]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/arc.c
Merge OpenZFS 4185
[mirror_zfs.git] / module / zfs / arc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 /*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size. So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes). We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74 /*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
80 * uses method 1, while the internal ARC algorithms for
81 * adjusting the cache use method 2. We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * ARC list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each ARC state also has a mutex which is used to protect the
97 * buffer list associated with the state. When attempting to
98 * obtain a hash table lock while holding an ARC list lock you
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * It as also possible to register a callback which is run when the
103 * arc_meta_limit is reached and no buffers can be safely evicted. In
104 * this case the arc user should drop a reference on some arc buffers so
105 * they can be reclaimed and the arc_meta_limit honored. For example,
106 * when using the ZPL each dentry holds a references on a znode. These
107 * dentries must be pruned before the arc buffer holding the znode can
108 * be safely evicted.
109 *
110 * Note that the majority of the performance stats are manipulated
111 * with atomic operations.
112 *
113 * The L2ARC uses the l2ad_mtx on each vdev for the following:
114 *
115 * - L2ARC buflist creation
116 * - L2ARC buflist eviction
117 * - L2ARC write completion, which walks L2ARC buflists
118 * - ARC header destruction, as it removes from L2ARC buflists
119 * - ARC header release, as it removes from L2ARC buflists
120 */
121
122 /*
123 * ARC operation:
124 *
125 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
126 * This structure can point either to a block that is still in the cache or to
127 * one that is only accessible in an L2 ARC device, or it can provide
128 * information about a block that was recently evicted. If a block is
129 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
130 * information to retrieve it from the L2ARC device. This information is
131 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
132 * that is in this state cannot access the data directly.
133 *
134 * Blocks that are actively being referenced or have not been evicted
135 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
136 * the arc_buf_hdr_t that will point to the data block in memory. A block can
137 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
138 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
139 * also in the arc_buf_hdr_t's private physical data block pointer (b_pdata).
140 *
141 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
142 * ability to store the physical data (b_pdata) associated with the DVA of the
143 * arc_buf_hdr_t. Since the b_pdata is a copy of the on-disk physical block,
144 * it will match its on-disk compression characteristics. This behavior can be
145 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
146 * compressed ARC functionality is disabled, the b_pdata will point to an
147 * uncompressed version of the on-disk data.
148 *
149 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
150 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
151 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
152 * consumer. The ARC will provide references to this data and will keep it
153 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
154 * data block and will evict any arc_buf_t that is no longer referenced. The
155 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
156 * "overhead_size" kstat.
157 *
158 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
159 * compressed form. The typical case is that consumers will want uncompressed
160 * data, and when that happens a new data buffer is allocated where the data is
161 * decompressed for them to use. Currently the only consumer who wants
162 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
163 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
164 * with the arc_buf_hdr_t.
165 *
166 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
167 * first one is owned by a compressed send consumer (and therefore references
168 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
169 * used by any other consumer (and has its own uncompressed copy of the data
170 * buffer).
171 *
172 * arc_buf_hdr_t
173 * +-----------+
174 * | fields |
175 * | common to |
176 * | L1- and |
177 * | L2ARC |
178 * +-----------+
179 * | l2arc_buf_hdr_t
180 * | |
181 * +-----------+
182 * | l1arc_buf_hdr_t
183 * | | arc_buf_t
184 * | b_buf +------------>+-----------+ arc_buf_t
185 * | b_pdata +-+ |b_next +---->+-----------+
186 * +-----------+ | |-----------| |b_next +-->NULL
187 * | |b_comp = T | +-----------+
188 * | |b_data +-+ |b_comp = F |
189 * | +-----------+ | |b_data +-+
190 * +->+------+ | +-----------+ |
191 * compressed | | | |
192 * data | |<--------------+ | uncompressed
193 * +------+ compressed, | data
194 * shared +-->+------+
195 * data | |
196 * | |
197 * +------+
198 *
199 * When a consumer reads a block, the ARC must first look to see if the
200 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
201 * arc_buf_t and either copies uncompressed data into a new data buffer from an
202 * existing uncompressed arc_buf_t, decompresses the hdr's b_pdata buffer into a
203 * new data buffer, or shares the hdr's b_pdata buffer, depending on whether the
204 * hdr is compressed and the desired compression characteristics of the
205 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
206 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
207 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
208 * be anywhere in the hdr's list.
209 *
210 * The diagram below shows an example of an uncompressed ARC hdr that is
211 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
212 * the last element in the buf list):
213 *
214 * arc_buf_hdr_t
215 * +-----------+
216 * | |
217 * | |
218 * | |
219 * +-----------+
220 * l2arc_buf_hdr_t| |
221 * | |
222 * +-----------+
223 * l1arc_buf_hdr_t| |
224 * | | arc_buf_t (shared)
225 * | b_buf +------------>+---------+ arc_buf_t
226 * | | |b_next +---->+---------+
227 * | b_pdata +-+ |---------| |b_next +-->NULL
228 * +-----------+ | | | +---------+
229 * | |b_data +-+ | |
230 * | +---------+ | |b_data +-+
231 * +->+------+ | +---------+ |
232 * | | | |
233 * uncompressed | | | |
234 * data +------+ | |
235 * ^ +->+------+ |
236 * | uncompressed | | |
237 * | data | | |
238 * | +------+ |
239 * +---------------------------------+
240 *
241 * Writing to the ARC requires that the ARC first discard the hdr's b_pdata
242 * since the physical block is about to be rewritten. The new data contents
243 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
244 * it may compress the data before writing it to disk. The ARC will be called
245 * with the transformed data and will bcopy the transformed on-disk block into
246 * a newly allocated b_pdata. Writes are always done into buffers which have
247 * either been loaned (and hence are new and don't have other readers) or
248 * buffers which have been released (and hence have their own hdr, if there
249 * were originally other readers of the buf's original hdr). This ensures that
250 * the ARC only needs to update a single buf and its hdr after a write occurs.
251 *
252 * When the L2ARC is in use, it will also take advantage of the b_pdata. The
253 * L2ARC will always write the contents of b_pdata to the L2ARC. This means
254 * that when compressed ARC is enabled that the L2ARC blocks are identical
255 * to the on-disk block in the main data pool. This provides a significant
256 * advantage since the ARC can leverage the bp's checksum when reading from the
257 * L2ARC to determine if the contents are valid. However, if the compressed
258 * ARC is disabled, then the L2ARC's block must be transformed to look
259 * like the physical block in the main data pool before comparing the
260 * checksum and determining its validity.
261 */
262
263 #include <sys/spa.h>
264 #include <sys/zio.h>
265 #include <sys/spa_impl.h>
266 #include <sys/zio_compress.h>
267 #include <sys/zio_checksum.h>
268 #include <sys/zfs_context.h>
269 #include <sys/arc.h>
270 #include <sys/refcount.h>
271 #include <sys/vdev.h>
272 #include <sys/vdev_impl.h>
273 #include <sys/dsl_pool.h>
274 #include <sys/multilist.h>
275 #ifdef _KERNEL
276 #include <sys/vmsystm.h>
277 #include <vm/anon.h>
278 #include <sys/fs/swapnode.h>
279 #include <sys/zpl.h>
280 #include <linux/mm_compat.h>
281 #endif
282 #include <sys/callb.h>
283 #include <sys/kstat.h>
284 #include <sys/dmu_tx.h>
285 #include <zfs_fletcher.h>
286 #include <sys/arc_impl.h>
287 #include <sys/trace_arc.h>
288
289 #ifndef _KERNEL
290 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
291 boolean_t arc_watch = B_FALSE;
292 #endif
293
294 static kmutex_t arc_reclaim_lock;
295 static kcondvar_t arc_reclaim_thread_cv;
296 static boolean_t arc_reclaim_thread_exit;
297 static kcondvar_t arc_reclaim_waiters_cv;
298
299 /*
300 * The number of headers to evict in arc_evict_state_impl() before
301 * dropping the sublist lock and evicting from another sublist. A lower
302 * value means we're more likely to evict the "correct" header (i.e. the
303 * oldest header in the arc state), but comes with higher overhead
304 * (i.e. more invocations of arc_evict_state_impl()).
305 */
306 int zfs_arc_evict_batch_limit = 10;
307
308 /*
309 * The number of sublists used for each of the arc state lists. If this
310 * is not set to a suitable value by the user, it will be configured to
311 * the number of CPUs on the system in arc_init().
312 */
313 int zfs_arc_num_sublists_per_state = 0;
314
315 /* number of seconds before growing cache again */
316 static int arc_grow_retry = 5;
317
318 /* shift of arc_c for calculating overflow limit in arc_get_data_buf */
319 int zfs_arc_overflow_shift = 8;
320
321 /* shift of arc_c for calculating both min and max arc_p */
322 static int arc_p_min_shift = 4;
323
324 /* log2(fraction of arc to reclaim) */
325 static int arc_shrink_shift = 7;
326
327 /*
328 * log2(fraction of ARC which must be free to allow growing).
329 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
330 * when reading a new block into the ARC, we will evict an equal-sized block
331 * from the ARC.
332 *
333 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
334 * we will still not allow it to grow.
335 */
336 int arc_no_grow_shift = 5;
337
338
339 /*
340 * minimum lifespan of a prefetch block in clock ticks
341 * (initialized in arc_init())
342 */
343 static int arc_min_prefetch_lifespan;
344
345 /*
346 * If this percent of memory is free, don't throttle.
347 */
348 int arc_lotsfree_percent = 10;
349
350 static int arc_dead;
351
352 /*
353 * The arc has filled available memory and has now warmed up.
354 */
355 static boolean_t arc_warm;
356
357 /*
358 * log2 fraction of the zio arena to keep free.
359 */
360 int arc_zio_arena_free_shift = 2;
361
362 /*
363 * These tunables are for performance analysis.
364 */
365 unsigned long zfs_arc_max = 0;
366 unsigned long zfs_arc_min = 0;
367 unsigned long zfs_arc_meta_limit = 0;
368 unsigned long zfs_arc_meta_min = 0;
369 unsigned long zfs_arc_dnode_limit = 0;
370 unsigned long zfs_arc_dnode_reduce_percent = 10;
371 int zfs_arc_grow_retry = 0;
372 int zfs_arc_shrink_shift = 0;
373 int zfs_arc_p_min_shift = 0;
374 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
375
376 int zfs_compressed_arc_enabled = B_TRUE;
377
378 /*
379 * ARC will evict meta buffers that exceed arc_meta_limit. This
380 * tunable make arc_meta_limit adjustable for different workloads.
381 */
382 unsigned long zfs_arc_meta_limit_percent = 75;
383
384 /*
385 * Percentage that can be consumed by dnodes of ARC meta buffers.
386 */
387 unsigned long zfs_arc_dnode_limit_percent = 10;
388
389 /*
390 * These tunables are Linux specific
391 */
392 unsigned long zfs_arc_sys_free = 0;
393 int zfs_arc_min_prefetch_lifespan = 0;
394 int zfs_arc_p_aggressive_disable = 1;
395 int zfs_arc_p_dampener_disable = 1;
396 int zfs_arc_meta_prune = 10000;
397 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
398 int zfs_arc_meta_adjust_restarts = 4096;
399 int zfs_arc_lotsfree_percent = 10;
400
401 /* The 6 states: */
402 static arc_state_t ARC_anon;
403 static arc_state_t ARC_mru;
404 static arc_state_t ARC_mru_ghost;
405 static arc_state_t ARC_mfu;
406 static arc_state_t ARC_mfu_ghost;
407 static arc_state_t ARC_l2c_only;
408
409 typedef struct arc_stats {
410 kstat_named_t arcstat_hits;
411 kstat_named_t arcstat_misses;
412 kstat_named_t arcstat_demand_data_hits;
413 kstat_named_t arcstat_demand_data_misses;
414 kstat_named_t arcstat_demand_metadata_hits;
415 kstat_named_t arcstat_demand_metadata_misses;
416 kstat_named_t arcstat_prefetch_data_hits;
417 kstat_named_t arcstat_prefetch_data_misses;
418 kstat_named_t arcstat_prefetch_metadata_hits;
419 kstat_named_t arcstat_prefetch_metadata_misses;
420 kstat_named_t arcstat_mru_hits;
421 kstat_named_t arcstat_mru_ghost_hits;
422 kstat_named_t arcstat_mfu_hits;
423 kstat_named_t arcstat_mfu_ghost_hits;
424 kstat_named_t arcstat_deleted;
425 /*
426 * Number of buffers that could not be evicted because the hash lock
427 * was held by another thread. The lock may not necessarily be held
428 * by something using the same buffer, since hash locks are shared
429 * by multiple buffers.
430 */
431 kstat_named_t arcstat_mutex_miss;
432 /*
433 * Number of buffers skipped because they have I/O in progress, are
434 * indrect prefetch buffers that have not lived long enough, or are
435 * not from the spa we're trying to evict from.
436 */
437 kstat_named_t arcstat_evict_skip;
438 /*
439 * Number of times arc_evict_state() was unable to evict enough
440 * buffers to reach its target amount.
441 */
442 kstat_named_t arcstat_evict_not_enough;
443 kstat_named_t arcstat_evict_l2_cached;
444 kstat_named_t arcstat_evict_l2_eligible;
445 kstat_named_t arcstat_evict_l2_ineligible;
446 kstat_named_t arcstat_evict_l2_skip;
447 kstat_named_t arcstat_hash_elements;
448 kstat_named_t arcstat_hash_elements_max;
449 kstat_named_t arcstat_hash_collisions;
450 kstat_named_t arcstat_hash_chains;
451 kstat_named_t arcstat_hash_chain_max;
452 kstat_named_t arcstat_p;
453 kstat_named_t arcstat_c;
454 kstat_named_t arcstat_c_min;
455 kstat_named_t arcstat_c_max;
456 kstat_named_t arcstat_size;
457 /*
458 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pdata.
459 * Note that the compressed bytes may match the uncompressed bytes
460 * if the block is either not compressed or compressed arc is disabled.
461 */
462 kstat_named_t arcstat_compressed_size;
463 /*
464 * Uncompressed size of the data stored in b_pdata. If compressed
465 * arc is disabled then this value will be identical to the stat
466 * above.
467 */
468 kstat_named_t arcstat_uncompressed_size;
469 /*
470 * Number of bytes stored in all the arc_buf_t's. This is classified
471 * as "overhead" since this data is typically short-lived and will
472 * be evicted from the arc when it becomes unreferenced unless the
473 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
474 * values have been set (see comment in dbuf.c for more information).
475 */
476 kstat_named_t arcstat_overhead_size;
477 /*
478 * Number of bytes consumed by internal ARC structures necessary
479 * for tracking purposes; these structures are not actually
480 * backed by ARC buffers. This includes arc_buf_hdr_t structures
481 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
482 * caches), and arc_buf_t structures (allocated via arc_buf_t
483 * cache).
484 */
485 kstat_named_t arcstat_hdr_size;
486 /*
487 * Number of bytes consumed by ARC buffers of type equal to
488 * ARC_BUFC_DATA. This is generally consumed by buffers backing
489 * on disk user data (e.g. plain file contents).
490 */
491 kstat_named_t arcstat_data_size;
492 /*
493 * Number of bytes consumed by ARC buffers of type equal to
494 * ARC_BUFC_METADATA. This is generally consumed by buffers
495 * backing on disk data that is used for internal ZFS
496 * structures (e.g. ZAP, dnode, indirect blocks, etc).
497 */
498 kstat_named_t arcstat_metadata_size;
499 /*
500 * Number of bytes consumed by dmu_buf_impl_t objects.
501 */
502 kstat_named_t arcstat_dbuf_size;
503 /*
504 * Number of bytes consumed by dnode_t objects.
505 */
506 kstat_named_t arcstat_dnode_size;
507 /*
508 * Number of bytes consumed by bonus buffers.
509 */
510 kstat_named_t arcstat_bonus_size;
511 /*
512 * Total number of bytes consumed by ARC buffers residing in the
513 * arc_anon state. This includes *all* buffers in the arc_anon
514 * state; e.g. data, metadata, evictable, and unevictable buffers
515 * are all included in this value.
516 */
517 kstat_named_t arcstat_anon_size;
518 /*
519 * Number of bytes consumed by ARC buffers that meet the
520 * following criteria: backing buffers of type ARC_BUFC_DATA,
521 * residing in the arc_anon state, and are eligible for eviction
522 * (e.g. have no outstanding holds on the buffer).
523 */
524 kstat_named_t arcstat_anon_evictable_data;
525 /*
526 * Number of bytes consumed by ARC buffers that meet the
527 * following criteria: backing buffers of type ARC_BUFC_METADATA,
528 * residing in the arc_anon state, and are eligible for eviction
529 * (e.g. have no outstanding holds on the buffer).
530 */
531 kstat_named_t arcstat_anon_evictable_metadata;
532 /*
533 * Total number of bytes consumed by ARC buffers residing in the
534 * arc_mru state. This includes *all* buffers in the arc_mru
535 * state; e.g. data, metadata, evictable, and unevictable buffers
536 * are all included in this value.
537 */
538 kstat_named_t arcstat_mru_size;
539 /*
540 * Number of bytes consumed by ARC buffers that meet the
541 * following criteria: backing buffers of type ARC_BUFC_DATA,
542 * residing in the arc_mru state, and are eligible for eviction
543 * (e.g. have no outstanding holds on the buffer).
544 */
545 kstat_named_t arcstat_mru_evictable_data;
546 /*
547 * Number of bytes consumed by ARC buffers that meet the
548 * following criteria: backing buffers of type ARC_BUFC_METADATA,
549 * residing in the arc_mru state, and are eligible for eviction
550 * (e.g. have no outstanding holds on the buffer).
551 */
552 kstat_named_t arcstat_mru_evictable_metadata;
553 /*
554 * Total number of bytes that *would have been* consumed by ARC
555 * buffers in the arc_mru_ghost state. The key thing to note
556 * here, is the fact that this size doesn't actually indicate
557 * RAM consumption. The ghost lists only consist of headers and
558 * don't actually have ARC buffers linked off of these headers.
559 * Thus, *if* the headers had associated ARC buffers, these
560 * buffers *would have* consumed this number of bytes.
561 */
562 kstat_named_t arcstat_mru_ghost_size;
563 /*
564 * Number of bytes that *would have been* consumed by ARC
565 * buffers that are eligible for eviction, of type
566 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
567 */
568 kstat_named_t arcstat_mru_ghost_evictable_data;
569 /*
570 * Number of bytes that *would have been* consumed by ARC
571 * buffers that are eligible for eviction, of type
572 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
573 */
574 kstat_named_t arcstat_mru_ghost_evictable_metadata;
575 /*
576 * Total number of bytes consumed by ARC buffers residing in the
577 * arc_mfu state. This includes *all* buffers in the arc_mfu
578 * state; e.g. data, metadata, evictable, and unevictable buffers
579 * are all included in this value.
580 */
581 kstat_named_t arcstat_mfu_size;
582 /*
583 * Number of bytes consumed by ARC buffers that are eligible for
584 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
585 * state.
586 */
587 kstat_named_t arcstat_mfu_evictable_data;
588 /*
589 * Number of bytes consumed by ARC buffers that are eligible for
590 * eviction, of type ARC_BUFC_METADATA, and reside in the
591 * arc_mfu state.
592 */
593 kstat_named_t arcstat_mfu_evictable_metadata;
594 /*
595 * Total number of bytes that *would have been* consumed by ARC
596 * buffers in the arc_mfu_ghost state. See the comment above
597 * arcstat_mru_ghost_size for more details.
598 */
599 kstat_named_t arcstat_mfu_ghost_size;
600 /*
601 * Number of bytes that *would have been* consumed by ARC
602 * buffers that are eligible for eviction, of type
603 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
604 */
605 kstat_named_t arcstat_mfu_ghost_evictable_data;
606 /*
607 * Number of bytes that *would have been* consumed by ARC
608 * buffers that are eligible for eviction, of type
609 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
610 */
611 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
612 kstat_named_t arcstat_l2_hits;
613 kstat_named_t arcstat_l2_misses;
614 kstat_named_t arcstat_l2_feeds;
615 kstat_named_t arcstat_l2_rw_clash;
616 kstat_named_t arcstat_l2_read_bytes;
617 kstat_named_t arcstat_l2_write_bytes;
618 kstat_named_t arcstat_l2_writes_sent;
619 kstat_named_t arcstat_l2_writes_done;
620 kstat_named_t arcstat_l2_writes_error;
621 kstat_named_t arcstat_l2_writes_lock_retry;
622 kstat_named_t arcstat_l2_evict_lock_retry;
623 kstat_named_t arcstat_l2_evict_reading;
624 kstat_named_t arcstat_l2_evict_l1cached;
625 kstat_named_t arcstat_l2_free_on_write;
626 kstat_named_t arcstat_l2_abort_lowmem;
627 kstat_named_t arcstat_l2_cksum_bad;
628 kstat_named_t arcstat_l2_io_error;
629 kstat_named_t arcstat_l2_size;
630 kstat_named_t arcstat_l2_asize;
631 kstat_named_t arcstat_l2_hdr_size;
632 kstat_named_t arcstat_memory_throttle_count;
633 kstat_named_t arcstat_memory_direct_count;
634 kstat_named_t arcstat_memory_indirect_count;
635 kstat_named_t arcstat_no_grow;
636 kstat_named_t arcstat_tempreserve;
637 kstat_named_t arcstat_loaned_bytes;
638 kstat_named_t arcstat_prune;
639 kstat_named_t arcstat_meta_used;
640 kstat_named_t arcstat_meta_limit;
641 kstat_named_t arcstat_dnode_limit;
642 kstat_named_t arcstat_meta_max;
643 kstat_named_t arcstat_meta_min;
644 kstat_named_t arcstat_sync_wait_for_async;
645 kstat_named_t arcstat_demand_hit_predictive_prefetch;
646 kstat_named_t arcstat_need_free;
647 kstat_named_t arcstat_sys_free;
648 } arc_stats_t;
649
650 static arc_stats_t arc_stats = {
651 { "hits", KSTAT_DATA_UINT64 },
652 { "misses", KSTAT_DATA_UINT64 },
653 { "demand_data_hits", KSTAT_DATA_UINT64 },
654 { "demand_data_misses", KSTAT_DATA_UINT64 },
655 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
656 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
657 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
658 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
659 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
660 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
661 { "mru_hits", KSTAT_DATA_UINT64 },
662 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
663 { "mfu_hits", KSTAT_DATA_UINT64 },
664 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
665 { "deleted", KSTAT_DATA_UINT64 },
666 { "mutex_miss", KSTAT_DATA_UINT64 },
667 { "evict_skip", KSTAT_DATA_UINT64 },
668 { "evict_not_enough", KSTAT_DATA_UINT64 },
669 { "evict_l2_cached", KSTAT_DATA_UINT64 },
670 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
671 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
672 { "evict_l2_skip", KSTAT_DATA_UINT64 },
673 { "hash_elements", KSTAT_DATA_UINT64 },
674 { "hash_elements_max", KSTAT_DATA_UINT64 },
675 { "hash_collisions", KSTAT_DATA_UINT64 },
676 { "hash_chains", KSTAT_DATA_UINT64 },
677 { "hash_chain_max", KSTAT_DATA_UINT64 },
678 { "p", KSTAT_DATA_UINT64 },
679 { "c", KSTAT_DATA_UINT64 },
680 { "c_min", KSTAT_DATA_UINT64 },
681 { "c_max", KSTAT_DATA_UINT64 },
682 { "size", KSTAT_DATA_UINT64 },
683 { "compressed_size", KSTAT_DATA_UINT64 },
684 { "uncompressed_size", KSTAT_DATA_UINT64 },
685 { "overhead_size", KSTAT_DATA_UINT64 },
686 { "hdr_size", KSTAT_DATA_UINT64 },
687 { "data_size", KSTAT_DATA_UINT64 },
688 { "metadata_size", KSTAT_DATA_UINT64 },
689 { "dbuf_size", KSTAT_DATA_UINT64 },
690 { "dnode_size", KSTAT_DATA_UINT64 },
691 { "bonus_size", KSTAT_DATA_UINT64 },
692 { "anon_size", KSTAT_DATA_UINT64 },
693 { "anon_evictable_data", KSTAT_DATA_UINT64 },
694 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
695 { "mru_size", KSTAT_DATA_UINT64 },
696 { "mru_evictable_data", KSTAT_DATA_UINT64 },
697 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
698 { "mru_ghost_size", KSTAT_DATA_UINT64 },
699 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
700 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
701 { "mfu_size", KSTAT_DATA_UINT64 },
702 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
703 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
704 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
705 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
706 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
707 { "l2_hits", KSTAT_DATA_UINT64 },
708 { "l2_misses", KSTAT_DATA_UINT64 },
709 { "l2_feeds", KSTAT_DATA_UINT64 },
710 { "l2_rw_clash", KSTAT_DATA_UINT64 },
711 { "l2_read_bytes", KSTAT_DATA_UINT64 },
712 { "l2_write_bytes", KSTAT_DATA_UINT64 },
713 { "l2_writes_sent", KSTAT_DATA_UINT64 },
714 { "l2_writes_done", KSTAT_DATA_UINT64 },
715 { "l2_writes_error", KSTAT_DATA_UINT64 },
716 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
717 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
718 { "l2_evict_reading", KSTAT_DATA_UINT64 },
719 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
720 { "l2_free_on_write", KSTAT_DATA_UINT64 },
721 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
722 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
723 { "l2_io_error", KSTAT_DATA_UINT64 },
724 { "l2_size", KSTAT_DATA_UINT64 },
725 { "l2_asize", KSTAT_DATA_UINT64 },
726 { "l2_hdr_size", KSTAT_DATA_UINT64 },
727 { "memory_throttle_count", KSTAT_DATA_UINT64 },
728 { "memory_direct_count", KSTAT_DATA_UINT64 },
729 { "memory_indirect_count", KSTAT_DATA_UINT64 },
730 { "arc_no_grow", KSTAT_DATA_UINT64 },
731 { "arc_tempreserve", KSTAT_DATA_UINT64 },
732 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
733 { "arc_prune", KSTAT_DATA_UINT64 },
734 { "arc_meta_used", KSTAT_DATA_UINT64 },
735 { "arc_meta_limit", KSTAT_DATA_UINT64 },
736 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
737 { "arc_meta_max", KSTAT_DATA_UINT64 },
738 { "arc_meta_min", KSTAT_DATA_UINT64 },
739 { "sync_wait_for_async", KSTAT_DATA_UINT64 },
740 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
741 { "arc_need_free", KSTAT_DATA_UINT64 },
742 { "arc_sys_free", KSTAT_DATA_UINT64 }
743 };
744
745 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
746
747 #define ARCSTAT_INCR(stat, val) \
748 atomic_add_64(&arc_stats.stat.value.ui64, (val))
749
750 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
751 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
752
753 #define ARCSTAT_MAX(stat, val) { \
754 uint64_t m; \
755 while ((val) > (m = arc_stats.stat.value.ui64) && \
756 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
757 continue; \
758 }
759
760 #define ARCSTAT_MAXSTAT(stat) \
761 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
762
763 /*
764 * We define a macro to allow ARC hits/misses to be easily broken down by
765 * two separate conditions, giving a total of four different subtypes for
766 * each of hits and misses (so eight statistics total).
767 */
768 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
769 if (cond1) { \
770 if (cond2) { \
771 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
772 } else { \
773 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
774 } \
775 } else { \
776 if (cond2) { \
777 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
778 } else { \
779 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
780 } \
781 }
782
783 kstat_t *arc_ksp;
784 static arc_state_t *arc_anon;
785 static arc_state_t *arc_mru;
786 static arc_state_t *arc_mru_ghost;
787 static arc_state_t *arc_mfu;
788 static arc_state_t *arc_mfu_ghost;
789 static arc_state_t *arc_l2c_only;
790
791 /*
792 * There are several ARC variables that are critical to export as kstats --
793 * but we don't want to have to grovel around in the kstat whenever we wish to
794 * manipulate them. For these variables, we therefore define them to be in
795 * terms of the statistic variable. This assures that we are not introducing
796 * the possibility of inconsistency by having shadow copies of the variables,
797 * while still allowing the code to be readable.
798 */
799 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
800 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
801 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
802 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
803 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
804 #define arc_no_grow ARCSTAT(arcstat_no_grow) /* do not grow cache size */
805 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
806 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
807 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
808 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
809 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
810 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
811 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
812 #define arc_dbuf_size ARCSTAT(arcstat_dbuf_size) /* dbuf metadata */
813 #define arc_dnode_size ARCSTAT(arcstat_dnode_size) /* dnode metadata */
814 #define arc_bonus_size ARCSTAT(arcstat_bonus_size) /* bonus buffer metadata */
815 #define arc_need_free ARCSTAT(arcstat_need_free) /* bytes to be freed */
816 #define arc_sys_free ARCSTAT(arcstat_sys_free) /* target system free bytes */
817
818 /* compressed size of entire arc */
819 #define arc_compressed_size ARCSTAT(arcstat_compressed_size)
820 /* uncompressed size of entire arc */
821 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size)
822 /* number of bytes in the arc from arc_buf_t's */
823 #define arc_overhead_size ARCSTAT(arcstat_overhead_size)
824
825 static list_t arc_prune_list;
826 static kmutex_t arc_prune_mtx;
827 static taskq_t *arc_prune_taskq;
828
829 #define GHOST_STATE(state) \
830 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
831 (state) == arc_l2c_only)
832
833 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
834 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
835 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
836 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
837 #define HDR_COMPRESSION_ENABLED(hdr) \
838 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
839
840 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
841 #define HDR_L2_READING(hdr) \
842 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
843 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
844 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
845 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
846 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
847 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
848
849 #define HDR_ISTYPE_METADATA(hdr) \
850 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
851 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
852
853 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
854 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
855
856 /* For storing compression mode in b_flags */
857 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
858
859 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
860 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
861 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
862 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
863
864 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
865 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
866 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
867
868 /*
869 * Other sizes
870 */
871
872 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
873 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
874
875 /*
876 * Hash table routines
877 */
878
879 #define HT_LOCK_ALIGN 64
880 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
881
882 struct ht_lock {
883 kmutex_t ht_lock;
884 #ifdef _KERNEL
885 unsigned char pad[HT_LOCK_PAD];
886 #endif
887 };
888
889 #define BUF_LOCKS 8192
890 typedef struct buf_hash_table {
891 uint64_t ht_mask;
892 arc_buf_hdr_t **ht_table;
893 struct ht_lock ht_locks[BUF_LOCKS];
894 } buf_hash_table_t;
895
896 static buf_hash_table_t buf_hash_table;
897
898 #define BUF_HASH_INDEX(spa, dva, birth) \
899 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
900 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
901 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
902 #define HDR_LOCK(hdr) \
903 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
904
905 uint64_t zfs_crc64_table[256];
906
907 /*
908 * Level 2 ARC
909 */
910
911 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
912 #define L2ARC_HEADROOM 2 /* num of writes */
913
914 /*
915 * If we discover during ARC scan any buffers to be compressed, we boost
916 * our headroom for the next scanning cycle by this percentage multiple.
917 */
918 #define L2ARC_HEADROOM_BOOST 200
919 #define L2ARC_FEED_SECS 1 /* caching interval secs */
920 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
921
922 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
923 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
924
925 /* L2ARC Performance Tunables */
926 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
927 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
928 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
929 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
930 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
931 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
932 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
933 int l2arc_feed_again = B_TRUE; /* turbo warmup */
934 int l2arc_norw = B_FALSE; /* no reads during writes */
935
936 /*
937 * L2ARC Internals
938 */
939 static list_t L2ARC_dev_list; /* device list */
940 static list_t *l2arc_dev_list; /* device list pointer */
941 static kmutex_t l2arc_dev_mtx; /* device list mutex */
942 static l2arc_dev_t *l2arc_dev_last; /* last device used */
943 static list_t L2ARC_free_on_write; /* free after write buf list */
944 static list_t *l2arc_free_on_write; /* free after write list ptr */
945 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
946 static uint64_t l2arc_ndev; /* number of devices */
947
948 typedef struct l2arc_read_callback {
949 arc_buf_hdr_t *l2rcb_hdr; /* read header */
950 blkptr_t l2rcb_bp; /* original blkptr */
951 zbookmark_phys_t l2rcb_zb; /* original bookmark */
952 int l2rcb_flags; /* original flags */
953 } l2arc_read_callback_t;
954
955 typedef struct l2arc_data_free {
956 /* protected by l2arc_free_on_write_mtx */
957 void *l2df_data;
958 size_t l2df_size;
959 arc_buf_contents_t l2df_type;
960 list_node_t l2df_list_node;
961 } l2arc_data_free_t;
962
963 static kmutex_t l2arc_feed_thr_lock;
964 static kcondvar_t l2arc_feed_thr_cv;
965 static uint8_t l2arc_thread_exit;
966
967 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
968 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
969 static void arc_hdr_free_pdata(arc_buf_hdr_t *hdr);
970 static void arc_hdr_alloc_pdata(arc_buf_hdr_t *);
971 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
972 static boolean_t arc_is_overflowing(void);
973 static void arc_buf_watch(arc_buf_t *);
974 static void arc_tuning_update(void);
975 static void arc_prune_async(int64_t);
976
977 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
978 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
979 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
980 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
981
982 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
983 static void l2arc_read_done(zio_t *);
984
985 static uint64_t
986 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
987 {
988 uint8_t *vdva = (uint8_t *)dva;
989 uint64_t crc = -1ULL;
990 int i;
991
992 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
993
994 for (i = 0; i < sizeof (dva_t); i++)
995 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
996
997 crc ^= (spa>>8) ^ birth;
998
999 return (crc);
1000 }
1001
1002 #define HDR_EMPTY(hdr) \
1003 ((hdr)->b_dva.dva_word[0] == 0 && \
1004 (hdr)->b_dva.dva_word[1] == 0)
1005
1006 #define HDR_EQUAL(spa, dva, birth, hdr) \
1007 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1008 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1009 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1010
1011 static void
1012 buf_discard_identity(arc_buf_hdr_t *hdr)
1013 {
1014 hdr->b_dva.dva_word[0] = 0;
1015 hdr->b_dva.dva_word[1] = 0;
1016 hdr->b_birth = 0;
1017 }
1018
1019 static arc_buf_hdr_t *
1020 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1021 {
1022 const dva_t *dva = BP_IDENTITY(bp);
1023 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1024 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1025 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1026 arc_buf_hdr_t *hdr;
1027
1028 mutex_enter(hash_lock);
1029 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1030 hdr = hdr->b_hash_next) {
1031 if (HDR_EQUAL(spa, dva, birth, hdr)) {
1032 *lockp = hash_lock;
1033 return (hdr);
1034 }
1035 }
1036 mutex_exit(hash_lock);
1037 *lockp = NULL;
1038 return (NULL);
1039 }
1040
1041 /*
1042 * Insert an entry into the hash table. If there is already an element
1043 * equal to elem in the hash table, then the already existing element
1044 * will be returned and the new element will not be inserted.
1045 * Otherwise returns NULL.
1046 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1047 */
1048 static arc_buf_hdr_t *
1049 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1050 {
1051 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1052 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1053 arc_buf_hdr_t *fhdr;
1054 uint32_t i;
1055
1056 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1057 ASSERT(hdr->b_birth != 0);
1058 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1059
1060 if (lockp != NULL) {
1061 *lockp = hash_lock;
1062 mutex_enter(hash_lock);
1063 } else {
1064 ASSERT(MUTEX_HELD(hash_lock));
1065 }
1066
1067 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1068 fhdr = fhdr->b_hash_next, i++) {
1069 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1070 return (fhdr);
1071 }
1072
1073 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1074 buf_hash_table.ht_table[idx] = hdr;
1075 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1076
1077 /* collect some hash table performance data */
1078 if (i > 0) {
1079 ARCSTAT_BUMP(arcstat_hash_collisions);
1080 if (i == 1)
1081 ARCSTAT_BUMP(arcstat_hash_chains);
1082
1083 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1084 }
1085
1086 ARCSTAT_BUMP(arcstat_hash_elements);
1087 ARCSTAT_MAXSTAT(arcstat_hash_elements);
1088
1089 return (NULL);
1090 }
1091
1092 static void
1093 buf_hash_remove(arc_buf_hdr_t *hdr)
1094 {
1095 arc_buf_hdr_t *fhdr, **hdrp;
1096 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1097
1098 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1099 ASSERT(HDR_IN_HASH_TABLE(hdr));
1100
1101 hdrp = &buf_hash_table.ht_table[idx];
1102 while ((fhdr = *hdrp) != hdr) {
1103 ASSERT3P(fhdr, !=, NULL);
1104 hdrp = &fhdr->b_hash_next;
1105 }
1106 *hdrp = hdr->b_hash_next;
1107 hdr->b_hash_next = NULL;
1108 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1109
1110 /* collect some hash table performance data */
1111 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1112
1113 if (buf_hash_table.ht_table[idx] &&
1114 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1115 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1116 }
1117
1118 /*
1119 * Global data structures and functions for the buf kmem cache.
1120 */
1121 static kmem_cache_t *hdr_full_cache;
1122 static kmem_cache_t *hdr_l2only_cache;
1123 static kmem_cache_t *buf_cache;
1124
1125 static void
1126 buf_fini(void)
1127 {
1128 int i;
1129
1130 #if defined(_KERNEL) && defined(HAVE_SPL)
1131 /*
1132 * Large allocations which do not require contiguous pages
1133 * should be using vmem_free() in the linux kernel\
1134 */
1135 vmem_free(buf_hash_table.ht_table,
1136 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1137 #else
1138 kmem_free(buf_hash_table.ht_table,
1139 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1140 #endif
1141 for (i = 0; i < BUF_LOCKS; i++)
1142 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1143 kmem_cache_destroy(hdr_full_cache);
1144 kmem_cache_destroy(hdr_l2only_cache);
1145 kmem_cache_destroy(buf_cache);
1146 }
1147
1148 /*
1149 * Constructor callback - called when the cache is empty
1150 * and a new buf is requested.
1151 */
1152 /* ARGSUSED */
1153 static int
1154 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1155 {
1156 arc_buf_hdr_t *hdr = vbuf;
1157
1158 bzero(hdr, HDR_FULL_SIZE);
1159 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1160 refcount_create(&hdr->b_l1hdr.b_refcnt);
1161 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1162 list_link_init(&hdr->b_l1hdr.b_arc_node);
1163 list_link_init(&hdr->b_l2hdr.b_l2node);
1164 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1165 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1166
1167 return (0);
1168 }
1169
1170 /* ARGSUSED */
1171 static int
1172 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1173 {
1174 arc_buf_hdr_t *hdr = vbuf;
1175
1176 bzero(hdr, HDR_L2ONLY_SIZE);
1177 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1178
1179 return (0);
1180 }
1181
1182 /* ARGSUSED */
1183 static int
1184 buf_cons(void *vbuf, void *unused, int kmflag)
1185 {
1186 arc_buf_t *buf = vbuf;
1187
1188 bzero(buf, sizeof (arc_buf_t));
1189 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1190 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1191
1192 return (0);
1193 }
1194
1195 /*
1196 * Destructor callback - called when a cached buf is
1197 * no longer required.
1198 */
1199 /* ARGSUSED */
1200 static void
1201 hdr_full_dest(void *vbuf, void *unused)
1202 {
1203 arc_buf_hdr_t *hdr = vbuf;
1204
1205 ASSERT(HDR_EMPTY(hdr));
1206 cv_destroy(&hdr->b_l1hdr.b_cv);
1207 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1208 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1209 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1210 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1211 }
1212
1213 /* ARGSUSED */
1214 static void
1215 hdr_l2only_dest(void *vbuf, void *unused)
1216 {
1217 ASSERTV(arc_buf_hdr_t *hdr = vbuf);
1218
1219 ASSERT(HDR_EMPTY(hdr));
1220 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1221 }
1222
1223 /* ARGSUSED */
1224 static void
1225 buf_dest(void *vbuf, void *unused)
1226 {
1227 arc_buf_t *buf = vbuf;
1228
1229 mutex_destroy(&buf->b_evict_lock);
1230 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1231 }
1232
1233 /*
1234 * Reclaim callback -- invoked when memory is low.
1235 */
1236 /* ARGSUSED */
1237 static void
1238 hdr_recl(void *unused)
1239 {
1240 dprintf("hdr_recl called\n");
1241 /*
1242 * umem calls the reclaim func when we destroy the buf cache,
1243 * which is after we do arc_fini().
1244 */
1245 if (!arc_dead)
1246 cv_signal(&arc_reclaim_thread_cv);
1247 }
1248
1249 static void
1250 buf_init(void)
1251 {
1252 uint64_t *ct = NULL;
1253 uint64_t hsize = 1ULL << 12;
1254 int i, j;
1255
1256 /*
1257 * The hash table is big enough to fill all of physical memory
1258 * with an average block size of zfs_arc_average_blocksize (default 8K).
1259 * By default, the table will take up
1260 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1261 */
1262 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1263 hsize <<= 1;
1264 retry:
1265 buf_hash_table.ht_mask = hsize - 1;
1266 #if defined(_KERNEL) && defined(HAVE_SPL)
1267 /*
1268 * Large allocations which do not require contiguous pages
1269 * should be using vmem_alloc() in the linux kernel
1270 */
1271 buf_hash_table.ht_table =
1272 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1273 #else
1274 buf_hash_table.ht_table =
1275 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1276 #endif
1277 if (buf_hash_table.ht_table == NULL) {
1278 ASSERT(hsize > (1ULL << 8));
1279 hsize >>= 1;
1280 goto retry;
1281 }
1282
1283 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1284 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1285 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1286 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1287 NULL, NULL, 0);
1288 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1289 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1290
1291 for (i = 0; i < 256; i++)
1292 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1293 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1294
1295 for (i = 0; i < BUF_LOCKS; i++) {
1296 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1297 NULL, MUTEX_DEFAULT, NULL);
1298 }
1299 }
1300
1301 #define ARC_MINTIME (hz>>4) /* 62 ms */
1302
1303 /*
1304 * This is the size that the buf occupies in memory. If the buf is compressed,
1305 * it will correspond to the compressed size. You should use this method of
1306 * getting the buf size unless you explicitly need the logical size.
1307 */
1308 uint64_t
1309 arc_buf_size(arc_buf_t *buf)
1310 {
1311 return (ARC_BUF_COMPRESSED(buf) ?
1312 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1313 }
1314
1315 uint64_t
1316 arc_buf_lsize(arc_buf_t *buf)
1317 {
1318 return (HDR_GET_LSIZE(buf->b_hdr));
1319 }
1320
1321 enum zio_compress
1322 arc_get_compression(arc_buf_t *buf)
1323 {
1324 return (ARC_BUF_COMPRESSED(buf) ?
1325 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1326 }
1327
1328 static inline boolean_t
1329 arc_buf_is_shared(arc_buf_t *buf)
1330 {
1331 boolean_t shared = (buf->b_data != NULL &&
1332 buf->b_data == buf->b_hdr->b_l1hdr.b_pdata);
1333 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1334 IMPLY(shared, ARC_BUF_SHARED(buf));
1335 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1336
1337 /*
1338 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1339 * already being shared" requirement prevents us from doing that.
1340 */
1341
1342 return (shared);
1343 }
1344
1345 static inline void
1346 arc_cksum_free(arc_buf_hdr_t *hdr)
1347 {
1348 ASSERT(HDR_HAS_L1HDR(hdr));
1349 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1350 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1351 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1352 hdr->b_l1hdr.b_freeze_cksum = NULL;
1353 }
1354 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1355 }
1356
1357 /*
1358 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1359 * matches the checksum that is stored in the hdr. If there is no checksum,
1360 * or if the buf is compressed, this is a no-op.
1361 */
1362 static void
1363 arc_cksum_verify(arc_buf_t *buf)
1364 {
1365 arc_buf_hdr_t *hdr = buf->b_hdr;
1366 zio_cksum_t zc;
1367
1368 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1369 return;
1370
1371 if (ARC_BUF_COMPRESSED(buf)) {
1372 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1373 hdr->b_l1hdr.b_bufcnt > 1);
1374 return;
1375 }
1376
1377 ASSERT(HDR_HAS_L1HDR(hdr));
1378
1379 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1380 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1381 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1382 return;
1383 }
1384
1385 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1386 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1387 panic("buffer modified while frozen!");
1388 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1389 }
1390
1391 static boolean_t
1392 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1393 {
1394 enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1395 boolean_t valid_cksum;
1396
1397 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1398 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1399
1400 /*
1401 * We rely on the blkptr's checksum to determine if the block
1402 * is valid or not. When compressed arc is enabled, the l2arc
1403 * writes the block to the l2arc just as it appears in the pool.
1404 * This allows us to use the blkptr's checksum to validate the
1405 * data that we just read off of the l2arc without having to store
1406 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1407 * arc is disabled, then the data written to the l2arc is always
1408 * uncompressed and won't match the block as it exists in the main
1409 * pool. When this is the case, we must first compress it if it is
1410 * compressed on the main pool before we can validate the checksum.
1411 */
1412 if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1413 uint64_t lsize;
1414 uint64_t csize;
1415 void *cbuf;
1416 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1417
1418 cbuf = zio_buf_alloc(HDR_GET_PSIZE(hdr));
1419 lsize = HDR_GET_LSIZE(hdr);
1420 csize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1421 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1422 if (csize < HDR_GET_PSIZE(hdr)) {
1423 /*
1424 * Compressed blocks are always a multiple of the
1425 * smallest ashift in the pool. Ideally, we would
1426 * like to round up the csize to the next
1427 * spa_min_ashift but that value may have changed
1428 * since the block was last written. Instead,
1429 * we rely on the fact that the hdr's psize
1430 * was set to the psize of the block when it was
1431 * last written. We set the csize to that value
1432 * and zero out any part that should not contain
1433 * data.
1434 */
1435 bzero((char *)cbuf + csize, HDR_GET_PSIZE(hdr) - csize);
1436 csize = HDR_GET_PSIZE(hdr);
1437 }
1438 zio_push_transform(zio, cbuf, csize, HDR_GET_PSIZE(hdr), NULL);
1439 }
1440
1441 /*
1442 * Block pointers always store the checksum for the logical data.
1443 * If the block pointer has the gang bit set, then the checksum
1444 * it represents is for the reconstituted data and not for an
1445 * individual gang member. The zio pipeline, however, must be able to
1446 * determine the checksum of each of the gang constituents so it
1447 * treats the checksum comparison differently than what we need
1448 * for l2arc blocks. This prevents us from using the
1449 * zio_checksum_error() interface directly. Instead we must call the
1450 * zio_checksum_error_impl() so that we can ensure the checksum is
1451 * generated using the correct checksum algorithm and accounts for the
1452 * logical I/O size and not just a gang fragment.
1453 */
1454 valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1455 BP_GET_CHECKSUM(zio->io_bp), zio->io_data, zio->io_size,
1456 zio->io_offset, NULL) == 0);
1457 zio_pop_transforms(zio);
1458 return (valid_cksum);
1459 }
1460
1461 /*
1462 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1463 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1464 * isn't modified later on. If buf is compressed or there is already a checksum
1465 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1466 */
1467 static void
1468 arc_cksum_compute(arc_buf_t *buf)
1469 {
1470 arc_buf_hdr_t *hdr = buf->b_hdr;
1471
1472 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1473 return;
1474
1475 ASSERT(HDR_HAS_L1HDR(hdr));
1476
1477 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1478 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1479 ASSERT(!ARC_BUF_COMPRESSED(buf) || hdr->b_l1hdr.b_bufcnt > 1);
1480 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1481 return;
1482 } else if (ARC_BUF_COMPRESSED(buf)) {
1483 /*
1484 * Since the checksum doesn't apply to compressed buffers, we
1485 * only keep a checksum if there are uncompressed buffers.
1486 * Therefore there must be another buffer, which is
1487 * uncompressed.
1488 */
1489 IMPLY(hdr->b_l1hdr.b_freeze_cksum != NULL,
1490 hdr->b_l1hdr.b_bufcnt > 1);
1491 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1492 return;
1493 }
1494
1495 ASSERT(!ARC_BUF_COMPRESSED(buf));
1496 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1497 KM_SLEEP);
1498 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1499 hdr->b_l1hdr.b_freeze_cksum);
1500 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1501 arc_buf_watch(buf);
1502 }
1503
1504 #ifndef _KERNEL
1505 void
1506 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1507 {
1508 panic("Got SIGSEGV at address: 0x%lx\n", (long) si->si_addr);
1509 }
1510 #endif
1511
1512 /* ARGSUSED */
1513 static void
1514 arc_buf_unwatch(arc_buf_t *buf)
1515 {
1516 #ifndef _KERNEL
1517 if (arc_watch) {
1518 ASSERT0(mprotect(buf->b_data, HDR_GET_LSIZE(buf->b_hdr),
1519 PROT_READ | PROT_WRITE));
1520 }
1521 #endif
1522 }
1523
1524 /* ARGSUSED */
1525 static void
1526 arc_buf_watch(arc_buf_t *buf)
1527 {
1528 #ifndef _KERNEL
1529 if (arc_watch)
1530 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1531 PROT_READ));
1532 #endif
1533 }
1534
1535 static arc_buf_contents_t
1536 arc_buf_type(arc_buf_hdr_t *hdr)
1537 {
1538 arc_buf_contents_t type;
1539 if (HDR_ISTYPE_METADATA(hdr)) {
1540 type = ARC_BUFC_METADATA;
1541 } else {
1542 type = ARC_BUFC_DATA;
1543 }
1544 VERIFY3U(hdr->b_type, ==, type);
1545 return (type);
1546 }
1547
1548 boolean_t
1549 arc_is_metadata(arc_buf_t *buf)
1550 {
1551 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1552 }
1553
1554 static uint32_t
1555 arc_bufc_to_flags(arc_buf_contents_t type)
1556 {
1557 switch (type) {
1558 case ARC_BUFC_DATA:
1559 /* metadata field is 0 if buffer contains normal data */
1560 return (0);
1561 case ARC_BUFC_METADATA:
1562 return (ARC_FLAG_BUFC_METADATA);
1563 default:
1564 break;
1565 }
1566 panic("undefined ARC buffer type!");
1567 return ((uint32_t)-1);
1568 }
1569
1570 void
1571 arc_buf_thaw(arc_buf_t *buf)
1572 {
1573 arc_buf_hdr_t *hdr = buf->b_hdr;
1574
1575 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1576 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1577
1578 arc_cksum_verify(buf);
1579
1580 /*
1581 * Compressed buffers do not manipulate the b_freeze_cksum or
1582 * allocate b_thawed.
1583 */
1584 if (ARC_BUF_COMPRESSED(buf)) {
1585 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1586 hdr->b_l1hdr.b_bufcnt > 1);
1587 return;
1588 }
1589
1590 ASSERT(HDR_HAS_L1HDR(hdr));
1591 arc_cksum_free(hdr);
1592 arc_buf_unwatch(buf);
1593 }
1594
1595 void
1596 arc_buf_freeze(arc_buf_t *buf)
1597 {
1598 arc_buf_hdr_t *hdr = buf->b_hdr;
1599 kmutex_t *hash_lock;
1600
1601 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1602 return;
1603
1604 if (ARC_BUF_COMPRESSED(buf)) {
1605 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1606 hdr->b_l1hdr.b_bufcnt > 1);
1607 return;
1608 }
1609
1610 hash_lock = HDR_LOCK(hdr);
1611 mutex_enter(hash_lock);
1612
1613 ASSERT(HDR_HAS_L1HDR(hdr));
1614 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1615 hdr->b_l1hdr.b_state == arc_anon);
1616 arc_cksum_compute(buf);
1617 mutex_exit(hash_lock);
1618 }
1619
1620 /*
1621 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1622 * the following functions should be used to ensure that the flags are
1623 * updated in a thread-safe way. When manipulating the flags either
1624 * the hash_lock must be held or the hdr must be undiscoverable. This
1625 * ensures that we're not racing with any other threads when updating
1626 * the flags.
1627 */
1628 static inline void
1629 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1630 {
1631 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1632 hdr->b_flags |= flags;
1633 }
1634
1635 static inline void
1636 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1637 {
1638 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1639 hdr->b_flags &= ~flags;
1640 }
1641
1642 /*
1643 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1644 * done in a special way since we have to clear and set bits
1645 * at the same time. Consumers that wish to set the compression bits
1646 * must use this function to ensure that the flags are updated in
1647 * thread-safe manner.
1648 */
1649 static void
1650 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1651 {
1652 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1653
1654 /*
1655 * Holes and embedded blocks will always have a psize = 0 so
1656 * we ignore the compression of the blkptr and set the
1657 * want to uncompress them. Mark them as uncompressed.
1658 */
1659 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1660 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1661 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
1662 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1663 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1664 } else {
1665 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1666 HDR_SET_COMPRESS(hdr, cmp);
1667 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1668 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1669 }
1670 }
1671
1672 /*
1673 * Looks for another buf on the same hdr which has the data decompressed, copies
1674 * from it, and returns true. If no such buf exists, returns false.
1675 */
1676 static boolean_t
1677 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1678 {
1679 arc_buf_hdr_t *hdr = buf->b_hdr;
1680 arc_buf_t *from;
1681 boolean_t copied = B_FALSE;
1682
1683 ASSERT(HDR_HAS_L1HDR(hdr));
1684 ASSERT3P(buf->b_data, !=, NULL);
1685 ASSERT(!ARC_BUF_COMPRESSED(buf));
1686
1687 for (from = hdr->b_l1hdr.b_buf; from != NULL;
1688 from = from->b_next) {
1689 /* can't use our own data buffer */
1690 if (from == buf) {
1691 continue;
1692 }
1693
1694 if (!ARC_BUF_COMPRESSED(from)) {
1695 bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1696 copied = B_TRUE;
1697 break;
1698 }
1699 }
1700
1701 /*
1702 * There were no decompressed bufs, so there should not be a
1703 * checksum on the hdr either.
1704 */
1705 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1706
1707 return (copied);
1708 }
1709
1710 /*
1711 * Given a buf that has a data buffer attached to it, this function will
1712 * efficiently fill the buf with data of the specified compression setting from
1713 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1714 * are already sharing a data buf, no copy is performed.
1715 *
1716 * If the buf is marked as compressed but uncompressed data was requested, this
1717 * will allocate a new data buffer for the buf, remove that flag, and fill the
1718 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1719 * uncompressed data, and (since we haven't added support for it yet) if you
1720 * want compressed data your buf must already be marked as compressed and have
1721 * the correct-sized data buffer.
1722 */
1723 static int
1724 arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
1725 {
1726 arc_buf_hdr_t *hdr = buf->b_hdr;
1727 boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
1728 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1729
1730 ASSERT3P(buf->b_data, !=, NULL);
1731 IMPLY(compressed, hdr_compressed);
1732 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1733
1734 if (hdr_compressed == compressed) {
1735 if (!arc_buf_is_shared(buf)) {
1736 bcopy(hdr->b_l1hdr.b_pdata, buf->b_data,
1737 arc_buf_size(buf));
1738 }
1739 } else {
1740 ASSERT(hdr_compressed);
1741 ASSERT(!compressed);
1742 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
1743
1744 /*
1745 * If the buf is sharing its data with the hdr, unlink it and
1746 * allocate a new data buffer for the buf.
1747 */
1748 if (arc_buf_is_shared(buf)) {
1749 ASSERT(ARC_BUF_COMPRESSED(buf));
1750
1751 /* We need to give the buf it's own b_data */
1752 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
1753 buf->b_data =
1754 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1755 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
1756
1757 /* Previously overhead was 0; just add new overhead */
1758 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
1759 } else if (ARC_BUF_COMPRESSED(buf)) {
1760 /* We need to reallocate the buf's b_data */
1761 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
1762 buf);
1763 buf->b_data =
1764 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1765
1766 /* We increased the size of b_data; update overhead */
1767 ARCSTAT_INCR(arcstat_overhead_size,
1768 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
1769 }
1770
1771 /*
1772 * Regardless of the buf's previous compression settings, it
1773 * should not be compressed at the end of this function.
1774 */
1775 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1776
1777 /*
1778 * Try copying the data from another buf which already has a
1779 * decompressed version. If that's not possible, it's time to
1780 * bite the bullet and decompress the data from the hdr.
1781 */
1782 if (arc_buf_try_copy_decompressed_data(buf)) {
1783 /* Skip byteswapping and checksumming (already done) */
1784 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
1785 return (0);
1786 } else {
1787 int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1788 hdr->b_l1hdr.b_pdata, buf->b_data,
1789 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1790
1791 /*
1792 * Absent hardware errors or software bugs, this should
1793 * be impossible, but log it anyway so we can debug it.
1794 */
1795 if (error != 0) {
1796 zfs_dbgmsg(
1797 "hdr %p, compress %d, psize %d, lsize %d",
1798 hdr, HDR_GET_COMPRESS(hdr),
1799 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1800 return (SET_ERROR(EIO));
1801 }
1802 }
1803 }
1804
1805 /* Byteswap the buf's data if necessary */
1806 if (bswap != DMU_BSWAP_NUMFUNCS) {
1807 ASSERT(!HDR_SHARED_DATA(hdr));
1808 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
1809 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
1810 }
1811
1812 /* Compute the hdr's checksum if necessary */
1813 arc_cksum_compute(buf);
1814
1815 return (0);
1816 }
1817
1818 int
1819 arc_decompress(arc_buf_t *buf)
1820 {
1821 return (arc_buf_fill(buf, B_FALSE));
1822 }
1823
1824 /*
1825 * Return the size of the block, b_pdata, that is stored in the arc_buf_hdr_t.
1826 */
1827 static uint64_t
1828 arc_hdr_size(arc_buf_hdr_t *hdr)
1829 {
1830 uint64_t size;
1831
1832 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1833 HDR_GET_PSIZE(hdr) > 0) {
1834 size = HDR_GET_PSIZE(hdr);
1835 } else {
1836 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1837 size = HDR_GET_LSIZE(hdr);
1838 }
1839 return (size);
1840 }
1841
1842 /*
1843 * Increment the amount of evictable space in the arc_state_t's refcount.
1844 * We account for the space used by the hdr and the arc buf individually
1845 * so that we can add and remove them from the refcount individually.
1846 */
1847 static void
1848 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
1849 {
1850 arc_buf_contents_t type = arc_buf_type(hdr);
1851 arc_buf_t *buf;
1852
1853 ASSERT(HDR_HAS_L1HDR(hdr));
1854
1855 if (GHOST_STATE(state)) {
1856 ASSERT0(hdr->b_l1hdr.b_bufcnt);
1857 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1858 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
1859 (void) refcount_add_many(&state->arcs_esize[type],
1860 HDR_GET_LSIZE(hdr), hdr);
1861 return;
1862 }
1863
1864 ASSERT(!GHOST_STATE(state));
1865 if (hdr->b_l1hdr.b_pdata != NULL) {
1866 (void) refcount_add_many(&state->arcs_esize[type],
1867 arc_hdr_size(hdr), hdr);
1868 }
1869 for (buf = hdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
1870 if (arc_buf_is_shared(buf))
1871 continue;
1872 (void) refcount_add_many(&state->arcs_esize[type],
1873 arc_buf_size(buf), buf);
1874 }
1875 }
1876
1877 /*
1878 * Decrement the amount of evictable space in the arc_state_t's refcount.
1879 * We account for the space used by the hdr and the arc buf individually
1880 * so that we can add and remove them from the refcount individually.
1881 */
1882 static void
1883 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
1884 {
1885 arc_buf_contents_t type = arc_buf_type(hdr);
1886 arc_buf_t *buf;
1887
1888 ASSERT(HDR_HAS_L1HDR(hdr));
1889
1890 if (GHOST_STATE(state)) {
1891 ASSERT0(hdr->b_l1hdr.b_bufcnt);
1892 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1893 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
1894 (void) refcount_remove_many(&state->arcs_esize[type],
1895 HDR_GET_LSIZE(hdr), hdr);
1896 return;
1897 }
1898
1899 ASSERT(!GHOST_STATE(state));
1900 if (hdr->b_l1hdr.b_pdata != NULL) {
1901 (void) refcount_remove_many(&state->arcs_esize[type],
1902 arc_hdr_size(hdr), hdr);
1903 }
1904 for (buf = hdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
1905 if (arc_buf_is_shared(buf))
1906 continue;
1907 (void) refcount_remove_many(&state->arcs_esize[type],
1908 arc_buf_size(buf), buf);
1909 }
1910 }
1911
1912 /*
1913 * Add a reference to this hdr indicating that someone is actively
1914 * referencing that memory. When the refcount transitions from 0 to 1,
1915 * we remove it from the respective arc_state_t list to indicate that
1916 * it is not evictable.
1917 */
1918 static void
1919 add_reference(arc_buf_hdr_t *hdr, void *tag)
1920 {
1921 arc_state_t *state;
1922
1923 ASSERT(HDR_HAS_L1HDR(hdr));
1924 if (!MUTEX_HELD(HDR_LOCK(hdr))) {
1925 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
1926 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1927 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1928 }
1929
1930 state = hdr->b_l1hdr.b_state;
1931
1932 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1933 (state != arc_anon)) {
1934 /* We don't use the L2-only state list. */
1935 if (state != arc_l2c_only) {
1936 multilist_remove(&state->arcs_list[arc_buf_type(hdr)],
1937 hdr);
1938 arc_evictable_space_decrement(hdr, state);
1939 }
1940 /* remove the prefetch flag if we get a reference */
1941 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
1942 }
1943 }
1944
1945 /*
1946 * Remove a reference from this hdr. When the reference transitions from
1947 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
1948 * list making it eligible for eviction.
1949 */
1950 static int
1951 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1952 {
1953 int cnt;
1954 arc_state_t *state = hdr->b_l1hdr.b_state;
1955
1956 ASSERT(HDR_HAS_L1HDR(hdr));
1957 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1958 ASSERT(!GHOST_STATE(state));
1959
1960 /*
1961 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1962 * check to prevent usage of the arc_l2c_only list.
1963 */
1964 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1965 (state != arc_anon)) {
1966 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
1967 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
1968 arc_evictable_space_increment(hdr, state);
1969 }
1970 return (cnt);
1971 }
1972
1973 /*
1974 * Returns detailed information about a specific arc buffer. When the
1975 * state_index argument is set the function will calculate the arc header
1976 * list position for its arc state. Since this requires a linear traversal
1977 * callers are strongly encourage not to do this. However, it can be helpful
1978 * for targeted analysis so the functionality is provided.
1979 */
1980 void
1981 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
1982 {
1983 arc_buf_hdr_t *hdr = ab->b_hdr;
1984 l1arc_buf_hdr_t *l1hdr = NULL;
1985 l2arc_buf_hdr_t *l2hdr = NULL;
1986 arc_state_t *state = NULL;
1987
1988 memset(abi, 0, sizeof (arc_buf_info_t));
1989
1990 if (hdr == NULL)
1991 return;
1992
1993 abi->abi_flags = hdr->b_flags;
1994
1995 if (HDR_HAS_L1HDR(hdr)) {
1996 l1hdr = &hdr->b_l1hdr;
1997 state = l1hdr->b_state;
1998 }
1999 if (HDR_HAS_L2HDR(hdr))
2000 l2hdr = &hdr->b_l2hdr;
2001
2002 if (l1hdr) {
2003 abi->abi_bufcnt = l1hdr->b_bufcnt;
2004 abi->abi_access = l1hdr->b_arc_access;
2005 abi->abi_mru_hits = l1hdr->b_mru_hits;
2006 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2007 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2008 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2009 abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
2010 }
2011
2012 if (l2hdr) {
2013 abi->abi_l2arc_dattr = l2hdr->b_daddr;
2014 abi->abi_l2arc_hits = l2hdr->b_hits;
2015 }
2016
2017 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2018 abi->abi_state_contents = arc_buf_type(hdr);
2019 abi->abi_size = arc_hdr_size(hdr);
2020 }
2021
2022 /*
2023 * Move the supplied buffer to the indicated state. The hash lock
2024 * for the buffer must be held by the caller.
2025 */
2026 static void
2027 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2028 kmutex_t *hash_lock)
2029 {
2030 arc_state_t *old_state;
2031 int64_t refcnt;
2032 uint32_t bufcnt;
2033 boolean_t update_old, update_new;
2034 arc_buf_contents_t buftype = arc_buf_type(hdr);
2035
2036 /*
2037 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2038 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2039 * L1 hdr doesn't always exist when we change state to arc_anon before
2040 * destroying a header, in which case reallocating to add the L1 hdr is
2041 * pointless.
2042 */
2043 if (HDR_HAS_L1HDR(hdr)) {
2044 old_state = hdr->b_l1hdr.b_state;
2045 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2046 bufcnt = hdr->b_l1hdr.b_bufcnt;
2047 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pdata != NULL);
2048 } else {
2049 old_state = arc_l2c_only;
2050 refcnt = 0;
2051 bufcnt = 0;
2052 update_old = B_FALSE;
2053 }
2054 update_new = update_old;
2055
2056 ASSERT(MUTEX_HELD(hash_lock));
2057 ASSERT3P(new_state, !=, old_state);
2058 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2059 ASSERT(old_state != arc_anon || bufcnt <= 1);
2060
2061 /*
2062 * If this buffer is evictable, transfer it from the
2063 * old state list to the new state list.
2064 */
2065 if (refcnt == 0) {
2066 if (old_state != arc_anon && old_state != arc_l2c_only) {
2067 ASSERT(HDR_HAS_L1HDR(hdr));
2068 multilist_remove(&old_state->arcs_list[buftype], hdr);
2069
2070 if (GHOST_STATE(old_state)) {
2071 ASSERT0(bufcnt);
2072 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2073 update_old = B_TRUE;
2074 }
2075 arc_evictable_space_decrement(hdr, old_state);
2076 }
2077 if (new_state != arc_anon && new_state != arc_l2c_only) {
2078 /*
2079 * An L1 header always exists here, since if we're
2080 * moving to some L1-cached state (i.e. not l2c_only or
2081 * anonymous), we realloc the header to add an L1hdr
2082 * beforehand.
2083 */
2084 ASSERT(HDR_HAS_L1HDR(hdr));
2085 multilist_insert(&new_state->arcs_list[buftype], hdr);
2086
2087 if (GHOST_STATE(new_state)) {
2088 ASSERT0(bufcnt);
2089 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2090 update_new = B_TRUE;
2091 }
2092 arc_evictable_space_increment(hdr, new_state);
2093 }
2094 }
2095
2096 ASSERT(!HDR_EMPTY(hdr));
2097 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2098 buf_hash_remove(hdr);
2099
2100 /* adjust state sizes (ignore arc_l2c_only) */
2101
2102 if (update_new && new_state != arc_l2c_only) {
2103 ASSERT(HDR_HAS_L1HDR(hdr));
2104 if (GHOST_STATE(new_state)) {
2105 ASSERT0(bufcnt);
2106
2107 /*
2108 * When moving a header to a ghost state, we first
2109 * remove all arc buffers. Thus, we'll have a
2110 * bufcnt of zero, and no arc buffer to use for
2111 * the reference. As a result, we use the arc
2112 * header pointer for the reference.
2113 */
2114 (void) refcount_add_many(&new_state->arcs_size,
2115 HDR_GET_LSIZE(hdr), hdr);
2116 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2117 } else {
2118 arc_buf_t *buf;
2119 uint32_t buffers = 0;
2120
2121 /*
2122 * Each individual buffer holds a unique reference,
2123 * thus we must remove each of these references one
2124 * at a time.
2125 */
2126 for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
2127 buf = buf->b_next) {
2128 ASSERT3U(bufcnt, !=, 0);
2129 buffers++;
2130
2131 /*
2132 * When the arc_buf_t is sharing the data
2133 * block with the hdr, the owner of the
2134 * reference belongs to the hdr. Only
2135 * add to the refcount if the arc_buf_t is
2136 * not shared.
2137 */
2138 if (arc_buf_is_shared(buf))
2139 continue;
2140
2141 (void) refcount_add_many(&new_state->arcs_size,
2142 arc_buf_size(buf), buf);
2143 }
2144 ASSERT3U(bufcnt, ==, buffers);
2145
2146 if (hdr->b_l1hdr.b_pdata != NULL) {
2147 (void) refcount_add_many(&new_state->arcs_size,
2148 arc_hdr_size(hdr), hdr);
2149 } else {
2150 ASSERT(GHOST_STATE(old_state));
2151 }
2152 }
2153 }
2154
2155 if (update_old && old_state != arc_l2c_only) {
2156 ASSERT(HDR_HAS_L1HDR(hdr));
2157 if (GHOST_STATE(old_state)) {
2158 ASSERT0(bufcnt);
2159 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2160
2161 /*
2162 * When moving a header off of a ghost state,
2163 * the header will not contain any arc buffers.
2164 * We use the arc header pointer for the reference
2165 * which is exactly what we did when we put the
2166 * header on the ghost state.
2167 */
2168
2169 (void) refcount_remove_many(&old_state->arcs_size,
2170 HDR_GET_LSIZE(hdr), hdr);
2171 } else {
2172 arc_buf_t *buf;
2173 uint32_t buffers = 0;
2174
2175 /*
2176 * Each individual buffer holds a unique reference,
2177 * thus we must remove each of these references one
2178 * at a time.
2179 */
2180 for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
2181 buf = buf->b_next) {
2182 ASSERT3U(bufcnt, !=, 0);
2183 buffers++;
2184
2185 /*
2186 * When the arc_buf_t is sharing the data
2187 * block with the hdr, the owner of the
2188 * reference belongs to the hdr. Only
2189 * add to the refcount if the arc_buf_t is
2190 * not shared.
2191 */
2192 if (arc_buf_is_shared(buf))
2193 continue;
2194
2195 (void) refcount_remove_many(
2196 &old_state->arcs_size, arc_buf_size(buf),
2197 buf);
2198 }
2199 ASSERT3U(bufcnt, ==, buffers);
2200 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2201 (void) refcount_remove_many(
2202 &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2203 }
2204 }
2205
2206 if (HDR_HAS_L1HDR(hdr))
2207 hdr->b_l1hdr.b_state = new_state;
2208
2209 /*
2210 * L2 headers should never be on the L2 state list since they don't
2211 * have L1 headers allocated.
2212 */
2213 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2214 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2215 }
2216
2217 void
2218 arc_space_consume(uint64_t space, arc_space_type_t type)
2219 {
2220 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2221
2222 switch (type) {
2223 default:
2224 break;
2225 case ARC_SPACE_DATA:
2226 ARCSTAT_INCR(arcstat_data_size, space);
2227 break;
2228 case ARC_SPACE_META:
2229 ARCSTAT_INCR(arcstat_metadata_size, space);
2230 break;
2231 case ARC_SPACE_BONUS:
2232 ARCSTAT_INCR(arcstat_bonus_size, space);
2233 break;
2234 case ARC_SPACE_DNODE:
2235 ARCSTAT_INCR(arcstat_dnode_size, space);
2236 break;
2237 case ARC_SPACE_DBUF:
2238 ARCSTAT_INCR(arcstat_dbuf_size, space);
2239 break;
2240 case ARC_SPACE_HDRS:
2241 ARCSTAT_INCR(arcstat_hdr_size, space);
2242 break;
2243 case ARC_SPACE_L2HDRS:
2244 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2245 break;
2246 }
2247
2248 if (type != ARC_SPACE_DATA)
2249 ARCSTAT_INCR(arcstat_meta_used, space);
2250
2251 atomic_add_64(&arc_size, space);
2252 }
2253
2254 void
2255 arc_space_return(uint64_t space, arc_space_type_t type)
2256 {
2257 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2258
2259 switch (type) {
2260 default:
2261 break;
2262 case ARC_SPACE_DATA:
2263 ARCSTAT_INCR(arcstat_data_size, -space);
2264 break;
2265 case ARC_SPACE_META:
2266 ARCSTAT_INCR(arcstat_metadata_size, -space);
2267 break;
2268 case ARC_SPACE_BONUS:
2269 ARCSTAT_INCR(arcstat_bonus_size, -space);
2270 break;
2271 case ARC_SPACE_DNODE:
2272 ARCSTAT_INCR(arcstat_dnode_size, -space);
2273 break;
2274 case ARC_SPACE_DBUF:
2275 ARCSTAT_INCR(arcstat_dbuf_size, -space);
2276 break;
2277 case ARC_SPACE_HDRS:
2278 ARCSTAT_INCR(arcstat_hdr_size, -space);
2279 break;
2280 case ARC_SPACE_L2HDRS:
2281 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2282 break;
2283 }
2284
2285 if (type != ARC_SPACE_DATA) {
2286 ASSERT(arc_meta_used >= space);
2287 if (arc_meta_max < arc_meta_used)
2288 arc_meta_max = arc_meta_used;
2289 ARCSTAT_INCR(arcstat_meta_used, -space);
2290 }
2291
2292 ASSERT(arc_size >= space);
2293 atomic_add_64(&arc_size, -space);
2294 }
2295
2296 /*
2297 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2298 * with the hdr's b_pdata.
2299 */
2300 static boolean_t
2301 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2302 {
2303 boolean_t hdr_compressed, buf_compressed;
2304 /*
2305 * The criteria for sharing a hdr's data are:
2306 * 1. the hdr's compression matches the buf's compression
2307 * 2. the hdr doesn't need to be byteswapped
2308 * 3. the hdr isn't already being shared
2309 * 4. the buf is either compressed or it is the last buf in the hdr list
2310 *
2311 * Criterion #4 maintains the invariant that shared uncompressed
2312 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2313 * might ask, "if a compressed buf is allocated first, won't that be the
2314 * last thing in the list?", but in that case it's impossible to create
2315 * a shared uncompressed buf anyway (because the hdr must be compressed
2316 * to have the compressed buf). You might also think that #3 is
2317 * sufficient to make this guarantee, however it's possible
2318 * (specifically in the rare L2ARC write race mentioned in
2319 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2320 * is sharable, but wasn't at the time of its allocation. Rather than
2321 * allow a new shared uncompressed buf to be created and then shuffle
2322 * the list around to make it the last element, this simply disallows
2323 * sharing if the new buf isn't the first to be added.
2324 */
2325 ASSERT3P(buf->b_hdr, ==, hdr);
2326 hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2327 buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2328 return (buf_compressed == hdr_compressed &&
2329 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2330 !HDR_SHARED_DATA(hdr) &&
2331 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2332 }
2333
2334 /*
2335 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2336 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2337 * copy was made successfully, or an error code otherwise.
2338 */
2339 static int
2340 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2341 boolean_t fill, arc_buf_t **ret)
2342 {
2343 arc_buf_t *buf;
2344 boolean_t can_share;
2345
2346 ASSERT(HDR_HAS_L1HDR(hdr));
2347 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2348 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2349 hdr->b_type == ARC_BUFC_METADATA);
2350 ASSERT3P(ret, !=, NULL);
2351 ASSERT3P(*ret, ==, NULL);
2352
2353 hdr->b_l1hdr.b_mru_hits = 0;
2354 hdr->b_l1hdr.b_mru_ghost_hits = 0;
2355 hdr->b_l1hdr.b_mfu_hits = 0;
2356 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
2357 hdr->b_l1hdr.b_l2_hits = 0;
2358
2359 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2360 buf->b_hdr = hdr;
2361 buf->b_data = NULL;
2362 buf->b_next = hdr->b_l1hdr.b_buf;
2363 buf->b_flags = 0;
2364
2365 add_reference(hdr, tag);
2366
2367 /*
2368 * We're about to change the hdr's b_flags. We must either
2369 * hold the hash_lock or be undiscoverable.
2370 */
2371 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2372
2373 /*
2374 * Only honor requests for compressed bufs if the hdr is actually
2375 * compressed.
2376 */
2377 if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
2378 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2379
2380 /*
2381 * Although the ARC should handle it correctly, levels above the ARC
2382 * should prevent us from having multiple compressed bufs off the same
2383 * hdr. To ensure we notice it if this behavior changes, we assert this
2384 * here the best we can.
2385 */
2386 IMPLY(ARC_BUF_COMPRESSED(buf), !HDR_SHARED_DATA(hdr));
2387
2388 /*
2389 * If the hdr's data can be shared then we share the data buffer and
2390 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2391 * allocate a new buffer to store the buf's data.
2392 *
2393 * There is one additional restriction here because we're sharing
2394 * hdr -> buf instead of the usual buf -> hdr: the hdr can't be actively
2395 * involved in an L2ARC write, because if this buf is used by an
2396 * arc_write() then the hdr's data buffer will be released when the
2397 * write completes, even though the L2ARC write might still be using it.
2398 */
2399 can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr);
2400
2401 /* Set up b_data and sharing */
2402 if (can_share) {
2403 buf->b_data = hdr->b_l1hdr.b_pdata;
2404 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2405 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2406 } else {
2407 buf->b_data =
2408 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2409 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2410 }
2411 VERIFY3P(buf->b_data, !=, NULL);
2412
2413 hdr->b_l1hdr.b_buf = buf;
2414 hdr->b_l1hdr.b_bufcnt += 1;
2415
2416 /*
2417 * If the user wants the data from the hdr, we need to either copy or
2418 * decompress the data.
2419 */
2420 if (fill) {
2421 return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
2422 }
2423
2424 return (0);
2425 }
2426
2427 static char *arc_onloan_tag = "onloan";
2428
2429 /*
2430 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2431 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2432 * buffers must be returned to the arc before they can be used by the DMU or
2433 * freed.
2434 */
2435 arc_buf_t *
2436 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2437 {
2438 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2439 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2440
2441 atomic_add_64(&arc_loaned_bytes, size);
2442 return (buf);
2443 }
2444
2445 arc_buf_t *
2446 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2447 enum zio_compress compression_type)
2448 {
2449 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2450 psize, lsize, compression_type);
2451
2452 atomic_add_64(&arc_loaned_bytes, psize);
2453 return (buf);
2454 }
2455
2456
2457 /*
2458 * Return a loaned arc buffer to the arc.
2459 */
2460 void
2461 arc_return_buf(arc_buf_t *buf, void *tag)
2462 {
2463 arc_buf_hdr_t *hdr = buf->b_hdr;
2464
2465 ASSERT3P(buf->b_data, !=, NULL);
2466 ASSERT(HDR_HAS_L1HDR(hdr));
2467 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2468 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2469
2470 atomic_add_64(&arc_loaned_bytes, -arc_buf_size(buf));
2471 }
2472
2473 /* Detach an arc_buf from a dbuf (tag) */
2474 void
2475 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2476 {
2477 arc_buf_hdr_t *hdr = buf->b_hdr;
2478
2479 ASSERT3P(buf->b_data, !=, NULL);
2480 ASSERT(HDR_HAS_L1HDR(hdr));
2481 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2482 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2483
2484 atomic_add_64(&arc_loaned_bytes, -arc_buf_size(buf));
2485 }
2486
2487 static void
2488 l2arc_free_data_on_write(void *data, size_t size, arc_buf_contents_t type)
2489 {
2490 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2491
2492 df->l2df_data = data;
2493 df->l2df_size = size;
2494 df->l2df_type = type;
2495 mutex_enter(&l2arc_free_on_write_mtx);
2496 list_insert_head(l2arc_free_on_write, df);
2497 mutex_exit(&l2arc_free_on_write_mtx);
2498 }
2499
2500 static void
2501 arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2502 {
2503 arc_state_t *state = hdr->b_l1hdr.b_state;
2504 arc_buf_contents_t type = arc_buf_type(hdr);
2505 uint64_t size = arc_hdr_size(hdr);
2506
2507 /* protected by hash lock, if in the hash table */
2508 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2509 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2510 ASSERT(state != arc_anon && state != arc_l2c_only);
2511
2512 (void) refcount_remove_many(&state->arcs_esize[type],
2513 size, hdr);
2514 }
2515 (void) refcount_remove_many(&state->arcs_size, size, hdr);
2516
2517 l2arc_free_data_on_write(hdr->b_l1hdr.b_pdata, size, type);
2518 }
2519
2520 /*
2521 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2522 * data buffer, we transfer the refcount ownership to the hdr and update
2523 * the appropriate kstats.
2524 */
2525 static void
2526 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2527 {
2528 ASSERT(arc_can_share(hdr, buf));
2529 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2530 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2531
2532 /*
2533 * Start sharing the data buffer. We transfer the
2534 * refcount ownership to the hdr since it always owns
2535 * the refcount whenever an arc_buf_t is shared.
2536 */
2537 refcount_transfer_ownership(&hdr->b_l1hdr.b_state->arcs_size, buf, hdr);
2538 hdr->b_l1hdr.b_pdata = buf->b_data;
2539 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2540 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2541
2542 /*
2543 * Since we've transferred ownership to the hdr we need
2544 * to increment its compressed and uncompressed kstats and
2545 * decrement the overhead size.
2546 */
2547 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2548 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2549 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2550 }
2551
2552 static void
2553 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2554 {
2555 ASSERT(arc_buf_is_shared(buf));
2556 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2557 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2558
2559 /*
2560 * We are no longer sharing this buffer so we need
2561 * to transfer its ownership to the rightful owner.
2562 */
2563 refcount_transfer_ownership(&hdr->b_l1hdr.b_state->arcs_size, hdr, buf);
2564 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2565 hdr->b_l1hdr.b_pdata = NULL;
2566 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2567
2568 /*
2569 * Since the buffer is no longer shared between
2570 * the arc buf and the hdr, count it as overhead.
2571 */
2572 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2573 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2574 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2575 }
2576
2577 /*
2578 * Remove an arc_buf_t from the hdr's buf list and return the last
2579 * arc_buf_t on the list. If no buffers remain on the list then return
2580 * NULL.
2581 */
2582 static arc_buf_t *
2583 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2584 {
2585 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2586 arc_buf_t *lastbuf = NULL;
2587
2588 ASSERT(HDR_HAS_L1HDR(hdr));
2589 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2590
2591 /*
2592 * Remove the buf from the hdr list and locate the last
2593 * remaining buffer on the list.
2594 */
2595 while (*bufp != NULL) {
2596 if (*bufp == buf)
2597 *bufp = buf->b_next;
2598
2599 /*
2600 * If we've removed a buffer in the middle of
2601 * the list then update the lastbuf and update
2602 * bufp.
2603 */
2604 if (*bufp != NULL) {
2605 lastbuf = *bufp;
2606 bufp = &(*bufp)->b_next;
2607 }
2608 }
2609 buf->b_next = NULL;
2610 ASSERT3P(lastbuf, !=, buf);
2611 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
2612 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
2613 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
2614
2615 return (lastbuf);
2616 }
2617
2618 /*
2619 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
2620 * list and free it.
2621 */
2622 static void
2623 arc_buf_destroy_impl(arc_buf_t *buf)
2624 {
2625 arc_buf_t *lastbuf;
2626 arc_buf_hdr_t *hdr = buf->b_hdr;
2627
2628 /*
2629 * Free up the data associated with the buf but only if we're not
2630 * sharing this with the hdr. If we are sharing it with the hdr, the
2631 * hdr is responsible for doing the free.
2632 */
2633 if (buf->b_data != NULL) {
2634 /*
2635 * We're about to change the hdr's b_flags. We must either
2636 * hold the hash_lock or be undiscoverable.
2637 */
2638 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2639
2640 arc_cksum_verify(buf);
2641 arc_buf_unwatch(buf);
2642
2643 if (arc_buf_is_shared(buf)) {
2644 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2645 } else {
2646 uint64_t size = arc_buf_size(buf);
2647 arc_free_data_buf(hdr, buf->b_data, size, buf);
2648 ARCSTAT_INCR(arcstat_overhead_size, -size);
2649 }
2650 buf->b_data = NULL;
2651
2652 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2653 hdr->b_l1hdr.b_bufcnt -= 1;
2654 }
2655
2656 lastbuf = arc_buf_remove(hdr, buf);
2657
2658 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2659 /*
2660 * If the current arc_buf_t is sharing its data buffer with the
2661 * hdr, then reassign the hdr's b_pdata to share it with the new
2662 * buffer at the end of the list. The shared buffer is always
2663 * the last one on the hdr's buffer list.
2664 *
2665 * There is an equivalent case for compressed bufs, but since
2666 * they aren't guaranteed to be the last buf in the list and
2667 * that is an exceedingly rare case, we just allow that space be
2668 * wasted temporarily.
2669 */
2670 if (lastbuf != NULL) {
2671 /* Only one buf can be shared at once */
2672 VERIFY(!arc_buf_is_shared(lastbuf));
2673 /* hdr is uncompressed so can't have compressed buf */
2674 VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
2675
2676 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2677 arc_hdr_free_pdata(hdr);
2678
2679 /*
2680 * We must setup a new shared block between the
2681 * last buffer and the hdr. The data would have
2682 * been allocated by the arc buf so we need to transfer
2683 * ownership to the hdr since it's now being shared.
2684 */
2685 arc_share_buf(hdr, lastbuf);
2686 }
2687 } else if (HDR_SHARED_DATA(hdr)) {
2688 /*
2689 * Uncompressed shared buffers are always at the end
2690 * of the list. Compressed buffers don't have the
2691 * same requirements. This makes it hard to
2692 * simply assert that the lastbuf is shared so
2693 * we rely on the hdr's compression flags to determine
2694 * if we have a compressed, shared buffer.
2695 */
2696 ASSERT3P(lastbuf, !=, NULL);
2697 ASSERT(arc_buf_is_shared(lastbuf) ||
2698 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
2699 }
2700
2701 if (hdr->b_l1hdr.b_bufcnt == 0)
2702 arc_cksum_free(hdr);
2703
2704 /* clean up the buf */
2705 buf->b_hdr = NULL;
2706 kmem_cache_free(buf_cache, buf);
2707 }
2708
2709 static void
2710 arc_hdr_alloc_pdata(arc_buf_hdr_t *hdr)
2711 {
2712 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2713 ASSERT(HDR_HAS_L1HDR(hdr));
2714 ASSERT(!HDR_SHARED_DATA(hdr));
2715
2716 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2717 hdr->b_l1hdr.b_pdata = arc_get_data_buf(hdr, arc_hdr_size(hdr), hdr);
2718 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2719 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2720
2721 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2722 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2723 }
2724
2725 static void
2726 arc_hdr_free_pdata(arc_buf_hdr_t *hdr)
2727 {
2728 ASSERT(HDR_HAS_L1HDR(hdr));
2729 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2730
2731 /*
2732 * If the hdr is currently being written to the l2arc then
2733 * we defer freeing the data by adding it to the l2arc_free_on_write
2734 * list. The l2arc will free the data once it's finished
2735 * writing it to the l2arc device.
2736 */
2737 if (HDR_L2_WRITING(hdr)) {
2738 arc_hdr_free_on_write(hdr);
2739 ARCSTAT_BUMP(arcstat_l2_free_on_write);
2740 } else {
2741 arc_free_data_buf(hdr, hdr->b_l1hdr.b_pdata,
2742 arc_hdr_size(hdr), hdr);
2743 }
2744 hdr->b_l1hdr.b_pdata = NULL;
2745 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2746
2747 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2748 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2749 }
2750
2751 static arc_buf_hdr_t *
2752 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
2753 enum zio_compress compression_type, arc_buf_contents_t type)
2754 {
2755 arc_buf_hdr_t *hdr;
2756
2757 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
2758
2759 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2760 ASSERT(HDR_EMPTY(hdr));
2761 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2762 HDR_SET_PSIZE(hdr, psize);
2763 HDR_SET_LSIZE(hdr, lsize);
2764 hdr->b_spa = spa;
2765 hdr->b_type = type;
2766 hdr->b_flags = 0;
2767 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2768 arc_hdr_set_compress(hdr, compression_type);
2769
2770 hdr->b_l1hdr.b_state = arc_anon;
2771 hdr->b_l1hdr.b_arc_access = 0;
2772 hdr->b_l1hdr.b_bufcnt = 0;
2773 hdr->b_l1hdr.b_buf = NULL;
2774
2775 /*
2776 * Allocate the hdr's buffer. This will contain either
2777 * the compressed or uncompressed data depending on the block
2778 * it references and compressed arc enablement.
2779 */
2780 arc_hdr_alloc_pdata(hdr);
2781 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2782
2783 return (hdr);
2784 }
2785
2786 /*
2787 * Transition between the two allocation states for the arc_buf_hdr struct.
2788 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
2789 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
2790 * version is used when a cache buffer is only in the L2ARC in order to reduce
2791 * memory usage.
2792 */
2793 static arc_buf_hdr_t *
2794 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
2795 {
2796 arc_buf_hdr_t *nhdr;
2797 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2798
2799 ASSERT(HDR_HAS_L2HDR(hdr));
2800 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
2801 (old == hdr_l2only_cache && new == hdr_full_cache));
2802
2803 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
2804
2805 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2806 buf_hash_remove(hdr);
2807
2808 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
2809
2810 if (new == hdr_full_cache) {
2811 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2812 /*
2813 * arc_access and arc_change_state need to be aware that a
2814 * header has just come out of L2ARC, so we set its state to
2815 * l2c_only even though it's about to change.
2816 */
2817 nhdr->b_l1hdr.b_state = arc_l2c_only;
2818
2819 /* Verify previous threads set to NULL before freeing */
2820 ASSERT3P(nhdr->b_l1hdr.b_pdata, ==, NULL);
2821 } else {
2822 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2823 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2824 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2825
2826 /*
2827 * If we've reached here, We must have been called from
2828 * arc_evict_hdr(), as such we should have already been
2829 * removed from any ghost list we were previously on
2830 * (which protects us from racing with arc_evict_state),
2831 * thus no locking is needed during this check.
2832 */
2833 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2834
2835 /*
2836 * A buffer must not be moved into the arc_l2c_only
2837 * state if it's not finished being written out to the
2838 * l2arc device. Otherwise, the b_l1hdr.b_pdata field
2839 * might try to be accessed, even though it was removed.
2840 */
2841 VERIFY(!HDR_L2_WRITING(hdr));
2842 VERIFY3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2843
2844 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2845 }
2846 /*
2847 * The header has been reallocated so we need to re-insert it into any
2848 * lists it was on.
2849 */
2850 (void) buf_hash_insert(nhdr, NULL);
2851
2852 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
2853
2854 mutex_enter(&dev->l2ad_mtx);
2855
2856 /*
2857 * We must place the realloc'ed header back into the list at
2858 * the same spot. Otherwise, if it's placed earlier in the list,
2859 * l2arc_write_buffers() could find it during the function's
2860 * write phase, and try to write it out to the l2arc.
2861 */
2862 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
2863 list_remove(&dev->l2ad_buflist, hdr);
2864
2865 mutex_exit(&dev->l2ad_mtx);
2866
2867 /*
2868 * Since we're using the pointer address as the tag when
2869 * incrementing and decrementing the l2ad_alloc refcount, we
2870 * must remove the old pointer (that we're about to destroy) and
2871 * add the new pointer to the refcount. Otherwise we'd remove
2872 * the wrong pointer address when calling arc_hdr_destroy() later.
2873 */
2874
2875 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
2876 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
2877
2878 buf_discard_identity(hdr);
2879 kmem_cache_free(old, hdr);
2880
2881 return (nhdr);
2882 }
2883
2884 /*
2885 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
2886 * The buf is returned thawed since we expect the consumer to modify it.
2887 */
2888 arc_buf_t *
2889 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
2890 {
2891 arc_buf_t *buf;
2892 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
2893 ZIO_COMPRESS_OFF, type);
2894 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
2895
2896 buf = NULL;
2897 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
2898 arc_buf_thaw(buf);
2899
2900 return (buf);
2901 }
2902
2903 /*
2904 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
2905 * for bufs containing metadata.
2906 */
2907 arc_buf_t *
2908 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
2909 enum zio_compress compression_type)
2910 {
2911 arc_buf_hdr_t *hdr;
2912 arc_buf_t *buf;
2913 ASSERT3U(lsize, >, 0);
2914 ASSERT3U(lsize, >=, psize);
2915 ASSERT(compression_type > ZIO_COMPRESS_OFF);
2916 ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
2917
2918 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
2919 compression_type, ARC_BUFC_DATA);
2920 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
2921
2922 buf = NULL;
2923 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
2924 arc_buf_thaw(buf);
2925 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2926
2927 return (buf);
2928 }
2929
2930 static void
2931 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2932 {
2933 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2934 l2arc_dev_t *dev = l2hdr->b_dev;
2935 uint64_t asize = arc_hdr_size(hdr);
2936
2937 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2938 ASSERT(HDR_HAS_L2HDR(hdr));
2939
2940 list_remove(&dev->l2ad_buflist, hdr);
2941
2942 ARCSTAT_INCR(arcstat_l2_asize, -asize);
2943 ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr));
2944
2945 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
2946
2947 (void) refcount_remove_many(&dev->l2ad_alloc, asize, hdr);
2948 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
2949 }
2950
2951 static void
2952 arc_hdr_destroy(arc_buf_hdr_t *hdr)
2953 {
2954 if (HDR_HAS_L1HDR(hdr)) {
2955 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2956 hdr->b_l1hdr.b_bufcnt > 0);
2957 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2958 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2959 }
2960 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2961 ASSERT(!HDR_IN_HASH_TABLE(hdr));
2962
2963 if (!HDR_EMPTY(hdr))
2964 buf_discard_identity(hdr);
2965
2966 if (HDR_HAS_L2HDR(hdr)) {
2967 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2968 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
2969
2970 if (!buflist_held)
2971 mutex_enter(&dev->l2ad_mtx);
2972
2973 /*
2974 * Even though we checked this conditional above, we
2975 * need to check this again now that we have the
2976 * l2ad_mtx. This is because we could be racing with
2977 * another thread calling l2arc_evict() which might have
2978 * destroyed this header's L2 portion as we were waiting
2979 * to acquire the l2ad_mtx. If that happens, we don't
2980 * want to re-destroy the header's L2 portion.
2981 */
2982 if (HDR_HAS_L2HDR(hdr))
2983 arc_hdr_l2hdr_destroy(hdr);
2984
2985 if (!buflist_held)
2986 mutex_exit(&dev->l2ad_mtx);
2987 }
2988
2989 if (HDR_HAS_L1HDR(hdr)) {
2990 arc_cksum_free(hdr);
2991
2992 while (hdr->b_l1hdr.b_buf != NULL)
2993 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
2994
2995 if (hdr->b_l1hdr.b_pdata != NULL) {
2996 arc_hdr_free_pdata(hdr);
2997 }
2998 }
2999
3000 ASSERT3P(hdr->b_hash_next, ==, NULL);
3001 if (HDR_HAS_L1HDR(hdr)) {
3002 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3003 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3004 kmem_cache_free(hdr_full_cache, hdr);
3005 } else {
3006 kmem_cache_free(hdr_l2only_cache, hdr);
3007 }
3008 }
3009
3010 void
3011 arc_buf_destroy(arc_buf_t *buf, void* tag)
3012 {
3013 arc_buf_hdr_t *hdr = buf->b_hdr;
3014 kmutex_t *hash_lock = HDR_LOCK(hdr);
3015
3016 if (hdr->b_l1hdr.b_state == arc_anon) {
3017 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3018 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3019 VERIFY0(remove_reference(hdr, NULL, tag));
3020 arc_hdr_destroy(hdr);
3021 return;
3022 }
3023
3024 mutex_enter(hash_lock);
3025 ASSERT3P(hdr, ==, buf->b_hdr);
3026 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3027 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3028 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3029 ASSERT3P(buf->b_data, !=, NULL);
3030
3031 (void) remove_reference(hdr, hash_lock, tag);
3032 arc_buf_destroy_impl(buf);
3033 mutex_exit(hash_lock);
3034 }
3035
3036 /*
3037 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3038 * state of the header is dependent on its state prior to entering this
3039 * function. The following transitions are possible:
3040 *
3041 * - arc_mru -> arc_mru_ghost
3042 * - arc_mfu -> arc_mfu_ghost
3043 * - arc_mru_ghost -> arc_l2c_only
3044 * - arc_mru_ghost -> deleted
3045 * - arc_mfu_ghost -> arc_l2c_only
3046 * - arc_mfu_ghost -> deleted
3047 */
3048 static int64_t
3049 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3050 {
3051 arc_state_t *evicted_state, *state;
3052 int64_t bytes_evicted = 0;
3053
3054 ASSERT(MUTEX_HELD(hash_lock));
3055 ASSERT(HDR_HAS_L1HDR(hdr));
3056
3057 state = hdr->b_l1hdr.b_state;
3058 if (GHOST_STATE(state)) {
3059 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3060 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3061
3062 /*
3063 * l2arc_write_buffers() relies on a header's L1 portion
3064 * (i.e. its b_pdata field) during its write phase.
3065 * Thus, we cannot push a header onto the arc_l2c_only
3066 * state (removing its L1 piece) until the header is
3067 * done being written to the l2arc.
3068 */
3069 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3070 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3071 return (bytes_evicted);
3072 }
3073
3074 ARCSTAT_BUMP(arcstat_deleted);
3075 bytes_evicted += HDR_GET_LSIZE(hdr);
3076
3077 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3078
3079 if (HDR_HAS_L2HDR(hdr)) {
3080 ASSERT(hdr->b_l1hdr.b_pdata == NULL);
3081 /*
3082 * This buffer is cached on the 2nd Level ARC;
3083 * don't destroy the header.
3084 */
3085 arc_change_state(arc_l2c_only, hdr, hash_lock);
3086 /*
3087 * dropping from L1+L2 cached to L2-only,
3088 * realloc to remove the L1 header.
3089 */
3090 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3091 hdr_l2only_cache);
3092 } else {
3093 arc_change_state(arc_anon, hdr, hash_lock);
3094 arc_hdr_destroy(hdr);
3095 }
3096 return (bytes_evicted);
3097 }
3098
3099 ASSERT(state == arc_mru || state == arc_mfu);
3100 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3101
3102 /* prefetch buffers have a minimum lifespan */
3103 if (HDR_IO_IN_PROGRESS(hdr) ||
3104 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3105 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3106 arc_min_prefetch_lifespan)) {
3107 ARCSTAT_BUMP(arcstat_evict_skip);
3108 return (bytes_evicted);
3109 }
3110
3111 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3112 while (hdr->b_l1hdr.b_buf) {
3113 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3114 if (!mutex_tryenter(&buf->b_evict_lock)) {
3115 ARCSTAT_BUMP(arcstat_mutex_miss);
3116 break;
3117 }
3118 if (buf->b_data != NULL)
3119 bytes_evicted += HDR_GET_LSIZE(hdr);
3120 mutex_exit(&buf->b_evict_lock);
3121 arc_buf_destroy_impl(buf);
3122 }
3123
3124 if (HDR_HAS_L2HDR(hdr)) {
3125 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3126 } else {
3127 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3128 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3129 HDR_GET_LSIZE(hdr));
3130 } else {
3131 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3132 HDR_GET_LSIZE(hdr));
3133 }
3134 }
3135
3136 if (hdr->b_l1hdr.b_bufcnt == 0) {
3137 arc_cksum_free(hdr);
3138
3139 bytes_evicted += arc_hdr_size(hdr);
3140
3141 /*
3142 * If this hdr is being evicted and has a compressed
3143 * buffer then we discard it here before we change states.
3144 * This ensures that the accounting is updated correctly
3145 * in arc_free_data_buf().
3146 */
3147 arc_hdr_free_pdata(hdr);
3148
3149 arc_change_state(evicted_state, hdr, hash_lock);
3150 ASSERT(HDR_IN_HASH_TABLE(hdr));
3151 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3152 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3153 }
3154
3155 return (bytes_evicted);
3156 }
3157
3158 static uint64_t
3159 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3160 uint64_t spa, int64_t bytes)
3161 {
3162 multilist_sublist_t *mls;
3163 uint64_t bytes_evicted = 0;
3164 arc_buf_hdr_t *hdr;
3165 kmutex_t *hash_lock;
3166 int evict_count = 0;
3167
3168 ASSERT3P(marker, !=, NULL);
3169 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3170
3171 mls = multilist_sublist_lock(ml, idx);
3172
3173 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3174 hdr = multilist_sublist_prev(mls, marker)) {
3175 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3176 (evict_count >= zfs_arc_evict_batch_limit))
3177 break;
3178
3179 /*
3180 * To keep our iteration location, move the marker
3181 * forward. Since we're not holding hdr's hash lock, we
3182 * must be very careful and not remove 'hdr' from the
3183 * sublist. Otherwise, other consumers might mistake the
3184 * 'hdr' as not being on a sublist when they call the
3185 * multilist_link_active() function (they all rely on
3186 * the hash lock protecting concurrent insertions and
3187 * removals). multilist_sublist_move_forward() was
3188 * specifically implemented to ensure this is the case
3189 * (only 'marker' will be removed and re-inserted).
3190 */
3191 multilist_sublist_move_forward(mls, marker);
3192
3193 /*
3194 * The only case where the b_spa field should ever be
3195 * zero, is the marker headers inserted by
3196 * arc_evict_state(). It's possible for multiple threads
3197 * to be calling arc_evict_state() concurrently (e.g.
3198 * dsl_pool_close() and zio_inject_fault()), so we must
3199 * skip any markers we see from these other threads.
3200 */
3201 if (hdr->b_spa == 0)
3202 continue;
3203
3204 /* we're only interested in evicting buffers of a certain spa */
3205 if (spa != 0 && hdr->b_spa != spa) {
3206 ARCSTAT_BUMP(arcstat_evict_skip);
3207 continue;
3208 }
3209
3210 hash_lock = HDR_LOCK(hdr);
3211
3212 /*
3213 * We aren't calling this function from any code path
3214 * that would already be holding a hash lock, so we're
3215 * asserting on this assumption to be defensive in case
3216 * this ever changes. Without this check, it would be
3217 * possible to incorrectly increment arcstat_mutex_miss
3218 * below (e.g. if the code changed such that we called
3219 * this function with a hash lock held).
3220 */
3221 ASSERT(!MUTEX_HELD(hash_lock));
3222
3223 if (mutex_tryenter(hash_lock)) {
3224 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3225 mutex_exit(hash_lock);
3226
3227 bytes_evicted += evicted;
3228
3229 /*
3230 * If evicted is zero, arc_evict_hdr() must have
3231 * decided to skip this header, don't increment
3232 * evict_count in this case.
3233 */
3234 if (evicted != 0)
3235 evict_count++;
3236
3237 /*
3238 * If arc_size isn't overflowing, signal any
3239 * threads that might happen to be waiting.
3240 *
3241 * For each header evicted, we wake up a single
3242 * thread. If we used cv_broadcast, we could
3243 * wake up "too many" threads causing arc_size
3244 * to significantly overflow arc_c; since
3245 * arc_get_data_buf() doesn't check for overflow
3246 * when it's woken up (it doesn't because it's
3247 * possible for the ARC to be overflowing while
3248 * full of un-evictable buffers, and the
3249 * function should proceed in this case).
3250 *
3251 * If threads are left sleeping, due to not
3252 * using cv_broadcast, they will be woken up
3253 * just before arc_reclaim_thread() sleeps.
3254 */
3255 mutex_enter(&arc_reclaim_lock);
3256 if (!arc_is_overflowing())
3257 cv_signal(&arc_reclaim_waiters_cv);
3258 mutex_exit(&arc_reclaim_lock);
3259 } else {
3260 ARCSTAT_BUMP(arcstat_mutex_miss);
3261 }
3262 }
3263
3264 multilist_sublist_unlock(mls);
3265
3266 return (bytes_evicted);
3267 }
3268
3269 /*
3270 * Evict buffers from the given arc state, until we've removed the
3271 * specified number of bytes. Move the removed buffers to the
3272 * appropriate evict state.
3273 *
3274 * This function makes a "best effort". It skips over any buffers
3275 * it can't get a hash_lock on, and so, may not catch all candidates.
3276 * It may also return without evicting as much space as requested.
3277 *
3278 * If bytes is specified using the special value ARC_EVICT_ALL, this
3279 * will evict all available (i.e. unlocked and evictable) buffers from
3280 * the given arc state; which is used by arc_flush().
3281 */
3282 static uint64_t
3283 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3284 arc_buf_contents_t type)
3285 {
3286 uint64_t total_evicted = 0;
3287 multilist_t *ml = &state->arcs_list[type];
3288 int num_sublists;
3289 arc_buf_hdr_t **markers;
3290 int i;
3291
3292 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3293
3294 num_sublists = multilist_get_num_sublists(ml);
3295
3296 /*
3297 * If we've tried to evict from each sublist, made some
3298 * progress, but still have not hit the target number of bytes
3299 * to evict, we want to keep trying. The markers allow us to
3300 * pick up where we left off for each individual sublist, rather
3301 * than starting from the tail each time.
3302 */
3303 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3304 for (i = 0; i < num_sublists; i++) {
3305 multilist_sublist_t *mls;
3306
3307 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3308
3309 /*
3310 * A b_spa of 0 is used to indicate that this header is
3311 * a marker. This fact is used in arc_adjust_type() and
3312 * arc_evict_state_impl().
3313 */
3314 markers[i]->b_spa = 0;
3315
3316 mls = multilist_sublist_lock(ml, i);
3317 multilist_sublist_insert_tail(mls, markers[i]);
3318 multilist_sublist_unlock(mls);
3319 }
3320
3321 /*
3322 * While we haven't hit our target number of bytes to evict, or
3323 * we're evicting all available buffers.
3324 */
3325 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3326 int sublist_idx = multilist_get_random_index(ml);
3327 uint64_t scan_evicted = 0;
3328
3329 /*
3330 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
3331 * Request that 10% of the LRUs be scanned by the superblock
3332 * shrinker.
3333 */
3334 if (type == ARC_BUFC_DATA && arc_dnode_size > arc_dnode_limit)
3335 arc_prune_async((arc_dnode_size - arc_dnode_limit) /
3336 sizeof (dnode_t) / zfs_arc_dnode_reduce_percent);
3337
3338 /*
3339 * Start eviction using a randomly selected sublist,
3340 * this is to try and evenly balance eviction across all
3341 * sublists. Always starting at the same sublist
3342 * (e.g. index 0) would cause evictions to favor certain
3343 * sublists over others.
3344 */
3345 for (i = 0; i < num_sublists; i++) {
3346 uint64_t bytes_remaining;
3347 uint64_t bytes_evicted;
3348
3349 if (bytes == ARC_EVICT_ALL)
3350 bytes_remaining = ARC_EVICT_ALL;
3351 else if (total_evicted < bytes)
3352 bytes_remaining = bytes - total_evicted;
3353 else
3354 break;
3355
3356 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3357 markers[sublist_idx], spa, bytes_remaining);
3358
3359 scan_evicted += bytes_evicted;
3360 total_evicted += bytes_evicted;
3361
3362 /* we've reached the end, wrap to the beginning */
3363 if (++sublist_idx >= num_sublists)
3364 sublist_idx = 0;
3365 }
3366
3367 /*
3368 * If we didn't evict anything during this scan, we have
3369 * no reason to believe we'll evict more during another
3370 * scan, so break the loop.
3371 */
3372 if (scan_evicted == 0) {
3373 /* This isn't possible, let's make that obvious */
3374 ASSERT3S(bytes, !=, 0);
3375
3376 /*
3377 * When bytes is ARC_EVICT_ALL, the only way to
3378 * break the loop is when scan_evicted is zero.
3379 * In that case, we actually have evicted enough,
3380 * so we don't want to increment the kstat.
3381 */
3382 if (bytes != ARC_EVICT_ALL) {
3383 ASSERT3S(total_evicted, <, bytes);
3384 ARCSTAT_BUMP(arcstat_evict_not_enough);
3385 }
3386
3387 break;
3388 }
3389 }
3390
3391 for (i = 0; i < num_sublists; i++) {
3392 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3393 multilist_sublist_remove(mls, markers[i]);
3394 multilist_sublist_unlock(mls);
3395
3396 kmem_cache_free(hdr_full_cache, markers[i]);
3397 }
3398 kmem_free(markers, sizeof (*markers) * num_sublists);
3399
3400 return (total_evicted);
3401 }
3402
3403 /*
3404 * Flush all "evictable" data of the given type from the arc state
3405 * specified. This will not evict any "active" buffers (i.e. referenced).
3406 *
3407 * When 'retry' is set to B_FALSE, the function will make a single pass
3408 * over the state and evict any buffers that it can. Since it doesn't
3409 * continually retry the eviction, it might end up leaving some buffers
3410 * in the ARC due to lock misses.
3411 *
3412 * When 'retry' is set to B_TRUE, the function will continually retry the
3413 * eviction until *all* evictable buffers have been removed from the
3414 * state. As a result, if concurrent insertions into the state are
3415 * allowed (e.g. if the ARC isn't shutting down), this function might
3416 * wind up in an infinite loop, continually trying to evict buffers.
3417 */
3418 static uint64_t
3419 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3420 boolean_t retry)
3421 {
3422 uint64_t evicted = 0;
3423
3424 while (refcount_count(&state->arcs_esize[type]) != 0) {
3425 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3426
3427 if (!retry)
3428 break;
3429 }
3430
3431 return (evicted);
3432 }
3433
3434 /*
3435 * Helper function for arc_prune_async() it is responsible for safely
3436 * handling the execution of a registered arc_prune_func_t.
3437 */
3438 static void
3439 arc_prune_task(void *ptr)
3440 {
3441 arc_prune_t *ap = (arc_prune_t *)ptr;
3442 arc_prune_func_t *func = ap->p_pfunc;
3443
3444 if (func != NULL)
3445 func(ap->p_adjust, ap->p_private);
3446
3447 refcount_remove(&ap->p_refcnt, func);
3448 }
3449
3450 /*
3451 * Notify registered consumers they must drop holds on a portion of the ARC
3452 * buffered they reference. This provides a mechanism to ensure the ARC can
3453 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
3454 * is analogous to dnlc_reduce_cache() but more generic.
3455 *
3456 * This operation is performed asynchronously so it may be safely called
3457 * in the context of the arc_reclaim_thread(). A reference is taken here
3458 * for each registered arc_prune_t and the arc_prune_task() is responsible
3459 * for releasing it once the registered arc_prune_func_t has completed.
3460 */
3461 static void
3462 arc_prune_async(int64_t adjust)
3463 {
3464 arc_prune_t *ap;
3465
3466 mutex_enter(&arc_prune_mtx);
3467 for (ap = list_head(&arc_prune_list); ap != NULL;
3468 ap = list_next(&arc_prune_list, ap)) {
3469
3470 if (refcount_count(&ap->p_refcnt) >= 2)
3471 continue;
3472
3473 refcount_add(&ap->p_refcnt, ap->p_pfunc);
3474 ap->p_adjust = adjust;
3475 taskq_dispatch(arc_prune_taskq, arc_prune_task, ap, TQ_SLEEP);
3476 ARCSTAT_BUMP(arcstat_prune);
3477 }
3478 mutex_exit(&arc_prune_mtx);
3479 }
3480
3481 /*
3482 * Evict the specified number of bytes from the state specified,
3483 * restricting eviction to the spa and type given. This function
3484 * prevents us from trying to evict more from a state's list than
3485 * is "evictable", and to skip evicting altogether when passed a
3486 * negative value for "bytes". In contrast, arc_evict_state() will
3487 * evict everything it can, when passed a negative value for "bytes".
3488 */
3489 static uint64_t
3490 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3491 arc_buf_contents_t type)
3492 {
3493 int64_t delta;
3494
3495 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3496 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3497 return (arc_evict_state(state, spa, delta, type));
3498 }
3499
3500 return (0);
3501 }
3502
3503 /*
3504 * The goal of this function is to evict enough meta data buffers from the
3505 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
3506 * more complicated than it appears because it is common for data buffers
3507 * to have holds on meta data buffers. In addition, dnode meta data buffers
3508 * will be held by the dnodes in the block preventing them from being freed.
3509 * This means we can't simply traverse the ARC and expect to always find
3510 * enough unheld meta data buffer to release.
3511 *
3512 * Therefore, this function has been updated to make alternating passes
3513 * over the ARC releasing data buffers and then newly unheld meta data
3514 * buffers. This ensures forward progress is maintained and arc_meta_used
3515 * will decrease. Normally this is sufficient, but if required the ARC
3516 * will call the registered prune callbacks causing dentry and inodes to
3517 * be dropped from the VFS cache. This will make dnode meta data buffers
3518 * available for reclaim.
3519 */
3520 static uint64_t
3521 arc_adjust_meta_balanced(void)
3522 {
3523 int64_t delta, prune = 0, adjustmnt;
3524 uint64_t total_evicted = 0;
3525 arc_buf_contents_t type = ARC_BUFC_DATA;
3526 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
3527
3528 restart:
3529 /*
3530 * This slightly differs than the way we evict from the mru in
3531 * arc_adjust because we don't have a "target" value (i.e. no
3532 * "meta" arc_p). As a result, I think we can completely
3533 * cannibalize the metadata in the MRU before we evict the
3534 * metadata from the MFU. I think we probably need to implement a
3535 * "metadata arc_p" value to do this properly.
3536 */
3537 adjustmnt = arc_meta_used - arc_meta_limit;
3538
3539 if (adjustmnt > 0 && refcount_count(&arc_mru->arcs_esize[type]) > 0) {
3540 delta = MIN(refcount_count(&arc_mru->arcs_esize[type]),
3541 adjustmnt);
3542 total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
3543 adjustmnt -= delta;
3544 }
3545
3546 /*
3547 * We can't afford to recalculate adjustmnt here. If we do,
3548 * new metadata buffers can sneak into the MRU or ANON lists,
3549 * thus penalize the MFU metadata. Although the fudge factor is
3550 * small, it has been empirically shown to be significant for
3551 * certain workloads (e.g. creating many empty directories). As
3552 * such, we use the original calculation for adjustmnt, and
3553 * simply decrement the amount of data evicted from the MRU.
3554 */
3555
3556 if (adjustmnt > 0 && refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
3557 delta = MIN(refcount_count(&arc_mfu->arcs_esize[type]),
3558 adjustmnt);
3559 total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
3560 }
3561
3562 adjustmnt = arc_meta_used - arc_meta_limit;
3563
3564 if (adjustmnt > 0 &&
3565 refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
3566 delta = MIN(adjustmnt,
3567 refcount_count(&arc_mru_ghost->arcs_esize[type]));
3568 total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
3569 adjustmnt -= delta;
3570 }
3571
3572 if (adjustmnt > 0 &&
3573 refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
3574 delta = MIN(adjustmnt,
3575 refcount_count(&arc_mfu_ghost->arcs_esize[type]));
3576 total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
3577 }
3578
3579 /*
3580 * If after attempting to make the requested adjustment to the ARC
3581 * the meta limit is still being exceeded then request that the
3582 * higher layers drop some cached objects which have holds on ARC
3583 * meta buffers. Requests to the upper layers will be made with
3584 * increasingly large scan sizes until the ARC is below the limit.
3585 */
3586 if (arc_meta_used > arc_meta_limit) {
3587 if (type == ARC_BUFC_DATA) {
3588 type = ARC_BUFC_METADATA;
3589 } else {
3590 type = ARC_BUFC_DATA;
3591
3592 if (zfs_arc_meta_prune) {
3593 prune += zfs_arc_meta_prune;
3594 arc_prune_async(prune);
3595 }
3596 }
3597
3598 if (restarts > 0) {
3599 restarts--;
3600 goto restart;
3601 }
3602 }
3603 return (total_evicted);
3604 }
3605
3606 /*
3607 * Evict metadata buffers from the cache, such that arc_meta_used is
3608 * capped by the arc_meta_limit tunable.
3609 */
3610 static uint64_t
3611 arc_adjust_meta_only(void)
3612 {
3613 uint64_t total_evicted = 0;
3614 int64_t target;
3615
3616 /*
3617 * If we're over the meta limit, we want to evict enough
3618 * metadata to get back under the meta limit. We don't want to
3619 * evict so much that we drop the MRU below arc_p, though. If
3620 * we're over the meta limit more than we're over arc_p, we
3621 * evict some from the MRU here, and some from the MFU below.
3622 */
3623 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3624 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3625 refcount_count(&arc_mru->arcs_size) - arc_p));
3626
3627 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3628
3629 /*
3630 * Similar to the above, we want to evict enough bytes to get us
3631 * below the meta limit, but not so much as to drop us below the
3632 * space allotted to the MFU (which is defined as arc_c - arc_p).
3633 */
3634 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3635 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3636
3637 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3638
3639 return (total_evicted);
3640 }
3641
3642 static uint64_t
3643 arc_adjust_meta(void)
3644 {
3645 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
3646 return (arc_adjust_meta_only());
3647 else
3648 return (arc_adjust_meta_balanced());
3649 }
3650
3651 /*
3652 * Return the type of the oldest buffer in the given arc state
3653 *
3654 * This function will select a random sublist of type ARC_BUFC_DATA and
3655 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3656 * is compared, and the type which contains the "older" buffer will be
3657 * returned.
3658 */
3659 static arc_buf_contents_t
3660 arc_adjust_type(arc_state_t *state)
3661 {
3662 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
3663 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
3664 int data_idx = multilist_get_random_index(data_ml);
3665 int meta_idx = multilist_get_random_index(meta_ml);
3666 multilist_sublist_t *data_mls;
3667 multilist_sublist_t *meta_mls;
3668 arc_buf_contents_t type;
3669 arc_buf_hdr_t *data_hdr;
3670 arc_buf_hdr_t *meta_hdr;
3671
3672 /*
3673 * We keep the sublist lock until we're finished, to prevent
3674 * the headers from being destroyed via arc_evict_state().
3675 */
3676 data_mls = multilist_sublist_lock(data_ml, data_idx);
3677 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3678
3679 /*
3680 * These two loops are to ensure we skip any markers that
3681 * might be at the tail of the lists due to arc_evict_state().
3682 */
3683
3684 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3685 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3686 if (data_hdr->b_spa != 0)
3687 break;
3688 }
3689
3690 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3691 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3692 if (meta_hdr->b_spa != 0)
3693 break;
3694 }
3695
3696 if (data_hdr == NULL && meta_hdr == NULL) {
3697 type = ARC_BUFC_DATA;
3698 } else if (data_hdr == NULL) {
3699 ASSERT3P(meta_hdr, !=, NULL);
3700 type = ARC_BUFC_METADATA;
3701 } else if (meta_hdr == NULL) {
3702 ASSERT3P(data_hdr, !=, NULL);
3703 type = ARC_BUFC_DATA;
3704 } else {
3705 ASSERT3P(data_hdr, !=, NULL);
3706 ASSERT3P(meta_hdr, !=, NULL);
3707
3708 /* The headers can't be on the sublist without an L1 header */
3709 ASSERT(HDR_HAS_L1HDR(data_hdr));
3710 ASSERT(HDR_HAS_L1HDR(meta_hdr));
3711
3712 if (data_hdr->b_l1hdr.b_arc_access <
3713 meta_hdr->b_l1hdr.b_arc_access) {
3714 type = ARC_BUFC_DATA;
3715 } else {
3716 type = ARC_BUFC_METADATA;
3717 }
3718 }
3719
3720 multilist_sublist_unlock(meta_mls);
3721 multilist_sublist_unlock(data_mls);
3722
3723 return (type);
3724 }
3725
3726 /*
3727 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3728 */
3729 static uint64_t
3730 arc_adjust(void)
3731 {
3732 uint64_t total_evicted = 0;
3733 uint64_t bytes;
3734 int64_t target;
3735
3736 /*
3737 * If we're over arc_meta_limit, we want to correct that before
3738 * potentially evicting data buffers below.
3739 */
3740 total_evicted += arc_adjust_meta();
3741
3742 /*
3743 * Adjust MRU size
3744 *
3745 * If we're over the target cache size, we want to evict enough
3746 * from the list to get back to our target size. We don't want
3747 * to evict too much from the MRU, such that it drops below
3748 * arc_p. So, if we're over our target cache size more than
3749 * the MRU is over arc_p, we'll evict enough to get back to
3750 * arc_p here, and then evict more from the MFU below.
3751 */
3752 target = MIN((int64_t)(arc_size - arc_c),
3753 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3754 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3755
3756 /*
3757 * If we're below arc_meta_min, always prefer to evict data.
3758 * Otherwise, try to satisfy the requested number of bytes to
3759 * evict from the type which contains older buffers; in an
3760 * effort to keep newer buffers in the cache regardless of their
3761 * type. If we cannot satisfy the number of bytes from this
3762 * type, spill over into the next type.
3763 */
3764 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3765 arc_meta_used > arc_meta_min) {
3766 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3767 total_evicted += bytes;
3768
3769 /*
3770 * If we couldn't evict our target number of bytes from
3771 * metadata, we try to get the rest from data.
3772 */
3773 target -= bytes;
3774
3775 total_evicted +=
3776 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3777 } else {
3778 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3779 total_evicted += bytes;
3780
3781 /*
3782 * If we couldn't evict our target number of bytes from
3783 * data, we try to get the rest from metadata.
3784 */
3785 target -= bytes;
3786
3787 total_evicted +=
3788 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3789 }
3790
3791 /*
3792 * Adjust MFU size
3793 *
3794 * Now that we've tried to evict enough from the MRU to get its
3795 * size back to arc_p, if we're still above the target cache
3796 * size, we evict the rest from the MFU.
3797 */
3798 target = arc_size - arc_c;
3799
3800 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3801 arc_meta_used > arc_meta_min) {
3802 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3803 total_evicted += bytes;
3804
3805 /*
3806 * If we couldn't evict our target number of bytes from
3807 * metadata, we try to get the rest from data.
3808 */
3809 target -= bytes;
3810
3811 total_evicted +=
3812 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3813 } else {
3814 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3815 total_evicted += bytes;
3816
3817 /*
3818 * If we couldn't evict our target number of bytes from
3819 * data, we try to get the rest from data.
3820 */
3821 target -= bytes;
3822
3823 total_evicted +=
3824 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3825 }
3826
3827 /*
3828 * Adjust ghost lists
3829 *
3830 * In addition to the above, the ARC also defines target values
3831 * for the ghost lists. The sum of the mru list and mru ghost
3832 * list should never exceed the target size of the cache, and
3833 * the sum of the mru list, mfu list, mru ghost list, and mfu
3834 * ghost list should never exceed twice the target size of the
3835 * cache. The following logic enforces these limits on the ghost
3836 * caches, and evicts from them as needed.
3837 */
3838 target = refcount_count(&arc_mru->arcs_size) +
3839 refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3840
3841 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3842 total_evicted += bytes;
3843
3844 target -= bytes;
3845
3846 total_evicted +=
3847 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3848
3849 /*
3850 * We assume the sum of the mru list and mfu list is less than
3851 * or equal to arc_c (we enforced this above), which means we
3852 * can use the simpler of the two equations below:
3853 *
3854 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3855 * mru ghost + mfu ghost <= arc_c
3856 */
3857 target = refcount_count(&arc_mru_ghost->arcs_size) +
3858 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3859
3860 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3861 total_evicted += bytes;
3862
3863 target -= bytes;
3864
3865 total_evicted +=
3866 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3867
3868 return (total_evicted);
3869 }
3870
3871 void
3872 arc_flush(spa_t *spa, boolean_t retry)
3873 {
3874 uint64_t guid = 0;
3875
3876 /*
3877 * If retry is B_TRUE, a spa must not be specified since we have
3878 * no good way to determine if all of a spa's buffers have been
3879 * evicted from an arc state.
3880 */
3881 ASSERT(!retry || spa == 0);
3882
3883 if (spa != NULL)
3884 guid = spa_load_guid(spa);
3885
3886 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3887 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3888
3889 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3890 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3891
3892 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3893 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3894
3895 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3896 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3897 }
3898
3899 void
3900 arc_shrink(int64_t to_free)
3901 {
3902 uint64_t c = arc_c;
3903
3904 if (c > to_free && c - to_free > arc_c_min) {
3905 arc_c = c - to_free;
3906 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3907 if (arc_c > arc_size)
3908 arc_c = MAX(arc_size, arc_c_min);
3909 if (arc_p > arc_c)
3910 arc_p = (arc_c >> 1);
3911 ASSERT(arc_c >= arc_c_min);
3912 ASSERT((int64_t)arc_p >= 0);
3913 } else {
3914 arc_c = arc_c_min;
3915 }
3916
3917 if (arc_size > arc_c)
3918 (void) arc_adjust();
3919 }
3920
3921 typedef enum free_memory_reason_t {
3922 FMR_UNKNOWN,
3923 FMR_NEEDFREE,
3924 FMR_LOTSFREE,
3925 FMR_SWAPFS_MINFREE,
3926 FMR_PAGES_PP_MAXIMUM,
3927 FMR_HEAP_ARENA,
3928 FMR_ZIO_ARENA,
3929 } free_memory_reason_t;
3930
3931 int64_t last_free_memory;
3932 free_memory_reason_t last_free_reason;
3933
3934 #ifdef _KERNEL
3935 /*
3936 * Additional reserve of pages for pp_reserve.
3937 */
3938 int64_t arc_pages_pp_reserve = 64;
3939
3940 /*
3941 * Additional reserve of pages for swapfs.
3942 */
3943 int64_t arc_swapfs_reserve = 64;
3944 #endif /* _KERNEL */
3945
3946 /*
3947 * Return the amount of memory that can be consumed before reclaim will be
3948 * needed. Positive if there is sufficient free memory, negative indicates
3949 * the amount of memory that needs to be freed up.
3950 */
3951 static int64_t
3952 arc_available_memory(void)
3953 {
3954 int64_t lowest = INT64_MAX;
3955 free_memory_reason_t r = FMR_UNKNOWN;
3956 #ifdef _KERNEL
3957 int64_t n;
3958 #ifdef __linux__
3959 pgcnt_t needfree = btop(arc_need_free);
3960 pgcnt_t lotsfree = btop(arc_sys_free);
3961 pgcnt_t desfree = 0;
3962 #endif
3963
3964 if (needfree > 0) {
3965 n = PAGESIZE * (-needfree);
3966 if (n < lowest) {
3967 lowest = n;
3968 r = FMR_NEEDFREE;
3969 }
3970 }
3971
3972 /*
3973 * check that we're out of range of the pageout scanner. It starts to
3974 * schedule paging if freemem is less than lotsfree and needfree.
3975 * lotsfree is the high-water mark for pageout, and needfree is the
3976 * number of needed free pages. We add extra pages here to make sure
3977 * the scanner doesn't start up while we're freeing memory.
3978 */
3979 n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3980 if (n < lowest) {
3981 lowest = n;
3982 r = FMR_LOTSFREE;
3983 }
3984
3985 #ifndef __linux__
3986 /*
3987 * check to make sure that swapfs has enough space so that anon
3988 * reservations can still succeed. anon_resvmem() checks that the
3989 * availrmem is greater than swapfs_minfree, and the number of reserved
3990 * swap pages. We also add a bit of extra here just to prevent
3991 * circumstances from getting really dire.
3992 */
3993 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3994 desfree - arc_swapfs_reserve);
3995 if (n < lowest) {
3996 lowest = n;
3997 r = FMR_SWAPFS_MINFREE;
3998 }
3999
4000
4001 /*
4002 * Check that we have enough availrmem that memory locking (e.g., via
4003 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
4004 * stores the number of pages that cannot be locked; when availrmem
4005 * drops below pages_pp_maximum, page locking mechanisms such as
4006 * page_pp_lock() will fail.)
4007 */
4008 n = PAGESIZE * (availrmem - pages_pp_maximum -
4009 arc_pages_pp_reserve);
4010 if (n < lowest) {
4011 lowest = n;
4012 r = FMR_PAGES_PP_MAXIMUM;
4013 }
4014 #endif
4015
4016 #if defined(__i386)
4017 /*
4018 * If we're on an i386 platform, it's possible that we'll exhaust the
4019 * kernel heap space before we ever run out of available physical
4020 * memory. Most checks of the size of the heap_area compare against
4021 * tune.t_minarmem, which is the minimum available real memory that we
4022 * can have in the system. However, this is generally fixed at 25 pages
4023 * which is so low that it's useless. In this comparison, we seek to
4024 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4025 * heap is allocated. (Or, in the calculation, if less than 1/4th is
4026 * free)
4027 */
4028 n = vmem_size(heap_arena, VMEM_FREE) -
4029 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4030 if (n < lowest) {
4031 lowest = n;
4032 r = FMR_HEAP_ARENA;
4033 }
4034 #endif
4035
4036 /*
4037 * If zio data pages are being allocated out of a separate heap segment,
4038 * then enforce that the size of available vmem for this arena remains
4039 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4040 *
4041 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4042 * memory (in the zio_arena) free, which can avoid memory
4043 * fragmentation issues.
4044 */
4045 if (zio_arena != NULL) {
4046 n = vmem_size(zio_arena, VMEM_FREE) - (vmem_size(zio_arena,
4047 VMEM_ALLOC) >> arc_zio_arena_free_shift);
4048 if (n < lowest) {
4049 lowest = n;
4050 r = FMR_ZIO_ARENA;
4051 }
4052 }
4053 #else /* _KERNEL */
4054 /* Every 100 calls, free a small amount */
4055 if (spa_get_random(100) == 0)
4056 lowest = -1024;
4057 #endif /* _KERNEL */
4058
4059 last_free_memory = lowest;
4060 last_free_reason = r;
4061
4062 return (lowest);
4063 }
4064
4065 /*
4066 * Determine if the system is under memory pressure and is asking
4067 * to reclaim memory. A return value of B_TRUE indicates that the system
4068 * is under memory pressure and that the arc should adjust accordingly.
4069 */
4070 static boolean_t
4071 arc_reclaim_needed(void)
4072 {
4073 return (arc_available_memory() < 0);
4074 }
4075
4076 static void
4077 arc_kmem_reap_now(void)
4078 {
4079 size_t i;
4080 kmem_cache_t *prev_cache = NULL;
4081 kmem_cache_t *prev_data_cache = NULL;
4082 extern kmem_cache_t *zio_buf_cache[];
4083 extern kmem_cache_t *zio_data_buf_cache[];
4084 extern kmem_cache_t *range_seg_cache;
4085
4086 if ((arc_meta_used >= arc_meta_limit) && zfs_arc_meta_prune) {
4087 /*
4088 * We are exceeding our meta-data cache limit.
4089 * Prune some entries to release holds on meta-data.
4090 */
4091 arc_prune_async(zfs_arc_meta_prune);
4092 }
4093
4094 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4095 #ifdef _ILP32
4096 /* reach upper limit of cache size on 32-bit */
4097 if (zio_buf_cache[i] == NULL)
4098 break;
4099 #endif
4100 if (zio_buf_cache[i] != prev_cache) {
4101 prev_cache = zio_buf_cache[i];
4102 kmem_cache_reap_now(zio_buf_cache[i]);
4103 }
4104 if (zio_data_buf_cache[i] != prev_data_cache) {
4105 prev_data_cache = zio_data_buf_cache[i];
4106 kmem_cache_reap_now(zio_data_buf_cache[i]);
4107 }
4108 }
4109 kmem_cache_reap_now(buf_cache);
4110 kmem_cache_reap_now(hdr_full_cache);
4111 kmem_cache_reap_now(hdr_l2only_cache);
4112 kmem_cache_reap_now(range_seg_cache);
4113
4114 if (zio_arena != NULL) {
4115 /*
4116 * Ask the vmem arena to reclaim unused memory from its
4117 * quantum caches.
4118 */
4119 vmem_qcache_reap(zio_arena);
4120 }
4121 }
4122
4123 /*
4124 * Threads can block in arc_get_data_buf() waiting for this thread to evict
4125 * enough data and signal them to proceed. When this happens, the threads in
4126 * arc_get_data_buf() are sleeping while holding the hash lock for their
4127 * particular arc header. Thus, we must be careful to never sleep on a
4128 * hash lock in this thread. This is to prevent the following deadlock:
4129 *
4130 * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
4131 * waiting for the reclaim thread to signal it.
4132 *
4133 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4134 * fails, and goes to sleep forever.
4135 *
4136 * This possible deadlock is avoided by always acquiring a hash lock
4137 * using mutex_tryenter() from arc_reclaim_thread().
4138 */
4139 static void
4140 arc_reclaim_thread(void)
4141 {
4142 fstrans_cookie_t cookie = spl_fstrans_mark();
4143 hrtime_t growtime = 0;
4144 callb_cpr_t cpr;
4145
4146 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4147
4148 mutex_enter(&arc_reclaim_lock);
4149 while (!arc_reclaim_thread_exit) {
4150 int64_t to_free;
4151 int64_t free_memory = arc_available_memory();
4152 uint64_t evicted = 0;
4153
4154 arc_tuning_update();
4155
4156 /*
4157 * This is necessary in order for the mdb ::arc dcmd to
4158 * show up to date information. Since the ::arc command
4159 * does not call the kstat's update function, without
4160 * this call, the command may show stale stats for the
4161 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4162 * with this change, the data might be up to 1 second
4163 * out of date; but that should suffice. The arc_state_t
4164 * structures can be queried directly if more accurate
4165 * information is needed.
4166 */
4167 #ifndef __linux__
4168 if (arc_ksp != NULL)
4169 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4170 #endif
4171 mutex_exit(&arc_reclaim_lock);
4172
4173 if (free_memory < 0) {
4174
4175 arc_no_grow = B_TRUE;
4176 arc_warm = B_TRUE;
4177
4178 /*
4179 * Wait at least zfs_grow_retry (default 5) seconds
4180 * before considering growing.
4181 */
4182 growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4183
4184 arc_kmem_reap_now();
4185
4186 /*
4187 * If we are still low on memory, shrink the ARC
4188 * so that we have arc_shrink_min free space.
4189 */
4190 free_memory = arc_available_memory();
4191
4192 to_free = (arc_c >> arc_shrink_shift) - free_memory;
4193 if (to_free > 0) {
4194 #ifdef _KERNEL
4195 to_free = MAX(to_free, arc_need_free);
4196 #endif
4197 arc_shrink(to_free);
4198 }
4199 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4200 arc_no_grow = B_TRUE;
4201 } else if (gethrtime() >= growtime) {
4202 arc_no_grow = B_FALSE;
4203 }
4204
4205 evicted = arc_adjust();
4206
4207 mutex_enter(&arc_reclaim_lock);
4208
4209 /*
4210 * If evicted is zero, we couldn't evict anything via
4211 * arc_adjust(). This could be due to hash lock
4212 * collisions, but more likely due to the majority of
4213 * arc buffers being unevictable. Therefore, even if
4214 * arc_size is above arc_c, another pass is unlikely to
4215 * be helpful and could potentially cause us to enter an
4216 * infinite loop.
4217 */
4218 if (arc_size <= arc_c || evicted == 0) {
4219 /*
4220 * We're either no longer overflowing, or we
4221 * can't evict anything more, so we should wake
4222 * up any threads before we go to sleep and clear
4223 * arc_need_free since nothing more can be done.
4224 */
4225 cv_broadcast(&arc_reclaim_waiters_cv);
4226 arc_need_free = 0;
4227
4228 /*
4229 * Block until signaled, or after one second (we
4230 * might need to perform arc_kmem_reap_now()
4231 * even if we aren't being signalled)
4232 */
4233 CALLB_CPR_SAFE_BEGIN(&cpr);
4234 (void) cv_timedwait_sig_hires(&arc_reclaim_thread_cv,
4235 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
4236 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4237 }
4238 }
4239
4240 arc_reclaim_thread_exit = B_FALSE;
4241 cv_broadcast(&arc_reclaim_thread_cv);
4242 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
4243 spl_fstrans_unmark(cookie);
4244 thread_exit();
4245 }
4246
4247 #ifdef _KERNEL
4248 /*
4249 * Determine the amount of memory eligible for eviction contained in the
4250 * ARC. All clean data reported by the ghost lists can always be safely
4251 * evicted. Due to arc_c_min, the same does not hold for all clean data
4252 * contained by the regular mru and mfu lists.
4253 *
4254 * In the case of the regular mru and mfu lists, we need to report as
4255 * much clean data as possible, such that evicting that same reported
4256 * data will not bring arc_size below arc_c_min. Thus, in certain
4257 * circumstances, the total amount of clean data in the mru and mfu
4258 * lists might not actually be evictable.
4259 *
4260 * The following two distinct cases are accounted for:
4261 *
4262 * 1. The sum of the amount of dirty data contained by both the mru and
4263 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4264 * is greater than or equal to arc_c_min.
4265 * (i.e. amount of dirty data >= arc_c_min)
4266 *
4267 * This is the easy case; all clean data contained by the mru and mfu
4268 * lists is evictable. Evicting all clean data can only drop arc_size
4269 * to the amount of dirty data, which is greater than arc_c_min.
4270 *
4271 * 2. The sum of the amount of dirty data contained by both the mru and
4272 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4273 * is less than arc_c_min.
4274 * (i.e. arc_c_min > amount of dirty data)
4275 *
4276 * 2.1. arc_size is greater than or equal arc_c_min.
4277 * (i.e. arc_size >= arc_c_min > amount of dirty data)
4278 *
4279 * In this case, not all clean data from the regular mru and mfu
4280 * lists is actually evictable; we must leave enough clean data
4281 * to keep arc_size above arc_c_min. Thus, the maximum amount of
4282 * evictable data from the two lists combined, is exactly the
4283 * difference between arc_size and arc_c_min.
4284 *
4285 * 2.2. arc_size is less than arc_c_min
4286 * (i.e. arc_c_min > arc_size > amount of dirty data)
4287 *
4288 * In this case, none of the data contained in the mru and mfu
4289 * lists is evictable, even if it's clean. Since arc_size is
4290 * already below arc_c_min, evicting any more would only
4291 * increase this negative difference.
4292 */
4293 static uint64_t
4294 arc_evictable_memory(void) {
4295 uint64_t arc_clean =
4296 refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
4297 refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
4298 refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
4299 refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
4300 uint64_t ghost_clean =
4301 refcount_count(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]) +
4302 refcount_count(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]) +
4303 refcount_count(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]) +
4304 refcount_count(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
4305 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
4306
4307 if (arc_dirty >= arc_c_min)
4308 return (ghost_clean + arc_clean);
4309
4310 return (ghost_clean + MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
4311 }
4312
4313 /*
4314 * If sc->nr_to_scan is zero, the caller is requesting a query of the
4315 * number of objects which can potentially be freed. If it is nonzero,
4316 * the request is to free that many objects.
4317 *
4318 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
4319 * in struct shrinker and also require the shrinker to return the number
4320 * of objects freed.
4321 *
4322 * Older kernels require the shrinker to return the number of freeable
4323 * objects following the freeing of nr_to_free.
4324 */
4325 static spl_shrinker_t
4326 __arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
4327 {
4328 int64_t pages;
4329
4330 /* The arc is considered warm once reclaim has occurred */
4331 if (unlikely(arc_warm == B_FALSE))
4332 arc_warm = B_TRUE;
4333
4334 /* Return the potential number of reclaimable pages */
4335 pages = btop((int64_t)arc_evictable_memory());
4336 if (sc->nr_to_scan == 0)
4337 return (pages);
4338
4339 /* Not allowed to perform filesystem reclaim */
4340 if (!(sc->gfp_mask & __GFP_FS))
4341 return (SHRINK_STOP);
4342
4343 /* Reclaim in progress */
4344 if (mutex_tryenter(&arc_reclaim_lock) == 0)
4345 return (SHRINK_STOP);
4346
4347 mutex_exit(&arc_reclaim_lock);
4348
4349 /*
4350 * Evict the requested number of pages by shrinking arc_c the
4351 * requested amount. If there is nothing left to evict just
4352 * reap whatever we can from the various arc slabs.
4353 */
4354 if (pages > 0) {
4355 arc_shrink(ptob(sc->nr_to_scan));
4356 arc_kmem_reap_now();
4357 #ifdef HAVE_SPLIT_SHRINKER_CALLBACK
4358 pages = MAX(pages - btop(arc_evictable_memory()), 0);
4359 #else
4360 pages = btop(arc_evictable_memory());
4361 #endif
4362 } else {
4363 arc_kmem_reap_now();
4364 pages = SHRINK_STOP;
4365 }
4366
4367 /*
4368 * We've reaped what we can, wake up threads.
4369 */
4370 cv_broadcast(&arc_reclaim_waiters_cv);
4371
4372 /*
4373 * When direct reclaim is observed it usually indicates a rapid
4374 * increase in memory pressure. This occurs because the kswapd
4375 * threads were unable to asynchronously keep enough free memory
4376 * available. In this case set arc_no_grow to briefly pause arc
4377 * growth to avoid compounding the memory pressure.
4378 */
4379 if (current_is_kswapd()) {
4380 ARCSTAT_BUMP(arcstat_memory_indirect_count);
4381 } else {
4382 arc_no_grow = B_TRUE;
4383 arc_need_free = ptob(sc->nr_to_scan);
4384 ARCSTAT_BUMP(arcstat_memory_direct_count);
4385 }
4386
4387 return (pages);
4388 }
4389 SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
4390
4391 SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
4392 #endif /* _KERNEL */
4393
4394 /*
4395 * Adapt arc info given the number of bytes we are trying to add and
4396 * the state that we are comming from. This function is only called
4397 * when we are adding new content to the cache.
4398 */
4399 static void
4400 arc_adapt(int bytes, arc_state_t *state)
4401 {
4402 int mult;
4403 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4404 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4405 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4406
4407 if (state == arc_l2c_only)
4408 return;
4409
4410 ASSERT(bytes > 0);
4411 /*
4412 * Adapt the target size of the MRU list:
4413 * - if we just hit in the MRU ghost list, then increase
4414 * the target size of the MRU list.
4415 * - if we just hit in the MFU ghost list, then increase
4416 * the target size of the MFU list by decreasing the
4417 * target size of the MRU list.
4418 */
4419 if (state == arc_mru_ghost) {
4420 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4421 if (!zfs_arc_p_dampener_disable)
4422 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4423
4424 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4425 } else if (state == arc_mfu_ghost) {
4426 uint64_t delta;
4427
4428 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4429 if (!zfs_arc_p_dampener_disable)
4430 mult = MIN(mult, 10);
4431
4432 delta = MIN(bytes * mult, arc_p);
4433 arc_p = MAX(arc_p_min, arc_p - delta);
4434 }
4435 ASSERT((int64_t)arc_p >= 0);
4436
4437 if (arc_reclaim_needed()) {
4438 cv_signal(&arc_reclaim_thread_cv);
4439 return;
4440 }
4441
4442 if (arc_no_grow)
4443 return;
4444
4445 if (arc_c >= arc_c_max)
4446 return;
4447
4448 /*
4449 * If we're within (2 * maxblocksize) bytes of the target
4450 * cache size, increment the target cache size
4451 */
4452 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
4453 if (arc_size >= arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
4454 atomic_add_64(&arc_c, (int64_t)bytes);
4455 if (arc_c > arc_c_max)
4456 arc_c = arc_c_max;
4457 else if (state == arc_anon)
4458 atomic_add_64(&arc_p, (int64_t)bytes);
4459 if (arc_p > arc_c)
4460 arc_p = arc_c;
4461 }
4462 ASSERT((int64_t)arc_p >= 0);
4463 }
4464
4465 /*
4466 * Check if arc_size has grown past our upper threshold, determined by
4467 * zfs_arc_overflow_shift.
4468 */
4469 static boolean_t
4470 arc_is_overflowing(void)
4471 {
4472 /* Always allow at least one block of overflow */
4473 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4474 arc_c >> zfs_arc_overflow_shift);
4475
4476 return (arc_size >= arc_c + overflow);
4477 }
4478
4479 /*
4480 * Allocate a block and return it to the caller. If we are hitting the
4481 * hard limit for the cache size, we must sleep, waiting for the eviction
4482 * thread to catch up. If we're past the target size but below the hard
4483 * limit, we'll only signal the reclaim thread and continue on.
4484 */
4485 static void *
4486 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4487 {
4488 void *datap = NULL;
4489 arc_state_t *state = hdr->b_l1hdr.b_state;
4490 arc_buf_contents_t type = arc_buf_type(hdr);
4491
4492 arc_adapt(size, state);
4493
4494 /*
4495 * If arc_size is currently overflowing, and has grown past our
4496 * upper limit, we must be adding data faster than the evict
4497 * thread can evict. Thus, to ensure we don't compound the
4498 * problem by adding more data and forcing arc_size to grow even
4499 * further past it's target size, we halt and wait for the
4500 * eviction thread to catch up.
4501 *
4502 * It's also possible that the reclaim thread is unable to evict
4503 * enough buffers to get arc_size below the overflow limit (e.g.
4504 * due to buffers being un-evictable, or hash lock collisions).
4505 * In this case, we want to proceed regardless if we're
4506 * overflowing; thus we don't use a while loop here.
4507 */
4508 if (arc_is_overflowing()) {
4509 mutex_enter(&arc_reclaim_lock);
4510
4511 /*
4512 * Now that we've acquired the lock, we may no longer be
4513 * over the overflow limit, lets check.
4514 *
4515 * We're ignoring the case of spurious wake ups. If that
4516 * were to happen, it'd let this thread consume an ARC
4517 * buffer before it should have (i.e. before we're under
4518 * the overflow limit and were signalled by the reclaim
4519 * thread). As long as that is a rare occurrence, it
4520 * shouldn't cause any harm.
4521 */
4522 if (arc_is_overflowing()) {
4523 cv_signal(&arc_reclaim_thread_cv);
4524 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4525 }
4526
4527 mutex_exit(&arc_reclaim_lock);
4528 }
4529
4530 VERIFY3U(hdr->b_type, ==, type);
4531 if (type == ARC_BUFC_METADATA) {
4532 datap = zio_buf_alloc(size);
4533 arc_space_consume(size, ARC_SPACE_META);
4534 } else {
4535 ASSERT(type == ARC_BUFC_DATA);
4536 datap = zio_data_buf_alloc(size);
4537 arc_space_consume(size, ARC_SPACE_DATA);
4538 }
4539
4540 /*
4541 * Update the state size. Note that ghost states have a
4542 * "ghost size" and so don't need to be updated.
4543 */
4544 if (!GHOST_STATE(state)) {
4545
4546 (void) refcount_add_many(&state->arcs_size, size, tag);
4547
4548 /*
4549 * If this is reached via arc_read, the link is
4550 * protected by the hash lock. If reached via
4551 * arc_buf_alloc, the header should not be accessed by
4552 * any other thread. And, if reached via arc_read_done,
4553 * the hash lock will protect it if it's found in the
4554 * hash table; otherwise no other thread should be
4555 * trying to [add|remove]_reference it.
4556 */
4557 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4558 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4559 (void) refcount_add_many(&state->arcs_esize[type],
4560 size, tag);
4561 }
4562
4563 /*
4564 * If we are growing the cache, and we are adding anonymous
4565 * data, and we have outgrown arc_p, update arc_p
4566 */
4567 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4568 (refcount_count(&arc_anon->arcs_size) +
4569 refcount_count(&arc_mru->arcs_size) > arc_p))
4570 arc_p = MIN(arc_c, arc_p + size);
4571 }
4572 return (datap);
4573 }
4574
4575 /*
4576 * Free the arc data buffer.
4577 */
4578 static void
4579 arc_free_data_buf(arc_buf_hdr_t *hdr, void *data, uint64_t size, void *tag)
4580 {
4581 arc_state_t *state = hdr->b_l1hdr.b_state;
4582 arc_buf_contents_t type = arc_buf_type(hdr);
4583
4584 /* protected by hash lock, if in the hash table */
4585 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4586 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4587 ASSERT(state != arc_anon && state != arc_l2c_only);
4588
4589 (void) refcount_remove_many(&state->arcs_esize[type],
4590 size, tag);
4591 }
4592 (void) refcount_remove_many(&state->arcs_size, size, tag);
4593
4594 VERIFY3U(hdr->b_type, ==, type);
4595 if (type == ARC_BUFC_METADATA) {
4596 zio_buf_free(data, size);
4597 arc_space_return(size, ARC_SPACE_META);
4598 } else {
4599 ASSERT(type == ARC_BUFC_DATA);
4600 zio_data_buf_free(data, size);
4601 arc_space_return(size, ARC_SPACE_DATA);
4602 }
4603 }
4604
4605 /*
4606 * This routine is called whenever a buffer is accessed.
4607 * NOTE: the hash lock is dropped in this function.
4608 */
4609 static void
4610 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4611 {
4612 clock_t now;
4613
4614 ASSERT(MUTEX_HELD(hash_lock));
4615 ASSERT(HDR_HAS_L1HDR(hdr));
4616
4617 if (hdr->b_l1hdr.b_state == arc_anon) {
4618 /*
4619 * This buffer is not in the cache, and does not
4620 * appear in our "ghost" list. Add the new buffer
4621 * to the MRU state.
4622 */
4623
4624 ASSERT0(hdr->b_l1hdr.b_arc_access);
4625 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4626 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4627 arc_change_state(arc_mru, hdr, hash_lock);
4628
4629 } else if (hdr->b_l1hdr.b_state == arc_mru) {
4630 now = ddi_get_lbolt();
4631
4632 /*
4633 * If this buffer is here because of a prefetch, then either:
4634 * - clear the flag if this is a "referencing" read
4635 * (any subsequent access will bump this into the MFU state).
4636 * or
4637 * - move the buffer to the head of the list if this is
4638 * another prefetch (to make it less likely to be evicted).
4639 */
4640 if (HDR_PREFETCH(hdr)) {
4641 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4642 /* link protected by hash lock */
4643 ASSERT(multilist_link_active(
4644 &hdr->b_l1hdr.b_arc_node));
4645 } else {
4646 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4647 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
4648 ARCSTAT_BUMP(arcstat_mru_hits);
4649 }
4650 hdr->b_l1hdr.b_arc_access = now;
4651 return;
4652 }
4653
4654 /*
4655 * This buffer has been "accessed" only once so far,
4656 * but it is still in the cache. Move it to the MFU
4657 * state.
4658 */
4659 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
4660 ARC_MINTIME)) {
4661 /*
4662 * More than 125ms have passed since we
4663 * instantiated this buffer. Move it to the
4664 * most frequently used state.
4665 */
4666 hdr->b_l1hdr.b_arc_access = now;
4667 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4668 arc_change_state(arc_mfu, hdr, hash_lock);
4669 }
4670 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
4671 ARCSTAT_BUMP(arcstat_mru_hits);
4672 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4673 arc_state_t *new_state;
4674 /*
4675 * This buffer has been "accessed" recently, but
4676 * was evicted from the cache. Move it to the
4677 * MFU state.
4678 */
4679
4680 if (HDR_PREFETCH(hdr)) {
4681 new_state = arc_mru;
4682 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4683 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4684 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4685 } else {
4686 new_state = arc_mfu;
4687 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4688 }
4689
4690 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4691 arc_change_state(new_state, hdr, hash_lock);
4692
4693 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
4694 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4695 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
4696 /*
4697 * This buffer has been accessed more than once and is
4698 * still in the cache. Keep it in the MFU state.
4699 *
4700 * NOTE: an add_reference() that occurred when we did
4701 * the arc_read() will have kicked this off the list.
4702 * If it was a prefetch, we will explicitly move it to
4703 * the head of the list now.
4704 */
4705 if ((HDR_PREFETCH(hdr)) != 0) {
4706 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4707 /* link protected by hash_lock */
4708 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4709 }
4710 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
4711 ARCSTAT_BUMP(arcstat_mfu_hits);
4712 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4713 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4714 arc_state_t *new_state = arc_mfu;
4715 /*
4716 * This buffer has been accessed more than once but has
4717 * been evicted from the cache. Move it back to the
4718 * MFU state.
4719 */
4720
4721 if (HDR_PREFETCH(hdr)) {
4722 /*
4723 * This is a prefetch access...
4724 * move this block back to the MRU state.
4725 */
4726 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4727 new_state = arc_mru;
4728 }
4729
4730 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4731 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4732 arc_change_state(new_state, hdr, hash_lock);
4733
4734 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
4735 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4736 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4737 /*
4738 * This buffer is on the 2nd Level ARC.
4739 */
4740
4741 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4742 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4743 arc_change_state(arc_mfu, hdr, hash_lock);
4744 } else {
4745 cmn_err(CE_PANIC, "invalid arc state 0x%p",
4746 hdr->b_l1hdr.b_state);
4747 }
4748 }
4749
4750 /* a generic arc_done_func_t which you can use */
4751 /* ARGSUSED */
4752 void
4753 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4754 {
4755 if (zio == NULL || zio->io_error == 0)
4756 bcopy(buf->b_data, arg, arc_buf_size(buf));
4757 arc_buf_destroy(buf, arg);
4758 }
4759
4760 /* a generic arc_done_func_t */
4761 void
4762 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4763 {
4764 arc_buf_t **bufp = arg;
4765 if (zio && zio->io_error) {
4766 arc_buf_destroy(buf, arg);
4767 *bufp = NULL;
4768 } else {
4769 *bufp = buf;
4770 ASSERT(buf->b_data);
4771 }
4772 }
4773
4774 static void
4775 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
4776 {
4777 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
4778 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
4779 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
4780 } else {
4781 if (HDR_COMPRESSION_ENABLED(hdr)) {
4782 ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
4783 BP_GET_COMPRESS(bp));
4784 }
4785 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
4786 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
4787 }
4788 }
4789
4790 static void
4791 arc_read_done(zio_t *zio)
4792 {
4793 arc_buf_hdr_t *hdr = zio->io_private;
4794 kmutex_t *hash_lock = NULL;
4795 arc_callback_t *callback_list;
4796 arc_callback_t *acb;
4797 boolean_t freeable = B_FALSE;
4798 boolean_t no_zio_error = (zio->io_error == 0);
4799 int callback_cnt = 0;
4800 /*
4801 * The hdr was inserted into hash-table and removed from lists
4802 * prior to starting I/O. We should find this header, since
4803 * it's in the hash table, and it should be legit since it's
4804 * not possible to evict it during the I/O. The only possible
4805 * reason for it not to be found is if we were freed during the
4806 * read.
4807 */
4808 if (HDR_IN_HASH_TABLE(hdr)) {
4809 arc_buf_hdr_t *found;
4810
4811 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4812 ASSERT3U(hdr->b_dva.dva_word[0], ==,
4813 BP_IDENTITY(zio->io_bp)->dva_word[0]);
4814 ASSERT3U(hdr->b_dva.dva_word[1], ==,
4815 BP_IDENTITY(zio->io_bp)->dva_word[1]);
4816
4817 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
4818
4819 ASSERT((found == hdr &&
4820 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4821 (found == hdr && HDR_L2_READING(hdr)));
4822 ASSERT3P(hash_lock, !=, NULL);
4823 }
4824
4825 if (no_zio_error) {
4826 /* byteswap if necessary */
4827 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
4828 if (BP_GET_LEVEL(zio->io_bp) > 0) {
4829 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
4830 } else {
4831 hdr->b_l1hdr.b_byteswap =
4832 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4833 }
4834 } else {
4835 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
4836 }
4837 }
4838
4839 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
4840 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4841 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
4842
4843 callback_list = hdr->b_l1hdr.b_acb;
4844 ASSERT3P(callback_list, !=, NULL);
4845
4846 if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
4847 /*
4848 * Only call arc_access on anonymous buffers. This is because
4849 * if we've issued an I/O for an evicted buffer, we've already
4850 * called arc_access (to prevent any simultaneous readers from
4851 * getting confused).
4852 */
4853 arc_access(hdr, hash_lock);
4854 }
4855
4856 /*
4857 * If a read request has a callback (i.e. acb_done is not NULL), then we
4858 * make a buf containing the data according to the parameters which were
4859 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
4860 * aren't needlessly decompressing the data multiple times.
4861 */
4862 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
4863 int error;
4864 if (!acb->acb_done)
4865 continue;
4866
4867 /* This is a demand read since prefetches don't use callbacks */
4868
4869 callback_cnt++;
4870
4871 error = arc_buf_alloc_impl(hdr, acb->acb_private,
4872 acb->acb_compressed, no_zio_error, &acb->acb_buf);
4873 if (no_zio_error) {
4874 zio->io_error = error;
4875 }
4876 }
4877 hdr->b_l1hdr.b_acb = NULL;
4878 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
4879 if (callback_cnt == 0) {
4880 ASSERT(HDR_PREFETCH(hdr));
4881 ASSERT0(hdr->b_l1hdr.b_bufcnt);
4882 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
4883 }
4884
4885 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4886 callback_list != NULL);
4887
4888 if (no_zio_error) {
4889 arc_hdr_verify(hdr, zio->io_bp);
4890 } else {
4891 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
4892 if (hdr->b_l1hdr.b_state != arc_anon)
4893 arc_change_state(arc_anon, hdr, hash_lock);
4894 if (HDR_IN_HASH_TABLE(hdr))
4895 buf_hash_remove(hdr);
4896 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4897 }
4898
4899 /*
4900 * Broadcast before we drop the hash_lock to avoid the possibility
4901 * that the hdr (and hence the cv) might be freed before we get to
4902 * the cv_broadcast().
4903 */
4904 cv_broadcast(&hdr->b_l1hdr.b_cv);
4905
4906 if (hash_lock != NULL) {
4907 mutex_exit(hash_lock);
4908 } else {
4909 /*
4910 * This block was freed while we waited for the read to
4911 * complete. It has been removed from the hash table and
4912 * moved to the anonymous state (so that it won't show up
4913 * in the cache).
4914 */
4915 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4916 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4917 }
4918
4919 /* execute each callback and free its structure */
4920 while ((acb = callback_list) != NULL) {
4921 if (acb->acb_done)
4922 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4923
4924 if (acb->acb_zio_dummy != NULL) {
4925 acb->acb_zio_dummy->io_error = zio->io_error;
4926 zio_nowait(acb->acb_zio_dummy);
4927 }
4928
4929 callback_list = acb->acb_next;
4930 kmem_free(acb, sizeof (arc_callback_t));
4931 }
4932
4933 if (freeable)
4934 arc_hdr_destroy(hdr);
4935 }
4936
4937 /*
4938 * "Read" the block at the specified DVA (in bp) via the
4939 * cache. If the block is found in the cache, invoke the provided
4940 * callback immediately and return. Note that the `zio' parameter
4941 * in the callback will be NULL in this case, since no IO was
4942 * required. If the block is not in the cache pass the read request
4943 * on to the spa with a substitute callback function, so that the
4944 * requested block will be added to the cache.
4945 *
4946 * If a read request arrives for a block that has a read in-progress,
4947 * either wait for the in-progress read to complete (and return the
4948 * results); or, if this is a read with a "done" func, add a record
4949 * to the read to invoke the "done" func when the read completes,
4950 * and return; or just return.
4951 *
4952 * arc_read_done() will invoke all the requested "done" functions
4953 * for readers of this block.
4954 */
4955 int
4956 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4957 void *private, zio_priority_t priority, int zio_flags,
4958 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4959 {
4960 arc_buf_hdr_t *hdr = NULL;
4961 kmutex_t *hash_lock = NULL;
4962 zio_t *rzio;
4963 uint64_t guid = spa_load_guid(spa);
4964 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
4965 int rc = 0;
4966
4967 ASSERT(!BP_IS_EMBEDDED(bp) ||
4968 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4969
4970 top:
4971 if (!BP_IS_EMBEDDED(bp)) {
4972 /*
4973 * Embedded BP's have no DVA and require no I/O to "read".
4974 * Create an anonymous arc buf to back it.
4975 */
4976 hdr = buf_hash_find(guid, bp, &hash_lock);
4977 }
4978
4979 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pdata != NULL) {
4980 arc_buf_t *buf = NULL;
4981 *arc_flags |= ARC_FLAG_CACHED;
4982
4983 if (HDR_IO_IN_PROGRESS(hdr)) {
4984
4985 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4986 priority == ZIO_PRIORITY_SYNC_READ) {
4987 /*
4988 * This sync read must wait for an
4989 * in-progress async read (e.g. a predictive
4990 * prefetch). Async reads are queued
4991 * separately at the vdev_queue layer, so
4992 * this is a form of priority inversion.
4993 * Ideally, we would "inherit" the demand
4994 * i/o's priority by moving the i/o from
4995 * the async queue to the synchronous queue,
4996 * but there is currently no mechanism to do
4997 * so. Track this so that we can evaluate
4998 * the magnitude of this potential performance
4999 * problem.
5000 *
5001 * Note that if the prefetch i/o is already
5002 * active (has been issued to the device),
5003 * the prefetch improved performance, because
5004 * we issued it sooner than we would have
5005 * without the prefetch.
5006 */
5007 DTRACE_PROBE1(arc__sync__wait__for__async,
5008 arc_buf_hdr_t *, hdr);
5009 ARCSTAT_BUMP(arcstat_sync_wait_for_async);
5010 }
5011 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5012 arc_hdr_clear_flags(hdr,
5013 ARC_FLAG_PREDICTIVE_PREFETCH);
5014 }
5015
5016 if (*arc_flags & ARC_FLAG_WAIT) {
5017 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5018 mutex_exit(hash_lock);
5019 goto top;
5020 }
5021 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5022
5023 if (done) {
5024 arc_callback_t *acb = NULL;
5025
5026 acb = kmem_zalloc(sizeof (arc_callback_t),
5027 KM_SLEEP);
5028 acb->acb_done = done;
5029 acb->acb_private = private;
5030 if (pio != NULL)
5031 acb->acb_zio_dummy = zio_null(pio,
5032 spa, NULL, NULL, NULL, zio_flags);
5033
5034 ASSERT3P(acb->acb_done, !=, NULL);
5035 acb->acb_next = hdr->b_l1hdr.b_acb;
5036 hdr->b_l1hdr.b_acb = acb;
5037 mutex_exit(hash_lock);
5038 goto out;
5039 }
5040 mutex_exit(hash_lock);
5041 goto out;
5042 }
5043
5044 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5045 hdr->b_l1hdr.b_state == arc_mfu);
5046
5047 if (done) {
5048 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5049 /*
5050 * This is a demand read which does not have to
5051 * wait for i/o because we did a predictive
5052 * prefetch i/o for it, which has completed.
5053 */
5054 DTRACE_PROBE1(
5055 arc__demand__hit__predictive__prefetch,
5056 arc_buf_hdr_t *, hdr);
5057 ARCSTAT_BUMP(
5058 arcstat_demand_hit_predictive_prefetch);
5059 arc_hdr_clear_flags(hdr,
5060 ARC_FLAG_PREDICTIVE_PREFETCH);
5061 }
5062 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5063
5064 /* Get a buf with the desired data in it. */
5065 VERIFY0(arc_buf_alloc_impl(hdr, private,
5066 compressed_read, B_TRUE, &buf));
5067 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
5068 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5069 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5070 }
5071 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5072 arc_access(hdr, hash_lock);
5073 if (*arc_flags & ARC_FLAG_L2CACHE)
5074 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5075 mutex_exit(hash_lock);
5076 ARCSTAT_BUMP(arcstat_hits);
5077 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5078 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5079 data, metadata, hits);
5080
5081 if (done)
5082 done(NULL, buf, private);
5083 } else {
5084 uint64_t lsize = BP_GET_LSIZE(bp);
5085 uint64_t psize = BP_GET_PSIZE(bp);
5086 arc_callback_t *acb;
5087 vdev_t *vd = NULL;
5088 uint64_t addr = 0;
5089 boolean_t devw = B_FALSE;
5090 uint64_t size;
5091
5092 /*
5093 * Gracefully handle a damaged logical block size as a
5094 * checksum error.
5095 */
5096 if (lsize > spa_maxblocksize(spa)) {
5097 rc = SET_ERROR(ECKSUM);
5098 goto out;
5099 }
5100
5101 if (hdr == NULL) {
5102 /* this block is not in the cache */
5103 arc_buf_hdr_t *exists = NULL;
5104 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5105 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5106 BP_GET_COMPRESS(bp), type);
5107
5108 if (!BP_IS_EMBEDDED(bp)) {
5109 hdr->b_dva = *BP_IDENTITY(bp);
5110 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5111 exists = buf_hash_insert(hdr, &hash_lock);
5112 }
5113 if (exists != NULL) {
5114 /* somebody beat us to the hash insert */
5115 mutex_exit(hash_lock);
5116 buf_discard_identity(hdr);
5117 arc_hdr_destroy(hdr);
5118 goto top; /* restart the IO request */
5119 }
5120 } else {
5121 /*
5122 * This block is in the ghost cache. If it was L2-only
5123 * (and thus didn't have an L1 hdr), we realloc the
5124 * header to add an L1 hdr.
5125 */
5126 if (!HDR_HAS_L1HDR(hdr)) {
5127 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5128 hdr_full_cache);
5129 }
5130
5131 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
5132 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
5133 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5134 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5135 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5136 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5137
5138 /*
5139 * This is a delicate dance that we play here.
5140 * This hdr is in the ghost list so we access it
5141 * to move it out of the ghost list before we
5142 * initiate the read. If it's a prefetch then
5143 * it won't have a callback so we'll remove the
5144 * reference that arc_buf_alloc_impl() created. We
5145 * do this after we've called arc_access() to
5146 * avoid hitting an assert in remove_reference().
5147 */
5148 arc_access(hdr, hash_lock);
5149 arc_hdr_alloc_pdata(hdr);
5150 }
5151 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
5152 size = arc_hdr_size(hdr);
5153
5154 /*
5155 * If compression is enabled on the hdr, then will do
5156 * RAW I/O and will store the compressed data in the hdr's
5157 * data block. Otherwise, the hdr's data block will contain
5158 * the uncompressed data.
5159 */
5160 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5161 zio_flags |= ZIO_FLAG_RAW;
5162 }
5163
5164 if (*arc_flags & ARC_FLAG_PREFETCH)
5165 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5166 if (*arc_flags & ARC_FLAG_L2CACHE)
5167 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5168 if (BP_GET_LEVEL(bp) > 0)
5169 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5170 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5171 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5172 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5173
5174 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5175 acb->acb_done = done;
5176 acb->acb_private = private;
5177 acb->acb_compressed = compressed_read;
5178
5179 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5180 hdr->b_l1hdr.b_acb = acb;
5181 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5182
5183 if (HDR_HAS_L2HDR(hdr) &&
5184 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5185 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5186 addr = hdr->b_l2hdr.b_daddr;
5187 /*
5188 * Lock out device removal.
5189 */
5190 if (vdev_is_dead(vd) ||
5191 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5192 vd = NULL;
5193 }
5194
5195 if (priority == ZIO_PRIORITY_ASYNC_READ)
5196 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5197 else
5198 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5199
5200 if (hash_lock != NULL)
5201 mutex_exit(hash_lock);
5202
5203 /*
5204 * At this point, we have a level 1 cache miss. Try again in
5205 * L2ARC if possible.
5206 */
5207 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5208
5209 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5210 uint64_t, lsize, zbookmark_phys_t *, zb);
5211 ARCSTAT_BUMP(arcstat_misses);
5212 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5213 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5214 data, metadata, misses);
5215
5216 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5217 /*
5218 * Read from the L2ARC if the following are true:
5219 * 1. The L2ARC vdev was previously cached.
5220 * 2. This buffer still has L2ARC metadata.
5221 * 3. This buffer isn't currently writing to the L2ARC.
5222 * 4. The L2ARC entry wasn't evicted, which may
5223 * also have invalidated the vdev.
5224 * 5. This isn't prefetch and l2arc_noprefetch is set.
5225 */
5226 if (HDR_HAS_L2HDR(hdr) &&
5227 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5228 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5229 l2arc_read_callback_t *cb;
5230
5231 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5232 ARCSTAT_BUMP(arcstat_l2_hits);
5233 atomic_inc_32(&hdr->b_l2hdr.b_hits);
5234
5235 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5236 KM_SLEEP);
5237 cb->l2rcb_hdr = hdr;
5238 cb->l2rcb_bp = *bp;
5239 cb->l2rcb_zb = *zb;
5240 cb->l2rcb_flags = zio_flags;
5241
5242 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5243 addr + lsize < vd->vdev_psize -
5244 VDEV_LABEL_END_SIZE);
5245
5246 /*
5247 * l2arc read. The SCL_L2ARC lock will be
5248 * released by l2arc_read_done().
5249 * Issue a null zio if the underlying buffer
5250 * was squashed to zero size by compression.
5251 */
5252 ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5253 ZIO_COMPRESS_EMPTY);
5254 rzio = zio_read_phys(pio, vd, addr,
5255 size, hdr->b_l1hdr.b_pdata,
5256 ZIO_CHECKSUM_OFF,
5257 l2arc_read_done, cb, priority,
5258 zio_flags | ZIO_FLAG_DONT_CACHE |
5259 ZIO_FLAG_CANFAIL |
5260 ZIO_FLAG_DONT_PROPAGATE |
5261 ZIO_FLAG_DONT_RETRY, B_FALSE);
5262
5263 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5264 zio_t *, rzio);
5265 ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5266
5267 if (*arc_flags & ARC_FLAG_NOWAIT) {
5268 zio_nowait(rzio);
5269 goto out;
5270 }
5271
5272 ASSERT(*arc_flags & ARC_FLAG_WAIT);
5273 if (zio_wait(rzio) == 0)
5274 goto out;
5275
5276 /* l2arc read error; goto zio_read() */
5277 } else {
5278 DTRACE_PROBE1(l2arc__miss,
5279 arc_buf_hdr_t *, hdr);
5280 ARCSTAT_BUMP(arcstat_l2_misses);
5281 if (HDR_L2_WRITING(hdr))
5282 ARCSTAT_BUMP(arcstat_l2_rw_clash);
5283 spa_config_exit(spa, SCL_L2ARC, vd);
5284 }
5285 } else {
5286 if (vd != NULL)
5287 spa_config_exit(spa, SCL_L2ARC, vd);
5288 if (l2arc_ndev != 0) {
5289 DTRACE_PROBE1(l2arc__miss,
5290 arc_buf_hdr_t *, hdr);
5291 ARCSTAT_BUMP(arcstat_l2_misses);
5292 }
5293 }
5294
5295 rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pdata, size,
5296 arc_read_done, hdr, priority, zio_flags, zb);
5297
5298 if (*arc_flags & ARC_FLAG_WAIT) {
5299 rc = zio_wait(rzio);
5300 goto out;
5301 }
5302
5303 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5304 zio_nowait(rzio);
5305 }
5306
5307 out:
5308 spa_read_history_add(spa, zb, *arc_flags);
5309 return (rc);
5310 }
5311
5312 arc_prune_t *
5313 arc_add_prune_callback(arc_prune_func_t *func, void *private)
5314 {
5315 arc_prune_t *p;
5316
5317 p = kmem_alloc(sizeof (*p), KM_SLEEP);
5318 p->p_pfunc = func;
5319 p->p_private = private;
5320 list_link_init(&p->p_node);
5321 refcount_create(&p->p_refcnt);
5322
5323 mutex_enter(&arc_prune_mtx);
5324 refcount_add(&p->p_refcnt, &arc_prune_list);
5325 list_insert_head(&arc_prune_list, p);
5326 mutex_exit(&arc_prune_mtx);
5327
5328 return (p);
5329 }
5330
5331 void
5332 arc_remove_prune_callback(arc_prune_t *p)
5333 {
5334 boolean_t wait = B_FALSE;
5335 mutex_enter(&arc_prune_mtx);
5336 list_remove(&arc_prune_list, p);
5337 if (refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
5338 wait = B_TRUE;
5339 mutex_exit(&arc_prune_mtx);
5340
5341 /* wait for arc_prune_task to finish */
5342 if (wait)
5343 taskq_wait_outstanding(arc_prune_taskq, 0);
5344 ASSERT0(refcount_count(&p->p_refcnt));
5345 refcount_destroy(&p->p_refcnt);
5346 kmem_free(p, sizeof (*p));
5347 }
5348
5349 /*
5350 * Notify the arc that a block was freed, and thus will never be used again.
5351 */
5352 void
5353 arc_freed(spa_t *spa, const blkptr_t *bp)
5354 {
5355 arc_buf_hdr_t *hdr;
5356 kmutex_t *hash_lock;
5357 uint64_t guid = spa_load_guid(spa);
5358
5359 ASSERT(!BP_IS_EMBEDDED(bp));
5360
5361 hdr = buf_hash_find(guid, bp, &hash_lock);
5362 if (hdr == NULL)
5363 return;
5364
5365 /*
5366 * We might be trying to free a block that is still doing I/O
5367 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5368 * dmu_sync-ed block). If this block is being prefetched, then it
5369 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5370 * until the I/O completes. A block may also have a reference if it is
5371 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5372 * have written the new block to its final resting place on disk but
5373 * without the dedup flag set. This would have left the hdr in the MRU
5374 * state and discoverable. When the txg finally syncs it detects that
5375 * the block was overridden in open context and issues an override I/O.
5376 * Since this is a dedup block, the override I/O will determine if the
5377 * block is already in the DDT. If so, then it will replace the io_bp
5378 * with the bp from the DDT and allow the I/O to finish. When the I/O
5379 * reaches the done callback, dbuf_write_override_done, it will
5380 * check to see if the io_bp and io_bp_override are identical.
5381 * If they are not, then it indicates that the bp was replaced with
5382 * the bp in the DDT and the override bp is freed. This allows
5383 * us to arrive here with a reference on a block that is being
5384 * freed. So if we have an I/O in progress, or a reference to
5385 * this hdr, then we don't destroy the hdr.
5386 */
5387 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5388 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5389 arc_change_state(arc_anon, hdr, hash_lock);
5390 arc_hdr_destroy(hdr);
5391 mutex_exit(hash_lock);
5392 } else {
5393 mutex_exit(hash_lock);
5394 }
5395
5396 }
5397
5398 /*
5399 * Release this buffer from the cache, making it an anonymous buffer. This
5400 * must be done after a read and prior to modifying the buffer contents.
5401 * If the buffer has more than one reference, we must make
5402 * a new hdr for the buffer.
5403 */
5404 void
5405 arc_release(arc_buf_t *buf, void *tag)
5406 {
5407 kmutex_t *hash_lock;
5408 arc_state_t *state;
5409 arc_buf_hdr_t *hdr = buf->b_hdr;
5410
5411 /*
5412 * It would be nice to assert that if its DMU metadata (level >
5413 * 0 || it's the dnode file), then it must be syncing context.
5414 * But we don't know that information at this level.
5415 */
5416
5417 mutex_enter(&buf->b_evict_lock);
5418
5419 ASSERT(HDR_HAS_L1HDR(hdr));
5420
5421 /*
5422 * We don't grab the hash lock prior to this check, because if
5423 * the buffer's header is in the arc_anon state, it won't be
5424 * linked into the hash table.
5425 */
5426 if (hdr->b_l1hdr.b_state == arc_anon) {
5427 mutex_exit(&buf->b_evict_lock);
5428 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5429 ASSERT(!HDR_IN_HASH_TABLE(hdr));
5430 ASSERT(!HDR_HAS_L2HDR(hdr));
5431 ASSERT(HDR_EMPTY(hdr));
5432
5433 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5434 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5435 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5436
5437 hdr->b_l1hdr.b_arc_access = 0;
5438
5439 /*
5440 * If the buf is being overridden then it may already
5441 * have a hdr that is not empty.
5442 */
5443 buf_discard_identity(hdr);
5444 arc_buf_thaw(buf);
5445
5446 return;
5447 }
5448
5449 hash_lock = HDR_LOCK(hdr);
5450 mutex_enter(hash_lock);
5451
5452 /*
5453 * This assignment is only valid as long as the hash_lock is
5454 * held, we must be careful not to reference state or the
5455 * b_state field after dropping the lock.
5456 */
5457 state = hdr->b_l1hdr.b_state;
5458 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5459 ASSERT3P(state, !=, arc_anon);
5460
5461 /* this buffer is not on any list */
5462 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
5463
5464 if (HDR_HAS_L2HDR(hdr)) {
5465 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5466
5467 /*
5468 * We have to recheck this conditional again now that
5469 * we're holding the l2ad_mtx to prevent a race with
5470 * another thread which might be concurrently calling
5471 * l2arc_evict(). In that case, l2arc_evict() might have
5472 * destroyed the header's L2 portion as we were waiting
5473 * to acquire the l2ad_mtx.
5474 */
5475 if (HDR_HAS_L2HDR(hdr))
5476 arc_hdr_l2hdr_destroy(hdr);
5477
5478 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5479 }
5480
5481 /*
5482 * Do we have more than one buf?
5483 */
5484 if (hdr->b_l1hdr.b_bufcnt > 1) {
5485 arc_buf_hdr_t *nhdr;
5486 uint64_t spa = hdr->b_spa;
5487 uint64_t psize = HDR_GET_PSIZE(hdr);
5488 uint64_t lsize = HDR_GET_LSIZE(hdr);
5489 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5490 arc_buf_contents_t type = arc_buf_type(hdr);
5491 arc_buf_t *lastbuf = NULL;
5492 VERIFY3U(hdr->b_type, ==, type);
5493
5494 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5495 (void) remove_reference(hdr, hash_lock, tag);
5496
5497 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
5498 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5499 ASSERT(ARC_BUF_LAST(buf));
5500 }
5501
5502 /*
5503 * Pull the data off of this hdr and attach it to
5504 * a new anonymous hdr. Also find the last buffer
5505 * in the hdr's buffer list.
5506 */
5507 lastbuf = arc_buf_remove(hdr, buf);
5508 ASSERT3P(lastbuf, !=, NULL);
5509
5510 /*
5511 * If the current arc_buf_t and the hdr are sharing their data
5512 * buffer, then we must stop sharing that block.
5513 */
5514 if (arc_buf_is_shared(buf)) {
5515 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5516 VERIFY(!arc_buf_is_shared(lastbuf));
5517
5518 /*
5519 * First, sever the block sharing relationship between
5520 * buf and the arc_buf_hdr_t. Then, setup a new
5521 * block sharing relationship with the last buffer
5522 * on the arc_buf_t list.
5523 */
5524 arc_unshare_buf(hdr, buf);
5525
5526 /*
5527 * Now we need to recreate the hdr's b_pdata. Since we
5528 * have lastbuf handy, we try to share with it, but if
5529 * we can't then we allocate a new b_pdata and copy the
5530 * data from buf into it.
5531 */
5532 if (arc_can_share(hdr, lastbuf)) {
5533 arc_share_buf(hdr, lastbuf);
5534 } else {
5535 arc_hdr_alloc_pdata(hdr);
5536 bcopy(buf->b_data, hdr->b_l1hdr.b_pdata, psize);
5537 }
5538 VERIFY3P(lastbuf->b_data, !=, NULL);
5539 } else if (HDR_SHARED_DATA(hdr)) {
5540 /*
5541 * Uncompressed shared buffers are always at the end
5542 * of the list. Compressed buffers don't have the
5543 * same requirements. This makes it hard to
5544 * simply assert that the lastbuf is shared so
5545 * we rely on the hdr's compression flags to determine
5546 * if we have a compressed, shared buffer.
5547 */
5548 ASSERT(arc_buf_is_shared(lastbuf) ||
5549 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
5550 ASSERT(!ARC_BUF_SHARED(buf));
5551 }
5552 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
5553 ASSERT3P(state, !=, arc_l2c_only);
5554
5555 (void) refcount_remove_many(&state->arcs_size,
5556 arc_buf_size(buf), buf);
5557
5558 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5559 ASSERT3P(state, !=, arc_l2c_only);
5560 (void) refcount_remove_many(&state->arcs_esize[type],
5561 arc_buf_size(buf), buf);
5562 }
5563
5564 hdr->b_l1hdr.b_bufcnt -= 1;
5565 arc_cksum_verify(buf);
5566 arc_buf_unwatch(buf);
5567
5568 mutex_exit(hash_lock);
5569
5570 /*
5571 * Allocate a new hdr. The new hdr will contain a b_pdata
5572 * buffer which will be freed in arc_write().
5573 */
5574 nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5575 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5576 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5577 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5578 VERIFY3U(nhdr->b_type, ==, type);
5579 ASSERT(!HDR_SHARED_DATA(nhdr));
5580
5581 nhdr->b_l1hdr.b_buf = buf;
5582 nhdr->b_l1hdr.b_bufcnt = 1;
5583 nhdr->b_l1hdr.b_mru_hits = 0;
5584 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
5585 nhdr->b_l1hdr.b_mfu_hits = 0;
5586 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
5587 nhdr->b_l1hdr.b_l2_hits = 0;
5588 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5589 buf->b_hdr = nhdr;
5590
5591 mutex_exit(&buf->b_evict_lock);
5592 (void) refcount_add_many(&arc_anon->arcs_size,
5593 HDR_GET_LSIZE(nhdr), buf);
5594 } else {
5595 mutex_exit(&buf->b_evict_lock);
5596 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5597 /* protected by hash lock, or hdr is on arc_anon */
5598 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5599 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5600 hdr->b_l1hdr.b_mru_hits = 0;
5601 hdr->b_l1hdr.b_mru_ghost_hits = 0;
5602 hdr->b_l1hdr.b_mfu_hits = 0;
5603 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
5604 hdr->b_l1hdr.b_l2_hits = 0;
5605 arc_change_state(arc_anon, hdr, hash_lock);
5606 hdr->b_l1hdr.b_arc_access = 0;
5607 mutex_exit(hash_lock);
5608
5609 buf_discard_identity(hdr);
5610 arc_buf_thaw(buf);
5611 }
5612 }
5613
5614 int
5615 arc_released(arc_buf_t *buf)
5616 {
5617 int released;
5618
5619 mutex_enter(&buf->b_evict_lock);
5620 released = (buf->b_data != NULL &&
5621 buf->b_hdr->b_l1hdr.b_state == arc_anon);
5622 mutex_exit(&buf->b_evict_lock);
5623 return (released);
5624 }
5625
5626 #ifdef ZFS_DEBUG
5627 int
5628 arc_referenced(arc_buf_t *buf)
5629 {
5630 int referenced;
5631
5632 mutex_enter(&buf->b_evict_lock);
5633 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5634 mutex_exit(&buf->b_evict_lock);
5635 return (referenced);
5636 }
5637 #endif
5638
5639 static void
5640 arc_write_ready(zio_t *zio)
5641 {
5642 arc_write_callback_t *callback = zio->io_private;
5643 arc_buf_t *buf = callback->awcb_buf;
5644 arc_buf_hdr_t *hdr = buf->b_hdr;
5645 uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5646 enum zio_compress compress;
5647
5648 ASSERT(HDR_HAS_L1HDR(hdr));
5649 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5650 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5651
5652 /*
5653 * If we're reexecuting this zio because the pool suspended, then
5654 * cleanup any state that was previously set the first time the
5655 * callback was invoked.
5656 */
5657 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5658 arc_cksum_free(hdr);
5659 arc_buf_unwatch(buf);
5660 if (hdr->b_l1hdr.b_pdata != NULL) {
5661 if (arc_buf_is_shared(buf)) {
5662 arc_unshare_buf(hdr, buf);
5663 } else {
5664 arc_hdr_free_pdata(hdr);
5665 }
5666 }
5667 }
5668 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
5669 ASSERT(!HDR_SHARED_DATA(hdr));
5670 ASSERT(!arc_buf_is_shared(buf));
5671
5672 callback->awcb_ready(zio, buf, callback->awcb_private);
5673
5674 if (HDR_IO_IN_PROGRESS(hdr))
5675 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5676
5677 arc_cksum_compute(buf);
5678 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5679
5680 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5681 compress = ZIO_COMPRESS_OFF;
5682 } else {
5683 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5684 compress = BP_GET_COMPRESS(zio->io_bp);
5685 }
5686 HDR_SET_PSIZE(hdr, psize);
5687 arc_hdr_set_compress(hdr, compress);
5688
5689 /*
5690 * If the hdr is compressed, then copy the compressed
5691 * zio contents into arc_buf_hdr_t. Otherwise, copy the original
5692 * data buf into the hdr. Ideally, we would like to always copy the
5693 * io_data into b_pdata but the user may have disabled compressed
5694 * arc thus the on-disk block may or may not match what we maintain
5695 * in the hdr's b_pdata field.
5696 */
5697 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
5698 !ARC_BUF_COMPRESSED(buf)) {
5699 ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=, ZIO_COMPRESS_OFF);
5700 ASSERT3U(psize, >, 0);
5701 arc_hdr_alloc_pdata(hdr);
5702 bcopy(zio->io_data, hdr->b_l1hdr.b_pdata, psize);
5703 } else {
5704 ASSERT3P(buf->b_data, ==, zio->io_orig_data);
5705 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
5706 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5707
5708 /*
5709 * This hdr is not compressed so we're able to share
5710 * the arc_buf_t data buffer with the hdr.
5711 */
5712 arc_share_buf(hdr, buf);
5713 ASSERT0(bcmp(zio->io_orig_data, hdr->b_l1hdr.b_pdata,
5714 HDR_GET_LSIZE(hdr)));
5715 }
5716 arc_hdr_verify(hdr, zio->io_bp);
5717 }
5718
5719 static void
5720 arc_write_children_ready(zio_t *zio)
5721 {
5722 arc_write_callback_t *callback = zio->io_private;
5723 arc_buf_t *buf = callback->awcb_buf;
5724
5725 callback->awcb_children_ready(zio, buf, callback->awcb_private);
5726 }
5727
5728 /*
5729 * The SPA calls this callback for each physical write that happens on behalf
5730 * of a logical write. See the comment in dbuf_write_physdone() for details.
5731 */
5732 static void
5733 arc_write_physdone(zio_t *zio)
5734 {
5735 arc_write_callback_t *cb = zio->io_private;
5736 if (cb->awcb_physdone != NULL)
5737 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5738 }
5739
5740 static void
5741 arc_write_done(zio_t *zio)
5742 {
5743 arc_write_callback_t *callback = zio->io_private;
5744 arc_buf_t *buf = callback->awcb_buf;
5745 arc_buf_hdr_t *hdr = buf->b_hdr;
5746
5747 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5748
5749 if (zio->io_error == 0) {
5750 arc_hdr_verify(hdr, zio->io_bp);
5751
5752 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5753 buf_discard_identity(hdr);
5754 } else {
5755 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5756 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5757 }
5758 } else {
5759 ASSERT(HDR_EMPTY(hdr));
5760 }
5761
5762 /*
5763 * If the block to be written was all-zero or compressed enough to be
5764 * embedded in the BP, no write was performed so there will be no
5765 * dva/birth/checksum. The buffer must therefore remain anonymous
5766 * (and uncached).
5767 */
5768 if (!HDR_EMPTY(hdr)) {
5769 arc_buf_hdr_t *exists;
5770 kmutex_t *hash_lock;
5771
5772 ASSERT3U(zio->io_error, ==, 0);
5773
5774 arc_cksum_verify(buf);
5775
5776 exists = buf_hash_insert(hdr, &hash_lock);
5777 if (exists != NULL) {
5778 /*
5779 * This can only happen if we overwrite for
5780 * sync-to-convergence, because we remove
5781 * buffers from the hash table when we arc_free().
5782 */
5783 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5784 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5785 panic("bad overwrite, hdr=%p exists=%p",
5786 (void *)hdr, (void *)exists);
5787 ASSERT(refcount_is_zero(
5788 &exists->b_l1hdr.b_refcnt));
5789 arc_change_state(arc_anon, exists, hash_lock);
5790 mutex_exit(hash_lock);
5791 arc_hdr_destroy(exists);
5792 exists = buf_hash_insert(hdr, &hash_lock);
5793 ASSERT3P(exists, ==, NULL);
5794 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5795 /* nopwrite */
5796 ASSERT(zio->io_prop.zp_nopwrite);
5797 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5798 panic("bad nopwrite, hdr=%p exists=%p",
5799 (void *)hdr, (void *)exists);
5800 } else {
5801 /* Dedup */
5802 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
5803 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5804 ASSERT(BP_GET_DEDUP(zio->io_bp));
5805 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5806 }
5807 }
5808 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5809 /* if it's not anon, we are doing a scrub */
5810 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5811 arc_access(hdr, hash_lock);
5812 mutex_exit(hash_lock);
5813 } else {
5814 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5815 }
5816
5817 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5818 callback->awcb_done(zio, buf, callback->awcb_private);
5819
5820 kmem_free(callback, sizeof (arc_write_callback_t));
5821 }
5822
5823 zio_t *
5824 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
5825 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc,
5826 const zio_prop_t *zp, arc_done_func_t *ready,
5827 arc_done_func_t *children_ready, arc_done_func_t *physdone,
5828 arc_done_func_t *done, void *private, zio_priority_t priority,
5829 int zio_flags, const zbookmark_phys_t *zb)
5830 {
5831 arc_buf_hdr_t *hdr = buf->b_hdr;
5832 arc_write_callback_t *callback;
5833 zio_t *zio;
5834
5835 ASSERT3P(ready, !=, NULL);
5836 ASSERT3P(done, !=, NULL);
5837 ASSERT(!HDR_IO_ERROR(hdr));
5838 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5839 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5840 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
5841 if (l2arc)
5842 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5843 if (ARC_BUF_COMPRESSED(buf)) {
5844 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_OFF);
5845 zio_flags |= ZIO_FLAG_RAW;
5846 }
5847 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5848 callback->awcb_ready = ready;
5849 callback->awcb_children_ready = children_ready;
5850 callback->awcb_physdone = physdone;
5851 callback->awcb_done = done;
5852 callback->awcb_private = private;
5853 callback->awcb_buf = buf;
5854
5855 /*
5856 * The hdr's b_pdata is now stale, free it now. A new data block
5857 * will be allocated when the zio pipeline calls arc_write_ready().
5858 */
5859 if (hdr->b_l1hdr.b_pdata != NULL) {
5860 /*
5861 * If the buf is currently sharing the data block with
5862 * the hdr then we need to break that relationship here.
5863 * The hdr will remain with a NULL data pointer and the
5864 * buf will take sole ownership of the block.
5865 */
5866 if (arc_buf_is_shared(buf)) {
5867 arc_unshare_buf(hdr, buf);
5868 } else {
5869 arc_hdr_free_pdata(hdr);
5870 }
5871 VERIFY3P(buf->b_data, !=, NULL);
5872 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
5873 }
5874 ASSERT(!arc_buf_is_shared(buf));
5875 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
5876
5877 zio = zio_write(pio, spa, txg, bp, buf->b_data,
5878 HDR_GET_LSIZE(hdr), arc_buf_size(buf), zp,
5879 arc_write_ready,
5880 (children_ready != NULL) ? arc_write_children_ready : NULL,
5881 arc_write_physdone, arc_write_done, callback,
5882 priority, zio_flags, zb);
5883
5884 return (zio);
5885 }
5886
5887 static int
5888 arc_memory_throttle(uint64_t reserve, uint64_t txg)
5889 {
5890 #ifdef _KERNEL
5891 uint64_t available_memory = ptob(freemem);
5892 static uint64_t page_load = 0;
5893 static uint64_t last_txg = 0;
5894 #ifdef __linux__
5895 pgcnt_t minfree = btop(arc_sys_free / 4);
5896 #endif
5897
5898 if (freemem > physmem * arc_lotsfree_percent / 100)
5899 return (0);
5900
5901 if (txg > last_txg) {
5902 last_txg = txg;
5903 page_load = 0;
5904 }
5905 /*
5906 * If we are in pageout, we know that memory is already tight,
5907 * the arc is already going to be evicting, so we just want to
5908 * continue to let page writes occur as quickly as possible.
5909 */
5910 if (current_is_kswapd()) {
5911 if (page_load > MAX(ptob(minfree), available_memory) / 4) {
5912 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
5913 return (SET_ERROR(ERESTART));
5914 }
5915 /* Note: reserve is inflated, so we deflate */
5916 page_load += reserve / 8;
5917 return (0);
5918 } else if (page_load > 0 && arc_reclaim_needed()) {
5919 /* memory is low, delay before restarting */
5920 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5921 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
5922 return (SET_ERROR(EAGAIN));
5923 }
5924 page_load = 0;
5925 #endif
5926 return (0);
5927 }
5928
5929 void
5930 arc_tempreserve_clear(uint64_t reserve)
5931 {
5932 atomic_add_64(&arc_tempreserve, -reserve);
5933 ASSERT((int64_t)arc_tempreserve >= 0);
5934 }
5935
5936 int
5937 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5938 {
5939 int error;
5940 uint64_t anon_size;
5941
5942 if (!arc_no_grow &&
5943 reserve > arc_c/4 &&
5944 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
5945 arc_c = MIN(arc_c_max, reserve * 4);
5946
5947 /*
5948 * Throttle when the calculated memory footprint for the TXG
5949 * exceeds the target ARC size.
5950 */
5951 if (reserve > arc_c) {
5952 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
5953 return (SET_ERROR(ERESTART));
5954 }
5955
5956 /*
5957 * Don't count loaned bufs as in flight dirty data to prevent long
5958 * network delays from blocking transactions that are ready to be
5959 * assigned to a txg.
5960 */
5961 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5962 arc_loaned_bytes), 0);
5963
5964 /*
5965 * Writes will, almost always, require additional memory allocations
5966 * in order to compress/encrypt/etc the data. We therefore need to
5967 * make sure that there is sufficient available memory for this.
5968 */
5969 error = arc_memory_throttle(reserve, txg);
5970 if (error != 0)
5971 return (error);
5972
5973 /*
5974 * Throttle writes when the amount of dirty data in the cache
5975 * gets too large. We try to keep the cache less than half full
5976 * of dirty blocks so that our sync times don't grow too large.
5977 * Note: if two requests come in concurrently, we might let them
5978 * both succeed, when one of them should fail. Not a huge deal.
5979 */
5980
5981 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5982 anon_size > arc_c / 4) {
5983 uint64_t meta_esize =
5984 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5985 uint64_t data_esize =
5986 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5987 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5988 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5989 arc_tempreserve >> 10, meta_esize >> 10,
5990 data_esize >> 10, reserve >> 10, arc_c >> 10);
5991 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
5992 return (SET_ERROR(ERESTART));
5993 }
5994 atomic_add_64(&arc_tempreserve, reserve);
5995 return (0);
5996 }
5997
5998 static void
5999 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6000 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6001 {
6002 size->value.ui64 = refcount_count(&state->arcs_size);
6003 evict_data->value.ui64 =
6004 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6005 evict_metadata->value.ui64 =
6006 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6007 }
6008
6009 static int
6010 arc_kstat_update(kstat_t *ksp, int rw)
6011 {
6012 arc_stats_t *as = ksp->ks_data;
6013
6014 if (rw == KSTAT_WRITE) {
6015 return (EACCES);
6016 } else {
6017 arc_kstat_update_state(arc_anon,
6018 &as->arcstat_anon_size,
6019 &as->arcstat_anon_evictable_data,
6020 &as->arcstat_anon_evictable_metadata);
6021 arc_kstat_update_state(arc_mru,
6022 &as->arcstat_mru_size,
6023 &as->arcstat_mru_evictable_data,
6024 &as->arcstat_mru_evictable_metadata);
6025 arc_kstat_update_state(arc_mru_ghost,
6026 &as->arcstat_mru_ghost_size,
6027 &as->arcstat_mru_ghost_evictable_data,
6028 &as->arcstat_mru_ghost_evictable_metadata);
6029 arc_kstat_update_state(arc_mfu,
6030 &as->arcstat_mfu_size,
6031 &as->arcstat_mfu_evictable_data,
6032 &as->arcstat_mfu_evictable_metadata);
6033 arc_kstat_update_state(arc_mfu_ghost,
6034 &as->arcstat_mfu_ghost_size,
6035 &as->arcstat_mfu_ghost_evictable_data,
6036 &as->arcstat_mfu_ghost_evictable_metadata);
6037 }
6038
6039 return (0);
6040 }
6041
6042 /*
6043 * This function *must* return indices evenly distributed between all
6044 * sublists of the multilist. This is needed due to how the ARC eviction
6045 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
6046 * distributed between all sublists and uses this assumption when
6047 * deciding which sublist to evict from and how much to evict from it.
6048 */
6049 unsigned int
6050 arc_state_multilist_index_func(multilist_t *ml, void *obj)
6051 {
6052 arc_buf_hdr_t *hdr = obj;
6053
6054 /*
6055 * We rely on b_dva to generate evenly distributed index
6056 * numbers using buf_hash below. So, as an added precaution,
6057 * let's make sure we never add empty buffers to the arc lists.
6058 */
6059 ASSERT(!HDR_EMPTY(hdr));
6060
6061 /*
6062 * The assumption here, is the hash value for a given
6063 * arc_buf_hdr_t will remain constant throughout its lifetime
6064 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
6065 * Thus, we don't need to store the header's sublist index
6066 * on insertion, as this index can be recalculated on removal.
6067 *
6068 * Also, the low order bits of the hash value are thought to be
6069 * distributed evenly. Otherwise, in the case that the multilist
6070 * has a power of two number of sublists, each sublists' usage
6071 * would not be evenly distributed.
6072 */
6073 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
6074 multilist_get_num_sublists(ml));
6075 }
6076
6077 /*
6078 * Called during module initialization and periodically thereafter to
6079 * apply reasonable changes to the exposed performance tunings. Non-zero
6080 * zfs_* values which differ from the currently set values will be applied.
6081 */
6082 static void
6083 arc_tuning_update(void)
6084 {
6085 uint64_t percent;
6086 /* Valid range: 64M - <all physical memory> */
6087 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
6088 (zfs_arc_max > 64 << 20) && (zfs_arc_max < ptob(physmem)) &&
6089 (zfs_arc_max > arc_c_min)) {
6090 arc_c_max = zfs_arc_max;
6091 arc_c = arc_c_max;
6092 arc_p = (arc_c >> 1);
6093 /* Valid range of arc_meta_limit: arc_meta_min - arc_c_max */
6094 percent = MIN(zfs_arc_meta_limit_percent, 100);
6095 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
6096 percent = MIN(zfs_arc_dnode_limit_percent, 100);
6097 arc_dnode_limit = (percent * arc_meta_limit) / 100;
6098 }
6099
6100 /* Valid range: 32M - <arc_c_max> */
6101 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
6102 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
6103 (zfs_arc_min <= arc_c_max)) {
6104 arc_c_min = zfs_arc_min;
6105 arc_c = MAX(arc_c, arc_c_min);
6106 }
6107
6108 /* Valid range: 16M - <arc_c_max> */
6109 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
6110 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
6111 (zfs_arc_meta_min <= arc_c_max)) {
6112 arc_meta_min = zfs_arc_meta_min;
6113 arc_meta_limit = MAX(arc_meta_limit, arc_meta_min);
6114 arc_dnode_limit = arc_meta_limit / 10;
6115 }
6116
6117 /* Valid range: <arc_meta_min> - <arc_c_max> */
6118 if ((zfs_arc_meta_limit) && (zfs_arc_meta_limit != arc_meta_limit) &&
6119 (zfs_arc_meta_limit >= zfs_arc_meta_min) &&
6120 (zfs_arc_meta_limit <= arc_c_max))
6121 arc_meta_limit = zfs_arc_meta_limit;
6122
6123 /* Valid range: <arc_meta_min> - <arc_c_max> */
6124 if ((zfs_arc_dnode_limit) && (zfs_arc_dnode_limit != arc_dnode_limit) &&
6125 (zfs_arc_dnode_limit >= zfs_arc_meta_min) &&
6126 (zfs_arc_dnode_limit <= arc_c_max))
6127 arc_dnode_limit = zfs_arc_dnode_limit;
6128
6129 /* Valid range: 1 - N */
6130 if (zfs_arc_grow_retry)
6131 arc_grow_retry = zfs_arc_grow_retry;
6132
6133 /* Valid range: 1 - N */
6134 if (zfs_arc_shrink_shift) {
6135 arc_shrink_shift = zfs_arc_shrink_shift;
6136 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
6137 }
6138
6139 /* Valid range: 1 - N */
6140 if (zfs_arc_p_min_shift)
6141 arc_p_min_shift = zfs_arc_p_min_shift;
6142
6143 /* Valid range: 1 - N ticks */
6144 if (zfs_arc_min_prefetch_lifespan)
6145 arc_min_prefetch_lifespan = zfs_arc_min_prefetch_lifespan;
6146
6147 /* Valid range: 0 - 100 */
6148 if ((zfs_arc_lotsfree_percent >= 0) &&
6149 (zfs_arc_lotsfree_percent <= 100))
6150 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
6151
6152 /* Valid range: 0 - <all physical memory> */
6153 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
6154 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), ptob(physmem));
6155
6156 }
6157
6158 static void
6159 arc_state_init(void)
6160 {
6161 arc_anon = &ARC_anon;
6162 arc_mru = &ARC_mru;
6163 arc_mru_ghost = &ARC_mru_ghost;
6164 arc_mfu = &ARC_mfu;
6165 arc_mfu_ghost = &ARC_mfu_ghost;
6166 arc_l2c_only = &ARC_l2c_only;
6167
6168 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
6169 sizeof (arc_buf_hdr_t),
6170 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6171 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
6172 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
6173 sizeof (arc_buf_hdr_t),
6174 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6175 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
6176 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
6177 sizeof (arc_buf_hdr_t),
6178 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6179 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
6180 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
6181 sizeof (arc_buf_hdr_t),
6182 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6183 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
6184 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
6185 sizeof (arc_buf_hdr_t),
6186 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6187 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
6188 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
6189 sizeof (arc_buf_hdr_t),
6190 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6191 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
6192 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
6193 sizeof (arc_buf_hdr_t),
6194 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6195 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
6196 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
6197 sizeof (arc_buf_hdr_t),
6198 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6199 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
6200 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
6201 sizeof (arc_buf_hdr_t),
6202 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6203 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
6204 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
6205 sizeof (arc_buf_hdr_t),
6206 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6207 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
6208
6209 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6210 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6211 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6212 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6213 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6214 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6215 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6216 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6217 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6218 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6219 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6220 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6221
6222 refcount_create(&arc_anon->arcs_size);
6223 refcount_create(&arc_mru->arcs_size);
6224 refcount_create(&arc_mru_ghost->arcs_size);
6225 refcount_create(&arc_mfu->arcs_size);
6226 refcount_create(&arc_mfu_ghost->arcs_size);
6227 refcount_create(&arc_l2c_only->arcs_size);
6228
6229 arc_anon->arcs_state = ARC_STATE_ANON;
6230 arc_mru->arcs_state = ARC_STATE_MRU;
6231 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
6232 arc_mfu->arcs_state = ARC_STATE_MFU;
6233 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
6234 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
6235 }
6236
6237 static void
6238 arc_state_fini(void)
6239 {
6240 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6241 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6242 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6243 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6244 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6245 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6246 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6247 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6248 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6249 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6250 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6251 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6252
6253 refcount_destroy(&arc_anon->arcs_size);
6254 refcount_destroy(&arc_mru->arcs_size);
6255 refcount_destroy(&arc_mru_ghost->arcs_size);
6256 refcount_destroy(&arc_mfu->arcs_size);
6257 refcount_destroy(&arc_mfu_ghost->arcs_size);
6258 refcount_destroy(&arc_l2c_only->arcs_size);
6259
6260 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
6261 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
6262 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
6263 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
6264 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
6265 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
6266 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
6267 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
6268 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
6269 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
6270 }
6271
6272 uint64_t
6273 arc_max_bytes(void)
6274 {
6275 return (arc_c_max);
6276 }
6277
6278 void
6279 arc_init(void)
6280 {
6281 /*
6282 * allmem is "all memory that we could possibly use".
6283 */
6284 #ifdef _KERNEL
6285 uint64_t allmem = ptob(physmem);
6286 #else
6287 uint64_t allmem = (physmem * PAGESIZE) / 2;
6288 #endif
6289 uint64_t percent;
6290
6291 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
6292 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
6293 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
6294
6295 /* Convert seconds to clock ticks */
6296 arc_min_prefetch_lifespan = 1 * hz;
6297
6298 #ifdef _KERNEL
6299 /*
6300 * Register a shrinker to support synchronous (direct) memory
6301 * reclaim from the arc. This is done to prevent kswapd from
6302 * swapping out pages when it is preferable to shrink the arc.
6303 */
6304 spl_register_shrinker(&arc_shrinker);
6305
6306 /* Set to 1/64 of all memory or a minimum of 512K */
6307 arc_sys_free = MAX(ptob(physmem / 64), (512 * 1024));
6308 arc_need_free = 0;
6309 #endif
6310
6311 /* Set max to 1/2 of all memory */
6312 arc_c_max = allmem / 2;
6313
6314 /*
6315 * In userland, there's only the memory pressure that we artificially
6316 * create (see arc_available_memory()). Don't let arc_c get too
6317 * small, because it can cause transactions to be larger than
6318 * arc_c, causing arc_tempreserve_space() to fail.
6319 */
6320 #ifndef _KERNEL
6321 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
6322 #else
6323 arc_c_min = 2ULL << SPA_MAXBLOCKSHIFT;
6324 #endif
6325
6326 arc_c = arc_c_max;
6327 arc_p = (arc_c >> 1);
6328 arc_size = 0;
6329
6330 /* Set min to 1/2 of arc_c_min */
6331 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
6332 /* Initialize maximum observed usage to zero */
6333 arc_meta_max = 0;
6334 /*
6335 * Set arc_meta_limit to a percent of arc_c_max with a floor of
6336 * arc_meta_min, and a ceiling of arc_c_max.
6337 */
6338 percent = MIN(zfs_arc_meta_limit_percent, 100);
6339 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
6340 percent = MIN(zfs_arc_dnode_limit_percent, 100);
6341 arc_dnode_limit = (percent * arc_meta_limit) / 100;
6342
6343 /* Apply user specified tunings */
6344 arc_tuning_update();
6345
6346 if (zfs_arc_num_sublists_per_state < 1)
6347 zfs_arc_num_sublists_per_state = MAX(boot_ncpus, 1);
6348
6349 /* if kmem_flags are set, lets try to use less memory */
6350 if (kmem_debugging())
6351 arc_c = arc_c / 2;
6352 if (arc_c < arc_c_min)
6353 arc_c = arc_c_min;
6354
6355 arc_state_init();
6356 buf_init();
6357
6358 list_create(&arc_prune_list, sizeof (arc_prune_t),
6359 offsetof(arc_prune_t, p_node));
6360 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
6361
6362 arc_prune_taskq = taskq_create("arc_prune", max_ncpus, defclsyspri,
6363 max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
6364
6365 arc_reclaim_thread_exit = B_FALSE;
6366
6367 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6368 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6369
6370 if (arc_ksp != NULL) {
6371 arc_ksp->ks_data = &arc_stats;
6372 arc_ksp->ks_update = arc_kstat_update;
6373 kstat_install(arc_ksp);
6374 }
6375
6376 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
6377 TS_RUN, defclsyspri);
6378
6379 arc_dead = B_FALSE;
6380 arc_warm = B_FALSE;
6381
6382 /*
6383 * Calculate maximum amount of dirty data per pool.
6384 *
6385 * If it has been set by a module parameter, take that.
6386 * Otherwise, use a percentage of physical memory defined by
6387 * zfs_dirty_data_max_percent (default 10%) with a cap at
6388 * zfs_dirty_data_max_max (default 25% of physical memory).
6389 */
6390 if (zfs_dirty_data_max_max == 0)
6391 zfs_dirty_data_max_max = (uint64_t)physmem * PAGESIZE *
6392 zfs_dirty_data_max_max_percent / 100;
6393
6394 if (zfs_dirty_data_max == 0) {
6395 zfs_dirty_data_max = (uint64_t)physmem * PAGESIZE *
6396 zfs_dirty_data_max_percent / 100;
6397 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6398 zfs_dirty_data_max_max);
6399 }
6400 }
6401
6402 void
6403 arc_fini(void)
6404 {
6405 arc_prune_t *p;
6406
6407 #ifdef _KERNEL
6408 spl_unregister_shrinker(&arc_shrinker);
6409 #endif /* _KERNEL */
6410
6411 mutex_enter(&arc_reclaim_lock);
6412 arc_reclaim_thread_exit = B_TRUE;
6413 /*
6414 * The reclaim thread will set arc_reclaim_thread_exit back to
6415 * B_FALSE when it is finished exiting; we're waiting for that.
6416 */
6417 while (arc_reclaim_thread_exit) {
6418 cv_signal(&arc_reclaim_thread_cv);
6419 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6420 }
6421 mutex_exit(&arc_reclaim_lock);
6422
6423 /* Use B_TRUE to ensure *all* buffers are evicted */
6424 arc_flush(NULL, B_TRUE);
6425
6426 arc_dead = B_TRUE;
6427
6428 if (arc_ksp != NULL) {
6429 kstat_delete(arc_ksp);
6430 arc_ksp = NULL;
6431 }
6432
6433 taskq_wait(arc_prune_taskq);
6434 taskq_destroy(arc_prune_taskq);
6435
6436 mutex_enter(&arc_prune_mtx);
6437 while ((p = list_head(&arc_prune_list)) != NULL) {
6438 list_remove(&arc_prune_list, p);
6439 refcount_remove(&p->p_refcnt, &arc_prune_list);
6440 refcount_destroy(&p->p_refcnt);
6441 kmem_free(p, sizeof (*p));
6442 }
6443 mutex_exit(&arc_prune_mtx);
6444
6445 list_destroy(&arc_prune_list);
6446 mutex_destroy(&arc_prune_mtx);
6447 mutex_destroy(&arc_reclaim_lock);
6448 cv_destroy(&arc_reclaim_thread_cv);
6449 cv_destroy(&arc_reclaim_waiters_cv);
6450
6451 arc_state_fini();
6452 buf_fini();
6453
6454 ASSERT0(arc_loaned_bytes);
6455 }
6456
6457 /*
6458 * Level 2 ARC
6459 *
6460 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6461 * It uses dedicated storage devices to hold cached data, which are populated
6462 * using large infrequent writes. The main role of this cache is to boost
6463 * the performance of random read workloads. The intended L2ARC devices
6464 * include short-stroked disks, solid state disks, and other media with
6465 * substantially faster read latency than disk.
6466 *
6467 * +-----------------------+
6468 * | ARC |
6469 * +-----------------------+
6470 * | ^ ^
6471 * | | |
6472 * l2arc_feed_thread() arc_read()
6473 * | | |
6474 * | l2arc read |
6475 * V | |
6476 * +---------------+ |
6477 * | L2ARC | |
6478 * +---------------+ |
6479 * | ^ |
6480 * l2arc_write() | |
6481 * | | |
6482 * V | |
6483 * +-------+ +-------+
6484 * | vdev | | vdev |
6485 * | cache | | cache |
6486 * +-------+ +-------+
6487 * +=========+ .-----.
6488 * : L2ARC : |-_____-|
6489 * : devices : | Disks |
6490 * +=========+ `-_____-'
6491 *
6492 * Read requests are satisfied from the following sources, in order:
6493 *
6494 * 1) ARC
6495 * 2) vdev cache of L2ARC devices
6496 * 3) L2ARC devices
6497 * 4) vdev cache of disks
6498 * 5) disks
6499 *
6500 * Some L2ARC device types exhibit extremely slow write performance.
6501 * To accommodate for this there are some significant differences between
6502 * the L2ARC and traditional cache design:
6503 *
6504 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
6505 * the ARC behave as usual, freeing buffers and placing headers on ghost
6506 * lists. The ARC does not send buffers to the L2ARC during eviction as
6507 * this would add inflated write latencies for all ARC memory pressure.
6508 *
6509 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6510 * It does this by periodically scanning buffers from the eviction-end of
6511 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6512 * not already there. It scans until a headroom of buffers is satisfied,
6513 * which itself is a buffer for ARC eviction. If a compressible buffer is
6514 * found during scanning and selected for writing to an L2ARC device, we
6515 * temporarily boost scanning headroom during the next scan cycle to make
6516 * sure we adapt to compression effects (which might significantly reduce
6517 * the data volume we write to L2ARC). The thread that does this is
6518 * l2arc_feed_thread(), illustrated below; example sizes are included to
6519 * provide a better sense of ratio than this diagram:
6520 *
6521 * head --> tail
6522 * +---------------------+----------+
6523 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
6524 * +---------------------+----------+ | o L2ARC eligible
6525 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
6526 * +---------------------+----------+ |
6527 * 15.9 Gbytes ^ 32 Mbytes |
6528 * headroom |
6529 * l2arc_feed_thread()
6530 * |
6531 * l2arc write hand <--[oooo]--'
6532 * | 8 Mbyte
6533 * | write max
6534 * V
6535 * +==============================+
6536 * L2ARC dev |####|#|###|###| |####| ... |
6537 * +==============================+
6538 * 32 Gbytes
6539 *
6540 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6541 * evicted, then the L2ARC has cached a buffer much sooner than it probably
6542 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
6543 * safe to say that this is an uncommon case, since buffers at the end of
6544 * the ARC lists have moved there due to inactivity.
6545 *
6546 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6547 * then the L2ARC simply misses copying some buffers. This serves as a
6548 * pressure valve to prevent heavy read workloads from both stalling the ARC
6549 * with waits and clogging the L2ARC with writes. This also helps prevent
6550 * the potential for the L2ARC to churn if it attempts to cache content too
6551 * quickly, such as during backups of the entire pool.
6552 *
6553 * 5. After system boot and before the ARC has filled main memory, there are
6554 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6555 * lists can remain mostly static. Instead of searching from tail of these
6556 * lists as pictured, the l2arc_feed_thread() will search from the list heads
6557 * for eligible buffers, greatly increasing its chance of finding them.
6558 *
6559 * The L2ARC device write speed is also boosted during this time so that
6560 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
6561 * there are no L2ARC reads, and no fear of degrading read performance
6562 * through increased writes.
6563 *
6564 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6565 * the vdev queue can aggregate them into larger and fewer writes. Each
6566 * device is written to in a rotor fashion, sweeping writes through
6567 * available space then repeating.
6568 *
6569 * 7. The L2ARC does not store dirty content. It never needs to flush
6570 * write buffers back to disk based storage.
6571 *
6572 * 8. If an ARC buffer is written (and dirtied) which also exists in the
6573 * L2ARC, the now stale L2ARC buffer is immediately dropped.
6574 *
6575 * The performance of the L2ARC can be tweaked by a number of tunables, which
6576 * may be necessary for different workloads:
6577 *
6578 * l2arc_write_max max write bytes per interval
6579 * l2arc_write_boost extra write bytes during device warmup
6580 * l2arc_noprefetch skip caching prefetched buffers
6581 * l2arc_headroom number of max device writes to precache
6582 * l2arc_headroom_boost when we find compressed buffers during ARC
6583 * scanning, we multiply headroom by this
6584 * percentage factor for the next scan cycle,
6585 * since more compressed buffers are likely to
6586 * be present
6587 * l2arc_feed_secs seconds between L2ARC writing
6588 *
6589 * Tunables may be removed or added as future performance improvements are
6590 * integrated, and also may become zpool properties.
6591 *
6592 * There are three key functions that control how the L2ARC warms up:
6593 *
6594 * l2arc_write_eligible() check if a buffer is eligible to cache
6595 * l2arc_write_size() calculate how much to write
6596 * l2arc_write_interval() calculate sleep delay between writes
6597 *
6598 * These three functions determine what to write, how much, and how quickly
6599 * to send writes.
6600 */
6601
6602 static boolean_t
6603 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6604 {
6605 /*
6606 * A buffer is *not* eligible for the L2ARC if it:
6607 * 1. belongs to a different spa.
6608 * 2. is already cached on the L2ARC.
6609 * 3. has an I/O in progress (it may be an incomplete read).
6610 * 4. is flagged not eligible (zfs property).
6611 */
6612 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
6613 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
6614 return (B_FALSE);
6615
6616 return (B_TRUE);
6617 }
6618
6619 static uint64_t
6620 l2arc_write_size(void)
6621 {
6622 uint64_t size;
6623
6624 /*
6625 * Make sure our globals have meaningful values in case the user
6626 * altered them.
6627 */
6628 size = l2arc_write_max;
6629 if (size == 0) {
6630 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6631 "be greater than zero, resetting it to the default (%d)",
6632 L2ARC_WRITE_SIZE);
6633 size = l2arc_write_max = L2ARC_WRITE_SIZE;
6634 }
6635
6636 if (arc_warm == B_FALSE)
6637 size += l2arc_write_boost;
6638
6639 return (size);
6640
6641 }
6642
6643 static clock_t
6644 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6645 {
6646 clock_t interval, next, now;
6647
6648 /*
6649 * If the ARC lists are busy, increase our write rate; if the
6650 * lists are stale, idle back. This is achieved by checking
6651 * how much we previously wrote - if it was more than half of
6652 * what we wanted, schedule the next write much sooner.
6653 */
6654 if (l2arc_feed_again && wrote > (wanted / 2))
6655 interval = (hz * l2arc_feed_min_ms) / 1000;
6656 else
6657 interval = hz * l2arc_feed_secs;
6658
6659 now = ddi_get_lbolt();
6660 next = MAX(now, MIN(now + interval, began + interval));
6661
6662 return (next);
6663 }
6664
6665 /*
6666 * Cycle through L2ARC devices. This is how L2ARC load balances.
6667 * If a device is returned, this also returns holding the spa config lock.
6668 */
6669 static l2arc_dev_t *
6670 l2arc_dev_get_next(void)
6671 {
6672 l2arc_dev_t *first, *next = NULL;
6673
6674 /*
6675 * Lock out the removal of spas (spa_namespace_lock), then removal
6676 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
6677 * both locks will be dropped and a spa config lock held instead.
6678 */
6679 mutex_enter(&spa_namespace_lock);
6680 mutex_enter(&l2arc_dev_mtx);
6681
6682 /* if there are no vdevs, there is nothing to do */
6683 if (l2arc_ndev == 0)
6684 goto out;
6685
6686 first = NULL;
6687 next = l2arc_dev_last;
6688 do {
6689 /* loop around the list looking for a non-faulted vdev */
6690 if (next == NULL) {
6691 next = list_head(l2arc_dev_list);
6692 } else {
6693 next = list_next(l2arc_dev_list, next);
6694 if (next == NULL)
6695 next = list_head(l2arc_dev_list);
6696 }
6697
6698 /* if we have come back to the start, bail out */
6699 if (first == NULL)
6700 first = next;
6701 else if (next == first)
6702 break;
6703
6704 } while (vdev_is_dead(next->l2ad_vdev));
6705
6706 /* if we were unable to find any usable vdevs, return NULL */
6707 if (vdev_is_dead(next->l2ad_vdev))
6708 next = NULL;
6709
6710 l2arc_dev_last = next;
6711
6712 out:
6713 mutex_exit(&l2arc_dev_mtx);
6714
6715 /*
6716 * Grab the config lock to prevent the 'next' device from being
6717 * removed while we are writing to it.
6718 */
6719 if (next != NULL)
6720 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6721 mutex_exit(&spa_namespace_lock);
6722
6723 return (next);
6724 }
6725
6726 /*
6727 * Free buffers that were tagged for destruction.
6728 */
6729 static void
6730 l2arc_do_free_on_write(void)
6731 {
6732 list_t *buflist;
6733 l2arc_data_free_t *df, *df_prev;
6734
6735 mutex_enter(&l2arc_free_on_write_mtx);
6736 buflist = l2arc_free_on_write;
6737
6738 for (df = list_tail(buflist); df; df = df_prev) {
6739 df_prev = list_prev(buflist, df);
6740 ASSERT3P(df->l2df_data, !=, NULL);
6741 if (df->l2df_type == ARC_BUFC_METADATA) {
6742 zio_buf_free(df->l2df_data, df->l2df_size);
6743 } else {
6744 ASSERT(df->l2df_type == ARC_BUFC_DATA);
6745 zio_data_buf_free(df->l2df_data, df->l2df_size);
6746 }
6747 list_remove(buflist, df);
6748 kmem_free(df, sizeof (l2arc_data_free_t));
6749 }
6750
6751 mutex_exit(&l2arc_free_on_write_mtx);
6752 }
6753
6754 /*
6755 * A write to a cache device has completed. Update all headers to allow
6756 * reads from these buffers to begin.
6757 */
6758 static void
6759 l2arc_write_done(zio_t *zio)
6760 {
6761 l2arc_write_callback_t *cb;
6762 l2arc_dev_t *dev;
6763 list_t *buflist;
6764 arc_buf_hdr_t *head, *hdr, *hdr_prev;
6765 kmutex_t *hash_lock;
6766 int64_t bytes_dropped = 0;
6767
6768 cb = zio->io_private;
6769 ASSERT3P(cb, !=, NULL);
6770 dev = cb->l2wcb_dev;
6771 ASSERT3P(dev, !=, NULL);
6772 head = cb->l2wcb_head;
6773 ASSERT3P(head, !=, NULL);
6774 buflist = &dev->l2ad_buflist;
6775 ASSERT3P(buflist, !=, NULL);
6776 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6777 l2arc_write_callback_t *, cb);
6778
6779 if (zio->io_error != 0)
6780 ARCSTAT_BUMP(arcstat_l2_writes_error);
6781
6782 /*
6783 * All writes completed, or an error was hit.
6784 */
6785 top:
6786 mutex_enter(&dev->l2ad_mtx);
6787 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6788 hdr_prev = list_prev(buflist, hdr);
6789
6790 hash_lock = HDR_LOCK(hdr);
6791
6792 /*
6793 * We cannot use mutex_enter or else we can deadlock
6794 * with l2arc_write_buffers (due to swapping the order
6795 * the hash lock and l2ad_mtx are taken).
6796 */
6797 if (!mutex_tryenter(hash_lock)) {
6798 /*
6799 * Missed the hash lock. We must retry so we
6800 * don't leave the ARC_FLAG_L2_WRITING bit set.
6801 */
6802 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6803
6804 /*
6805 * We don't want to rescan the headers we've
6806 * already marked as having been written out, so
6807 * we reinsert the head node so we can pick up
6808 * where we left off.
6809 */
6810 list_remove(buflist, head);
6811 list_insert_after(buflist, hdr, head);
6812
6813 mutex_exit(&dev->l2ad_mtx);
6814
6815 /*
6816 * We wait for the hash lock to become available
6817 * to try and prevent busy waiting, and increase
6818 * the chance we'll be able to acquire the lock
6819 * the next time around.
6820 */
6821 mutex_enter(hash_lock);
6822 mutex_exit(hash_lock);
6823 goto top;
6824 }
6825
6826 /*
6827 * We could not have been moved into the arc_l2c_only
6828 * state while in-flight due to our ARC_FLAG_L2_WRITING
6829 * bit being set. Let's just ensure that's being enforced.
6830 */
6831 ASSERT(HDR_HAS_L1HDR(hdr));
6832
6833 /*
6834 * Skipped - drop L2ARC entry and mark the header as no
6835 * longer L2 eligibile.
6836 */
6837 if (zio->io_error != 0) {
6838 /*
6839 * Error - drop L2ARC entry.
6840 */
6841 list_remove(buflist, hdr);
6842 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
6843
6844 ARCSTAT_INCR(arcstat_l2_asize, -arc_hdr_size(hdr));
6845 ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr));
6846
6847 bytes_dropped += arc_hdr_size(hdr);
6848 (void) refcount_remove_many(&dev->l2ad_alloc,
6849 arc_hdr_size(hdr), hdr);
6850 }
6851
6852 /*
6853 * Allow ARC to begin reads and ghost list evictions to
6854 * this L2ARC entry.
6855 */
6856 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
6857
6858 mutex_exit(hash_lock);
6859 }
6860
6861 atomic_inc_64(&l2arc_writes_done);
6862 list_remove(buflist, head);
6863 ASSERT(!HDR_HAS_L1HDR(head));
6864 kmem_cache_free(hdr_l2only_cache, head);
6865 mutex_exit(&dev->l2ad_mtx);
6866
6867 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6868
6869 l2arc_do_free_on_write();
6870
6871 kmem_free(cb, sizeof (l2arc_write_callback_t));
6872 }
6873
6874 /*
6875 * A read to a cache device completed. Validate buffer contents before
6876 * handing over to the regular ARC routines.
6877 */
6878 static void
6879 l2arc_read_done(zio_t *zio)
6880 {
6881 l2arc_read_callback_t *cb;
6882 arc_buf_hdr_t *hdr;
6883 kmutex_t *hash_lock;
6884 boolean_t valid_cksum;
6885
6886 ASSERT3P(zio->io_vd, !=, NULL);
6887 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6888
6889 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6890
6891 cb = zio->io_private;
6892 ASSERT3P(cb, !=, NULL);
6893 hdr = cb->l2rcb_hdr;
6894 ASSERT3P(hdr, !=, NULL);
6895
6896 hash_lock = HDR_LOCK(hdr);
6897 mutex_enter(hash_lock);
6898 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6899
6900 ASSERT3P(zio->io_data, !=, NULL);
6901
6902 /*
6903 * Check this survived the L2ARC journey.
6904 */
6905 ASSERT3P(zio->io_data, ==, hdr->b_l1hdr.b_pdata);
6906 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
6907 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
6908
6909 valid_cksum = arc_cksum_is_equal(hdr, zio);
6910 if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6911 mutex_exit(hash_lock);
6912 zio->io_private = hdr;
6913 arc_read_done(zio);
6914 } else {
6915 mutex_exit(hash_lock);
6916 /*
6917 * Buffer didn't survive caching. Increment stats and
6918 * reissue to the original storage device.
6919 */
6920 if (zio->io_error != 0) {
6921 ARCSTAT_BUMP(arcstat_l2_io_error);
6922 } else {
6923 zio->io_error = SET_ERROR(EIO);
6924 }
6925 if (!valid_cksum)
6926 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6927
6928 /*
6929 * If there's no waiter, issue an async i/o to the primary
6930 * storage now. If there *is* a waiter, the caller must
6931 * issue the i/o in a context where it's OK to block.
6932 */
6933 if (zio->io_waiter == NULL) {
6934 zio_t *pio = zio_unique_parent(zio);
6935
6936 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6937
6938 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
6939 hdr->b_l1hdr.b_pdata, zio->io_size, arc_read_done,
6940 hdr, zio->io_priority, cb->l2rcb_flags,
6941 &cb->l2rcb_zb));
6942 }
6943 }
6944
6945 kmem_free(cb, sizeof (l2arc_read_callback_t));
6946 }
6947
6948 /*
6949 * This is the list priority from which the L2ARC will search for pages to
6950 * cache. This is used within loops (0..3) to cycle through lists in the
6951 * desired order. This order can have a significant effect on cache
6952 * performance.
6953 *
6954 * Currently the metadata lists are hit first, MFU then MRU, followed by
6955 * the data lists. This function returns a locked list, and also returns
6956 * the lock pointer.
6957 */
6958 static multilist_sublist_t *
6959 l2arc_sublist_lock(int list_num)
6960 {
6961 multilist_t *ml = NULL;
6962 unsigned int idx;
6963
6964 ASSERT(list_num >= 0 && list_num <= 3);
6965
6966 switch (list_num) {
6967 case 0:
6968 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
6969 break;
6970 case 1:
6971 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
6972 break;
6973 case 2:
6974 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
6975 break;
6976 case 3:
6977 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
6978 break;
6979 }
6980
6981 /*
6982 * Return a randomly-selected sublist. This is acceptable
6983 * because the caller feeds only a little bit of data for each
6984 * call (8MB). Subsequent calls will result in different
6985 * sublists being selected.
6986 */
6987 idx = multilist_get_random_index(ml);
6988 return (multilist_sublist_lock(ml, idx));
6989 }
6990
6991 /*
6992 * Evict buffers from the device write hand to the distance specified in
6993 * bytes. This distance may span populated buffers, it may span nothing.
6994 * This is clearing a region on the L2ARC device ready for writing.
6995 * If the 'all' boolean is set, every buffer is evicted.
6996 */
6997 static void
6998 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6999 {
7000 list_t *buflist;
7001 arc_buf_hdr_t *hdr, *hdr_prev;
7002 kmutex_t *hash_lock;
7003 uint64_t taddr;
7004
7005 buflist = &dev->l2ad_buflist;
7006
7007 if (!all && dev->l2ad_first) {
7008 /*
7009 * This is the first sweep through the device. There is
7010 * nothing to evict.
7011 */
7012 return;
7013 }
7014
7015 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
7016 /*
7017 * When nearing the end of the device, evict to the end
7018 * before the device write hand jumps to the start.
7019 */
7020 taddr = dev->l2ad_end;
7021 } else {
7022 taddr = dev->l2ad_hand + distance;
7023 }
7024 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
7025 uint64_t, taddr, boolean_t, all);
7026
7027 top:
7028 mutex_enter(&dev->l2ad_mtx);
7029 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
7030 hdr_prev = list_prev(buflist, hdr);
7031
7032 hash_lock = HDR_LOCK(hdr);
7033
7034 /*
7035 * We cannot use mutex_enter or else we can deadlock
7036 * with l2arc_write_buffers (due to swapping the order
7037 * the hash lock and l2ad_mtx are taken).
7038 */
7039 if (!mutex_tryenter(hash_lock)) {
7040 /*
7041 * Missed the hash lock. Retry.
7042 */
7043 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
7044 mutex_exit(&dev->l2ad_mtx);
7045 mutex_enter(hash_lock);
7046 mutex_exit(hash_lock);
7047 goto top;
7048 }
7049
7050 if (HDR_L2_WRITE_HEAD(hdr)) {
7051 /*
7052 * We hit a write head node. Leave it for
7053 * l2arc_write_done().
7054 */
7055 list_remove(buflist, hdr);
7056 mutex_exit(hash_lock);
7057 continue;
7058 }
7059
7060 if (!all && HDR_HAS_L2HDR(hdr) &&
7061 (hdr->b_l2hdr.b_daddr > taddr ||
7062 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
7063 /*
7064 * We've evicted to the target address,
7065 * or the end of the device.
7066 */
7067 mutex_exit(hash_lock);
7068 break;
7069 }
7070
7071 ASSERT(HDR_HAS_L2HDR(hdr));
7072 if (!HDR_HAS_L1HDR(hdr)) {
7073 ASSERT(!HDR_L2_READING(hdr));
7074 /*
7075 * This doesn't exist in the ARC. Destroy.
7076 * arc_hdr_destroy() will call list_remove()
7077 * and decrement arcstat_l2_size.
7078 */
7079 arc_change_state(arc_anon, hdr, hash_lock);
7080 arc_hdr_destroy(hdr);
7081 } else {
7082 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
7083 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
7084 /*
7085 * Invalidate issued or about to be issued
7086 * reads, since we may be about to write
7087 * over this location.
7088 */
7089 if (HDR_L2_READING(hdr)) {
7090 ARCSTAT_BUMP(arcstat_l2_evict_reading);
7091 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
7092 }
7093
7094 /* Ensure this header has finished being written */
7095 ASSERT(!HDR_L2_WRITING(hdr));
7096
7097 arc_hdr_l2hdr_destroy(hdr);
7098 }
7099 mutex_exit(hash_lock);
7100 }
7101 mutex_exit(&dev->l2ad_mtx);
7102 }
7103
7104 /*
7105 * Find and write ARC buffers to the L2ARC device.
7106 *
7107 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
7108 * for reading until they have completed writing.
7109 * The headroom_boost is an in-out parameter used to maintain headroom boost
7110 * state between calls to this function.
7111 *
7112 * Returns the number of bytes actually written (which may be smaller than
7113 * the delta by which the device hand has changed due to alignment).
7114 */
7115 static uint64_t
7116 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
7117 {
7118 arc_buf_hdr_t *hdr, *hdr_prev, *head;
7119 uint64_t write_asize, write_psize, write_sz, headroom;
7120 boolean_t full;
7121 l2arc_write_callback_t *cb;
7122 zio_t *pio, *wzio;
7123 uint64_t guid = spa_load_guid(spa);
7124 int try;
7125
7126 ASSERT3P(dev->l2ad_vdev, !=, NULL);
7127
7128 pio = NULL;
7129 write_sz = write_asize = write_psize = 0;
7130 full = B_FALSE;
7131 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
7132 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
7133
7134 /*
7135 * Copy buffers for L2ARC writing.
7136 */
7137 for (try = 0; try <= 3; try++) {
7138 multilist_sublist_t *mls = l2arc_sublist_lock(try);
7139 uint64_t passed_sz = 0;
7140
7141 /*
7142 * L2ARC fast warmup.
7143 *
7144 * Until the ARC is warm and starts to evict, read from the
7145 * head of the ARC lists rather than the tail.
7146 */
7147 if (arc_warm == B_FALSE)
7148 hdr = multilist_sublist_head(mls);
7149 else
7150 hdr = multilist_sublist_tail(mls);
7151
7152 headroom = target_sz * l2arc_headroom;
7153 if (zfs_compressed_arc_enabled)
7154 headroom = (headroom * l2arc_headroom_boost) / 100;
7155
7156 for (; hdr; hdr = hdr_prev) {
7157 kmutex_t *hash_lock;
7158 uint64_t asize, size;
7159 void *to_write;
7160
7161 if (arc_warm == B_FALSE)
7162 hdr_prev = multilist_sublist_next(mls, hdr);
7163 else
7164 hdr_prev = multilist_sublist_prev(mls, hdr);
7165
7166 hash_lock = HDR_LOCK(hdr);
7167 if (!mutex_tryenter(hash_lock)) {
7168 /*
7169 * Skip this buffer rather than waiting.
7170 */
7171 continue;
7172 }
7173
7174 passed_sz += HDR_GET_LSIZE(hdr);
7175 if (passed_sz > headroom) {
7176 /*
7177 * Searched too far.
7178 */
7179 mutex_exit(hash_lock);
7180 break;
7181 }
7182
7183 if (!l2arc_write_eligible(guid, hdr)) {
7184 mutex_exit(hash_lock);
7185 continue;
7186 }
7187
7188 if ((write_asize + HDR_GET_LSIZE(hdr)) > target_sz) {
7189 full = B_TRUE;
7190 mutex_exit(hash_lock);
7191 break;
7192 }
7193
7194 if (pio == NULL) {
7195 /*
7196 * Insert a dummy header on the buflist so
7197 * l2arc_write_done() can find where the
7198 * write buffers begin without searching.
7199 */
7200 mutex_enter(&dev->l2ad_mtx);
7201 list_insert_head(&dev->l2ad_buflist, head);
7202 mutex_exit(&dev->l2ad_mtx);
7203
7204 cb = kmem_alloc(
7205 sizeof (l2arc_write_callback_t), KM_SLEEP);
7206 cb->l2wcb_dev = dev;
7207 cb->l2wcb_head = head;
7208 pio = zio_root(spa, l2arc_write_done, cb,
7209 ZIO_FLAG_CANFAIL);
7210 }
7211
7212 hdr->b_l2hdr.b_dev = dev;
7213 hdr->b_l2hdr.b_hits = 0;
7214
7215 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
7216 arc_hdr_set_flags(hdr,
7217 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
7218
7219 mutex_enter(&dev->l2ad_mtx);
7220 list_insert_head(&dev->l2ad_buflist, hdr);
7221 mutex_exit(&dev->l2ad_mtx);
7222
7223 /*
7224 * We rely on the L1 portion of the header below, so
7225 * it's invalid for this header to have been evicted out
7226 * of the ghost cache, prior to being written out. The
7227 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
7228 */
7229 ASSERT(HDR_HAS_L1HDR(hdr));
7230
7231 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
7232 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
7233 ASSERT3U(arc_hdr_size(hdr), >, 0);
7234 size = arc_hdr_size(hdr);
7235
7236 (void) refcount_add_many(&dev->l2ad_alloc, size, hdr);
7237
7238 /*
7239 * Normally the L2ARC can use the hdr's data, but if
7240 * we're sharing data between the hdr and one of its
7241 * bufs, L2ARC needs its own copy of the data so that
7242 * the ZIO below can't race with the buf consumer. To
7243 * ensure that this copy will be available for the
7244 * lifetime of the ZIO and be cleaned up afterwards, we
7245 * add it to the l2arc_free_on_write queue.
7246 */
7247 if (!HDR_SHARED_DATA(hdr)) {
7248 to_write = hdr->b_l1hdr.b_pdata;
7249 } else {
7250 arc_buf_contents_t type = arc_buf_type(hdr);
7251 if (type == ARC_BUFC_METADATA) {
7252 to_write = zio_buf_alloc(size);
7253 } else {
7254 ASSERT3U(type, ==, ARC_BUFC_DATA);
7255 to_write = zio_data_buf_alloc(size);
7256 }
7257
7258 bcopy(hdr->b_l1hdr.b_pdata, to_write, size);
7259 l2arc_free_data_on_write(to_write, size, type);
7260 }
7261 wzio = zio_write_phys(pio, dev->l2ad_vdev,
7262 hdr->b_l2hdr.b_daddr, size, to_write,
7263 ZIO_CHECKSUM_OFF, NULL, hdr,
7264 ZIO_PRIORITY_ASYNC_WRITE,
7265 ZIO_FLAG_CANFAIL, B_FALSE);
7266
7267 write_sz += HDR_GET_LSIZE(hdr);
7268 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7269 zio_t *, wzio);
7270
7271 write_asize += size;
7272 /*
7273 * Keep the clock hand suitably device-aligned.
7274 */
7275 asize = vdev_psize_to_asize(dev->l2ad_vdev, size);
7276 write_psize += asize;
7277 dev->l2ad_hand += asize;
7278
7279 mutex_exit(hash_lock);
7280
7281 (void) zio_nowait(wzio);
7282 }
7283
7284 multilist_sublist_unlock(mls);
7285
7286 if (full == B_TRUE)
7287 break;
7288 }
7289
7290 /* No buffers selected for writing? */
7291 if (pio == NULL) {
7292 ASSERT0(write_sz);
7293 ASSERT(!HDR_HAS_L1HDR(head));
7294 kmem_cache_free(hdr_l2only_cache, head);
7295 return (0);
7296 }
7297
7298 ASSERT3U(write_asize, <=, target_sz);
7299 ARCSTAT_BUMP(arcstat_l2_writes_sent);
7300 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
7301 ARCSTAT_INCR(arcstat_l2_size, write_sz);
7302 ARCSTAT_INCR(arcstat_l2_asize, write_asize);
7303 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
7304
7305 /*
7306 * Bump device hand to the device start if it is approaching the end.
7307 * l2arc_evict() will already have evicted ahead for this case.
7308 */
7309 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7310 dev->l2ad_hand = dev->l2ad_start;
7311 dev->l2ad_first = B_FALSE;
7312 }
7313
7314 dev->l2ad_writing = B_TRUE;
7315 (void) zio_wait(pio);
7316 dev->l2ad_writing = B_FALSE;
7317
7318 return (write_asize);
7319 }
7320
7321 /*
7322 * This thread feeds the L2ARC at regular intervals. This is the beating
7323 * heart of the L2ARC.
7324 */
7325 static void
7326 l2arc_feed_thread(void)
7327 {
7328 callb_cpr_t cpr;
7329 l2arc_dev_t *dev;
7330 spa_t *spa;
7331 uint64_t size, wrote;
7332 clock_t begin, next = ddi_get_lbolt();
7333 fstrans_cookie_t cookie;
7334
7335 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7336
7337 mutex_enter(&l2arc_feed_thr_lock);
7338
7339 cookie = spl_fstrans_mark();
7340 while (l2arc_thread_exit == 0) {
7341 CALLB_CPR_SAFE_BEGIN(&cpr);
7342 (void) cv_timedwait_sig(&l2arc_feed_thr_cv,
7343 &l2arc_feed_thr_lock, next);
7344 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7345 next = ddi_get_lbolt() + hz;
7346
7347 /*
7348 * Quick check for L2ARC devices.
7349 */
7350 mutex_enter(&l2arc_dev_mtx);
7351 if (l2arc_ndev == 0) {
7352 mutex_exit(&l2arc_dev_mtx);
7353 continue;
7354 }
7355 mutex_exit(&l2arc_dev_mtx);
7356 begin = ddi_get_lbolt();
7357
7358 /*
7359 * This selects the next l2arc device to write to, and in
7360 * doing so the next spa to feed from: dev->l2ad_spa. This
7361 * will return NULL if there are now no l2arc devices or if
7362 * they are all faulted.
7363 *
7364 * If a device is returned, its spa's config lock is also
7365 * held to prevent device removal. l2arc_dev_get_next()
7366 * will grab and release l2arc_dev_mtx.
7367 */
7368 if ((dev = l2arc_dev_get_next()) == NULL)
7369 continue;
7370
7371 spa = dev->l2ad_spa;
7372 ASSERT3P(spa, !=, NULL);
7373
7374 /*
7375 * If the pool is read-only then force the feed thread to
7376 * sleep a little longer.
7377 */
7378 if (!spa_writeable(spa)) {
7379 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7380 spa_config_exit(spa, SCL_L2ARC, dev);
7381 continue;
7382 }
7383
7384 /*
7385 * Avoid contributing to memory pressure.
7386 */
7387 if (arc_reclaim_needed()) {
7388 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7389 spa_config_exit(spa, SCL_L2ARC, dev);
7390 continue;
7391 }
7392
7393 ARCSTAT_BUMP(arcstat_l2_feeds);
7394
7395 size = l2arc_write_size();
7396
7397 /*
7398 * Evict L2ARC buffers that will be overwritten.
7399 */
7400 l2arc_evict(dev, size, B_FALSE);
7401
7402 /*
7403 * Write ARC buffers.
7404 */
7405 wrote = l2arc_write_buffers(spa, dev, size);
7406
7407 /*
7408 * Calculate interval between writes.
7409 */
7410 next = l2arc_write_interval(begin, size, wrote);
7411 spa_config_exit(spa, SCL_L2ARC, dev);
7412 }
7413 spl_fstrans_unmark(cookie);
7414
7415 l2arc_thread_exit = 0;
7416 cv_broadcast(&l2arc_feed_thr_cv);
7417 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
7418 thread_exit();
7419 }
7420
7421 boolean_t
7422 l2arc_vdev_present(vdev_t *vd)
7423 {
7424 l2arc_dev_t *dev;
7425
7426 mutex_enter(&l2arc_dev_mtx);
7427 for (dev = list_head(l2arc_dev_list); dev != NULL;
7428 dev = list_next(l2arc_dev_list, dev)) {
7429 if (dev->l2ad_vdev == vd)
7430 break;
7431 }
7432 mutex_exit(&l2arc_dev_mtx);
7433
7434 return (dev != NULL);
7435 }
7436
7437 /*
7438 * Add a vdev for use by the L2ARC. By this point the spa has already
7439 * validated the vdev and opened it.
7440 */
7441 void
7442 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7443 {
7444 l2arc_dev_t *adddev;
7445
7446 ASSERT(!l2arc_vdev_present(vd));
7447
7448 /*
7449 * Create a new l2arc device entry.
7450 */
7451 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7452 adddev->l2ad_spa = spa;
7453 adddev->l2ad_vdev = vd;
7454 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7455 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7456 adddev->l2ad_hand = adddev->l2ad_start;
7457 adddev->l2ad_first = B_TRUE;
7458 adddev->l2ad_writing = B_FALSE;
7459 list_link_init(&adddev->l2ad_node);
7460
7461 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7462 /*
7463 * This is a list of all ARC buffers that are still valid on the
7464 * device.
7465 */
7466 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7467 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7468
7469 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7470 refcount_create(&adddev->l2ad_alloc);
7471
7472 /*
7473 * Add device to global list
7474 */
7475 mutex_enter(&l2arc_dev_mtx);
7476 list_insert_head(l2arc_dev_list, adddev);
7477 atomic_inc_64(&l2arc_ndev);
7478 mutex_exit(&l2arc_dev_mtx);
7479 }
7480
7481 /*
7482 * Remove a vdev from the L2ARC.
7483 */
7484 void
7485 l2arc_remove_vdev(vdev_t *vd)
7486 {
7487 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7488
7489 /*
7490 * Find the device by vdev
7491 */
7492 mutex_enter(&l2arc_dev_mtx);
7493 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7494 nextdev = list_next(l2arc_dev_list, dev);
7495 if (vd == dev->l2ad_vdev) {
7496 remdev = dev;
7497 break;
7498 }
7499 }
7500 ASSERT3P(remdev, !=, NULL);
7501
7502 /*
7503 * Remove device from global list
7504 */
7505 list_remove(l2arc_dev_list, remdev);
7506 l2arc_dev_last = NULL; /* may have been invalidated */
7507 atomic_dec_64(&l2arc_ndev);
7508 mutex_exit(&l2arc_dev_mtx);
7509
7510 /*
7511 * Clear all buflists and ARC references. L2ARC device flush.
7512 */
7513 l2arc_evict(remdev, 0, B_TRUE);
7514 list_destroy(&remdev->l2ad_buflist);
7515 mutex_destroy(&remdev->l2ad_mtx);
7516 refcount_destroy(&remdev->l2ad_alloc);
7517 kmem_free(remdev, sizeof (l2arc_dev_t));
7518 }
7519
7520 void
7521 l2arc_init(void)
7522 {
7523 l2arc_thread_exit = 0;
7524 l2arc_ndev = 0;
7525 l2arc_writes_sent = 0;
7526 l2arc_writes_done = 0;
7527
7528 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7529 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7530 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7531 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7532
7533 l2arc_dev_list = &L2ARC_dev_list;
7534 l2arc_free_on_write = &L2ARC_free_on_write;
7535 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7536 offsetof(l2arc_dev_t, l2ad_node));
7537 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7538 offsetof(l2arc_data_free_t, l2df_list_node));
7539 }
7540
7541 void
7542 l2arc_fini(void)
7543 {
7544 /*
7545 * This is called from dmu_fini(), which is called from spa_fini();
7546 * Because of this, we can assume that all l2arc devices have
7547 * already been removed when the pools themselves were removed.
7548 */
7549
7550 l2arc_do_free_on_write();
7551
7552 mutex_destroy(&l2arc_feed_thr_lock);
7553 cv_destroy(&l2arc_feed_thr_cv);
7554 mutex_destroy(&l2arc_dev_mtx);
7555 mutex_destroy(&l2arc_free_on_write_mtx);
7556
7557 list_destroy(l2arc_dev_list);
7558 list_destroy(l2arc_free_on_write);
7559 }
7560
7561 void
7562 l2arc_start(void)
7563 {
7564 if (!(spa_mode_global & FWRITE))
7565 return;
7566
7567 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7568 TS_RUN, defclsyspri);
7569 }
7570
7571 void
7572 l2arc_stop(void)
7573 {
7574 if (!(spa_mode_global & FWRITE))
7575 return;
7576
7577 mutex_enter(&l2arc_feed_thr_lock);
7578 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
7579 l2arc_thread_exit = 1;
7580 while (l2arc_thread_exit != 0)
7581 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7582 mutex_exit(&l2arc_feed_thr_lock);
7583 }
7584
7585 #if defined(_KERNEL) && defined(HAVE_SPL)
7586 EXPORT_SYMBOL(arc_buf_size);
7587 EXPORT_SYMBOL(arc_write);
7588 EXPORT_SYMBOL(arc_read);
7589 EXPORT_SYMBOL(arc_buf_info);
7590 EXPORT_SYMBOL(arc_getbuf_func);
7591 EXPORT_SYMBOL(arc_add_prune_callback);
7592 EXPORT_SYMBOL(arc_remove_prune_callback);
7593
7594 module_param(zfs_arc_min, ulong, 0644);
7595 MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
7596
7597 module_param(zfs_arc_max, ulong, 0644);
7598 MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
7599
7600 module_param(zfs_arc_meta_limit, ulong, 0644);
7601 MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
7602
7603 module_param(zfs_arc_meta_limit_percent, ulong, 0644);
7604 MODULE_PARM_DESC(zfs_arc_meta_limit_percent,
7605 "Percent of arc size for arc meta limit");
7606
7607 module_param(zfs_arc_meta_min, ulong, 0644);
7608 MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
7609
7610 module_param(zfs_arc_meta_prune, int, 0644);
7611 MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
7612
7613 module_param(zfs_arc_meta_adjust_restarts, int, 0644);
7614 MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
7615 "Limit number of restarts in arc_adjust_meta");
7616
7617 module_param(zfs_arc_meta_strategy, int, 0644);
7618 MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
7619
7620 module_param(zfs_arc_grow_retry, int, 0644);
7621 MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
7622
7623 module_param(zfs_arc_p_aggressive_disable, int, 0644);
7624 MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
7625
7626 module_param(zfs_arc_p_dampener_disable, int, 0644);
7627 MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
7628
7629 module_param(zfs_arc_shrink_shift, int, 0644);
7630 MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
7631
7632 module_param(zfs_arc_p_min_shift, int, 0644);
7633 MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
7634
7635 module_param(zfs_arc_average_blocksize, int, 0444);
7636 MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
7637
7638 module_param(zfs_compressed_arc_enabled, int, 0644);
7639 MODULE_PARM_DESC(zfs_arc_average_blocksize, "Disable compressed arc buffers");
7640
7641 module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
7642 MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
7643
7644 module_param(zfs_arc_num_sublists_per_state, int, 0644);
7645 MODULE_PARM_DESC(zfs_arc_num_sublists_per_state,
7646 "Number of sublists used in each of the ARC state lists");
7647
7648 module_param(l2arc_write_max, ulong, 0644);
7649 MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
7650
7651 module_param(l2arc_write_boost, ulong, 0644);
7652 MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
7653
7654 module_param(l2arc_headroom, ulong, 0644);
7655 MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
7656
7657 module_param(l2arc_headroom_boost, ulong, 0644);
7658 MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
7659
7660 module_param(l2arc_feed_secs, ulong, 0644);
7661 MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
7662
7663 module_param(l2arc_feed_min_ms, ulong, 0644);
7664 MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
7665
7666 module_param(l2arc_noprefetch, int, 0644);
7667 MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
7668
7669 module_param(l2arc_feed_again, int, 0644);
7670 MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
7671
7672 module_param(l2arc_norw, int, 0644);
7673 MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
7674
7675 module_param(zfs_arc_lotsfree_percent, int, 0644);
7676 MODULE_PARM_DESC(zfs_arc_lotsfree_percent,
7677 "System free memory I/O throttle in bytes");
7678
7679 module_param(zfs_arc_sys_free, ulong, 0644);
7680 MODULE_PARM_DESC(zfs_arc_sys_free, "System free memory target size in bytes");
7681
7682 module_param(zfs_arc_dnode_limit, ulong, 0644);
7683 MODULE_PARM_DESC(zfs_arc_dnode_limit, "Minimum bytes of dnodes in arc");
7684
7685 module_param(zfs_arc_dnode_limit_percent, ulong, 0644);
7686 MODULE_PARM_DESC(zfs_arc_dnode_limit_percent,
7687 "Percent of ARC meta buffers for dnodes");
7688
7689 module_param(zfs_arc_dnode_reduce_percent, ulong, 0644);
7690 MODULE_PARM_DESC(zfs_arc_dnode_reduce_percent,
7691 "Percentage of excess dnodes to try to unpin");
7692
7693 #endif