]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/arc.c
Constify structures containing function pointers
[mirror_zfs.git] / module / zfs / arc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011 by Delphix. All rights reserved.
25 */
26
27 /*
28 * DVA-based Adjustable Replacement Cache
29 *
30 * While much of the theory of operation used here is
31 * based on the self-tuning, low overhead replacement cache
32 * presented by Megiddo and Modha at FAST 2003, there are some
33 * significant differences:
34 *
35 * 1. The Megiddo and Modha model assumes any page is evictable.
36 * Pages in its cache cannot be "locked" into memory. This makes
37 * the eviction algorithm simple: evict the last page in the list.
38 * This also make the performance characteristics easy to reason
39 * about. Our cache is not so simple. At any given moment, some
40 * subset of the blocks in the cache are un-evictable because we
41 * have handed out a reference to them. Blocks are only evictable
42 * when there are no external references active. This makes
43 * eviction far more problematic: we choose to evict the evictable
44 * blocks that are the "lowest" in the list.
45 *
46 * There are times when it is not possible to evict the requested
47 * space. In these circumstances we are unable to adjust the cache
48 * size. To prevent the cache growing unbounded at these times we
49 * implement a "cache throttle" that slows the flow of new data
50 * into the cache until we can make space available.
51 *
52 * 2. The Megiddo and Modha model assumes a fixed cache size.
53 * Pages are evicted when the cache is full and there is a cache
54 * miss. Our model has a variable sized cache. It grows with
55 * high use, but also tries to react to memory pressure from the
56 * operating system: decreasing its size when system memory is
57 * tight.
58 *
59 * 3. The Megiddo and Modha model assumes a fixed page size. All
60 * elements of the cache are therefor exactly the same size. So
61 * when adjusting the cache size following a cache miss, its simply
62 * a matter of choosing a single page to evict. In our model, we
63 * have variable sized cache blocks (rangeing from 512 bytes to
64 * 128K bytes). We therefor choose a set of blocks to evict to make
65 * space for a cache miss that approximates as closely as possible
66 * the space used by the new block.
67 *
68 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
69 * by N. Megiddo & D. Modha, FAST 2003
70 */
71
72 /*
73 * The locking model:
74 *
75 * A new reference to a cache buffer can be obtained in two
76 * ways: 1) via a hash table lookup using the DVA as a key,
77 * or 2) via one of the ARC lists. The arc_read() interface
78 * uses method 1, while the internal arc algorithms for
79 * adjusting the cache use method 2. We therefor provide two
80 * types of locks: 1) the hash table lock array, and 2) the
81 * arc list locks.
82 *
83 * Buffers do not have their own mutexes, rather they rely on the
84 * hash table mutexes for the bulk of their protection (i.e. most
85 * fields in the arc_buf_hdr_t are protected by these mutexes).
86 *
87 * buf_hash_find() returns the appropriate mutex (held) when it
88 * locates the requested buffer in the hash table. It returns
89 * NULL for the mutex if the buffer was not in the table.
90 *
91 * buf_hash_remove() expects the appropriate hash mutex to be
92 * already held before it is invoked.
93 *
94 * Each arc state also has a mutex which is used to protect the
95 * buffer list associated with the state. When attempting to
96 * obtain a hash table lock while holding an arc list lock you
97 * must use: mutex_tryenter() to avoid deadlock. Also note that
98 * the active state mutex must be held before the ghost state mutex.
99 *
100 * Arc buffers may have an associated eviction callback function.
101 * This function will be invoked prior to removing the buffer (e.g.
102 * in arc_do_user_evicts()). Note however that the data associated
103 * with the buffer may be evicted prior to the callback. The callback
104 * must be made with *no locks held* (to prevent deadlock). Additionally,
105 * the users of callbacks must ensure that their private data is
106 * protected from simultaneous callbacks from arc_buf_evict()
107 * and arc_do_user_evicts().
108 *
109 * It as also possible to register a callback which is run when the
110 * arc_meta_limit is reached and no buffers can be safely evicted. In
111 * this case the arc user should drop a reference on some arc buffers so
112 * they can be reclaimed and the arc_meta_limit honored. For example,
113 * when using the ZPL each dentry holds a references on a znode. These
114 * dentries must be pruned before the arc buffer holding the znode can
115 * be safely evicted.
116 *
117 * Note that the majority of the performance stats are manipulated
118 * with atomic operations.
119 *
120 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
121 *
122 * - L2ARC buflist creation
123 * - L2ARC buflist eviction
124 * - L2ARC write completion, which walks L2ARC buflists
125 * - ARC header destruction, as it removes from L2ARC buflists
126 * - ARC header release, as it removes from L2ARC buflists
127 */
128
129 #include <sys/spa.h>
130 #include <sys/zio.h>
131 #include <sys/zfs_context.h>
132 #include <sys/arc.h>
133 #include <sys/vdev.h>
134 #include <sys/vdev_impl.h>
135 #ifdef _KERNEL
136 #include <sys/vmsystm.h>
137 #include <vm/anon.h>
138 #include <sys/fs/swapnode.h>
139 #include <sys/zpl.h>
140 #endif
141 #include <sys/callb.h>
142 #include <sys/kstat.h>
143 #include <sys/dmu_tx.h>
144 #include <zfs_fletcher.h>
145
146 static kmutex_t arc_reclaim_thr_lock;
147 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */
148 static uint8_t arc_thread_exit;
149
150 /* number of bytes to prune from caches when at arc_meta_limit is reached */
151 uint_t arc_meta_prune = 1048576;
152
153 typedef enum arc_reclaim_strategy {
154 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
155 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
156 } arc_reclaim_strategy_t;
157
158 /* number of seconds before growing cache again */
159 static int arc_grow_retry = 5;
160
161 /* expiration time for arc_no_grow */
162 static clock_t arc_grow_time = 0;
163
164 /* shift of arc_c for calculating both min and max arc_p */
165 static int arc_p_min_shift = 4;
166
167 /* log2(fraction of arc to reclaim) */
168 static int arc_shrink_shift = 5;
169
170 /*
171 * minimum lifespan of a prefetch block in clock ticks
172 * (initialized in arc_init())
173 */
174 static int arc_min_prefetch_lifespan;
175
176 static int arc_dead;
177
178 /*
179 * The arc has filled available memory and has now warmed up.
180 */
181 static boolean_t arc_warm;
182
183 /*
184 * These tunables are for performance analysis.
185 */
186 unsigned long zfs_arc_max = 0;
187 unsigned long zfs_arc_min = 0;
188 unsigned long zfs_arc_meta_limit = 0;
189 int zfs_arc_grow_retry = 0;
190 int zfs_arc_shrink_shift = 0;
191 int zfs_arc_p_min_shift = 0;
192 int zfs_arc_memory_throttle_disable = 1;
193 int zfs_disable_dup_eviction = 0;
194 int zfs_arc_meta_prune = 0;
195
196 /*
197 * Note that buffers can be in one of 6 states:
198 * ARC_anon - anonymous (discussed below)
199 * ARC_mru - recently used, currently cached
200 * ARC_mru_ghost - recentely used, no longer in cache
201 * ARC_mfu - frequently used, currently cached
202 * ARC_mfu_ghost - frequently used, no longer in cache
203 * ARC_l2c_only - exists in L2ARC but not other states
204 * When there are no active references to the buffer, they are
205 * are linked onto a list in one of these arc states. These are
206 * the only buffers that can be evicted or deleted. Within each
207 * state there are multiple lists, one for meta-data and one for
208 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
209 * etc.) is tracked separately so that it can be managed more
210 * explicitly: favored over data, limited explicitly.
211 *
212 * Anonymous buffers are buffers that are not associated with
213 * a DVA. These are buffers that hold dirty block copies
214 * before they are written to stable storage. By definition,
215 * they are "ref'd" and are considered part of arc_mru
216 * that cannot be freed. Generally, they will aquire a DVA
217 * as they are written and migrate onto the arc_mru list.
218 *
219 * The ARC_l2c_only state is for buffers that are in the second
220 * level ARC but no longer in any of the ARC_m* lists. The second
221 * level ARC itself may also contain buffers that are in any of
222 * the ARC_m* states - meaning that a buffer can exist in two
223 * places. The reason for the ARC_l2c_only state is to keep the
224 * buffer header in the hash table, so that reads that hit the
225 * second level ARC benefit from these fast lookups.
226 */
227
228 typedef struct arc_state {
229 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */
230 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */
231 uint64_t arcs_size; /* total amount of data in this state */
232 kmutex_t arcs_mtx;
233 } arc_state_t;
234
235 /* The 6 states: */
236 static arc_state_t ARC_anon;
237 static arc_state_t ARC_mru;
238 static arc_state_t ARC_mru_ghost;
239 static arc_state_t ARC_mfu;
240 static arc_state_t ARC_mfu_ghost;
241 static arc_state_t ARC_l2c_only;
242
243 typedef struct arc_stats {
244 kstat_named_t arcstat_hits;
245 kstat_named_t arcstat_misses;
246 kstat_named_t arcstat_demand_data_hits;
247 kstat_named_t arcstat_demand_data_misses;
248 kstat_named_t arcstat_demand_metadata_hits;
249 kstat_named_t arcstat_demand_metadata_misses;
250 kstat_named_t arcstat_prefetch_data_hits;
251 kstat_named_t arcstat_prefetch_data_misses;
252 kstat_named_t arcstat_prefetch_metadata_hits;
253 kstat_named_t arcstat_prefetch_metadata_misses;
254 kstat_named_t arcstat_mru_hits;
255 kstat_named_t arcstat_mru_ghost_hits;
256 kstat_named_t arcstat_mfu_hits;
257 kstat_named_t arcstat_mfu_ghost_hits;
258 kstat_named_t arcstat_deleted;
259 kstat_named_t arcstat_recycle_miss;
260 kstat_named_t arcstat_mutex_miss;
261 kstat_named_t arcstat_evict_skip;
262 kstat_named_t arcstat_evict_l2_cached;
263 kstat_named_t arcstat_evict_l2_eligible;
264 kstat_named_t arcstat_evict_l2_ineligible;
265 kstat_named_t arcstat_hash_elements;
266 kstat_named_t arcstat_hash_elements_max;
267 kstat_named_t arcstat_hash_collisions;
268 kstat_named_t arcstat_hash_chains;
269 kstat_named_t arcstat_hash_chain_max;
270 kstat_named_t arcstat_p;
271 kstat_named_t arcstat_c;
272 kstat_named_t arcstat_c_min;
273 kstat_named_t arcstat_c_max;
274 kstat_named_t arcstat_size;
275 kstat_named_t arcstat_hdr_size;
276 kstat_named_t arcstat_data_size;
277 kstat_named_t arcstat_other_size;
278 kstat_named_t arcstat_anon_size;
279 kstat_named_t arcstat_anon_evict_data;
280 kstat_named_t arcstat_anon_evict_metadata;
281 kstat_named_t arcstat_mru_size;
282 kstat_named_t arcstat_mru_evict_data;
283 kstat_named_t arcstat_mru_evict_metadata;
284 kstat_named_t arcstat_mru_ghost_size;
285 kstat_named_t arcstat_mru_ghost_evict_data;
286 kstat_named_t arcstat_mru_ghost_evict_metadata;
287 kstat_named_t arcstat_mfu_size;
288 kstat_named_t arcstat_mfu_evict_data;
289 kstat_named_t arcstat_mfu_evict_metadata;
290 kstat_named_t arcstat_mfu_ghost_size;
291 kstat_named_t arcstat_mfu_ghost_evict_data;
292 kstat_named_t arcstat_mfu_ghost_evict_metadata;
293 kstat_named_t arcstat_l2_hits;
294 kstat_named_t arcstat_l2_misses;
295 kstat_named_t arcstat_l2_feeds;
296 kstat_named_t arcstat_l2_rw_clash;
297 kstat_named_t arcstat_l2_read_bytes;
298 kstat_named_t arcstat_l2_write_bytes;
299 kstat_named_t arcstat_l2_writes_sent;
300 kstat_named_t arcstat_l2_writes_done;
301 kstat_named_t arcstat_l2_writes_error;
302 kstat_named_t arcstat_l2_writes_hdr_miss;
303 kstat_named_t arcstat_l2_evict_lock_retry;
304 kstat_named_t arcstat_l2_evict_reading;
305 kstat_named_t arcstat_l2_free_on_write;
306 kstat_named_t arcstat_l2_abort_lowmem;
307 kstat_named_t arcstat_l2_cksum_bad;
308 kstat_named_t arcstat_l2_io_error;
309 kstat_named_t arcstat_l2_size;
310 kstat_named_t arcstat_l2_hdr_size;
311 kstat_named_t arcstat_memory_throttle_count;
312 kstat_named_t arcstat_duplicate_buffers;
313 kstat_named_t arcstat_duplicate_buffers_size;
314 kstat_named_t arcstat_duplicate_reads;
315 kstat_named_t arcstat_memory_direct_count;
316 kstat_named_t arcstat_memory_indirect_count;
317 kstat_named_t arcstat_no_grow;
318 kstat_named_t arcstat_tempreserve;
319 kstat_named_t arcstat_loaned_bytes;
320 kstat_named_t arcstat_prune;
321 kstat_named_t arcstat_meta_used;
322 kstat_named_t arcstat_meta_limit;
323 kstat_named_t arcstat_meta_max;
324 } arc_stats_t;
325
326 static arc_stats_t arc_stats = {
327 { "hits", KSTAT_DATA_UINT64 },
328 { "misses", KSTAT_DATA_UINT64 },
329 { "demand_data_hits", KSTAT_DATA_UINT64 },
330 { "demand_data_misses", KSTAT_DATA_UINT64 },
331 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
332 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
333 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
334 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
335 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
336 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
337 { "mru_hits", KSTAT_DATA_UINT64 },
338 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
339 { "mfu_hits", KSTAT_DATA_UINT64 },
340 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
341 { "deleted", KSTAT_DATA_UINT64 },
342 { "recycle_miss", KSTAT_DATA_UINT64 },
343 { "mutex_miss", KSTAT_DATA_UINT64 },
344 { "evict_skip", KSTAT_DATA_UINT64 },
345 { "evict_l2_cached", KSTAT_DATA_UINT64 },
346 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
347 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
348 { "hash_elements", KSTAT_DATA_UINT64 },
349 { "hash_elements_max", KSTAT_DATA_UINT64 },
350 { "hash_collisions", KSTAT_DATA_UINT64 },
351 { "hash_chains", KSTAT_DATA_UINT64 },
352 { "hash_chain_max", KSTAT_DATA_UINT64 },
353 { "p", KSTAT_DATA_UINT64 },
354 { "c", KSTAT_DATA_UINT64 },
355 { "c_min", KSTAT_DATA_UINT64 },
356 { "c_max", KSTAT_DATA_UINT64 },
357 { "size", KSTAT_DATA_UINT64 },
358 { "hdr_size", KSTAT_DATA_UINT64 },
359 { "data_size", KSTAT_DATA_UINT64 },
360 { "other_size", KSTAT_DATA_UINT64 },
361 { "anon_size", KSTAT_DATA_UINT64 },
362 { "anon_evict_data", KSTAT_DATA_UINT64 },
363 { "anon_evict_metadata", KSTAT_DATA_UINT64 },
364 { "mru_size", KSTAT_DATA_UINT64 },
365 { "mru_evict_data", KSTAT_DATA_UINT64 },
366 { "mru_evict_metadata", KSTAT_DATA_UINT64 },
367 { "mru_ghost_size", KSTAT_DATA_UINT64 },
368 { "mru_ghost_evict_data", KSTAT_DATA_UINT64 },
369 { "mru_ghost_evict_metadata", KSTAT_DATA_UINT64 },
370 { "mfu_size", KSTAT_DATA_UINT64 },
371 { "mfu_evict_data", KSTAT_DATA_UINT64 },
372 { "mfu_evict_metadata", KSTAT_DATA_UINT64 },
373 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
374 { "mfu_ghost_evict_data", KSTAT_DATA_UINT64 },
375 { "mfu_ghost_evict_metadata", KSTAT_DATA_UINT64 },
376 { "l2_hits", KSTAT_DATA_UINT64 },
377 { "l2_misses", KSTAT_DATA_UINT64 },
378 { "l2_feeds", KSTAT_DATA_UINT64 },
379 { "l2_rw_clash", KSTAT_DATA_UINT64 },
380 { "l2_read_bytes", KSTAT_DATA_UINT64 },
381 { "l2_write_bytes", KSTAT_DATA_UINT64 },
382 { "l2_writes_sent", KSTAT_DATA_UINT64 },
383 { "l2_writes_done", KSTAT_DATA_UINT64 },
384 { "l2_writes_error", KSTAT_DATA_UINT64 },
385 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 },
386 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
387 { "l2_evict_reading", KSTAT_DATA_UINT64 },
388 { "l2_free_on_write", KSTAT_DATA_UINT64 },
389 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
390 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
391 { "l2_io_error", KSTAT_DATA_UINT64 },
392 { "l2_size", KSTAT_DATA_UINT64 },
393 { "l2_hdr_size", KSTAT_DATA_UINT64 },
394 { "memory_throttle_count", KSTAT_DATA_UINT64 },
395 { "duplicate_buffers", KSTAT_DATA_UINT64 },
396 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
397 { "duplicate_reads", KSTAT_DATA_UINT64 },
398 { "memory_direct_count", KSTAT_DATA_UINT64 },
399 { "memory_indirect_count", KSTAT_DATA_UINT64 },
400 { "arc_no_grow", KSTAT_DATA_UINT64 },
401 { "arc_tempreserve", KSTAT_DATA_UINT64 },
402 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
403 { "arc_prune", KSTAT_DATA_UINT64 },
404 { "arc_meta_used", KSTAT_DATA_UINT64 },
405 { "arc_meta_limit", KSTAT_DATA_UINT64 },
406 { "arc_meta_max", KSTAT_DATA_UINT64 },
407 };
408
409 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
410
411 #define ARCSTAT_INCR(stat, val) \
412 atomic_add_64(&arc_stats.stat.value.ui64, (val));
413
414 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
415 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
416
417 #define ARCSTAT_MAX(stat, val) { \
418 uint64_t m; \
419 while ((val) > (m = arc_stats.stat.value.ui64) && \
420 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
421 continue; \
422 }
423
424 #define ARCSTAT_MAXSTAT(stat) \
425 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
426
427 /*
428 * We define a macro to allow ARC hits/misses to be easily broken down by
429 * two separate conditions, giving a total of four different subtypes for
430 * each of hits and misses (so eight statistics total).
431 */
432 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
433 if (cond1) { \
434 if (cond2) { \
435 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
436 } else { \
437 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
438 } \
439 } else { \
440 if (cond2) { \
441 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
442 } else { \
443 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
444 } \
445 }
446
447 kstat_t *arc_ksp;
448 static arc_state_t *arc_anon;
449 static arc_state_t *arc_mru;
450 static arc_state_t *arc_mru_ghost;
451 static arc_state_t *arc_mfu;
452 static arc_state_t *arc_mfu_ghost;
453 static arc_state_t *arc_l2c_only;
454
455 /*
456 * There are several ARC variables that are critical to export as kstats --
457 * but we don't want to have to grovel around in the kstat whenever we wish to
458 * manipulate them. For these variables, we therefore define them to be in
459 * terms of the statistic variable. This assures that we are not introducing
460 * the possibility of inconsistency by having shadow copies of the variables,
461 * while still allowing the code to be readable.
462 */
463 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
464 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
465 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
466 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
467 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
468 #define arc_no_grow ARCSTAT(arcstat_no_grow)
469 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
470 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
471 #define arc_meta_used ARCSTAT(arcstat_meta_used)
472 #define arc_meta_limit ARCSTAT(arcstat_meta_limit)
473 #define arc_meta_max ARCSTAT(arcstat_meta_max)
474
475 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
476
477 typedef struct arc_callback arc_callback_t;
478
479 struct arc_callback {
480 void *acb_private;
481 arc_done_func_t *acb_done;
482 arc_buf_t *acb_buf;
483 zio_t *acb_zio_dummy;
484 arc_callback_t *acb_next;
485 };
486
487 typedef struct arc_write_callback arc_write_callback_t;
488
489 struct arc_write_callback {
490 void *awcb_private;
491 arc_done_func_t *awcb_ready;
492 arc_done_func_t *awcb_done;
493 arc_buf_t *awcb_buf;
494 };
495
496 struct arc_buf_hdr {
497 /* protected by hash lock */
498 dva_t b_dva;
499 uint64_t b_birth;
500 uint64_t b_cksum0;
501
502 kmutex_t b_freeze_lock;
503 zio_cksum_t *b_freeze_cksum;
504 void *b_thawed;
505
506 arc_buf_hdr_t *b_hash_next;
507 arc_buf_t *b_buf;
508 uint32_t b_flags;
509 uint32_t b_datacnt;
510
511 arc_callback_t *b_acb;
512 kcondvar_t b_cv;
513
514 /* immutable */
515 arc_buf_contents_t b_type;
516 uint64_t b_size;
517 uint64_t b_spa;
518
519 /* protected by arc state mutex */
520 arc_state_t *b_state;
521 list_node_t b_arc_node;
522
523 /* updated atomically */
524 clock_t b_arc_access;
525
526 /* self protecting */
527 refcount_t b_refcnt;
528
529 l2arc_buf_hdr_t *b_l2hdr;
530 list_node_t b_l2node;
531 };
532
533 static list_t arc_prune_list;
534 static kmutex_t arc_prune_mtx;
535 static arc_buf_t *arc_eviction_list;
536 static kmutex_t arc_eviction_mtx;
537 static arc_buf_hdr_t arc_eviction_hdr;
538 static void arc_get_data_buf(arc_buf_t *buf);
539 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
540 static int arc_evict_needed(arc_buf_contents_t type);
541 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
542
543 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
544
545 #define GHOST_STATE(state) \
546 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
547 (state) == arc_l2c_only)
548
549 /*
550 * Private ARC flags. These flags are private ARC only flags that will show up
551 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can
552 * be passed in as arc_flags in things like arc_read. However, these flags
553 * should never be passed and should only be set by ARC code. When adding new
554 * public flags, make sure not to smash the private ones.
555 */
556
557 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */
558 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */
559 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */
560 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */
561 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */
562 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */
563 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */
564 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */
565 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */
566 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */
567
568 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE)
569 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
570 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR)
571 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH)
572 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ)
573 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE)
574 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
575 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE)
576 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \
577 (hdr)->b_l2hdr != NULL)
578 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING)
579 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED)
580 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD)
581
582 /*
583 * Other sizes
584 */
585
586 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
587 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
588
589 /*
590 * Hash table routines
591 */
592
593 #define HT_LOCK_ALIGN 64
594 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
595
596 struct ht_lock {
597 kmutex_t ht_lock;
598 #ifdef _KERNEL
599 unsigned char pad[HT_LOCK_PAD];
600 #endif
601 };
602
603 #define BUF_LOCKS 256
604 typedef struct buf_hash_table {
605 uint64_t ht_mask;
606 arc_buf_hdr_t **ht_table;
607 struct ht_lock ht_locks[BUF_LOCKS];
608 } buf_hash_table_t;
609
610 static buf_hash_table_t buf_hash_table;
611
612 #define BUF_HASH_INDEX(spa, dva, birth) \
613 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
614 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
615 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
616 #define HDR_LOCK(hdr) \
617 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
618
619 uint64_t zfs_crc64_table[256];
620
621 /*
622 * Level 2 ARC
623 */
624
625 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
626 #define L2ARC_HEADROOM 2 /* num of writes */
627 #define L2ARC_FEED_SECS 1 /* caching interval secs */
628 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
629
630 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
631 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
632
633 /*
634 * L2ARC Performance Tunables
635 */
636 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
637 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
638 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
639 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
640 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
641 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
642 int l2arc_feed_again = B_TRUE; /* turbo warmup */
643 int l2arc_norw = B_TRUE; /* no reads during writes */
644
645 /*
646 * L2ARC Internals
647 */
648 typedef struct l2arc_dev {
649 vdev_t *l2ad_vdev; /* vdev */
650 spa_t *l2ad_spa; /* spa */
651 uint64_t l2ad_hand; /* next write location */
652 uint64_t l2ad_write; /* desired write size, bytes */
653 uint64_t l2ad_boost; /* warmup write boost, bytes */
654 uint64_t l2ad_start; /* first addr on device */
655 uint64_t l2ad_end; /* last addr on device */
656 uint64_t l2ad_evict; /* last addr eviction reached */
657 boolean_t l2ad_first; /* first sweep through */
658 boolean_t l2ad_writing; /* currently writing */
659 list_t *l2ad_buflist; /* buffer list */
660 list_node_t l2ad_node; /* device list node */
661 } l2arc_dev_t;
662
663 static list_t L2ARC_dev_list; /* device list */
664 static list_t *l2arc_dev_list; /* device list pointer */
665 static kmutex_t l2arc_dev_mtx; /* device list mutex */
666 static l2arc_dev_t *l2arc_dev_last; /* last device used */
667 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */
668 static list_t L2ARC_free_on_write; /* free after write buf list */
669 static list_t *l2arc_free_on_write; /* free after write list ptr */
670 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
671 static uint64_t l2arc_ndev; /* number of devices */
672
673 typedef struct l2arc_read_callback {
674 arc_buf_t *l2rcb_buf; /* read buffer */
675 spa_t *l2rcb_spa; /* spa */
676 blkptr_t l2rcb_bp; /* original blkptr */
677 zbookmark_t l2rcb_zb; /* original bookmark */
678 int l2rcb_flags; /* original flags */
679 } l2arc_read_callback_t;
680
681 typedef struct l2arc_write_callback {
682 l2arc_dev_t *l2wcb_dev; /* device info */
683 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
684 } l2arc_write_callback_t;
685
686 struct l2arc_buf_hdr {
687 /* protected by arc_buf_hdr mutex */
688 l2arc_dev_t *b_dev; /* L2ARC device */
689 uint64_t b_daddr; /* disk address, offset byte */
690 };
691
692 typedef struct l2arc_data_free {
693 /* protected by l2arc_free_on_write_mtx */
694 void *l2df_data;
695 size_t l2df_size;
696 void (*l2df_func)(void *, size_t);
697 list_node_t l2df_list_node;
698 } l2arc_data_free_t;
699
700 static kmutex_t l2arc_feed_thr_lock;
701 static kcondvar_t l2arc_feed_thr_cv;
702 static uint8_t l2arc_thread_exit;
703
704 static void l2arc_read_done(zio_t *zio);
705 static void l2arc_hdr_stat_add(void);
706 static void l2arc_hdr_stat_remove(void);
707
708 static uint64_t
709 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
710 {
711 uint8_t *vdva = (uint8_t *)dva;
712 uint64_t crc = -1ULL;
713 int i;
714
715 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
716
717 for (i = 0; i < sizeof (dva_t); i++)
718 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
719
720 crc ^= (spa>>8) ^ birth;
721
722 return (crc);
723 }
724
725 #define BUF_EMPTY(buf) \
726 ((buf)->b_dva.dva_word[0] == 0 && \
727 (buf)->b_dva.dva_word[1] == 0 && \
728 (buf)->b_birth == 0)
729
730 #define BUF_EQUAL(spa, dva, birth, buf) \
731 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
732 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
733 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
734
735 static void
736 buf_discard_identity(arc_buf_hdr_t *hdr)
737 {
738 hdr->b_dva.dva_word[0] = 0;
739 hdr->b_dva.dva_word[1] = 0;
740 hdr->b_birth = 0;
741 hdr->b_cksum0 = 0;
742 }
743
744 static arc_buf_hdr_t *
745 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
746 {
747 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
748 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
749 arc_buf_hdr_t *buf;
750
751 mutex_enter(hash_lock);
752 for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
753 buf = buf->b_hash_next) {
754 if (BUF_EQUAL(spa, dva, birth, buf)) {
755 *lockp = hash_lock;
756 return (buf);
757 }
758 }
759 mutex_exit(hash_lock);
760 *lockp = NULL;
761 return (NULL);
762 }
763
764 /*
765 * Insert an entry into the hash table. If there is already an element
766 * equal to elem in the hash table, then the already existing element
767 * will be returned and the new element will not be inserted.
768 * Otherwise returns NULL.
769 */
770 static arc_buf_hdr_t *
771 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
772 {
773 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
774 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
775 arc_buf_hdr_t *fbuf;
776 uint32_t i;
777
778 ASSERT(!HDR_IN_HASH_TABLE(buf));
779 *lockp = hash_lock;
780 mutex_enter(hash_lock);
781 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
782 fbuf = fbuf->b_hash_next, i++) {
783 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
784 return (fbuf);
785 }
786
787 buf->b_hash_next = buf_hash_table.ht_table[idx];
788 buf_hash_table.ht_table[idx] = buf;
789 buf->b_flags |= ARC_IN_HASH_TABLE;
790
791 /* collect some hash table performance data */
792 if (i > 0) {
793 ARCSTAT_BUMP(arcstat_hash_collisions);
794 if (i == 1)
795 ARCSTAT_BUMP(arcstat_hash_chains);
796
797 ARCSTAT_MAX(arcstat_hash_chain_max, i);
798 }
799
800 ARCSTAT_BUMP(arcstat_hash_elements);
801 ARCSTAT_MAXSTAT(arcstat_hash_elements);
802
803 return (NULL);
804 }
805
806 static void
807 buf_hash_remove(arc_buf_hdr_t *buf)
808 {
809 arc_buf_hdr_t *fbuf, **bufp;
810 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
811
812 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
813 ASSERT(HDR_IN_HASH_TABLE(buf));
814
815 bufp = &buf_hash_table.ht_table[idx];
816 while ((fbuf = *bufp) != buf) {
817 ASSERT(fbuf != NULL);
818 bufp = &fbuf->b_hash_next;
819 }
820 *bufp = buf->b_hash_next;
821 buf->b_hash_next = NULL;
822 buf->b_flags &= ~ARC_IN_HASH_TABLE;
823
824 /* collect some hash table performance data */
825 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
826
827 if (buf_hash_table.ht_table[idx] &&
828 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
829 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
830 }
831
832 /*
833 * Global data structures and functions for the buf kmem cache.
834 */
835 static kmem_cache_t *hdr_cache;
836 static kmem_cache_t *buf_cache;
837
838 static void
839 buf_fini(void)
840 {
841 int i;
842
843 #if defined(_KERNEL) && defined(HAVE_SPL)
844 /* Large allocations which do not require contiguous pages
845 * should be using vmem_free() in the linux kernel */
846 vmem_free(buf_hash_table.ht_table,
847 (buf_hash_table.ht_mask + 1) * sizeof (void *));
848 #else
849 kmem_free(buf_hash_table.ht_table,
850 (buf_hash_table.ht_mask + 1) * sizeof (void *));
851 #endif
852 for (i = 0; i < BUF_LOCKS; i++)
853 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
854 kmem_cache_destroy(hdr_cache);
855 kmem_cache_destroy(buf_cache);
856 }
857
858 /*
859 * Constructor callback - called when the cache is empty
860 * and a new buf is requested.
861 */
862 /* ARGSUSED */
863 static int
864 hdr_cons(void *vbuf, void *unused, int kmflag)
865 {
866 arc_buf_hdr_t *buf = vbuf;
867
868 bzero(buf, sizeof (arc_buf_hdr_t));
869 refcount_create(&buf->b_refcnt);
870 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
871 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
872 list_link_init(&buf->b_arc_node);
873 list_link_init(&buf->b_l2node);
874 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
875
876 return (0);
877 }
878
879 /* ARGSUSED */
880 static int
881 buf_cons(void *vbuf, void *unused, int kmflag)
882 {
883 arc_buf_t *buf = vbuf;
884
885 bzero(buf, sizeof (arc_buf_t));
886 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
887 rw_init(&buf->b_data_lock, NULL, RW_DEFAULT, NULL);
888 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
889
890 return (0);
891 }
892
893 /*
894 * Destructor callback - called when a cached buf is
895 * no longer required.
896 */
897 /* ARGSUSED */
898 static void
899 hdr_dest(void *vbuf, void *unused)
900 {
901 arc_buf_hdr_t *buf = vbuf;
902
903 ASSERT(BUF_EMPTY(buf));
904 refcount_destroy(&buf->b_refcnt);
905 cv_destroy(&buf->b_cv);
906 mutex_destroy(&buf->b_freeze_lock);
907 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
908 }
909
910 /* ARGSUSED */
911 static void
912 buf_dest(void *vbuf, void *unused)
913 {
914 arc_buf_t *buf = vbuf;
915
916 mutex_destroy(&buf->b_evict_lock);
917 rw_destroy(&buf->b_data_lock);
918 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
919 }
920
921 static void
922 buf_init(void)
923 {
924 uint64_t *ct;
925 uint64_t hsize = 1ULL << 12;
926 int i, j;
927
928 /*
929 * The hash table is big enough to fill all of physical memory
930 * with an average 64K block size. The table will take up
931 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
932 */
933 while (hsize * 65536 < physmem * PAGESIZE)
934 hsize <<= 1;
935 retry:
936 buf_hash_table.ht_mask = hsize - 1;
937 #if defined(_KERNEL) && defined(HAVE_SPL)
938 /* Large allocations which do not require contiguous pages
939 * should be using vmem_alloc() in the linux kernel */
940 buf_hash_table.ht_table =
941 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
942 #else
943 buf_hash_table.ht_table =
944 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
945 #endif
946 if (buf_hash_table.ht_table == NULL) {
947 ASSERT(hsize > (1ULL << 8));
948 hsize >>= 1;
949 goto retry;
950 }
951
952 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
953 0, hdr_cons, hdr_dest, NULL, NULL, NULL, 0);
954 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
955 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
956
957 for (i = 0; i < 256; i++)
958 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
959 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
960
961 for (i = 0; i < BUF_LOCKS; i++) {
962 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
963 NULL, MUTEX_DEFAULT, NULL);
964 }
965 }
966
967 #define ARC_MINTIME (hz>>4) /* 62 ms */
968
969 static void
970 arc_cksum_verify(arc_buf_t *buf)
971 {
972 zio_cksum_t zc;
973
974 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
975 return;
976
977 mutex_enter(&buf->b_hdr->b_freeze_lock);
978 if (buf->b_hdr->b_freeze_cksum == NULL ||
979 (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
980 mutex_exit(&buf->b_hdr->b_freeze_lock);
981 return;
982 }
983 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
984 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
985 panic("buffer modified while frozen!");
986 mutex_exit(&buf->b_hdr->b_freeze_lock);
987 }
988
989 static int
990 arc_cksum_equal(arc_buf_t *buf)
991 {
992 zio_cksum_t zc;
993 int equal;
994
995 mutex_enter(&buf->b_hdr->b_freeze_lock);
996 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
997 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
998 mutex_exit(&buf->b_hdr->b_freeze_lock);
999
1000 return (equal);
1001 }
1002
1003 static void
1004 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1005 {
1006 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1007 return;
1008
1009 mutex_enter(&buf->b_hdr->b_freeze_lock);
1010 if (buf->b_hdr->b_freeze_cksum != NULL) {
1011 mutex_exit(&buf->b_hdr->b_freeze_lock);
1012 return;
1013 }
1014 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1015 KM_PUSHPAGE);
1016 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1017 buf->b_hdr->b_freeze_cksum);
1018 mutex_exit(&buf->b_hdr->b_freeze_lock);
1019 }
1020
1021 void
1022 arc_buf_thaw(arc_buf_t *buf)
1023 {
1024 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1025 if (buf->b_hdr->b_state != arc_anon)
1026 panic("modifying non-anon buffer!");
1027 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1028 panic("modifying buffer while i/o in progress!");
1029 arc_cksum_verify(buf);
1030 }
1031
1032 mutex_enter(&buf->b_hdr->b_freeze_lock);
1033 if (buf->b_hdr->b_freeze_cksum != NULL) {
1034 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1035 buf->b_hdr->b_freeze_cksum = NULL;
1036 }
1037
1038 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1039 if (buf->b_hdr->b_thawed)
1040 kmem_free(buf->b_hdr->b_thawed, 1);
1041 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1042 }
1043
1044 mutex_exit(&buf->b_hdr->b_freeze_lock);
1045 }
1046
1047 void
1048 arc_buf_freeze(arc_buf_t *buf)
1049 {
1050 kmutex_t *hash_lock;
1051
1052 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1053 return;
1054
1055 hash_lock = HDR_LOCK(buf->b_hdr);
1056 mutex_enter(hash_lock);
1057
1058 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1059 buf->b_hdr->b_state == arc_anon);
1060 arc_cksum_compute(buf, B_FALSE);
1061 mutex_exit(hash_lock);
1062 }
1063
1064 static void
1065 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1066 {
1067 ASSERT(MUTEX_HELD(hash_lock));
1068
1069 if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1070 (ab->b_state != arc_anon)) {
1071 uint64_t delta = ab->b_size * ab->b_datacnt;
1072 list_t *list = &ab->b_state->arcs_list[ab->b_type];
1073 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1074
1075 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1076 mutex_enter(&ab->b_state->arcs_mtx);
1077 ASSERT(list_link_active(&ab->b_arc_node));
1078 list_remove(list, ab);
1079 if (GHOST_STATE(ab->b_state)) {
1080 ASSERT3U(ab->b_datacnt, ==, 0);
1081 ASSERT3P(ab->b_buf, ==, NULL);
1082 delta = ab->b_size;
1083 }
1084 ASSERT(delta > 0);
1085 ASSERT3U(*size, >=, delta);
1086 atomic_add_64(size, -delta);
1087 mutex_exit(&ab->b_state->arcs_mtx);
1088 /* remove the prefetch flag if we get a reference */
1089 if (ab->b_flags & ARC_PREFETCH)
1090 ab->b_flags &= ~ARC_PREFETCH;
1091 }
1092 }
1093
1094 static int
1095 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1096 {
1097 int cnt;
1098 arc_state_t *state = ab->b_state;
1099
1100 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1101 ASSERT(!GHOST_STATE(state));
1102
1103 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1104 (state != arc_anon)) {
1105 uint64_t *size = &state->arcs_lsize[ab->b_type];
1106
1107 ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1108 mutex_enter(&state->arcs_mtx);
1109 ASSERT(!list_link_active(&ab->b_arc_node));
1110 list_insert_head(&state->arcs_list[ab->b_type], ab);
1111 ASSERT(ab->b_datacnt > 0);
1112 atomic_add_64(size, ab->b_size * ab->b_datacnt);
1113 mutex_exit(&state->arcs_mtx);
1114 }
1115 return (cnt);
1116 }
1117
1118 /*
1119 * Move the supplied buffer to the indicated state. The mutex
1120 * for the buffer must be held by the caller.
1121 */
1122 static void
1123 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1124 {
1125 arc_state_t *old_state = ab->b_state;
1126 int64_t refcnt = refcount_count(&ab->b_refcnt);
1127 uint64_t from_delta, to_delta;
1128
1129 ASSERT(MUTEX_HELD(hash_lock));
1130 ASSERT(new_state != old_state);
1131 ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1132 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1133 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1134
1135 from_delta = to_delta = ab->b_datacnt * ab->b_size;
1136
1137 /*
1138 * If this buffer is evictable, transfer it from the
1139 * old state list to the new state list.
1140 */
1141 if (refcnt == 0) {
1142 if (old_state != arc_anon) {
1143 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1144 uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1145
1146 if (use_mutex)
1147 mutex_enter(&old_state->arcs_mtx);
1148
1149 ASSERT(list_link_active(&ab->b_arc_node));
1150 list_remove(&old_state->arcs_list[ab->b_type], ab);
1151
1152 /*
1153 * If prefetching out of the ghost cache,
1154 * we will have a non-zero datacnt.
1155 */
1156 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1157 /* ghost elements have a ghost size */
1158 ASSERT(ab->b_buf == NULL);
1159 from_delta = ab->b_size;
1160 }
1161 ASSERT3U(*size, >=, from_delta);
1162 atomic_add_64(size, -from_delta);
1163
1164 if (use_mutex)
1165 mutex_exit(&old_state->arcs_mtx);
1166 }
1167 if (new_state != arc_anon) {
1168 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1169 uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1170
1171 if (use_mutex)
1172 mutex_enter(&new_state->arcs_mtx);
1173
1174 list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1175
1176 /* ghost elements have a ghost size */
1177 if (GHOST_STATE(new_state)) {
1178 ASSERT(ab->b_datacnt == 0);
1179 ASSERT(ab->b_buf == NULL);
1180 to_delta = ab->b_size;
1181 }
1182 atomic_add_64(size, to_delta);
1183
1184 if (use_mutex)
1185 mutex_exit(&new_state->arcs_mtx);
1186 }
1187 }
1188
1189 ASSERT(!BUF_EMPTY(ab));
1190 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1191 buf_hash_remove(ab);
1192
1193 /* adjust state sizes */
1194 if (to_delta)
1195 atomic_add_64(&new_state->arcs_size, to_delta);
1196 if (from_delta) {
1197 ASSERT3U(old_state->arcs_size, >=, from_delta);
1198 atomic_add_64(&old_state->arcs_size, -from_delta);
1199 }
1200 ab->b_state = new_state;
1201
1202 /* adjust l2arc hdr stats */
1203 if (new_state == arc_l2c_only)
1204 l2arc_hdr_stat_add();
1205 else if (old_state == arc_l2c_only)
1206 l2arc_hdr_stat_remove();
1207 }
1208
1209 void
1210 arc_space_consume(uint64_t space, arc_space_type_t type)
1211 {
1212 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1213
1214 switch (type) {
1215 default:
1216 break;
1217 case ARC_SPACE_DATA:
1218 ARCSTAT_INCR(arcstat_data_size, space);
1219 break;
1220 case ARC_SPACE_OTHER:
1221 ARCSTAT_INCR(arcstat_other_size, space);
1222 break;
1223 case ARC_SPACE_HDRS:
1224 ARCSTAT_INCR(arcstat_hdr_size, space);
1225 break;
1226 case ARC_SPACE_L2HDRS:
1227 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1228 break;
1229 }
1230
1231 atomic_add_64(&arc_meta_used, space);
1232 atomic_add_64(&arc_size, space);
1233 }
1234
1235 void
1236 arc_space_return(uint64_t space, arc_space_type_t type)
1237 {
1238 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1239
1240 switch (type) {
1241 default:
1242 break;
1243 case ARC_SPACE_DATA:
1244 ARCSTAT_INCR(arcstat_data_size, -space);
1245 break;
1246 case ARC_SPACE_OTHER:
1247 ARCSTAT_INCR(arcstat_other_size, -space);
1248 break;
1249 case ARC_SPACE_HDRS:
1250 ARCSTAT_INCR(arcstat_hdr_size, -space);
1251 break;
1252 case ARC_SPACE_L2HDRS:
1253 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1254 break;
1255 }
1256
1257 ASSERT(arc_meta_used >= space);
1258 if (arc_meta_max < arc_meta_used)
1259 arc_meta_max = arc_meta_used;
1260 atomic_add_64(&arc_meta_used, -space);
1261 ASSERT(arc_size >= space);
1262 atomic_add_64(&arc_size, -space);
1263 }
1264
1265 void *
1266 arc_data_buf_alloc(uint64_t size)
1267 {
1268 if (arc_evict_needed(ARC_BUFC_DATA))
1269 cv_signal(&arc_reclaim_thr_cv);
1270 atomic_add_64(&arc_size, size);
1271 return (zio_data_buf_alloc(size));
1272 }
1273
1274 void
1275 arc_data_buf_free(void *buf, uint64_t size)
1276 {
1277 zio_data_buf_free(buf, size);
1278 ASSERT(arc_size >= size);
1279 atomic_add_64(&arc_size, -size);
1280 }
1281
1282 arc_buf_t *
1283 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1284 {
1285 arc_buf_hdr_t *hdr;
1286 arc_buf_t *buf;
1287
1288 ASSERT3U(size, >, 0);
1289 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1290 ASSERT(BUF_EMPTY(hdr));
1291 hdr->b_size = size;
1292 hdr->b_type = type;
1293 hdr->b_spa = spa_load_guid(spa);
1294 hdr->b_state = arc_anon;
1295 hdr->b_arc_access = 0;
1296 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1297 buf->b_hdr = hdr;
1298 buf->b_data = NULL;
1299 buf->b_efunc = NULL;
1300 buf->b_private = NULL;
1301 buf->b_next = NULL;
1302 hdr->b_buf = buf;
1303 arc_get_data_buf(buf);
1304 hdr->b_datacnt = 1;
1305 hdr->b_flags = 0;
1306 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1307 (void) refcount_add(&hdr->b_refcnt, tag);
1308
1309 return (buf);
1310 }
1311
1312 static char *arc_onloan_tag = "onloan";
1313
1314 /*
1315 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1316 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1317 * buffers must be returned to the arc before they can be used by the DMU or
1318 * freed.
1319 */
1320 arc_buf_t *
1321 arc_loan_buf(spa_t *spa, int size)
1322 {
1323 arc_buf_t *buf;
1324
1325 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1326
1327 atomic_add_64(&arc_loaned_bytes, size);
1328 return (buf);
1329 }
1330
1331 /*
1332 * Return a loaned arc buffer to the arc.
1333 */
1334 void
1335 arc_return_buf(arc_buf_t *buf, void *tag)
1336 {
1337 arc_buf_hdr_t *hdr = buf->b_hdr;
1338
1339 ASSERT(buf->b_data != NULL);
1340 (void) refcount_add(&hdr->b_refcnt, tag);
1341 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1342
1343 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1344 }
1345
1346 /* Detach an arc_buf from a dbuf (tag) */
1347 void
1348 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1349 {
1350 arc_buf_hdr_t *hdr;
1351
1352 ASSERT(buf->b_data != NULL);
1353 hdr = buf->b_hdr;
1354 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1355 (void) refcount_remove(&hdr->b_refcnt, tag);
1356 buf->b_efunc = NULL;
1357 buf->b_private = NULL;
1358
1359 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1360 }
1361
1362 static arc_buf_t *
1363 arc_buf_clone(arc_buf_t *from)
1364 {
1365 arc_buf_t *buf;
1366 arc_buf_hdr_t *hdr = from->b_hdr;
1367 uint64_t size = hdr->b_size;
1368
1369 ASSERT(hdr->b_state != arc_anon);
1370
1371 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1372 buf->b_hdr = hdr;
1373 buf->b_data = NULL;
1374 buf->b_efunc = NULL;
1375 buf->b_private = NULL;
1376 buf->b_next = hdr->b_buf;
1377 hdr->b_buf = buf;
1378 arc_get_data_buf(buf);
1379 bcopy(from->b_data, buf->b_data, size);
1380
1381 /*
1382 * This buffer already exists in the arc so create a duplicate
1383 * copy for the caller. If the buffer is associated with user data
1384 * then track the size and number of duplicates. These stats will be
1385 * updated as duplicate buffers are created and destroyed.
1386 */
1387 if (hdr->b_type == ARC_BUFC_DATA) {
1388 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1389 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1390 }
1391 hdr->b_datacnt += 1;
1392 return (buf);
1393 }
1394
1395 void
1396 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1397 {
1398 arc_buf_hdr_t *hdr;
1399 kmutex_t *hash_lock;
1400
1401 /*
1402 * Check to see if this buffer is evicted. Callers
1403 * must verify b_data != NULL to know if the add_ref
1404 * was successful.
1405 */
1406 mutex_enter(&buf->b_evict_lock);
1407 if (buf->b_data == NULL) {
1408 mutex_exit(&buf->b_evict_lock);
1409 return;
1410 }
1411 hash_lock = HDR_LOCK(buf->b_hdr);
1412 mutex_enter(hash_lock);
1413 hdr = buf->b_hdr;
1414 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1415 mutex_exit(&buf->b_evict_lock);
1416
1417 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1418 add_reference(hdr, hash_lock, tag);
1419 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1420 arc_access(hdr, hash_lock);
1421 mutex_exit(hash_lock);
1422 ARCSTAT_BUMP(arcstat_hits);
1423 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1424 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1425 data, metadata, hits);
1426 }
1427
1428 /*
1429 * Free the arc data buffer. If it is an l2arc write in progress,
1430 * the buffer is placed on l2arc_free_on_write to be freed later.
1431 */
1432 static void
1433 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1434 void *data, size_t size)
1435 {
1436 if (HDR_L2_WRITING(hdr)) {
1437 l2arc_data_free_t *df;
1438 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_PUSHPAGE);
1439 df->l2df_data = data;
1440 df->l2df_size = size;
1441 df->l2df_func = free_func;
1442 mutex_enter(&l2arc_free_on_write_mtx);
1443 list_insert_head(l2arc_free_on_write, df);
1444 mutex_exit(&l2arc_free_on_write_mtx);
1445 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1446 } else {
1447 free_func(data, size);
1448 }
1449 }
1450
1451 static void
1452 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1453 {
1454 arc_buf_t **bufp;
1455
1456 /* free up data associated with the buf */
1457 if (buf->b_data) {
1458 arc_state_t *state = buf->b_hdr->b_state;
1459 uint64_t size = buf->b_hdr->b_size;
1460 arc_buf_contents_t type = buf->b_hdr->b_type;
1461
1462 arc_cksum_verify(buf);
1463
1464 if (!recycle) {
1465 if (type == ARC_BUFC_METADATA) {
1466 arc_buf_data_free(buf->b_hdr, zio_buf_free,
1467 buf->b_data, size);
1468 arc_space_return(size, ARC_SPACE_DATA);
1469 } else {
1470 ASSERT(type == ARC_BUFC_DATA);
1471 arc_buf_data_free(buf->b_hdr,
1472 zio_data_buf_free, buf->b_data, size);
1473 ARCSTAT_INCR(arcstat_data_size, -size);
1474 atomic_add_64(&arc_size, -size);
1475 }
1476 }
1477 if (list_link_active(&buf->b_hdr->b_arc_node)) {
1478 uint64_t *cnt = &state->arcs_lsize[type];
1479
1480 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1481 ASSERT(state != arc_anon);
1482
1483 ASSERT3U(*cnt, >=, size);
1484 atomic_add_64(cnt, -size);
1485 }
1486 ASSERT3U(state->arcs_size, >=, size);
1487 atomic_add_64(&state->arcs_size, -size);
1488 buf->b_data = NULL;
1489
1490 /*
1491 * If we're destroying a duplicate buffer make sure
1492 * that the appropriate statistics are updated.
1493 */
1494 if (buf->b_hdr->b_datacnt > 1 &&
1495 buf->b_hdr->b_type == ARC_BUFC_DATA) {
1496 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1497 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1498 }
1499 ASSERT(buf->b_hdr->b_datacnt > 0);
1500 buf->b_hdr->b_datacnt -= 1;
1501 }
1502
1503 /* only remove the buf if requested */
1504 if (!all)
1505 return;
1506
1507 /* remove the buf from the hdr list */
1508 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1509 continue;
1510 *bufp = buf->b_next;
1511 buf->b_next = NULL;
1512
1513 ASSERT(buf->b_efunc == NULL);
1514
1515 /* clean up the buf */
1516 buf->b_hdr = NULL;
1517 kmem_cache_free(buf_cache, buf);
1518 }
1519
1520 static void
1521 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1522 {
1523 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1524
1525 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1526 ASSERT3P(hdr->b_state, ==, arc_anon);
1527 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1528
1529 if (l2hdr != NULL) {
1530 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1531 /*
1532 * To prevent arc_free() and l2arc_evict() from
1533 * attempting to free the same buffer at the same time,
1534 * a FREE_IN_PROGRESS flag is given to arc_free() to
1535 * give it priority. l2arc_evict() can't destroy this
1536 * header while we are waiting on l2arc_buflist_mtx.
1537 *
1538 * The hdr may be removed from l2ad_buflist before we
1539 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1540 */
1541 if (!buflist_held) {
1542 mutex_enter(&l2arc_buflist_mtx);
1543 l2hdr = hdr->b_l2hdr;
1544 }
1545
1546 if (l2hdr != NULL) {
1547 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1548 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1549 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1550 if (hdr->b_state == arc_l2c_only)
1551 l2arc_hdr_stat_remove();
1552 hdr->b_l2hdr = NULL;
1553 }
1554
1555 if (!buflist_held)
1556 mutex_exit(&l2arc_buflist_mtx);
1557 }
1558
1559 if (!BUF_EMPTY(hdr)) {
1560 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1561 buf_discard_identity(hdr);
1562 }
1563 while (hdr->b_buf) {
1564 arc_buf_t *buf = hdr->b_buf;
1565
1566 if (buf->b_efunc) {
1567 mutex_enter(&arc_eviction_mtx);
1568 mutex_enter(&buf->b_evict_lock);
1569 ASSERT(buf->b_hdr != NULL);
1570 arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1571 hdr->b_buf = buf->b_next;
1572 buf->b_hdr = &arc_eviction_hdr;
1573 buf->b_next = arc_eviction_list;
1574 arc_eviction_list = buf;
1575 mutex_exit(&buf->b_evict_lock);
1576 mutex_exit(&arc_eviction_mtx);
1577 } else {
1578 arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1579 }
1580 }
1581 if (hdr->b_freeze_cksum != NULL) {
1582 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1583 hdr->b_freeze_cksum = NULL;
1584 }
1585 if (hdr->b_thawed) {
1586 kmem_free(hdr->b_thawed, 1);
1587 hdr->b_thawed = NULL;
1588 }
1589
1590 ASSERT(!list_link_active(&hdr->b_arc_node));
1591 ASSERT3P(hdr->b_hash_next, ==, NULL);
1592 ASSERT3P(hdr->b_acb, ==, NULL);
1593 kmem_cache_free(hdr_cache, hdr);
1594 }
1595
1596 void
1597 arc_buf_free(arc_buf_t *buf, void *tag)
1598 {
1599 arc_buf_hdr_t *hdr = buf->b_hdr;
1600 int hashed = hdr->b_state != arc_anon;
1601
1602 ASSERT(buf->b_efunc == NULL);
1603 ASSERT(buf->b_data != NULL);
1604
1605 if (hashed) {
1606 kmutex_t *hash_lock = HDR_LOCK(hdr);
1607
1608 mutex_enter(hash_lock);
1609 hdr = buf->b_hdr;
1610 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1611
1612 (void) remove_reference(hdr, hash_lock, tag);
1613 if (hdr->b_datacnt > 1) {
1614 arc_buf_destroy(buf, FALSE, TRUE);
1615 } else {
1616 ASSERT(buf == hdr->b_buf);
1617 ASSERT(buf->b_efunc == NULL);
1618 hdr->b_flags |= ARC_BUF_AVAILABLE;
1619 }
1620 mutex_exit(hash_lock);
1621 } else if (HDR_IO_IN_PROGRESS(hdr)) {
1622 int destroy_hdr;
1623 /*
1624 * We are in the middle of an async write. Don't destroy
1625 * this buffer unless the write completes before we finish
1626 * decrementing the reference count.
1627 */
1628 mutex_enter(&arc_eviction_mtx);
1629 (void) remove_reference(hdr, NULL, tag);
1630 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1631 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1632 mutex_exit(&arc_eviction_mtx);
1633 if (destroy_hdr)
1634 arc_hdr_destroy(hdr);
1635 } else {
1636 if (remove_reference(hdr, NULL, tag) > 0)
1637 arc_buf_destroy(buf, FALSE, TRUE);
1638 else
1639 arc_hdr_destroy(hdr);
1640 }
1641 }
1642
1643 int
1644 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1645 {
1646 arc_buf_hdr_t *hdr = buf->b_hdr;
1647 kmutex_t *hash_lock = HDR_LOCK(hdr);
1648 int no_callback = (buf->b_efunc == NULL);
1649
1650 if (hdr->b_state == arc_anon) {
1651 ASSERT(hdr->b_datacnt == 1);
1652 arc_buf_free(buf, tag);
1653 return (no_callback);
1654 }
1655
1656 mutex_enter(hash_lock);
1657 hdr = buf->b_hdr;
1658 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1659 ASSERT(hdr->b_state != arc_anon);
1660 ASSERT(buf->b_data != NULL);
1661
1662 (void) remove_reference(hdr, hash_lock, tag);
1663 if (hdr->b_datacnt > 1) {
1664 if (no_callback)
1665 arc_buf_destroy(buf, FALSE, TRUE);
1666 } else if (no_callback) {
1667 ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1668 ASSERT(buf->b_efunc == NULL);
1669 hdr->b_flags |= ARC_BUF_AVAILABLE;
1670 }
1671 ASSERT(no_callback || hdr->b_datacnt > 1 ||
1672 refcount_is_zero(&hdr->b_refcnt));
1673 mutex_exit(hash_lock);
1674 return (no_callback);
1675 }
1676
1677 int
1678 arc_buf_size(arc_buf_t *buf)
1679 {
1680 return (buf->b_hdr->b_size);
1681 }
1682
1683 /*
1684 * Called from the DMU to determine if the current buffer should be
1685 * evicted. In order to ensure proper locking, the eviction must be initiated
1686 * from the DMU. Return true if the buffer is associated with user data and
1687 * duplicate buffers still exist.
1688 */
1689 boolean_t
1690 arc_buf_eviction_needed(arc_buf_t *buf)
1691 {
1692 arc_buf_hdr_t *hdr;
1693 boolean_t evict_needed = B_FALSE;
1694
1695 if (zfs_disable_dup_eviction)
1696 return (B_FALSE);
1697
1698 mutex_enter(&buf->b_evict_lock);
1699 hdr = buf->b_hdr;
1700 if (hdr == NULL) {
1701 /*
1702 * We are in arc_do_user_evicts(); let that function
1703 * perform the eviction.
1704 */
1705 ASSERT(buf->b_data == NULL);
1706 mutex_exit(&buf->b_evict_lock);
1707 return (B_FALSE);
1708 } else if (buf->b_data == NULL) {
1709 /*
1710 * We have already been added to the arc eviction list;
1711 * recommend eviction.
1712 */
1713 ASSERT3P(hdr, ==, &arc_eviction_hdr);
1714 mutex_exit(&buf->b_evict_lock);
1715 return (B_TRUE);
1716 }
1717
1718 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1719 evict_needed = B_TRUE;
1720
1721 mutex_exit(&buf->b_evict_lock);
1722 return (evict_needed);
1723 }
1724
1725 /*
1726 * Evict buffers from list until we've removed the specified number of
1727 * bytes. Move the removed buffers to the appropriate evict state.
1728 * If the recycle flag is set, then attempt to "recycle" a buffer:
1729 * - look for a buffer to evict that is `bytes' long.
1730 * - return the data block from this buffer rather than freeing it.
1731 * This flag is used by callers that are trying to make space for a
1732 * new buffer in a full arc cache.
1733 *
1734 * This function makes a "best effort". It skips over any buffers
1735 * it can't get a hash_lock on, and so may not catch all candidates.
1736 * It may also return without evicting as much space as requested.
1737 */
1738 static void *
1739 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1740 arc_buf_contents_t type)
1741 {
1742 arc_state_t *evicted_state;
1743 uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1744 arc_buf_hdr_t *ab, *ab_prev = NULL;
1745 list_t *list = &state->arcs_list[type];
1746 kmutex_t *hash_lock;
1747 boolean_t have_lock;
1748 void *stolen = NULL;
1749
1750 ASSERT(state == arc_mru || state == arc_mfu);
1751
1752 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1753
1754 mutex_enter(&state->arcs_mtx);
1755 mutex_enter(&evicted_state->arcs_mtx);
1756
1757 for (ab = list_tail(list); ab; ab = ab_prev) {
1758 ab_prev = list_prev(list, ab);
1759 /* prefetch buffers have a minimum lifespan */
1760 if (HDR_IO_IN_PROGRESS(ab) ||
1761 (spa && ab->b_spa != spa) ||
1762 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1763 ddi_get_lbolt() - ab->b_arc_access <
1764 arc_min_prefetch_lifespan)) {
1765 skipped++;
1766 continue;
1767 }
1768 /* "lookahead" for better eviction candidate */
1769 if (recycle && ab->b_size != bytes &&
1770 ab_prev && ab_prev->b_size == bytes)
1771 continue;
1772 hash_lock = HDR_LOCK(ab);
1773 have_lock = MUTEX_HELD(hash_lock);
1774 if (have_lock || mutex_tryenter(hash_lock)) {
1775 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1776 ASSERT(ab->b_datacnt > 0);
1777 while (ab->b_buf) {
1778 arc_buf_t *buf = ab->b_buf;
1779 if (!mutex_tryenter(&buf->b_evict_lock)) {
1780 missed += 1;
1781 break;
1782 }
1783 if (buf->b_data) {
1784 bytes_evicted += ab->b_size;
1785 if (recycle && ab->b_type == type &&
1786 ab->b_size == bytes &&
1787 !HDR_L2_WRITING(ab)) {
1788 stolen = buf->b_data;
1789 recycle = FALSE;
1790 }
1791 }
1792 if (buf->b_efunc) {
1793 mutex_enter(&arc_eviction_mtx);
1794 arc_buf_destroy(buf,
1795 buf->b_data == stolen, FALSE);
1796 ab->b_buf = buf->b_next;
1797 buf->b_hdr = &arc_eviction_hdr;
1798 buf->b_next = arc_eviction_list;
1799 arc_eviction_list = buf;
1800 mutex_exit(&arc_eviction_mtx);
1801 mutex_exit(&buf->b_evict_lock);
1802 } else {
1803 mutex_exit(&buf->b_evict_lock);
1804 arc_buf_destroy(buf,
1805 buf->b_data == stolen, TRUE);
1806 }
1807 }
1808
1809 if (ab->b_l2hdr) {
1810 ARCSTAT_INCR(arcstat_evict_l2_cached,
1811 ab->b_size);
1812 } else {
1813 if (l2arc_write_eligible(ab->b_spa, ab)) {
1814 ARCSTAT_INCR(arcstat_evict_l2_eligible,
1815 ab->b_size);
1816 } else {
1817 ARCSTAT_INCR(
1818 arcstat_evict_l2_ineligible,
1819 ab->b_size);
1820 }
1821 }
1822
1823 if (ab->b_datacnt == 0) {
1824 arc_change_state(evicted_state, ab, hash_lock);
1825 ASSERT(HDR_IN_HASH_TABLE(ab));
1826 ab->b_flags |= ARC_IN_HASH_TABLE;
1827 ab->b_flags &= ~ARC_BUF_AVAILABLE;
1828 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1829 }
1830 if (!have_lock)
1831 mutex_exit(hash_lock);
1832 if (bytes >= 0 && bytes_evicted >= bytes)
1833 break;
1834 } else {
1835 missed += 1;
1836 }
1837 }
1838
1839 mutex_exit(&evicted_state->arcs_mtx);
1840 mutex_exit(&state->arcs_mtx);
1841
1842 if (bytes_evicted < bytes)
1843 dprintf("only evicted %lld bytes from %x\n",
1844 (longlong_t)bytes_evicted, state);
1845
1846 if (skipped)
1847 ARCSTAT_INCR(arcstat_evict_skip, skipped);
1848
1849 if (missed)
1850 ARCSTAT_INCR(arcstat_mutex_miss, missed);
1851
1852 /*
1853 * We have just evicted some date into the ghost state, make
1854 * sure we also adjust the ghost state size if necessary.
1855 */
1856 if (arc_no_grow &&
1857 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1858 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1859 arc_mru_ghost->arcs_size - arc_c;
1860
1861 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1862 int64_t todelete =
1863 MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1864 arc_evict_ghost(arc_mru_ghost, 0, todelete);
1865 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1866 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1867 arc_mru_ghost->arcs_size +
1868 arc_mfu_ghost->arcs_size - arc_c);
1869 arc_evict_ghost(arc_mfu_ghost, 0, todelete);
1870 }
1871 }
1872
1873 return (stolen);
1874 }
1875
1876 /*
1877 * Remove buffers from list until we've removed the specified number of
1878 * bytes. Destroy the buffers that are removed.
1879 */
1880 static void
1881 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1882 {
1883 arc_buf_hdr_t *ab, *ab_prev;
1884 arc_buf_hdr_t marker;
1885 list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1886 kmutex_t *hash_lock;
1887 uint64_t bytes_deleted = 0;
1888 uint64_t bufs_skipped = 0;
1889
1890 ASSERT(GHOST_STATE(state));
1891 bzero(&marker, sizeof(marker));
1892 top:
1893 mutex_enter(&state->arcs_mtx);
1894 for (ab = list_tail(list); ab; ab = ab_prev) {
1895 ab_prev = list_prev(list, ab);
1896 if (spa && ab->b_spa != spa)
1897 continue;
1898
1899 /* ignore markers */
1900 if (ab->b_spa == 0)
1901 continue;
1902
1903 hash_lock = HDR_LOCK(ab);
1904 /* caller may be trying to modify this buffer, skip it */
1905 if (MUTEX_HELD(hash_lock))
1906 continue;
1907 if (mutex_tryenter(hash_lock)) {
1908 ASSERT(!HDR_IO_IN_PROGRESS(ab));
1909 ASSERT(ab->b_buf == NULL);
1910 ARCSTAT_BUMP(arcstat_deleted);
1911 bytes_deleted += ab->b_size;
1912
1913 if (ab->b_l2hdr != NULL) {
1914 /*
1915 * This buffer is cached on the 2nd Level ARC;
1916 * don't destroy the header.
1917 */
1918 arc_change_state(arc_l2c_only, ab, hash_lock);
1919 mutex_exit(hash_lock);
1920 } else {
1921 arc_change_state(arc_anon, ab, hash_lock);
1922 mutex_exit(hash_lock);
1923 arc_hdr_destroy(ab);
1924 }
1925
1926 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1927 if (bytes >= 0 && bytes_deleted >= bytes)
1928 break;
1929 } else if (bytes < 0) {
1930 /*
1931 * Insert a list marker and then wait for the
1932 * hash lock to become available. Once its
1933 * available, restart from where we left off.
1934 */
1935 list_insert_after(list, ab, &marker);
1936 mutex_exit(&state->arcs_mtx);
1937 mutex_enter(hash_lock);
1938 mutex_exit(hash_lock);
1939 mutex_enter(&state->arcs_mtx);
1940 ab_prev = list_prev(list, &marker);
1941 list_remove(list, &marker);
1942 } else
1943 bufs_skipped += 1;
1944 }
1945 mutex_exit(&state->arcs_mtx);
1946
1947 if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1948 (bytes < 0 || bytes_deleted < bytes)) {
1949 list = &state->arcs_list[ARC_BUFC_METADATA];
1950 goto top;
1951 }
1952
1953 if (bufs_skipped) {
1954 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1955 ASSERT(bytes >= 0);
1956 }
1957
1958 if (bytes_deleted < bytes)
1959 dprintf("only deleted %lld bytes from %p\n",
1960 (longlong_t)bytes_deleted, state);
1961 }
1962
1963 static void
1964 arc_adjust(void)
1965 {
1966 int64_t adjustment, delta;
1967
1968 /*
1969 * Adjust MRU size
1970 */
1971
1972 adjustment = MIN((int64_t)(arc_size - arc_c),
1973 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
1974 arc_p));
1975
1976 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1977 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
1978 (void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
1979 adjustment -= delta;
1980 }
1981
1982 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1983 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
1984 (void) arc_evict(arc_mru, 0, delta, FALSE,
1985 ARC_BUFC_METADATA);
1986 }
1987
1988 /*
1989 * Adjust MFU size
1990 */
1991
1992 adjustment = arc_size - arc_c;
1993
1994 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1995 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
1996 (void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
1997 adjustment -= delta;
1998 }
1999
2000 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2001 int64_t delta = MIN(adjustment,
2002 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2003 (void) arc_evict(arc_mfu, 0, delta, FALSE,
2004 ARC_BUFC_METADATA);
2005 }
2006
2007 /*
2008 * Adjust ghost lists
2009 */
2010
2011 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2012
2013 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2014 delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2015 arc_evict_ghost(arc_mru_ghost, 0, delta);
2016 }
2017
2018 adjustment =
2019 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2020
2021 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2022 delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2023 arc_evict_ghost(arc_mfu_ghost, 0, delta);
2024 }
2025 }
2026
2027 /*
2028 * Request that arc user drop references so that N bytes can be released
2029 * from the cache. This provides a mechanism to ensure the arc can honor
2030 * the arc_meta_limit and reclaim buffers which are pinned in the cache
2031 * by higher layers. (i.e. the zpl)
2032 */
2033 static void
2034 arc_do_user_prune(int64_t adjustment)
2035 {
2036 arc_prune_func_t *func;
2037 void *private;
2038 arc_prune_t *cp, *np;
2039
2040 mutex_enter(&arc_prune_mtx);
2041
2042 cp = list_head(&arc_prune_list);
2043 while (cp != NULL) {
2044 func = cp->p_pfunc;
2045 private = cp->p_private;
2046 np = list_next(&arc_prune_list, cp);
2047 refcount_add(&cp->p_refcnt, func);
2048 mutex_exit(&arc_prune_mtx);
2049
2050 if (func != NULL)
2051 func(adjustment, private);
2052
2053 mutex_enter(&arc_prune_mtx);
2054
2055 /* User removed prune callback concurrently with execution */
2056 if (refcount_remove(&cp->p_refcnt, func) == 0) {
2057 ASSERT(!list_link_active(&cp->p_node));
2058 refcount_destroy(&cp->p_refcnt);
2059 kmem_free(cp, sizeof (*cp));
2060 }
2061
2062 cp = np;
2063 }
2064
2065 ARCSTAT_BUMP(arcstat_prune);
2066 mutex_exit(&arc_prune_mtx);
2067 }
2068
2069 static void
2070 arc_do_user_evicts(void)
2071 {
2072 mutex_enter(&arc_eviction_mtx);
2073 while (arc_eviction_list != NULL) {
2074 arc_buf_t *buf = arc_eviction_list;
2075 arc_eviction_list = buf->b_next;
2076 mutex_enter(&buf->b_evict_lock);
2077 buf->b_hdr = NULL;
2078 mutex_exit(&buf->b_evict_lock);
2079 mutex_exit(&arc_eviction_mtx);
2080
2081 if (buf->b_efunc != NULL)
2082 VERIFY(buf->b_efunc(buf) == 0);
2083
2084 buf->b_efunc = NULL;
2085 buf->b_private = NULL;
2086 kmem_cache_free(buf_cache, buf);
2087 mutex_enter(&arc_eviction_mtx);
2088 }
2089 mutex_exit(&arc_eviction_mtx);
2090 }
2091
2092 /*
2093 * Evict only meta data objects from the cache leaving the data objects.
2094 * This is only used to enforce the tunable arc_meta_limit, if we are
2095 * unable to evict enough buffers notify the user via the prune callback.
2096 */
2097 void
2098 arc_adjust_meta(int64_t adjustment, boolean_t may_prune)
2099 {
2100 int64_t delta;
2101
2102 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2103 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2104 arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_METADATA);
2105 adjustment -= delta;
2106 }
2107
2108 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2109 delta = MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2110 arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_METADATA);
2111 adjustment -= delta;
2112 }
2113
2114 if (may_prune && (adjustment > 0) && (arc_meta_used > arc_meta_limit))
2115 arc_do_user_prune(arc_meta_prune);
2116 }
2117
2118 /*
2119 * Flush all *evictable* data from the cache for the given spa.
2120 * NOTE: this will not touch "active" (i.e. referenced) data.
2121 */
2122 void
2123 arc_flush(spa_t *spa)
2124 {
2125 uint64_t guid = 0;
2126
2127 if (spa)
2128 guid = spa_load_guid(spa);
2129
2130 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
2131 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2132 if (spa)
2133 break;
2134 }
2135 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
2136 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2137 if (spa)
2138 break;
2139 }
2140 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
2141 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2142 if (spa)
2143 break;
2144 }
2145 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
2146 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2147 if (spa)
2148 break;
2149 }
2150
2151 arc_evict_ghost(arc_mru_ghost, guid, -1);
2152 arc_evict_ghost(arc_mfu_ghost, guid, -1);
2153
2154 mutex_enter(&arc_reclaim_thr_lock);
2155 arc_do_user_evicts();
2156 mutex_exit(&arc_reclaim_thr_lock);
2157 ASSERT(spa || arc_eviction_list == NULL);
2158 }
2159
2160 void
2161 arc_shrink(uint64_t bytes)
2162 {
2163 if (arc_c > arc_c_min) {
2164 uint64_t to_free;
2165
2166 to_free = bytes ? bytes : arc_c >> arc_shrink_shift;
2167
2168 if (arc_c > arc_c_min + to_free)
2169 atomic_add_64(&arc_c, -to_free);
2170 else
2171 arc_c = arc_c_min;
2172
2173 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2174 if (arc_c > arc_size)
2175 arc_c = MAX(arc_size, arc_c_min);
2176 if (arc_p > arc_c)
2177 arc_p = (arc_c >> 1);
2178 ASSERT(arc_c >= arc_c_min);
2179 ASSERT((int64_t)arc_p >= 0);
2180 }
2181
2182 if (arc_size > arc_c)
2183 arc_adjust();
2184 }
2185
2186 static void
2187 arc_kmem_reap_now(arc_reclaim_strategy_t strat, uint64_t bytes)
2188 {
2189 size_t i;
2190 kmem_cache_t *prev_cache = NULL;
2191 kmem_cache_t *prev_data_cache = NULL;
2192 extern kmem_cache_t *zio_buf_cache[];
2193 extern kmem_cache_t *zio_data_buf_cache[];
2194
2195 /*
2196 * An aggressive reclamation will shrink the cache size as well as
2197 * reap free buffers from the arc kmem caches.
2198 */
2199 if (strat == ARC_RECLAIM_AGGR)
2200 arc_shrink(bytes);
2201
2202 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2203 if (zio_buf_cache[i] != prev_cache) {
2204 prev_cache = zio_buf_cache[i];
2205 kmem_cache_reap_now(zio_buf_cache[i]);
2206 }
2207 if (zio_data_buf_cache[i] != prev_data_cache) {
2208 prev_data_cache = zio_data_buf_cache[i];
2209 kmem_cache_reap_now(zio_data_buf_cache[i]);
2210 }
2211 }
2212
2213 kmem_cache_reap_now(buf_cache);
2214 kmem_cache_reap_now(hdr_cache);
2215 }
2216
2217 /*
2218 * Unlike other ZFS implementations this thread is only responsible for
2219 * adapting the target ARC size on Linux. The responsibility for memory
2220 * reclamation has been entirely delegated to the arc_shrinker_func()
2221 * which is registered with the VM. To reflect this change in behavior
2222 * the arc_reclaim thread has been renamed to arc_adapt.
2223 */
2224 static void
2225 arc_adapt_thread(void)
2226 {
2227 callb_cpr_t cpr;
2228 int64_t prune;
2229
2230 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2231
2232 mutex_enter(&arc_reclaim_thr_lock);
2233 while (arc_thread_exit == 0) {
2234 #ifndef _KERNEL
2235 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
2236
2237 if (spa_get_random(100) == 0) {
2238
2239 if (arc_no_grow) {
2240 if (last_reclaim == ARC_RECLAIM_CONS) {
2241 last_reclaim = ARC_RECLAIM_AGGR;
2242 } else {
2243 last_reclaim = ARC_RECLAIM_CONS;
2244 }
2245 } else {
2246 arc_no_grow = TRUE;
2247 last_reclaim = ARC_RECLAIM_AGGR;
2248 membar_producer();
2249 }
2250
2251 /* reset the growth delay for every reclaim */
2252 arc_grow_time = ddi_get_lbolt()+(arc_grow_retry * hz);
2253
2254 arc_kmem_reap_now(last_reclaim, 0);
2255 arc_warm = B_TRUE;
2256 }
2257 #endif /* !_KERNEL */
2258
2259 /* No recent memory pressure allow the ARC to grow. */
2260 if (arc_no_grow && ddi_get_lbolt() >= arc_grow_time)
2261 arc_no_grow = FALSE;
2262
2263 /*
2264 * Keep meta data usage within limits, arc_shrink() is not
2265 * used to avoid collapsing the arc_c value when only the
2266 * arc_meta_limit is being exceeded.
2267 */
2268 prune = (int64_t)arc_meta_used - (int64_t)arc_meta_limit;
2269 if (prune > 0)
2270 arc_adjust_meta(prune, B_TRUE);
2271
2272 arc_adjust();
2273
2274 if (arc_eviction_list != NULL)
2275 arc_do_user_evicts();
2276
2277 /* block until needed, or one second, whichever is shorter */
2278 CALLB_CPR_SAFE_BEGIN(&cpr);
2279 (void) cv_timedwait_interruptible(&arc_reclaim_thr_cv,
2280 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2281 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2282 }
2283
2284 arc_thread_exit = 0;
2285 cv_broadcast(&arc_reclaim_thr_cv);
2286 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */
2287 thread_exit();
2288 }
2289
2290 #ifdef _KERNEL
2291 /*
2292 * Determine the amount of memory eligible for eviction contained in the
2293 * ARC. All clean data reported by the ghost lists can always be safely
2294 * evicted. Due to arc_c_min, the same does not hold for all clean data
2295 * contained by the regular mru and mfu lists.
2296 *
2297 * In the case of the regular mru and mfu lists, we need to report as
2298 * much clean data as possible, such that evicting that same reported
2299 * data will not bring arc_size below arc_c_min. Thus, in certain
2300 * circumstances, the total amount of clean data in the mru and mfu
2301 * lists might not actually be evictable.
2302 *
2303 * The following two distinct cases are accounted for:
2304 *
2305 * 1. The sum of the amount of dirty data contained by both the mru and
2306 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
2307 * is greater than or equal to arc_c_min.
2308 * (i.e. amount of dirty data >= arc_c_min)
2309 *
2310 * This is the easy case; all clean data contained by the mru and mfu
2311 * lists is evictable. Evicting all clean data can only drop arc_size
2312 * to the amount of dirty data, which is greater than arc_c_min.
2313 *
2314 * 2. The sum of the amount of dirty data contained by both the mru and
2315 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
2316 * is less than arc_c_min.
2317 * (i.e. arc_c_min > amount of dirty data)
2318 *
2319 * 2.1. arc_size is greater than or equal arc_c_min.
2320 * (i.e. arc_size >= arc_c_min > amount of dirty data)
2321 *
2322 * In this case, not all clean data from the regular mru and mfu
2323 * lists is actually evictable; we must leave enough clean data
2324 * to keep arc_size above arc_c_min. Thus, the maximum amount of
2325 * evictable data from the two lists combined, is exactly the
2326 * difference between arc_size and arc_c_min.
2327 *
2328 * 2.2. arc_size is less than arc_c_min
2329 * (i.e. arc_c_min > arc_size > amount of dirty data)
2330 *
2331 * In this case, none of the data contained in the mru and mfu
2332 * lists is evictable, even if it's clean. Since arc_size is
2333 * already below arc_c_min, evicting any more would only
2334 * increase this negative difference.
2335 */
2336 static uint64_t
2337 arc_evictable_memory(void) {
2338 uint64_t arc_clean =
2339 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
2340 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
2341 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
2342 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
2343 uint64_t ghost_clean =
2344 arc_mru_ghost->arcs_lsize[ARC_BUFC_DATA] +
2345 arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] +
2346 arc_mfu_ghost->arcs_lsize[ARC_BUFC_DATA] +
2347 arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA];
2348 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
2349
2350 if (arc_dirty >= arc_c_min)
2351 return (ghost_clean + arc_clean);
2352
2353 return (ghost_clean + MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
2354 }
2355
2356 static int
2357 __arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
2358 {
2359 uint64_t pages;
2360
2361 /* The arc is considered warm once reclaim has occurred */
2362 if (unlikely(arc_warm == B_FALSE))
2363 arc_warm = B_TRUE;
2364
2365 /* Return the potential number of reclaimable pages */
2366 pages = btop(arc_evictable_memory());
2367 if (sc->nr_to_scan == 0)
2368 return (pages);
2369
2370 /* Not allowed to perform filesystem reclaim */
2371 if (!(sc->gfp_mask & __GFP_FS))
2372 return (-1);
2373
2374 /* Reclaim in progress */
2375 if (mutex_tryenter(&arc_reclaim_thr_lock) == 0)
2376 return (-1);
2377
2378 /*
2379 * Evict the requested number of pages by shrinking arc_c the
2380 * requested amount. If there is nothing left to evict just
2381 * reap whatever we can from the various arc slabs.
2382 */
2383 if (pages > 0) {
2384 arc_kmem_reap_now(ARC_RECLAIM_AGGR, ptob(sc->nr_to_scan));
2385 pages = btop(arc_evictable_memory());
2386 } else {
2387 arc_kmem_reap_now(ARC_RECLAIM_CONS, ptob(sc->nr_to_scan));
2388 pages = -1;
2389 }
2390
2391 /*
2392 * When direct reclaim is observed it usually indicates a rapid
2393 * increase in memory pressure. This occurs because the kswapd
2394 * threads were unable to asynchronously keep enough free memory
2395 * available. In this case set arc_no_grow to briefly pause arc
2396 * growth to avoid compounding the memory pressure.
2397 */
2398 if (current_is_kswapd()) {
2399 ARCSTAT_BUMP(arcstat_memory_indirect_count);
2400 } else {
2401 arc_no_grow = B_TRUE;
2402 arc_grow_time = ddi_get_lbolt() + (arc_grow_retry * hz);
2403 ARCSTAT_BUMP(arcstat_memory_direct_count);
2404 }
2405
2406 mutex_exit(&arc_reclaim_thr_lock);
2407
2408 return (pages);
2409 }
2410 SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
2411
2412 SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
2413 #endif /* _KERNEL */
2414
2415 /*
2416 * Adapt arc info given the number of bytes we are trying to add and
2417 * the state that we are comming from. This function is only called
2418 * when we are adding new content to the cache.
2419 */
2420 static void
2421 arc_adapt(int bytes, arc_state_t *state)
2422 {
2423 int mult;
2424 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2425
2426 if (state == arc_l2c_only)
2427 return;
2428
2429 ASSERT(bytes > 0);
2430 /*
2431 * Adapt the target size of the MRU list:
2432 * - if we just hit in the MRU ghost list, then increase
2433 * the target size of the MRU list.
2434 * - if we just hit in the MFU ghost list, then increase
2435 * the target size of the MFU list by decreasing the
2436 * target size of the MRU list.
2437 */
2438 if (state == arc_mru_ghost) {
2439 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2440 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2441 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2442
2443 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2444 } else if (state == arc_mfu_ghost) {
2445 uint64_t delta;
2446
2447 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2448 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2449 mult = MIN(mult, 10);
2450
2451 delta = MIN(bytes * mult, arc_p);
2452 arc_p = MAX(arc_p_min, arc_p - delta);
2453 }
2454 ASSERT((int64_t)arc_p >= 0);
2455
2456 if (arc_no_grow)
2457 return;
2458
2459 if (arc_c >= arc_c_max)
2460 return;
2461
2462 /*
2463 * If we're within (2 * maxblocksize) bytes of the target
2464 * cache size, increment the target cache size
2465 */
2466 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2467 atomic_add_64(&arc_c, (int64_t)bytes);
2468 if (arc_c > arc_c_max)
2469 arc_c = arc_c_max;
2470 else if (state == arc_anon)
2471 atomic_add_64(&arc_p, (int64_t)bytes);
2472 if (arc_p > arc_c)
2473 arc_p = arc_c;
2474 }
2475 ASSERT((int64_t)arc_p >= 0);
2476 }
2477
2478 /*
2479 * Check if the cache has reached its limits and eviction is required
2480 * prior to insert.
2481 */
2482 static int
2483 arc_evict_needed(arc_buf_contents_t type)
2484 {
2485 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2486 return (1);
2487
2488 if (arc_no_grow)
2489 return (1);
2490
2491 return (arc_size > arc_c);
2492 }
2493
2494 /*
2495 * The buffer, supplied as the first argument, needs a data block.
2496 * So, if we are at cache max, determine which cache should be victimized.
2497 * We have the following cases:
2498 *
2499 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2500 * In this situation if we're out of space, but the resident size of the MFU is
2501 * under the limit, victimize the MFU cache to satisfy this insertion request.
2502 *
2503 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2504 * Here, we've used up all of the available space for the MRU, so we need to
2505 * evict from our own cache instead. Evict from the set of resident MRU
2506 * entries.
2507 *
2508 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2509 * c minus p represents the MFU space in the cache, since p is the size of the
2510 * cache that is dedicated to the MRU. In this situation there's still space on
2511 * the MFU side, so the MRU side needs to be victimized.
2512 *
2513 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2514 * MFU's resident set is consuming more space than it has been allotted. In
2515 * this situation, we must victimize our own cache, the MFU, for this insertion.
2516 */
2517 static void
2518 arc_get_data_buf(arc_buf_t *buf)
2519 {
2520 arc_state_t *state = buf->b_hdr->b_state;
2521 uint64_t size = buf->b_hdr->b_size;
2522 arc_buf_contents_t type = buf->b_hdr->b_type;
2523
2524 arc_adapt(size, state);
2525
2526 /*
2527 * We have not yet reached cache maximum size,
2528 * just allocate a new buffer.
2529 */
2530 if (!arc_evict_needed(type)) {
2531 if (type == ARC_BUFC_METADATA) {
2532 buf->b_data = zio_buf_alloc(size);
2533 arc_space_consume(size, ARC_SPACE_DATA);
2534 } else {
2535 ASSERT(type == ARC_BUFC_DATA);
2536 buf->b_data = zio_data_buf_alloc(size);
2537 ARCSTAT_INCR(arcstat_data_size, size);
2538 atomic_add_64(&arc_size, size);
2539 }
2540 goto out;
2541 }
2542
2543 /*
2544 * If we are prefetching from the mfu ghost list, this buffer
2545 * will end up on the mru list; so steal space from there.
2546 */
2547 if (state == arc_mfu_ghost)
2548 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2549 else if (state == arc_mru_ghost)
2550 state = arc_mru;
2551
2552 if (state == arc_mru || state == arc_anon) {
2553 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2554 state = (arc_mfu->arcs_lsize[type] >= size &&
2555 arc_p > mru_used) ? arc_mfu : arc_mru;
2556 } else {
2557 /* MFU cases */
2558 uint64_t mfu_space = arc_c - arc_p;
2559 state = (arc_mru->arcs_lsize[type] >= size &&
2560 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2561 }
2562
2563 if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
2564 if (type == ARC_BUFC_METADATA) {
2565 buf->b_data = zio_buf_alloc(size);
2566 arc_space_consume(size, ARC_SPACE_DATA);
2567
2568 /*
2569 * If we are unable to recycle an existing meta buffer
2570 * signal the reclaim thread. It will notify users
2571 * via the prune callback to drop references. The
2572 * prune callback in run in the context of the reclaim
2573 * thread to avoid deadlocking on the hash_lock.
2574 */
2575 cv_signal(&arc_reclaim_thr_cv);
2576 } else {
2577 ASSERT(type == ARC_BUFC_DATA);
2578 buf->b_data = zio_data_buf_alloc(size);
2579 ARCSTAT_INCR(arcstat_data_size, size);
2580 atomic_add_64(&arc_size, size);
2581 }
2582
2583 ARCSTAT_BUMP(arcstat_recycle_miss);
2584 }
2585 ASSERT(buf->b_data != NULL);
2586 out:
2587 /*
2588 * Update the state size. Note that ghost states have a
2589 * "ghost size" and so don't need to be updated.
2590 */
2591 if (!GHOST_STATE(buf->b_hdr->b_state)) {
2592 arc_buf_hdr_t *hdr = buf->b_hdr;
2593
2594 atomic_add_64(&hdr->b_state->arcs_size, size);
2595 if (list_link_active(&hdr->b_arc_node)) {
2596 ASSERT(refcount_is_zero(&hdr->b_refcnt));
2597 atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2598 }
2599 /*
2600 * If we are growing the cache, and we are adding anonymous
2601 * data, and we have outgrown arc_p, update arc_p
2602 */
2603 if (arc_size < arc_c && hdr->b_state == arc_anon &&
2604 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2605 arc_p = MIN(arc_c, arc_p + size);
2606 }
2607 }
2608
2609 /*
2610 * This routine is called whenever a buffer is accessed.
2611 * NOTE: the hash lock is dropped in this function.
2612 */
2613 static void
2614 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2615 {
2616 clock_t now;
2617
2618 ASSERT(MUTEX_HELD(hash_lock));
2619
2620 if (buf->b_state == arc_anon) {
2621 /*
2622 * This buffer is not in the cache, and does not
2623 * appear in our "ghost" list. Add the new buffer
2624 * to the MRU state.
2625 */
2626
2627 ASSERT(buf->b_arc_access == 0);
2628 buf->b_arc_access = ddi_get_lbolt();
2629 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2630 arc_change_state(arc_mru, buf, hash_lock);
2631
2632 } else if (buf->b_state == arc_mru) {
2633 now = ddi_get_lbolt();
2634
2635 /*
2636 * If this buffer is here because of a prefetch, then either:
2637 * - clear the flag if this is a "referencing" read
2638 * (any subsequent access will bump this into the MFU state).
2639 * or
2640 * - move the buffer to the head of the list if this is
2641 * another prefetch (to make it less likely to be evicted).
2642 */
2643 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2644 if (refcount_count(&buf->b_refcnt) == 0) {
2645 ASSERT(list_link_active(&buf->b_arc_node));
2646 } else {
2647 buf->b_flags &= ~ARC_PREFETCH;
2648 ARCSTAT_BUMP(arcstat_mru_hits);
2649 }
2650 buf->b_arc_access = now;
2651 return;
2652 }
2653
2654 /*
2655 * This buffer has been "accessed" only once so far,
2656 * but it is still in the cache. Move it to the MFU
2657 * state.
2658 */
2659 if (now > buf->b_arc_access + ARC_MINTIME) {
2660 /*
2661 * More than 125ms have passed since we
2662 * instantiated this buffer. Move it to the
2663 * most frequently used state.
2664 */
2665 buf->b_arc_access = now;
2666 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2667 arc_change_state(arc_mfu, buf, hash_lock);
2668 }
2669 ARCSTAT_BUMP(arcstat_mru_hits);
2670 } else if (buf->b_state == arc_mru_ghost) {
2671 arc_state_t *new_state;
2672 /*
2673 * This buffer has been "accessed" recently, but
2674 * was evicted from the cache. Move it to the
2675 * MFU state.
2676 */
2677
2678 if (buf->b_flags & ARC_PREFETCH) {
2679 new_state = arc_mru;
2680 if (refcount_count(&buf->b_refcnt) > 0)
2681 buf->b_flags &= ~ARC_PREFETCH;
2682 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2683 } else {
2684 new_state = arc_mfu;
2685 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2686 }
2687
2688 buf->b_arc_access = ddi_get_lbolt();
2689 arc_change_state(new_state, buf, hash_lock);
2690
2691 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2692 } else if (buf->b_state == arc_mfu) {
2693 /*
2694 * This buffer has been accessed more than once and is
2695 * still in the cache. Keep it in the MFU state.
2696 *
2697 * NOTE: an add_reference() that occurred when we did
2698 * the arc_read() will have kicked this off the list.
2699 * If it was a prefetch, we will explicitly move it to
2700 * the head of the list now.
2701 */
2702 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2703 ASSERT(refcount_count(&buf->b_refcnt) == 0);
2704 ASSERT(list_link_active(&buf->b_arc_node));
2705 }
2706 ARCSTAT_BUMP(arcstat_mfu_hits);
2707 buf->b_arc_access = ddi_get_lbolt();
2708 } else if (buf->b_state == arc_mfu_ghost) {
2709 arc_state_t *new_state = arc_mfu;
2710 /*
2711 * This buffer has been accessed more than once but has
2712 * been evicted from the cache. Move it back to the
2713 * MFU state.
2714 */
2715
2716 if (buf->b_flags & ARC_PREFETCH) {
2717 /*
2718 * This is a prefetch access...
2719 * move this block back to the MRU state.
2720 */
2721 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2722 new_state = arc_mru;
2723 }
2724
2725 buf->b_arc_access = ddi_get_lbolt();
2726 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2727 arc_change_state(new_state, buf, hash_lock);
2728
2729 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2730 } else if (buf->b_state == arc_l2c_only) {
2731 /*
2732 * This buffer is on the 2nd Level ARC.
2733 */
2734
2735 buf->b_arc_access = ddi_get_lbolt();
2736 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2737 arc_change_state(arc_mfu, buf, hash_lock);
2738 } else {
2739 ASSERT(!"invalid arc state");
2740 }
2741 }
2742
2743 /* a generic arc_done_func_t which you can use */
2744 /* ARGSUSED */
2745 void
2746 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2747 {
2748 if (zio == NULL || zio->io_error == 0)
2749 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2750 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2751 }
2752
2753 /* a generic arc_done_func_t */
2754 void
2755 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2756 {
2757 arc_buf_t **bufp = arg;
2758 if (zio && zio->io_error) {
2759 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2760 *bufp = NULL;
2761 } else {
2762 *bufp = buf;
2763 ASSERT(buf->b_data);
2764 }
2765 }
2766
2767 static void
2768 arc_read_done(zio_t *zio)
2769 {
2770 arc_buf_hdr_t *hdr, *found;
2771 arc_buf_t *buf;
2772 arc_buf_t *abuf; /* buffer we're assigning to callback */
2773 kmutex_t *hash_lock;
2774 arc_callback_t *callback_list, *acb;
2775 int freeable = FALSE;
2776
2777 buf = zio->io_private;
2778 hdr = buf->b_hdr;
2779
2780 /*
2781 * The hdr was inserted into hash-table and removed from lists
2782 * prior to starting I/O. We should find this header, since
2783 * it's in the hash table, and it should be legit since it's
2784 * not possible to evict it during the I/O. The only possible
2785 * reason for it not to be found is if we were freed during the
2786 * read.
2787 */
2788 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2789 &hash_lock);
2790
2791 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2792 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2793 (found == hdr && HDR_L2_READING(hdr)));
2794
2795 hdr->b_flags &= ~ARC_L2_EVICTED;
2796 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2797 hdr->b_flags &= ~ARC_L2CACHE;
2798
2799 /* byteswap if necessary */
2800 callback_list = hdr->b_acb;
2801 ASSERT(callback_list != NULL);
2802 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2803 dmu_object_byteswap_t bswap =
2804 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
2805 if (BP_GET_LEVEL(zio->io_bp) > 0)
2806 byteswap_uint64_array(buf->b_data, hdr->b_size);
2807 else
2808 dmu_ot_byteswap[bswap].ob_func(buf->b_data, hdr->b_size);
2809 }
2810
2811 arc_cksum_compute(buf, B_FALSE);
2812
2813 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2814 /*
2815 * Only call arc_access on anonymous buffers. This is because
2816 * if we've issued an I/O for an evicted buffer, we've already
2817 * called arc_access (to prevent any simultaneous readers from
2818 * getting confused).
2819 */
2820 arc_access(hdr, hash_lock);
2821 }
2822
2823 /* create copies of the data buffer for the callers */
2824 abuf = buf;
2825 for (acb = callback_list; acb; acb = acb->acb_next) {
2826 if (acb->acb_done) {
2827 if (abuf == NULL) {
2828 ARCSTAT_BUMP(arcstat_duplicate_reads);
2829 abuf = arc_buf_clone(buf);
2830 }
2831 acb->acb_buf = abuf;
2832 abuf = NULL;
2833 }
2834 }
2835 hdr->b_acb = NULL;
2836 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2837 ASSERT(!HDR_BUF_AVAILABLE(hdr));
2838 if (abuf == buf) {
2839 ASSERT(buf->b_efunc == NULL);
2840 ASSERT(hdr->b_datacnt == 1);
2841 hdr->b_flags |= ARC_BUF_AVAILABLE;
2842 }
2843
2844 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2845
2846 if (zio->io_error != 0) {
2847 hdr->b_flags |= ARC_IO_ERROR;
2848 if (hdr->b_state != arc_anon)
2849 arc_change_state(arc_anon, hdr, hash_lock);
2850 if (HDR_IN_HASH_TABLE(hdr))
2851 buf_hash_remove(hdr);
2852 freeable = refcount_is_zero(&hdr->b_refcnt);
2853 }
2854
2855 /*
2856 * Broadcast before we drop the hash_lock to avoid the possibility
2857 * that the hdr (and hence the cv) might be freed before we get to
2858 * the cv_broadcast().
2859 */
2860 cv_broadcast(&hdr->b_cv);
2861
2862 if (hash_lock) {
2863 mutex_exit(hash_lock);
2864 } else {
2865 /*
2866 * This block was freed while we waited for the read to
2867 * complete. It has been removed from the hash table and
2868 * moved to the anonymous state (so that it won't show up
2869 * in the cache).
2870 */
2871 ASSERT3P(hdr->b_state, ==, arc_anon);
2872 freeable = refcount_is_zero(&hdr->b_refcnt);
2873 }
2874
2875 /* execute each callback and free its structure */
2876 while ((acb = callback_list) != NULL) {
2877 if (acb->acb_done)
2878 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2879
2880 if (acb->acb_zio_dummy != NULL) {
2881 acb->acb_zio_dummy->io_error = zio->io_error;
2882 zio_nowait(acb->acb_zio_dummy);
2883 }
2884
2885 callback_list = acb->acb_next;
2886 kmem_free(acb, sizeof (arc_callback_t));
2887 }
2888
2889 if (freeable)
2890 arc_hdr_destroy(hdr);
2891 }
2892
2893 /*
2894 * "Read" the block at the specified DVA (in bp) via the
2895 * cache. If the block is found in the cache, invoke the provided
2896 * callback immediately and return. Note that the `zio' parameter
2897 * in the callback will be NULL in this case, since no IO was
2898 * required. If the block is not in the cache pass the read request
2899 * on to the spa with a substitute callback function, so that the
2900 * requested block will be added to the cache.
2901 *
2902 * If a read request arrives for a block that has a read in-progress,
2903 * either wait for the in-progress read to complete (and return the
2904 * results); or, if this is a read with a "done" func, add a record
2905 * to the read to invoke the "done" func when the read completes,
2906 * and return; or just return.
2907 *
2908 * arc_read_done() will invoke all the requested "done" functions
2909 * for readers of this block.
2910 *
2911 * Normal callers should use arc_read and pass the arc buffer and offset
2912 * for the bp. But if you know you don't need locking, you can use
2913 * arc_read_bp.
2914 */
2915 int
2916 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf,
2917 arc_done_func_t *done, void *private, int priority, int zio_flags,
2918 uint32_t *arc_flags, const zbookmark_t *zb)
2919 {
2920 int err;
2921
2922 if (pbuf == NULL) {
2923 /*
2924 * XXX This happens from traverse callback funcs, for
2925 * the objset_phys_t block.
2926 */
2927 return (arc_read_nolock(pio, spa, bp, done, private, priority,
2928 zio_flags, arc_flags, zb));
2929 }
2930
2931 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2932 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2933 rw_enter(&pbuf->b_data_lock, RW_READER);
2934
2935 err = arc_read_nolock(pio, spa, bp, done, private, priority,
2936 zio_flags, arc_flags, zb);
2937 rw_exit(&pbuf->b_data_lock);
2938
2939 return (err);
2940 }
2941
2942 int
2943 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp,
2944 arc_done_func_t *done, void *private, int priority, int zio_flags,
2945 uint32_t *arc_flags, const zbookmark_t *zb)
2946 {
2947 arc_buf_hdr_t *hdr;
2948 arc_buf_t *buf = NULL;
2949 kmutex_t *hash_lock;
2950 zio_t *rzio;
2951 uint64_t guid = spa_load_guid(spa);
2952
2953 top:
2954 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2955 &hash_lock);
2956 if (hdr && hdr->b_datacnt > 0) {
2957
2958 *arc_flags |= ARC_CACHED;
2959
2960 if (HDR_IO_IN_PROGRESS(hdr)) {
2961
2962 if (*arc_flags & ARC_WAIT) {
2963 cv_wait(&hdr->b_cv, hash_lock);
2964 mutex_exit(hash_lock);
2965 goto top;
2966 }
2967 ASSERT(*arc_flags & ARC_NOWAIT);
2968
2969 if (done) {
2970 arc_callback_t *acb = NULL;
2971
2972 acb = kmem_zalloc(sizeof (arc_callback_t),
2973 KM_PUSHPAGE);
2974 acb->acb_done = done;
2975 acb->acb_private = private;
2976 if (pio != NULL)
2977 acb->acb_zio_dummy = zio_null(pio,
2978 spa, NULL, NULL, NULL, zio_flags);
2979
2980 ASSERT(acb->acb_done != NULL);
2981 acb->acb_next = hdr->b_acb;
2982 hdr->b_acb = acb;
2983 add_reference(hdr, hash_lock, private);
2984 mutex_exit(hash_lock);
2985 return (0);
2986 }
2987 mutex_exit(hash_lock);
2988 return (0);
2989 }
2990
2991 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2992
2993 if (done) {
2994 add_reference(hdr, hash_lock, private);
2995 /*
2996 * If this block is already in use, create a new
2997 * copy of the data so that we will be guaranteed
2998 * that arc_release() will always succeed.
2999 */
3000 buf = hdr->b_buf;
3001 ASSERT(buf);
3002 ASSERT(buf->b_data);
3003 if (HDR_BUF_AVAILABLE(hdr)) {
3004 ASSERT(buf->b_efunc == NULL);
3005 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3006 } else {
3007 buf = arc_buf_clone(buf);
3008 }
3009
3010 } else if (*arc_flags & ARC_PREFETCH &&
3011 refcount_count(&hdr->b_refcnt) == 0) {
3012 hdr->b_flags |= ARC_PREFETCH;
3013 }
3014 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
3015 arc_access(hdr, hash_lock);
3016 if (*arc_flags & ARC_L2CACHE)
3017 hdr->b_flags |= ARC_L2CACHE;
3018 mutex_exit(hash_lock);
3019 ARCSTAT_BUMP(arcstat_hits);
3020 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3021 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3022 data, metadata, hits);
3023
3024 if (done)
3025 done(NULL, buf, private);
3026 } else {
3027 uint64_t size = BP_GET_LSIZE(bp);
3028 arc_callback_t *acb;
3029 vdev_t *vd = NULL;
3030 uint64_t addr = -1;
3031 boolean_t devw = B_FALSE;
3032
3033 if (hdr == NULL) {
3034 /* this block is not in the cache */
3035 arc_buf_hdr_t *exists;
3036 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3037 buf = arc_buf_alloc(spa, size, private, type);
3038 hdr = buf->b_hdr;
3039 hdr->b_dva = *BP_IDENTITY(bp);
3040 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
3041 hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
3042 exists = buf_hash_insert(hdr, &hash_lock);
3043 if (exists) {
3044 /* somebody beat us to the hash insert */
3045 mutex_exit(hash_lock);
3046 buf_discard_identity(hdr);
3047 (void) arc_buf_remove_ref(buf, private);
3048 goto top; /* restart the IO request */
3049 }
3050 /* if this is a prefetch, we don't have a reference */
3051 if (*arc_flags & ARC_PREFETCH) {
3052 (void) remove_reference(hdr, hash_lock,
3053 private);
3054 hdr->b_flags |= ARC_PREFETCH;
3055 }
3056 if (*arc_flags & ARC_L2CACHE)
3057 hdr->b_flags |= ARC_L2CACHE;
3058 if (BP_GET_LEVEL(bp) > 0)
3059 hdr->b_flags |= ARC_INDIRECT;
3060 } else {
3061 /* this block is in the ghost cache */
3062 ASSERT(GHOST_STATE(hdr->b_state));
3063 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3064 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
3065 ASSERT(hdr->b_buf == NULL);
3066
3067 /* if this is a prefetch, we don't have a reference */
3068 if (*arc_flags & ARC_PREFETCH)
3069 hdr->b_flags |= ARC_PREFETCH;
3070 else
3071 add_reference(hdr, hash_lock, private);
3072 if (*arc_flags & ARC_L2CACHE)
3073 hdr->b_flags |= ARC_L2CACHE;
3074 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3075 buf->b_hdr = hdr;
3076 buf->b_data = NULL;
3077 buf->b_efunc = NULL;
3078 buf->b_private = NULL;
3079 buf->b_next = NULL;
3080 hdr->b_buf = buf;
3081 ASSERT(hdr->b_datacnt == 0);
3082 hdr->b_datacnt = 1;
3083 arc_get_data_buf(buf);
3084 arc_access(hdr, hash_lock);
3085 }
3086
3087 ASSERT(!GHOST_STATE(hdr->b_state));
3088
3089 acb = kmem_zalloc(sizeof (arc_callback_t), KM_PUSHPAGE);
3090 acb->acb_done = done;
3091 acb->acb_private = private;
3092
3093 ASSERT(hdr->b_acb == NULL);
3094 hdr->b_acb = acb;
3095 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3096
3097 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
3098 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
3099 devw = hdr->b_l2hdr->b_dev->l2ad_writing;
3100 addr = hdr->b_l2hdr->b_daddr;
3101 /*
3102 * Lock out device removal.
3103 */
3104 if (vdev_is_dead(vd) ||
3105 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3106 vd = NULL;
3107 }
3108
3109 mutex_exit(hash_lock);
3110
3111 ASSERT3U(hdr->b_size, ==, size);
3112 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3113 uint64_t, size, zbookmark_t *, zb);
3114 ARCSTAT_BUMP(arcstat_misses);
3115 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3116 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3117 data, metadata, misses);
3118
3119 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3120 /*
3121 * Read from the L2ARC if the following are true:
3122 * 1. The L2ARC vdev was previously cached.
3123 * 2. This buffer still has L2ARC metadata.
3124 * 3. This buffer isn't currently writing to the L2ARC.
3125 * 4. The L2ARC entry wasn't evicted, which may
3126 * also have invalidated the vdev.
3127 * 5. This isn't prefetch and l2arc_noprefetch is set.
3128 */
3129 if (hdr->b_l2hdr != NULL &&
3130 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3131 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3132 l2arc_read_callback_t *cb;
3133
3134 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3135 ARCSTAT_BUMP(arcstat_l2_hits);
3136
3137 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3138 KM_PUSHPAGE);
3139 cb->l2rcb_buf = buf;
3140 cb->l2rcb_spa = spa;
3141 cb->l2rcb_bp = *bp;
3142 cb->l2rcb_zb = *zb;
3143 cb->l2rcb_flags = zio_flags;
3144
3145 /*
3146 * l2arc read. The SCL_L2ARC lock will be
3147 * released by l2arc_read_done().
3148 */
3149 rzio = zio_read_phys(pio, vd, addr, size,
3150 buf->b_data, ZIO_CHECKSUM_OFF,
3151 l2arc_read_done, cb, priority, zio_flags |
3152 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
3153 ZIO_FLAG_DONT_PROPAGATE |
3154 ZIO_FLAG_DONT_RETRY, B_FALSE);
3155 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3156 zio_t *, rzio);
3157 ARCSTAT_INCR(arcstat_l2_read_bytes, size);
3158
3159 if (*arc_flags & ARC_NOWAIT) {
3160 zio_nowait(rzio);
3161 return (0);
3162 }
3163
3164 ASSERT(*arc_flags & ARC_WAIT);
3165 if (zio_wait(rzio) == 0)
3166 return (0);
3167
3168 /* l2arc read error; goto zio_read() */
3169 } else {
3170 DTRACE_PROBE1(l2arc__miss,
3171 arc_buf_hdr_t *, hdr);
3172 ARCSTAT_BUMP(arcstat_l2_misses);
3173 if (HDR_L2_WRITING(hdr))
3174 ARCSTAT_BUMP(arcstat_l2_rw_clash);
3175 spa_config_exit(spa, SCL_L2ARC, vd);
3176 }
3177 } else {
3178 if (vd != NULL)
3179 spa_config_exit(spa, SCL_L2ARC, vd);
3180 if (l2arc_ndev != 0) {
3181 DTRACE_PROBE1(l2arc__miss,
3182 arc_buf_hdr_t *, hdr);
3183 ARCSTAT_BUMP(arcstat_l2_misses);
3184 }
3185 }
3186
3187 rzio = zio_read(pio, spa, bp, buf->b_data, size,
3188 arc_read_done, buf, priority, zio_flags, zb);
3189
3190 if (*arc_flags & ARC_WAIT)
3191 return (zio_wait(rzio));
3192
3193 ASSERT(*arc_flags & ARC_NOWAIT);
3194 zio_nowait(rzio);
3195 }
3196 return (0);
3197 }
3198
3199 arc_prune_t *
3200 arc_add_prune_callback(arc_prune_func_t *func, void *private)
3201 {
3202 arc_prune_t *p;
3203
3204 p = kmem_alloc(sizeof(*p), KM_SLEEP);
3205 p->p_pfunc = func;
3206 p->p_private = private;
3207 list_link_init(&p->p_node);
3208 refcount_create(&p->p_refcnt);
3209
3210 mutex_enter(&arc_prune_mtx);
3211 refcount_add(&p->p_refcnt, &arc_prune_list);
3212 list_insert_head(&arc_prune_list, p);
3213 mutex_exit(&arc_prune_mtx);
3214
3215 return (p);
3216 }
3217
3218 void
3219 arc_remove_prune_callback(arc_prune_t *p)
3220 {
3221 mutex_enter(&arc_prune_mtx);
3222 list_remove(&arc_prune_list, p);
3223 if (refcount_remove(&p->p_refcnt, &arc_prune_list) == 0) {
3224 refcount_destroy(&p->p_refcnt);
3225 kmem_free(p, sizeof (*p));
3226 }
3227 mutex_exit(&arc_prune_mtx);
3228 }
3229
3230 void
3231 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3232 {
3233 ASSERT(buf->b_hdr != NULL);
3234 ASSERT(buf->b_hdr->b_state != arc_anon);
3235 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3236 ASSERT(buf->b_efunc == NULL);
3237 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3238
3239 buf->b_efunc = func;
3240 buf->b_private = private;
3241 }
3242
3243 /*
3244 * This is used by the DMU to let the ARC know that a buffer is
3245 * being evicted, so the ARC should clean up. If this arc buf
3246 * is not yet in the evicted state, it will be put there.
3247 */
3248 int
3249 arc_buf_evict(arc_buf_t *buf)
3250 {
3251 arc_buf_hdr_t *hdr;
3252 kmutex_t *hash_lock;
3253 arc_buf_t **bufp;
3254
3255 mutex_enter(&buf->b_evict_lock);
3256 hdr = buf->b_hdr;
3257 if (hdr == NULL) {
3258 /*
3259 * We are in arc_do_user_evicts().
3260 */
3261 ASSERT(buf->b_data == NULL);
3262 mutex_exit(&buf->b_evict_lock);
3263 return (0);
3264 } else if (buf->b_data == NULL) {
3265 arc_buf_t copy = *buf; /* structure assignment */
3266 /*
3267 * We are on the eviction list; process this buffer now
3268 * but let arc_do_user_evicts() do the reaping.
3269 */
3270 buf->b_efunc = NULL;
3271 mutex_exit(&buf->b_evict_lock);
3272 VERIFY(copy.b_efunc(&copy) == 0);
3273 return (1);
3274 }
3275 hash_lock = HDR_LOCK(hdr);
3276 mutex_enter(hash_lock);
3277 hdr = buf->b_hdr;
3278 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3279
3280 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3281 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3282
3283 /*
3284 * Pull this buffer off of the hdr
3285 */
3286 bufp = &hdr->b_buf;
3287 while (*bufp != buf)
3288 bufp = &(*bufp)->b_next;
3289 *bufp = buf->b_next;
3290
3291 ASSERT(buf->b_data != NULL);
3292 arc_buf_destroy(buf, FALSE, FALSE);
3293
3294 if (hdr->b_datacnt == 0) {
3295 arc_state_t *old_state = hdr->b_state;
3296 arc_state_t *evicted_state;
3297
3298 ASSERT(hdr->b_buf == NULL);
3299 ASSERT(refcount_is_zero(&hdr->b_refcnt));
3300
3301 evicted_state =
3302 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3303
3304 mutex_enter(&old_state->arcs_mtx);
3305 mutex_enter(&evicted_state->arcs_mtx);
3306
3307 arc_change_state(evicted_state, hdr, hash_lock);
3308 ASSERT(HDR_IN_HASH_TABLE(hdr));
3309 hdr->b_flags |= ARC_IN_HASH_TABLE;
3310 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3311
3312 mutex_exit(&evicted_state->arcs_mtx);
3313 mutex_exit(&old_state->arcs_mtx);
3314 }
3315 mutex_exit(hash_lock);
3316 mutex_exit(&buf->b_evict_lock);
3317
3318 VERIFY(buf->b_efunc(buf) == 0);
3319 buf->b_efunc = NULL;
3320 buf->b_private = NULL;
3321 buf->b_hdr = NULL;
3322 buf->b_next = NULL;
3323 kmem_cache_free(buf_cache, buf);
3324 return (1);
3325 }
3326
3327 /*
3328 * Release this buffer from the cache. This must be done
3329 * after a read and prior to modifying the buffer contents.
3330 * If the buffer has more than one reference, we must make
3331 * a new hdr for the buffer.
3332 */
3333 void
3334 arc_release(arc_buf_t *buf, void *tag)
3335 {
3336 arc_buf_hdr_t *hdr;
3337 kmutex_t *hash_lock = NULL;
3338 l2arc_buf_hdr_t *l2hdr;
3339 uint64_t buf_size = 0;
3340
3341 /*
3342 * It would be nice to assert that if it's DMU metadata (level >
3343 * 0 || it's the dnode file), then it must be syncing context.
3344 * But we don't know that information at this level.
3345 */
3346
3347 mutex_enter(&buf->b_evict_lock);
3348 hdr = buf->b_hdr;
3349
3350 /* this buffer is not on any list */
3351 ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3352
3353 if (hdr->b_state == arc_anon) {
3354 /* this buffer is already released */
3355 ASSERT(buf->b_efunc == NULL);
3356 } else {
3357 hash_lock = HDR_LOCK(hdr);
3358 mutex_enter(hash_lock);
3359 hdr = buf->b_hdr;
3360 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3361 }
3362
3363 l2hdr = hdr->b_l2hdr;
3364 if (l2hdr) {
3365 mutex_enter(&l2arc_buflist_mtx);
3366 hdr->b_l2hdr = NULL;
3367 buf_size = hdr->b_size;
3368 }
3369
3370 /*
3371 * Do we have more than one buf?
3372 */
3373 if (hdr->b_datacnt > 1) {
3374 arc_buf_hdr_t *nhdr;
3375 arc_buf_t **bufp;
3376 uint64_t blksz = hdr->b_size;
3377 uint64_t spa = hdr->b_spa;
3378 arc_buf_contents_t type = hdr->b_type;
3379 uint32_t flags = hdr->b_flags;
3380
3381 ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3382 /*
3383 * Pull the data off of this hdr and attach it to
3384 * a new anonymous hdr.
3385 */
3386 (void) remove_reference(hdr, hash_lock, tag);
3387 bufp = &hdr->b_buf;
3388 while (*bufp != buf)
3389 bufp = &(*bufp)->b_next;
3390 *bufp = buf->b_next;
3391 buf->b_next = NULL;
3392
3393 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3394 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3395 if (refcount_is_zero(&hdr->b_refcnt)) {
3396 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3397 ASSERT3U(*size, >=, hdr->b_size);
3398 atomic_add_64(size, -hdr->b_size);
3399 }
3400
3401 /*
3402 * We're releasing a duplicate user data buffer, update
3403 * our statistics accordingly.
3404 */
3405 if (hdr->b_type == ARC_BUFC_DATA) {
3406 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3407 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3408 -hdr->b_size);
3409 }
3410 hdr->b_datacnt -= 1;
3411 arc_cksum_verify(buf);
3412
3413 mutex_exit(hash_lock);
3414
3415 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3416 nhdr->b_size = blksz;
3417 nhdr->b_spa = spa;
3418 nhdr->b_type = type;
3419 nhdr->b_buf = buf;
3420 nhdr->b_state = arc_anon;
3421 nhdr->b_arc_access = 0;
3422 nhdr->b_flags = flags & ARC_L2_WRITING;
3423 nhdr->b_l2hdr = NULL;
3424 nhdr->b_datacnt = 1;
3425 nhdr->b_freeze_cksum = NULL;
3426 (void) refcount_add(&nhdr->b_refcnt, tag);
3427 buf->b_hdr = nhdr;
3428 mutex_exit(&buf->b_evict_lock);
3429 atomic_add_64(&arc_anon->arcs_size, blksz);
3430 } else {
3431 mutex_exit(&buf->b_evict_lock);
3432 ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3433 ASSERT(!list_link_active(&hdr->b_arc_node));
3434 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3435 if (hdr->b_state != arc_anon)
3436 arc_change_state(arc_anon, hdr, hash_lock);
3437 hdr->b_arc_access = 0;
3438 if (hash_lock)
3439 mutex_exit(hash_lock);
3440
3441 buf_discard_identity(hdr);
3442 arc_buf_thaw(buf);
3443 }
3444 buf->b_efunc = NULL;
3445 buf->b_private = NULL;
3446
3447 if (l2hdr) {
3448 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3449 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3450 ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3451 mutex_exit(&l2arc_buflist_mtx);
3452 }
3453 }
3454
3455 /*
3456 * Release this buffer. If it does not match the provided BP, fill it
3457 * with that block's contents.
3458 */
3459 /* ARGSUSED */
3460 int
3461 arc_release_bp(arc_buf_t *buf, void *tag, blkptr_t *bp, spa_t *spa,
3462 zbookmark_t *zb)
3463 {
3464 arc_release(buf, tag);
3465 return (0);
3466 }
3467
3468 int
3469 arc_released(arc_buf_t *buf)
3470 {
3471 int released;
3472
3473 mutex_enter(&buf->b_evict_lock);
3474 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3475 mutex_exit(&buf->b_evict_lock);
3476 return (released);
3477 }
3478
3479 int
3480 arc_has_callback(arc_buf_t *buf)
3481 {
3482 int callback;
3483
3484 mutex_enter(&buf->b_evict_lock);
3485 callback = (buf->b_efunc != NULL);
3486 mutex_exit(&buf->b_evict_lock);
3487 return (callback);
3488 }
3489
3490 #ifdef ZFS_DEBUG
3491 int
3492 arc_referenced(arc_buf_t *buf)
3493 {
3494 int referenced;
3495
3496 mutex_enter(&buf->b_evict_lock);
3497 referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3498 mutex_exit(&buf->b_evict_lock);
3499 return (referenced);
3500 }
3501 #endif
3502
3503 static void
3504 arc_write_ready(zio_t *zio)
3505 {
3506 arc_write_callback_t *callback = zio->io_private;
3507 arc_buf_t *buf = callback->awcb_buf;
3508 arc_buf_hdr_t *hdr = buf->b_hdr;
3509
3510 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3511 callback->awcb_ready(zio, buf, callback->awcb_private);
3512
3513 /*
3514 * If the IO is already in progress, then this is a re-write
3515 * attempt, so we need to thaw and re-compute the cksum.
3516 * It is the responsibility of the callback to handle the
3517 * accounting for any re-write attempt.
3518 */
3519 if (HDR_IO_IN_PROGRESS(hdr)) {
3520 mutex_enter(&hdr->b_freeze_lock);
3521 if (hdr->b_freeze_cksum != NULL) {
3522 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3523 hdr->b_freeze_cksum = NULL;
3524 }
3525 mutex_exit(&hdr->b_freeze_lock);
3526 }
3527 arc_cksum_compute(buf, B_FALSE);
3528 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3529 }
3530
3531 static void
3532 arc_write_done(zio_t *zio)
3533 {
3534 arc_write_callback_t *callback = zio->io_private;
3535 arc_buf_t *buf = callback->awcb_buf;
3536 arc_buf_hdr_t *hdr = buf->b_hdr;
3537
3538 ASSERT(hdr->b_acb == NULL);
3539
3540 if (zio->io_error == 0) {
3541 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3542 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3543 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3544 } else {
3545 ASSERT(BUF_EMPTY(hdr));
3546 }
3547
3548 /*
3549 * If the block to be written was all-zero, we may have
3550 * compressed it away. In this case no write was performed
3551 * so there will be no dva/birth/checksum. The buffer must
3552 * therefore remain anonymous (and uncached).
3553 */
3554 if (!BUF_EMPTY(hdr)) {
3555 arc_buf_hdr_t *exists;
3556 kmutex_t *hash_lock;
3557
3558 ASSERT(zio->io_error == 0);
3559
3560 arc_cksum_verify(buf);
3561
3562 exists = buf_hash_insert(hdr, &hash_lock);
3563 if (exists) {
3564 /*
3565 * This can only happen if we overwrite for
3566 * sync-to-convergence, because we remove
3567 * buffers from the hash table when we arc_free().
3568 */
3569 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3570 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3571 panic("bad overwrite, hdr=%p exists=%p",
3572 (void *)hdr, (void *)exists);
3573 ASSERT(refcount_is_zero(&exists->b_refcnt));
3574 arc_change_state(arc_anon, exists, hash_lock);
3575 mutex_exit(hash_lock);
3576 arc_hdr_destroy(exists);
3577 exists = buf_hash_insert(hdr, &hash_lock);
3578 ASSERT3P(exists, ==, NULL);
3579 } else {
3580 /* Dedup */
3581 ASSERT(hdr->b_datacnt == 1);
3582 ASSERT(hdr->b_state == arc_anon);
3583 ASSERT(BP_GET_DEDUP(zio->io_bp));
3584 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3585 }
3586 }
3587 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3588 /* if it's not anon, we are doing a scrub */
3589 if (!exists && hdr->b_state == arc_anon)
3590 arc_access(hdr, hash_lock);
3591 mutex_exit(hash_lock);
3592 } else {
3593 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3594 }
3595
3596 ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3597 callback->awcb_done(zio, buf, callback->awcb_private);
3598
3599 kmem_free(callback, sizeof (arc_write_callback_t));
3600 }
3601
3602 zio_t *
3603 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3604 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3605 arc_done_func_t *ready, arc_done_func_t *done, void *private,
3606 int priority, int zio_flags, const zbookmark_t *zb)
3607 {
3608 arc_buf_hdr_t *hdr = buf->b_hdr;
3609 arc_write_callback_t *callback;
3610 zio_t *zio;
3611
3612 ASSERT(ready != NULL);
3613 ASSERT(done != NULL);
3614 ASSERT(!HDR_IO_ERROR(hdr));
3615 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3616 ASSERT(hdr->b_acb == NULL);
3617 if (l2arc)
3618 hdr->b_flags |= ARC_L2CACHE;
3619 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_PUSHPAGE);
3620 callback->awcb_ready = ready;
3621 callback->awcb_done = done;
3622 callback->awcb_private = private;
3623 callback->awcb_buf = buf;
3624
3625 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3626 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3627
3628 return (zio);
3629 }
3630
3631 static int
3632 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3633 {
3634 #ifdef _KERNEL
3635 uint64_t available_memory;
3636
3637 if (zfs_arc_memory_throttle_disable)
3638 return (0);
3639
3640 /* Easily reclaimable memory (free + inactive + arc-evictable) */
3641 available_memory = ptob(spl_kmem_availrmem()) + arc_evictable_memory();
3642
3643 if (available_memory <= zfs_write_limit_max) {
3644 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3645 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
3646 return (EAGAIN);
3647 }
3648
3649 if (inflight_data > available_memory / 4) {
3650 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3651 DMU_TX_STAT_BUMP(dmu_tx_memory_inflight);
3652 return (ERESTART);
3653 }
3654 #endif
3655 return (0);
3656 }
3657
3658 void
3659 arc_tempreserve_clear(uint64_t reserve)
3660 {
3661 atomic_add_64(&arc_tempreserve, -reserve);
3662 ASSERT((int64_t)arc_tempreserve >= 0);
3663 }
3664
3665 int
3666 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3667 {
3668 int error;
3669 uint64_t anon_size;
3670
3671 #ifdef ZFS_DEBUG
3672 /*
3673 * Once in a while, fail for no reason. Everything should cope.
3674 */
3675 if (spa_get_random(10000) == 0) {
3676 dprintf("forcing random failure\n");
3677 return (ERESTART);
3678 }
3679 #endif
3680 if (reserve > arc_c/4 && !arc_no_grow)
3681 arc_c = MIN(arc_c_max, reserve * 4);
3682 if (reserve > arc_c) {
3683 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
3684 return (ENOMEM);
3685 }
3686
3687 /*
3688 * Don't count loaned bufs as in flight dirty data to prevent long
3689 * network delays from blocking transactions that are ready to be
3690 * assigned to a txg.
3691 */
3692 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3693
3694 /*
3695 * Writes will, almost always, require additional memory allocations
3696 * in order to compress/encrypt/etc the data. We therefor need to
3697 * make sure that there is sufficient available memory for this.
3698 */
3699 if ((error = arc_memory_throttle(reserve, anon_size, txg)))
3700 return (error);
3701
3702 /*
3703 * Throttle writes when the amount of dirty data in the cache
3704 * gets too large. We try to keep the cache less than half full
3705 * of dirty blocks so that our sync times don't grow too large.
3706 * Note: if two requests come in concurrently, we might let them
3707 * both succeed, when one of them should fail. Not a huge deal.
3708 */
3709
3710 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3711 anon_size > arc_c / 4) {
3712 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3713 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3714 arc_tempreserve>>10,
3715 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3716 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3717 reserve>>10, arc_c>>10);
3718 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
3719 return (ERESTART);
3720 }
3721 atomic_add_64(&arc_tempreserve, reserve);
3722 return (0);
3723 }
3724
3725 static void
3726 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
3727 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
3728 {
3729 size->value.ui64 = state->arcs_size;
3730 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
3731 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
3732 }
3733
3734 static int
3735 arc_kstat_update(kstat_t *ksp, int rw)
3736 {
3737 arc_stats_t *as = ksp->ks_data;
3738
3739 if (rw == KSTAT_WRITE) {
3740 return (EACCES);
3741 } else {
3742 arc_kstat_update_state(arc_anon,
3743 &as->arcstat_anon_size,
3744 &as->arcstat_anon_evict_data,
3745 &as->arcstat_anon_evict_metadata);
3746 arc_kstat_update_state(arc_mru,
3747 &as->arcstat_mru_size,
3748 &as->arcstat_mru_evict_data,
3749 &as->arcstat_mru_evict_metadata);
3750 arc_kstat_update_state(arc_mru_ghost,
3751 &as->arcstat_mru_ghost_size,
3752 &as->arcstat_mru_ghost_evict_data,
3753 &as->arcstat_mru_ghost_evict_metadata);
3754 arc_kstat_update_state(arc_mfu,
3755 &as->arcstat_mfu_size,
3756 &as->arcstat_mfu_evict_data,
3757 &as->arcstat_mfu_evict_metadata);
3758 arc_kstat_update_state(arc_mfu_ghost,
3759 &as->arcstat_mfu_ghost_size,
3760 &as->arcstat_mfu_ghost_evict_data,
3761 &as->arcstat_mfu_ghost_evict_metadata);
3762 }
3763
3764 return (0);
3765 }
3766
3767 void
3768 arc_init(void)
3769 {
3770 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3771 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3772
3773 /* Convert seconds to clock ticks */
3774 arc_min_prefetch_lifespan = 1 * hz;
3775
3776 /* Start out with 1/8 of all memory */
3777 arc_c = physmem * PAGESIZE / 8;
3778
3779 #ifdef _KERNEL
3780 /*
3781 * On architectures where the physical memory can be larger
3782 * than the addressable space (intel in 32-bit mode), we may
3783 * need to limit the cache to 1/8 of VM size.
3784 */
3785 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3786 /*
3787 * Register a shrinker to support synchronous (direct) memory
3788 * reclaim from the arc. This is done to prevent kswapd from
3789 * swapping out pages when it is preferable to shrink the arc.
3790 */
3791 spl_register_shrinker(&arc_shrinker);
3792 #endif
3793
3794 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3795 arc_c_min = MAX(arc_c / 4, 64<<20);
3796 /* set max to 1/2 of all memory */
3797 arc_c_max = MAX(arc_c * 4, arc_c_max);
3798
3799 /*
3800 * Allow the tunables to override our calculations if they are
3801 * reasonable (ie. over 64MB)
3802 */
3803 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3804 arc_c_max = zfs_arc_max;
3805 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3806 arc_c_min = zfs_arc_min;
3807
3808 arc_c = arc_c_max;
3809 arc_p = (arc_c >> 1);
3810
3811 /* limit meta-data to 1/4 of the arc capacity */
3812 arc_meta_limit = arc_c_max / 4;
3813 arc_meta_max = 0;
3814
3815 /* Allow the tunable to override if it is reasonable */
3816 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3817 arc_meta_limit = zfs_arc_meta_limit;
3818
3819 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3820 arc_c_min = arc_meta_limit / 2;
3821
3822 if (zfs_arc_grow_retry > 0)
3823 arc_grow_retry = zfs_arc_grow_retry;
3824
3825 if (zfs_arc_shrink_shift > 0)
3826 arc_shrink_shift = zfs_arc_shrink_shift;
3827
3828 if (zfs_arc_p_min_shift > 0)
3829 arc_p_min_shift = zfs_arc_p_min_shift;
3830
3831 if (zfs_arc_meta_prune > 0)
3832 arc_meta_prune = zfs_arc_meta_prune;
3833
3834 /* if kmem_flags are set, lets try to use less memory */
3835 if (kmem_debugging())
3836 arc_c = arc_c / 2;
3837 if (arc_c < arc_c_min)
3838 arc_c = arc_c_min;
3839
3840 arc_anon = &ARC_anon;
3841 arc_mru = &ARC_mru;
3842 arc_mru_ghost = &ARC_mru_ghost;
3843 arc_mfu = &ARC_mfu;
3844 arc_mfu_ghost = &ARC_mfu_ghost;
3845 arc_l2c_only = &ARC_l2c_only;
3846 arc_size = 0;
3847
3848 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3849 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3850 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3851 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3852 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3853 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3854
3855 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3856 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3857 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3858 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3859 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3860 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3861 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3862 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3863 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3864 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3865 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3866 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3867 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3868 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3869 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3870 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3871 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3872 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3873 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3874 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3875
3876 buf_init();
3877
3878 arc_thread_exit = 0;
3879 list_create(&arc_prune_list, sizeof (arc_prune_t),
3880 offsetof(arc_prune_t, p_node));
3881 arc_eviction_list = NULL;
3882 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
3883 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3884 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3885
3886 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3887 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3888
3889 if (arc_ksp != NULL) {
3890 arc_ksp->ks_data = &arc_stats;
3891 arc_ksp->ks_update = arc_kstat_update;
3892 kstat_install(arc_ksp);
3893 }
3894
3895 (void) thread_create(NULL, 0, arc_adapt_thread, NULL, 0, &p0,
3896 TS_RUN, minclsyspri);
3897
3898 arc_dead = FALSE;
3899 arc_warm = B_FALSE;
3900
3901 if (zfs_write_limit_max == 0)
3902 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3903 else
3904 zfs_write_limit_shift = 0;
3905 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3906 }
3907
3908 void
3909 arc_fini(void)
3910 {
3911 arc_prune_t *p;
3912
3913 mutex_enter(&arc_reclaim_thr_lock);
3914 #ifdef _KERNEL
3915 spl_unregister_shrinker(&arc_shrinker);
3916 #endif /* _KERNEL */
3917
3918 arc_thread_exit = 1;
3919 while (arc_thread_exit != 0)
3920 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3921 mutex_exit(&arc_reclaim_thr_lock);
3922
3923 arc_flush(NULL);
3924
3925 arc_dead = TRUE;
3926
3927 if (arc_ksp != NULL) {
3928 kstat_delete(arc_ksp);
3929 arc_ksp = NULL;
3930 }
3931
3932 mutex_enter(&arc_prune_mtx);
3933 while ((p = list_head(&arc_prune_list)) != NULL) {
3934 list_remove(&arc_prune_list, p);
3935 refcount_remove(&p->p_refcnt, &arc_prune_list);
3936 refcount_destroy(&p->p_refcnt);
3937 kmem_free(p, sizeof (*p));
3938 }
3939 mutex_exit(&arc_prune_mtx);
3940
3941 list_destroy(&arc_prune_list);
3942 mutex_destroy(&arc_prune_mtx);
3943 mutex_destroy(&arc_eviction_mtx);
3944 mutex_destroy(&arc_reclaim_thr_lock);
3945 cv_destroy(&arc_reclaim_thr_cv);
3946
3947 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3948 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3949 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3950 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3951 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3952 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3953 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3954 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3955
3956 mutex_destroy(&arc_anon->arcs_mtx);
3957 mutex_destroy(&arc_mru->arcs_mtx);
3958 mutex_destroy(&arc_mru_ghost->arcs_mtx);
3959 mutex_destroy(&arc_mfu->arcs_mtx);
3960 mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3961 mutex_destroy(&arc_l2c_only->arcs_mtx);
3962
3963 mutex_destroy(&zfs_write_limit_lock);
3964
3965 buf_fini();
3966
3967 ASSERT(arc_loaned_bytes == 0);
3968 }
3969
3970 /*
3971 * Level 2 ARC
3972 *
3973 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3974 * It uses dedicated storage devices to hold cached data, which are populated
3975 * using large infrequent writes. The main role of this cache is to boost
3976 * the performance of random read workloads. The intended L2ARC devices
3977 * include short-stroked disks, solid state disks, and other media with
3978 * substantially faster read latency than disk.
3979 *
3980 * +-----------------------+
3981 * | ARC |
3982 * +-----------------------+
3983 * | ^ ^
3984 * | | |
3985 * l2arc_feed_thread() arc_read()
3986 * | | |
3987 * | l2arc read |
3988 * V | |
3989 * +---------------+ |
3990 * | L2ARC | |
3991 * +---------------+ |
3992 * | ^ |
3993 * l2arc_write() | |
3994 * | | |
3995 * V | |
3996 * +-------+ +-------+
3997 * | vdev | | vdev |
3998 * | cache | | cache |
3999 * +-------+ +-------+
4000 * +=========+ .-----.
4001 * : L2ARC : |-_____-|
4002 * : devices : | Disks |
4003 * +=========+ `-_____-'
4004 *
4005 * Read requests are satisfied from the following sources, in order:
4006 *
4007 * 1) ARC
4008 * 2) vdev cache of L2ARC devices
4009 * 3) L2ARC devices
4010 * 4) vdev cache of disks
4011 * 5) disks
4012 *
4013 * Some L2ARC device types exhibit extremely slow write performance.
4014 * To accommodate for this there are some significant differences between
4015 * the L2ARC and traditional cache design:
4016 *
4017 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
4018 * the ARC behave as usual, freeing buffers and placing headers on ghost
4019 * lists. The ARC does not send buffers to the L2ARC during eviction as
4020 * this would add inflated write latencies for all ARC memory pressure.
4021 *
4022 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
4023 * It does this by periodically scanning buffers from the eviction-end of
4024 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
4025 * not already there. It scans until a headroom of buffers is satisfied,
4026 * which itself is a buffer for ARC eviction. The thread that does this is
4027 * l2arc_feed_thread(), illustrated below; example sizes are included to
4028 * provide a better sense of ratio than this diagram:
4029 *
4030 * head --> tail
4031 * +---------------------+----------+
4032 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
4033 * +---------------------+----------+ | o L2ARC eligible
4034 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
4035 * +---------------------+----------+ |
4036 * 15.9 Gbytes ^ 32 Mbytes |
4037 * headroom |
4038 * l2arc_feed_thread()
4039 * |
4040 * l2arc write hand <--[oooo]--'
4041 * | 8 Mbyte
4042 * | write max
4043 * V
4044 * +==============================+
4045 * L2ARC dev |####|#|###|###| |####| ... |
4046 * +==============================+
4047 * 32 Gbytes
4048 *
4049 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
4050 * evicted, then the L2ARC has cached a buffer much sooner than it probably
4051 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
4052 * safe to say that this is an uncommon case, since buffers at the end of
4053 * the ARC lists have moved there due to inactivity.
4054 *
4055 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
4056 * then the L2ARC simply misses copying some buffers. This serves as a
4057 * pressure valve to prevent heavy read workloads from both stalling the ARC
4058 * with waits and clogging the L2ARC with writes. This also helps prevent
4059 * the potential for the L2ARC to churn if it attempts to cache content too
4060 * quickly, such as during backups of the entire pool.
4061 *
4062 * 5. After system boot and before the ARC has filled main memory, there are
4063 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4064 * lists can remain mostly static. Instead of searching from tail of these
4065 * lists as pictured, the l2arc_feed_thread() will search from the list heads
4066 * for eligible buffers, greatly increasing its chance of finding them.
4067 *
4068 * The L2ARC device write speed is also boosted during this time so that
4069 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
4070 * there are no L2ARC reads, and no fear of degrading read performance
4071 * through increased writes.
4072 *
4073 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
4074 * the vdev queue can aggregate them into larger and fewer writes. Each
4075 * device is written to in a rotor fashion, sweeping writes through
4076 * available space then repeating.
4077 *
4078 * 7. The L2ARC does not store dirty content. It never needs to flush
4079 * write buffers back to disk based storage.
4080 *
4081 * 8. If an ARC buffer is written (and dirtied) which also exists in the
4082 * L2ARC, the now stale L2ARC buffer is immediately dropped.
4083 *
4084 * The performance of the L2ARC can be tweaked by a number of tunables, which
4085 * may be necessary for different workloads:
4086 *
4087 * l2arc_write_max max write bytes per interval
4088 * l2arc_write_boost extra write bytes during device warmup
4089 * l2arc_noprefetch skip caching prefetched buffers
4090 * l2arc_headroom number of max device writes to precache
4091 * l2arc_feed_secs seconds between L2ARC writing
4092 *
4093 * Tunables may be removed or added as future performance improvements are
4094 * integrated, and also may become zpool properties.
4095 *
4096 * There are three key functions that control how the L2ARC warms up:
4097 *
4098 * l2arc_write_eligible() check if a buffer is eligible to cache
4099 * l2arc_write_size() calculate how much to write
4100 * l2arc_write_interval() calculate sleep delay between writes
4101 *
4102 * These three functions determine what to write, how much, and how quickly
4103 * to send writes.
4104 */
4105
4106 static boolean_t
4107 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4108 {
4109 /*
4110 * A buffer is *not* eligible for the L2ARC if it:
4111 * 1. belongs to a different spa.
4112 * 2. is already cached on the L2ARC.
4113 * 3. has an I/O in progress (it may be an incomplete read).
4114 * 4. is flagged not eligible (zfs property).
4115 */
4116 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
4117 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
4118 return (B_FALSE);
4119
4120 return (B_TRUE);
4121 }
4122
4123 static uint64_t
4124 l2arc_write_size(l2arc_dev_t *dev)
4125 {
4126 uint64_t size;
4127
4128 size = dev->l2ad_write;
4129
4130 if (arc_warm == B_FALSE)
4131 size += dev->l2ad_boost;
4132
4133 return (size);
4134
4135 }
4136
4137 static clock_t
4138 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4139 {
4140 clock_t interval, next, now;
4141
4142 /*
4143 * If the ARC lists are busy, increase our write rate; if the
4144 * lists are stale, idle back. This is achieved by checking
4145 * how much we previously wrote - if it was more than half of
4146 * what we wanted, schedule the next write much sooner.
4147 */
4148 if (l2arc_feed_again && wrote > (wanted / 2))
4149 interval = (hz * l2arc_feed_min_ms) / 1000;
4150 else
4151 interval = hz * l2arc_feed_secs;
4152
4153 now = ddi_get_lbolt();
4154 next = MAX(now, MIN(now + interval, began + interval));
4155
4156 return (next);
4157 }
4158
4159 static void
4160 l2arc_hdr_stat_add(void)
4161 {
4162 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
4163 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4164 }
4165
4166 static void
4167 l2arc_hdr_stat_remove(void)
4168 {
4169 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
4170 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4171 }
4172
4173 /*
4174 * Cycle through L2ARC devices. This is how L2ARC load balances.
4175 * If a device is returned, this also returns holding the spa config lock.
4176 */
4177 static l2arc_dev_t *
4178 l2arc_dev_get_next(void)
4179 {
4180 l2arc_dev_t *first, *next = NULL;
4181
4182 /*
4183 * Lock out the removal of spas (spa_namespace_lock), then removal
4184 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
4185 * both locks will be dropped and a spa config lock held instead.
4186 */
4187 mutex_enter(&spa_namespace_lock);
4188 mutex_enter(&l2arc_dev_mtx);
4189
4190 /* if there are no vdevs, there is nothing to do */
4191 if (l2arc_ndev == 0)
4192 goto out;
4193
4194 first = NULL;
4195 next = l2arc_dev_last;
4196 do {
4197 /* loop around the list looking for a non-faulted vdev */
4198 if (next == NULL) {
4199 next = list_head(l2arc_dev_list);
4200 } else {
4201 next = list_next(l2arc_dev_list, next);
4202 if (next == NULL)
4203 next = list_head(l2arc_dev_list);
4204 }
4205
4206 /* if we have come back to the start, bail out */
4207 if (first == NULL)
4208 first = next;
4209 else if (next == first)
4210 break;
4211
4212 } while (vdev_is_dead(next->l2ad_vdev));
4213
4214 /* if we were unable to find any usable vdevs, return NULL */
4215 if (vdev_is_dead(next->l2ad_vdev))
4216 next = NULL;
4217
4218 l2arc_dev_last = next;
4219
4220 out:
4221 mutex_exit(&l2arc_dev_mtx);
4222
4223 /*
4224 * Grab the config lock to prevent the 'next' device from being
4225 * removed while we are writing to it.
4226 */
4227 if (next != NULL)
4228 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4229 mutex_exit(&spa_namespace_lock);
4230
4231 return (next);
4232 }
4233
4234 /*
4235 * Free buffers that were tagged for destruction.
4236 */
4237 static void
4238 l2arc_do_free_on_write(void)
4239 {
4240 list_t *buflist;
4241 l2arc_data_free_t *df, *df_prev;
4242
4243 mutex_enter(&l2arc_free_on_write_mtx);
4244 buflist = l2arc_free_on_write;
4245
4246 for (df = list_tail(buflist); df; df = df_prev) {
4247 df_prev = list_prev(buflist, df);
4248 ASSERT(df->l2df_data != NULL);
4249 ASSERT(df->l2df_func != NULL);
4250 df->l2df_func(df->l2df_data, df->l2df_size);
4251 list_remove(buflist, df);
4252 kmem_free(df, sizeof (l2arc_data_free_t));
4253 }
4254
4255 mutex_exit(&l2arc_free_on_write_mtx);
4256 }
4257
4258 /*
4259 * A write to a cache device has completed. Update all headers to allow
4260 * reads from these buffers to begin.
4261 */
4262 static void
4263 l2arc_write_done(zio_t *zio)
4264 {
4265 l2arc_write_callback_t *cb;
4266 l2arc_dev_t *dev;
4267 list_t *buflist;
4268 arc_buf_hdr_t *head, *ab, *ab_prev;
4269 l2arc_buf_hdr_t *abl2;
4270 kmutex_t *hash_lock;
4271
4272 cb = zio->io_private;
4273 ASSERT(cb != NULL);
4274 dev = cb->l2wcb_dev;
4275 ASSERT(dev != NULL);
4276 head = cb->l2wcb_head;
4277 ASSERT(head != NULL);
4278 buflist = dev->l2ad_buflist;
4279 ASSERT(buflist != NULL);
4280 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4281 l2arc_write_callback_t *, cb);
4282
4283 if (zio->io_error != 0)
4284 ARCSTAT_BUMP(arcstat_l2_writes_error);
4285
4286 mutex_enter(&l2arc_buflist_mtx);
4287
4288 /*
4289 * All writes completed, or an error was hit.
4290 */
4291 for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4292 ab_prev = list_prev(buflist, ab);
4293
4294 hash_lock = HDR_LOCK(ab);
4295 if (!mutex_tryenter(hash_lock)) {
4296 /*
4297 * This buffer misses out. It may be in a stage
4298 * of eviction. Its ARC_L2_WRITING flag will be
4299 * left set, denying reads to this buffer.
4300 */
4301 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4302 continue;
4303 }
4304
4305 if (zio->io_error != 0) {
4306 /*
4307 * Error - drop L2ARC entry.
4308 */
4309 list_remove(buflist, ab);
4310 abl2 = ab->b_l2hdr;
4311 ab->b_l2hdr = NULL;
4312 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4313 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4314 }
4315
4316 /*
4317 * Allow ARC to begin reads to this L2ARC entry.
4318 */
4319 ab->b_flags &= ~ARC_L2_WRITING;
4320
4321 mutex_exit(hash_lock);
4322 }
4323
4324 atomic_inc_64(&l2arc_writes_done);
4325 list_remove(buflist, head);
4326 kmem_cache_free(hdr_cache, head);
4327 mutex_exit(&l2arc_buflist_mtx);
4328
4329 l2arc_do_free_on_write();
4330
4331 kmem_free(cb, sizeof (l2arc_write_callback_t));
4332 }
4333
4334 /*
4335 * A read to a cache device completed. Validate buffer contents before
4336 * handing over to the regular ARC routines.
4337 */
4338 static void
4339 l2arc_read_done(zio_t *zio)
4340 {
4341 l2arc_read_callback_t *cb;
4342 arc_buf_hdr_t *hdr;
4343 arc_buf_t *buf;
4344 kmutex_t *hash_lock;
4345 int equal;
4346
4347 ASSERT(zio->io_vd != NULL);
4348 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4349
4350 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4351
4352 cb = zio->io_private;
4353 ASSERT(cb != NULL);
4354 buf = cb->l2rcb_buf;
4355 ASSERT(buf != NULL);
4356
4357 hash_lock = HDR_LOCK(buf->b_hdr);
4358 mutex_enter(hash_lock);
4359 hdr = buf->b_hdr;
4360 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4361
4362 /*
4363 * Check this survived the L2ARC journey.
4364 */
4365 equal = arc_cksum_equal(buf);
4366 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4367 mutex_exit(hash_lock);
4368 zio->io_private = buf;
4369 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
4370 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
4371 arc_read_done(zio);
4372 } else {
4373 mutex_exit(hash_lock);
4374 /*
4375 * Buffer didn't survive caching. Increment stats and
4376 * reissue to the original storage device.
4377 */
4378 if (zio->io_error != 0) {
4379 ARCSTAT_BUMP(arcstat_l2_io_error);
4380 } else {
4381 zio->io_error = EIO;
4382 }
4383 if (!equal)
4384 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4385
4386 /*
4387 * If there's no waiter, issue an async i/o to the primary
4388 * storage now. If there *is* a waiter, the caller must
4389 * issue the i/o in a context where it's OK to block.
4390 */
4391 if (zio->io_waiter == NULL) {
4392 zio_t *pio = zio_unique_parent(zio);
4393
4394 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4395
4396 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4397 buf->b_data, zio->io_size, arc_read_done, buf,
4398 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4399 }
4400 }
4401
4402 kmem_free(cb, sizeof (l2arc_read_callback_t));
4403 }
4404
4405 /*
4406 * This is the list priority from which the L2ARC will search for pages to
4407 * cache. This is used within loops (0..3) to cycle through lists in the
4408 * desired order. This order can have a significant effect on cache
4409 * performance.
4410 *
4411 * Currently the metadata lists are hit first, MFU then MRU, followed by
4412 * the data lists. This function returns a locked list, and also returns
4413 * the lock pointer.
4414 */
4415 static list_t *
4416 l2arc_list_locked(int list_num, kmutex_t **lock)
4417 {
4418 list_t *list = NULL;
4419
4420 ASSERT(list_num >= 0 && list_num <= 3);
4421
4422 switch (list_num) {
4423 case 0:
4424 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4425 *lock = &arc_mfu->arcs_mtx;
4426 break;
4427 case 1:
4428 list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4429 *lock = &arc_mru->arcs_mtx;
4430 break;
4431 case 2:
4432 list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4433 *lock = &arc_mfu->arcs_mtx;
4434 break;
4435 case 3:
4436 list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4437 *lock = &arc_mru->arcs_mtx;
4438 break;
4439 }
4440
4441 ASSERT(!(MUTEX_HELD(*lock)));
4442 mutex_enter(*lock);
4443 return (list);
4444 }
4445
4446 /*
4447 * Evict buffers from the device write hand to the distance specified in
4448 * bytes. This distance may span populated buffers, it may span nothing.
4449 * This is clearing a region on the L2ARC device ready for writing.
4450 * If the 'all' boolean is set, every buffer is evicted.
4451 */
4452 static void
4453 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4454 {
4455 list_t *buflist;
4456 l2arc_buf_hdr_t *abl2;
4457 arc_buf_hdr_t *ab, *ab_prev;
4458 kmutex_t *hash_lock;
4459 uint64_t taddr;
4460
4461 buflist = dev->l2ad_buflist;
4462
4463 if (buflist == NULL)
4464 return;
4465
4466 if (!all && dev->l2ad_first) {
4467 /*
4468 * This is the first sweep through the device. There is
4469 * nothing to evict.
4470 */
4471 return;
4472 }
4473
4474 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4475 /*
4476 * When nearing the end of the device, evict to the end
4477 * before the device write hand jumps to the start.
4478 */
4479 taddr = dev->l2ad_end;
4480 } else {
4481 taddr = dev->l2ad_hand + distance;
4482 }
4483 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4484 uint64_t, taddr, boolean_t, all);
4485
4486 top:
4487 mutex_enter(&l2arc_buflist_mtx);
4488 for (ab = list_tail(buflist); ab; ab = ab_prev) {
4489 ab_prev = list_prev(buflist, ab);
4490
4491 hash_lock = HDR_LOCK(ab);
4492 if (!mutex_tryenter(hash_lock)) {
4493 /*
4494 * Missed the hash lock. Retry.
4495 */
4496 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4497 mutex_exit(&l2arc_buflist_mtx);
4498 mutex_enter(hash_lock);
4499 mutex_exit(hash_lock);
4500 goto top;
4501 }
4502
4503 if (HDR_L2_WRITE_HEAD(ab)) {
4504 /*
4505 * We hit a write head node. Leave it for
4506 * l2arc_write_done().
4507 */
4508 list_remove(buflist, ab);
4509 mutex_exit(hash_lock);
4510 continue;
4511 }
4512
4513 if (!all && ab->b_l2hdr != NULL &&
4514 (ab->b_l2hdr->b_daddr > taddr ||
4515 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4516 /*
4517 * We've evicted to the target address,
4518 * or the end of the device.
4519 */
4520 mutex_exit(hash_lock);
4521 break;
4522 }
4523
4524 if (HDR_FREE_IN_PROGRESS(ab)) {
4525 /*
4526 * Already on the path to destruction.
4527 */
4528 mutex_exit(hash_lock);
4529 continue;
4530 }
4531
4532 if (ab->b_state == arc_l2c_only) {
4533 ASSERT(!HDR_L2_READING(ab));
4534 /*
4535 * This doesn't exist in the ARC. Destroy.
4536 * arc_hdr_destroy() will call list_remove()
4537 * and decrement arcstat_l2_size.
4538 */
4539 arc_change_state(arc_anon, ab, hash_lock);
4540 arc_hdr_destroy(ab);
4541 } else {
4542 /*
4543 * Invalidate issued or about to be issued
4544 * reads, since we may be about to write
4545 * over this location.
4546 */
4547 if (HDR_L2_READING(ab)) {
4548 ARCSTAT_BUMP(arcstat_l2_evict_reading);
4549 ab->b_flags |= ARC_L2_EVICTED;
4550 }
4551
4552 /*
4553 * Tell ARC this no longer exists in L2ARC.
4554 */
4555 if (ab->b_l2hdr != NULL) {
4556 abl2 = ab->b_l2hdr;
4557 ab->b_l2hdr = NULL;
4558 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4559 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4560 }
4561 list_remove(buflist, ab);
4562
4563 /*
4564 * This may have been leftover after a
4565 * failed write.
4566 */
4567 ab->b_flags &= ~ARC_L2_WRITING;
4568 }
4569 mutex_exit(hash_lock);
4570 }
4571 mutex_exit(&l2arc_buflist_mtx);
4572
4573 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4574 dev->l2ad_evict = taddr;
4575 }
4576
4577 /*
4578 * Find and write ARC buffers to the L2ARC device.
4579 *
4580 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4581 * for reading until they have completed writing.
4582 */
4583 static uint64_t
4584 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4585 {
4586 arc_buf_hdr_t *ab, *ab_prev, *head;
4587 l2arc_buf_hdr_t *hdrl2;
4588 list_t *list;
4589 uint64_t passed_sz, write_sz, buf_sz, headroom;
4590 void *buf_data;
4591 kmutex_t *hash_lock, *list_lock = NULL;
4592 boolean_t have_lock, full;
4593 l2arc_write_callback_t *cb;
4594 zio_t *pio, *wzio;
4595 uint64_t guid = spa_load_guid(spa);
4596 int try;
4597
4598 ASSERT(dev->l2ad_vdev != NULL);
4599
4600 pio = NULL;
4601 write_sz = 0;
4602 full = B_FALSE;
4603 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4604 head->b_flags |= ARC_L2_WRITE_HEAD;
4605
4606 /*
4607 * Copy buffers for L2ARC writing.
4608 */
4609 mutex_enter(&l2arc_buflist_mtx);
4610 for (try = 0; try <= 3; try++) {
4611 list = l2arc_list_locked(try, &list_lock);
4612 passed_sz = 0;
4613
4614 /*
4615 * L2ARC fast warmup.
4616 *
4617 * Until the ARC is warm and starts to evict, read from the
4618 * head of the ARC lists rather than the tail.
4619 */
4620 headroom = target_sz * l2arc_headroom;
4621 if (arc_warm == B_FALSE)
4622 ab = list_head(list);
4623 else
4624 ab = list_tail(list);
4625
4626 for (; ab; ab = ab_prev) {
4627 if (arc_warm == B_FALSE)
4628 ab_prev = list_next(list, ab);
4629 else
4630 ab_prev = list_prev(list, ab);
4631
4632 hash_lock = HDR_LOCK(ab);
4633 have_lock = MUTEX_HELD(hash_lock);
4634 if (!have_lock && !mutex_tryenter(hash_lock)) {
4635 /*
4636 * Skip this buffer rather than waiting.
4637 */
4638 continue;
4639 }
4640
4641 passed_sz += ab->b_size;
4642 if (passed_sz > headroom) {
4643 /*
4644 * Searched too far.
4645 */
4646 mutex_exit(hash_lock);
4647 break;
4648 }
4649
4650 if (!l2arc_write_eligible(guid, ab)) {
4651 mutex_exit(hash_lock);
4652 continue;
4653 }
4654
4655 if ((write_sz + ab->b_size) > target_sz) {
4656 full = B_TRUE;
4657 mutex_exit(hash_lock);
4658 break;
4659 }
4660
4661 if (pio == NULL) {
4662 /*
4663 * Insert a dummy header on the buflist so
4664 * l2arc_write_done() can find where the
4665 * write buffers begin without searching.
4666 */
4667 list_insert_head(dev->l2ad_buflist, head);
4668
4669 cb = kmem_alloc(sizeof (l2arc_write_callback_t),
4670 KM_PUSHPAGE);
4671 cb->l2wcb_dev = dev;
4672 cb->l2wcb_head = head;
4673 pio = zio_root(spa, l2arc_write_done, cb,
4674 ZIO_FLAG_CANFAIL);
4675 }
4676
4677 /*
4678 * Create and add a new L2ARC header.
4679 */
4680 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t),
4681 KM_PUSHPAGE);
4682 hdrl2->b_dev = dev;
4683 hdrl2->b_daddr = dev->l2ad_hand;
4684
4685 ab->b_flags |= ARC_L2_WRITING;
4686 ab->b_l2hdr = hdrl2;
4687 list_insert_head(dev->l2ad_buflist, ab);
4688 buf_data = ab->b_buf->b_data;
4689 buf_sz = ab->b_size;
4690
4691 /*
4692 * Compute and store the buffer cksum before
4693 * writing. On debug the cksum is verified first.
4694 */
4695 arc_cksum_verify(ab->b_buf);
4696 arc_cksum_compute(ab->b_buf, B_TRUE);
4697
4698 mutex_exit(hash_lock);
4699
4700 wzio = zio_write_phys(pio, dev->l2ad_vdev,
4701 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4702 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4703 ZIO_FLAG_CANFAIL, B_FALSE);
4704
4705 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4706 zio_t *, wzio);
4707 (void) zio_nowait(wzio);
4708
4709 /*
4710 * Keep the clock hand suitably device-aligned.
4711 */
4712 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4713
4714 write_sz += buf_sz;
4715 dev->l2ad_hand += buf_sz;
4716 }
4717
4718 mutex_exit(list_lock);
4719
4720 if (full == B_TRUE)
4721 break;
4722 }
4723 mutex_exit(&l2arc_buflist_mtx);
4724
4725 if (pio == NULL) {
4726 ASSERT3U(write_sz, ==, 0);
4727 kmem_cache_free(hdr_cache, head);
4728 return (0);
4729 }
4730
4731 ASSERT3U(write_sz, <=, target_sz);
4732 ARCSTAT_BUMP(arcstat_l2_writes_sent);
4733 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4734 ARCSTAT_INCR(arcstat_l2_size, write_sz);
4735 vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);
4736
4737 /*
4738 * Bump device hand to the device start if it is approaching the end.
4739 * l2arc_evict() will already have evicted ahead for this case.
4740 */
4741 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4742 vdev_space_update(dev->l2ad_vdev,
4743 dev->l2ad_end - dev->l2ad_hand, 0, 0);
4744 dev->l2ad_hand = dev->l2ad_start;
4745 dev->l2ad_evict = dev->l2ad_start;
4746 dev->l2ad_first = B_FALSE;
4747 }
4748
4749 dev->l2ad_writing = B_TRUE;
4750 (void) zio_wait(pio);
4751 dev->l2ad_writing = B_FALSE;
4752
4753 return (write_sz);
4754 }
4755
4756 /*
4757 * This thread feeds the L2ARC at regular intervals. This is the beating
4758 * heart of the L2ARC.
4759 */
4760 static void
4761 l2arc_feed_thread(void)
4762 {
4763 callb_cpr_t cpr;
4764 l2arc_dev_t *dev;
4765 spa_t *spa;
4766 uint64_t size, wrote;
4767 clock_t begin, next = ddi_get_lbolt();
4768
4769 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4770
4771 mutex_enter(&l2arc_feed_thr_lock);
4772
4773 while (l2arc_thread_exit == 0) {
4774 CALLB_CPR_SAFE_BEGIN(&cpr);
4775 (void) cv_timedwait_interruptible(&l2arc_feed_thr_cv,
4776 &l2arc_feed_thr_lock, next);
4777 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4778 next = ddi_get_lbolt() + hz;
4779
4780 /*
4781 * Quick check for L2ARC devices.
4782 */
4783 mutex_enter(&l2arc_dev_mtx);
4784 if (l2arc_ndev == 0) {
4785 mutex_exit(&l2arc_dev_mtx);
4786 continue;
4787 }
4788 mutex_exit(&l2arc_dev_mtx);
4789 begin = ddi_get_lbolt();
4790
4791 /*
4792 * This selects the next l2arc device to write to, and in
4793 * doing so the next spa to feed from: dev->l2ad_spa. This
4794 * will return NULL if there are now no l2arc devices or if
4795 * they are all faulted.
4796 *
4797 * If a device is returned, its spa's config lock is also
4798 * held to prevent device removal. l2arc_dev_get_next()
4799 * will grab and release l2arc_dev_mtx.
4800 */
4801 if ((dev = l2arc_dev_get_next()) == NULL)
4802 continue;
4803
4804 spa = dev->l2ad_spa;
4805 ASSERT(spa != NULL);
4806
4807 /*
4808 * If the pool is read-only then force the feed thread to
4809 * sleep a little longer.
4810 */
4811 if (!spa_writeable(spa)) {
4812 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
4813 spa_config_exit(spa, SCL_L2ARC, dev);
4814 continue;
4815 }
4816
4817 /*
4818 * Avoid contributing to memory pressure.
4819 */
4820 if (arc_no_grow) {
4821 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4822 spa_config_exit(spa, SCL_L2ARC, dev);
4823 continue;
4824 }
4825
4826 ARCSTAT_BUMP(arcstat_l2_feeds);
4827
4828 size = l2arc_write_size(dev);
4829
4830 /*
4831 * Evict L2ARC buffers that will be overwritten.
4832 */
4833 l2arc_evict(dev, size, B_FALSE);
4834
4835 /*
4836 * Write ARC buffers.
4837 */
4838 wrote = l2arc_write_buffers(spa, dev, size);
4839
4840 /*
4841 * Calculate interval between writes.
4842 */
4843 next = l2arc_write_interval(begin, size, wrote);
4844 spa_config_exit(spa, SCL_L2ARC, dev);
4845 }
4846
4847 l2arc_thread_exit = 0;
4848 cv_broadcast(&l2arc_feed_thr_cv);
4849 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
4850 thread_exit();
4851 }
4852
4853 boolean_t
4854 l2arc_vdev_present(vdev_t *vd)
4855 {
4856 l2arc_dev_t *dev;
4857
4858 mutex_enter(&l2arc_dev_mtx);
4859 for (dev = list_head(l2arc_dev_list); dev != NULL;
4860 dev = list_next(l2arc_dev_list, dev)) {
4861 if (dev->l2ad_vdev == vd)
4862 break;
4863 }
4864 mutex_exit(&l2arc_dev_mtx);
4865
4866 return (dev != NULL);
4867 }
4868
4869 /*
4870 * Add a vdev for use by the L2ARC. By this point the spa has already
4871 * validated the vdev and opened it.
4872 */
4873 void
4874 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
4875 {
4876 l2arc_dev_t *adddev;
4877
4878 ASSERT(!l2arc_vdev_present(vd));
4879
4880 /*
4881 * Create a new l2arc device entry.
4882 */
4883 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4884 adddev->l2ad_spa = spa;
4885 adddev->l2ad_vdev = vd;
4886 adddev->l2ad_write = l2arc_write_max;
4887 adddev->l2ad_boost = l2arc_write_boost;
4888 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
4889 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
4890 adddev->l2ad_hand = adddev->l2ad_start;
4891 adddev->l2ad_evict = adddev->l2ad_start;
4892 adddev->l2ad_first = B_TRUE;
4893 adddev->l2ad_writing = B_FALSE;
4894 list_link_init(&adddev->l2ad_node);
4895 ASSERT3U(adddev->l2ad_write, >, 0);
4896
4897 /*
4898 * This is a list of all ARC buffers that are still valid on the
4899 * device.
4900 */
4901 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4902 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4903 offsetof(arc_buf_hdr_t, b_l2node));
4904
4905 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
4906
4907 /*
4908 * Add device to global list
4909 */
4910 mutex_enter(&l2arc_dev_mtx);
4911 list_insert_head(l2arc_dev_list, adddev);
4912 atomic_inc_64(&l2arc_ndev);
4913 mutex_exit(&l2arc_dev_mtx);
4914 }
4915
4916 /*
4917 * Remove a vdev from the L2ARC.
4918 */
4919 void
4920 l2arc_remove_vdev(vdev_t *vd)
4921 {
4922 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4923
4924 /*
4925 * Find the device by vdev
4926 */
4927 mutex_enter(&l2arc_dev_mtx);
4928 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4929 nextdev = list_next(l2arc_dev_list, dev);
4930 if (vd == dev->l2ad_vdev) {
4931 remdev = dev;
4932 break;
4933 }
4934 }
4935 ASSERT(remdev != NULL);
4936
4937 /*
4938 * Remove device from global list
4939 */
4940 list_remove(l2arc_dev_list, remdev);
4941 l2arc_dev_last = NULL; /* may have been invalidated */
4942 atomic_dec_64(&l2arc_ndev);
4943 mutex_exit(&l2arc_dev_mtx);
4944
4945 /*
4946 * Clear all buflists and ARC references. L2ARC device flush.
4947 */
4948 l2arc_evict(remdev, 0, B_TRUE);
4949 list_destroy(remdev->l2ad_buflist);
4950 kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4951 kmem_free(remdev, sizeof (l2arc_dev_t));
4952 }
4953
4954 void
4955 l2arc_init(void)
4956 {
4957 l2arc_thread_exit = 0;
4958 l2arc_ndev = 0;
4959 l2arc_writes_sent = 0;
4960 l2arc_writes_done = 0;
4961
4962 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4963 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4964 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4965 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4966 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4967
4968 l2arc_dev_list = &L2ARC_dev_list;
4969 l2arc_free_on_write = &L2ARC_free_on_write;
4970 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4971 offsetof(l2arc_dev_t, l2ad_node));
4972 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4973 offsetof(l2arc_data_free_t, l2df_list_node));
4974 }
4975
4976 void
4977 l2arc_fini(void)
4978 {
4979 /*
4980 * This is called from dmu_fini(), which is called from spa_fini();
4981 * Because of this, we can assume that all l2arc devices have
4982 * already been removed when the pools themselves were removed.
4983 */
4984
4985 l2arc_do_free_on_write();
4986
4987 mutex_destroy(&l2arc_feed_thr_lock);
4988 cv_destroy(&l2arc_feed_thr_cv);
4989 mutex_destroy(&l2arc_dev_mtx);
4990 mutex_destroy(&l2arc_buflist_mtx);
4991 mutex_destroy(&l2arc_free_on_write_mtx);
4992
4993 list_destroy(l2arc_dev_list);
4994 list_destroy(l2arc_free_on_write);
4995 }
4996
4997 void
4998 l2arc_start(void)
4999 {
5000 if (!(spa_mode_global & FWRITE))
5001 return;
5002
5003 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5004 TS_RUN, minclsyspri);
5005 }
5006
5007 void
5008 l2arc_stop(void)
5009 {
5010 if (!(spa_mode_global & FWRITE))
5011 return;
5012
5013 mutex_enter(&l2arc_feed_thr_lock);
5014 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
5015 l2arc_thread_exit = 1;
5016 while (l2arc_thread_exit != 0)
5017 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5018 mutex_exit(&l2arc_feed_thr_lock);
5019 }
5020
5021 #if defined(_KERNEL) && defined(HAVE_SPL)
5022 EXPORT_SYMBOL(arc_read);
5023 EXPORT_SYMBOL(arc_buf_remove_ref);
5024 EXPORT_SYMBOL(arc_getbuf_func);
5025 EXPORT_SYMBOL(arc_add_prune_callback);
5026 EXPORT_SYMBOL(arc_remove_prune_callback);
5027
5028 module_param(zfs_arc_min, ulong, 0444);
5029 MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
5030
5031 module_param(zfs_arc_max, ulong, 0444);
5032 MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
5033
5034 module_param(zfs_arc_meta_limit, ulong, 0444);
5035 MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
5036
5037 module_param(zfs_arc_meta_prune, int, 0444);
5038 MODULE_PARM_DESC(zfs_arc_meta_prune, "Bytes of meta data to prune");
5039
5040 module_param(zfs_arc_grow_retry, int, 0444);
5041 MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
5042
5043 module_param(zfs_arc_shrink_shift, int, 0444);
5044 MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
5045
5046 module_param(zfs_arc_p_min_shift, int, 0444);
5047 MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
5048
5049 module_param(zfs_disable_dup_eviction, int, 0644);
5050 MODULE_PARM_DESC(zfs_disable_dup_eviction, "disable duplicate buffer eviction");
5051
5052 module_param(zfs_arc_memory_throttle_disable, int, 0644);
5053 MODULE_PARM_DESC(zfs_arc_memory_throttle_disable, "disable memory throttle");
5054
5055 module_param(l2arc_write_max, ulong, 0444);
5056 MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
5057
5058 module_param(l2arc_write_boost, ulong, 0444);
5059 MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
5060
5061 module_param(l2arc_headroom, ulong, 0444);
5062 MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
5063
5064 module_param(l2arc_feed_secs, ulong, 0444);
5065 MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
5066
5067 module_param(l2arc_feed_min_ms, ulong, 0444);
5068 MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
5069
5070 module_param(l2arc_noprefetch, int, 0444);
5071 MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
5072
5073 module_param(l2arc_feed_again, int, 0444);
5074 MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
5075
5076 module_param(l2arc_norw, int, 0444);
5077 MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
5078
5079 #endif