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
1873 {
1874 arc_buf_contents_t type = arc_buf_type(hdr);
1875 arc_buf_t *buf;
1876
1877 ASSERT(HDR_HAS_L1HDR(hdr));
1878
1879 if (GHOST_STATE(state)) {
1880 ASSERT0(hdr->b_l1hdr.b_bufcnt);
1881 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1882 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
1883 (void) refcount_add_many(&state->arcs_esize[type],
1884 HDR_GET_LSIZE(hdr), hdr);
1885 return;
1886 }
1887
1888 ASSERT(!GHOST_STATE(state));
1889 if (hdr->b_l1hdr.b_pabd != NULL) {
1890 (void) refcount_add_many(&state->arcs_esize[type],
1891 arc_hdr_size(hdr), hdr);
1892 }
1893 for (buf = hdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
1894 if (arc_buf_is_shared(buf))
1895 continue;
1896 (void) refcount_add_many(&state->arcs_esize[type],
1897 arc_buf_size(buf), buf);
1898 }
1899 }
1900
1901 /*
1902 * Decrement the amount of evictable space in the arc_state_t's refcount.
1903 * We account for the space used by the hdr and the arc buf individually
1904 * so that we can add and remove them from the refcount individually.
1905 */
1906 static void
1907 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
1908 {
1909 arc_buf_contents_t type = arc_buf_type(hdr);
1910 arc_buf_t *buf;
1911
1912 ASSERT(HDR_HAS_L1HDR(hdr));
1913
1914 if (GHOST_STATE(state)) {
1915 ASSERT0(hdr->b_l1hdr.b_bufcnt);
1916 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1917 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
1918 (void) refcount_remove_many(&state->arcs_esize[type],
1919 HDR_GET_LSIZE(hdr), hdr);
1920 return;
1921 }
1922
1923 ASSERT(!GHOST_STATE(state));
1924 if (hdr->b_l1hdr.b_pabd != NULL) {
1925 (void) refcount_remove_many(&state->arcs_esize[type],
1926 arc_hdr_size(hdr), hdr);
1927 }
1928 for (buf = hdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
1929 if (arc_buf_is_shared(buf))
1930 continue;
1931 (void) refcount_remove_many(&state->arcs_esize[type],
1932 arc_buf_size(buf), buf);
1933 }
1934 }
1935
1936 /*
1937 * Add a reference to this hdr indicating that someone is actively
1938 * referencing that memory. When the refcount transitions from 0 to 1,
1939 * we remove it from the respective arc_state_t list to indicate that
1940 * it is not evictable.
1941 */
1942 static void
1943 add_reference(arc_buf_hdr_t *hdr, void *tag)
1944 {
1945 arc_state_t *state;
1946
1947 ASSERT(HDR_HAS_L1HDR(hdr));
1948 if (!MUTEX_HELD(HDR_LOCK(hdr))) {
1949 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
1950 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1951 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1952 }
1953
1954 state = hdr->b_l1hdr.b_state;
1955
1956 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1957 (state != arc_anon)) {
1958 /* We don't use the L2-only state list. */
1959 if (state != arc_l2c_only) {
1960 multilist_remove(state->arcs_list[arc_buf_type(hdr)],
1961 hdr);
1962 arc_evictable_space_decrement(hdr, state);
1963 }
1964 /* remove the prefetch flag if we get a reference */
1965 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
1966 }
1967 }
1968
1969 /*
1970 * Remove a reference from this hdr. When the reference transitions from
1971 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
1972 * list making it eligible for eviction.
1973 */
1974 static int
1975 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1976 {
1977 int cnt;
1978 arc_state_t *state = hdr->b_l1hdr.b_state;
1979
1980 ASSERT(HDR_HAS_L1HDR(hdr));
1981 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1982 ASSERT(!GHOST_STATE(state));
1983
1984 /*
1985 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1986 * check to prevent usage of the arc_l2c_only list.
1987 */
1988 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1989 (state != arc_anon)) {
1990 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
1991 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
1992 arc_evictable_space_increment(hdr, state);
1993 }
1994 return (cnt);
1995 }
1996
1997 /*
1998 * Returns detailed information about a specific arc buffer. When the
1999 * state_index argument is set the function will calculate the arc header
2000 * list position for its arc state. Since this requires a linear traversal
2001 * callers are strongly encourage not to do this. However, it can be helpful
2002 * for targeted analysis so the functionality is provided.
2003 */
2004 void
2005 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2006 {
2007 arc_buf_hdr_t *hdr = ab->b_hdr;
2008 l1arc_buf_hdr_t *l1hdr = NULL;
2009 l2arc_buf_hdr_t *l2hdr = NULL;
2010 arc_state_t *state = NULL;
2011
2012 memset(abi, 0, sizeof (arc_buf_info_t));
2013
2014 if (hdr == NULL)
2015 return;
2016
2017 abi->abi_flags = hdr->b_flags;
2018
2019 if (HDR_HAS_L1HDR(hdr)) {
2020 l1hdr = &hdr->b_l1hdr;
2021 state = l1hdr->b_state;
2022 }
2023 if (HDR_HAS_L2HDR(hdr))
2024 l2hdr = &hdr->b_l2hdr;
2025
2026 if (l1hdr) {
2027 abi->abi_bufcnt = l1hdr->b_bufcnt;
2028 abi->abi_access = l1hdr->b_arc_access;
2029 abi->abi_mru_hits = l1hdr->b_mru_hits;
2030 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2031 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2032 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2033 abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
2034 }
2035
2036 if (l2hdr) {
2037 abi->abi_l2arc_dattr = l2hdr->b_daddr;
2038 abi->abi_l2arc_hits = l2hdr->b_hits;
2039 }
2040
2041 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2042 abi->abi_state_contents = arc_buf_type(hdr);
2043 abi->abi_size = arc_hdr_size(hdr);
2044 }
2045
2046 /*
2047 * Move the supplied buffer to the indicated state. The hash lock
2048 * for the buffer must be held by the caller.
2049 */
2050 static void
2051 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2052 kmutex_t *hash_lock)
2053 {
2054 arc_state_t *old_state;
2055 int64_t refcnt;
2056 uint32_t bufcnt;
2057 boolean_t update_old, update_new;
2058 arc_buf_contents_t buftype = arc_buf_type(hdr);
2059
2060 /*
2061 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2062 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2063 * L1 hdr doesn't always exist when we change state to arc_anon before
2064 * destroying a header, in which case reallocating to add the L1 hdr is
2065 * pointless.
2066 */
2067 if (HDR_HAS_L1HDR(hdr)) {
2068 old_state = hdr->b_l1hdr.b_state;
2069 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2070 bufcnt = hdr->b_l1hdr.b_bufcnt;
2071 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
2072 } else {
2073 old_state = arc_l2c_only;
2074 refcnt = 0;
2075 bufcnt = 0;
2076 update_old = B_FALSE;
2077 }
2078 update_new = update_old;
2079
2080 ASSERT(MUTEX_HELD(hash_lock));
2081 ASSERT3P(new_state, !=, old_state);
2082 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2083 ASSERT(old_state != arc_anon || bufcnt <= 1);
2084
2085 /*
2086 * If this buffer is evictable, transfer it from the
2087 * old state list to the new state list.
2088 */
2089 if (refcnt == 0) {
2090 if (old_state != arc_anon && old_state != arc_l2c_only) {
2091 ASSERT(HDR_HAS_L1HDR(hdr));
2092 multilist_remove(old_state->arcs_list[buftype], hdr);
2093
2094 if (GHOST_STATE(old_state)) {
2095 ASSERT0(bufcnt);
2096 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2097 update_old = B_TRUE;
2098 }
2099 arc_evictable_space_decrement(hdr, old_state);
2100 }
2101 if (new_state != arc_anon && new_state != arc_l2c_only) {
2102 /*
2103 * An L1 header always exists here, since if we're
2104 * moving to some L1-cached state (i.e. not l2c_only or
2105 * anonymous), we realloc the header to add an L1hdr
2106 * beforehand.
2107 */
2108 ASSERT(HDR_HAS_L1HDR(hdr));
2109 multilist_insert(new_state->arcs_list[buftype], hdr);
2110
2111 if (GHOST_STATE(new_state)) {
2112 ASSERT0(bufcnt);
2113 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2114 update_new = B_TRUE;
2115 }
2116 arc_evictable_space_increment(hdr, new_state);
2117 }
2118 }
2119
2120 ASSERT(!HDR_EMPTY(hdr));
2121 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2122 buf_hash_remove(hdr);
2123
2124 /* adjust state sizes (ignore arc_l2c_only) */
2125
2126 if (update_new && new_state != arc_l2c_only) {
2127 ASSERT(HDR_HAS_L1HDR(hdr));
2128 if (GHOST_STATE(new_state)) {
2129 ASSERT0(bufcnt);
2130
2131 /*
2132 * When moving a header to a ghost state, we first
2133 * remove all arc buffers. Thus, we'll have a
2134 * bufcnt of zero, and no arc buffer to use for
2135 * the reference. As a result, we use the arc
2136 * header pointer for the reference.
2137 */
2138 (void) refcount_add_many(&new_state->arcs_size,
2139 HDR_GET_LSIZE(hdr), hdr);
2140 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2141 } else {
2142 arc_buf_t *buf;
2143 uint32_t buffers = 0;
2144
2145 /*
2146 * Each individual buffer holds a unique reference,
2147 * thus we must remove each of these references one
2148 * at a time.
2149 */
2150 for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
2151 buf = buf->b_next) {
2152 ASSERT3U(bufcnt, !=, 0);
2153 buffers++;
2154
2155 /*
2156 * When the arc_buf_t is sharing the data
2157 * block with the hdr, the owner of the
2158 * reference belongs to the hdr. Only
2159 * add to the refcount if the arc_buf_t is
2160 * not shared.
2161 */
2162 if (arc_buf_is_shared(buf))
2163 continue;
2164
2165 (void) refcount_add_many(&new_state->arcs_size,
2166 arc_buf_size(buf), buf);
2167 }
2168 ASSERT3U(bufcnt, ==, buffers);
2169
2170 if (hdr->b_l1hdr.b_pabd != NULL) {
2171 (void) refcount_add_many(&new_state->arcs_size,
2172 arc_hdr_size(hdr), hdr);
2173 } else {
2174 ASSERT(GHOST_STATE(old_state));
2175 }
2176 }
2177 }
2178
2179 if (update_old && old_state != arc_l2c_only) {
2180 ASSERT(HDR_HAS_L1HDR(hdr));
2181 if (GHOST_STATE(old_state)) {
2182 ASSERT0(bufcnt);
2183 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2184
2185 /*
2186 * When moving a header off of a ghost state,
2187 * the header will not contain any arc buffers.
2188 * We use the arc header pointer for the reference
2189 * which is exactly what we did when we put the
2190 * header on the ghost state.
2191 */
2192
2193 (void) refcount_remove_many(&old_state->arcs_size,
2194 HDR_GET_LSIZE(hdr), hdr);
2195 } else {
2196 arc_buf_t *buf;
2197 uint32_t buffers = 0;
2198
2199 /*
2200 * Each individual buffer holds a unique reference,
2201 * thus we must remove each of these references one
2202 * at a time.
2203 */
2204 for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
2205 buf = buf->b_next) {
2206 ASSERT3U(bufcnt, !=, 0);
2207 buffers++;
2208
2209 /*
2210 * When the arc_buf_t is sharing the data
2211 * block with the hdr, the owner of the
2212 * reference belongs to the hdr. Only
2213 * add to the refcount if the arc_buf_t is
2214 * not shared.
2215 */
2216 if (arc_buf_is_shared(buf))
2217 continue;
2218
2219 (void) refcount_remove_many(
2220 &old_state->arcs_size, arc_buf_size(buf),
2221 buf);
2222 }
2223 ASSERT3U(bufcnt, ==, buffers);
2224 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2225 (void) refcount_remove_many(
2226 &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2227 }
2228 }
2229
2230 if (HDR_HAS_L1HDR(hdr))
2231 hdr->b_l1hdr.b_state = new_state;
2232
2233 /*
2234 * L2 headers should never be on the L2 state list since they don't
2235 * have L1 headers allocated.
2236 */
2237 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2238 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2239 }
2240
2241 void
2242 arc_space_consume(uint64_t space, arc_space_type_t type)
2243 {
2244 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2245
2246 switch (type) {
2247 default:
2248 break;
2249 case ARC_SPACE_DATA:
2250 ARCSTAT_INCR(arcstat_data_size, space);
2251 break;
2252 case ARC_SPACE_META:
2253 ARCSTAT_INCR(arcstat_metadata_size, space);
2254 break;
2255 case ARC_SPACE_BONUS:
2256 ARCSTAT_INCR(arcstat_bonus_size, space);
2257 break;
2258 case ARC_SPACE_DNODE:
2259 ARCSTAT_INCR(arcstat_dnode_size, space);
2260 break;
2261 case ARC_SPACE_DBUF:
2262 ARCSTAT_INCR(arcstat_dbuf_size, space);
2263 break;
2264 case ARC_SPACE_HDRS:
2265 ARCSTAT_INCR(arcstat_hdr_size, space);
2266 break;
2267 case ARC_SPACE_L2HDRS:
2268 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2269 break;
2270 }
2271
2272 if (type != ARC_SPACE_DATA)
2273 ARCSTAT_INCR(arcstat_meta_used, space);
2274
2275 atomic_add_64(&arc_size, space);
2276 }
2277
2278 void
2279 arc_space_return(uint64_t space, arc_space_type_t type)
2280 {
2281 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2282
2283 switch (type) {
2284 default:
2285 break;
2286 case ARC_SPACE_DATA:
2287 ARCSTAT_INCR(arcstat_data_size, -space);
2288 break;
2289 case ARC_SPACE_META:
2290 ARCSTAT_INCR(arcstat_metadata_size, -space);
2291 break;
2292 case ARC_SPACE_BONUS:
2293 ARCSTAT_INCR(arcstat_bonus_size, -space);
2294 break;
2295 case ARC_SPACE_DNODE:
2296 ARCSTAT_INCR(arcstat_dnode_size, -space);
2297 break;
2298 case ARC_SPACE_DBUF:
2299 ARCSTAT_INCR(arcstat_dbuf_size, -space);
2300 break;
2301 case ARC_SPACE_HDRS:
2302 ARCSTAT_INCR(arcstat_hdr_size, -space);
2303 break;
2304 case ARC_SPACE_L2HDRS:
2305 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2306 break;
2307 }
2308
2309 if (type != ARC_SPACE_DATA) {
2310 ASSERT(arc_meta_used >= space);
2311 if (arc_meta_max < arc_meta_used)
2312 arc_meta_max = arc_meta_used;
2313 ARCSTAT_INCR(arcstat_meta_used, -space);
2314 }
2315
2316 ASSERT(arc_size >= space);
2317 atomic_add_64(&arc_size, -space);
2318 }
2319
2320 /*
2321 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2322 * with the hdr's b_pabd.
2323 */
2324 static boolean_t
2325 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2326 {
2327 /*
2328 * The criteria for sharing a hdr's data are:
2329 * 1. the hdr's compression matches the buf's compression
2330 * 2. the hdr doesn't need to be byteswapped
2331 * 3. the hdr isn't already being shared
2332 * 4. the buf is either compressed or it is the last buf in the hdr list
2333 *
2334 * Criterion #4 maintains the invariant that shared uncompressed
2335 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2336 * might ask, "if a compressed buf is allocated first, won't that be the
2337 * last thing in the list?", but in that case it's impossible to create
2338 * a shared uncompressed buf anyway (because the hdr must be compressed
2339 * to have the compressed buf). You might also think that #3 is
2340 * sufficient to make this guarantee, however it's possible
2341 * (specifically in the rare L2ARC write race mentioned in
2342 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2343 * is sharable, but wasn't at the time of its allocation. Rather than
2344 * allow a new shared uncompressed buf to be created and then shuffle
2345 * the list around to make it the last element, this simply disallows
2346 * sharing if the new buf isn't the first to be added.
2347 */
2348 ASSERT3P(buf->b_hdr, ==, hdr);
2349 boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2350 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2351 return (buf_compressed == hdr_compressed &&
2352 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2353 !HDR_SHARED_DATA(hdr) &&
2354 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2355 }
2356
2357 /*
2358 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2359 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2360 * copy was made successfully, or an error code otherwise.
2361 */
2362 static int
2363 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2364 boolean_t fill, arc_buf_t **ret)
2365 {
2366 arc_buf_t *buf;
2367
2368 ASSERT(HDR_HAS_L1HDR(hdr));
2369 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2370 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2371 hdr->b_type == ARC_BUFC_METADATA);
2372 ASSERT3P(ret, !=, NULL);
2373 ASSERT3P(*ret, ==, NULL);
2374
2375 hdr->b_l1hdr.b_mru_hits = 0;
2376 hdr->b_l1hdr.b_mru_ghost_hits = 0;
2377 hdr->b_l1hdr.b_mfu_hits = 0;
2378 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
2379 hdr->b_l1hdr.b_l2_hits = 0;
2380
2381 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2382 buf->b_hdr = hdr;
2383 buf->b_data = NULL;
2384 buf->b_next = hdr->b_l1hdr.b_buf;
2385 buf->b_flags = 0;
2386
2387 add_reference(hdr, tag);
2388
2389 /*
2390 * We're about to change the hdr's b_flags. We must either
2391 * hold the hash_lock or be undiscoverable.
2392 */
2393 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2394
2395 /*
2396 * Only honor requests for compressed bufs if the hdr is actually
2397 * compressed.
2398 */
2399 if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
2400 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2401
2402 /*
2403 * If the hdr's data can be shared then we share the data buffer and
2404 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2405 * allocate a new buffer to store the buf's data.
2406 *
2407 * There are two additional restrictions here because we're sharing
2408 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2409 * actively involved in an L2ARC write, because if this buf is used by
2410 * an arc_write() then the hdr's data buffer will be released when the
2411 * write completes, even though the L2ARC write might still be using it.
2412 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2413 * need to be ABD-aware.
2414 */
2415 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2416 abd_is_linear(hdr->b_l1hdr.b_pabd);
2417
2418 /* Set up b_data and sharing */
2419 if (can_share) {
2420 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2421 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2422 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2423 } else {
2424 buf->b_data =
2425 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2426 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2427 }
2428 VERIFY3P(buf->b_data, !=, NULL);
2429
2430 hdr->b_l1hdr.b_buf = buf;
2431 hdr->b_l1hdr.b_bufcnt += 1;
2432
2433 /*
2434 * If the user wants the data from the hdr, we need to either copy or
2435 * decompress the data.
2436 */
2437 if (fill) {
2438 return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
2439 }
2440
2441 return (0);
2442 }
2443
2444 static char *arc_onloan_tag = "onloan";
2445
2446 static inline void
2447 arc_loaned_bytes_update(int64_t delta)
2448 {
2449 atomic_add_64(&arc_loaned_bytes, delta);
2450
2451 /* assert that it did not wrap around */
2452 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2453 }
2454
2455 /*
2456 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2457 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2458 * buffers must be returned to the arc before they can be used by the DMU or
2459 * freed.
2460 */
2461 arc_buf_t *
2462 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2463 {
2464 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2465 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2466
2467 arc_loaned_bytes_update(size);
2468
2469 return (buf);
2470 }
2471
2472 arc_buf_t *
2473 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2474 enum zio_compress compression_type)
2475 {
2476 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2477 psize, lsize, compression_type);
2478
2479 arc_loaned_bytes_update(psize);
2480
2481 return (buf);
2482 }
2483
2484
2485 /*
2486 * Return a loaned arc buffer to the arc.
2487 */
2488 void
2489 arc_return_buf(arc_buf_t *buf, void *tag)
2490 {
2491 arc_buf_hdr_t *hdr = buf->b_hdr;
2492
2493 ASSERT3P(buf->b_data, !=, NULL);
2494 ASSERT(HDR_HAS_L1HDR(hdr));
2495 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2496 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2497
2498 arc_loaned_bytes_update(-arc_buf_size(buf));
2499 }
2500
2501 /* Detach an arc_buf from a dbuf (tag) */
2502 void
2503 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2504 {
2505 arc_buf_hdr_t *hdr = buf->b_hdr;
2506
2507 ASSERT3P(buf->b_data, !=, NULL);
2508 ASSERT(HDR_HAS_L1HDR(hdr));
2509 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2510 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2511
2512 arc_loaned_bytes_update(arc_buf_size(buf));
2513 }
2514
2515 static void
2516 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2517 {
2518 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2519
2520 df->l2df_abd = abd;
2521 df->l2df_size = size;
2522 df->l2df_type = type;
2523 mutex_enter(&l2arc_free_on_write_mtx);
2524 list_insert_head(l2arc_free_on_write, df);
2525 mutex_exit(&l2arc_free_on_write_mtx);
2526 }
2527
2528 static void
2529 arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2530 {
2531 arc_state_t *state = hdr->b_l1hdr.b_state;
2532 arc_buf_contents_t type = arc_buf_type(hdr);
2533 uint64_t size = arc_hdr_size(hdr);
2534
2535 /* protected by hash lock, if in the hash table */
2536 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2537 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2538 ASSERT(state != arc_anon && state != arc_l2c_only);
2539
2540 (void) refcount_remove_many(&state->arcs_esize[type],
2541 size, hdr);
2542 }
2543 (void) refcount_remove_many(&state->arcs_size, size, hdr);
2544 if (type == ARC_BUFC_METADATA) {
2545 arc_space_return(size, ARC_SPACE_META);
2546 } else {
2547 ASSERT(type == ARC_BUFC_DATA);
2548 arc_space_return(size, ARC_SPACE_DATA);
2549 }
2550
2551 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2552 }
2553
2554 /*
2555 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2556 * data buffer, we transfer the refcount ownership to the hdr and update
2557 * the appropriate kstats.
2558 */
2559 static void
2560 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2561 {
2562 ASSERT(arc_can_share(hdr, buf));
2563 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2564 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2565
2566 /*
2567 * Start sharing the data buffer. We transfer the
2568 * refcount ownership to the hdr since it always owns
2569 * the refcount whenever an arc_buf_t is shared.
2570 */
2571 refcount_transfer_ownership(&hdr->b_l1hdr.b_state->arcs_size, buf, hdr);
2572 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2573 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2574 HDR_ISTYPE_METADATA(hdr));
2575 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2576 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2577
2578 /*
2579 * Since we've transferred ownership to the hdr we need
2580 * to increment its compressed and uncompressed kstats and
2581 * decrement the overhead size.
2582 */
2583 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2584 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2585 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2586 }
2587
2588 static void
2589 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2590 {
2591 ASSERT(arc_buf_is_shared(buf));
2592 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2593 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2594
2595 /*
2596 * We are no longer sharing this buffer so we need
2597 * to transfer its ownership to the rightful owner.
2598 */
2599 refcount_transfer_ownership(&hdr->b_l1hdr.b_state->arcs_size, hdr, buf);
2600 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2601 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2602 abd_put(hdr->b_l1hdr.b_pabd);
2603 hdr->b_l1hdr.b_pabd = NULL;
2604 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2605
2606 /*
2607 * Since the buffer is no longer shared between
2608 * the arc buf and the hdr, count it as overhead.
2609 */
2610 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2611 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2612 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2613 }
2614
2615 /*
2616 * Remove an arc_buf_t from the hdr's buf list and return the last
2617 * arc_buf_t on the list. If no buffers remain on the list then return
2618 * NULL.
2619 */
2620 static arc_buf_t *
2621 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2622 {
2623 ASSERT(HDR_HAS_L1HDR(hdr));
2624 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2625
2626 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2627 arc_buf_t *lastbuf = NULL;
2628
2629 /*
2630 * Remove the buf from the hdr list and locate the last
2631 * remaining buffer on the list.
2632 */
2633 while (*bufp != NULL) {
2634 if (*bufp == buf)
2635 *bufp = buf->b_next;
2636
2637 /*
2638 * If we've removed a buffer in the middle of
2639 * the list then update the lastbuf and update
2640 * bufp.
2641 */
2642 if (*bufp != NULL) {
2643 lastbuf = *bufp;
2644 bufp = &(*bufp)->b_next;
2645 }
2646 }
2647 buf->b_next = NULL;
2648 ASSERT3P(lastbuf, !=, buf);
2649 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
2650 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
2651 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
2652
2653 return (lastbuf);
2654 }
2655
2656 /*
2657 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
2658 * list and free it.
2659 */
2660 static void
2661 arc_buf_destroy_impl(arc_buf_t *buf)
2662 {
2663 arc_buf_hdr_t *hdr = buf->b_hdr;
2664
2665 /*
2666 * Free up the data associated with the buf but only if we're not
2667 * sharing this with the hdr. If we are sharing it with the hdr, the
2668 * hdr is responsible for doing the free.
2669 */
2670 if (buf->b_data != NULL) {
2671 /*
2672 * We're about to change the hdr's b_flags. We must either
2673 * hold the hash_lock or be undiscoverable.
2674 */
2675 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2676
2677 arc_cksum_verify(buf);
2678 arc_buf_unwatch(buf);
2679
2680 if (arc_buf_is_shared(buf)) {
2681 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2682 } else {
2683 uint64_t size = arc_buf_size(buf);
2684 arc_free_data_buf(hdr, buf->b_data, size, buf);
2685 ARCSTAT_INCR(arcstat_overhead_size, -size);
2686 }
2687 buf->b_data = NULL;
2688
2689 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2690 hdr->b_l1hdr.b_bufcnt -= 1;
2691 }
2692
2693 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
2694
2695 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2696 /*
2697 * If the current arc_buf_t is sharing its data buffer with the
2698 * hdr, then reassign the hdr's b_pabd to share it with the new
2699 * buffer at the end of the list. The shared buffer is always
2700 * the last one on the hdr's buffer list.
2701 *
2702 * There is an equivalent case for compressed bufs, but since
2703 * they aren't guaranteed to be the last buf in the list and
2704 * that is an exceedingly rare case, we just allow that space be
2705 * wasted temporarily.
2706 */
2707 if (lastbuf != NULL) {
2708 /* Only one buf can be shared at once */
2709 VERIFY(!arc_buf_is_shared(lastbuf));
2710 /* hdr is uncompressed so can't have compressed buf */
2711 VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
2712
2713 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2714 arc_hdr_free_pabd(hdr);
2715
2716 /*
2717 * We must setup a new shared block between the
2718 * last buffer and the hdr. The data would have
2719 * been allocated by the arc buf so we need to transfer
2720 * ownership to the hdr since it's now being shared.
2721 */
2722 arc_share_buf(hdr, lastbuf);
2723 }
2724 } else if (HDR_SHARED_DATA(hdr)) {
2725 /*
2726 * Uncompressed shared buffers are always at the end
2727 * of the list. Compressed buffers don't have the
2728 * same requirements. This makes it hard to
2729 * simply assert that the lastbuf is shared so
2730 * we rely on the hdr's compression flags to determine
2731 * if we have a compressed, shared buffer.
2732 */
2733 ASSERT3P(lastbuf, !=, NULL);
2734 ASSERT(arc_buf_is_shared(lastbuf) ||
2735 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
2736 }
2737
2738 /*
2739 * Free the checksum if we're removing the last uncompressed buf from
2740 * this hdr.
2741 */
2742 if (!arc_hdr_has_uncompressed_buf(hdr)) {
2743 arc_cksum_free(hdr);
2744 }
2745
2746 /* clean up the buf */
2747 buf->b_hdr = NULL;
2748 kmem_cache_free(buf_cache, buf);
2749 }
2750
2751 static void
2752 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr)
2753 {
2754 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2755 ASSERT(HDR_HAS_L1HDR(hdr));
2756 ASSERT(!HDR_SHARED_DATA(hdr));
2757
2758 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2759 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
2760 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2761 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2762
2763 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2764 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2765 }
2766
2767 static void
2768 arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
2769 {
2770 ASSERT(HDR_HAS_L1HDR(hdr));
2771 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2772
2773 /*
2774 * If the hdr is currently being written to the l2arc then
2775 * we defer freeing the data by adding it to the l2arc_free_on_write
2776 * list. The l2arc will free the data once it's finished
2777 * writing it to the l2arc device.
2778 */
2779 if (HDR_L2_WRITING(hdr)) {
2780 arc_hdr_free_on_write(hdr);
2781 ARCSTAT_BUMP(arcstat_l2_free_on_write);
2782 } else {
2783 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
2784 arc_hdr_size(hdr), hdr);
2785 }
2786 hdr->b_l1hdr.b_pabd = NULL;
2787 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2788
2789 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2790 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2791 }
2792
2793 static arc_buf_hdr_t *
2794 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
2795 enum zio_compress compression_type, arc_buf_contents_t type)
2796 {
2797 arc_buf_hdr_t *hdr;
2798
2799 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
2800
2801 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2802 ASSERT(HDR_EMPTY(hdr));
2803 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2804 HDR_SET_PSIZE(hdr, psize);
2805 HDR_SET_LSIZE(hdr, lsize);
2806 hdr->b_spa = spa;
2807 hdr->b_type = type;
2808 hdr->b_flags = 0;
2809 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2810 arc_hdr_set_compress(hdr, compression_type);
2811
2812 hdr->b_l1hdr.b_state = arc_anon;
2813 hdr->b_l1hdr.b_arc_access = 0;
2814 hdr->b_l1hdr.b_bufcnt = 0;
2815 hdr->b_l1hdr.b_buf = NULL;
2816
2817 /*
2818 * Allocate the hdr's buffer. This will contain either
2819 * the compressed or uncompressed data depending on the block
2820 * it references and compressed arc enablement.
2821 */
2822 arc_hdr_alloc_pabd(hdr);
2823 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2824
2825 return (hdr);
2826 }
2827
2828 /*
2829 * Transition between the two allocation states for the arc_buf_hdr struct.
2830 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
2831 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
2832 * version is used when a cache buffer is only in the L2ARC in order to reduce
2833 * memory usage.
2834 */
2835 static arc_buf_hdr_t *
2836 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
2837 {
2838 arc_buf_hdr_t *nhdr;
2839 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2840
2841 ASSERT(HDR_HAS_L2HDR(hdr));
2842 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
2843 (old == hdr_l2only_cache && new == hdr_full_cache));
2844
2845 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
2846
2847 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2848 buf_hash_remove(hdr);
2849
2850 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
2851
2852 if (new == hdr_full_cache) {
2853 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2854 /*
2855 * arc_access and arc_change_state need to be aware that a
2856 * header has just come out of L2ARC, so we set its state to
2857 * l2c_only even though it's about to change.
2858 */
2859 nhdr->b_l1hdr.b_state = arc_l2c_only;
2860
2861 /* Verify previous threads set to NULL before freeing */
2862 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
2863 } else {
2864 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2865 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2866 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2867
2868 /*
2869 * If we've reached here, We must have been called from
2870 * arc_evict_hdr(), as such we should have already been
2871 * removed from any ghost list we were previously on
2872 * (which protects us from racing with arc_evict_state),
2873 * thus no locking is needed during this check.
2874 */
2875 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2876
2877 /*
2878 * A buffer must not be moved into the arc_l2c_only
2879 * state if it's not finished being written out to the
2880 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
2881 * might try to be accessed, even though it was removed.
2882 */
2883 VERIFY(!HDR_L2_WRITING(hdr));
2884 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2885
2886 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2887 }
2888 /*
2889 * The header has been reallocated so we need to re-insert it into any
2890 * lists it was on.
2891 */
2892 (void) buf_hash_insert(nhdr, NULL);
2893
2894 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
2895
2896 mutex_enter(&dev->l2ad_mtx);
2897
2898 /*
2899 * We must place the realloc'ed header back into the list at
2900 * the same spot. Otherwise, if it's placed earlier in the list,
2901 * l2arc_write_buffers() could find it during the function's
2902 * write phase, and try to write it out to the l2arc.
2903 */
2904 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
2905 list_remove(&dev->l2ad_buflist, hdr);
2906
2907 mutex_exit(&dev->l2ad_mtx);
2908
2909 /*
2910 * Since we're using the pointer address as the tag when
2911 * incrementing and decrementing the l2ad_alloc refcount, we
2912 * must remove the old pointer (that we're about to destroy) and
2913 * add the new pointer to the refcount. Otherwise we'd remove
2914 * the wrong pointer address when calling arc_hdr_destroy() later.
2915 */
2916
2917 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
2918 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
2919
2920 buf_discard_identity(hdr);
2921 kmem_cache_free(old, hdr);
2922
2923 return (nhdr);
2924 }
2925
2926 /*
2927 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
2928 * The buf is returned thawed since we expect the consumer to modify it.
2929 */
2930 arc_buf_t *
2931 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
2932 {
2933 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
2934 ZIO_COMPRESS_OFF, type);
2935 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
2936
2937 arc_buf_t *buf = NULL;
2938 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
2939 arc_buf_thaw(buf);
2940
2941 return (buf);
2942 }
2943
2944 /*
2945 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
2946 * for bufs containing metadata.
2947 */
2948 arc_buf_t *
2949 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
2950 enum zio_compress compression_type)
2951 {
2952 ASSERT3U(lsize, >, 0);
2953 ASSERT3U(lsize, >=, psize);
2954 ASSERT(compression_type > ZIO_COMPRESS_OFF);
2955 ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
2956
2957 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
2958 compression_type, ARC_BUFC_DATA);
2959 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
2960
2961 arc_buf_t *buf = NULL;
2962 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
2963 arc_buf_thaw(buf);
2964 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2965
2966 if (!arc_buf_is_shared(buf)) {
2967 /*
2968 * To ensure that the hdr has the correct data in it if we call
2969 * arc_decompress() on this buf before it's been written to
2970 * disk, it's easiest if we just set up sharing between the
2971 * buf and the hdr.
2972 */
2973 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
2974 arc_hdr_free_pabd(hdr);
2975 arc_share_buf(hdr, buf);
2976 }
2977
2978 return (buf);
2979 }
2980
2981 static void
2982 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2983 {
2984 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2985 l2arc_dev_t *dev = l2hdr->b_dev;
2986 uint64_t asize = arc_hdr_size(hdr);
2987
2988 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2989 ASSERT(HDR_HAS_L2HDR(hdr));
2990
2991 list_remove(&dev->l2ad_buflist, hdr);
2992
2993 ARCSTAT_INCR(arcstat_l2_asize, -asize);
2994 ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr));
2995
2996 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
2997
2998 (void) refcount_remove_many(&dev->l2ad_alloc, asize, hdr);
2999 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3000 }
3001
3002 static void
3003 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3004 {
3005 if (HDR_HAS_L1HDR(hdr)) {
3006 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3007 hdr->b_l1hdr.b_bufcnt > 0);
3008 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3009 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3010 }
3011 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3012 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3013
3014 if (!HDR_EMPTY(hdr))
3015 buf_discard_identity(hdr);
3016
3017 if (HDR_HAS_L2HDR(hdr)) {
3018 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3019 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3020
3021 if (!buflist_held)
3022 mutex_enter(&dev->l2ad_mtx);
3023
3024 /*
3025 * Even though we checked this conditional above, we
3026 * need to check this again now that we have the
3027 * l2ad_mtx. This is because we could be racing with
3028 * another thread calling l2arc_evict() which might have
3029 * destroyed this header's L2 portion as we were waiting
3030 * to acquire the l2ad_mtx. If that happens, we don't
3031 * want to re-destroy the header's L2 portion.
3032 */
3033 if (HDR_HAS_L2HDR(hdr))
3034 arc_hdr_l2hdr_destroy(hdr);
3035
3036 if (!buflist_held)
3037 mutex_exit(&dev->l2ad_mtx);
3038 }
3039
3040 if (HDR_HAS_L1HDR(hdr)) {
3041 arc_cksum_free(hdr);
3042
3043 while (hdr->b_l1hdr.b_buf != NULL)
3044 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3045
3046 if (hdr->b_l1hdr.b_pabd != NULL)
3047 arc_hdr_free_pabd(hdr);
3048 }
3049
3050 ASSERT3P(hdr->b_hash_next, ==, NULL);
3051 if (HDR_HAS_L1HDR(hdr)) {
3052 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3053 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3054 kmem_cache_free(hdr_full_cache, hdr);
3055 } else {
3056 kmem_cache_free(hdr_l2only_cache, hdr);
3057 }
3058 }
3059
3060 void
3061 arc_buf_destroy(arc_buf_t *buf, void* tag)
3062 {
3063 arc_buf_hdr_t *hdr = buf->b_hdr;
3064 kmutex_t *hash_lock = HDR_LOCK(hdr);
3065
3066 if (hdr->b_l1hdr.b_state == arc_anon) {
3067 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3068 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3069 VERIFY0(remove_reference(hdr, NULL, tag));
3070 arc_hdr_destroy(hdr);
3071 return;
3072 }
3073
3074 mutex_enter(hash_lock);
3075 ASSERT3P(hdr, ==, buf->b_hdr);
3076 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3077 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3078 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3079 ASSERT3P(buf->b_data, !=, NULL);
3080
3081 (void) remove_reference(hdr, hash_lock, tag);
3082 arc_buf_destroy_impl(buf);
3083 mutex_exit(hash_lock);
3084 }
3085
3086 /*
3087 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3088 * state of the header is dependent on its state prior to entering this
3089 * function. The following transitions are possible:
3090 *
3091 * - arc_mru -> arc_mru_ghost
3092 * - arc_mfu -> arc_mfu_ghost
3093 * - arc_mru_ghost -> arc_l2c_only
3094 * - arc_mru_ghost -> deleted
3095 * - arc_mfu_ghost -> arc_l2c_only
3096 * - arc_mfu_ghost -> deleted
3097 */
3098 static int64_t
3099 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3100 {
3101 arc_state_t *evicted_state, *state;
3102 int64_t bytes_evicted = 0;
3103
3104 ASSERT(MUTEX_HELD(hash_lock));
3105 ASSERT(HDR_HAS_L1HDR(hdr));
3106
3107 state = hdr->b_l1hdr.b_state;
3108 if (GHOST_STATE(state)) {
3109 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3110 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3111
3112 /*
3113 * l2arc_write_buffers() relies on a header's L1 portion
3114 * (i.e. its b_pabd field) during it's write phase.
3115 * Thus, we cannot push a header onto the arc_l2c_only
3116 * state (removing its L1 piece) until the header is
3117 * done being written to the l2arc.
3118 */
3119 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3120 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3121 return (bytes_evicted);
3122 }
3123
3124 ARCSTAT_BUMP(arcstat_deleted);
3125 bytes_evicted += HDR_GET_LSIZE(hdr);
3126
3127 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3128
3129 if (HDR_HAS_L2HDR(hdr)) {
3130 ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3131 /*
3132 * This buffer is cached on the 2nd Level ARC;
3133 * don't destroy the header.
3134 */
3135 arc_change_state(arc_l2c_only, hdr, hash_lock);
3136 /*
3137 * dropping from L1+L2 cached to L2-only,
3138 * realloc to remove the L1 header.
3139 */
3140 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3141 hdr_l2only_cache);
3142 } else {
3143 arc_change_state(arc_anon, hdr, hash_lock);
3144 arc_hdr_destroy(hdr);
3145 }
3146 return (bytes_evicted);
3147 }
3148
3149 ASSERT(state == arc_mru || state == arc_mfu);
3150 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3151
3152 /* prefetch buffers have a minimum lifespan */
3153 if (HDR_IO_IN_PROGRESS(hdr) ||
3154 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3155 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3156 arc_min_prefetch_lifespan)) {
3157 ARCSTAT_BUMP(arcstat_evict_skip);
3158 return (bytes_evicted);
3159 }
3160
3161 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3162 while (hdr->b_l1hdr.b_buf) {
3163 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3164 if (!mutex_tryenter(&buf->b_evict_lock)) {
3165 ARCSTAT_BUMP(arcstat_mutex_miss);
3166 break;
3167 }
3168 if (buf->b_data != NULL)
3169 bytes_evicted += HDR_GET_LSIZE(hdr);
3170 mutex_exit(&buf->b_evict_lock);
3171 arc_buf_destroy_impl(buf);
3172 }
3173
3174 if (HDR_HAS_L2HDR(hdr)) {
3175 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3176 } else {
3177 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3178 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3179 HDR_GET_LSIZE(hdr));
3180 } else {
3181 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3182 HDR_GET_LSIZE(hdr));
3183 }
3184 }
3185
3186 if (hdr->b_l1hdr.b_bufcnt == 0) {
3187 arc_cksum_free(hdr);
3188
3189 bytes_evicted += arc_hdr_size(hdr);
3190
3191 /*
3192 * If this hdr is being evicted and has a compressed
3193 * buffer then we discard it here before we change states.
3194 * This ensures that the accounting is updated correctly
3195 * in arc_free_data_impl().
3196 */
3197 arc_hdr_free_pabd(hdr);
3198
3199 arc_change_state(evicted_state, hdr, hash_lock);
3200 ASSERT(HDR_IN_HASH_TABLE(hdr));
3201 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3202 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3203 }
3204
3205 return (bytes_evicted);
3206 }
3207
3208 static uint64_t
3209 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3210 uint64_t spa, int64_t bytes)
3211 {
3212 multilist_sublist_t *mls;
3213 uint64_t bytes_evicted = 0;
3214 arc_buf_hdr_t *hdr;
3215 kmutex_t *hash_lock;
3216 int evict_count = 0;
3217
3218 ASSERT3P(marker, !=, NULL);
3219 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3220
3221 mls = multilist_sublist_lock(ml, idx);
3222
3223 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3224 hdr = multilist_sublist_prev(mls, marker)) {
3225 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3226 (evict_count >= zfs_arc_evict_batch_limit))
3227 break;
3228
3229 /*
3230 * To keep our iteration location, move the marker
3231 * forward. Since we're not holding hdr's hash lock, we
3232 * must be very careful and not remove 'hdr' from the
3233 * sublist. Otherwise, other consumers might mistake the
3234 * 'hdr' as not being on a sublist when they call the
3235 * multilist_link_active() function (they all rely on
3236 * the hash lock protecting concurrent insertions and
3237 * removals). multilist_sublist_move_forward() was
3238 * specifically implemented to ensure this is the case
3239 * (only 'marker' will be removed and re-inserted).
3240 */
3241 multilist_sublist_move_forward(mls, marker);
3242
3243 /*
3244 * The only case where the b_spa field should ever be
3245 * zero, is the marker headers inserted by
3246 * arc_evict_state(). It's possible for multiple threads
3247 * to be calling arc_evict_state() concurrently (e.g.
3248 * dsl_pool_close() and zio_inject_fault()), so we must
3249 * skip any markers we see from these other threads.
3250 */
3251 if (hdr->b_spa == 0)
3252 continue;
3253
3254 /* we're only interested in evicting buffers of a certain spa */
3255 if (spa != 0 && hdr->b_spa != spa) {
3256 ARCSTAT_BUMP(arcstat_evict_skip);
3257 continue;
3258 }
3259
3260 hash_lock = HDR_LOCK(hdr);
3261
3262 /*
3263 * We aren't calling this function from any code path
3264 * that would already be holding a hash lock, so we're
3265 * asserting on this assumption to be defensive in case
3266 * this ever changes. Without this check, it would be
3267 * possible to incorrectly increment arcstat_mutex_miss
3268 * below (e.g. if the code changed such that we called
3269 * this function with a hash lock held).
3270 */
3271 ASSERT(!MUTEX_HELD(hash_lock));
3272
3273 if (mutex_tryenter(hash_lock)) {
3274 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3275 mutex_exit(hash_lock);
3276
3277 bytes_evicted += evicted;
3278
3279 /*
3280 * If evicted is zero, arc_evict_hdr() must have
3281 * decided to skip this header, don't increment
3282 * evict_count in this case.
3283 */
3284 if (evicted != 0)
3285 evict_count++;
3286
3287 /*
3288 * If arc_size isn't overflowing, signal any
3289 * threads that might happen to be waiting.
3290 *
3291 * For each header evicted, we wake up a single
3292 * thread. If we used cv_broadcast, we could
3293 * wake up "too many" threads causing arc_size
3294 * to significantly overflow arc_c; since
3295 * arc_get_data_impl() doesn't check for overflow
3296 * when it's woken up (it doesn't because it's
3297 * possible for the ARC to be overflowing while
3298 * full of un-evictable buffers, and the
3299 * function should proceed in this case).
3300 *
3301 * If threads are left sleeping, due to not
3302 * using cv_broadcast, they will be woken up
3303 * just before arc_reclaim_thread() sleeps.
3304 */
3305 mutex_enter(&arc_reclaim_lock);
3306 if (!arc_is_overflowing())
3307 cv_signal(&arc_reclaim_waiters_cv);
3308 mutex_exit(&arc_reclaim_lock);
3309 } else {
3310 ARCSTAT_BUMP(arcstat_mutex_miss);
3311 }
3312 }
3313
3314 multilist_sublist_unlock(mls);
3315
3316 return (bytes_evicted);
3317 }
3318
3319 /*
3320 * Evict buffers from the given arc state, until we've removed the
3321 * specified number of bytes. Move the removed buffers to the
3322 * appropriate evict state.
3323 *
3324 * This function makes a "best effort". It skips over any buffers
3325 * it can't get a hash_lock on, and so, may not catch all candidates.
3326 * It may also return without evicting as much space as requested.
3327 *
3328 * If bytes is specified using the special value ARC_EVICT_ALL, this
3329 * will evict all available (i.e. unlocked and evictable) buffers from
3330 * the given arc state; which is used by arc_flush().
3331 */
3332 static uint64_t
3333 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3334 arc_buf_contents_t type)
3335 {
3336 uint64_t total_evicted = 0;
3337 multilist_t *ml = state->arcs_list[type];
3338 int num_sublists;
3339 arc_buf_hdr_t **markers;
3340 int i;
3341
3342 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3343
3344 num_sublists = multilist_get_num_sublists(ml);
3345
3346 /*
3347 * If we've tried to evict from each sublist, made some
3348 * progress, but still have not hit the target number of bytes
3349 * to evict, we want to keep trying. The markers allow us to
3350 * pick up where we left off for each individual sublist, rather
3351 * than starting from the tail each time.
3352 */
3353 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3354 for (i = 0; i < num_sublists; i++) {
3355 multilist_sublist_t *mls;
3356
3357 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3358
3359 /*
3360 * A b_spa of 0 is used to indicate that this header is
3361 * a marker. This fact is used in arc_adjust_type() and
3362 * arc_evict_state_impl().
3363 */
3364 markers[i]->b_spa = 0;
3365
3366 mls = multilist_sublist_lock(ml, i);
3367 multilist_sublist_insert_tail(mls, markers[i]);
3368 multilist_sublist_unlock(mls);
3369 }
3370
3371 /*
3372 * While we haven't hit our target number of bytes to evict, or
3373 * we're evicting all available buffers.
3374 */
3375 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3376 int sublist_idx = multilist_get_random_index(ml);
3377 uint64_t scan_evicted = 0;
3378
3379 /*
3380 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
3381 * Request that 10% of the LRUs be scanned by the superblock
3382 * shrinker.
3383 */
3384 if (type == ARC_BUFC_DATA && arc_dnode_size > arc_dnode_limit)
3385 arc_prune_async((arc_dnode_size - arc_dnode_limit) /
3386 sizeof (dnode_t) / zfs_arc_dnode_reduce_percent);
3387
3388 /*
3389 * Start eviction using a randomly selected sublist,
3390 * this is to try and evenly balance eviction across all
3391 * sublists. Always starting at the same sublist
3392 * (e.g. index 0) would cause evictions to favor certain
3393 * sublists over others.
3394 */
3395 for (i = 0; i < num_sublists; i++) {
3396 uint64_t bytes_remaining;
3397 uint64_t bytes_evicted;
3398
3399 if (bytes == ARC_EVICT_ALL)
3400 bytes_remaining = ARC_EVICT_ALL;
3401 else if (total_evicted < bytes)
3402 bytes_remaining = bytes - total_evicted;
3403 else
3404 break;
3405
3406 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3407 markers[sublist_idx], spa, bytes_remaining);
3408
3409 scan_evicted += bytes_evicted;
3410 total_evicted += bytes_evicted;
3411
3412 /* we've reached the end, wrap to the beginning */
3413 if (++sublist_idx >= num_sublists)
3414 sublist_idx = 0;
3415 }
3416
3417 /*
3418 * If we didn't evict anything during this scan, we have
3419 * no reason to believe we'll evict more during another
3420 * scan, so break the loop.
3421 */
3422 if (scan_evicted == 0) {
3423 /* This isn't possible, let's make that obvious */
3424 ASSERT3S(bytes, !=, 0);
3425
3426 /*
3427 * When bytes is ARC_EVICT_ALL, the only way to
3428 * break the loop is when scan_evicted is zero.
3429 * In that case, we actually have evicted enough,
3430 * so we don't want to increment the kstat.
3431 */
3432 if (bytes != ARC_EVICT_ALL) {
3433 ASSERT3S(total_evicted, <, bytes);
3434 ARCSTAT_BUMP(arcstat_evict_not_enough);
3435 }
3436
3437 break;
3438 }
3439 }
3440
3441 for (i = 0; i < num_sublists; i++) {
3442 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3443 multilist_sublist_remove(mls, markers[i]);
3444 multilist_sublist_unlock(mls);
3445
3446 kmem_cache_free(hdr_full_cache, markers[i]);
3447 }
3448 kmem_free(markers, sizeof (*markers) * num_sublists);
3449
3450 return (total_evicted);
3451 }
3452
3453 /*
3454 * Flush all "evictable" data of the given type from the arc state
3455 * specified. This will not evict any "active" buffers (i.e. referenced).
3456 *
3457 * When 'retry' is set to B_FALSE, the function will make a single pass
3458 * over the state and evict any buffers that it can. Since it doesn't
3459 * continually retry the eviction, it might end up leaving some buffers
3460 * in the ARC due to lock misses.
3461 *
3462 * When 'retry' is set to B_TRUE, the function will continually retry the
3463 * eviction until *all* evictable buffers have been removed from the
3464 * state. As a result, if concurrent insertions into the state are
3465 * allowed (e.g. if the ARC isn't shutting down), this function might
3466 * wind up in an infinite loop, continually trying to evict buffers.
3467 */
3468 static uint64_t
3469 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3470 boolean_t retry)
3471 {
3472 uint64_t evicted = 0;
3473
3474 while (refcount_count(&state->arcs_esize[type]) != 0) {
3475 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3476
3477 if (!retry)
3478 break;
3479 }
3480
3481 return (evicted);
3482 }
3483
3484 /*
3485 * Helper function for arc_prune_async() it is responsible for safely
3486 * handling the execution of a registered arc_prune_func_t.
3487 */
3488 static void
3489 arc_prune_task(void *ptr)
3490 {
3491 arc_prune_t *ap = (arc_prune_t *)ptr;
3492 arc_prune_func_t *func = ap->p_pfunc;
3493
3494 if (func != NULL)
3495 func(ap->p_adjust, ap->p_private);
3496
3497 refcount_remove(&ap->p_refcnt, func);
3498 }
3499
3500 /*
3501 * Notify registered consumers they must drop holds on a portion of the ARC
3502 * buffered they reference. This provides a mechanism to ensure the ARC can
3503 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
3504 * is analogous to dnlc_reduce_cache() but more generic.
3505 *
3506 * This operation is performed asynchronously so it may be safely called
3507 * in the context of the arc_reclaim_thread(). A reference is taken here
3508 * for each registered arc_prune_t and the arc_prune_task() is responsible
3509 * for releasing it once the registered arc_prune_func_t has completed.
3510 */
3511 static void
3512 arc_prune_async(int64_t adjust)
3513 {
3514 arc_prune_t *ap;
3515
3516 mutex_enter(&arc_prune_mtx);
3517 for (ap = list_head(&arc_prune_list); ap != NULL;
3518 ap = list_next(&arc_prune_list, ap)) {
3519
3520 if (refcount_count(&ap->p_refcnt) >= 2)
3521 continue;
3522
3523 refcount_add(&ap->p_refcnt, ap->p_pfunc);
3524 ap->p_adjust = adjust;
3525 if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
3526 ap, TQ_SLEEP) == TASKQID_INVALID) {
3527 refcount_remove(&ap->p_refcnt, ap->p_pfunc);
3528 continue;
3529 }
3530 ARCSTAT_BUMP(arcstat_prune);
3531 }
3532 mutex_exit(&arc_prune_mtx);
3533 }
3534
3535 /*
3536 * Evict the specified number of bytes from the state specified,
3537 * restricting eviction to the spa and type given. This function
3538 * prevents us from trying to evict more from a state's list than
3539 * is "evictable", and to skip evicting altogether when passed a
3540 * negative value for "bytes". In contrast, arc_evict_state() will
3541 * evict everything it can, when passed a negative value for "bytes".
3542 */
3543 static uint64_t
3544 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3545 arc_buf_contents_t type)
3546 {
3547 int64_t delta;
3548
3549 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3550 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3551 return (arc_evict_state(state, spa, delta, type));
3552 }
3553
3554 return (0);
3555 }
3556
3557 /*
3558 * The goal of this function is to evict enough meta data buffers from the
3559 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
3560 * more complicated than it appears because it is common for data buffers
3561 * to have holds on meta data buffers. In addition, dnode meta data buffers
3562 * will be held by the dnodes in the block preventing them from being freed.
3563 * This means we can't simply traverse the ARC and expect to always find
3564 * enough unheld meta data buffer to release.
3565 *
3566 * Therefore, this function has been updated to make alternating passes
3567 * over the ARC releasing data buffers and then newly unheld meta data
3568 * buffers. This ensures forward progress is maintained and arc_meta_used
3569 * will decrease. Normally this is sufficient, but if required the ARC
3570 * will call the registered prune callbacks causing dentry and inodes to
3571 * be dropped from the VFS cache. This will make dnode meta data buffers
3572 * available for reclaim.
3573 */
3574 static uint64_t
3575 arc_adjust_meta_balanced(void)
3576 {
3577 int64_t delta, prune = 0, adjustmnt;
3578 uint64_t total_evicted = 0;
3579 arc_buf_contents_t type = ARC_BUFC_DATA;
3580 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
3581
3582 restart:
3583 /*
3584 * This slightly differs than the way we evict from the mru in
3585 * arc_adjust because we don't have a "target" value (i.e. no
3586 * "meta" arc_p). As a result, I think we can completely
3587 * cannibalize the metadata in the MRU before we evict the
3588 * metadata from the MFU. I think we probably need to implement a
3589 * "metadata arc_p" value to do this properly.
3590 */
3591 adjustmnt = arc_meta_used - arc_meta_limit;
3592
3593 if (adjustmnt > 0 && refcount_count(&arc_mru->arcs_esize[type]) > 0) {
3594 delta = MIN(refcount_count(&arc_mru->arcs_esize[type]),
3595 adjustmnt);
3596 total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
3597 adjustmnt -= delta;
3598 }
3599
3600 /*
3601 * We can't afford to recalculate adjustmnt here. If we do,
3602 * new metadata buffers can sneak into the MRU or ANON lists,
3603 * thus penalize the MFU metadata. Although the fudge factor is
3604 * small, it has been empirically shown to be significant for
3605 * certain workloads (e.g. creating many empty directories). As
3606 * such, we use the original calculation for adjustmnt, and
3607 * simply decrement the amount of data evicted from the MRU.
3608 */
3609
3610 if (adjustmnt > 0 && refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
3611 delta = MIN(refcount_count(&arc_mfu->arcs_esize[type]),
3612 adjustmnt);
3613 total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
3614 }
3615
3616 adjustmnt = arc_meta_used - arc_meta_limit;
3617
3618 if (adjustmnt > 0 &&
3619 refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
3620 delta = MIN(adjustmnt,
3621 refcount_count(&arc_mru_ghost->arcs_esize[type]));
3622 total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
3623 adjustmnt -= delta;
3624 }
3625
3626 if (adjustmnt > 0 &&
3627 refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
3628 delta = MIN(adjustmnt,
3629 refcount_count(&arc_mfu_ghost->arcs_esize[type]));
3630 total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
3631 }
3632
3633 /*
3634 * If after attempting to make the requested adjustment to the ARC
3635 * the meta limit is still being exceeded then request that the
3636 * higher layers drop some cached objects which have holds on ARC
3637 * meta buffers. Requests to the upper layers will be made with
3638 * increasingly large scan sizes until the ARC is below the limit.
3639 */
3640 if (arc_meta_used > arc_meta_limit) {
3641 if (type == ARC_BUFC_DATA) {
3642 type = ARC_BUFC_METADATA;
3643 } else {
3644 type = ARC_BUFC_DATA;
3645
3646 if (zfs_arc_meta_prune) {
3647 prune += zfs_arc_meta_prune;
3648 arc_prune_async(prune);
3649 }
3650 }
3651
3652 if (restarts > 0) {
3653 restarts--;
3654 goto restart;
3655 }
3656 }
3657 return (total_evicted);
3658 }
3659
3660 /*
3661 * Evict metadata buffers from the cache, such that arc_meta_used is
3662 * capped by the arc_meta_limit tunable.
3663 */
3664 static uint64_t
3665 arc_adjust_meta_only(void)
3666 {
3667 uint64_t total_evicted = 0;
3668 int64_t target;
3669
3670 /*
3671 * If we're over the meta limit, we want to evict enough
3672 * metadata to get back under the meta limit. We don't want to
3673 * evict so much that we drop the MRU below arc_p, though. If
3674 * we're over the meta limit more than we're over arc_p, we
3675 * evict some from the MRU here, and some from the MFU below.
3676 */
3677 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3678 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3679 refcount_count(&arc_mru->arcs_size) - arc_p));
3680
3681 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3682
3683 /*
3684 * Similar to the above, we want to evict enough bytes to get us
3685 * below the meta limit, but not so much as to drop us below the
3686 * space allotted to the MFU (which is defined as arc_c - arc_p).
3687 */
3688 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3689 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3690
3691 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3692
3693 return (total_evicted);
3694 }
3695
3696 static uint64_t
3697 arc_adjust_meta(void)
3698 {
3699 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
3700 return (arc_adjust_meta_only());
3701 else
3702 return (arc_adjust_meta_balanced());
3703 }
3704
3705 /*
3706 * Return the type of the oldest buffer in the given arc state
3707 *
3708 * This function will select a random sublist of type ARC_BUFC_DATA and
3709 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3710 * is compared, and the type which contains the "older" buffer will be
3711 * returned.
3712 */
3713 static arc_buf_contents_t
3714 arc_adjust_type(arc_state_t *state)
3715 {
3716 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
3717 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
3718 int data_idx = multilist_get_random_index(data_ml);
3719 int meta_idx = multilist_get_random_index(meta_ml);
3720 multilist_sublist_t *data_mls;
3721 multilist_sublist_t *meta_mls;
3722 arc_buf_contents_t type;
3723 arc_buf_hdr_t *data_hdr;
3724 arc_buf_hdr_t *meta_hdr;
3725
3726 /*
3727 * We keep the sublist lock until we're finished, to prevent
3728 * the headers from being destroyed via arc_evict_state().
3729 */
3730 data_mls = multilist_sublist_lock(data_ml, data_idx);
3731 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3732
3733 /*
3734 * These two loops are to ensure we skip any markers that
3735 * might be at the tail of the lists due to arc_evict_state().
3736 */
3737
3738 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3739 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3740 if (data_hdr->b_spa != 0)
3741 break;
3742 }
3743
3744 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3745 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3746 if (meta_hdr->b_spa != 0)
3747 break;
3748 }
3749
3750 if (data_hdr == NULL && meta_hdr == NULL) {
3751 type = ARC_BUFC_DATA;
3752 } else if (data_hdr == NULL) {
3753 ASSERT3P(meta_hdr, !=, NULL);
3754 type = ARC_BUFC_METADATA;
3755 } else if (meta_hdr == NULL) {
3756 ASSERT3P(data_hdr, !=, NULL);
3757 type = ARC_BUFC_DATA;
3758 } else {
3759 ASSERT3P(data_hdr, !=, NULL);
3760 ASSERT3P(meta_hdr, !=, NULL);
3761
3762 /* The headers can't be on the sublist without an L1 header */
3763 ASSERT(HDR_HAS_L1HDR(data_hdr));
3764 ASSERT(HDR_HAS_L1HDR(meta_hdr));
3765
3766 if (data_hdr->b_l1hdr.b_arc_access <
3767 meta_hdr->b_l1hdr.b_arc_access) {
3768 type = ARC_BUFC_DATA;
3769 } else {
3770 type = ARC_BUFC_METADATA;
3771 }
3772 }
3773
3774 multilist_sublist_unlock(meta_mls);
3775 multilist_sublist_unlock(data_mls);
3776
3777 return (type);
3778 }
3779
3780 /*
3781 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3782 */
3783 static uint64_t
3784 arc_adjust(void)
3785 {
3786 uint64_t total_evicted = 0;
3787 uint64_t bytes;
3788 int64_t target;
3789
3790 /*
3791 * If we're over arc_meta_limit, we want to correct that before
3792 * potentially evicting data buffers below.
3793 */
3794 total_evicted += arc_adjust_meta();
3795
3796 /*
3797 * Adjust MRU size
3798 *
3799 * If we're over the target cache size, we want to evict enough
3800 * from the list to get back to our target size. We don't want
3801 * to evict too much from the MRU, such that it drops below
3802 * arc_p. So, if we're over our target cache size more than
3803 * the MRU is over arc_p, we'll evict enough to get back to
3804 * arc_p here, and then evict more from the MFU below.
3805 */
3806 target = MIN((int64_t)(arc_size - arc_c),
3807 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3808 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3809
3810 /*
3811 * If we're below arc_meta_min, always prefer to evict data.
3812 * Otherwise, try to satisfy the requested number of bytes to
3813 * evict from the type which contains older buffers; in an
3814 * effort to keep newer buffers in the cache regardless of their
3815 * type. If we cannot satisfy the number of bytes from this
3816 * type, spill over into the next type.
3817 */
3818 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3819 arc_meta_used > arc_meta_min) {
3820 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3821 total_evicted += bytes;
3822
3823 /*
3824 * If we couldn't evict our target number of bytes from
3825 * metadata, we try to get the rest from data.
3826 */
3827 target -= bytes;
3828
3829 total_evicted +=
3830 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3831 } else {
3832 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3833 total_evicted += bytes;
3834
3835 /*
3836 * If we couldn't evict our target number of bytes from
3837 * data, we try to get the rest from metadata.
3838 */
3839 target -= bytes;
3840
3841 total_evicted +=
3842 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3843 }
3844
3845 /*
3846 * Adjust MFU size
3847 *
3848 * Now that we've tried to evict enough from the MRU to get its
3849 * size back to arc_p, if we're still above the target cache
3850 * size, we evict the rest from the MFU.
3851 */
3852 target = arc_size - arc_c;
3853
3854 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3855 arc_meta_used > arc_meta_min) {
3856 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3857 total_evicted += bytes;
3858
3859 /*
3860 * If we couldn't evict our target number of bytes from
3861 * metadata, we try to get the rest from data.
3862 */
3863 target -= bytes;
3864
3865 total_evicted +=
3866 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3867 } else {
3868 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3869 total_evicted += bytes;
3870
3871 /*
3872 * If we couldn't evict our target number of bytes from
3873 * data, we try to get the rest from data.
3874 */
3875 target -= bytes;
3876
3877 total_evicted +=
3878 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3879 }
3880
3881 /*
3882 * Adjust ghost lists
3883 *
3884 * In addition to the above, the ARC also defines target values
3885 * for the ghost lists. The sum of the mru list and mru ghost
3886 * list should never exceed the target size of the cache, and
3887 * the sum of the mru list, mfu list, mru ghost list, and mfu
3888 * ghost list should never exceed twice the target size of the
3889 * cache. The following logic enforces these limits on the ghost
3890 * caches, and evicts from them as needed.
3891 */
3892 target = refcount_count(&arc_mru->arcs_size) +
3893 refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3894
3895 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3896 total_evicted += bytes;
3897
3898 target -= bytes;
3899
3900 total_evicted +=
3901 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3902
3903 /*
3904 * We assume the sum of the mru list and mfu list is less than
3905 * or equal to arc_c (we enforced this above), which means we
3906 * can use the simpler of the two equations below:
3907 *
3908 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3909 * mru ghost + mfu ghost <= arc_c
3910 */
3911 target = refcount_count(&arc_mru_ghost->arcs_size) +
3912 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3913
3914 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3915 total_evicted += bytes;
3916
3917 target -= bytes;
3918
3919 total_evicted +=
3920 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3921
3922 return (total_evicted);
3923 }
3924
3925 void
3926 arc_flush(spa_t *spa, boolean_t retry)
3927 {
3928 uint64_t guid = 0;
3929
3930 /*
3931 * If retry is B_TRUE, a spa must not be specified since we have
3932 * no good way to determine if all of a spa's buffers have been
3933 * evicted from an arc state.
3934 */
3935 ASSERT(!retry || spa == 0);
3936
3937 if (spa != NULL)
3938 guid = spa_load_guid(spa);
3939
3940 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3941 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3942
3943 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3944 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3945
3946 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3947 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3948
3949 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3950 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3951 }
3952
3953 void
3954 arc_shrink(int64_t to_free)
3955 {
3956 uint64_t c = arc_c;
3957
3958 if (c > to_free && c - to_free > arc_c_min) {
3959 arc_c = c - to_free;
3960 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3961 if (arc_c > arc_size)
3962 arc_c = MAX(arc_size, arc_c_min);
3963 if (arc_p > arc_c)
3964 arc_p = (arc_c >> 1);
3965 ASSERT(arc_c >= arc_c_min);
3966 ASSERT((int64_t)arc_p >= 0);
3967 } else {
3968 arc_c = arc_c_min;
3969 }
3970
3971 if (arc_size > arc_c)
3972 (void) arc_adjust();
3973 }
3974
3975 /*
3976 * Return maximum amount of memory that we could possibly use. Reduced
3977 * to half of all memory in user space which is primarily used for testing.
3978 */
3979 static uint64_t
3980 arc_all_memory(void)
3981 {
3982 #ifdef _KERNEL
3983 return (MIN(ptob(physmem),
3984 vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)));
3985 #else
3986 return (ptob(physmem) / 2);
3987 #endif
3988 }
3989
3990 typedef enum free_memory_reason_t {
3991 FMR_UNKNOWN,
3992 FMR_NEEDFREE,
3993 FMR_LOTSFREE,
3994 FMR_SWAPFS_MINFREE,
3995 FMR_PAGES_PP_MAXIMUM,
3996 FMR_HEAP_ARENA,
3997 FMR_ZIO_ARENA,
3998 } free_memory_reason_t;
3999
4000 int64_t last_free_memory;
4001 free_memory_reason_t last_free_reason;
4002
4003 #ifdef _KERNEL
4004 /*
4005 * Additional reserve of pages for pp_reserve.
4006 */
4007 int64_t arc_pages_pp_reserve = 64;
4008
4009 /*
4010 * Additional reserve of pages for swapfs.
4011 */
4012 int64_t arc_swapfs_reserve = 64;
4013 #endif /* _KERNEL */
4014
4015 /*
4016 * Return the amount of memory that can be consumed before reclaim will be
4017 * needed. Positive if there is sufficient free memory, negative indicates
4018 * the amount of memory that needs to be freed up.
4019 */
4020 static int64_t
4021 arc_available_memory(void)
4022 {
4023 int64_t lowest = INT64_MAX;
4024 free_memory_reason_t r = FMR_UNKNOWN;
4025 #ifdef _KERNEL
4026 uint64_t available_memory = ptob(freemem);
4027 int64_t n;
4028 #ifdef __linux__
4029 pgcnt_t needfree = btop(arc_need_free);
4030 pgcnt_t lotsfree = btop(arc_sys_free);
4031 pgcnt_t desfree = 0;
4032 #endif
4033
4034 #if defined(__i386)
4035 available_memory =
4036 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
4037 #endif
4038
4039 if (needfree > 0) {
4040 n = PAGESIZE * (-needfree);
4041 if (n < lowest) {
4042 lowest = n;
4043 r = FMR_NEEDFREE;
4044 }
4045 }
4046
4047 /*
4048 * check that we're out of range of the pageout scanner. It starts to
4049 * schedule paging if freemem is less than lotsfree and needfree.
4050 * lotsfree is the high-water mark for pageout, and needfree is the
4051 * number of needed free pages. We add extra pages here to make sure
4052 * the scanner doesn't start up while we're freeing memory.
4053 */
4054 n = PAGESIZE * (btop(available_memory) - lotsfree - needfree - desfree);
4055 if (n < lowest) {
4056 lowest = n;
4057 r = FMR_LOTSFREE;
4058 }
4059
4060 #ifndef __linux__
4061 /*
4062 * check to make sure that swapfs has enough space so that anon
4063 * reservations can still succeed. anon_resvmem() checks that the
4064 * availrmem is greater than swapfs_minfree, and the number of reserved
4065 * swap pages. We also add a bit of extra here just to prevent
4066 * circumstances from getting really dire.
4067 */
4068 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4069 desfree - arc_swapfs_reserve);
4070 if (n < lowest) {
4071 lowest = n;
4072 r = FMR_SWAPFS_MINFREE;
4073 }
4074
4075
4076 /*
4077 * Check that we have enough availrmem that memory locking (e.g., via
4078 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
4079 * stores the number of pages that cannot be locked; when availrmem
4080 * drops below pages_pp_maximum, page locking mechanisms such as
4081 * page_pp_lock() will fail.)
4082 */
4083 n = PAGESIZE * (availrmem - pages_pp_maximum -
4084 arc_pages_pp_reserve);
4085 if (n < lowest) {
4086 lowest = n;
4087 r = FMR_PAGES_PP_MAXIMUM;
4088 }
4089 #endif
4090
4091 #if defined(__i386)
4092 /*
4093 * If we're on an i386 platform, it's possible that we'll exhaust the
4094 * kernel heap space before we ever run out of available physical
4095 * memory. Most checks of the size of the heap_area compare against
4096 * tune.t_minarmem, which is the minimum available real memory that we
4097 * can have in the system. However, this is generally fixed at 25 pages
4098 * which is so low that it's useless. In this comparison, we seek to
4099 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4100 * heap is allocated. (Or, in the calculation, if less than 1/4th is
4101 * free)
4102 */
4103 n = vmem_size(heap_arena, VMEM_FREE) -
4104 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4105 if (n < lowest) {
4106 lowest = n;
4107 r = FMR_HEAP_ARENA;
4108 }
4109 #endif
4110
4111 /*
4112 * If zio data pages are being allocated out of a separate heap segment,
4113 * then enforce that the size of available vmem for this arena remains
4114 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4115 *
4116 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4117 * memory (in the zio_arena) free, which can avoid memory
4118 * fragmentation issues.
4119 */
4120 if (zio_arena != NULL) {
4121 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4122 (vmem_size(zio_arena, VMEM_ALLOC) >>
4123 arc_zio_arena_free_shift);
4124 if (n < lowest) {
4125 lowest = n;
4126 r = FMR_ZIO_ARENA;
4127 }
4128 }
4129 #else /* _KERNEL */
4130 /* Every 100 calls, free a small amount */
4131 if (spa_get_random(100) == 0)
4132 lowest = -1024;
4133 #endif /* _KERNEL */
4134
4135 last_free_memory = lowest;
4136 last_free_reason = r;
4137
4138 return (lowest);
4139 }
4140
4141 /*
4142 * Determine if the system is under memory pressure and is asking
4143 * to reclaim memory. A return value of B_TRUE indicates that the system
4144 * is under memory pressure and that the arc should adjust accordingly.
4145 */
4146 static boolean_t
4147 arc_reclaim_needed(void)
4148 {
4149 return (arc_available_memory() < 0);
4150 }
4151
4152 static void
4153 arc_kmem_reap_now(void)
4154 {
4155 size_t i;
4156 kmem_cache_t *prev_cache = NULL;
4157 kmem_cache_t *prev_data_cache = NULL;
4158 extern kmem_cache_t *zio_buf_cache[];
4159 extern kmem_cache_t *zio_data_buf_cache[];
4160 extern kmem_cache_t *range_seg_cache;
4161
4162 if ((arc_meta_used >= arc_meta_limit) && zfs_arc_meta_prune) {
4163 /*
4164 * We are exceeding our meta-data cache limit.
4165 * Prune some entries to release holds on meta-data.
4166 */
4167 arc_prune_async(zfs_arc_meta_prune);
4168 }
4169
4170 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4171 #ifdef _ILP32
4172 /* reach upper limit of cache size on 32-bit */
4173 if (zio_buf_cache[i] == NULL)
4174 break;
4175 #endif
4176 if (zio_buf_cache[i] != prev_cache) {
4177 prev_cache = zio_buf_cache[i];
4178 kmem_cache_reap_now(zio_buf_cache[i]);
4179 }
4180 if (zio_data_buf_cache[i] != prev_data_cache) {
4181 prev_data_cache = zio_data_buf_cache[i];
4182 kmem_cache_reap_now(zio_data_buf_cache[i]);
4183 }
4184 }
4185 kmem_cache_reap_now(buf_cache);
4186 kmem_cache_reap_now(hdr_full_cache);
4187 kmem_cache_reap_now(hdr_l2only_cache);
4188 kmem_cache_reap_now(range_seg_cache);
4189
4190 if (zio_arena != NULL) {
4191 /*
4192 * Ask the vmem arena to reclaim unused memory from its
4193 * quantum caches.
4194 */
4195 vmem_qcache_reap(zio_arena);
4196 }
4197 }
4198
4199 /*
4200 * Threads can block in arc_get_data_impl() waiting for this thread to evict
4201 * enough data and signal them to proceed. When this happens, the threads in
4202 * arc_get_data_impl() are sleeping while holding the hash lock for their
4203 * particular arc header. Thus, we must be careful to never sleep on a
4204 * hash lock in this thread. This is to prevent the following deadlock:
4205 *
4206 * - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L",
4207 * waiting for the reclaim thread to signal it.
4208 *
4209 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4210 * fails, and goes to sleep forever.
4211 *
4212 * This possible deadlock is avoided by always acquiring a hash lock
4213 * using mutex_tryenter() from arc_reclaim_thread().
4214 */
4215 static void
4216 arc_reclaim_thread(void)
4217 {
4218 fstrans_cookie_t cookie = spl_fstrans_mark();
4219 hrtime_t growtime = 0;
4220 callb_cpr_t cpr;
4221
4222 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4223
4224 mutex_enter(&arc_reclaim_lock);
4225 while (!arc_reclaim_thread_exit) {
4226 int64_t to_free;
4227 uint64_t evicted = 0;
4228 uint64_t need_free = arc_need_free;
4229 arc_tuning_update();
4230
4231 /*
4232 * This is necessary in order for the mdb ::arc dcmd to
4233 * show up to date information. Since the ::arc command
4234 * does not call the kstat's update function, without
4235 * this call, the command may show stale stats for the
4236 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4237 * with this change, the data might be up to 1 second
4238 * out of date; but that should suffice. The arc_state_t
4239 * structures can be queried directly if more accurate
4240 * information is needed.
4241 */
4242 #ifndef __linux__
4243 if (arc_ksp != NULL)
4244 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4245 #endif
4246 mutex_exit(&arc_reclaim_lock);
4247
4248 /*
4249 * We call arc_adjust() before (possibly) calling
4250 * arc_kmem_reap_now(), so that we can wake up
4251 * arc_get_data_buf() sooner.
4252 */
4253 evicted = arc_adjust();
4254
4255 int64_t free_memory = arc_available_memory();
4256 if (free_memory < 0) {
4257
4258 arc_no_grow = B_TRUE;
4259 arc_warm = B_TRUE;
4260
4261 /*
4262 * Wait at least zfs_grow_retry (default 5) seconds
4263 * before considering growing.
4264 */
4265 growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4266
4267 arc_kmem_reap_now();
4268
4269 /*
4270 * If we are still low on memory, shrink the ARC
4271 * so that we have arc_shrink_min free space.
4272 */
4273 free_memory = arc_available_memory();
4274
4275 to_free = (arc_c >> arc_shrink_shift) - free_memory;
4276 if (to_free > 0) {
4277 #ifdef _KERNEL
4278 to_free = MAX(to_free, need_free);
4279 #endif
4280 arc_shrink(to_free);
4281 }
4282 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4283 arc_no_grow = B_TRUE;
4284 } else if (gethrtime() >= growtime) {
4285 arc_no_grow = B_FALSE;
4286 }
4287
4288 mutex_enter(&arc_reclaim_lock);
4289
4290 /*
4291 * If evicted is zero, we couldn't evict anything via
4292 * arc_adjust(). This could be due to hash lock
4293 * collisions, but more likely due to the majority of
4294 * arc buffers being unevictable. Therefore, even if
4295 * arc_size is above arc_c, another pass is unlikely to
4296 * be helpful and could potentially cause us to enter an
4297 * infinite loop.
4298 */
4299 if (arc_size <= arc_c || evicted == 0) {
4300 /*
4301 * We're either no longer overflowing, or we
4302 * can't evict anything more, so we should wake
4303 * up any threads before we go to sleep and remove
4304 * the bytes we were working on from arc_need_free
4305 * since nothing more will be done here.
4306 */
4307 cv_broadcast(&arc_reclaim_waiters_cv);
4308 ARCSTAT_INCR(arcstat_need_free, -need_free);
4309
4310 /*
4311 * Block until signaled, or after one second (we
4312 * might need to perform arc_kmem_reap_now()
4313 * even if we aren't being signalled)
4314 */
4315 CALLB_CPR_SAFE_BEGIN(&cpr);
4316 (void) cv_timedwait_sig_hires(&arc_reclaim_thread_cv,
4317 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
4318 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4319 }
4320 }
4321
4322 arc_reclaim_thread_exit = B_FALSE;
4323 cv_broadcast(&arc_reclaim_thread_cv);
4324 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
4325 spl_fstrans_unmark(cookie);
4326 thread_exit();
4327 }
4328
4329 #ifdef _KERNEL
4330 /*
4331 * Determine the amount of memory eligible for eviction contained in the
4332 * ARC. All clean data reported by the ghost lists can always be safely
4333 * evicted. Due to arc_c_min, the same does not hold for all clean data
4334 * contained by the regular mru and mfu lists.
4335 *
4336 * In the case of the regular mru and mfu lists, we need to report as
4337 * much clean data as possible, such that evicting that same reported
4338 * data will not bring arc_size below arc_c_min. Thus, in certain
4339 * circumstances, the total amount of clean data in the mru and mfu
4340 * lists might not actually be evictable.
4341 *
4342 * The following two distinct cases are accounted for:
4343 *
4344 * 1. The sum of the amount of dirty data contained by both the mru and
4345 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4346 * is greater than or equal to arc_c_min.
4347 * (i.e. amount of dirty data >= arc_c_min)
4348 *
4349 * This is the easy case; all clean data contained by the mru and mfu
4350 * lists is evictable. Evicting all clean data can only drop arc_size
4351 * to the amount of dirty data, which is greater than arc_c_min.
4352 *
4353 * 2. The sum of the amount of dirty data contained by both the mru and
4354 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4355 * is less than arc_c_min.
4356 * (i.e. arc_c_min > amount of dirty data)
4357 *
4358 * 2.1. arc_size is greater than or equal arc_c_min.
4359 * (i.e. arc_size >= arc_c_min > amount of dirty data)
4360 *
4361 * In this case, not all clean data from the regular mru and mfu
4362 * lists is actually evictable; we must leave enough clean data
4363 * to keep arc_size above arc_c_min. Thus, the maximum amount of
4364 * evictable data from the two lists combined, is exactly the
4365 * difference between arc_size and arc_c_min.
4366 *
4367 * 2.2. arc_size is less than arc_c_min
4368 * (i.e. arc_c_min > arc_size > amount of dirty data)
4369 *
4370 * In this case, none of the data contained in the mru and mfu
4371 * lists is evictable, even if it's clean. Since arc_size is
4372 * already below arc_c_min, evicting any more would only
4373 * increase this negative difference.
4374 */
4375 static uint64_t
4376 arc_evictable_memory(void)
4377 {
4378 uint64_t arc_clean =
4379 refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
4380 refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
4381 refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
4382 refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
4383 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
4384
4385 /*
4386 * Scale reported evictable memory in proportion to page cache, cap
4387 * at specified min/max.
4388 */
4389 uint64_t min = (ptob(global_page_state(NR_FILE_PAGES)) / 100) *
4390 zfs_arc_pc_percent;
4391 min = MAX(arc_c_min, MIN(arc_c_max, min));
4392
4393 if (arc_dirty >= min)
4394 return (arc_clean);
4395
4396 return (MAX((int64_t)arc_size - (int64_t)min, 0));
4397 }
4398
4399 /*
4400 * If sc->nr_to_scan is zero, the caller is requesting a query of the
4401 * number of objects which can potentially be freed. If it is nonzero,
4402 * the request is to free that many objects.
4403 *
4404 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
4405 * in struct shrinker and also require the shrinker to return the number
4406 * of objects freed.
4407 *
4408 * Older kernels require the shrinker to return the number of freeable
4409 * objects following the freeing of nr_to_free.
4410 */
4411 static spl_shrinker_t
4412 __arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
4413 {
4414 int64_t pages;
4415
4416 /* The arc is considered warm once reclaim has occurred */
4417 if (unlikely(arc_warm == B_FALSE))
4418 arc_warm = B_TRUE;
4419
4420 /* Return the potential number of reclaimable pages */
4421 pages = btop((int64_t)arc_evictable_memory());
4422 if (sc->nr_to_scan == 0)
4423 return (pages);
4424
4425 /* Not allowed to perform filesystem reclaim */
4426 if (!(sc->gfp_mask & __GFP_FS))
4427 return (SHRINK_STOP);
4428
4429 /* Reclaim in progress */
4430 if (mutex_tryenter(&arc_reclaim_lock) == 0) {
4431 ARCSTAT_INCR(arcstat_need_free, ptob(sc->nr_to_scan));
4432 return (0);
4433 }
4434
4435 mutex_exit(&arc_reclaim_lock);
4436
4437 /*
4438 * Evict the requested number of pages by shrinking arc_c the
4439 * requested amount.
4440 */
4441 if (pages > 0) {
4442 arc_shrink(ptob(sc->nr_to_scan));
4443 if (current_is_kswapd())
4444 arc_kmem_reap_now();
4445 #ifdef HAVE_SPLIT_SHRINKER_CALLBACK
4446 pages = MAX((int64_t)pages -
4447 (int64_t)btop(arc_evictable_memory()), 0);
4448 #else
4449 pages = btop(arc_evictable_memory());
4450 #endif
4451 /*
4452 * We've shrunk what we can, wake up threads.
4453 */
4454 cv_broadcast(&arc_reclaim_waiters_cv);
4455 } else
4456 pages = SHRINK_STOP;
4457
4458 /*
4459 * When direct reclaim is observed it usually indicates a rapid
4460 * increase in memory pressure. This occurs because the kswapd
4461 * threads were unable to asynchronously keep enough free memory
4462 * available. In this case set arc_no_grow to briefly pause arc
4463 * growth to avoid compounding the memory pressure.
4464 */
4465 if (current_is_kswapd()) {
4466 ARCSTAT_BUMP(arcstat_memory_indirect_count);
4467 } else {
4468 arc_no_grow = B_TRUE;
4469 arc_kmem_reap_now();
4470 ARCSTAT_BUMP(arcstat_memory_direct_count);
4471 }
4472
4473 return (pages);
4474 }
4475 SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
4476
4477 SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
4478 #endif /* _KERNEL */
4479
4480 /*
4481 * Adapt arc info given the number of bytes we are trying to add and
4482 * the state that we are coming from. This function is only called
4483 * when we are adding new content to the cache.
4484 */
4485 static void
4486 arc_adapt(int bytes, arc_state_t *state)
4487 {
4488 int mult;
4489 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4490 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4491 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4492
4493 if (state == arc_l2c_only)
4494 return;
4495
4496 ASSERT(bytes > 0);
4497 /*
4498 * Adapt the target size of the MRU list:
4499 * - if we just hit in the MRU ghost list, then increase
4500 * the target size of the MRU list.
4501 * - if we just hit in the MFU ghost list, then increase
4502 * the target size of the MFU list by decreasing the
4503 * target size of the MRU list.
4504 */
4505 if (state == arc_mru_ghost) {
4506 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4507 if (!zfs_arc_p_dampener_disable)
4508 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4509
4510 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4511 } else if (state == arc_mfu_ghost) {
4512 uint64_t delta;
4513
4514 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4515 if (!zfs_arc_p_dampener_disable)
4516 mult = MIN(mult, 10);
4517
4518 delta = MIN(bytes * mult, arc_p);
4519 arc_p = MAX(arc_p_min, arc_p - delta);
4520 }
4521 ASSERT((int64_t)arc_p >= 0);
4522
4523 if (arc_reclaim_needed()) {
4524 cv_signal(&arc_reclaim_thread_cv);
4525 return;
4526 }
4527
4528 if (arc_no_grow)
4529 return;
4530
4531 if (arc_c >= arc_c_max)
4532 return;
4533
4534 /*
4535 * If we're within (2 * maxblocksize) bytes of the target
4536 * cache size, increment the target cache size
4537 */
4538 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
4539 if (arc_size >= arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
4540 atomic_add_64(&arc_c, (int64_t)bytes);
4541 if (arc_c > arc_c_max)
4542 arc_c = arc_c_max;
4543 else if (state == arc_anon)
4544 atomic_add_64(&arc_p, (int64_t)bytes);
4545 if (arc_p > arc_c)
4546 arc_p = arc_c;
4547 }
4548 ASSERT((int64_t)arc_p >= 0);
4549 }
4550
4551 /*
4552 * Check if arc_size has grown past our upper threshold, determined by
4553 * zfs_arc_overflow_shift.
4554 */
4555 static boolean_t
4556 arc_is_overflowing(void)
4557 {
4558 /* Always allow at least one block of overflow */
4559 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4560 arc_c >> zfs_arc_overflow_shift);
4561
4562 return (arc_size >= arc_c + overflow);
4563 }
4564
4565 static abd_t *
4566 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4567 {
4568 arc_buf_contents_t type = arc_buf_type(hdr);
4569
4570 arc_get_data_impl(hdr, size, tag);
4571 if (type == ARC_BUFC_METADATA) {
4572 return (abd_alloc(size, B_TRUE));
4573 } else {
4574 ASSERT(type == ARC_BUFC_DATA);
4575 return (abd_alloc(size, B_FALSE));
4576 }
4577 }
4578
4579 static void *
4580 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4581 {
4582 arc_buf_contents_t type = arc_buf_type(hdr);
4583
4584 arc_get_data_impl(hdr, size, tag);
4585 if (type == ARC_BUFC_METADATA) {
4586 return (zio_buf_alloc(size));
4587 } else {
4588 ASSERT(type == ARC_BUFC_DATA);
4589 return (zio_data_buf_alloc(size));
4590 }
4591 }
4592
4593 /*
4594 * Allocate a block and return it to the caller. If we are hitting the
4595 * hard limit for the cache size, we must sleep, waiting for the eviction
4596 * thread to catch up. If we're past the target size but below the hard
4597 * limit, we'll only signal the reclaim thread and continue on.
4598 */
4599 static void
4600 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4601 {
4602 arc_state_t *state = hdr->b_l1hdr.b_state;
4603 arc_buf_contents_t type = arc_buf_type(hdr);
4604
4605 arc_adapt(size, state);
4606
4607 /*
4608 * If arc_size is currently overflowing, and has grown past our
4609 * upper limit, we must be adding data faster than the evict
4610 * thread can evict. Thus, to ensure we don't compound the
4611 * problem by adding more data and forcing arc_size to grow even
4612 * further past it's target size, we halt and wait for the
4613 * eviction thread to catch up.
4614 *
4615 * It's also possible that the reclaim thread is unable to evict
4616 * enough buffers to get arc_size below the overflow limit (e.g.
4617 * due to buffers being un-evictable, or hash lock collisions).
4618 * In this case, we want to proceed regardless if we're
4619 * overflowing; thus we don't use a while loop here.
4620 */
4621 if (arc_is_overflowing()) {
4622 mutex_enter(&arc_reclaim_lock);
4623
4624 /*
4625 * Now that we've acquired the lock, we may no longer be
4626 * over the overflow limit, lets check.
4627 *
4628 * We're ignoring the case of spurious wake ups. If that
4629 * were to happen, it'd let this thread consume an ARC
4630 * buffer before it should have (i.e. before we're under
4631 * the overflow limit and were signalled by the reclaim
4632 * thread). As long as that is a rare occurrence, it
4633 * shouldn't cause any harm.
4634 */
4635 if (arc_is_overflowing()) {
4636 cv_signal(&arc_reclaim_thread_cv);
4637 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4638 }
4639
4640 mutex_exit(&arc_reclaim_lock);
4641 }
4642
4643 VERIFY3U(hdr->b_type, ==, type);
4644 if (type == ARC_BUFC_METADATA) {
4645 arc_space_consume(size, ARC_SPACE_META);
4646 } else {
4647 arc_space_consume(size, ARC_SPACE_DATA);
4648 }
4649
4650 /*
4651 * Update the state size. Note that ghost states have a
4652 * "ghost size" and so don't need to be updated.
4653 */
4654 if (!GHOST_STATE(state)) {
4655
4656 (void) refcount_add_many(&state->arcs_size, size, tag);
4657
4658 /*
4659 * If this is reached via arc_read, the link is
4660 * protected by the hash lock. If reached via
4661 * arc_buf_alloc, the header should not be accessed by
4662 * any other thread. And, if reached via arc_read_done,
4663 * the hash lock will protect it if it's found in the
4664 * hash table; otherwise no other thread should be
4665 * trying to [add|remove]_reference it.
4666 */
4667 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4668 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4669 (void) refcount_add_many(&state->arcs_esize[type],
4670 size, tag);
4671 }
4672
4673 /*
4674 * If we are growing the cache, and we are adding anonymous
4675 * data, and we have outgrown arc_p, update arc_p
4676 */
4677 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4678 (refcount_count(&arc_anon->arcs_size) +
4679 refcount_count(&arc_mru->arcs_size) > arc_p))
4680 arc_p = MIN(arc_c, arc_p + size);
4681 }
4682 }
4683
4684 static void
4685 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
4686 {
4687 arc_free_data_impl(hdr, size, tag);
4688 abd_free(abd);
4689 }
4690
4691 static void
4692 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
4693 {
4694 arc_buf_contents_t type = arc_buf_type(hdr);
4695
4696 arc_free_data_impl(hdr, size, tag);
4697 if (type == ARC_BUFC_METADATA) {
4698 zio_buf_free(buf, size);
4699 } else {
4700 ASSERT(type == ARC_BUFC_DATA);
4701 zio_data_buf_free(buf, size);
4702 }
4703 }
4704
4705 /*
4706 * Free the arc data buffer.
4707 */
4708 static void
4709 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4710 {
4711 arc_state_t *state = hdr->b_l1hdr.b_state;
4712 arc_buf_contents_t type = arc_buf_type(hdr);
4713
4714 /* protected by hash lock, if in the hash table */
4715 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4716 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4717 ASSERT(state != arc_anon && state != arc_l2c_only);
4718
4719 (void) refcount_remove_many(&state->arcs_esize[type],
4720 size, tag);
4721 }
4722 (void) refcount_remove_many(&state->arcs_size, size, tag);
4723
4724 VERIFY3U(hdr->b_type, ==, type);
4725 if (type == ARC_BUFC_METADATA) {
4726 arc_space_return(size, ARC_SPACE_META);
4727 } else {
4728 ASSERT(type == ARC_BUFC_DATA);
4729 arc_space_return(size, ARC_SPACE_DATA);
4730 }
4731 }
4732
4733 /*
4734 * This routine is called whenever a buffer is accessed.
4735 * NOTE: the hash lock is dropped in this function.
4736 */
4737 static void
4738 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4739 {
4740 clock_t now;
4741
4742 ASSERT(MUTEX_HELD(hash_lock));
4743 ASSERT(HDR_HAS_L1HDR(hdr));
4744
4745 if (hdr->b_l1hdr.b_state == arc_anon) {
4746 /*
4747 * This buffer is not in the cache, and does not
4748 * appear in our "ghost" list. Add the new buffer
4749 * to the MRU state.
4750 */
4751
4752 ASSERT0(hdr->b_l1hdr.b_arc_access);
4753 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4754 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4755 arc_change_state(arc_mru, hdr, hash_lock);
4756
4757 } else if (hdr->b_l1hdr.b_state == arc_mru) {
4758 now = ddi_get_lbolt();
4759
4760 /*
4761 * If this buffer is here because of a prefetch, then either:
4762 * - clear the flag if this is a "referencing" read
4763 * (any subsequent access will bump this into the MFU state).
4764 * or
4765 * - move the buffer to the head of the list if this is
4766 * another prefetch (to make it less likely to be evicted).
4767 */
4768 if (HDR_PREFETCH(hdr)) {
4769 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4770 /* link protected by hash lock */
4771 ASSERT(multilist_link_active(
4772 &hdr->b_l1hdr.b_arc_node));
4773 } else {
4774 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4775 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
4776 ARCSTAT_BUMP(arcstat_mru_hits);
4777 }
4778 hdr->b_l1hdr.b_arc_access = now;
4779 return;
4780 }
4781
4782 /*
4783 * This buffer has been "accessed" only once so far,
4784 * but it is still in the cache. Move it to the MFU
4785 * state.
4786 */
4787 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
4788 ARC_MINTIME)) {
4789 /*
4790 * More than 125ms have passed since we
4791 * instantiated this buffer. Move it to the
4792 * most frequently used state.
4793 */
4794 hdr->b_l1hdr.b_arc_access = now;
4795 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4796 arc_change_state(arc_mfu, hdr, hash_lock);
4797 }
4798 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
4799 ARCSTAT_BUMP(arcstat_mru_hits);
4800 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4801 arc_state_t *new_state;
4802 /*
4803 * This buffer has been "accessed" recently, but
4804 * was evicted from the cache. Move it to the
4805 * MFU state.
4806 */
4807
4808 if (HDR_PREFETCH(hdr)) {
4809 new_state = arc_mru;
4810 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4811 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4812 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4813 } else {
4814 new_state = arc_mfu;
4815 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4816 }
4817
4818 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4819 arc_change_state(new_state, hdr, hash_lock);
4820
4821 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
4822 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4823 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
4824 /*
4825 * This buffer has been accessed more than once and is
4826 * still in the cache. Keep it in the MFU state.
4827 *
4828 * NOTE: an add_reference() that occurred when we did
4829 * the arc_read() will have kicked this off the list.
4830 * If it was a prefetch, we will explicitly move it to
4831 * the head of the list now.
4832 */
4833 if ((HDR_PREFETCH(hdr)) != 0) {
4834 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4835 /* link protected by hash_lock */
4836 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4837 }
4838 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
4839 ARCSTAT_BUMP(arcstat_mfu_hits);
4840 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4841 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4842 arc_state_t *new_state = arc_mfu;
4843 /*
4844 * This buffer has been accessed more than once but has
4845 * been evicted from the cache. Move it back to the
4846 * MFU state.
4847 */
4848
4849 if (HDR_PREFETCH(hdr)) {
4850 /*
4851 * This is a prefetch access...
4852 * move this block back to the MRU state.
4853 */
4854 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4855 new_state = arc_mru;
4856 }
4857
4858 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4859 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4860 arc_change_state(new_state, hdr, hash_lock);
4861
4862 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
4863 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4864 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4865 /*
4866 * This buffer is on the 2nd Level ARC.
4867 */
4868
4869 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4870 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4871 arc_change_state(arc_mfu, hdr, hash_lock);
4872 } else {
4873 cmn_err(CE_PANIC, "invalid arc state 0x%p",
4874 hdr->b_l1hdr.b_state);
4875 }
4876 }
4877
4878 /* a generic arc_done_func_t which you can use */
4879 /* ARGSUSED */
4880 void
4881 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4882 {
4883 if (zio == NULL || zio->io_error == 0)
4884 bcopy(buf->b_data, arg, arc_buf_size(buf));
4885 arc_buf_destroy(buf, arg);
4886 }
4887
4888 /* a generic arc_done_func_t */
4889 void
4890 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4891 {
4892 arc_buf_t **bufp = arg;
4893 if (zio && zio->io_error) {
4894 arc_buf_destroy(buf, arg);
4895 *bufp = NULL;
4896 } else {
4897 *bufp = buf;
4898 ASSERT(buf->b_data);
4899 }
4900 }
4901
4902 static void
4903 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
4904 {
4905 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
4906 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
4907 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
4908 } else {
4909 if (HDR_COMPRESSION_ENABLED(hdr)) {
4910 ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
4911 BP_GET_COMPRESS(bp));
4912 }
4913 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
4914 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
4915 }
4916 }
4917
4918 static void
4919 arc_read_done(zio_t *zio)
4920 {
4921 arc_buf_hdr_t *hdr = zio->io_private;
4922 kmutex_t *hash_lock = NULL;
4923 arc_callback_t *callback_list;
4924 arc_callback_t *acb;
4925 boolean_t freeable = B_FALSE;
4926 boolean_t no_zio_error = (zio->io_error == 0);
4927
4928 /*
4929 * The hdr was inserted into hash-table and removed from lists
4930 * prior to starting I/O. We should find this header, since
4931 * it's in the hash table, and it should be legit since it's
4932 * not possible to evict it during the I/O. The only possible
4933 * reason for it not to be found is if we were freed during the
4934 * read.
4935 */
4936 if (HDR_IN_HASH_TABLE(hdr)) {
4937 arc_buf_hdr_t *found;
4938
4939 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4940 ASSERT3U(hdr->b_dva.dva_word[0], ==,
4941 BP_IDENTITY(zio->io_bp)->dva_word[0]);
4942 ASSERT3U(hdr->b_dva.dva_word[1], ==,
4943 BP_IDENTITY(zio->io_bp)->dva_word[1]);
4944
4945 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
4946
4947 ASSERT((found == hdr &&
4948 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4949 (found == hdr && HDR_L2_READING(hdr)));
4950 ASSERT3P(hash_lock, !=, NULL);
4951 }
4952
4953 if (no_zio_error) {
4954 /* byteswap if necessary */
4955 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
4956 if (BP_GET_LEVEL(zio->io_bp) > 0) {
4957 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
4958 } else {
4959 hdr->b_l1hdr.b_byteswap =
4960 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4961 }
4962 } else {
4963 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
4964 }
4965 }
4966
4967 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
4968 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4969 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
4970
4971 callback_list = hdr->b_l1hdr.b_acb;
4972 ASSERT3P(callback_list, !=, NULL);
4973
4974 if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
4975 /*
4976 * Only call arc_access on anonymous buffers. This is because
4977 * if we've issued an I/O for an evicted buffer, we've already
4978 * called arc_access (to prevent any simultaneous readers from
4979 * getting confused).
4980 */
4981 arc_access(hdr, hash_lock);
4982 }
4983
4984 /*
4985 * If a read request has a callback (i.e. acb_done is not NULL), then we
4986 * make a buf containing the data according to the parameters which were
4987 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
4988 * aren't needlessly decompressing the data multiple times.
4989 */
4990 int callback_cnt = 0;
4991 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
4992 if (!acb->acb_done)
4993 continue;
4994
4995 /* This is a demand read since prefetches don't use callbacks */
4996 callback_cnt++;
4997
4998 int error = arc_buf_alloc_impl(hdr, acb->acb_private,
4999 acb->acb_compressed, no_zio_error, &acb->acb_buf);
5000 if (no_zio_error) {
5001 zio->io_error = error;
5002 }
5003 }
5004 hdr->b_l1hdr.b_acb = NULL;
5005 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5006 if (callback_cnt == 0) {
5007 ASSERT(HDR_PREFETCH(hdr));
5008 ASSERT0(hdr->b_l1hdr.b_bufcnt);
5009 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5010 }
5011
5012 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5013 callback_list != NULL);
5014
5015 if (no_zio_error) {
5016 arc_hdr_verify(hdr, zio->io_bp);
5017 } else {
5018 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5019 if (hdr->b_l1hdr.b_state != arc_anon)
5020 arc_change_state(arc_anon, hdr, hash_lock);
5021 if (HDR_IN_HASH_TABLE(hdr))
5022 buf_hash_remove(hdr);
5023 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5024 }
5025
5026 /*
5027 * Broadcast before we drop the hash_lock to avoid the possibility
5028 * that the hdr (and hence the cv) might be freed before we get to
5029 * the cv_broadcast().
5030 */
5031 cv_broadcast(&hdr->b_l1hdr.b_cv);
5032
5033 if (hash_lock != NULL) {
5034 mutex_exit(hash_lock);
5035 } else {
5036 /*
5037 * This block was freed while we waited for the read to
5038 * complete. It has been removed from the hash table and
5039 * moved to the anonymous state (so that it won't show up
5040 * in the cache).
5041 */
5042 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5043 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5044 }
5045
5046 /* execute each callback and free its structure */
5047 while ((acb = callback_list) != NULL) {
5048 if (acb->acb_done)
5049 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
5050
5051 if (acb->acb_zio_dummy != NULL) {
5052 acb->acb_zio_dummy->io_error = zio->io_error;
5053 zio_nowait(acb->acb_zio_dummy);
5054 }
5055
5056 callback_list = acb->acb_next;
5057 kmem_free(acb, sizeof (arc_callback_t));
5058 }
5059
5060 if (freeable)
5061 arc_hdr_destroy(hdr);
5062 }
5063
5064 /*
5065 * "Read" the block at the specified DVA (in bp) via the
5066 * cache. If the block is found in the cache, invoke the provided
5067 * callback immediately and return. Note that the `zio' parameter
5068 * in the callback will be NULL in this case, since no IO was
5069 * required. If the block is not in the cache pass the read request
5070 * on to the spa with a substitute callback function, so that the
5071 * requested block will be added to the cache.
5072 *
5073 * If a read request arrives for a block that has a read in-progress,
5074 * either wait for the in-progress read to complete (and return the
5075 * results); or, if this is a read with a "done" func, add a record
5076 * to the read to invoke the "done" func when the read completes,
5077 * and return; or just return.
5078 *
5079 * arc_read_done() will invoke all the requested "done" functions
5080 * for readers of this block.
5081 */
5082 int
5083 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
5084 void *private, zio_priority_t priority, int zio_flags,
5085 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5086 {
5087 arc_buf_hdr_t *hdr = NULL;
5088 kmutex_t *hash_lock = NULL;
5089 zio_t *rzio;
5090 uint64_t guid = spa_load_guid(spa);
5091 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
5092 int rc = 0;
5093
5094 ASSERT(!BP_IS_EMBEDDED(bp) ||
5095 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5096
5097 top:
5098 if (!BP_IS_EMBEDDED(bp)) {
5099 /*
5100 * Embedded BP's have no DVA and require no I/O to "read".
5101 * Create an anonymous arc buf to back it.
5102 */
5103 hdr = buf_hash_find(guid, bp, &hash_lock);
5104 }
5105
5106 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
5107 arc_buf_t *buf = NULL;
5108 *arc_flags |= ARC_FLAG_CACHED;
5109
5110 if (HDR_IO_IN_PROGRESS(hdr)) {
5111
5112 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5113 priority == ZIO_PRIORITY_SYNC_READ) {
5114 /*
5115 * This sync read must wait for an
5116 * in-progress async read (e.g. a predictive
5117 * prefetch). Async reads are queued
5118 * separately at the vdev_queue layer, so
5119 * this is a form of priority inversion.
5120 * Ideally, we would "inherit" the demand
5121 * i/o's priority by moving the i/o from
5122 * the async queue to the synchronous queue,
5123 * but there is currently no mechanism to do
5124 * so. Track this so that we can evaluate
5125 * the magnitude of this potential performance
5126 * problem.
5127 *
5128 * Note that if the prefetch i/o is already
5129 * active (has been issued to the device),
5130 * the prefetch improved performance, because
5131 * we issued it sooner than we would have
5132 * without the prefetch.
5133 */
5134 DTRACE_PROBE1(arc__sync__wait__for__async,
5135 arc_buf_hdr_t *, hdr);
5136 ARCSTAT_BUMP(arcstat_sync_wait_for_async);
5137 }
5138 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5139 arc_hdr_clear_flags(hdr,
5140 ARC_FLAG_PREDICTIVE_PREFETCH);
5141 }
5142
5143 if (*arc_flags & ARC_FLAG_WAIT) {
5144 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5145 mutex_exit(hash_lock);
5146 goto top;
5147 }
5148 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5149
5150 if (done) {
5151 arc_callback_t *acb = NULL;
5152
5153 acb = kmem_zalloc(sizeof (arc_callback_t),
5154 KM_SLEEP);
5155 acb->acb_done = done;
5156 acb->acb_private = private;
5157 acb->acb_compressed = compressed_read;
5158 if (pio != NULL)
5159 acb->acb_zio_dummy = zio_null(pio,
5160 spa, NULL, NULL, NULL, zio_flags);
5161
5162 ASSERT3P(acb->acb_done, !=, NULL);
5163 acb->acb_next = hdr->b_l1hdr.b_acb;
5164 hdr->b_l1hdr.b_acb = acb;
5165 mutex_exit(hash_lock);
5166 goto out;
5167 }
5168 mutex_exit(hash_lock);
5169 goto out;
5170 }
5171
5172 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5173 hdr->b_l1hdr.b_state == arc_mfu);
5174
5175 if (done) {
5176 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5177 /*
5178 * This is a demand read which does not have to
5179 * wait for i/o because we did a predictive
5180 * prefetch i/o for it, which has completed.
5181 */
5182 DTRACE_PROBE1(
5183 arc__demand__hit__predictive__prefetch,
5184 arc_buf_hdr_t *, hdr);
5185 ARCSTAT_BUMP(
5186 arcstat_demand_hit_predictive_prefetch);
5187 arc_hdr_clear_flags(hdr,
5188 ARC_FLAG_PREDICTIVE_PREFETCH);
5189 }
5190 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5191
5192 /* Get a buf with the desired data in it. */
5193 VERIFY0(arc_buf_alloc_impl(hdr, private,
5194 compressed_read, B_TRUE, &buf));
5195 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
5196 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5197 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5198 }
5199 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5200 arc_access(hdr, hash_lock);
5201 if (*arc_flags & ARC_FLAG_L2CACHE)
5202 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5203 mutex_exit(hash_lock);
5204 ARCSTAT_BUMP(arcstat_hits);
5205 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5206 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5207 data, metadata, hits);
5208
5209 if (done)
5210 done(NULL, buf, private);
5211 } else {
5212 uint64_t lsize = BP_GET_LSIZE(bp);
5213 uint64_t psize = BP_GET_PSIZE(bp);
5214 arc_callback_t *acb;
5215 vdev_t *vd = NULL;
5216 uint64_t addr = 0;
5217 boolean_t devw = B_FALSE;
5218 uint64_t size;
5219
5220 /*
5221 * Gracefully handle a damaged logical block size as a
5222 * checksum error.
5223 */
5224 if (lsize > spa_maxblocksize(spa)) {
5225 rc = SET_ERROR(ECKSUM);
5226 goto out;
5227 }
5228
5229 if (hdr == NULL) {
5230 /* this block is not in the cache */
5231 arc_buf_hdr_t *exists = NULL;
5232 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5233 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5234 BP_GET_COMPRESS(bp), type);
5235
5236 if (!BP_IS_EMBEDDED(bp)) {
5237 hdr->b_dva = *BP_IDENTITY(bp);
5238 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5239 exists = buf_hash_insert(hdr, &hash_lock);
5240 }
5241 if (exists != NULL) {
5242 /* somebody beat us to the hash insert */
5243 mutex_exit(hash_lock);
5244 buf_discard_identity(hdr);
5245 arc_hdr_destroy(hdr);
5246 goto top; /* restart the IO request */
5247 }
5248 } else {
5249 /*
5250 * This block is in the ghost cache. If it was L2-only
5251 * (and thus didn't have an L1 hdr), we realloc the
5252 * header to add an L1 hdr.
5253 */
5254 if (!HDR_HAS_L1HDR(hdr)) {
5255 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5256 hdr_full_cache);
5257 }
5258
5259 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5260 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
5261 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5262 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5263 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5264 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5265
5266 /*
5267 * This is a delicate dance that we play here.
5268 * This hdr is in the ghost list so we access it
5269 * to move it out of the ghost list before we
5270 * initiate the read. If it's a prefetch then
5271 * it won't have a callback so we'll remove the
5272 * reference that arc_buf_alloc_impl() created. We
5273 * do this after we've called arc_access() to
5274 * avoid hitting an assert in remove_reference().
5275 */
5276 arc_access(hdr, hash_lock);
5277 arc_hdr_alloc_pabd(hdr);
5278 }
5279 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5280 size = arc_hdr_size(hdr);
5281
5282 /*
5283 * If compression is enabled on the hdr, then will do
5284 * RAW I/O and will store the compressed data in the hdr's
5285 * data block. Otherwise, the hdr's data block will contain
5286 * the uncompressed data.
5287 */
5288 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5289 zio_flags |= ZIO_FLAG_RAW;
5290 }
5291
5292 if (*arc_flags & ARC_FLAG_PREFETCH)
5293 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5294 if (*arc_flags & ARC_FLAG_L2CACHE)
5295 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5296 if (BP_GET_LEVEL(bp) > 0)
5297 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5298 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5299 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5300 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5301
5302 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5303 acb->acb_done = done;
5304 acb->acb_private = private;
5305 acb->acb_compressed = compressed_read;
5306
5307 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5308 hdr->b_l1hdr.b_acb = acb;
5309 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5310
5311 if (HDR_HAS_L2HDR(hdr) &&
5312 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5313 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5314 addr = hdr->b_l2hdr.b_daddr;
5315 /*
5316 * Lock out device removal.
5317 */
5318 if (vdev_is_dead(vd) ||
5319 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5320 vd = NULL;
5321 }
5322
5323 if (priority == ZIO_PRIORITY_ASYNC_READ)
5324 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5325 else
5326 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5327
5328 if (hash_lock != NULL)
5329 mutex_exit(hash_lock);
5330
5331 /*
5332 * At this point, we have a level 1 cache miss. Try again in
5333 * L2ARC if possible.
5334 */
5335 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5336
5337 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5338 uint64_t, lsize, zbookmark_phys_t *, zb);
5339 ARCSTAT_BUMP(arcstat_misses);
5340 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5341 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5342 data, metadata, misses);
5343
5344 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5345 /*
5346 * Read from the L2ARC if the following are true:
5347 * 1. The L2ARC vdev was previously cached.
5348 * 2. This buffer still has L2ARC metadata.
5349 * 3. This buffer isn't currently writing to the L2ARC.
5350 * 4. The L2ARC entry wasn't evicted, which may
5351 * also have invalidated the vdev.
5352 * 5. This isn't prefetch and l2arc_noprefetch is set.
5353 */
5354 if (HDR_HAS_L2HDR(hdr) &&
5355 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5356 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5357 l2arc_read_callback_t *cb;
5358
5359 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5360 ARCSTAT_BUMP(arcstat_l2_hits);
5361 atomic_inc_32(&hdr->b_l2hdr.b_hits);
5362
5363 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5364 KM_SLEEP);
5365 cb->l2rcb_hdr = hdr;
5366 cb->l2rcb_bp = *bp;
5367 cb->l2rcb_zb = *zb;
5368 cb->l2rcb_flags = zio_flags;
5369
5370 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5371 addr + lsize < vd->vdev_psize -
5372 VDEV_LABEL_END_SIZE);
5373
5374 /*
5375 * l2arc read. The SCL_L2ARC lock will be
5376 * released by l2arc_read_done().
5377 * Issue a null zio if the underlying buffer
5378 * was squashed to zero size by compression.
5379 */
5380 ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5381 ZIO_COMPRESS_EMPTY);
5382 rzio = zio_read_phys(pio, vd, addr,
5383 size, hdr->b_l1hdr.b_pabd,
5384 ZIO_CHECKSUM_OFF,
5385 l2arc_read_done, cb, priority,
5386 zio_flags | ZIO_FLAG_DONT_CACHE |
5387 ZIO_FLAG_CANFAIL |
5388 ZIO_FLAG_DONT_PROPAGATE |
5389 ZIO_FLAG_DONT_RETRY, B_FALSE);
5390
5391 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5392 zio_t *, rzio);
5393 ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5394
5395 if (*arc_flags & ARC_FLAG_NOWAIT) {
5396 zio_nowait(rzio);
5397 goto out;
5398 }
5399
5400 ASSERT(*arc_flags & ARC_FLAG_WAIT);
5401 if (zio_wait(rzio) == 0)
5402 goto out;
5403
5404 /* l2arc read error; goto zio_read() */
5405 } else {
5406 DTRACE_PROBE1(l2arc__miss,
5407 arc_buf_hdr_t *, hdr);
5408 ARCSTAT_BUMP(arcstat_l2_misses);
5409 if (HDR_L2_WRITING(hdr))
5410 ARCSTAT_BUMP(arcstat_l2_rw_clash);
5411 spa_config_exit(spa, SCL_L2ARC, vd);
5412 }
5413 } else {
5414 if (vd != NULL)
5415 spa_config_exit(spa, SCL_L2ARC, vd);
5416 if (l2arc_ndev != 0) {
5417 DTRACE_PROBE1(l2arc__miss,
5418 arc_buf_hdr_t *, hdr);
5419 ARCSTAT_BUMP(arcstat_l2_misses);
5420 }
5421 }
5422
5423 rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
5424 arc_read_done, hdr, priority, zio_flags, zb);
5425
5426 if (*arc_flags & ARC_FLAG_WAIT) {
5427 rc = zio_wait(rzio);
5428 goto out;
5429 }
5430
5431 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5432 zio_nowait(rzio);
5433 }
5434
5435 out:
5436 spa_read_history_add(spa, zb, *arc_flags);
5437 return (rc);
5438 }
5439
5440 arc_prune_t *
5441 arc_add_prune_callback(arc_prune_func_t *func, void *private)
5442 {
5443 arc_prune_t *p;
5444
5445 p = kmem_alloc(sizeof (*p), KM_SLEEP);
5446 p->p_pfunc = func;
5447 p->p_private = private;
5448 list_link_init(&p->p_node);
5449 refcount_create(&p->p_refcnt);
5450
5451 mutex_enter(&arc_prune_mtx);
5452 refcount_add(&p->p_refcnt, &arc_prune_list);
5453 list_insert_head(&arc_prune_list, p);
5454 mutex_exit(&arc_prune_mtx);
5455
5456 return (p);
5457 }
5458
5459 void
5460 arc_remove_prune_callback(arc_prune_t *p)
5461 {
5462 boolean_t wait = B_FALSE;
5463 mutex_enter(&arc_prune_mtx);
5464 list_remove(&arc_prune_list, p);
5465 if (refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
5466 wait = B_TRUE;
5467 mutex_exit(&arc_prune_mtx);
5468
5469 /* wait for arc_prune_task to finish */
5470 if (wait)
5471 taskq_wait_outstanding(arc_prune_taskq, 0);
5472 ASSERT0(refcount_count(&p->p_refcnt));
5473 refcount_destroy(&p->p_refcnt);
5474 kmem_free(p, sizeof (*p));
5475 }
5476
5477 /*
5478 * Notify the arc that a block was freed, and thus will never be used again.
5479 */
5480 void
5481 arc_freed(spa_t *spa, const blkptr_t *bp)
5482 {
5483 arc_buf_hdr_t *hdr;
5484 kmutex_t *hash_lock;
5485 uint64_t guid = spa_load_guid(spa);
5486
5487 ASSERT(!BP_IS_EMBEDDED(bp));
5488
5489 hdr = buf_hash_find(guid, bp, &hash_lock);
5490 if (hdr == NULL)
5491 return;
5492
5493 /*
5494 * We might be trying to free a block that is still doing I/O
5495 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5496 * dmu_sync-ed block). If this block is being prefetched, then it
5497 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5498 * until the I/O completes. A block may also have a reference if it is
5499 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5500 * have written the new block to its final resting place on disk but
5501 * without the dedup flag set. This would have left the hdr in the MRU
5502 * state and discoverable. When the txg finally syncs it detects that
5503 * the block was overridden in open context and issues an override I/O.
5504 * Since this is a dedup block, the override I/O will determine if the
5505 * block is already in the DDT. If so, then it will replace the io_bp
5506 * with the bp from the DDT and allow the I/O to finish. When the I/O
5507 * reaches the done callback, dbuf_write_override_done, it will
5508 * check to see if the io_bp and io_bp_override are identical.
5509 * If they are not, then it indicates that the bp was replaced with
5510 * the bp in the DDT and the override bp is freed. This allows
5511 * us to arrive here with a reference on a block that is being
5512 * freed. So if we have an I/O in progress, or a reference to
5513 * this hdr, then we don't destroy the hdr.
5514 */
5515 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5516 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5517 arc_change_state(arc_anon, hdr, hash_lock);
5518 arc_hdr_destroy(hdr);
5519 mutex_exit(hash_lock);
5520 } else {
5521 mutex_exit(hash_lock);
5522 }
5523
5524 }
5525
5526 /*
5527 * Release this buffer from the cache, making it an anonymous buffer. This
5528 * must be done after a read and prior to modifying the buffer contents.
5529 * If the buffer has more than one reference, we must make
5530 * a new hdr for the buffer.
5531 */
5532 void
5533 arc_release(arc_buf_t *buf, void *tag)
5534 {
5535 kmutex_t *hash_lock;
5536 arc_state_t *state;
5537 arc_buf_hdr_t *hdr = buf->b_hdr;
5538
5539 /*
5540 * It would be nice to assert that if its DMU metadata (level >
5541 * 0 || it's the dnode file), then it must be syncing context.
5542 * But we don't know that information at this level.
5543 */
5544
5545 mutex_enter(&buf->b_evict_lock);
5546
5547 ASSERT(HDR_HAS_L1HDR(hdr));
5548
5549 /*
5550 * We don't grab the hash lock prior to this check, because if
5551 * the buffer's header is in the arc_anon state, it won't be
5552 * linked into the hash table.
5553 */
5554 if (hdr->b_l1hdr.b_state == arc_anon) {
5555 mutex_exit(&buf->b_evict_lock);
5556 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5557 ASSERT(!HDR_IN_HASH_TABLE(hdr));
5558 ASSERT(!HDR_HAS_L2HDR(hdr));
5559 ASSERT(HDR_EMPTY(hdr));
5560
5561 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5562 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5563 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5564
5565 hdr->b_l1hdr.b_arc_access = 0;
5566
5567 /*
5568 * If the buf is being overridden then it may already
5569 * have a hdr that is not empty.
5570 */
5571 buf_discard_identity(hdr);
5572 arc_buf_thaw(buf);
5573
5574 return;
5575 }
5576
5577 hash_lock = HDR_LOCK(hdr);
5578 mutex_enter(hash_lock);
5579
5580 /*
5581 * This assignment is only valid as long as the hash_lock is
5582 * held, we must be careful not to reference state or the
5583 * b_state field after dropping the lock.
5584 */
5585 state = hdr->b_l1hdr.b_state;
5586 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5587 ASSERT3P(state, !=, arc_anon);
5588
5589 /* this buffer is not on any list */
5590 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
5591
5592 if (HDR_HAS_L2HDR(hdr)) {
5593 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5594
5595 /*
5596 * We have to recheck this conditional again now that
5597 * we're holding the l2ad_mtx to prevent a race with
5598 * another thread which might be concurrently calling
5599 * l2arc_evict(). In that case, l2arc_evict() might have
5600 * destroyed the header's L2 portion as we were waiting
5601 * to acquire the l2ad_mtx.
5602 */
5603 if (HDR_HAS_L2HDR(hdr))
5604 arc_hdr_l2hdr_destroy(hdr);
5605
5606 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5607 }
5608
5609 /*
5610 * Do we have more than one buf?
5611 */
5612 if (hdr->b_l1hdr.b_bufcnt > 1) {
5613 arc_buf_hdr_t *nhdr;
5614 uint64_t spa = hdr->b_spa;
5615 uint64_t psize = HDR_GET_PSIZE(hdr);
5616 uint64_t lsize = HDR_GET_LSIZE(hdr);
5617 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5618 arc_buf_contents_t type = arc_buf_type(hdr);
5619 VERIFY3U(hdr->b_type, ==, type);
5620
5621 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5622 (void) remove_reference(hdr, hash_lock, tag);
5623
5624 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
5625 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5626 ASSERT(ARC_BUF_LAST(buf));
5627 }
5628
5629 /*
5630 * Pull the data off of this hdr and attach it to
5631 * a new anonymous hdr. Also find the last buffer
5632 * in the hdr's buffer list.
5633 */
5634 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
5635 ASSERT3P(lastbuf, !=, NULL);
5636
5637 /*
5638 * If the current arc_buf_t and the hdr are sharing their data
5639 * buffer, then we must stop sharing that block.
5640 */
5641 if (arc_buf_is_shared(buf)) {
5642 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5643 VERIFY(!arc_buf_is_shared(lastbuf));
5644
5645 /*
5646 * First, sever the block sharing relationship between
5647 * buf and the arc_buf_hdr_t.
5648 */
5649 arc_unshare_buf(hdr, buf);
5650
5651 /*
5652 * Now we need to recreate the hdr's b_pabd. Since we
5653 * have lastbuf handy, we try to share with it, but if
5654 * we can't then we allocate a new b_pabd and copy the
5655 * data from buf into it.
5656 */
5657 if (arc_can_share(hdr, lastbuf)) {
5658 arc_share_buf(hdr, lastbuf);
5659 } else {
5660 arc_hdr_alloc_pabd(hdr);
5661 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
5662 buf->b_data, psize);
5663 }
5664 VERIFY3P(lastbuf->b_data, !=, NULL);
5665 } else if (HDR_SHARED_DATA(hdr)) {
5666 /*
5667 * Uncompressed shared buffers are always at the end
5668 * of the list. Compressed buffers don't have the
5669 * same requirements. This makes it hard to
5670 * simply assert that the lastbuf is shared so
5671 * we rely on the hdr's compression flags to determine
5672 * if we have a compressed, shared buffer.
5673 */
5674 ASSERT(arc_buf_is_shared(lastbuf) ||
5675 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
5676 ASSERT(!ARC_BUF_SHARED(buf));
5677 }
5678 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5679 ASSERT3P(state, !=, arc_l2c_only);
5680
5681 (void) refcount_remove_many(&state->arcs_size,
5682 arc_buf_size(buf), buf);
5683
5684 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5685 ASSERT3P(state, !=, arc_l2c_only);
5686 (void) refcount_remove_many(&state->arcs_esize[type],
5687 arc_buf_size(buf), buf);
5688 }
5689
5690 hdr->b_l1hdr.b_bufcnt -= 1;
5691 arc_cksum_verify(buf);
5692 arc_buf_unwatch(buf);
5693
5694 mutex_exit(hash_lock);
5695
5696 /*
5697 * Allocate a new hdr. The new hdr will contain a b_pabd
5698 * buffer which will be freed in arc_write().
5699 */
5700 nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5701 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5702 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5703 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5704 VERIFY3U(nhdr->b_type, ==, type);
5705 ASSERT(!HDR_SHARED_DATA(nhdr));
5706
5707 nhdr->b_l1hdr.b_buf = buf;
5708 nhdr->b_l1hdr.b_bufcnt = 1;
5709 nhdr->b_l1hdr.b_mru_hits = 0;
5710 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
5711 nhdr->b_l1hdr.b_mfu_hits = 0;
5712 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
5713 nhdr->b_l1hdr.b_l2_hits = 0;
5714 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5715 buf->b_hdr = nhdr;
5716
5717 mutex_exit(&buf->b_evict_lock);
5718 (void) refcount_add_many(&arc_anon->arcs_size,
5719 HDR_GET_LSIZE(nhdr), buf);
5720 } else {
5721 mutex_exit(&buf->b_evict_lock);
5722 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5723 /* protected by hash lock, or hdr is on arc_anon */
5724 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5725 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5726 hdr->b_l1hdr.b_mru_hits = 0;
5727 hdr->b_l1hdr.b_mru_ghost_hits = 0;
5728 hdr->b_l1hdr.b_mfu_hits = 0;
5729 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
5730 hdr->b_l1hdr.b_l2_hits = 0;
5731 arc_change_state(arc_anon, hdr, hash_lock);
5732 hdr->b_l1hdr.b_arc_access = 0;
5733 mutex_exit(hash_lock);
5734
5735 buf_discard_identity(hdr);
5736 arc_buf_thaw(buf);
5737 }
5738 }
5739
5740 int
5741 arc_released(arc_buf_t *buf)
5742 {
5743 int released;
5744
5745 mutex_enter(&buf->b_evict_lock);
5746 released = (buf->b_data != NULL &&
5747 buf->b_hdr->b_l1hdr.b_state == arc_anon);
5748 mutex_exit(&buf->b_evict_lock);
5749 return (released);
5750 }
5751
5752 #ifdef ZFS_DEBUG
5753 int
5754 arc_referenced(arc_buf_t *buf)
5755 {
5756 int referenced;
5757
5758 mutex_enter(&buf->b_evict_lock);
5759 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5760 mutex_exit(&buf->b_evict_lock);
5761 return (referenced);
5762 }
5763 #endif
5764
5765 static void
5766 arc_write_ready(zio_t *zio)
5767 {
5768 arc_write_callback_t *callback = zio->io_private;
5769 arc_buf_t *buf = callback->awcb_buf;
5770 arc_buf_hdr_t *hdr = buf->b_hdr;
5771 uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5772 enum zio_compress compress;
5773 fstrans_cookie_t cookie = spl_fstrans_mark();
5774
5775 ASSERT(HDR_HAS_L1HDR(hdr));
5776 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5777 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5778
5779 /*
5780 * If we're reexecuting this zio because the pool suspended, then
5781 * cleanup any state that was previously set the first time the
5782 * callback was invoked.
5783 */
5784 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5785 arc_cksum_free(hdr);
5786 arc_buf_unwatch(buf);
5787 if (hdr->b_l1hdr.b_pabd != NULL) {
5788 if (arc_buf_is_shared(buf)) {
5789 arc_unshare_buf(hdr, buf);
5790 } else {
5791 arc_hdr_free_pabd(hdr);
5792 }
5793 }
5794 }
5795 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5796 ASSERT(!HDR_SHARED_DATA(hdr));
5797 ASSERT(!arc_buf_is_shared(buf));
5798
5799 callback->awcb_ready(zio, buf, callback->awcb_private);
5800
5801 if (HDR_IO_IN_PROGRESS(hdr))
5802 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5803
5804 arc_cksum_compute(buf);
5805 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5806
5807 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5808 compress = ZIO_COMPRESS_OFF;
5809 } else {
5810 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5811 compress = BP_GET_COMPRESS(zio->io_bp);
5812 }
5813 HDR_SET_PSIZE(hdr, psize);
5814 arc_hdr_set_compress(hdr, compress);
5815
5816 /*
5817 * Fill the hdr with data. If the hdr is compressed, the data we want
5818 * is available from the zio, otherwise we can take it from the buf.
5819 *
5820 * We might be able to share the buf's data with the hdr here. However,
5821 * doing so would cause the ARC to be full of linear ABDs if we write a
5822 * lot of shareable data. As a compromise, we check whether scattered
5823 * ABDs are allowed, and assume that if they are then the user wants
5824 * the ARC to be primarily filled with them regardless of the data being
5825 * written. Therefore, if they're allowed then we allocate one and copy
5826 * the data into it; otherwise, we share the data directly if we can.
5827 */
5828 if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
5829 arc_hdr_alloc_pabd(hdr);
5830
5831 /*
5832 * Ideally, we would always copy the io_abd into b_pabd, but the
5833 * user may have disabled compressed ARC, thus we must check the
5834 * hdr's compression setting rather than the io_bp's.
5835 */
5836 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5837 ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
5838 ZIO_COMPRESS_OFF);
5839 ASSERT3U(psize, >, 0);
5840
5841 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
5842 } else {
5843 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
5844
5845 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
5846 arc_buf_size(buf));
5847 }
5848 } else {
5849 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
5850 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
5851 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5852
5853 arc_share_buf(hdr, buf);
5854 }
5855
5856 arc_hdr_verify(hdr, zio->io_bp);
5857 spl_fstrans_unmark(cookie);
5858 }
5859
5860 static void
5861 arc_write_children_ready(zio_t *zio)
5862 {
5863 arc_write_callback_t *callback = zio->io_private;
5864 arc_buf_t *buf = callback->awcb_buf;
5865
5866 callback->awcb_children_ready(zio, buf, callback->awcb_private);
5867 }
5868
5869 /*
5870 * The SPA calls this callback for each physical write that happens on behalf
5871 * of a logical write. See the comment in dbuf_write_physdone() for details.
5872 */
5873 static void
5874 arc_write_physdone(zio_t *zio)
5875 {
5876 arc_write_callback_t *cb = zio->io_private;
5877 if (cb->awcb_physdone != NULL)
5878 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5879 }
5880
5881 static void
5882 arc_write_done(zio_t *zio)
5883 {
5884 arc_write_callback_t *callback = zio->io_private;
5885 arc_buf_t *buf = callback->awcb_buf;
5886 arc_buf_hdr_t *hdr = buf->b_hdr;
5887
5888 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5889
5890 if (zio->io_error == 0) {
5891 arc_hdr_verify(hdr, zio->io_bp);
5892
5893 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5894 buf_discard_identity(hdr);
5895 } else {
5896 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5897 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5898 }
5899 } else {
5900 ASSERT(HDR_EMPTY(hdr));
5901 }
5902
5903 /*
5904 * If the block to be written was all-zero or compressed enough to be
5905 * embedded in the BP, no write was performed so there will be no
5906 * dva/birth/checksum. The buffer must therefore remain anonymous
5907 * (and uncached).
5908 */
5909 if (!HDR_EMPTY(hdr)) {
5910 arc_buf_hdr_t *exists;
5911 kmutex_t *hash_lock;
5912
5913 ASSERT3U(zio->io_error, ==, 0);
5914
5915 arc_cksum_verify(buf);
5916
5917 exists = buf_hash_insert(hdr, &hash_lock);
5918 if (exists != NULL) {
5919 /*
5920 * This can only happen if we overwrite for
5921 * sync-to-convergence, because we remove
5922 * buffers from the hash table when we arc_free().
5923 */
5924 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5925 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5926 panic("bad overwrite, hdr=%p exists=%p",
5927 (void *)hdr, (void *)exists);
5928 ASSERT(refcount_is_zero(
5929 &exists->b_l1hdr.b_refcnt));
5930 arc_change_state(arc_anon, exists, hash_lock);
5931 mutex_exit(hash_lock);
5932 arc_hdr_destroy(exists);
5933 exists = buf_hash_insert(hdr, &hash_lock);
5934 ASSERT3P(exists, ==, NULL);
5935 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5936 /* nopwrite */
5937 ASSERT(zio->io_prop.zp_nopwrite);
5938 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5939 panic("bad nopwrite, hdr=%p exists=%p",
5940 (void *)hdr, (void *)exists);
5941 } else {
5942 /* Dedup */
5943 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
5944 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5945 ASSERT(BP_GET_DEDUP(zio->io_bp));
5946 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5947 }
5948 }
5949 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5950 /* if it's not anon, we are doing a scrub */
5951 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5952 arc_access(hdr, hash_lock);
5953 mutex_exit(hash_lock);
5954 } else {
5955 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5956 }
5957
5958 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5959 callback->awcb_done(zio, buf, callback->awcb_private);
5960
5961 abd_put(zio->io_abd);
5962 kmem_free(callback, sizeof (arc_write_callback_t));
5963 }
5964
5965 zio_t *
5966 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
5967 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc,
5968 const zio_prop_t *zp, arc_done_func_t *ready,
5969 arc_done_func_t *children_ready, arc_done_func_t *physdone,
5970 arc_done_func_t *done, void *private, zio_priority_t priority,
5971 int zio_flags, const zbookmark_phys_t *zb)
5972 {
5973 arc_buf_hdr_t *hdr = buf->b_hdr;
5974 arc_write_callback_t *callback;
5975 zio_t *zio;
5976
5977 ASSERT3P(ready, !=, NULL);
5978 ASSERT3P(done, !=, NULL);
5979 ASSERT(!HDR_IO_ERROR(hdr));
5980 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5981 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5982 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
5983 if (l2arc)
5984 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5985 if (ARC_BUF_COMPRESSED(buf)) {
5986 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_OFF);
5987 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
5988 zio_flags |= ZIO_FLAG_RAW;
5989 }
5990 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5991 callback->awcb_ready = ready;
5992 callback->awcb_children_ready = children_ready;
5993 callback->awcb_physdone = physdone;
5994 callback->awcb_done = done;
5995 callback->awcb_private = private;
5996 callback->awcb_buf = buf;
5997
5998 /*
5999 * The hdr's b_pabd is now stale, free it now. A new data block
6000 * will be allocated when the zio pipeline calls arc_write_ready().
6001 */
6002 if (hdr->b_l1hdr.b_pabd != NULL) {
6003 /*
6004 * If the buf is currently sharing the data block with
6005 * the hdr then we need to break that relationship here.
6006 * The hdr will remain with a NULL data pointer and the
6007 * buf will take sole ownership of the block.
6008 */
6009 if (arc_buf_is_shared(buf)) {
6010 arc_unshare_buf(hdr, buf);
6011 } else {
6012 arc_hdr_free_pabd(hdr);
6013 }
6014 VERIFY3P(buf->b_data, !=, NULL);
6015 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6016 }
6017 ASSERT(!arc_buf_is_shared(buf));
6018 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6019
6020 zio = zio_write(pio, spa, txg, bp,
6021 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6022 HDR_GET_LSIZE(hdr), arc_buf_size(buf), zp,
6023 arc_write_ready,
6024 (children_ready != NULL) ? arc_write_children_ready : NULL,
6025 arc_write_physdone, arc_write_done, callback,
6026 priority, zio_flags, zb);
6027
6028 return (zio);
6029 }
6030
6031 static int
6032 arc_memory_throttle(uint64_t reserve, uint64_t txg)
6033 {
6034 #ifdef _KERNEL
6035 uint64_t available_memory = ptob(freemem);
6036 static uint64_t page_load = 0;
6037 static uint64_t last_txg = 0;
6038 #ifdef __linux__
6039 pgcnt_t minfree = btop(arc_sys_free / 4);
6040 #endif
6041
6042 #if defined(__i386)
6043 available_memory =
6044 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
6045 #endif
6046
6047 if (available_memory > arc_all_memory() * arc_lotsfree_percent / 100)
6048 return (0);
6049
6050 if (txg > last_txg) {
6051 last_txg = txg;
6052 page_load = 0;
6053 }
6054 /*
6055 * If we are in pageout, we know that memory is already tight,
6056 * the arc is already going to be evicting, so we just want to
6057 * continue to let page writes occur as quickly as possible.
6058 */
6059 if (current_is_kswapd()) {
6060 if (page_load > MAX(ptob(minfree), available_memory) / 4) {
6061 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
6062 return (SET_ERROR(ERESTART));
6063 }
6064 /* Note: reserve is inflated, so we deflate */
6065 page_load += reserve / 8;
6066 return (0);
6067 } else if (page_load > 0 && arc_reclaim_needed()) {
6068 /* memory is low, delay before restarting */
6069 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
6070 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
6071 return (SET_ERROR(EAGAIN));
6072 }
6073 page_load = 0;
6074 #endif
6075 return (0);
6076 }
6077
6078 void
6079 arc_tempreserve_clear(uint64_t reserve)
6080 {
6081 atomic_add_64(&arc_tempreserve, -reserve);
6082 ASSERT((int64_t)arc_tempreserve >= 0);
6083 }
6084
6085 int
6086 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
6087 {
6088 int error;
6089 uint64_t anon_size;
6090
6091 if (!arc_no_grow &&
6092 reserve > arc_c/4 &&
6093 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
6094 arc_c = MIN(arc_c_max, reserve * 4);
6095
6096 /*
6097 * Throttle when the calculated memory footprint for the TXG
6098 * exceeds the target ARC size.
6099 */
6100 if (reserve > arc_c) {
6101 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
6102 return (SET_ERROR(ERESTART));
6103 }
6104
6105 /*
6106 * Don't count loaned bufs as in flight dirty data to prevent long
6107 * network delays from blocking transactions that are ready to be
6108 * assigned to a txg.
6109 */
6110
6111 /* assert that it has not wrapped around */
6112 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6113
6114 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
6115 arc_loaned_bytes), 0);
6116
6117 /*
6118 * Writes will, almost always, require additional memory allocations
6119 * in order to compress/encrypt/etc the data. We therefore need to
6120 * make sure that there is sufficient available memory for this.
6121 */
6122 error = arc_memory_throttle(reserve, txg);
6123 if (error != 0)
6124 return (error);
6125
6126 /*
6127 * Throttle writes when the amount of dirty data in the cache
6128 * gets too large. We try to keep the cache less than half full
6129 * of dirty blocks so that our sync times don't grow too large.
6130 * Note: if two requests come in concurrently, we might let them
6131 * both succeed, when one of them should fail. Not a huge deal.
6132 */
6133
6134 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
6135 anon_size > arc_c / 4) {
6136 uint64_t meta_esize =
6137 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6138 uint64_t data_esize =
6139 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6140 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6141 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
6142 arc_tempreserve >> 10, meta_esize >> 10,
6143 data_esize >> 10, reserve >> 10, arc_c >> 10);
6144 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
6145 return (SET_ERROR(ERESTART));
6146 }
6147 atomic_add_64(&arc_tempreserve, reserve);
6148 return (0);
6149 }
6150
6151 static void
6152 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6153 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6154 {
6155 size->value.ui64 = refcount_count(&state->arcs_size);
6156 evict_data->value.ui64 =
6157 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6158 evict_metadata->value.ui64 =
6159 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6160 }
6161
6162 static int
6163 arc_kstat_update(kstat_t *ksp, int rw)
6164 {
6165 arc_stats_t *as = ksp->ks_data;
6166
6167 if (rw == KSTAT_WRITE) {
6168 return (EACCES);
6169 } else {
6170 arc_kstat_update_state(arc_anon,
6171 &as->arcstat_anon_size,
6172 &as->arcstat_anon_evictable_data,
6173 &as->arcstat_anon_evictable_metadata);
6174 arc_kstat_update_state(arc_mru,
6175 &as->arcstat_mru_size,
6176 &as->arcstat_mru_evictable_data,
6177 &as->arcstat_mru_evictable_metadata);
6178 arc_kstat_update_state(arc_mru_ghost,
6179 &as->arcstat_mru_ghost_size,
6180 &as->arcstat_mru_ghost_evictable_data,
6181 &as->arcstat_mru_ghost_evictable_metadata);
6182 arc_kstat_update_state(arc_mfu,
6183 &as->arcstat_mfu_size,
6184 &as->arcstat_mfu_evictable_data,
6185 &as->arcstat_mfu_evictable_metadata);
6186 arc_kstat_update_state(arc_mfu_ghost,
6187 &as->arcstat_mfu_ghost_size,
6188 &as->arcstat_mfu_ghost_evictable_data,
6189 &as->arcstat_mfu_ghost_evictable_metadata);
6190 }
6191
6192 return (0);
6193 }
6194
6195 /*
6196 * This function *must* return indices evenly distributed between all
6197 * sublists of the multilist. This is needed due to how the ARC eviction
6198 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
6199 * distributed between all sublists and uses this assumption when
6200 * deciding which sublist to evict from and how much to evict from it.
6201 */
6202 unsigned int
6203 arc_state_multilist_index_func(multilist_t *ml, void *obj)
6204 {
6205 arc_buf_hdr_t *hdr = obj;
6206
6207 /*
6208 * We rely on b_dva to generate evenly distributed index
6209 * numbers using buf_hash below. So, as an added precaution,
6210 * let's make sure we never add empty buffers to the arc lists.
6211 */
6212 ASSERT(!HDR_EMPTY(hdr));
6213
6214 /*
6215 * The assumption here, is the hash value for a given
6216 * arc_buf_hdr_t will remain constant throughout its lifetime
6217 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
6218 * Thus, we don't need to store the header's sublist index
6219 * on insertion, as this index can be recalculated on removal.
6220 *
6221 * Also, the low order bits of the hash value are thought to be
6222 * distributed evenly. Otherwise, in the case that the multilist
6223 * has a power of two number of sublists, each sublists' usage
6224 * would not be evenly distributed.
6225 */
6226 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
6227 multilist_get_num_sublists(ml));
6228 }
6229
6230 /*
6231 * Called during module initialization and periodically thereafter to
6232 * apply reasonable changes to the exposed performance tunings. Non-zero
6233 * zfs_* values which differ from the currently set values will be applied.
6234 */
6235 static void
6236 arc_tuning_update(void)
6237 {
6238 uint64_t percent, allmem = arc_all_memory();
6239
6240 /* Valid range: 64M - <all physical memory> */
6241 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
6242 (zfs_arc_max > 64 << 20) && (zfs_arc_max < allmem) &&
6243 (zfs_arc_max > arc_c_min)) {
6244 arc_c_max = zfs_arc_max;
6245 arc_c = arc_c_max;
6246 arc_p = (arc_c >> 1);
6247 /* Valid range of arc_meta_limit: arc_meta_min - arc_c_max */
6248 percent = MIN(zfs_arc_meta_limit_percent, 100);
6249 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
6250 percent = MIN(zfs_arc_dnode_limit_percent, 100);
6251 arc_dnode_limit = (percent * arc_meta_limit) / 100;
6252 }
6253
6254 /* Valid range: 32M - <arc_c_max> */
6255 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
6256 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
6257 (zfs_arc_min <= arc_c_max)) {
6258 arc_c_min = zfs_arc_min;
6259 arc_c = MAX(arc_c, arc_c_min);
6260 }
6261
6262 /* Valid range: 16M - <arc_c_max> */
6263 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
6264 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
6265 (zfs_arc_meta_min <= arc_c_max)) {
6266 arc_meta_min = zfs_arc_meta_min;
6267 arc_meta_limit = MAX(arc_meta_limit, arc_meta_min);
6268 arc_dnode_limit = arc_meta_limit / 10;
6269 }
6270
6271 /* Valid range: <arc_meta_min> - <arc_c_max> */
6272 if ((zfs_arc_meta_limit) && (zfs_arc_meta_limit != arc_meta_limit) &&
6273 (zfs_arc_meta_limit >= zfs_arc_meta_min) &&
6274 (zfs_arc_meta_limit <= arc_c_max))
6275 arc_meta_limit = zfs_arc_meta_limit;
6276
6277 /* Valid range: <arc_meta_min> - <arc_c_max> */
6278 if ((zfs_arc_dnode_limit) && (zfs_arc_dnode_limit != arc_dnode_limit) &&
6279 (zfs_arc_dnode_limit >= zfs_arc_meta_min) &&
6280 (zfs_arc_dnode_limit <= arc_c_max))
6281 arc_dnode_limit = zfs_arc_dnode_limit;
6282
6283 /* Valid range: 1 - N */
6284 if (zfs_arc_grow_retry)
6285 arc_grow_retry = zfs_arc_grow_retry;
6286
6287 /* Valid range: 1 - N */
6288 if (zfs_arc_shrink_shift) {
6289 arc_shrink_shift = zfs_arc_shrink_shift;
6290 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
6291 }
6292
6293 /* Valid range: 1 - N */
6294 if (zfs_arc_p_min_shift)
6295 arc_p_min_shift = zfs_arc_p_min_shift;
6296
6297 /* Valid range: 1 - N ticks */
6298 if (zfs_arc_min_prefetch_lifespan)
6299 arc_min_prefetch_lifespan = zfs_arc_min_prefetch_lifespan;
6300
6301 /* Valid range: 0 - 100 */
6302 if ((zfs_arc_lotsfree_percent >= 0) &&
6303 (zfs_arc_lotsfree_percent <= 100))
6304 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
6305
6306 /* Valid range: 0 - <all physical memory> */
6307 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
6308 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem);
6309
6310 }
6311
6312 static void
6313 arc_state_init(void)
6314 {
6315 arc_anon = &ARC_anon;
6316 arc_mru = &ARC_mru;
6317 arc_mru_ghost = &ARC_mru_ghost;
6318 arc_mfu = &ARC_mfu;
6319 arc_mfu_ghost = &ARC_mfu_ghost;
6320 arc_l2c_only = &ARC_l2c_only;
6321
6322 arc_mru->arcs_list[ARC_BUFC_METADATA] =
6323 multilist_create(sizeof (arc_buf_hdr_t),
6324 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6325 arc_state_multilist_index_func);
6326 arc_mru->arcs_list[ARC_BUFC_DATA] =
6327 multilist_create(sizeof (arc_buf_hdr_t),
6328 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6329 arc_state_multilist_index_func);
6330 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
6331 multilist_create(sizeof (arc_buf_hdr_t),
6332 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6333 arc_state_multilist_index_func);
6334 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
6335 multilist_create(sizeof (arc_buf_hdr_t),
6336 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6337 arc_state_multilist_index_func);
6338 arc_mfu->arcs_list[ARC_BUFC_METADATA] =
6339 multilist_create(sizeof (arc_buf_hdr_t),
6340 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6341 arc_state_multilist_index_func);
6342 arc_mfu->arcs_list[ARC_BUFC_DATA] =
6343 multilist_create(sizeof (arc_buf_hdr_t),
6344 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6345 arc_state_multilist_index_func);
6346 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
6347 multilist_create(sizeof (arc_buf_hdr_t),
6348 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6349 arc_state_multilist_index_func);
6350 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
6351 multilist_create(sizeof (arc_buf_hdr_t),
6352 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6353 arc_state_multilist_index_func);
6354 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
6355 multilist_create(sizeof (arc_buf_hdr_t),
6356 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6357 arc_state_multilist_index_func);
6358 arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
6359 multilist_create(sizeof (arc_buf_hdr_t),
6360 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6361 arc_state_multilist_index_func);
6362
6363 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6364 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6365 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6366 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6367 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6368 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6369 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6370 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6371 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6372 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6373 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6374 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6375
6376 refcount_create(&arc_anon->arcs_size);
6377 refcount_create(&arc_mru->arcs_size);
6378 refcount_create(&arc_mru_ghost->arcs_size);
6379 refcount_create(&arc_mfu->arcs_size);
6380 refcount_create(&arc_mfu_ghost->arcs_size);
6381 refcount_create(&arc_l2c_only->arcs_size);
6382
6383 arc_anon->arcs_state = ARC_STATE_ANON;
6384 arc_mru->arcs_state = ARC_STATE_MRU;
6385 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
6386 arc_mfu->arcs_state = ARC_STATE_MFU;
6387 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
6388 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
6389 }
6390
6391 static void
6392 arc_state_fini(void)
6393 {
6394 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6395 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6396 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6397 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6398 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6399 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6400 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6401 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6402 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6403 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6404 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6405 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6406
6407 refcount_destroy(&arc_anon->arcs_size);
6408 refcount_destroy(&arc_mru->arcs_size);
6409 refcount_destroy(&arc_mru_ghost->arcs_size);
6410 refcount_destroy(&arc_mfu->arcs_size);
6411 refcount_destroy(&arc_mfu_ghost->arcs_size);
6412 refcount_destroy(&arc_l2c_only->arcs_size);
6413
6414 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
6415 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
6416 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
6417 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
6418 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
6419 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
6420 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
6421 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
6422 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
6423 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
6424 }
6425
6426 uint64_t
6427 arc_max_bytes(void)
6428 {
6429 return (arc_c_max);
6430 }
6431
6432 void
6433 arc_init(void)
6434 {
6435 uint64_t percent, allmem = arc_all_memory();
6436
6437 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
6438 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
6439 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
6440
6441 /* Convert seconds to clock ticks */
6442 arc_min_prefetch_lifespan = 1 * hz;
6443
6444 #ifdef _KERNEL
6445 /*
6446 * Register a shrinker to support synchronous (direct) memory
6447 * reclaim from the arc. This is done to prevent kswapd from
6448 * swapping out pages when it is preferable to shrink the arc.
6449 */
6450 spl_register_shrinker(&arc_shrinker);
6451
6452 /* Set to 1/64 of all memory or a minimum of 512K */
6453 arc_sys_free = MAX(allmem / 64, (512 * 1024));
6454 arc_need_free = 0;
6455 #endif
6456
6457 /* Set max to 1/2 of all memory */
6458 arc_c_max = allmem / 2;
6459
6460 /*
6461 * In userland, there's only the memory pressure that we artificially
6462 * create (see arc_available_memory()). Don't let arc_c get too
6463 * small, because it can cause transactions to be larger than
6464 * arc_c, causing arc_tempreserve_space() to fail.
6465 */
6466 #ifndef _KERNEL
6467 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
6468 #else
6469 arc_c_min = 2ULL << SPA_MAXBLOCKSHIFT;
6470 #endif
6471
6472 arc_c = arc_c_max;
6473 arc_p = (arc_c >> 1);
6474 arc_size = 0;
6475
6476 /* Set min to 1/2 of arc_c_min */
6477 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
6478 /* Initialize maximum observed usage to zero */
6479 arc_meta_max = 0;
6480 /*
6481 * Set arc_meta_limit to a percent of arc_c_max with a floor of
6482 * arc_meta_min, and a ceiling of arc_c_max.
6483 */
6484 percent = MIN(zfs_arc_meta_limit_percent, 100);
6485 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
6486 percent = MIN(zfs_arc_dnode_limit_percent, 100);
6487 arc_dnode_limit = (percent * arc_meta_limit) / 100;
6488
6489 /* Apply user specified tunings */
6490 arc_tuning_update();
6491
6492 /* if kmem_flags are set, lets try to use less memory */
6493 if (kmem_debugging())
6494 arc_c = arc_c / 2;
6495 if (arc_c < arc_c_min)
6496 arc_c = arc_c_min;
6497
6498 arc_state_init();
6499 buf_init();
6500
6501 list_create(&arc_prune_list, sizeof (arc_prune_t),
6502 offsetof(arc_prune_t, p_node));
6503 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
6504
6505 arc_prune_taskq = taskq_create("arc_prune", max_ncpus, defclsyspri,
6506 max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
6507
6508 arc_reclaim_thread_exit = B_FALSE;
6509
6510 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6511 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6512
6513 if (arc_ksp != NULL) {
6514 arc_ksp->ks_data = &arc_stats;
6515 arc_ksp->ks_update = arc_kstat_update;
6516 kstat_install(arc_ksp);
6517 }
6518
6519 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
6520 TS_RUN, defclsyspri);
6521
6522 arc_dead = B_FALSE;
6523 arc_warm = B_FALSE;
6524
6525 /*
6526 * Calculate maximum amount of dirty data per pool.
6527 *
6528 * If it has been set by a module parameter, take that.
6529 * Otherwise, use a percentage of physical memory defined by
6530 * zfs_dirty_data_max_percent (default 10%) with a cap at
6531 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
6532 */
6533 if (zfs_dirty_data_max_max == 0)
6534 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
6535 allmem * zfs_dirty_data_max_max_percent / 100);
6536
6537 if (zfs_dirty_data_max == 0) {
6538 zfs_dirty_data_max = allmem *
6539 zfs_dirty_data_max_percent / 100;
6540 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6541 zfs_dirty_data_max_max);
6542 }
6543 }
6544
6545 void
6546 arc_fini(void)
6547 {
6548 arc_prune_t *p;
6549
6550 #ifdef _KERNEL
6551 spl_unregister_shrinker(&arc_shrinker);
6552 #endif /* _KERNEL */
6553
6554 mutex_enter(&arc_reclaim_lock);
6555 arc_reclaim_thread_exit = B_TRUE;
6556 /*
6557 * The reclaim thread will set arc_reclaim_thread_exit back to
6558 * B_FALSE when it is finished exiting; we're waiting for that.
6559 */
6560 while (arc_reclaim_thread_exit) {
6561 cv_signal(&arc_reclaim_thread_cv);
6562 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6563 }
6564 mutex_exit(&arc_reclaim_lock);
6565
6566 /* Use B_TRUE to ensure *all* buffers are evicted */
6567 arc_flush(NULL, B_TRUE);
6568
6569 arc_dead = B_TRUE;
6570
6571 if (arc_ksp != NULL) {
6572 kstat_delete(arc_ksp);
6573 arc_ksp = NULL;
6574 }
6575
6576 taskq_wait(arc_prune_taskq);
6577 taskq_destroy(arc_prune_taskq);
6578
6579 mutex_enter(&arc_prune_mtx);
6580 while ((p = list_head(&arc_prune_list)) != NULL) {
6581 list_remove(&arc_prune_list, p);
6582 refcount_remove(&p->p_refcnt, &arc_prune_list);
6583 refcount_destroy(&p->p_refcnt);
6584 kmem_free(p, sizeof (*p));
6585 }
6586 mutex_exit(&arc_prune_mtx);
6587
6588 list_destroy(&arc_prune_list);
6589 mutex_destroy(&arc_prune_mtx);
6590 mutex_destroy(&arc_reclaim_lock);
6591 cv_destroy(&arc_reclaim_thread_cv);
6592 cv_destroy(&arc_reclaim_waiters_cv);
6593
6594 arc_state_fini();
6595 buf_fini();
6596
6597 ASSERT0(arc_loaned_bytes);
6598 }
6599
6600 /*
6601 * Level 2 ARC
6602 *
6603 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6604 * It uses dedicated storage devices to hold cached data, which are populated
6605 * using large infrequent writes. The main role of this cache is to boost
6606 * the performance of random read workloads. The intended L2ARC devices
6607 * include short-stroked disks, solid state disks, and other media with
6608 * substantially faster read latency than disk.
6609 *
6610 * +-----------------------+
6611 * | ARC |
6612 * +-----------------------+
6613 * | ^ ^
6614 * | | |
6615 * l2arc_feed_thread() arc_read()
6616 * | | |
6617 * | l2arc read |
6618 * V | |
6619 * +---------------+ |
6620 * | L2ARC | |
6621 * +---------------+ |
6622 * | ^ |
6623 * l2arc_write() | |
6624 * | | |
6625 * V | |
6626 * +-------+ +-------+
6627 * | vdev | | vdev |
6628 * | cache | | cache |
6629 * +-------+ +-------+
6630 * +=========+ .-----.
6631 * : L2ARC : |-_____-|
6632 * : devices : | Disks |
6633 * +=========+ `-_____-'
6634 *
6635 * Read requests are satisfied from the following sources, in order:
6636 *
6637 * 1) ARC
6638 * 2) vdev cache of L2ARC devices
6639 * 3) L2ARC devices
6640 * 4) vdev cache of disks
6641 * 5) disks
6642 *
6643 * Some L2ARC device types exhibit extremely slow write performance.
6644 * To accommodate for this there are some significant differences between
6645 * the L2ARC and traditional cache design:
6646 *
6647 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
6648 * the ARC behave as usual, freeing buffers and placing headers on ghost
6649 * lists. The ARC does not send buffers to the L2ARC during eviction as
6650 * this would add inflated write latencies for all ARC memory pressure.
6651 *
6652 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6653 * It does this by periodically scanning buffers from the eviction-end of
6654 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6655 * not already there. It scans until a headroom of buffers is satisfied,
6656 * which itself is a buffer for ARC eviction. If a compressible buffer is
6657 * found during scanning and selected for writing to an L2ARC device, we
6658 * temporarily boost scanning headroom during the next scan cycle to make
6659 * sure we adapt to compression effects (which might significantly reduce
6660 * the data volume we write to L2ARC). The thread that does this is
6661 * l2arc_feed_thread(), illustrated below; example sizes are included to
6662 * provide a better sense of ratio than this diagram:
6663 *
6664 * head --> tail
6665 * +---------------------+----------+
6666 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
6667 * +---------------------+----------+ | o L2ARC eligible
6668 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
6669 * +---------------------+----------+ |
6670 * 15.9 Gbytes ^ 32 Mbytes |
6671 * headroom |
6672 * l2arc_feed_thread()
6673 * |
6674 * l2arc write hand <--[oooo]--'
6675 * | 8 Mbyte
6676 * | write max
6677 * V
6678 * +==============================+
6679 * L2ARC dev |####|#|###|###| |####| ... |
6680 * +==============================+
6681 * 32 Gbytes
6682 *
6683 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6684 * evicted, then the L2ARC has cached a buffer much sooner than it probably
6685 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
6686 * safe to say that this is an uncommon case, since buffers at the end of
6687 * the ARC lists have moved there due to inactivity.
6688 *
6689 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6690 * then the L2ARC simply misses copying some buffers. This serves as a
6691 * pressure valve to prevent heavy read workloads from both stalling the ARC
6692 * with waits and clogging the L2ARC with writes. This also helps prevent
6693 * the potential for the L2ARC to churn if it attempts to cache content too
6694 * quickly, such as during backups of the entire pool.
6695 *
6696 * 5. After system boot and before the ARC has filled main memory, there are
6697 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6698 * lists can remain mostly static. Instead of searching from tail of these
6699 * lists as pictured, the l2arc_feed_thread() will search from the list heads
6700 * for eligible buffers, greatly increasing its chance of finding them.
6701 *
6702 * The L2ARC device write speed is also boosted during this time so that
6703 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
6704 * there are no L2ARC reads, and no fear of degrading read performance
6705 * through increased writes.
6706 *
6707 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6708 * the vdev queue can aggregate them into larger and fewer writes. Each
6709 * device is written to in a rotor fashion, sweeping writes through
6710 * available space then repeating.
6711 *
6712 * 7. The L2ARC does not store dirty content. It never needs to flush
6713 * write buffers back to disk based storage.
6714 *
6715 * 8. If an ARC buffer is written (and dirtied) which also exists in the
6716 * L2ARC, the now stale L2ARC buffer is immediately dropped.
6717 *
6718 * The performance of the L2ARC can be tweaked by a number of tunables, which
6719 * may be necessary for different workloads:
6720 *
6721 * l2arc_write_max max write bytes per interval
6722 * l2arc_write_boost extra write bytes during device warmup
6723 * l2arc_noprefetch skip caching prefetched buffers
6724 * l2arc_headroom number of max device writes to precache
6725 * l2arc_headroom_boost when we find compressed buffers during ARC
6726 * scanning, we multiply headroom by this
6727 * percentage factor for the next scan cycle,
6728 * since more compressed buffers are likely to
6729 * be present
6730 * l2arc_feed_secs seconds between L2ARC writing
6731 *
6732 * Tunables may be removed or added as future performance improvements are
6733 * integrated, and also may become zpool properties.
6734 *
6735 * There are three key functions that control how the L2ARC warms up:
6736 *
6737 * l2arc_write_eligible() check if a buffer is eligible to cache
6738 * l2arc_write_size() calculate how much to write
6739 * l2arc_write_interval() calculate sleep delay between writes
6740 *
6741 * These three functions determine what to write, how much, and how quickly
6742 * to send writes.
6743 */
6744
6745 static boolean_t
6746 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6747 {
6748 /*
6749 * A buffer is *not* eligible for the L2ARC if it:
6750 * 1. belongs to a different spa.
6751 * 2. is already cached on the L2ARC.
6752 * 3. has an I/O in progress (it may be an incomplete read).
6753 * 4. is flagged not eligible (zfs property).
6754 */
6755 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
6756 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
6757 return (B_FALSE);
6758
6759 return (B_TRUE);
6760 }
6761
6762 static uint64_t
6763 l2arc_write_size(void)
6764 {
6765 uint64_t size;
6766
6767 /*
6768 * Make sure our globals have meaningful values in case the user
6769 * altered them.
6770 */
6771 size = l2arc_write_max;
6772 if (size == 0) {
6773 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6774 "be greater than zero, resetting it to the default (%d)",
6775 L2ARC_WRITE_SIZE);
6776 size = l2arc_write_max = L2ARC_WRITE_SIZE;
6777 }
6778
6779 if (arc_warm == B_FALSE)
6780 size += l2arc_write_boost;
6781
6782 return (size);
6783
6784 }
6785
6786 static clock_t
6787 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6788 {
6789 clock_t interval, next, now;
6790
6791 /*
6792 * If the ARC lists are busy, increase our write rate; if the
6793 * lists are stale, idle back. This is achieved by checking
6794 * how much we previously wrote - if it was more than half of
6795 * what we wanted, schedule the next write much sooner.
6796 */
6797 if (l2arc_feed_again && wrote > (wanted / 2))
6798 interval = (hz * l2arc_feed_min_ms) / 1000;
6799 else
6800 interval = hz * l2arc_feed_secs;
6801
6802 now = ddi_get_lbolt();
6803 next = MAX(now, MIN(now + interval, began + interval));
6804
6805 return (next);
6806 }
6807
6808 /*
6809 * Cycle through L2ARC devices. This is how L2ARC load balances.
6810 * If a device is returned, this also returns holding the spa config lock.
6811 */
6812 static l2arc_dev_t *
6813 l2arc_dev_get_next(void)
6814 {
6815 l2arc_dev_t *first, *next = NULL;
6816
6817 /*
6818 * Lock out the removal of spas (spa_namespace_lock), then removal
6819 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
6820 * both locks will be dropped and a spa config lock held instead.
6821 */
6822 mutex_enter(&spa_namespace_lock);
6823 mutex_enter(&l2arc_dev_mtx);
6824
6825 /* if there are no vdevs, there is nothing to do */
6826 if (l2arc_ndev == 0)
6827 goto out;
6828
6829 first = NULL;
6830 next = l2arc_dev_last;
6831 do {
6832 /* loop around the list looking for a non-faulted vdev */
6833 if (next == NULL) {
6834 next = list_head(l2arc_dev_list);
6835 } else {
6836 next = list_next(l2arc_dev_list, next);
6837 if (next == NULL)
6838 next = list_head(l2arc_dev_list);
6839 }
6840
6841 /* if we have come back to the start, bail out */
6842 if (first == NULL)
6843 first = next;
6844 else if (next == first)
6845 break;
6846
6847 } while (vdev_is_dead(next->l2ad_vdev));
6848
6849 /* if we were unable to find any usable vdevs, return NULL */
6850 if (vdev_is_dead(next->l2ad_vdev))
6851 next = NULL;
6852
6853 l2arc_dev_last = next;
6854
6855 out:
6856 mutex_exit(&l2arc_dev_mtx);
6857
6858 /*
6859 * Grab the config lock to prevent the 'next' device from being
6860 * removed while we are writing to it.
6861 */
6862 if (next != NULL)
6863 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6864 mutex_exit(&spa_namespace_lock);
6865
6866 return (next);
6867 }
6868
6869 /*
6870 * Free buffers that were tagged for destruction.
6871 */
6872 static void
6873 l2arc_do_free_on_write(void)
6874 {
6875 list_t *buflist;
6876 l2arc_data_free_t *df, *df_prev;
6877
6878 mutex_enter(&l2arc_free_on_write_mtx);
6879 buflist = l2arc_free_on_write;
6880
6881 for (df = list_tail(buflist); df; df = df_prev) {
6882 df_prev = list_prev(buflist, df);
6883 ASSERT3P(df->l2df_abd, !=, NULL);
6884 abd_free(df->l2df_abd);
6885 list_remove(buflist, df);
6886 kmem_free(df, sizeof (l2arc_data_free_t));
6887 }
6888
6889 mutex_exit(&l2arc_free_on_write_mtx);
6890 }
6891
6892 /*
6893 * A write to a cache device has completed. Update all headers to allow
6894 * reads from these buffers to begin.
6895 */
6896 static void
6897 l2arc_write_done(zio_t *zio)
6898 {
6899 l2arc_write_callback_t *cb;
6900 l2arc_dev_t *dev;
6901 list_t *buflist;
6902 arc_buf_hdr_t *head, *hdr, *hdr_prev;
6903 kmutex_t *hash_lock;
6904 int64_t bytes_dropped = 0;
6905
6906 cb = zio->io_private;
6907 ASSERT3P(cb, !=, NULL);
6908 dev = cb->l2wcb_dev;
6909 ASSERT3P(dev, !=, NULL);
6910 head = cb->l2wcb_head;
6911 ASSERT3P(head, !=, NULL);
6912 buflist = &dev->l2ad_buflist;
6913 ASSERT3P(buflist, !=, NULL);
6914 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6915 l2arc_write_callback_t *, cb);
6916
6917 if (zio->io_error != 0)
6918 ARCSTAT_BUMP(arcstat_l2_writes_error);
6919
6920 /*
6921 * All writes completed, or an error was hit.
6922 */
6923 top:
6924 mutex_enter(&dev->l2ad_mtx);
6925 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6926 hdr_prev = list_prev(buflist, hdr);
6927
6928 hash_lock = HDR_LOCK(hdr);
6929
6930 /*
6931 * We cannot use mutex_enter or else we can deadlock
6932 * with l2arc_write_buffers (due to swapping the order
6933 * the hash lock and l2ad_mtx are taken).
6934 */
6935 if (!mutex_tryenter(hash_lock)) {
6936 /*
6937 * Missed the hash lock. We must retry so we
6938 * don't leave the ARC_FLAG_L2_WRITING bit set.
6939 */
6940 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6941
6942 /*
6943 * We don't want to rescan the headers we've
6944 * already marked as having been written out, so
6945 * we reinsert the head node so we can pick up
6946 * where we left off.
6947 */
6948 list_remove(buflist, head);
6949 list_insert_after(buflist, hdr, head);
6950
6951 mutex_exit(&dev->l2ad_mtx);
6952
6953 /*
6954 * We wait for the hash lock to become available
6955 * to try and prevent busy waiting, and increase
6956 * the chance we'll be able to acquire the lock
6957 * the next time around.
6958 */
6959 mutex_enter(hash_lock);
6960 mutex_exit(hash_lock);
6961 goto top;
6962 }
6963
6964 /*
6965 * We could not have been moved into the arc_l2c_only
6966 * state while in-flight due to our ARC_FLAG_L2_WRITING
6967 * bit being set. Let's just ensure that's being enforced.
6968 */
6969 ASSERT(HDR_HAS_L1HDR(hdr));
6970
6971 /*
6972 * Skipped - drop L2ARC entry and mark the header as no
6973 * longer L2 eligibile.
6974 */
6975 if (zio->io_error != 0) {
6976 /*
6977 * Error - drop L2ARC entry.
6978 */
6979 list_remove(buflist, hdr);
6980 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
6981
6982 ARCSTAT_INCR(arcstat_l2_asize, -arc_hdr_size(hdr));
6983 ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr));
6984
6985 bytes_dropped += arc_hdr_size(hdr);
6986 (void) refcount_remove_many(&dev->l2ad_alloc,
6987 arc_hdr_size(hdr), hdr);
6988 }
6989
6990 /*
6991 * Allow ARC to begin reads and ghost list evictions to
6992 * this L2ARC entry.
6993 */
6994 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
6995
6996 mutex_exit(hash_lock);
6997 }
6998
6999 atomic_inc_64(&l2arc_writes_done);
7000 list_remove(buflist, head);
7001 ASSERT(!HDR_HAS_L1HDR(head));
7002 kmem_cache_free(hdr_l2only_cache, head);
7003 mutex_exit(&dev->l2ad_mtx);
7004
7005 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
7006
7007 l2arc_do_free_on_write();
7008
7009 kmem_free(cb, sizeof (l2arc_write_callback_t));
7010 }
7011
7012 /*
7013 * A read to a cache device completed. Validate buffer contents before
7014 * handing over to the regular ARC routines.
7015 */
7016 static void
7017 l2arc_read_done(zio_t *zio)
7018 {
7019 l2arc_read_callback_t *cb;
7020 arc_buf_hdr_t *hdr;
7021 kmutex_t *hash_lock;
7022 boolean_t valid_cksum;
7023
7024 ASSERT3P(zio->io_vd, !=, NULL);
7025 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
7026
7027 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
7028
7029 cb = zio->io_private;
7030 ASSERT3P(cb, !=, NULL);
7031 hdr = cb->l2rcb_hdr;
7032 ASSERT3P(hdr, !=, NULL);
7033
7034 hash_lock = HDR_LOCK(hdr);
7035 mutex_enter(hash_lock);
7036 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
7037
7038 ASSERT3P(zio->io_abd, !=, NULL);
7039
7040 /*
7041 * Check this survived the L2ARC journey.
7042 */
7043 ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
7044 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
7045 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
7046
7047 valid_cksum = arc_cksum_is_equal(hdr, zio);
7048 if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
7049 mutex_exit(hash_lock);
7050 zio->io_private = hdr;
7051 arc_read_done(zio);
7052 } else {
7053 mutex_exit(hash_lock);
7054 /*
7055 * Buffer didn't survive caching. Increment stats and
7056 * reissue to the original storage device.
7057 */
7058 if (zio->io_error != 0) {
7059 ARCSTAT_BUMP(arcstat_l2_io_error);
7060 } else {
7061 zio->io_error = SET_ERROR(EIO);
7062 }
7063 if (!valid_cksum)
7064 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
7065
7066 /*
7067 * If there's no waiter, issue an async i/o to the primary
7068 * storage now. If there *is* a waiter, the caller must
7069 * issue the i/o in a context where it's OK to block.
7070 */
7071 if (zio->io_waiter == NULL) {
7072 zio_t *pio = zio_unique_parent(zio);
7073
7074 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
7075
7076 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
7077 hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
7078 hdr, zio->io_priority, cb->l2rcb_flags,
7079 &cb->l2rcb_zb));
7080 }
7081 }
7082
7083 kmem_free(cb, sizeof (l2arc_read_callback_t));
7084 }
7085
7086 /*
7087 * This is the list priority from which the L2ARC will search for pages to
7088 * cache. This is used within loops (0..3) to cycle through lists in the
7089 * desired order. This order can have a significant effect on cache
7090 * performance.
7091 *
7092 * Currently the metadata lists are hit first, MFU then MRU, followed by
7093 * the data lists. This function returns a locked list, and also returns
7094 * the lock pointer.
7095 */
7096 static multilist_sublist_t *
7097 l2arc_sublist_lock(int list_num)
7098 {
7099 multilist_t *ml = NULL;
7100 unsigned int idx;
7101
7102 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
7103
7104 switch (list_num) {
7105 case 0:
7106 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
7107 break;
7108 case 1:
7109 ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
7110 break;
7111 case 2:
7112 ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
7113 break;
7114 case 3:
7115 ml = arc_mru->arcs_list[ARC_BUFC_DATA];
7116 break;
7117 default:
7118 return (NULL);
7119 }
7120
7121 /*
7122 * Return a randomly-selected sublist. This is acceptable
7123 * because the caller feeds only a little bit of data for each
7124 * call (8MB). Subsequent calls will result in different
7125 * sublists being selected.
7126 */
7127 idx = multilist_get_random_index(ml);
7128 return (multilist_sublist_lock(ml, idx));
7129 }
7130
7131 /*
7132 * Evict buffers from the device write hand to the distance specified in
7133 * bytes. This distance may span populated buffers, it may span nothing.
7134 * This is clearing a region on the L2ARC device ready for writing.
7135 * If the 'all' boolean is set, every buffer is evicted.
7136 */
7137 static void
7138 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
7139 {
7140 list_t *buflist;
7141 arc_buf_hdr_t *hdr, *hdr_prev;
7142 kmutex_t *hash_lock;
7143 uint64_t taddr;
7144
7145 buflist = &dev->l2ad_buflist;
7146
7147 if (!all && dev->l2ad_first) {
7148 /*
7149 * This is the first sweep through the device. There is
7150 * nothing to evict.
7151 */
7152 return;
7153 }
7154
7155 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
7156 /*
7157 * When nearing the end of the device, evict to the end
7158 * before the device write hand jumps to the start.
7159 */
7160 taddr = dev->l2ad_end;
7161 } else {
7162 taddr = dev->l2ad_hand + distance;
7163 }
7164 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
7165 uint64_t, taddr, boolean_t, all);
7166
7167 top:
7168 mutex_enter(&dev->l2ad_mtx);
7169 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
7170 hdr_prev = list_prev(buflist, hdr);
7171
7172 hash_lock = HDR_LOCK(hdr);
7173
7174 /*
7175 * We cannot use mutex_enter or else we can deadlock
7176 * with l2arc_write_buffers (due to swapping the order
7177 * the hash lock and l2ad_mtx are taken).
7178 */
7179 if (!mutex_tryenter(hash_lock)) {
7180 /*
7181 * Missed the hash lock. Retry.
7182 */
7183 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
7184 mutex_exit(&dev->l2ad_mtx);
7185 mutex_enter(hash_lock);
7186 mutex_exit(hash_lock);
7187 goto top;
7188 }
7189
7190 if (HDR_L2_WRITE_HEAD(hdr)) {
7191 /*
7192 * We hit a write head node. Leave it for
7193 * l2arc_write_done().
7194 */
7195 list_remove(buflist, hdr);
7196 mutex_exit(hash_lock);
7197 continue;
7198 }
7199
7200 if (!all && HDR_HAS_L2HDR(hdr) &&
7201 (hdr->b_l2hdr.b_daddr > taddr ||
7202 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
7203 /*
7204 * We've evicted to the target address,
7205 * or the end of the device.
7206 */
7207 mutex_exit(hash_lock);
7208 break;
7209 }
7210
7211 ASSERT(HDR_HAS_L2HDR(hdr));
7212 if (!HDR_HAS_L1HDR(hdr)) {
7213 ASSERT(!HDR_L2_READING(hdr));
7214 /*
7215 * This doesn't exist in the ARC. Destroy.
7216 * arc_hdr_destroy() will call list_remove()
7217 * and decrement arcstat_l2_size.
7218 */
7219 arc_change_state(arc_anon, hdr, hash_lock);
7220 arc_hdr_destroy(hdr);
7221 } else {
7222 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
7223 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
7224 /*
7225 * Invalidate issued or about to be issued
7226 * reads, since we may be about to write
7227 * over this location.
7228 */
7229 if (HDR_L2_READING(hdr)) {
7230 ARCSTAT_BUMP(arcstat_l2_evict_reading);
7231 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
7232 }
7233
7234 /* Ensure this header has finished being written */
7235 ASSERT(!HDR_L2_WRITING(hdr));
7236
7237 arc_hdr_l2hdr_destroy(hdr);
7238 }
7239 mutex_exit(hash_lock);
7240 }
7241 mutex_exit(&dev->l2ad_mtx);
7242 }
7243
7244 /*
7245 * Find and write ARC buffers to the L2ARC device.
7246 *
7247 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
7248 * for reading until they have completed writing.
7249 * The headroom_boost is an in-out parameter used to maintain headroom boost
7250 * state between calls to this function.
7251 *
7252 * Returns the number of bytes actually written (which may be smaller than
7253 * the delta by which the device hand has changed due to alignment).
7254 */
7255 static uint64_t
7256 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
7257 {
7258 arc_buf_hdr_t *hdr, *hdr_prev, *head;
7259 uint64_t write_asize, write_psize, write_sz, headroom;
7260 boolean_t full;
7261 l2arc_write_callback_t *cb;
7262 zio_t *pio, *wzio;
7263 uint64_t guid = spa_load_guid(spa);
7264 int try;
7265
7266 ASSERT3P(dev->l2ad_vdev, !=, NULL);
7267
7268 pio = NULL;
7269 write_sz = write_asize = write_psize = 0;
7270 full = B_FALSE;
7271 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
7272 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
7273
7274 /*
7275 * Copy buffers for L2ARC writing.
7276 */
7277 for (try = 0; try < L2ARC_FEED_TYPES; try++) {
7278 multilist_sublist_t *mls = l2arc_sublist_lock(try);
7279 uint64_t passed_sz = 0;
7280
7281 VERIFY3P(mls, !=, NULL);
7282
7283 /*
7284 * L2ARC fast warmup.
7285 *
7286 * Until the ARC is warm and starts to evict, read from the
7287 * head of the ARC lists rather than the tail.
7288 */
7289 if (arc_warm == B_FALSE)
7290 hdr = multilist_sublist_head(mls);
7291 else
7292 hdr = multilist_sublist_tail(mls);
7293
7294 headroom = target_sz * l2arc_headroom;
7295 if (zfs_compressed_arc_enabled)
7296 headroom = (headroom * l2arc_headroom_boost) / 100;
7297
7298 for (; hdr; hdr = hdr_prev) {
7299 kmutex_t *hash_lock;
7300 uint64_t asize, size;
7301 abd_t *to_write;
7302
7303 if (arc_warm == B_FALSE)
7304 hdr_prev = multilist_sublist_next(mls, hdr);
7305 else
7306 hdr_prev = multilist_sublist_prev(mls, hdr);
7307
7308 hash_lock = HDR_LOCK(hdr);
7309 if (!mutex_tryenter(hash_lock)) {
7310 /*
7311 * Skip this buffer rather than waiting.
7312 */
7313 continue;
7314 }
7315
7316 passed_sz += HDR_GET_LSIZE(hdr);
7317 if (passed_sz > headroom) {
7318 /*
7319 * Searched too far.
7320 */
7321 mutex_exit(hash_lock);
7322 break;
7323 }
7324
7325 if (!l2arc_write_eligible(guid, hdr)) {
7326 mutex_exit(hash_lock);
7327 continue;
7328 }
7329
7330 if ((write_asize + HDR_GET_LSIZE(hdr)) > target_sz) {
7331 full = B_TRUE;
7332 mutex_exit(hash_lock);
7333 break;
7334 }
7335
7336 if (pio == NULL) {
7337 /*
7338 * Insert a dummy header on the buflist so
7339 * l2arc_write_done() can find where the
7340 * write buffers begin without searching.
7341 */
7342 mutex_enter(&dev->l2ad_mtx);
7343 list_insert_head(&dev->l2ad_buflist, head);
7344 mutex_exit(&dev->l2ad_mtx);
7345
7346 cb = kmem_alloc(
7347 sizeof (l2arc_write_callback_t), KM_SLEEP);
7348 cb->l2wcb_dev = dev;
7349 cb->l2wcb_head = head;
7350 pio = zio_root(spa, l2arc_write_done, cb,
7351 ZIO_FLAG_CANFAIL);
7352 }
7353
7354 hdr->b_l2hdr.b_dev = dev;
7355 hdr->b_l2hdr.b_hits = 0;
7356
7357 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
7358 arc_hdr_set_flags(hdr,
7359 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
7360
7361 mutex_enter(&dev->l2ad_mtx);
7362 list_insert_head(&dev->l2ad_buflist, hdr);
7363 mutex_exit(&dev->l2ad_mtx);
7364
7365 /*
7366 * We rely on the L1 portion of the header below, so
7367 * it's invalid for this header to have been evicted out
7368 * of the ghost cache, prior to being written out. The
7369 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
7370 */
7371 ASSERT(HDR_HAS_L1HDR(hdr));
7372
7373 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
7374 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
7375 ASSERT3U(arc_hdr_size(hdr), >, 0);
7376 size = arc_hdr_size(hdr);
7377
7378 (void) refcount_add_many(&dev->l2ad_alloc, size, hdr);
7379
7380 /*
7381 * Normally the L2ARC can use the hdr's data, but if
7382 * we're sharing data between the hdr and one of its
7383 * bufs, L2ARC needs its own copy of the data so that
7384 * the ZIO below can't race with the buf consumer. To
7385 * ensure that this copy will be available for the
7386 * lifetime of the ZIO and be cleaned up afterwards, we
7387 * add it to the l2arc_free_on_write queue.
7388 */
7389 if (!HDR_SHARED_DATA(hdr)) {
7390 to_write = hdr->b_l1hdr.b_pabd;
7391 } else {
7392 to_write = abd_alloc_for_io(size,
7393 HDR_ISTYPE_METADATA(hdr));
7394 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
7395 l2arc_free_abd_on_write(to_write, size,
7396 arc_buf_type(hdr));
7397 }
7398 wzio = zio_write_phys(pio, dev->l2ad_vdev,
7399 hdr->b_l2hdr.b_daddr, size, to_write,
7400 ZIO_CHECKSUM_OFF, NULL, hdr,
7401 ZIO_PRIORITY_ASYNC_WRITE,
7402 ZIO_FLAG_CANFAIL, B_FALSE);
7403
7404 write_sz += HDR_GET_LSIZE(hdr);
7405 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7406 zio_t *, wzio);
7407
7408 write_asize += size;
7409 /*
7410 * Keep the clock hand suitably device-aligned.
7411 */
7412 asize = vdev_psize_to_asize(dev->l2ad_vdev, size);
7413 write_psize += asize;
7414 dev->l2ad_hand += asize;
7415
7416 mutex_exit(hash_lock);
7417
7418 (void) zio_nowait(wzio);
7419 }
7420
7421 multilist_sublist_unlock(mls);
7422
7423 if (full == B_TRUE)
7424 break;
7425 }
7426
7427 /* No buffers selected for writing? */
7428 if (pio == NULL) {
7429 ASSERT0(write_sz);
7430 ASSERT(!HDR_HAS_L1HDR(head));
7431 kmem_cache_free(hdr_l2only_cache, head);
7432 return (0);
7433 }
7434
7435 ASSERT3U(write_asize, <=, target_sz);
7436 ARCSTAT_BUMP(arcstat_l2_writes_sent);
7437 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
7438 ARCSTAT_INCR(arcstat_l2_size, write_sz);
7439 ARCSTAT_INCR(arcstat_l2_asize, write_asize);
7440 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
7441
7442 /*
7443 * Bump device hand to the device start if it is approaching the end.
7444 * l2arc_evict() will already have evicted ahead for this case.
7445 */
7446 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7447 dev->l2ad_hand = dev->l2ad_start;
7448 dev->l2ad_first = B_FALSE;
7449 }
7450
7451 dev->l2ad_writing = B_TRUE;
7452 (void) zio_wait(pio);
7453 dev->l2ad_writing = B_FALSE;
7454
7455 return (write_asize);
7456 }
7457
7458 /*
7459 * This thread feeds the L2ARC at regular intervals. This is the beating
7460 * heart of the L2ARC.
7461 */
7462 static void
7463 l2arc_feed_thread(void)
7464 {
7465 callb_cpr_t cpr;
7466 l2arc_dev_t *dev;
7467 spa_t *spa;
7468 uint64_t size, wrote;
7469 clock_t begin, next = ddi_get_lbolt();
7470 fstrans_cookie_t cookie;
7471
7472 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7473
7474 mutex_enter(&l2arc_feed_thr_lock);
7475
7476 cookie = spl_fstrans_mark();
7477 while (l2arc_thread_exit == 0) {
7478 CALLB_CPR_SAFE_BEGIN(&cpr);
7479 (void) cv_timedwait_sig(&l2arc_feed_thr_cv,
7480 &l2arc_feed_thr_lock, next);
7481 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7482 next = ddi_get_lbolt() + hz;
7483
7484 /*
7485 * Quick check for L2ARC devices.
7486 */
7487 mutex_enter(&l2arc_dev_mtx);
7488 if (l2arc_ndev == 0) {
7489 mutex_exit(&l2arc_dev_mtx);
7490 continue;
7491 }
7492 mutex_exit(&l2arc_dev_mtx);
7493 begin = ddi_get_lbolt();
7494
7495 /*
7496 * This selects the next l2arc device to write to, and in
7497 * doing so the next spa to feed from: dev->l2ad_spa. This
7498 * will return NULL if there are now no l2arc devices or if
7499 * they are all faulted.
7500 *
7501 * If a device is returned, its spa's config lock is also
7502 * held to prevent device removal. l2arc_dev_get_next()
7503 * will grab and release l2arc_dev_mtx.
7504 */
7505 if ((dev = l2arc_dev_get_next()) == NULL)
7506 continue;
7507
7508 spa = dev->l2ad_spa;
7509 ASSERT3P(spa, !=, NULL);
7510
7511 /*
7512 * If the pool is read-only then force the feed thread to
7513 * sleep a little longer.
7514 */
7515 if (!spa_writeable(spa)) {
7516 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7517 spa_config_exit(spa, SCL_L2ARC, dev);
7518 continue;
7519 }
7520
7521 /*
7522 * Avoid contributing to memory pressure.
7523 */
7524 if (arc_reclaim_needed()) {
7525 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7526 spa_config_exit(spa, SCL_L2ARC, dev);
7527 continue;
7528 }
7529
7530 ARCSTAT_BUMP(arcstat_l2_feeds);
7531
7532 size = l2arc_write_size();
7533
7534 /*
7535 * Evict L2ARC buffers that will be overwritten.
7536 */
7537 l2arc_evict(dev, size, B_FALSE);
7538
7539 /*
7540 * Write ARC buffers.
7541 */
7542 wrote = l2arc_write_buffers(spa, dev, size);
7543
7544 /*
7545 * Calculate interval between writes.
7546 */
7547 next = l2arc_write_interval(begin, size, wrote);
7548 spa_config_exit(spa, SCL_L2ARC, dev);
7549 }
7550 spl_fstrans_unmark(cookie);
7551
7552 l2arc_thread_exit = 0;
7553 cv_broadcast(&l2arc_feed_thr_cv);
7554 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
7555 thread_exit();
7556 }
7557
7558 boolean_t
7559 l2arc_vdev_present(vdev_t *vd)
7560 {
7561 l2arc_dev_t *dev;
7562
7563 mutex_enter(&l2arc_dev_mtx);
7564 for (dev = list_head(l2arc_dev_list); dev != NULL;
7565 dev = list_next(l2arc_dev_list, dev)) {
7566 if (dev->l2ad_vdev == vd)
7567 break;
7568 }
7569 mutex_exit(&l2arc_dev_mtx);
7570
7571 return (dev != NULL);
7572 }
7573
7574 /*
7575 * Add a vdev for use by the L2ARC. By this point the spa has already
7576 * validated the vdev and opened it.
7577 */
7578 void
7579 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7580 {
7581 l2arc_dev_t *adddev;
7582
7583 ASSERT(!l2arc_vdev_present(vd));
7584
7585 /*
7586 * Create a new l2arc device entry.
7587 */
7588 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7589 adddev->l2ad_spa = spa;
7590 adddev->l2ad_vdev = vd;
7591 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7592 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7593 adddev->l2ad_hand = adddev->l2ad_start;
7594 adddev->l2ad_first = B_TRUE;
7595 adddev->l2ad_writing = B_FALSE;
7596 list_link_init(&adddev->l2ad_node);
7597
7598 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7599 /*
7600 * This is a list of all ARC buffers that are still valid on the
7601 * device.
7602 */
7603 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7604 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7605
7606 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7607 refcount_create(&adddev->l2ad_alloc);
7608
7609 /*
7610 * Add device to global list
7611 */
7612 mutex_enter(&l2arc_dev_mtx);
7613 list_insert_head(l2arc_dev_list, adddev);
7614 atomic_inc_64(&l2arc_ndev);
7615 mutex_exit(&l2arc_dev_mtx);
7616 }
7617
7618 /*
7619 * Remove a vdev from the L2ARC.
7620 */
7621 void
7622 l2arc_remove_vdev(vdev_t *vd)
7623 {
7624 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7625
7626 /*
7627 * Find the device by vdev
7628 */
7629 mutex_enter(&l2arc_dev_mtx);
7630 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7631 nextdev = list_next(l2arc_dev_list, dev);
7632 if (vd == dev->l2ad_vdev) {
7633 remdev = dev;
7634 break;
7635 }
7636 }
7637 ASSERT3P(remdev, !=, NULL);
7638
7639 /*
7640 * Remove device from global list
7641 */
7642 list_remove(l2arc_dev_list, remdev);
7643 l2arc_dev_last = NULL; /* may have been invalidated */
7644 atomic_dec_64(&l2arc_ndev);
7645 mutex_exit(&l2arc_dev_mtx);
7646
7647 /*
7648 * Clear all buflists and ARC references. L2ARC device flush.
7649 */
7650 l2arc_evict(remdev, 0, B_TRUE);
7651 list_destroy(&remdev->l2ad_buflist);
7652 mutex_destroy(&remdev->l2ad_mtx);
7653 refcount_destroy(&remdev->l2ad_alloc);
7654 kmem_free(remdev, sizeof (l2arc_dev_t));
7655 }
7656
7657 void
7658 l2arc_init(void)
7659 {
7660 l2arc_thread_exit = 0;
7661 l2arc_ndev = 0;
7662 l2arc_writes_sent = 0;
7663 l2arc_writes_done = 0;
7664
7665 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7666 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7667 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7668 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7669
7670 l2arc_dev_list = &L2ARC_dev_list;
7671 l2arc_free_on_write = &L2ARC_free_on_write;
7672 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7673 offsetof(l2arc_dev_t, l2ad_node));
7674 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7675 offsetof(l2arc_data_free_t, l2df_list_node));
7676 }
7677
7678 void
7679 l2arc_fini(void)
7680 {
7681 /*
7682 * This is called from dmu_fini(), which is called from spa_fini();
7683 * Because of this, we can assume that all l2arc devices have
7684 * already been removed when the pools themselves were removed.
7685 */
7686
7687 l2arc_do_free_on_write();
7688
7689 mutex_destroy(&l2arc_feed_thr_lock);
7690 cv_destroy(&l2arc_feed_thr_cv);
7691 mutex_destroy(&l2arc_dev_mtx);
7692 mutex_destroy(&l2arc_free_on_write_mtx);
7693
7694 list_destroy(l2arc_dev_list);
7695 list_destroy(l2arc_free_on_write);
7696 }
7697
7698 void
7699 l2arc_start(void)
7700 {
7701 if (!(spa_mode_global & FWRITE))
7702 return;
7703
7704 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7705 TS_RUN, defclsyspri);
7706 }
7707
7708 void
7709 l2arc_stop(void)
7710 {
7711 if (!(spa_mode_global & FWRITE))
7712 return;
7713
7714 mutex_enter(&l2arc_feed_thr_lock);
7715 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
7716 l2arc_thread_exit = 1;
7717 while (l2arc_thread_exit != 0)
7718 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7719 mutex_exit(&l2arc_feed_thr_lock);
7720 }
7721
7722 #if defined(_KERNEL) && defined(HAVE_SPL)
7723 EXPORT_SYMBOL(arc_buf_size);
7724 EXPORT_SYMBOL(arc_write);
7725 EXPORT_SYMBOL(arc_read);
7726 EXPORT_SYMBOL(arc_buf_info);
7727 EXPORT_SYMBOL(arc_getbuf_func);
7728 EXPORT_SYMBOL(arc_add_prune_callback);
7729 EXPORT_SYMBOL(arc_remove_prune_callback);
7730
7731 /* BEGIN CSTYLED */
7732 module_param(zfs_arc_min, ulong, 0644);
7733 MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
7734
7735 module_param(zfs_arc_max, ulong, 0644);
7736 MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
7737
7738 module_param(zfs_arc_meta_limit, ulong, 0644);
7739 MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
7740
7741 module_param(zfs_arc_meta_limit_percent, ulong, 0644);
7742 MODULE_PARM_DESC(zfs_arc_meta_limit_percent,
7743 "Percent of arc size for arc meta limit");
7744
7745 module_param(zfs_arc_meta_min, ulong, 0644);
7746 MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
7747
7748 module_param(zfs_arc_meta_prune, int, 0644);
7749 MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
7750
7751 module_param(zfs_arc_meta_adjust_restarts, int, 0644);
7752 MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
7753 "Limit number of restarts in arc_adjust_meta");
7754
7755 module_param(zfs_arc_meta_strategy, int, 0644);
7756 MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
7757
7758 module_param(zfs_arc_grow_retry, int, 0644);
7759 MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
7760
7761 module_param(zfs_arc_p_aggressive_disable, int, 0644);
7762 MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
7763
7764 module_param(zfs_arc_p_dampener_disable, int, 0644);
7765 MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
7766
7767 module_param(zfs_arc_shrink_shift, int, 0644);
7768 MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
7769
7770 module_param(zfs_arc_pc_percent, uint, 0644);
7771 MODULE_PARM_DESC(zfs_arc_pc_percent,
7772 "Percent of pagecache to reclaim arc to");
7773
7774 module_param(zfs_arc_p_min_shift, int, 0644);
7775 MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
7776
7777 module_param(zfs_arc_average_blocksize, int, 0444);
7778 MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
7779
7780 module_param(zfs_compressed_arc_enabled, int, 0644);
7781 MODULE_PARM_DESC(zfs_compressed_arc_enabled, "Disable compressed arc buffers");
7782
7783 module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
7784 MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
7785
7786 module_param(l2arc_write_max, ulong, 0644);
7787 MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
7788
7789 module_param(l2arc_write_boost, ulong, 0644);
7790 MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
7791
7792 module_param(l2arc_headroom, ulong, 0644);
7793 MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
7794
7795 module_param(l2arc_headroom_boost, ulong, 0644);
7796 MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
7797
7798 module_param(l2arc_feed_secs, ulong, 0644);
7799 MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
7800
7801 module_param(l2arc_feed_min_ms, ulong, 0644);
7802 MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
7803
7804 module_param(l2arc_noprefetch, int, 0644);
7805 MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
7806
7807 module_param(l2arc_feed_again, int, 0644);
7808 MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
7809
7810 module_param(l2arc_norw, int, 0644);
7811 MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
7812
7813 module_param(zfs_arc_lotsfree_percent, int, 0644);
7814 MODULE_PARM_DESC(zfs_arc_lotsfree_percent,
7815 "System free memory I/O throttle in bytes");
7816
7817 module_param(zfs_arc_sys_free, ulong, 0644);
7818 MODULE_PARM_DESC(zfs_arc_sys_free, "System free memory target size in bytes");
7819
7820 module_param(zfs_arc_dnode_limit, ulong, 0644);
7821 MODULE_PARM_DESC(zfs_arc_dnode_limit, "Minimum bytes of dnodes in arc");
7822
7823 module_param(zfs_arc_dnode_limit_percent, ulong, 0644);
7824 MODULE_PARM_DESC(zfs_arc_dnode_limit_percent,
7825 "Percent of ARC meta buffers for dnodes");
7826
7827 module_param(zfs_arc_dnode_reduce_percent, ulong, 0644);
7828 MODULE_PARM_DESC(zfs_arc_dnode_reduce_percent,
7829 "Percentage of excess dnodes to try to unpin");
7830 /* END CSTYLED */
7831 #endif