]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/arc.c
Add hdr_recl() reclaim callback
[mirror_zfs.git] / module / zfs / arc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 /*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size. So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes). We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74 /*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2. We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state. When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()). Note however that the data associated
105 * with the buffer may be evicted prior to the callback. The callback
106 * must be made with *no locks held* (to prevent deadlock). Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * It as also possible to register a callback which is run when the
112 * arc_meta_limit is reached and no buffers can be safely evicted. In
113 * this case the arc user should drop a reference on some arc buffers so
114 * they can be reclaimed and the arc_meta_limit honored. For example,
115 * when using the ZPL each dentry holds a references on a znode. These
116 * dentries must be pruned before the arc buffer holding the znode can
117 * be safely evicted.
118 *
119 * Note that the majority of the performance stats are manipulated
120 * with atomic operations.
121 *
122 * The L2ARC uses the l2ad_mtx on each vdev for the following:
123 *
124 * - L2ARC buflist creation
125 * - L2ARC buflist eviction
126 * - L2ARC write completion, which walks L2ARC buflists
127 * - ARC header destruction, as it removes from L2ARC buflists
128 * - ARC header release, as it removes from L2ARC buflists
129 */
130
131 #include <sys/spa.h>
132 #include <sys/zio.h>
133 #include <sys/zio_compress.h>
134 #include <sys/zfs_context.h>
135 #include <sys/arc.h>
136 #include <sys/refcount.h>
137 #include <sys/vdev.h>
138 #include <sys/vdev_impl.h>
139 #include <sys/dsl_pool.h>
140 #include <sys/multilist.h>
141 #ifdef _KERNEL
142 #include <sys/vmsystm.h>
143 #include <vm/anon.h>
144 #include <sys/fs/swapnode.h>
145 #include <sys/zpl.h>
146 #include <linux/mm_compat.h>
147 #endif
148 #include <sys/callb.h>
149 #include <sys/kstat.h>
150 #include <sys/dmu_tx.h>
151 #include <zfs_fletcher.h>
152 #include <sys/arc_impl.h>
153 #include <sys/trace_arc.h>
154
155 #ifndef _KERNEL
156 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
157 boolean_t arc_watch = B_FALSE;
158 #endif
159
160 static kmutex_t arc_reclaim_lock;
161 static kcondvar_t arc_reclaim_thread_cv;
162 static boolean_t arc_reclaim_thread_exit;
163 static kcondvar_t arc_reclaim_waiters_cv;
164
165 static kmutex_t arc_user_evicts_lock;
166 static kcondvar_t arc_user_evicts_cv;
167 static boolean_t arc_user_evicts_thread_exit;
168
169 /*
170 * The number of headers to evict in arc_evict_state_impl() before
171 * dropping the sublist lock and evicting from another sublist. A lower
172 * value means we're more likely to evict the "correct" header (i.e. the
173 * oldest header in the arc state), but comes with higher overhead
174 * (i.e. more invocations of arc_evict_state_impl()).
175 */
176 int zfs_arc_evict_batch_limit = 10;
177
178 /*
179 * The number of sublists used for each of the arc state lists. If this
180 * is not set to a suitable value by the user, it will be configured to
181 * the number of CPUs on the system in arc_init().
182 */
183 int zfs_arc_num_sublists_per_state = 0;
184
185 /* number of seconds before growing cache again */
186 static int arc_grow_retry = 5;
187
188 /* shift of arc_c for calculating overflow limit in arc_get_data_buf */
189 int zfs_arc_overflow_shift = 8;
190
191 /* shift of arc_c for calculating both min and max arc_p */
192 static int arc_p_min_shift = 4;
193
194 /* log2(fraction of arc to reclaim) */
195 static int arc_shrink_shift = 7;
196
197 /*
198 * log2(fraction of ARC which must be free to allow growing).
199 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
200 * when reading a new block into the ARC, we will evict an equal-sized block
201 * from the ARC.
202 *
203 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
204 * we will still not allow it to grow.
205 */
206 int arc_no_grow_shift = 5;
207
208
209 /*
210 * minimum lifespan of a prefetch block in clock ticks
211 * (initialized in arc_init())
212 */
213 static int arc_min_prefetch_lifespan;
214
215 /*
216 * If this percent of memory is free, don't throttle.
217 */
218 int arc_lotsfree_percent = 10;
219
220 static int arc_dead;
221
222 /*
223 * The arc has filled available memory and has now warmed up.
224 */
225 static boolean_t arc_warm;
226
227 /*
228 * These tunables are for performance analysis.
229 */
230 unsigned long zfs_arc_max = 0;
231 unsigned long zfs_arc_min = 0;
232 unsigned long zfs_arc_meta_limit = 0;
233 unsigned long zfs_arc_meta_min = 0;
234 int zfs_arc_grow_retry = 0;
235 int zfs_arc_shrink_shift = 0;
236 int zfs_arc_p_min_shift = 0;
237 int zfs_disable_dup_eviction = 0;
238 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
239
240 /*
241 * These tunables are Linux specific
242 */
243 int zfs_arc_memory_throttle_disable = 1;
244 int zfs_arc_min_prefetch_lifespan = 0;
245 int zfs_arc_p_aggressive_disable = 1;
246 int zfs_arc_p_dampener_disable = 1;
247 int zfs_arc_meta_prune = 10000;
248 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
249 int zfs_arc_meta_adjust_restarts = 4096;
250
251 /* The 6 states: */
252 static arc_state_t ARC_anon;
253 static arc_state_t ARC_mru;
254 static arc_state_t ARC_mru_ghost;
255 static arc_state_t ARC_mfu;
256 static arc_state_t ARC_mfu_ghost;
257 static arc_state_t ARC_l2c_only;
258
259 typedef struct arc_stats {
260 kstat_named_t arcstat_hits;
261 kstat_named_t arcstat_misses;
262 kstat_named_t arcstat_demand_data_hits;
263 kstat_named_t arcstat_demand_data_misses;
264 kstat_named_t arcstat_demand_metadata_hits;
265 kstat_named_t arcstat_demand_metadata_misses;
266 kstat_named_t arcstat_prefetch_data_hits;
267 kstat_named_t arcstat_prefetch_data_misses;
268 kstat_named_t arcstat_prefetch_metadata_hits;
269 kstat_named_t arcstat_prefetch_metadata_misses;
270 kstat_named_t arcstat_mru_hits;
271 kstat_named_t arcstat_mru_ghost_hits;
272 kstat_named_t arcstat_mfu_hits;
273 kstat_named_t arcstat_mfu_ghost_hits;
274 kstat_named_t arcstat_deleted;
275 /*
276 * Number of buffers that could not be evicted because the hash lock
277 * was held by another thread. The lock may not necessarily be held
278 * by something using the same buffer, since hash locks are shared
279 * by multiple buffers.
280 */
281 kstat_named_t arcstat_mutex_miss;
282 /*
283 * Number of buffers skipped because they have I/O in progress, are
284 * indrect prefetch buffers that have not lived long enough, or are
285 * not from the spa we're trying to evict from.
286 */
287 kstat_named_t arcstat_evict_skip;
288 /*
289 * Number of times arc_evict_state() was unable to evict enough
290 * buffers to reach its target amount.
291 */
292 kstat_named_t arcstat_evict_not_enough;
293 kstat_named_t arcstat_evict_l2_cached;
294 kstat_named_t arcstat_evict_l2_eligible;
295 kstat_named_t arcstat_evict_l2_ineligible;
296 kstat_named_t arcstat_evict_l2_skip;
297 kstat_named_t arcstat_hash_elements;
298 kstat_named_t arcstat_hash_elements_max;
299 kstat_named_t arcstat_hash_collisions;
300 kstat_named_t arcstat_hash_chains;
301 kstat_named_t arcstat_hash_chain_max;
302 kstat_named_t arcstat_p;
303 kstat_named_t arcstat_c;
304 kstat_named_t arcstat_c_min;
305 kstat_named_t arcstat_c_max;
306 kstat_named_t arcstat_size;
307 /*
308 * Number of bytes consumed by internal ARC structures necessary
309 * for tracking purposes; these structures are not actually
310 * backed by ARC buffers. This includes arc_buf_hdr_t structures
311 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
312 * caches), and arc_buf_t structures (allocated via arc_buf_t
313 * cache).
314 */
315 kstat_named_t arcstat_hdr_size;
316 /*
317 * Number of bytes consumed by ARC buffers of type equal to
318 * ARC_BUFC_DATA. This is generally consumed by buffers backing
319 * on disk user data (e.g. plain file contents).
320 */
321 kstat_named_t arcstat_data_size;
322 /*
323 * Number of bytes consumed by ARC buffers of type equal to
324 * ARC_BUFC_METADATA. This is generally consumed by buffers
325 * backing on disk data that is used for internal ZFS
326 * structures (e.g. ZAP, dnode, indirect blocks, etc).
327 */
328 kstat_named_t arcstat_metadata_size;
329 /*
330 * Number of bytes consumed by various buffers and structures
331 * not actually backed with ARC buffers. This includes bonus
332 * buffers (allocated directly via zio_buf_* functions),
333 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
334 * cache), and dnode_t structures (allocated via dnode_t cache).
335 */
336 kstat_named_t arcstat_other_size;
337 /*
338 * Total number of bytes consumed by ARC buffers residing in the
339 * arc_anon state. This includes *all* buffers in the arc_anon
340 * state; e.g. data, metadata, evictable, and unevictable buffers
341 * are all included in this value.
342 */
343 kstat_named_t arcstat_anon_size;
344 /*
345 * Number of bytes consumed by ARC buffers that meet the
346 * following criteria: backing buffers of type ARC_BUFC_DATA,
347 * residing in the arc_anon state, and are eligible for eviction
348 * (e.g. have no outstanding holds on the buffer).
349 */
350 kstat_named_t arcstat_anon_evictable_data;
351 /*
352 * Number of bytes consumed by ARC buffers that meet the
353 * following criteria: backing buffers of type ARC_BUFC_METADATA,
354 * residing in the arc_anon state, and are eligible for eviction
355 * (e.g. have no outstanding holds on the buffer).
356 */
357 kstat_named_t arcstat_anon_evictable_metadata;
358 /*
359 * Total number of bytes consumed by ARC buffers residing in the
360 * arc_mru state. This includes *all* buffers in the arc_mru
361 * state; e.g. data, metadata, evictable, and unevictable buffers
362 * are all included in this value.
363 */
364 kstat_named_t arcstat_mru_size;
365 /*
366 * Number of bytes consumed by ARC buffers that meet the
367 * following criteria: backing buffers of type ARC_BUFC_DATA,
368 * residing in the arc_mru state, and are eligible for eviction
369 * (e.g. have no outstanding holds on the buffer).
370 */
371 kstat_named_t arcstat_mru_evictable_data;
372 /*
373 * Number of bytes consumed by ARC buffers that meet the
374 * following criteria: backing buffers of type ARC_BUFC_METADATA,
375 * residing in the arc_mru state, and are eligible for eviction
376 * (e.g. have no outstanding holds on the buffer).
377 */
378 kstat_named_t arcstat_mru_evictable_metadata;
379 /*
380 * Total number of bytes that *would have been* consumed by ARC
381 * buffers in the arc_mru_ghost state. The key thing to note
382 * here, is the fact that this size doesn't actually indicate
383 * RAM consumption. The ghost lists only consist of headers and
384 * don't actually have ARC buffers linked off of these headers.
385 * Thus, *if* the headers had associated ARC buffers, these
386 * buffers *would have* consumed this number of bytes.
387 */
388 kstat_named_t arcstat_mru_ghost_size;
389 /*
390 * Number of bytes that *would have been* consumed by ARC
391 * buffers that are eligible for eviction, of type
392 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
393 */
394 kstat_named_t arcstat_mru_ghost_evictable_data;
395 /*
396 * Number of bytes that *would have been* consumed by ARC
397 * buffers that are eligible for eviction, of type
398 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
399 */
400 kstat_named_t arcstat_mru_ghost_evictable_metadata;
401 /*
402 * Total number of bytes consumed by ARC buffers residing in the
403 * arc_mfu state. This includes *all* buffers in the arc_mfu
404 * state; e.g. data, metadata, evictable, and unevictable buffers
405 * are all included in this value.
406 */
407 kstat_named_t arcstat_mfu_size;
408 /*
409 * Number of bytes consumed by ARC buffers that are eligible for
410 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
411 * state.
412 */
413 kstat_named_t arcstat_mfu_evictable_data;
414 /*
415 * Number of bytes consumed by ARC buffers that are eligible for
416 * eviction, of type ARC_BUFC_METADATA, and reside in the
417 * arc_mfu state.
418 */
419 kstat_named_t arcstat_mfu_evictable_metadata;
420 /*
421 * Total number of bytes that *would have been* consumed by ARC
422 * buffers in the arc_mfu_ghost state. See the comment above
423 * arcstat_mru_ghost_size for more details.
424 */
425 kstat_named_t arcstat_mfu_ghost_size;
426 /*
427 * Number of bytes that *would have been* consumed by ARC
428 * buffers that are eligible for eviction, of type
429 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
430 */
431 kstat_named_t arcstat_mfu_ghost_evictable_data;
432 /*
433 * Number of bytes that *would have been* consumed by ARC
434 * buffers that are eligible for eviction, of type
435 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
436 */
437 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
438 kstat_named_t arcstat_l2_hits;
439 kstat_named_t arcstat_l2_misses;
440 kstat_named_t arcstat_l2_feeds;
441 kstat_named_t arcstat_l2_rw_clash;
442 kstat_named_t arcstat_l2_read_bytes;
443 kstat_named_t arcstat_l2_write_bytes;
444 kstat_named_t arcstat_l2_writes_sent;
445 kstat_named_t arcstat_l2_writes_done;
446 kstat_named_t arcstat_l2_writes_error;
447 kstat_named_t arcstat_l2_writes_lock_retry;
448 kstat_named_t arcstat_l2_evict_lock_retry;
449 kstat_named_t arcstat_l2_evict_reading;
450 kstat_named_t arcstat_l2_evict_l1cached;
451 kstat_named_t arcstat_l2_free_on_write;
452 kstat_named_t arcstat_l2_cdata_free_on_write;
453 kstat_named_t arcstat_l2_abort_lowmem;
454 kstat_named_t arcstat_l2_cksum_bad;
455 kstat_named_t arcstat_l2_io_error;
456 kstat_named_t arcstat_l2_size;
457 kstat_named_t arcstat_l2_asize;
458 kstat_named_t arcstat_l2_hdr_size;
459 kstat_named_t arcstat_l2_compress_successes;
460 kstat_named_t arcstat_l2_compress_zeros;
461 kstat_named_t arcstat_l2_compress_failures;
462 kstat_named_t arcstat_memory_throttle_count;
463 kstat_named_t arcstat_duplicate_buffers;
464 kstat_named_t arcstat_duplicate_buffers_size;
465 kstat_named_t arcstat_duplicate_reads;
466 kstat_named_t arcstat_memory_direct_count;
467 kstat_named_t arcstat_memory_indirect_count;
468 kstat_named_t arcstat_no_grow;
469 kstat_named_t arcstat_tempreserve;
470 kstat_named_t arcstat_loaned_bytes;
471 kstat_named_t arcstat_prune;
472 kstat_named_t arcstat_meta_used;
473 kstat_named_t arcstat_meta_limit;
474 kstat_named_t arcstat_meta_max;
475 kstat_named_t arcstat_meta_min;
476 } arc_stats_t;
477
478 static arc_stats_t arc_stats = {
479 { "hits", KSTAT_DATA_UINT64 },
480 { "misses", KSTAT_DATA_UINT64 },
481 { "demand_data_hits", KSTAT_DATA_UINT64 },
482 { "demand_data_misses", KSTAT_DATA_UINT64 },
483 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
484 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
485 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
486 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
487 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
488 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
489 { "mru_hits", KSTAT_DATA_UINT64 },
490 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
491 { "mfu_hits", KSTAT_DATA_UINT64 },
492 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
493 { "deleted", KSTAT_DATA_UINT64 },
494 { "mutex_miss", KSTAT_DATA_UINT64 },
495 { "evict_skip", KSTAT_DATA_UINT64 },
496 { "evict_not_enough", KSTAT_DATA_UINT64 },
497 { "evict_l2_cached", KSTAT_DATA_UINT64 },
498 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
499 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
500 { "evict_l2_skip", KSTAT_DATA_UINT64 },
501 { "hash_elements", KSTAT_DATA_UINT64 },
502 { "hash_elements_max", KSTAT_DATA_UINT64 },
503 { "hash_collisions", KSTAT_DATA_UINT64 },
504 { "hash_chains", KSTAT_DATA_UINT64 },
505 { "hash_chain_max", KSTAT_DATA_UINT64 },
506 { "p", KSTAT_DATA_UINT64 },
507 { "c", KSTAT_DATA_UINT64 },
508 { "c_min", KSTAT_DATA_UINT64 },
509 { "c_max", KSTAT_DATA_UINT64 },
510 { "size", KSTAT_DATA_UINT64 },
511 { "hdr_size", KSTAT_DATA_UINT64 },
512 { "data_size", KSTAT_DATA_UINT64 },
513 { "metadata_size", KSTAT_DATA_UINT64 },
514 { "other_size", KSTAT_DATA_UINT64 },
515 { "anon_size", KSTAT_DATA_UINT64 },
516 { "anon_evictable_data", KSTAT_DATA_UINT64 },
517 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
518 { "mru_size", KSTAT_DATA_UINT64 },
519 { "mru_evictable_data", KSTAT_DATA_UINT64 },
520 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
521 { "mru_ghost_size", KSTAT_DATA_UINT64 },
522 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
523 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
524 { "mfu_size", KSTAT_DATA_UINT64 },
525 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
526 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
527 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
528 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
529 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
530 { "l2_hits", KSTAT_DATA_UINT64 },
531 { "l2_misses", KSTAT_DATA_UINT64 },
532 { "l2_feeds", KSTAT_DATA_UINT64 },
533 { "l2_rw_clash", KSTAT_DATA_UINT64 },
534 { "l2_read_bytes", KSTAT_DATA_UINT64 },
535 { "l2_write_bytes", KSTAT_DATA_UINT64 },
536 { "l2_writes_sent", KSTAT_DATA_UINT64 },
537 { "l2_writes_done", KSTAT_DATA_UINT64 },
538 { "l2_writes_error", KSTAT_DATA_UINT64 },
539 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
540 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
541 { "l2_evict_reading", KSTAT_DATA_UINT64 },
542 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
543 { "l2_free_on_write", KSTAT_DATA_UINT64 },
544 { "l2_cdata_free_on_write", KSTAT_DATA_UINT64 },
545 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
546 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
547 { "l2_io_error", KSTAT_DATA_UINT64 },
548 { "l2_size", KSTAT_DATA_UINT64 },
549 { "l2_asize", KSTAT_DATA_UINT64 },
550 { "l2_hdr_size", KSTAT_DATA_UINT64 },
551 { "l2_compress_successes", KSTAT_DATA_UINT64 },
552 { "l2_compress_zeros", KSTAT_DATA_UINT64 },
553 { "l2_compress_failures", KSTAT_DATA_UINT64 },
554 { "memory_throttle_count", KSTAT_DATA_UINT64 },
555 { "duplicate_buffers", KSTAT_DATA_UINT64 },
556 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
557 { "duplicate_reads", KSTAT_DATA_UINT64 },
558 { "memory_direct_count", KSTAT_DATA_UINT64 },
559 { "memory_indirect_count", KSTAT_DATA_UINT64 },
560 { "arc_no_grow", KSTAT_DATA_UINT64 },
561 { "arc_tempreserve", KSTAT_DATA_UINT64 },
562 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
563 { "arc_prune", KSTAT_DATA_UINT64 },
564 { "arc_meta_used", KSTAT_DATA_UINT64 },
565 { "arc_meta_limit", KSTAT_DATA_UINT64 },
566 { "arc_meta_max", KSTAT_DATA_UINT64 },
567 { "arc_meta_min", KSTAT_DATA_UINT64 }
568 };
569
570 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
571
572 #define ARCSTAT_INCR(stat, val) \
573 atomic_add_64(&arc_stats.stat.value.ui64, (val))
574
575 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
576 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
577
578 #define ARCSTAT_MAX(stat, val) { \
579 uint64_t m; \
580 while ((val) > (m = arc_stats.stat.value.ui64) && \
581 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
582 continue; \
583 }
584
585 #define ARCSTAT_MAXSTAT(stat) \
586 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
587
588 /*
589 * We define a macro to allow ARC hits/misses to be easily broken down by
590 * two separate conditions, giving a total of four different subtypes for
591 * each of hits and misses (so eight statistics total).
592 */
593 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
594 if (cond1) { \
595 if (cond2) { \
596 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
597 } else { \
598 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
599 } \
600 } else { \
601 if (cond2) { \
602 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
603 } else { \
604 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
605 } \
606 }
607
608 kstat_t *arc_ksp;
609 static arc_state_t *arc_anon;
610 static arc_state_t *arc_mru;
611 static arc_state_t *arc_mru_ghost;
612 static arc_state_t *arc_mfu;
613 static arc_state_t *arc_mfu_ghost;
614 static arc_state_t *arc_l2c_only;
615
616 /*
617 * There are several ARC variables that are critical to export as kstats --
618 * but we don't want to have to grovel around in the kstat whenever we wish to
619 * manipulate them. For these variables, we therefore define them to be in
620 * terms of the statistic variable. This assures that we are not introducing
621 * the possibility of inconsistency by having shadow copies of the variables,
622 * while still allowing the code to be readable.
623 */
624 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
625 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
626 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
627 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
628 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
629 #define arc_no_grow ARCSTAT(arcstat_no_grow)
630 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
631 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
632 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
633 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
634 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
635 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
636
637 #define L2ARC_IS_VALID_COMPRESS(_c_) \
638 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
639
640 static list_t arc_prune_list;
641 static kmutex_t arc_prune_mtx;
642 static taskq_t *arc_prune_taskq;
643 static arc_buf_t *arc_eviction_list;
644 static arc_buf_hdr_t arc_eviction_hdr;
645
646 #define GHOST_STATE(state) \
647 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
648 (state) == arc_l2c_only)
649
650 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
651 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
652 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
653 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
654 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
655 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
656
657 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
658 #define HDR_L2COMPRESS(hdr) ((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
659 #define HDR_L2_READING(hdr) \
660 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
661 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
662 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
663 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
664 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
665
666 #define HDR_ISTYPE_METADATA(hdr) \
667 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
668 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
669
670 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
671 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
672
673 /* For storing compression mode in b_flags */
674 #define HDR_COMPRESS_OFFSET 24
675 #define HDR_COMPRESS_NBITS 7
676
677 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET(hdr->b_flags, \
678 HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS))
679 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET(hdr->b_flags, \
680 HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS, (cmp))
681
682 /*
683 * Other sizes
684 */
685
686 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
687 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
688
689 /*
690 * Hash table routines
691 */
692
693 #define HT_LOCK_ALIGN 64
694 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
695
696 struct ht_lock {
697 kmutex_t ht_lock;
698 #ifdef _KERNEL
699 unsigned char pad[HT_LOCK_PAD];
700 #endif
701 };
702
703 #define BUF_LOCKS 8192
704 typedef struct buf_hash_table {
705 uint64_t ht_mask;
706 arc_buf_hdr_t **ht_table;
707 struct ht_lock ht_locks[BUF_LOCKS];
708 } buf_hash_table_t;
709
710 static buf_hash_table_t buf_hash_table;
711
712 #define BUF_HASH_INDEX(spa, dva, birth) \
713 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
714 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
715 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
716 #define HDR_LOCK(hdr) \
717 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
718
719 uint64_t zfs_crc64_table[256];
720
721 /*
722 * Level 2 ARC
723 */
724
725 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
726 #define L2ARC_HEADROOM 2 /* num of writes */
727 /*
728 * If we discover during ARC scan any buffers to be compressed, we boost
729 * our headroom for the next scanning cycle by this percentage multiple.
730 */
731 #define L2ARC_HEADROOM_BOOST 200
732 #define L2ARC_FEED_SECS 1 /* caching interval secs */
733 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
734
735 /*
736 * Used to distinguish headers that are being process by
737 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
738 * address. This can happen when the header is added to the l2arc's list
739 * of buffers to write in the first stage of l2arc_write_buffers(), but
740 * has not yet been written out which happens in the second stage of
741 * l2arc_write_buffers().
742 */
743 #define L2ARC_ADDR_UNSET ((uint64_t)(-1))
744
745 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
746 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
747
748 /* L2ARC Performance Tunables */
749 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
750 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
751 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
752 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
753 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
754 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
755 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
756 int l2arc_nocompress = B_FALSE; /* don't compress bufs */
757 int l2arc_feed_again = B_TRUE; /* turbo warmup */
758 int l2arc_norw = B_FALSE; /* no reads during writes */
759
760 /*
761 * L2ARC Internals
762 */
763 static list_t L2ARC_dev_list; /* device list */
764 static list_t *l2arc_dev_list; /* device list pointer */
765 static kmutex_t l2arc_dev_mtx; /* device list mutex */
766 static l2arc_dev_t *l2arc_dev_last; /* last device used */
767 static list_t L2ARC_free_on_write; /* free after write buf list */
768 static list_t *l2arc_free_on_write; /* free after write list ptr */
769 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
770 static uint64_t l2arc_ndev; /* number of devices */
771
772 typedef struct l2arc_read_callback {
773 arc_buf_t *l2rcb_buf; /* read buffer */
774 spa_t *l2rcb_spa; /* spa */
775 blkptr_t l2rcb_bp; /* original blkptr */
776 zbookmark_phys_t l2rcb_zb; /* original bookmark */
777 int l2rcb_flags; /* original flags */
778 enum zio_compress l2rcb_compress; /* applied compress */
779 } l2arc_read_callback_t;
780
781 typedef struct l2arc_data_free {
782 /* protected by l2arc_free_on_write_mtx */
783 void *l2df_data;
784 size_t l2df_size;
785 void (*l2df_func)(void *, size_t);
786 list_node_t l2df_list_node;
787 } l2arc_data_free_t;
788
789 static kmutex_t l2arc_feed_thr_lock;
790 static kcondvar_t l2arc_feed_thr_cv;
791 static uint8_t l2arc_thread_exit;
792
793 static void arc_get_data_buf(arc_buf_t *);
794 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
795 static boolean_t arc_is_overflowing(void);
796 static void arc_buf_watch(arc_buf_t *);
797 static void arc_tuning_update(void);
798
799 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
800 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
801
802 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
803 static void l2arc_read_done(zio_t *);
804
805 static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
806 static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
807 static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
808
809 static uint64_t
810 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
811 {
812 uint8_t *vdva = (uint8_t *)dva;
813 uint64_t crc = -1ULL;
814 int i;
815
816 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
817
818 for (i = 0; i < sizeof (dva_t); i++)
819 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
820
821 crc ^= (spa>>8) ^ birth;
822
823 return (crc);
824 }
825
826 #define BUF_EMPTY(buf) \
827 ((buf)->b_dva.dva_word[0] == 0 && \
828 (buf)->b_dva.dva_word[1] == 0)
829
830 #define BUF_EQUAL(spa, dva, birth, buf) \
831 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
832 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
833 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
834
835 static void
836 buf_discard_identity(arc_buf_hdr_t *hdr)
837 {
838 hdr->b_dva.dva_word[0] = 0;
839 hdr->b_dva.dva_word[1] = 0;
840 hdr->b_birth = 0;
841 }
842
843 static arc_buf_hdr_t *
844 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
845 {
846 const dva_t *dva = BP_IDENTITY(bp);
847 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
848 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
849 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
850 arc_buf_hdr_t *hdr;
851
852 mutex_enter(hash_lock);
853 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
854 hdr = hdr->b_hash_next) {
855 if (BUF_EQUAL(spa, dva, birth, hdr)) {
856 *lockp = hash_lock;
857 return (hdr);
858 }
859 }
860 mutex_exit(hash_lock);
861 *lockp = NULL;
862 return (NULL);
863 }
864
865 /*
866 * Insert an entry into the hash table. If there is already an element
867 * equal to elem in the hash table, then the already existing element
868 * will be returned and the new element will not be inserted.
869 * Otherwise returns NULL.
870 * If lockp == NULL, the caller is assumed to already hold the hash lock.
871 */
872 static arc_buf_hdr_t *
873 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
874 {
875 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
876 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
877 arc_buf_hdr_t *fhdr;
878 uint32_t i;
879
880 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
881 ASSERT(hdr->b_birth != 0);
882 ASSERT(!HDR_IN_HASH_TABLE(hdr));
883
884 if (lockp != NULL) {
885 *lockp = hash_lock;
886 mutex_enter(hash_lock);
887 } else {
888 ASSERT(MUTEX_HELD(hash_lock));
889 }
890
891 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
892 fhdr = fhdr->b_hash_next, i++) {
893 if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
894 return (fhdr);
895 }
896
897 hdr->b_hash_next = buf_hash_table.ht_table[idx];
898 buf_hash_table.ht_table[idx] = hdr;
899 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
900
901 /* collect some hash table performance data */
902 if (i > 0) {
903 ARCSTAT_BUMP(arcstat_hash_collisions);
904 if (i == 1)
905 ARCSTAT_BUMP(arcstat_hash_chains);
906
907 ARCSTAT_MAX(arcstat_hash_chain_max, i);
908 }
909
910 ARCSTAT_BUMP(arcstat_hash_elements);
911 ARCSTAT_MAXSTAT(arcstat_hash_elements);
912
913 return (NULL);
914 }
915
916 static void
917 buf_hash_remove(arc_buf_hdr_t *hdr)
918 {
919 arc_buf_hdr_t *fhdr, **hdrp;
920 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
921
922 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
923 ASSERT(HDR_IN_HASH_TABLE(hdr));
924
925 hdrp = &buf_hash_table.ht_table[idx];
926 while ((fhdr = *hdrp) != hdr) {
927 ASSERT(fhdr != NULL);
928 hdrp = &fhdr->b_hash_next;
929 }
930 *hdrp = hdr->b_hash_next;
931 hdr->b_hash_next = NULL;
932 hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
933
934 /* collect some hash table performance data */
935 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
936
937 if (buf_hash_table.ht_table[idx] &&
938 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
939 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
940 }
941
942 /*
943 * Global data structures and functions for the buf kmem cache.
944 */
945 static kmem_cache_t *hdr_full_cache;
946 static kmem_cache_t *hdr_l2only_cache;
947 static kmem_cache_t *buf_cache;
948
949 static void
950 buf_fini(void)
951 {
952 int i;
953
954 #if defined(_KERNEL) && defined(HAVE_SPL)
955 /*
956 * Large allocations which do not require contiguous pages
957 * should be using vmem_free() in the linux kernel\
958 */
959 vmem_free(buf_hash_table.ht_table,
960 (buf_hash_table.ht_mask + 1) * sizeof (void *));
961 #else
962 kmem_free(buf_hash_table.ht_table,
963 (buf_hash_table.ht_mask + 1) * sizeof (void *));
964 #endif
965 for (i = 0; i < BUF_LOCKS; i++)
966 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
967 kmem_cache_destroy(hdr_full_cache);
968 kmem_cache_destroy(hdr_l2only_cache);
969 kmem_cache_destroy(buf_cache);
970 }
971
972 /*
973 * Constructor callback - called when the cache is empty
974 * and a new buf is requested.
975 */
976 /* ARGSUSED */
977 static int
978 hdr_full_cons(void *vbuf, void *unused, int kmflag)
979 {
980 arc_buf_hdr_t *hdr = vbuf;
981
982 bzero(hdr, HDR_FULL_SIZE);
983 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
984 refcount_create(&hdr->b_l1hdr.b_refcnt);
985 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
986 list_link_init(&hdr->b_l1hdr.b_arc_node);
987 list_link_init(&hdr->b_l2hdr.b_l2node);
988 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
989 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
990
991 return (0);
992 }
993
994 /* ARGSUSED */
995 static int
996 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
997 {
998 arc_buf_hdr_t *hdr = vbuf;
999
1000 bzero(hdr, HDR_L2ONLY_SIZE);
1001 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1002
1003 return (0);
1004 }
1005
1006 /* ARGSUSED */
1007 static int
1008 buf_cons(void *vbuf, void *unused, int kmflag)
1009 {
1010 arc_buf_t *buf = vbuf;
1011
1012 bzero(buf, sizeof (arc_buf_t));
1013 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1014 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1015
1016 return (0);
1017 }
1018
1019 /*
1020 * Destructor callback - called when a cached buf is
1021 * no longer required.
1022 */
1023 /* ARGSUSED */
1024 static void
1025 hdr_full_dest(void *vbuf, void *unused)
1026 {
1027 arc_buf_hdr_t *hdr = vbuf;
1028
1029 ASSERT(BUF_EMPTY(hdr));
1030 cv_destroy(&hdr->b_l1hdr.b_cv);
1031 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1032 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1033 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1034 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1035 }
1036
1037 /* ARGSUSED */
1038 static void
1039 hdr_l2only_dest(void *vbuf, void *unused)
1040 {
1041 ASSERTV(arc_buf_hdr_t *hdr = vbuf);
1042
1043 ASSERT(BUF_EMPTY(hdr));
1044 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1045 }
1046
1047 /* ARGSUSED */
1048 static void
1049 buf_dest(void *vbuf, void *unused)
1050 {
1051 arc_buf_t *buf = vbuf;
1052
1053 mutex_destroy(&buf->b_evict_lock);
1054 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1055 }
1056
1057 /*
1058 * Reclaim callback -- invoked when memory is low.
1059 */
1060 /* ARGSUSED */
1061 static void
1062 hdr_recl(void *unused)
1063 {
1064 dprintf("hdr_recl called\n");
1065 /*
1066 * umem calls the reclaim func when we destroy the buf cache,
1067 * which is after we do arc_fini().
1068 */
1069 if (!arc_dead)
1070 cv_signal(&arc_reclaim_thread_cv);
1071 }
1072
1073 static void
1074 buf_init(void)
1075 {
1076 uint64_t *ct;
1077 uint64_t hsize = 1ULL << 12;
1078 int i, j;
1079
1080 /*
1081 * The hash table is big enough to fill all of physical memory
1082 * with an average block size of zfs_arc_average_blocksize (default 8K).
1083 * By default, the table will take up
1084 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1085 */
1086 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1087 hsize <<= 1;
1088 retry:
1089 buf_hash_table.ht_mask = hsize - 1;
1090 #if defined(_KERNEL) && defined(HAVE_SPL)
1091 /*
1092 * Large allocations which do not require contiguous pages
1093 * should be using vmem_alloc() in the linux kernel
1094 */
1095 buf_hash_table.ht_table =
1096 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1097 #else
1098 buf_hash_table.ht_table =
1099 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1100 #endif
1101 if (buf_hash_table.ht_table == NULL) {
1102 ASSERT(hsize > (1ULL << 8));
1103 hsize >>= 1;
1104 goto retry;
1105 }
1106
1107 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1108 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1109 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1110 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1111 NULL, NULL, 0);
1112 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1113 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1114
1115 for (i = 0; i < 256; i++)
1116 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1117 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1118
1119 for (i = 0; i < BUF_LOCKS; i++) {
1120 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1121 NULL, MUTEX_DEFAULT, NULL);
1122 }
1123 }
1124
1125 /*
1126 * Transition between the two allocation states for the arc_buf_hdr struct.
1127 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1128 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1129 * version is used when a cache buffer is only in the L2ARC in order to reduce
1130 * memory usage.
1131 */
1132 static arc_buf_hdr_t *
1133 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1134 {
1135 arc_buf_hdr_t *nhdr;
1136 l2arc_dev_t *dev;
1137
1138 ASSERT(HDR_HAS_L2HDR(hdr));
1139 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1140 (old == hdr_l2only_cache && new == hdr_full_cache));
1141
1142 dev = hdr->b_l2hdr.b_dev;
1143 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1144
1145 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1146 buf_hash_remove(hdr);
1147
1148 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1149
1150 if (new == hdr_full_cache) {
1151 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1152 /*
1153 * arc_access and arc_change_state need to be aware that a
1154 * header has just come out of L2ARC, so we set its state to
1155 * l2c_only even though it's about to change.
1156 */
1157 nhdr->b_l1hdr.b_state = arc_l2c_only;
1158
1159 /* Verify previous threads set to NULL before freeing */
1160 ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1161 } else {
1162 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1163 ASSERT0(hdr->b_l1hdr.b_datacnt);
1164
1165 /*
1166 * If we've reached here, We must have been called from
1167 * arc_evict_hdr(), as such we should have already been
1168 * removed from any ghost list we were previously on
1169 * (which protects us from racing with arc_evict_state),
1170 * thus no locking is needed during this check.
1171 */
1172 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1173
1174 /*
1175 * A buffer must not be moved into the arc_l2c_only
1176 * state if it's not finished being written out to the
1177 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1178 * might try to be accessed, even though it was removed.
1179 */
1180 VERIFY(!HDR_L2_WRITING(hdr));
1181 VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1182
1183 nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1184 }
1185 /*
1186 * The header has been reallocated so we need to re-insert it into any
1187 * lists it was on.
1188 */
1189 (void) buf_hash_insert(nhdr, NULL);
1190
1191 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1192
1193 mutex_enter(&dev->l2ad_mtx);
1194
1195 /*
1196 * We must place the realloc'ed header back into the list at
1197 * the same spot. Otherwise, if it's placed earlier in the list,
1198 * l2arc_write_buffers() could find it during the function's
1199 * write phase, and try to write it out to the l2arc.
1200 */
1201 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1202 list_remove(&dev->l2ad_buflist, hdr);
1203
1204 mutex_exit(&dev->l2ad_mtx);
1205
1206 /*
1207 * Since we're using the pointer address as the tag when
1208 * incrementing and decrementing the l2ad_alloc refcount, we
1209 * must remove the old pointer (that we're about to destroy) and
1210 * add the new pointer to the refcount. Otherwise we'd remove
1211 * the wrong pointer address when calling arc_hdr_destroy() later.
1212 */
1213
1214 (void) refcount_remove_many(&dev->l2ad_alloc,
1215 hdr->b_l2hdr.b_asize, hdr);
1216
1217 (void) refcount_add_many(&dev->l2ad_alloc,
1218 nhdr->b_l2hdr.b_asize, nhdr);
1219
1220 buf_discard_identity(hdr);
1221 hdr->b_freeze_cksum = NULL;
1222 kmem_cache_free(old, hdr);
1223
1224 return (nhdr);
1225 }
1226
1227
1228 #define ARC_MINTIME (hz>>4) /* 62 ms */
1229
1230 static void
1231 arc_cksum_verify(arc_buf_t *buf)
1232 {
1233 zio_cksum_t zc;
1234
1235 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1236 return;
1237
1238 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1239 if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1240 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1241 return;
1242 }
1243 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1244 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1245 panic("buffer modified while frozen!");
1246 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1247 }
1248
1249 static int
1250 arc_cksum_equal(arc_buf_t *buf)
1251 {
1252 zio_cksum_t zc;
1253 int equal;
1254
1255 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1256 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1257 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1258 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1259
1260 return (equal);
1261 }
1262
1263 static void
1264 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1265 {
1266 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1267 return;
1268
1269 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1270 if (buf->b_hdr->b_freeze_cksum != NULL) {
1271 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1272 return;
1273 }
1274 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1275 KM_SLEEP);
1276 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1277 buf->b_hdr->b_freeze_cksum);
1278 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1279 arc_buf_watch(buf);
1280 }
1281
1282 #ifndef _KERNEL
1283 void
1284 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1285 {
1286 panic("Got SIGSEGV at address: 0x%lx\n", (long) si->si_addr);
1287 }
1288 #endif
1289
1290 /* ARGSUSED */
1291 static void
1292 arc_buf_unwatch(arc_buf_t *buf)
1293 {
1294 #ifndef _KERNEL
1295 if (arc_watch) {
1296 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size,
1297 PROT_READ | PROT_WRITE));
1298 }
1299 #endif
1300 }
1301
1302 /* ARGSUSED */
1303 static void
1304 arc_buf_watch(arc_buf_t *buf)
1305 {
1306 #ifndef _KERNEL
1307 if (arc_watch)
1308 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size, PROT_READ));
1309 #endif
1310 }
1311
1312 static arc_buf_contents_t
1313 arc_buf_type(arc_buf_hdr_t *hdr)
1314 {
1315 if (HDR_ISTYPE_METADATA(hdr)) {
1316 return (ARC_BUFC_METADATA);
1317 } else {
1318 return (ARC_BUFC_DATA);
1319 }
1320 }
1321
1322 static uint32_t
1323 arc_bufc_to_flags(arc_buf_contents_t type)
1324 {
1325 switch (type) {
1326 case ARC_BUFC_DATA:
1327 /* metadata field is 0 if buffer contains normal data */
1328 return (0);
1329 case ARC_BUFC_METADATA:
1330 return (ARC_FLAG_BUFC_METADATA);
1331 default:
1332 break;
1333 }
1334 panic("undefined ARC buffer type!");
1335 return ((uint32_t)-1);
1336 }
1337
1338 void
1339 arc_buf_thaw(arc_buf_t *buf)
1340 {
1341 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1342 if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
1343 panic("modifying non-anon buffer!");
1344 if (HDR_IO_IN_PROGRESS(buf->b_hdr))
1345 panic("modifying buffer while i/o in progress!");
1346 arc_cksum_verify(buf);
1347 }
1348
1349 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1350 if (buf->b_hdr->b_freeze_cksum != NULL) {
1351 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1352 buf->b_hdr->b_freeze_cksum = NULL;
1353 }
1354
1355 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1356
1357 arc_buf_unwatch(buf);
1358 }
1359
1360 void
1361 arc_buf_freeze(arc_buf_t *buf)
1362 {
1363 kmutex_t *hash_lock;
1364
1365 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1366 return;
1367
1368 hash_lock = HDR_LOCK(buf->b_hdr);
1369 mutex_enter(hash_lock);
1370
1371 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1372 buf->b_hdr->b_l1hdr.b_state == arc_anon);
1373 arc_cksum_compute(buf, B_FALSE);
1374 mutex_exit(hash_lock);
1375
1376 }
1377
1378 static void
1379 add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1380 {
1381 arc_state_t *state;
1382
1383 ASSERT(HDR_HAS_L1HDR(hdr));
1384 ASSERT(MUTEX_HELD(hash_lock));
1385
1386 state = hdr->b_l1hdr.b_state;
1387
1388 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1389 (state != arc_anon)) {
1390 /* We don't use the L2-only state list. */
1391 if (state != arc_l2c_only) {
1392 arc_buf_contents_t type = arc_buf_type(hdr);
1393 uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
1394 multilist_t *list = &state->arcs_list[type];
1395 uint64_t *size = &state->arcs_lsize[type];
1396
1397 multilist_remove(list, hdr);
1398
1399 if (GHOST_STATE(state)) {
1400 ASSERT0(hdr->b_l1hdr.b_datacnt);
1401 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1402 delta = hdr->b_size;
1403 }
1404 ASSERT(delta > 0);
1405 ASSERT3U(*size, >=, delta);
1406 atomic_add_64(size, -delta);
1407 }
1408 /* remove the prefetch flag if we get a reference */
1409 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1410 }
1411 }
1412
1413 static int
1414 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1415 {
1416 int cnt;
1417 arc_state_t *state = hdr->b_l1hdr.b_state;
1418
1419 ASSERT(HDR_HAS_L1HDR(hdr));
1420 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1421 ASSERT(!GHOST_STATE(state));
1422
1423 /*
1424 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1425 * check to prevent usage of the arc_l2c_only list.
1426 */
1427 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1428 (state != arc_anon)) {
1429 arc_buf_contents_t type = arc_buf_type(hdr);
1430 multilist_t *list = &state->arcs_list[type];
1431 uint64_t *size = &state->arcs_lsize[type];
1432
1433 multilist_insert(list, hdr);
1434
1435 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1436 atomic_add_64(size, hdr->b_size *
1437 hdr->b_l1hdr.b_datacnt);
1438 }
1439 return (cnt);
1440 }
1441
1442 /*
1443 * Returns detailed information about a specific arc buffer. When the
1444 * state_index argument is set the function will calculate the arc header
1445 * list position for its arc state. Since this requires a linear traversal
1446 * callers are strongly encourage not to do this. However, it can be helpful
1447 * for targeted analysis so the functionality is provided.
1448 */
1449 void
1450 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
1451 {
1452 arc_buf_hdr_t *hdr = ab->b_hdr;
1453 l1arc_buf_hdr_t *l1hdr = NULL;
1454 l2arc_buf_hdr_t *l2hdr = NULL;
1455 arc_state_t *state = NULL;
1456
1457 if (HDR_HAS_L1HDR(hdr)) {
1458 l1hdr = &hdr->b_l1hdr;
1459 state = l1hdr->b_state;
1460 }
1461 if (HDR_HAS_L2HDR(hdr))
1462 l2hdr = &hdr->b_l2hdr;
1463
1464 memset(abi, 0, sizeof (arc_buf_info_t));
1465 abi->abi_flags = hdr->b_flags;
1466
1467 if (l1hdr) {
1468 abi->abi_datacnt = l1hdr->b_datacnt;
1469 abi->abi_access = l1hdr->b_arc_access;
1470 abi->abi_mru_hits = l1hdr->b_mru_hits;
1471 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
1472 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
1473 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
1474 abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
1475 }
1476
1477 if (l2hdr) {
1478 abi->abi_l2arc_dattr = l2hdr->b_daddr;
1479 abi->abi_l2arc_asize = l2hdr->b_asize;
1480 abi->abi_l2arc_compress = HDR_GET_COMPRESS(hdr);
1481 abi->abi_l2arc_hits = l2hdr->b_hits;
1482 }
1483
1484 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
1485 abi->abi_state_contents = arc_buf_type(hdr);
1486 abi->abi_size = hdr->b_size;
1487 }
1488
1489 /*
1490 * Move the supplied buffer to the indicated state. The hash lock
1491 * for the buffer must be held by the caller.
1492 */
1493 static void
1494 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1495 kmutex_t *hash_lock)
1496 {
1497 arc_state_t *old_state;
1498 int64_t refcnt;
1499 uint32_t datacnt;
1500 uint64_t from_delta, to_delta;
1501 arc_buf_contents_t buftype = arc_buf_type(hdr);
1502
1503 /*
1504 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1505 * in arc_read() when bringing a buffer out of the L2ARC. However, the
1506 * L1 hdr doesn't always exist when we change state to arc_anon before
1507 * destroying a header, in which case reallocating to add the L1 hdr is
1508 * pointless.
1509 */
1510 if (HDR_HAS_L1HDR(hdr)) {
1511 old_state = hdr->b_l1hdr.b_state;
1512 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1513 datacnt = hdr->b_l1hdr.b_datacnt;
1514 } else {
1515 old_state = arc_l2c_only;
1516 refcnt = 0;
1517 datacnt = 0;
1518 }
1519
1520 ASSERT(MUTEX_HELD(hash_lock));
1521 ASSERT3P(new_state, !=, old_state);
1522 ASSERT(refcnt == 0 || datacnt > 0);
1523 ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1524 ASSERT(old_state != arc_anon || datacnt <= 1);
1525
1526 from_delta = to_delta = datacnt * hdr->b_size;
1527
1528 /*
1529 * If this buffer is evictable, transfer it from the
1530 * old state list to the new state list.
1531 */
1532 if (refcnt == 0) {
1533 if (old_state != arc_anon && old_state != arc_l2c_only) {
1534 uint64_t *size = &old_state->arcs_lsize[buftype];
1535
1536 ASSERT(HDR_HAS_L1HDR(hdr));
1537 multilist_remove(&old_state->arcs_list[buftype], hdr);
1538
1539 /*
1540 * If prefetching out of the ghost cache,
1541 * we will have a non-zero datacnt.
1542 */
1543 if (GHOST_STATE(old_state) && datacnt == 0) {
1544 /* ghost elements have a ghost size */
1545 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1546 from_delta = hdr->b_size;
1547 }
1548 ASSERT3U(*size, >=, from_delta);
1549 atomic_add_64(size, -from_delta);
1550 }
1551 if (new_state != arc_anon && new_state != arc_l2c_only) {
1552 uint64_t *size = &new_state->arcs_lsize[buftype];
1553
1554 /*
1555 * An L1 header always exists here, since if we're
1556 * moving to some L1-cached state (i.e. not l2c_only or
1557 * anonymous), we realloc the header to add an L1hdr
1558 * beforehand.
1559 */
1560 ASSERT(HDR_HAS_L1HDR(hdr));
1561 multilist_insert(&new_state->arcs_list[buftype], hdr);
1562
1563 /* ghost elements have a ghost size */
1564 if (GHOST_STATE(new_state)) {
1565 ASSERT0(datacnt);
1566 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1567 to_delta = hdr->b_size;
1568 }
1569 atomic_add_64(size, to_delta);
1570 }
1571 }
1572
1573 ASSERT(!BUF_EMPTY(hdr));
1574 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1575 buf_hash_remove(hdr);
1576
1577 /* adjust state sizes (ignore arc_l2c_only) */
1578
1579 if (to_delta && new_state != arc_l2c_only) {
1580 ASSERT(HDR_HAS_L1HDR(hdr));
1581 if (GHOST_STATE(new_state)) {
1582 ASSERT0(datacnt);
1583
1584 /*
1585 * We moving a header to a ghost state, we first
1586 * remove all arc buffers. Thus, we'll have a
1587 * datacnt of zero, and no arc buffer to use for
1588 * the reference. As a result, we use the arc
1589 * header pointer for the reference.
1590 */
1591 (void) refcount_add_many(&new_state->arcs_size,
1592 hdr->b_size, hdr);
1593 } else {
1594 arc_buf_t *buf;
1595 ASSERT3U(datacnt, !=, 0);
1596
1597 /*
1598 * Each individual buffer holds a unique reference,
1599 * thus we must remove each of these references one
1600 * at a time.
1601 */
1602 for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
1603 buf = buf->b_next) {
1604 (void) refcount_add_many(&new_state->arcs_size,
1605 hdr->b_size, buf);
1606 }
1607 }
1608 }
1609
1610 if (from_delta && old_state != arc_l2c_only) {
1611 ASSERT(HDR_HAS_L1HDR(hdr));
1612 if (GHOST_STATE(old_state)) {
1613 /*
1614 * When moving a header off of a ghost state,
1615 * there's the possibility for datacnt to be
1616 * non-zero. This is because we first add the
1617 * arc buffer to the header prior to changing
1618 * the header's state. Since we used the header
1619 * for the reference when putting the header on
1620 * the ghost state, we must balance that and use
1621 * the header when removing off the ghost state
1622 * (even though datacnt is non zero).
1623 */
1624
1625 IMPLY(datacnt == 0, new_state == arc_anon ||
1626 new_state == arc_l2c_only);
1627
1628 (void) refcount_remove_many(&old_state->arcs_size,
1629 hdr->b_size, hdr);
1630 } else {
1631 arc_buf_t *buf;
1632 ASSERT3U(datacnt, !=, 0);
1633
1634 /*
1635 * Each individual buffer holds a unique reference,
1636 * thus we must remove each of these references one
1637 * at a time.
1638 */
1639 for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
1640 buf = buf->b_next) {
1641 (void) refcount_remove_many(
1642 &old_state->arcs_size, hdr->b_size, buf);
1643 }
1644 }
1645 }
1646
1647 if (HDR_HAS_L1HDR(hdr))
1648 hdr->b_l1hdr.b_state = new_state;
1649
1650 /*
1651 * L2 headers should never be on the L2 state list since they don't
1652 * have L1 headers allocated.
1653 */
1654 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
1655 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
1656 }
1657
1658 void
1659 arc_space_consume(uint64_t space, arc_space_type_t type)
1660 {
1661 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1662
1663 switch (type) {
1664 default:
1665 break;
1666 case ARC_SPACE_DATA:
1667 ARCSTAT_INCR(arcstat_data_size, space);
1668 break;
1669 case ARC_SPACE_META:
1670 ARCSTAT_INCR(arcstat_metadata_size, space);
1671 break;
1672 case ARC_SPACE_OTHER:
1673 ARCSTAT_INCR(arcstat_other_size, space);
1674 break;
1675 case ARC_SPACE_HDRS:
1676 ARCSTAT_INCR(arcstat_hdr_size, space);
1677 break;
1678 case ARC_SPACE_L2HDRS:
1679 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1680 break;
1681 }
1682
1683 if (type != ARC_SPACE_DATA)
1684 ARCSTAT_INCR(arcstat_meta_used, space);
1685
1686 atomic_add_64(&arc_size, space);
1687 }
1688
1689 void
1690 arc_space_return(uint64_t space, arc_space_type_t type)
1691 {
1692 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1693
1694 switch (type) {
1695 default:
1696 break;
1697 case ARC_SPACE_DATA:
1698 ARCSTAT_INCR(arcstat_data_size, -space);
1699 break;
1700 case ARC_SPACE_META:
1701 ARCSTAT_INCR(arcstat_metadata_size, -space);
1702 break;
1703 case ARC_SPACE_OTHER:
1704 ARCSTAT_INCR(arcstat_other_size, -space);
1705 break;
1706 case ARC_SPACE_HDRS:
1707 ARCSTAT_INCR(arcstat_hdr_size, -space);
1708 break;
1709 case ARC_SPACE_L2HDRS:
1710 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1711 break;
1712 }
1713
1714 if (type != ARC_SPACE_DATA) {
1715 ASSERT(arc_meta_used >= space);
1716 if (arc_meta_max < arc_meta_used)
1717 arc_meta_max = arc_meta_used;
1718 ARCSTAT_INCR(arcstat_meta_used, -space);
1719 }
1720
1721 ASSERT(arc_size >= space);
1722 atomic_add_64(&arc_size, -space);
1723 }
1724
1725 arc_buf_t *
1726 arc_buf_alloc(spa_t *spa, uint64_t size, void *tag, arc_buf_contents_t type)
1727 {
1728 arc_buf_hdr_t *hdr;
1729 arc_buf_t *buf;
1730
1731 VERIFY3U(size, <=, spa_maxblocksize(spa));
1732 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
1733 ASSERT(BUF_EMPTY(hdr));
1734 ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
1735 hdr->b_size = size;
1736 hdr->b_spa = spa_load_guid(spa);
1737 hdr->b_l1hdr.b_mru_hits = 0;
1738 hdr->b_l1hdr.b_mru_ghost_hits = 0;
1739 hdr->b_l1hdr.b_mfu_hits = 0;
1740 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
1741 hdr->b_l1hdr.b_l2_hits = 0;
1742
1743 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1744 buf->b_hdr = hdr;
1745 buf->b_data = NULL;
1746 buf->b_efunc = NULL;
1747 buf->b_private = NULL;
1748 buf->b_next = NULL;
1749
1750 hdr->b_flags = arc_bufc_to_flags(type);
1751 hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1752
1753 hdr->b_l1hdr.b_buf = buf;
1754 hdr->b_l1hdr.b_state = arc_anon;
1755 hdr->b_l1hdr.b_arc_access = 0;
1756 hdr->b_l1hdr.b_datacnt = 1;
1757 hdr->b_l1hdr.b_tmp_cdata = NULL;
1758
1759 arc_get_data_buf(buf);
1760
1761 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1762 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1763
1764 return (buf);
1765 }
1766
1767 static char *arc_onloan_tag = "onloan";
1768
1769 /*
1770 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1771 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1772 * buffers must be returned to the arc before they can be used by the DMU or
1773 * freed.
1774 */
1775 arc_buf_t *
1776 arc_loan_buf(spa_t *spa, uint64_t size)
1777 {
1778 arc_buf_t *buf;
1779
1780 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1781
1782 atomic_add_64(&arc_loaned_bytes, size);
1783 return (buf);
1784 }
1785
1786 /*
1787 * Return a loaned arc buffer to the arc.
1788 */
1789 void
1790 arc_return_buf(arc_buf_t *buf, void *tag)
1791 {
1792 arc_buf_hdr_t *hdr = buf->b_hdr;
1793
1794 ASSERT(buf->b_data != NULL);
1795 ASSERT(HDR_HAS_L1HDR(hdr));
1796 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1797 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
1798
1799 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1800 }
1801
1802 /* Detach an arc_buf from a dbuf (tag) */
1803 void
1804 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1805 {
1806 arc_buf_hdr_t *hdr = buf->b_hdr;
1807
1808 ASSERT(buf->b_data != NULL);
1809 ASSERT(HDR_HAS_L1HDR(hdr));
1810 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
1811 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
1812 buf->b_efunc = NULL;
1813 buf->b_private = NULL;
1814
1815 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1816 }
1817
1818 static arc_buf_t *
1819 arc_buf_clone(arc_buf_t *from)
1820 {
1821 arc_buf_t *buf;
1822 arc_buf_hdr_t *hdr = from->b_hdr;
1823 uint64_t size = hdr->b_size;
1824
1825 ASSERT(HDR_HAS_L1HDR(hdr));
1826 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
1827
1828 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1829 buf->b_hdr = hdr;
1830 buf->b_data = NULL;
1831 buf->b_efunc = NULL;
1832 buf->b_private = NULL;
1833 buf->b_next = hdr->b_l1hdr.b_buf;
1834 hdr->b_l1hdr.b_buf = buf;
1835 arc_get_data_buf(buf);
1836 bcopy(from->b_data, buf->b_data, size);
1837
1838 /*
1839 * This buffer already exists in the arc so create a duplicate
1840 * copy for the caller. If the buffer is associated with user data
1841 * then track the size and number of duplicates. These stats will be
1842 * updated as duplicate buffers are created and destroyed.
1843 */
1844 if (HDR_ISTYPE_DATA(hdr)) {
1845 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1846 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1847 }
1848 hdr->b_l1hdr.b_datacnt += 1;
1849 return (buf);
1850 }
1851
1852 void
1853 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1854 {
1855 arc_buf_hdr_t *hdr;
1856 kmutex_t *hash_lock;
1857
1858 /*
1859 * Check to see if this buffer is evicted. Callers
1860 * must verify b_data != NULL to know if the add_ref
1861 * was successful.
1862 */
1863 mutex_enter(&buf->b_evict_lock);
1864 if (buf->b_data == NULL) {
1865 mutex_exit(&buf->b_evict_lock);
1866 return;
1867 }
1868 hash_lock = HDR_LOCK(buf->b_hdr);
1869 mutex_enter(hash_lock);
1870 hdr = buf->b_hdr;
1871 ASSERT(HDR_HAS_L1HDR(hdr));
1872 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1873 mutex_exit(&buf->b_evict_lock);
1874
1875 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
1876 hdr->b_l1hdr.b_state == arc_mfu);
1877
1878 add_reference(hdr, hash_lock, tag);
1879 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1880 arc_access(hdr, hash_lock);
1881 mutex_exit(hash_lock);
1882 ARCSTAT_BUMP(arcstat_hits);
1883 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
1884 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
1885 data, metadata, hits);
1886 }
1887
1888 static void
1889 arc_buf_free_on_write(void *data, size_t size,
1890 void (*free_func)(void *, size_t))
1891 {
1892 l2arc_data_free_t *df;
1893
1894 df = kmem_alloc(sizeof (*df), KM_SLEEP);
1895 df->l2df_data = data;
1896 df->l2df_size = size;
1897 df->l2df_func = free_func;
1898 mutex_enter(&l2arc_free_on_write_mtx);
1899 list_insert_head(l2arc_free_on_write, df);
1900 mutex_exit(&l2arc_free_on_write_mtx);
1901 }
1902
1903 /*
1904 * Free the arc data buffer. If it is an l2arc write in progress,
1905 * the buffer is placed on l2arc_free_on_write to be freed later.
1906 */
1907 static void
1908 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1909 {
1910 arc_buf_hdr_t *hdr = buf->b_hdr;
1911
1912 if (HDR_L2_WRITING(hdr)) {
1913 arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
1914 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1915 } else {
1916 free_func(buf->b_data, hdr->b_size);
1917 }
1918 }
1919
1920 static void
1921 arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
1922 {
1923 ASSERT(HDR_HAS_L2HDR(hdr));
1924 ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
1925
1926 /*
1927 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
1928 * that doesn't exist, the header is in the arc_l2c_only state,
1929 * and there isn't anything to free (it's already been freed).
1930 */
1931 if (!HDR_HAS_L1HDR(hdr))
1932 return;
1933
1934 /*
1935 * The header isn't being written to the l2arc device, thus it
1936 * shouldn't have a b_tmp_cdata to free.
1937 */
1938 if (!HDR_L2_WRITING(hdr)) {
1939 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1940 return;
1941 }
1942
1943 /*
1944 * The header does not have compression enabled. This can be due
1945 * to the buffer not being compressible, or because we're
1946 * freeing the buffer before the second phase of
1947 * l2arc_write_buffer() has started (which does the compression
1948 * step). In either case, b_tmp_cdata does not point to a
1949 * separately compressed buffer, so there's nothing to free (it
1950 * points to the same buffer as the arc_buf_t's b_data field).
1951 */
1952 if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) {
1953 hdr->b_l1hdr.b_tmp_cdata = NULL;
1954 return;
1955 }
1956
1957 /*
1958 * There's nothing to free since the buffer was all zero's and
1959 * compressed to a zero length buffer.
1960 */
1961 if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_EMPTY) {
1962 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1963 return;
1964 }
1965
1966 ASSERT(L2ARC_IS_VALID_COMPRESS(HDR_GET_COMPRESS(hdr)));
1967
1968 arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
1969 hdr->b_size, zio_data_buf_free);
1970
1971 ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
1972 hdr->b_l1hdr.b_tmp_cdata = NULL;
1973 }
1974
1975 /*
1976 * Free up buf->b_data and if 'remove' is set, then pull the
1977 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
1978 */
1979 static void
1980 arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
1981 {
1982 arc_buf_t **bufp;
1983
1984 /* free up data associated with the buf */
1985 if (buf->b_data != NULL) {
1986 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
1987 uint64_t size = buf->b_hdr->b_size;
1988 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
1989
1990 arc_cksum_verify(buf);
1991 arc_buf_unwatch(buf);
1992
1993 if (type == ARC_BUFC_METADATA) {
1994 arc_buf_data_free(buf, zio_buf_free);
1995 arc_space_return(size, ARC_SPACE_META);
1996 } else {
1997 ASSERT(type == ARC_BUFC_DATA);
1998 arc_buf_data_free(buf, zio_data_buf_free);
1999 arc_space_return(size, ARC_SPACE_DATA);
2000 }
2001
2002 /* protected by hash lock, if in the hash table */
2003 if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
2004 uint64_t *cnt = &state->arcs_lsize[type];
2005
2006 ASSERT(refcount_is_zero(
2007 &buf->b_hdr->b_l1hdr.b_refcnt));
2008 ASSERT(state != arc_anon && state != arc_l2c_only);
2009
2010 ASSERT3U(*cnt, >=, size);
2011 atomic_add_64(cnt, -size);
2012 }
2013
2014 (void) refcount_remove_many(&state->arcs_size, size, buf);
2015 buf->b_data = NULL;
2016
2017 /*
2018 * If we're destroying a duplicate buffer make sure
2019 * that the appropriate statistics are updated.
2020 */
2021 if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2022 HDR_ISTYPE_DATA(buf->b_hdr)) {
2023 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2024 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2025 }
2026 ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2027 buf->b_hdr->b_l1hdr.b_datacnt -= 1;
2028 }
2029
2030 /* only remove the buf if requested */
2031 if (!remove)
2032 return;
2033
2034 /* remove the buf from the hdr list */
2035 for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2036 bufp = &(*bufp)->b_next)
2037 continue;
2038 *bufp = buf->b_next;
2039 buf->b_next = NULL;
2040
2041 ASSERT(buf->b_efunc == NULL);
2042
2043 /* clean up the buf */
2044 buf->b_hdr = NULL;
2045 kmem_cache_free(buf_cache, buf);
2046 }
2047
2048 static void
2049 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2050 {
2051 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2052 l2arc_dev_t *dev = l2hdr->b_dev;
2053
2054 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2055 ASSERT(HDR_HAS_L2HDR(hdr));
2056
2057 list_remove(&dev->l2ad_buflist, hdr);
2058
2059 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
2060
2061 /*
2062 * We don't want to leak the b_tmp_cdata buffer that was
2063 * allocated in l2arc_write_buffers()
2064 */
2065 arc_buf_l2_cdata_free(hdr);
2066
2067 /*
2068 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
2069 * this header is being processed by l2arc_write_buffers() (i.e.
2070 * it's in the first stage of l2arc_write_buffers()).
2071 * Re-affirming that truth here, just to serve as a reminder. If
2072 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
2073 * may not have its HDR_L2_WRITING flag set. (the write may have
2074 * completed, in which case HDR_L2_WRITING will be false and the
2075 * b_daddr field will point to the address of the buffer on disk).
2076 */
2077 IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
2078
2079 /*
2080 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
2081 * l2arc_write_buffers(). Since we've just removed this header
2082 * from the l2arc buffer list, this header will never reach the
2083 * second stage of l2arc_write_buffers(), which increments the
2084 * accounting stats for this header. Thus, we must be careful
2085 * not to decrement them for this header either.
2086 */
2087 if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2088 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2089 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2090
2091 vdev_space_update(dev->l2ad_vdev,
2092 -l2hdr->b_asize, 0, 0);
2093
2094 (void) refcount_remove_many(&dev->l2ad_alloc,
2095 l2hdr->b_asize, hdr);
2096 }
2097
2098 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2099 }
2100
2101 static void
2102 arc_hdr_destroy(arc_buf_hdr_t *hdr)
2103 {
2104 if (HDR_HAS_L1HDR(hdr)) {
2105 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2106 hdr->b_l1hdr.b_datacnt > 0);
2107 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2108 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2109 }
2110 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2111 ASSERT(!HDR_IN_HASH_TABLE(hdr));
2112
2113 if (HDR_HAS_L2HDR(hdr)) {
2114 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2115 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
2116
2117 if (!buflist_held)
2118 mutex_enter(&dev->l2ad_mtx);
2119
2120 /*
2121 * Even though we checked this conditional above, we
2122 * need to check this again now that we have the
2123 * l2ad_mtx. This is because we could be racing with
2124 * another thread calling l2arc_evict() which might have
2125 * destroyed this header's L2 portion as we were waiting
2126 * to acquire the l2ad_mtx. If that happens, we don't
2127 * want to re-destroy the header's L2 portion.
2128 */
2129 if (HDR_HAS_L2HDR(hdr))
2130 arc_hdr_l2hdr_destroy(hdr);
2131
2132 if (!buflist_held)
2133 mutex_exit(&dev->l2ad_mtx);
2134 }
2135
2136 if (!BUF_EMPTY(hdr))
2137 buf_discard_identity(hdr);
2138
2139 if (hdr->b_freeze_cksum != NULL) {
2140 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2141 hdr->b_freeze_cksum = NULL;
2142 }
2143
2144 if (HDR_HAS_L1HDR(hdr)) {
2145 while (hdr->b_l1hdr.b_buf) {
2146 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2147
2148 if (buf->b_efunc != NULL) {
2149 mutex_enter(&arc_user_evicts_lock);
2150 mutex_enter(&buf->b_evict_lock);
2151 ASSERT(buf->b_hdr != NULL);
2152 arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
2153 hdr->b_l1hdr.b_buf = buf->b_next;
2154 buf->b_hdr = &arc_eviction_hdr;
2155 buf->b_next = arc_eviction_list;
2156 arc_eviction_list = buf;
2157 mutex_exit(&buf->b_evict_lock);
2158 cv_signal(&arc_user_evicts_cv);
2159 mutex_exit(&arc_user_evicts_lock);
2160 } else {
2161 arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
2162 }
2163 }
2164 }
2165
2166 ASSERT3P(hdr->b_hash_next, ==, NULL);
2167 if (HDR_HAS_L1HDR(hdr)) {
2168 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2169 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2170 kmem_cache_free(hdr_full_cache, hdr);
2171 } else {
2172 kmem_cache_free(hdr_l2only_cache, hdr);
2173 }
2174 }
2175
2176 void
2177 arc_buf_free(arc_buf_t *buf, void *tag)
2178 {
2179 arc_buf_hdr_t *hdr = buf->b_hdr;
2180 int hashed = hdr->b_l1hdr.b_state != arc_anon;
2181
2182 ASSERT(buf->b_efunc == NULL);
2183 ASSERT(buf->b_data != NULL);
2184
2185 if (hashed) {
2186 kmutex_t *hash_lock = HDR_LOCK(hdr);
2187
2188 mutex_enter(hash_lock);
2189 hdr = buf->b_hdr;
2190 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2191
2192 (void) remove_reference(hdr, hash_lock, tag);
2193 if (hdr->b_l1hdr.b_datacnt > 1) {
2194 arc_buf_destroy(buf, TRUE);
2195 } else {
2196 ASSERT(buf == hdr->b_l1hdr.b_buf);
2197 ASSERT(buf->b_efunc == NULL);
2198 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2199 }
2200 mutex_exit(hash_lock);
2201 } else if (HDR_IO_IN_PROGRESS(hdr)) {
2202 int destroy_hdr;
2203 /*
2204 * We are in the middle of an async write. Don't destroy
2205 * this buffer unless the write completes before we finish
2206 * decrementing the reference count.
2207 */
2208 mutex_enter(&arc_user_evicts_lock);
2209 (void) remove_reference(hdr, NULL, tag);
2210 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2211 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
2212 mutex_exit(&arc_user_evicts_lock);
2213 if (destroy_hdr)
2214 arc_hdr_destroy(hdr);
2215 } else {
2216 if (remove_reference(hdr, NULL, tag) > 0)
2217 arc_buf_destroy(buf, TRUE);
2218 else
2219 arc_hdr_destroy(hdr);
2220 }
2221 }
2222
2223 boolean_t
2224 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2225 {
2226 arc_buf_hdr_t *hdr = buf->b_hdr;
2227 kmutex_t *hash_lock = NULL;
2228 boolean_t no_callback = (buf->b_efunc == NULL);
2229
2230 if (hdr->b_l1hdr.b_state == arc_anon) {
2231 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2232 arc_buf_free(buf, tag);
2233 return (no_callback);
2234 }
2235
2236 hash_lock = HDR_LOCK(hdr);
2237 mutex_enter(hash_lock);
2238 hdr = buf->b_hdr;
2239 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
2240 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2241 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2242 ASSERT(buf->b_data != NULL);
2243
2244 (void) remove_reference(hdr, hash_lock, tag);
2245 if (hdr->b_l1hdr.b_datacnt > 1) {
2246 if (no_callback)
2247 arc_buf_destroy(buf, TRUE);
2248 } else if (no_callback) {
2249 ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
2250 ASSERT(buf->b_efunc == NULL);
2251 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2252 }
2253 ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2254 refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2255 mutex_exit(hash_lock);
2256 return (no_callback);
2257 }
2258
2259 uint64_t
2260 arc_buf_size(arc_buf_t *buf)
2261 {
2262 return (buf->b_hdr->b_size);
2263 }
2264
2265 /*
2266 * Called from the DMU to determine if the current buffer should be
2267 * evicted. In order to ensure proper locking, the eviction must be initiated
2268 * from the DMU. Return true if the buffer is associated with user data and
2269 * duplicate buffers still exist.
2270 */
2271 boolean_t
2272 arc_buf_eviction_needed(arc_buf_t *buf)
2273 {
2274 arc_buf_hdr_t *hdr;
2275 boolean_t evict_needed = B_FALSE;
2276
2277 if (zfs_disable_dup_eviction)
2278 return (B_FALSE);
2279
2280 mutex_enter(&buf->b_evict_lock);
2281 hdr = buf->b_hdr;
2282 if (hdr == NULL) {
2283 /*
2284 * We are in arc_do_user_evicts(); let that function
2285 * perform the eviction.
2286 */
2287 ASSERT(buf->b_data == NULL);
2288 mutex_exit(&buf->b_evict_lock);
2289 return (B_FALSE);
2290 } else if (buf->b_data == NULL) {
2291 /*
2292 * We have already been added to the arc eviction list;
2293 * recommend eviction.
2294 */
2295 ASSERT3P(hdr, ==, &arc_eviction_hdr);
2296 mutex_exit(&buf->b_evict_lock);
2297 return (B_TRUE);
2298 }
2299
2300 if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
2301 evict_needed = B_TRUE;
2302
2303 mutex_exit(&buf->b_evict_lock);
2304 return (evict_needed);
2305 }
2306
2307 /*
2308 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2309 * state of the header is dependent on its state prior to entering this
2310 * function. The following transitions are possible:
2311 *
2312 * - arc_mru -> arc_mru_ghost
2313 * - arc_mfu -> arc_mfu_ghost
2314 * - arc_mru_ghost -> arc_l2c_only
2315 * - arc_mru_ghost -> deleted
2316 * - arc_mfu_ghost -> arc_l2c_only
2317 * - arc_mfu_ghost -> deleted
2318 */
2319 static int64_t
2320 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
2321 {
2322 arc_state_t *evicted_state, *state;
2323 int64_t bytes_evicted = 0;
2324
2325 ASSERT(MUTEX_HELD(hash_lock));
2326 ASSERT(HDR_HAS_L1HDR(hdr));
2327
2328 state = hdr->b_l1hdr.b_state;
2329 if (GHOST_STATE(state)) {
2330 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2331 ASSERT(hdr->b_l1hdr.b_buf == NULL);
2332
2333 /*
2334 * l2arc_write_buffers() relies on a header's L1 portion
2335 * (i.e. its b_tmp_cdata field) during its write phase.
2336 * Thus, we cannot push a header onto the arc_l2c_only
2337 * state (removing its L1 piece) until the header is
2338 * done being written to the l2arc.
2339 */
2340 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2341 ARCSTAT_BUMP(arcstat_evict_l2_skip);
2342 return (bytes_evicted);
2343 }
2344
2345 ARCSTAT_BUMP(arcstat_deleted);
2346 bytes_evicted += hdr->b_size;
2347
2348 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2349
2350 if (HDR_HAS_L2HDR(hdr)) {
2351 /*
2352 * This buffer is cached on the 2nd Level ARC;
2353 * don't destroy the header.
2354 */
2355 arc_change_state(arc_l2c_only, hdr, hash_lock);
2356 /*
2357 * dropping from L1+L2 cached to L2-only,
2358 * realloc to remove the L1 header.
2359 */
2360 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2361 hdr_l2only_cache);
2362 } else {
2363 arc_change_state(arc_anon, hdr, hash_lock);
2364 arc_hdr_destroy(hdr);
2365 }
2366 return (bytes_evicted);
2367 }
2368
2369 ASSERT(state == arc_mru || state == arc_mfu);
2370 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2371
2372 /* prefetch buffers have a minimum lifespan */
2373 if (HDR_IO_IN_PROGRESS(hdr) ||
2374 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2375 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2376 arc_min_prefetch_lifespan)) {
2377 ARCSTAT_BUMP(arcstat_evict_skip);
2378 return (bytes_evicted);
2379 }
2380
2381 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2382 ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2383 while (hdr->b_l1hdr.b_buf) {
2384 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2385 if (!mutex_tryenter(&buf->b_evict_lock)) {
2386 ARCSTAT_BUMP(arcstat_mutex_miss);
2387 break;
2388 }
2389 if (buf->b_data != NULL)
2390 bytes_evicted += hdr->b_size;
2391 if (buf->b_efunc != NULL) {
2392 mutex_enter(&arc_user_evicts_lock);
2393 arc_buf_destroy(buf, FALSE);
2394 hdr->b_l1hdr.b_buf = buf->b_next;
2395 buf->b_hdr = &arc_eviction_hdr;
2396 buf->b_next = arc_eviction_list;
2397 arc_eviction_list = buf;
2398 cv_signal(&arc_user_evicts_cv);
2399 mutex_exit(&arc_user_evicts_lock);
2400 mutex_exit(&buf->b_evict_lock);
2401 } else {
2402 mutex_exit(&buf->b_evict_lock);
2403 arc_buf_destroy(buf, TRUE);
2404 }
2405 }
2406
2407 if (HDR_HAS_L2HDR(hdr)) {
2408 ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2409 } else {
2410 if (l2arc_write_eligible(hdr->b_spa, hdr))
2411 ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2412 else
2413 ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2414 }
2415
2416 if (hdr->b_l1hdr.b_datacnt == 0) {
2417 arc_change_state(evicted_state, hdr, hash_lock);
2418 ASSERT(HDR_IN_HASH_TABLE(hdr));
2419 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2420 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2421 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2422 }
2423
2424 return (bytes_evicted);
2425 }
2426
2427 static uint64_t
2428 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2429 uint64_t spa, int64_t bytes)
2430 {
2431 multilist_sublist_t *mls;
2432 uint64_t bytes_evicted = 0;
2433 arc_buf_hdr_t *hdr;
2434 kmutex_t *hash_lock;
2435 int evict_count = 0;
2436
2437 ASSERT3P(marker, !=, NULL);
2438 ASSERTV(if (bytes < 0) ASSERT(bytes == ARC_EVICT_ALL));
2439
2440 mls = multilist_sublist_lock(ml, idx);
2441
2442 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2443 hdr = multilist_sublist_prev(mls, marker)) {
2444 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2445 (evict_count >= zfs_arc_evict_batch_limit))
2446 break;
2447
2448 /*
2449 * To keep our iteration location, move the marker
2450 * forward. Since we're not holding hdr's hash lock, we
2451 * must be very careful and not remove 'hdr' from the
2452 * sublist. Otherwise, other consumers might mistake the
2453 * 'hdr' as not being on a sublist when they call the
2454 * multilist_link_active() function (they all rely on
2455 * the hash lock protecting concurrent insertions and
2456 * removals). multilist_sublist_move_forward() was
2457 * specifically implemented to ensure this is the case
2458 * (only 'marker' will be removed and re-inserted).
2459 */
2460 multilist_sublist_move_forward(mls, marker);
2461
2462 /*
2463 * The only case where the b_spa field should ever be
2464 * zero, is the marker headers inserted by
2465 * arc_evict_state(). It's possible for multiple threads
2466 * to be calling arc_evict_state() concurrently (e.g.
2467 * dsl_pool_close() and zio_inject_fault()), so we must
2468 * skip any markers we see from these other threads.
2469 */
2470 if (hdr->b_spa == 0)
2471 continue;
2472
2473 /* we're only interested in evicting buffers of a certain spa */
2474 if (spa != 0 && hdr->b_spa != spa) {
2475 ARCSTAT_BUMP(arcstat_evict_skip);
2476 continue;
2477 }
2478
2479 hash_lock = HDR_LOCK(hdr);
2480
2481 /*
2482 * We aren't calling this function from any code path
2483 * that would already be holding a hash lock, so we're
2484 * asserting on this assumption to be defensive in case
2485 * this ever changes. Without this check, it would be
2486 * possible to incorrectly increment arcstat_mutex_miss
2487 * below (e.g. if the code changed such that we called
2488 * this function with a hash lock held).
2489 */
2490 ASSERT(!MUTEX_HELD(hash_lock));
2491
2492 if (mutex_tryenter(hash_lock)) {
2493 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2494 mutex_exit(hash_lock);
2495
2496 bytes_evicted += evicted;
2497
2498 /*
2499 * If evicted is zero, arc_evict_hdr() must have
2500 * decided to skip this header, don't increment
2501 * evict_count in this case.
2502 */
2503 if (evicted != 0)
2504 evict_count++;
2505
2506 /*
2507 * If arc_size isn't overflowing, signal any
2508 * threads that might happen to be waiting.
2509 *
2510 * For each header evicted, we wake up a single
2511 * thread. If we used cv_broadcast, we could
2512 * wake up "too many" threads causing arc_size
2513 * to significantly overflow arc_c; since
2514 * arc_get_data_buf() doesn't check for overflow
2515 * when it's woken up (it doesn't because it's
2516 * possible for the ARC to be overflowing while
2517 * full of un-evictable buffers, and the
2518 * function should proceed in this case).
2519 *
2520 * If threads are left sleeping, due to not
2521 * using cv_broadcast, they will be woken up
2522 * just before arc_reclaim_thread() sleeps.
2523 */
2524 mutex_enter(&arc_reclaim_lock);
2525 if (!arc_is_overflowing())
2526 cv_signal(&arc_reclaim_waiters_cv);
2527 mutex_exit(&arc_reclaim_lock);
2528 } else {
2529 ARCSTAT_BUMP(arcstat_mutex_miss);
2530 }
2531 }
2532
2533 multilist_sublist_unlock(mls);
2534
2535 return (bytes_evicted);
2536 }
2537
2538 /*
2539 * Evict buffers from the given arc state, until we've removed the
2540 * specified number of bytes. Move the removed buffers to the
2541 * appropriate evict state.
2542 *
2543 * This function makes a "best effort". It skips over any buffers
2544 * it can't get a hash_lock on, and so, may not catch all candidates.
2545 * It may also return without evicting as much space as requested.
2546 *
2547 * If bytes is specified using the special value ARC_EVICT_ALL, this
2548 * will evict all available (i.e. unlocked and evictable) buffers from
2549 * the given arc state; which is used by arc_flush().
2550 */
2551 static uint64_t
2552 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2553 arc_buf_contents_t type)
2554 {
2555 uint64_t total_evicted = 0;
2556 multilist_t *ml = &state->arcs_list[type];
2557 int num_sublists;
2558 arc_buf_hdr_t **markers;
2559 int i;
2560
2561 ASSERTV(if (bytes < 0) ASSERT(bytes == ARC_EVICT_ALL));
2562
2563 num_sublists = multilist_get_num_sublists(ml);
2564
2565 /*
2566 * If we've tried to evict from each sublist, made some
2567 * progress, but still have not hit the target number of bytes
2568 * to evict, we want to keep trying. The markers allow us to
2569 * pick up where we left off for each individual sublist, rather
2570 * than starting from the tail each time.
2571 */
2572 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2573 for (i = 0; i < num_sublists; i++) {
2574 multilist_sublist_t *mls;
2575
2576 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2577
2578 /*
2579 * A b_spa of 0 is used to indicate that this header is
2580 * a marker. This fact is used in arc_adjust_type() and
2581 * arc_evict_state_impl().
2582 */
2583 markers[i]->b_spa = 0;
2584
2585 mls = multilist_sublist_lock(ml, i);
2586 multilist_sublist_insert_tail(mls, markers[i]);
2587 multilist_sublist_unlock(mls);
2588 }
2589
2590 /*
2591 * While we haven't hit our target number of bytes to evict, or
2592 * we're evicting all available buffers.
2593 */
2594 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2595 /*
2596 * Start eviction using a randomly selected sublist,
2597 * this is to try and evenly balance eviction across all
2598 * sublists. Always starting at the same sublist
2599 * (e.g. index 0) would cause evictions to favor certain
2600 * sublists over others.
2601 */
2602 int sublist_idx = multilist_get_random_index(ml);
2603 uint64_t scan_evicted = 0;
2604
2605 for (i = 0; i < num_sublists; i++) {
2606 uint64_t bytes_remaining;
2607 uint64_t bytes_evicted;
2608
2609 if (bytes == ARC_EVICT_ALL)
2610 bytes_remaining = ARC_EVICT_ALL;
2611 else if (total_evicted < bytes)
2612 bytes_remaining = bytes - total_evicted;
2613 else
2614 break;
2615
2616 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
2617 markers[sublist_idx], spa, bytes_remaining);
2618
2619 scan_evicted += bytes_evicted;
2620 total_evicted += bytes_evicted;
2621
2622 /* we've reached the end, wrap to the beginning */
2623 if (++sublist_idx >= num_sublists)
2624 sublist_idx = 0;
2625 }
2626
2627 /*
2628 * If we didn't evict anything during this scan, we have
2629 * no reason to believe we'll evict more during another
2630 * scan, so break the loop.
2631 */
2632 if (scan_evicted == 0) {
2633 /* This isn't possible, let's make that obvious */
2634 ASSERT3S(bytes, !=, 0);
2635
2636 /*
2637 * When bytes is ARC_EVICT_ALL, the only way to
2638 * break the loop is when scan_evicted is zero.
2639 * In that case, we actually have evicted enough,
2640 * so we don't want to increment the kstat.
2641 */
2642 if (bytes != ARC_EVICT_ALL) {
2643 ASSERT3S(total_evicted, <, bytes);
2644 ARCSTAT_BUMP(arcstat_evict_not_enough);
2645 }
2646
2647 break;
2648 }
2649 }
2650
2651 for (i = 0; i < num_sublists; i++) {
2652 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2653 multilist_sublist_remove(mls, markers[i]);
2654 multilist_sublist_unlock(mls);
2655
2656 kmem_cache_free(hdr_full_cache, markers[i]);
2657 }
2658 kmem_free(markers, sizeof (*markers) * num_sublists);
2659
2660 return (total_evicted);
2661 }
2662
2663 /*
2664 * Flush all "evictable" data of the given type from the arc state
2665 * specified. This will not evict any "active" buffers (i.e. referenced).
2666 *
2667 * When 'retry' is set to FALSE, the function will make a single pass
2668 * over the state and evict any buffers that it can. Since it doesn't
2669 * continually retry the eviction, it might end up leaving some buffers
2670 * in the ARC due to lock misses.
2671 *
2672 * When 'retry' is set to TRUE, the function will continually retry the
2673 * eviction until *all* evictable buffers have been removed from the
2674 * state. As a result, if concurrent insertions into the state are
2675 * allowed (e.g. if the ARC isn't shutting down), this function might
2676 * wind up in an infinite loop, continually trying to evict buffers.
2677 */
2678 static uint64_t
2679 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
2680 boolean_t retry)
2681 {
2682 uint64_t evicted = 0;
2683
2684 while (state->arcs_lsize[type] != 0) {
2685 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
2686
2687 if (!retry)
2688 break;
2689 }
2690
2691 return (evicted);
2692 }
2693
2694 /*
2695 * Helper function for arc_prune() it is responsible for safely handling
2696 * the execution of a registered arc_prune_func_t.
2697 */
2698 static void
2699 arc_prune_task(void *ptr)
2700 {
2701 arc_prune_t *ap = (arc_prune_t *)ptr;
2702 arc_prune_func_t *func = ap->p_pfunc;
2703
2704 if (func != NULL)
2705 func(ap->p_adjust, ap->p_private);
2706
2707 /* Callback unregistered concurrently with execution */
2708 if (refcount_remove(&ap->p_refcnt, func) == 0) {
2709 ASSERT(!list_link_active(&ap->p_node));
2710 refcount_destroy(&ap->p_refcnt);
2711 kmem_free(ap, sizeof (*ap));
2712 }
2713 }
2714
2715 /*
2716 * Notify registered consumers they must drop holds on a portion of the ARC
2717 * buffered they reference. This provides a mechanism to ensure the ARC can
2718 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
2719 * is analogous to dnlc_reduce_cache() but more generic.
2720 *
2721 * This operation is performed asyncronously so it may be safely called
2722 * in the context of the arc_reclaim_thread(). A reference is taken here
2723 * for each registered arc_prune_t and the arc_prune_task() is responsible
2724 * for releasing it once the registered arc_prune_func_t has completed.
2725 */
2726 static void
2727 arc_prune_async(int64_t adjust)
2728 {
2729 arc_prune_t *ap;
2730
2731 mutex_enter(&arc_prune_mtx);
2732 for (ap = list_head(&arc_prune_list); ap != NULL;
2733 ap = list_next(&arc_prune_list, ap)) {
2734
2735 if (refcount_count(&ap->p_refcnt) >= 2)
2736 continue;
2737
2738 refcount_add(&ap->p_refcnt, ap->p_pfunc);
2739 ap->p_adjust = adjust;
2740 taskq_dispatch(arc_prune_taskq, arc_prune_task, ap, TQ_SLEEP);
2741 ARCSTAT_BUMP(arcstat_prune);
2742 }
2743 mutex_exit(&arc_prune_mtx);
2744 }
2745
2746 static void
2747 arc_prune(int64_t adjust)
2748 {
2749 arc_prune_async(adjust);
2750 taskq_wait_outstanding(arc_prune_taskq, 0);
2751 }
2752
2753 /*
2754 * Evict the specified number of bytes from the state specified,
2755 * restricting eviction to the spa and type given. This function
2756 * prevents us from trying to evict more from a state's list than
2757 * is "evictable", and to skip evicting altogether when passed a
2758 * negative value for "bytes". In contrast, arc_evict_state() will
2759 * evict everything it can, when passed a negative value for "bytes".
2760 */
2761 static uint64_t
2762 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
2763 arc_buf_contents_t type)
2764 {
2765 int64_t delta;
2766
2767 if (bytes > 0 && state->arcs_lsize[type] > 0) {
2768 delta = MIN(state->arcs_lsize[type], bytes);
2769 return (arc_evict_state(state, spa, delta, type));
2770 }
2771
2772 return (0);
2773 }
2774
2775 /*
2776 * The goal of this function is to evict enough meta data buffers from the
2777 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
2778 * more complicated than it appears because it is common for data buffers
2779 * to have holds on meta data buffers. In addition, dnode meta data buffers
2780 * will be held by the dnodes in the block preventing them from being freed.
2781 * This means we can't simply traverse the ARC and expect to always find
2782 * enough unheld meta data buffer to release.
2783 *
2784 * Therefore, this function has been updated to make alternating passes
2785 * over the ARC releasing data buffers and then newly unheld meta data
2786 * buffers. This ensures forward progress is maintained and arc_meta_used
2787 * will decrease. Normally this is sufficient, but if required the ARC
2788 * will call the registered prune callbacks causing dentry and inodes to
2789 * be dropped from the VFS cache. This will make dnode meta data buffers
2790 * available for reclaim.
2791 */
2792 static uint64_t
2793 arc_adjust_meta_balanced(void)
2794 {
2795 int64_t adjustmnt, delta, prune = 0;
2796 uint64_t total_evicted = 0;
2797 arc_buf_contents_t type = ARC_BUFC_DATA;
2798 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
2799
2800 restart:
2801 /*
2802 * This slightly differs than the way we evict from the mru in
2803 * arc_adjust because we don't have a "target" value (i.e. no
2804 * "meta" arc_p). As a result, I think we can completely
2805 * cannibalize the metadata in the MRU before we evict the
2806 * metadata from the MFU. I think we probably need to implement a
2807 * "metadata arc_p" value to do this properly.
2808 */
2809 adjustmnt = arc_meta_used - arc_meta_limit;
2810
2811 if (adjustmnt > 0 && arc_mru->arcs_lsize[type] > 0) {
2812 delta = MIN(arc_mru->arcs_lsize[type], adjustmnt);
2813 total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
2814 adjustmnt -= delta;
2815 }
2816
2817 /*
2818 * We can't afford to recalculate adjustmnt here. If we do,
2819 * new metadata buffers can sneak into the MRU or ANON lists,
2820 * thus penalize the MFU metadata. Although the fudge factor is
2821 * small, it has been empirically shown to be significant for
2822 * certain workloads (e.g. creating many empty directories). As
2823 * such, we use the original calculation for adjustmnt, and
2824 * simply decrement the amount of data evicted from the MRU.
2825 */
2826
2827 if (adjustmnt > 0 && arc_mfu->arcs_lsize[type] > 0) {
2828 delta = MIN(arc_mfu->arcs_lsize[type], adjustmnt);
2829 total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
2830 }
2831
2832 adjustmnt = arc_meta_used - arc_meta_limit;
2833
2834 if (adjustmnt > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
2835 delta = MIN(adjustmnt,
2836 arc_mru_ghost->arcs_lsize[type]);
2837 total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
2838 adjustmnt -= delta;
2839 }
2840
2841 if (adjustmnt > 0 && arc_mfu_ghost->arcs_lsize[type] > 0) {
2842 delta = MIN(adjustmnt,
2843 arc_mfu_ghost->arcs_lsize[type]);
2844 total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
2845 }
2846
2847 /*
2848 * If after attempting to make the requested adjustment to the ARC
2849 * the meta limit is still being exceeded then request that the
2850 * higher layers drop some cached objects which have holds on ARC
2851 * meta buffers. Requests to the upper layers will be made with
2852 * increasingly large scan sizes until the ARC is below the limit.
2853 */
2854 if (arc_meta_used > arc_meta_limit) {
2855 if (type == ARC_BUFC_DATA) {
2856 type = ARC_BUFC_METADATA;
2857 } else {
2858 type = ARC_BUFC_DATA;
2859
2860 if (zfs_arc_meta_prune) {
2861 prune += zfs_arc_meta_prune;
2862 arc_prune_async(prune);
2863 }
2864 }
2865
2866 if (restarts > 0) {
2867 restarts--;
2868 goto restart;
2869 }
2870 }
2871 return (total_evicted);
2872 }
2873
2874 /*
2875 * Evict metadata buffers from the cache, such that arc_meta_used is
2876 * capped by the arc_meta_limit tunable.
2877 */
2878 static uint64_t
2879 arc_adjust_meta_only(void)
2880 {
2881 uint64_t total_evicted = 0;
2882 int64_t target;
2883
2884 /*
2885 * If we're over the meta limit, we want to evict enough
2886 * metadata to get back under the meta limit. We don't want to
2887 * evict so much that we drop the MRU below arc_p, though. If
2888 * we're over the meta limit more than we're over arc_p, we
2889 * evict some from the MRU here, and some from the MFU below.
2890 */
2891 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
2892 (int64_t)(refcount_count(&arc_anon->arcs_size) +
2893 refcount_count(&arc_mru->arcs_size) - arc_p));
2894
2895 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2896
2897 /*
2898 * Similar to the above, we want to evict enough bytes to get us
2899 * below the meta limit, but not so much as to drop us below the
2900 * space alloted to the MFU (which is defined as arc_c - arc_p).
2901 */
2902 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
2903 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
2904
2905 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2906
2907 return (total_evicted);
2908 }
2909
2910 static uint64_t
2911 arc_adjust_meta(void)
2912 {
2913 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
2914 return (arc_adjust_meta_only());
2915 else
2916 return (arc_adjust_meta_balanced());
2917 }
2918
2919 /*
2920 * Return the type of the oldest buffer in the given arc state
2921 *
2922 * This function will select a random sublist of type ARC_BUFC_DATA and
2923 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
2924 * is compared, and the type which contains the "older" buffer will be
2925 * returned.
2926 */
2927 static arc_buf_contents_t
2928 arc_adjust_type(arc_state_t *state)
2929 {
2930 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
2931 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
2932 int data_idx = multilist_get_random_index(data_ml);
2933 int meta_idx = multilist_get_random_index(meta_ml);
2934 multilist_sublist_t *data_mls;
2935 multilist_sublist_t *meta_mls;
2936 arc_buf_contents_t type;
2937 arc_buf_hdr_t *data_hdr;
2938 arc_buf_hdr_t *meta_hdr;
2939
2940 /*
2941 * We keep the sublist lock until we're finished, to prevent
2942 * the headers from being destroyed via arc_evict_state().
2943 */
2944 data_mls = multilist_sublist_lock(data_ml, data_idx);
2945 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
2946
2947 /*
2948 * These two loops are to ensure we skip any markers that
2949 * might be at the tail of the lists due to arc_evict_state().
2950 */
2951
2952 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
2953 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
2954 if (data_hdr->b_spa != 0)
2955 break;
2956 }
2957
2958 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
2959 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
2960 if (meta_hdr->b_spa != 0)
2961 break;
2962 }
2963
2964 if (data_hdr == NULL && meta_hdr == NULL) {
2965 type = ARC_BUFC_DATA;
2966 } else if (data_hdr == NULL) {
2967 ASSERT3P(meta_hdr, !=, NULL);
2968 type = ARC_BUFC_METADATA;
2969 } else if (meta_hdr == NULL) {
2970 ASSERT3P(data_hdr, !=, NULL);
2971 type = ARC_BUFC_DATA;
2972 } else {
2973 ASSERT3P(data_hdr, !=, NULL);
2974 ASSERT3P(meta_hdr, !=, NULL);
2975
2976 /* The headers can't be on the sublist without an L1 header */
2977 ASSERT(HDR_HAS_L1HDR(data_hdr));
2978 ASSERT(HDR_HAS_L1HDR(meta_hdr));
2979
2980 if (data_hdr->b_l1hdr.b_arc_access <
2981 meta_hdr->b_l1hdr.b_arc_access) {
2982 type = ARC_BUFC_DATA;
2983 } else {
2984 type = ARC_BUFC_METADATA;
2985 }
2986 }
2987
2988 multilist_sublist_unlock(meta_mls);
2989 multilist_sublist_unlock(data_mls);
2990
2991 return (type);
2992 }
2993
2994 /*
2995 * Evict buffers from the cache, such that arc_size is capped by arc_c.
2996 */
2997 static uint64_t
2998 arc_adjust(void)
2999 {
3000 uint64_t total_evicted = 0;
3001 uint64_t bytes;
3002 int64_t target;
3003
3004 /*
3005 * If we're over arc_meta_limit, we want to correct that before
3006 * potentially evicting data buffers below.
3007 */
3008 total_evicted += arc_adjust_meta();
3009
3010 /*
3011 * Adjust MRU size
3012 *
3013 * If we're over the target cache size, we want to evict enough
3014 * from the list to get back to our target size. We don't want
3015 * to evict too much from the MRU, such that it drops below
3016 * arc_p. So, if we're over our target cache size more than
3017 * the MRU is over arc_p, we'll evict enough to get back to
3018 * arc_p here, and then evict more from the MFU below.
3019 */
3020 target = MIN((int64_t)(arc_size - arc_c),
3021 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3022 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3023
3024 /*
3025 * If we're below arc_meta_min, always prefer to evict data.
3026 * Otherwise, try to satisfy the requested number of bytes to
3027 * evict from the type which contains older buffers; in an
3028 * effort to keep newer buffers in the cache regardless of their
3029 * type. If we cannot satisfy the number of bytes from this
3030 * type, spill over into the next type.
3031 */
3032 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3033 arc_meta_used > arc_meta_min) {
3034 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3035 total_evicted += bytes;
3036
3037 /*
3038 * If we couldn't evict our target number of bytes from
3039 * metadata, we try to get the rest from data.
3040 */
3041 target -= bytes;
3042
3043 total_evicted +=
3044 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3045 } else {
3046 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3047 total_evicted += bytes;
3048
3049 /*
3050 * If we couldn't evict our target number of bytes from
3051 * data, we try to get the rest from metadata.
3052 */
3053 target -= bytes;
3054
3055 total_evicted +=
3056 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3057 }
3058
3059 /*
3060 * Adjust MFU size
3061 *
3062 * Now that we've tried to evict enough from the MRU to get its
3063 * size back to arc_p, if we're still above the target cache
3064 * size, we evict the rest from the MFU.
3065 */
3066 target = arc_size - arc_c;
3067
3068 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3069 arc_meta_used > arc_meta_min) {
3070 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3071 total_evicted += bytes;
3072
3073 /*
3074 * If we couldn't evict our target number of bytes from
3075 * metadata, we try to get the rest from data.
3076 */
3077 target -= bytes;
3078
3079 total_evicted +=
3080 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3081 } else {
3082 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3083 total_evicted += bytes;
3084
3085 /*
3086 * If we couldn't evict our target number of bytes from
3087 * data, we try to get the rest from data.
3088 */
3089 target -= bytes;
3090
3091 total_evicted +=
3092 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3093 }
3094
3095 /*
3096 * Adjust ghost lists
3097 *
3098 * In addition to the above, the ARC also defines target values
3099 * for the ghost lists. The sum of the mru list and mru ghost
3100 * list should never exceed the target size of the cache, and
3101 * the sum of the mru list, mfu list, mru ghost list, and mfu
3102 * ghost list should never exceed twice the target size of the
3103 * cache. The following logic enforces these limits on the ghost
3104 * caches, and evicts from them as needed.
3105 */
3106 target = refcount_count(&arc_mru->arcs_size) +
3107 refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3108
3109 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3110 total_evicted += bytes;
3111
3112 target -= bytes;
3113
3114 total_evicted +=
3115 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3116
3117 /*
3118 * We assume the sum of the mru list and mfu list is less than
3119 * or equal to arc_c (we enforced this above), which means we
3120 * can use the simpler of the two equations below:
3121 *
3122 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3123 * mru ghost + mfu ghost <= arc_c
3124 */
3125 target = refcount_count(&arc_mru_ghost->arcs_size) +
3126 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3127
3128 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3129 total_evicted += bytes;
3130
3131 target -= bytes;
3132
3133 total_evicted +=
3134 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3135
3136 return (total_evicted);
3137 }
3138
3139 static void
3140 arc_do_user_evicts(void)
3141 {
3142 mutex_enter(&arc_user_evicts_lock);
3143 while (arc_eviction_list != NULL) {
3144 arc_buf_t *buf = arc_eviction_list;
3145 arc_eviction_list = buf->b_next;
3146 mutex_enter(&buf->b_evict_lock);
3147 buf->b_hdr = NULL;
3148 mutex_exit(&buf->b_evict_lock);
3149 mutex_exit(&arc_user_evicts_lock);
3150
3151 if (buf->b_efunc != NULL)
3152 VERIFY0(buf->b_efunc(buf->b_private));
3153
3154 buf->b_efunc = NULL;
3155 buf->b_private = NULL;
3156 kmem_cache_free(buf_cache, buf);
3157 mutex_enter(&arc_user_evicts_lock);
3158 }
3159 mutex_exit(&arc_user_evicts_lock);
3160 }
3161
3162 void
3163 arc_flush(spa_t *spa, boolean_t retry)
3164 {
3165 uint64_t guid = 0;
3166
3167 /*
3168 * If retry is TRUE, a spa must not be specified since we have
3169 * no good way to determine if all of a spa's buffers have been
3170 * evicted from an arc state.
3171 */
3172 ASSERT(!retry || spa == 0);
3173
3174 if (spa != NULL)
3175 guid = spa_load_guid(spa);
3176
3177 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3178 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3179
3180 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3181 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3182
3183 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3184 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3185
3186 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3187 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3188
3189 arc_do_user_evicts();
3190 ASSERT(spa || arc_eviction_list == NULL);
3191 }
3192
3193 void
3194 arc_shrink(int64_t to_free)
3195 {
3196 if (arc_c > arc_c_min) {
3197
3198 if (arc_c > arc_c_min + to_free)
3199 atomic_add_64(&arc_c, -to_free);
3200 else
3201 arc_c = arc_c_min;
3202
3203 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3204 if (arc_c > arc_size)
3205 arc_c = MAX(arc_size, arc_c_min);
3206 if (arc_p > arc_c)
3207 arc_p = (arc_c >> 1);
3208 ASSERT(arc_c >= arc_c_min);
3209 ASSERT((int64_t)arc_p >= 0);
3210 }
3211
3212 if (arc_size > arc_c)
3213 (void) arc_adjust();
3214 }
3215
3216 typedef enum free_memory_reason_t {
3217 FMR_UNKNOWN,
3218 FMR_NEEDFREE,
3219 FMR_LOTSFREE,
3220 FMR_SWAPFS_MINFREE,
3221 FMR_PAGES_PP_MAXIMUM,
3222 FMR_HEAP_ARENA,
3223 FMR_ZIO_ARENA,
3224 } free_memory_reason_t;
3225
3226 int64_t last_free_memory;
3227 free_memory_reason_t last_free_reason;
3228
3229 #ifdef _KERNEL
3230 #ifdef __linux__
3231 /*
3232 * expiration time for arc_no_grow set by direct memory reclaim.
3233 */
3234 static clock_t arc_grow_time = 0;
3235 #else
3236 /*
3237 * Additional reserve of pages for pp_reserve.
3238 */
3239 int64_t arc_pages_pp_reserve = 64;
3240
3241 /*
3242 * Additional reserve of pages for swapfs.
3243 */
3244 int64_t arc_swapfs_reserve = 64;
3245 #endif
3246 #endif /* _KERNEL */
3247
3248 /*
3249 * Return the amount of memory that can be consumed before reclaim will be
3250 * needed. Positive if there is sufficient free memory, negative indicates
3251 * the amount of memory that needs to be freed up.
3252 */
3253 static int64_t
3254 arc_available_memory(void)
3255 {
3256 int64_t lowest = INT64_MAX;
3257 free_memory_reason_t r = FMR_UNKNOWN;
3258
3259 #ifdef _KERNEL
3260 #ifdef __linux__
3261 /*
3262 * Under Linux we are not allowed to directly interrogate the global
3263 * memory state. Instead rely on observing that direct reclaim has
3264 * recently occurred therefore the system must be low on memory. The
3265 * exact values returned are not critical but should be small.
3266 */
3267 if (ddi_time_after_eq(ddi_get_lbolt(), arc_grow_time))
3268 lowest = PAGE_SIZE;
3269 else
3270 lowest = -PAGE_SIZE;
3271 #else
3272 int64_t n;
3273
3274 /*
3275 * Platforms like illumos have greater visibility in to the memory
3276 * subsystem and can return a more detailed analysis of memory.
3277 */
3278 if (needfree > 0) {
3279 n = PAGESIZE * (-needfree);
3280 if (n < lowest) {
3281 lowest = n;
3282 r = FMR_NEEDFREE;
3283 }
3284 }
3285
3286 /*
3287 * check that we're out of range of the pageout scanner. It starts to
3288 * schedule paging if freemem is less than lotsfree and needfree.
3289 * lotsfree is the high-water mark for pageout, and needfree is the
3290 * number of needed free pages. We add extra pages here to make sure
3291 * the scanner doesn't start up while we're freeing memory.
3292 */
3293 n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3294 if (n < lowest) {
3295 lowest = n;
3296 r = FMR_LOTSFREE;
3297 }
3298
3299 /*
3300 * check to make sure that swapfs has enough space so that anon
3301 * reservations can still succeed. anon_resvmem() checks that the
3302 * availrmem is greater than swapfs_minfree, and the number of reserved
3303 * swap pages. We also add a bit of extra here just to prevent
3304 * circumstances from getting really dire.
3305 */
3306 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3307 desfree - arc_swapfs_reserve);
3308 if (n < lowest) {
3309 lowest = n;
3310 r = FMR_SWAPFS_MINFREE;
3311 }
3312
3313
3314 /*
3315 * Check that we have enough availrmem that memory locking (e.g., via
3316 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
3317 * stores the number of pages that cannot be locked; when availrmem
3318 * drops below pages_pp_maximum, page locking mechanisms such as
3319 * page_pp_lock() will fail.)
3320 */
3321 n = PAGESIZE * (availrmem - pages_pp_maximum -
3322 arc_pages_pp_reserve);
3323 if (n < lowest) {
3324 lowest = n;
3325 r = FMR_PAGES_PP_MAXIMUM;
3326 }
3327
3328 #if defined(__i386)
3329 /*
3330 * If we're on an i386 platform, it's possible that we'll exhaust the
3331 * kernel heap space before we ever run out of available physical
3332 * memory. Most checks of the size of the heap_area compare against
3333 * tune.t_minarmem, which is the minimum available real memory that we
3334 * can have in the system. However, this is generally fixed at 25 pages
3335 * which is so low that it's useless. In this comparison, we seek to
3336 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3337 * heap is allocated. (Or, in the calculation, if less than 1/4th is
3338 * free)
3339 */
3340 n = vmem_size(heap_arena, VMEM_FREE) -
3341 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3342 if (n < lowest) {
3343 lowest = n;
3344 r = FMR_HEAP_ARENA;
3345 }
3346 #endif
3347
3348 /*
3349 * If zio data pages are being allocated out of a separate heap segment,
3350 * then enforce that the size of available vmem for this arena remains
3351 * above about 1/16th free.
3352 *
3353 * Note: The 1/16th arena free requirement was put in place
3354 * to aggressively evict memory from the arc in order to avoid
3355 * memory fragmentation issues.
3356 */
3357 if (zio_arena != NULL) {
3358 n = vmem_size(zio_arena, VMEM_FREE) -
3359 (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3360 if (n < lowest) {
3361 lowest = n;
3362 r = FMR_ZIO_ARENA;
3363 }
3364 }
3365 #endif /* __linux__ */
3366 #else
3367 /* Every 100 calls, free a small amount */
3368 if (spa_get_random(100) == 0)
3369 lowest = -1024;
3370 #endif
3371
3372 last_free_memory = lowest;
3373 last_free_reason = r;
3374
3375 return (lowest);
3376 }
3377
3378 /*
3379 * Determine if the system is under memory pressure and is asking
3380 * to reclaim memory. A return value of TRUE indicates that the system
3381 * is under memory pressure and that the arc should adjust accordingly.
3382 */
3383 static boolean_t
3384 arc_reclaim_needed(void)
3385 {
3386 return (arc_available_memory() < 0);
3387 }
3388
3389 static void
3390 arc_kmem_reap_now(void)
3391 {
3392 size_t i;
3393 kmem_cache_t *prev_cache = NULL;
3394 kmem_cache_t *prev_data_cache = NULL;
3395 extern kmem_cache_t *zio_buf_cache[];
3396 extern kmem_cache_t *zio_data_buf_cache[];
3397 extern kmem_cache_t *range_seg_cache;
3398
3399 if ((arc_meta_used >= arc_meta_limit) && zfs_arc_meta_prune) {
3400 /*
3401 * We are exceeding our meta-data cache limit.
3402 * Prune some entries to release holds on meta-data.
3403 */
3404 arc_prune(zfs_arc_meta_prune);
3405 }
3406
3407 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3408 if (zio_buf_cache[i] != prev_cache) {
3409 prev_cache = zio_buf_cache[i];
3410 kmem_cache_reap_now(zio_buf_cache[i]);
3411 }
3412 if (zio_data_buf_cache[i] != prev_data_cache) {
3413 prev_data_cache = zio_data_buf_cache[i];
3414 kmem_cache_reap_now(zio_data_buf_cache[i]);
3415 }
3416 }
3417 kmem_cache_reap_now(buf_cache);
3418 kmem_cache_reap_now(hdr_full_cache);
3419 kmem_cache_reap_now(hdr_l2only_cache);
3420 kmem_cache_reap_now(range_seg_cache);
3421
3422 if (zio_arena != NULL) {
3423 /*
3424 * Ask the vmem arena to reclaim unused memory from its
3425 * quantum caches.
3426 */
3427 vmem_qcache_reap(zio_arena);
3428 }
3429 }
3430
3431 /*
3432 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3433 * enough data and signal them to proceed. When this happens, the threads in
3434 * arc_get_data_buf() are sleeping while holding the hash lock for their
3435 * particular arc header. Thus, we must be careful to never sleep on a
3436 * hash lock in this thread. This is to prevent the following deadlock:
3437 *
3438 * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3439 * waiting for the reclaim thread to signal it.
3440 *
3441 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3442 * fails, and goes to sleep forever.
3443 *
3444 * This possible deadlock is avoided by always acquiring a hash lock
3445 * using mutex_tryenter() from arc_reclaim_thread().
3446 */
3447 static void
3448 arc_reclaim_thread(void)
3449 {
3450 fstrans_cookie_t cookie = spl_fstrans_mark();
3451 clock_t growtime = 0;
3452 callb_cpr_t cpr;
3453
3454 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
3455
3456 mutex_enter(&arc_reclaim_lock);
3457 while (!arc_reclaim_thread_exit) {
3458 int64_t to_free;
3459 int64_t free_memory = arc_available_memory();
3460 uint64_t evicted = 0;
3461
3462 arc_tuning_update();
3463
3464 mutex_exit(&arc_reclaim_lock);
3465
3466 if (free_memory < 0) {
3467
3468 arc_no_grow = B_TRUE;
3469 arc_warm = B_TRUE;
3470
3471 /*
3472 * Wait at least zfs_grow_retry (default 5) seconds
3473 * before considering growing.
3474 */
3475 growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
3476
3477 arc_kmem_reap_now();
3478
3479 /*
3480 * If we are still low on memory, shrink the ARC
3481 * so that we have arc_shrink_min free space.
3482 */
3483 free_memory = arc_available_memory();
3484
3485 to_free = (arc_c >> arc_shrink_shift) - free_memory;
3486 if (to_free > 0) {
3487 #ifdef _KERNEL
3488 to_free = MAX(to_free, ptob(needfree));
3489 #endif
3490 arc_shrink(to_free);
3491 }
3492 } else if (free_memory < arc_c >> arc_no_grow_shift) {
3493 arc_no_grow = B_TRUE;
3494 } else if (ddi_get_lbolt() >= growtime) {
3495 arc_no_grow = B_FALSE;
3496 }
3497
3498 evicted = arc_adjust();
3499
3500 mutex_enter(&arc_reclaim_lock);
3501
3502 /*
3503 * If evicted is zero, we couldn't evict anything via
3504 * arc_adjust(). This could be due to hash lock
3505 * collisions, but more likely due to the majority of
3506 * arc buffers being unevictable. Therefore, even if
3507 * arc_size is above arc_c, another pass is unlikely to
3508 * be helpful and could potentially cause us to enter an
3509 * infinite loop.
3510 */
3511 if (arc_size <= arc_c || evicted == 0) {
3512 /*
3513 * We're either no longer overflowing, or we
3514 * can't evict anything more, so we should wake
3515 * up any threads before we go to sleep.
3516 */
3517 cv_broadcast(&arc_reclaim_waiters_cv);
3518
3519 /*
3520 * Block until signaled, or after one second (we
3521 * might need to perform arc_kmem_reap_now()
3522 * even if we aren't being signalled)
3523 */
3524 CALLB_CPR_SAFE_BEGIN(&cpr);
3525 (void) cv_timedwait_sig(&arc_reclaim_thread_cv,
3526 &arc_reclaim_lock, ddi_get_lbolt() + hz);
3527 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3528 }
3529 }
3530
3531 arc_reclaim_thread_exit = FALSE;
3532 cv_broadcast(&arc_reclaim_thread_cv);
3533 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
3534 spl_fstrans_unmark(cookie);
3535 thread_exit();
3536 }
3537
3538 static void
3539 arc_user_evicts_thread(void)
3540 {
3541 fstrans_cookie_t cookie = spl_fstrans_mark();
3542 callb_cpr_t cpr;
3543
3544 CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
3545
3546 mutex_enter(&arc_user_evicts_lock);
3547 while (!arc_user_evicts_thread_exit) {
3548 mutex_exit(&arc_user_evicts_lock);
3549
3550 arc_do_user_evicts();
3551
3552 /*
3553 * This is necessary in order for the mdb ::arc dcmd to
3554 * show up to date information. Since the ::arc command
3555 * does not call the kstat's update function, without
3556 * this call, the command may show stale stats for the
3557 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3558 * with this change, the data might be up to 1 second
3559 * out of date; but that should suffice. The arc_state_t
3560 * structures can be queried directly if more accurate
3561 * information is needed.
3562 */
3563 if (arc_ksp != NULL)
3564 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3565
3566 mutex_enter(&arc_user_evicts_lock);
3567
3568 /*
3569 * Block until signaled, or after one second (we need to
3570 * call the arc's kstat update function regularly).
3571 */
3572 CALLB_CPR_SAFE_BEGIN(&cpr);
3573 (void) cv_timedwait_sig(&arc_user_evicts_cv,
3574 &arc_user_evicts_lock, ddi_get_lbolt() + hz);
3575 CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
3576 }
3577
3578 arc_user_evicts_thread_exit = FALSE;
3579 cv_broadcast(&arc_user_evicts_cv);
3580 CALLB_CPR_EXIT(&cpr); /* drops arc_user_evicts_lock */
3581 spl_fstrans_unmark(cookie);
3582 thread_exit();
3583 }
3584
3585 #ifdef _KERNEL
3586 /*
3587 * Determine the amount of memory eligible for eviction contained in the
3588 * ARC. All clean data reported by the ghost lists can always be safely
3589 * evicted. Due to arc_c_min, the same does not hold for all clean data
3590 * contained by the regular mru and mfu lists.
3591 *
3592 * In the case of the regular mru and mfu lists, we need to report as
3593 * much clean data as possible, such that evicting that same reported
3594 * data will not bring arc_size below arc_c_min. Thus, in certain
3595 * circumstances, the total amount of clean data in the mru and mfu
3596 * lists might not actually be evictable.
3597 *
3598 * The following two distinct cases are accounted for:
3599 *
3600 * 1. The sum of the amount of dirty data contained by both the mru and
3601 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
3602 * is greater than or equal to arc_c_min.
3603 * (i.e. amount of dirty data >= arc_c_min)
3604 *
3605 * This is the easy case; all clean data contained by the mru and mfu
3606 * lists is evictable. Evicting all clean data can only drop arc_size
3607 * to the amount of dirty data, which is greater than arc_c_min.
3608 *
3609 * 2. The sum of the amount of dirty data contained by both the mru and
3610 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
3611 * is less than arc_c_min.
3612 * (i.e. arc_c_min > amount of dirty data)
3613 *
3614 * 2.1. arc_size is greater than or equal arc_c_min.
3615 * (i.e. arc_size >= arc_c_min > amount of dirty data)
3616 *
3617 * In this case, not all clean data from the regular mru and mfu
3618 * lists is actually evictable; we must leave enough clean data
3619 * to keep arc_size above arc_c_min. Thus, the maximum amount of
3620 * evictable data from the two lists combined, is exactly the
3621 * difference between arc_size and arc_c_min.
3622 *
3623 * 2.2. arc_size is less than arc_c_min
3624 * (i.e. arc_c_min > arc_size > amount of dirty data)
3625 *
3626 * In this case, none of the data contained in the mru and mfu
3627 * lists is evictable, even if it's clean. Since arc_size is
3628 * already below arc_c_min, evicting any more would only
3629 * increase this negative difference.
3630 */
3631 static uint64_t
3632 arc_evictable_memory(void) {
3633 uint64_t arc_clean =
3634 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3635 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3636 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3637 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3638 uint64_t ghost_clean =
3639 arc_mru_ghost->arcs_lsize[ARC_BUFC_DATA] +
3640 arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] +
3641 arc_mfu_ghost->arcs_lsize[ARC_BUFC_DATA] +
3642 arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA];
3643 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
3644
3645 if (arc_dirty >= arc_c_min)
3646 return (ghost_clean + arc_clean);
3647
3648 return (ghost_clean + MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
3649 }
3650
3651 /*
3652 * If sc->nr_to_scan is zero, the caller is requesting a query of the
3653 * number of objects which can potentially be freed. If it is nonzero,
3654 * the request is to free that many objects.
3655 *
3656 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
3657 * in struct shrinker and also require the shrinker to return the number
3658 * of objects freed.
3659 *
3660 * Older kernels require the shrinker to return the number of freeable
3661 * objects following the freeing of nr_to_free.
3662 */
3663 static spl_shrinker_t
3664 __arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
3665 {
3666 int64_t pages;
3667
3668 /* The arc is considered warm once reclaim has occurred */
3669 if (unlikely(arc_warm == B_FALSE))
3670 arc_warm = B_TRUE;
3671
3672 /* Return the potential number of reclaimable pages */
3673 pages = btop((int64_t)arc_evictable_memory());
3674 if (sc->nr_to_scan == 0)
3675 return (pages);
3676
3677 /* Not allowed to perform filesystem reclaim */
3678 if (!(sc->gfp_mask & __GFP_FS))
3679 return (SHRINK_STOP);
3680
3681 /* Reclaim in progress */
3682 if (mutex_tryenter(&arc_reclaim_lock) == 0)
3683 return (SHRINK_STOP);
3684
3685 mutex_exit(&arc_reclaim_lock);
3686
3687 /*
3688 * Evict the requested number of pages by shrinking arc_c the
3689 * requested amount. If there is nothing left to evict just
3690 * reap whatever we can from the various arc slabs.
3691 */
3692 if (pages > 0) {
3693 arc_shrink(ptob(sc->nr_to_scan));
3694 arc_kmem_reap_now();
3695 #ifdef HAVE_SPLIT_SHRINKER_CALLBACK
3696 pages = MAX(pages - btop(arc_evictable_memory()), 0);
3697 #else
3698 pages = btop(arc_evictable_memory());
3699 #endif
3700 } else {
3701 arc_kmem_reap_now();
3702 pages = SHRINK_STOP;
3703 }
3704
3705 /*
3706 * We've reaped what we can, wake up threads.
3707 */
3708 cv_broadcast(&arc_reclaim_waiters_cv);
3709
3710 /*
3711 * When direct reclaim is observed it usually indicates a rapid
3712 * increase in memory pressure. This occurs because the kswapd
3713 * threads were unable to asynchronously keep enough free memory
3714 * available. In this case set arc_no_grow to briefly pause arc
3715 * growth to avoid compounding the memory pressure.
3716 */
3717 if (current_is_kswapd()) {
3718 ARCSTAT_BUMP(arcstat_memory_indirect_count);
3719 } else {
3720 arc_no_grow = B_TRUE;
3721 arc_grow_time = ddi_get_lbolt() + (zfs_arc_grow_retry * hz);
3722 ARCSTAT_BUMP(arcstat_memory_direct_count);
3723 }
3724
3725 return (pages);
3726 }
3727 SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
3728
3729 SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
3730 #endif /* _KERNEL */
3731
3732 /*
3733 * Adapt arc info given the number of bytes we are trying to add and
3734 * the state that we are comming from. This function is only called
3735 * when we are adding new content to the cache.
3736 */
3737 static void
3738 arc_adapt(int bytes, arc_state_t *state)
3739 {
3740 int mult;
3741 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
3742 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
3743 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
3744
3745 if (state == arc_l2c_only)
3746 return;
3747
3748 ASSERT(bytes > 0);
3749 /*
3750 * Adapt the target size of the MRU list:
3751 * - if we just hit in the MRU ghost list, then increase
3752 * the target size of the MRU list.
3753 * - if we just hit in the MFU ghost list, then increase
3754 * the target size of the MFU list by decreasing the
3755 * target size of the MRU list.
3756 */
3757 if (state == arc_mru_ghost) {
3758 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
3759 if (!zfs_arc_p_dampener_disable)
3760 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
3761
3762 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
3763 } else if (state == arc_mfu_ghost) {
3764 uint64_t delta;
3765
3766 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
3767 if (!zfs_arc_p_dampener_disable)
3768 mult = MIN(mult, 10);
3769
3770 delta = MIN(bytes * mult, arc_p);
3771 arc_p = MAX(arc_p_min, arc_p - delta);
3772 }
3773 ASSERT((int64_t)arc_p >= 0);
3774
3775 if (arc_reclaim_needed()) {
3776 cv_signal(&arc_reclaim_thread_cv);
3777 return;
3778 }
3779
3780 if (arc_no_grow)
3781 return;
3782
3783 if (arc_c >= arc_c_max)
3784 return;
3785
3786 /*
3787 * If we're within (2 * maxblocksize) bytes of the target
3788 * cache size, increment the target cache size
3789 */
3790 VERIFY3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
3791 if (arc_size >= arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
3792 atomic_add_64(&arc_c, (int64_t)bytes);
3793 if (arc_c > arc_c_max)
3794 arc_c = arc_c_max;
3795 else if (state == arc_anon)
3796 atomic_add_64(&arc_p, (int64_t)bytes);
3797 if (arc_p > arc_c)
3798 arc_p = arc_c;
3799 }
3800 ASSERT((int64_t)arc_p >= 0);
3801 }
3802
3803 /*
3804 * Check if arc_size has grown past our upper threshold, determined by
3805 * zfs_arc_overflow_shift.
3806 */
3807 static boolean_t
3808 arc_is_overflowing(void)
3809 {
3810 /* Always allow at least one block of overflow */
3811 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3812 arc_c >> zfs_arc_overflow_shift);
3813
3814 return (arc_size >= arc_c + overflow);
3815 }
3816
3817 /*
3818 * The buffer, supplied as the first argument, needs a data block. If we
3819 * are hitting the hard limit for the cache size, we must sleep, waiting
3820 * for the eviction thread to catch up. If we're past the target size
3821 * but below the hard limit, we'll only signal the reclaim thread and
3822 * continue on.
3823 */
3824 static void
3825 arc_get_data_buf(arc_buf_t *buf)
3826 {
3827 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
3828 uint64_t size = buf->b_hdr->b_size;
3829 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
3830
3831 arc_adapt(size, state);
3832
3833 /*
3834 * If arc_size is currently overflowing, and has grown past our
3835 * upper limit, we must be adding data faster than the evict
3836 * thread can evict. Thus, to ensure we don't compound the
3837 * problem by adding more data and forcing arc_size to grow even
3838 * further past it's target size, we halt and wait for the
3839 * eviction thread to catch up.
3840 *
3841 * It's also possible that the reclaim thread is unable to evict
3842 * enough buffers to get arc_size below the overflow limit (e.g.
3843 * due to buffers being un-evictable, or hash lock collisions).
3844 * In this case, we want to proceed regardless if we're
3845 * overflowing; thus we don't use a while loop here.
3846 */
3847 if (arc_is_overflowing()) {
3848 mutex_enter(&arc_reclaim_lock);
3849
3850 /*
3851 * Now that we've acquired the lock, we may no longer be
3852 * over the overflow limit, lets check.
3853 *
3854 * We're ignoring the case of spurious wake ups. If that
3855 * were to happen, it'd let this thread consume an ARC
3856 * buffer before it should have (i.e. before we're under
3857 * the overflow limit and were signalled by the reclaim
3858 * thread). As long as that is a rare occurrence, it
3859 * shouldn't cause any harm.
3860 */
3861 if (arc_is_overflowing()) {
3862 cv_signal(&arc_reclaim_thread_cv);
3863 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
3864 }
3865
3866 mutex_exit(&arc_reclaim_lock);
3867 }
3868
3869 if (type == ARC_BUFC_METADATA) {
3870 buf->b_data = zio_buf_alloc(size);
3871 arc_space_consume(size, ARC_SPACE_META);
3872 } else {
3873 ASSERT(type == ARC_BUFC_DATA);
3874 buf->b_data = zio_data_buf_alloc(size);
3875 arc_space_consume(size, ARC_SPACE_DATA);
3876 }
3877
3878 /*
3879 * Update the state size. Note that ghost states have a
3880 * "ghost size" and so don't need to be updated.
3881 */
3882 if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
3883 arc_buf_hdr_t *hdr = buf->b_hdr;
3884 arc_state_t *state = hdr->b_l1hdr.b_state;
3885
3886 (void) refcount_add_many(&state->arcs_size, size, buf);
3887
3888 /*
3889 * If this is reached via arc_read, the link is
3890 * protected by the hash lock. If reached via
3891 * arc_buf_alloc, the header should not be accessed by
3892 * any other thread. And, if reached via arc_read_done,
3893 * the hash lock will protect it if it's found in the
3894 * hash table; otherwise no other thread should be
3895 * trying to [add|remove]_reference it.
3896 */
3897 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
3898 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3899 atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
3900 size);
3901 }
3902 /*
3903 * If we are growing the cache, and we are adding anonymous
3904 * data, and we have outgrown arc_p, update arc_p
3905 */
3906 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
3907 (refcount_count(&arc_anon->arcs_size) +
3908 refcount_count(&arc_mru->arcs_size) > arc_p))
3909 arc_p = MIN(arc_c, arc_p + size);
3910 }
3911 }
3912
3913 /*
3914 * This routine is called whenever a buffer is accessed.
3915 * NOTE: the hash lock is dropped in this function.
3916 */
3917 static void
3918 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3919 {
3920 clock_t now;
3921
3922 ASSERT(MUTEX_HELD(hash_lock));
3923 ASSERT(HDR_HAS_L1HDR(hdr));
3924
3925 if (hdr->b_l1hdr.b_state == arc_anon) {
3926 /*
3927 * This buffer is not in the cache, and does not
3928 * appear in our "ghost" list. Add the new buffer
3929 * to the MRU state.
3930 */
3931
3932 ASSERT0(hdr->b_l1hdr.b_arc_access);
3933 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3934 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3935 arc_change_state(arc_mru, hdr, hash_lock);
3936
3937 } else if (hdr->b_l1hdr.b_state == arc_mru) {
3938 now = ddi_get_lbolt();
3939
3940 /*
3941 * If this buffer is here because of a prefetch, then either:
3942 * - clear the flag if this is a "referencing" read
3943 * (any subsequent access will bump this into the MFU state).
3944 * or
3945 * - move the buffer to the head of the list if this is
3946 * another prefetch (to make it less likely to be evicted).
3947 */
3948 if (HDR_PREFETCH(hdr)) {
3949 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
3950 /* link protected by hash lock */
3951 ASSERT(multilist_link_active(
3952 &hdr->b_l1hdr.b_arc_node));
3953 } else {
3954 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3955 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
3956 ARCSTAT_BUMP(arcstat_mru_hits);
3957 }
3958 hdr->b_l1hdr.b_arc_access = now;
3959 return;
3960 }
3961
3962 /*
3963 * This buffer has been "accessed" only once so far,
3964 * but it is still in the cache. Move it to the MFU
3965 * state.
3966 */
3967 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
3968 ARC_MINTIME)) {
3969 /*
3970 * More than 125ms have passed since we
3971 * instantiated this buffer. Move it to the
3972 * most frequently used state.
3973 */
3974 hdr->b_l1hdr.b_arc_access = now;
3975 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3976 arc_change_state(arc_mfu, hdr, hash_lock);
3977 }
3978 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
3979 ARCSTAT_BUMP(arcstat_mru_hits);
3980 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
3981 arc_state_t *new_state;
3982 /*
3983 * This buffer has been "accessed" recently, but
3984 * was evicted from the cache. Move it to the
3985 * MFU state.
3986 */
3987
3988 if (HDR_PREFETCH(hdr)) {
3989 new_state = arc_mru;
3990 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
3991 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3992 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3993 } else {
3994 new_state = arc_mfu;
3995 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3996 }
3997
3998 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3999 arc_change_state(new_state, hdr, hash_lock);
4000
4001 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
4002 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4003 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
4004 /*
4005 * This buffer has been accessed more than once and is
4006 * still in the cache. Keep it in the MFU state.
4007 *
4008 * NOTE: an add_reference() that occurred when we did
4009 * the arc_read() will have kicked this off the list.
4010 * If it was a prefetch, we will explicitly move it to
4011 * the head of the list now.
4012 */
4013 if ((HDR_PREFETCH(hdr)) != 0) {
4014 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4015 /* link protected by hash_lock */
4016 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4017 }
4018 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
4019 ARCSTAT_BUMP(arcstat_mfu_hits);
4020 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4021 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4022 arc_state_t *new_state = arc_mfu;
4023 /*
4024 * This buffer has been accessed more than once but has
4025 * been evicted from the cache. Move it back to the
4026 * MFU state.
4027 */
4028
4029 if (HDR_PREFETCH(hdr)) {
4030 /*
4031 * This is a prefetch access...
4032 * move this block back to the MRU state.
4033 */
4034 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4035 new_state = arc_mru;
4036 }
4037
4038 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4039 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4040 arc_change_state(new_state, hdr, hash_lock);
4041
4042 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
4043 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4044 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4045 /*
4046 * This buffer is on the 2nd Level ARC.
4047 */
4048
4049 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4050 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4051 arc_change_state(arc_mfu, hdr, hash_lock);
4052 } else {
4053 cmn_err(CE_PANIC, "invalid arc state 0x%p",
4054 hdr->b_l1hdr.b_state);
4055 }
4056 }
4057
4058 /* a generic arc_done_func_t which you can use */
4059 /* ARGSUSED */
4060 void
4061 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4062 {
4063 if (zio == NULL || zio->io_error == 0)
4064 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
4065 VERIFY(arc_buf_remove_ref(buf, arg));
4066 }
4067
4068 /* a generic arc_done_func_t */
4069 void
4070 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4071 {
4072 arc_buf_t **bufp = arg;
4073 if (zio && zio->io_error) {
4074 VERIFY(arc_buf_remove_ref(buf, arg));
4075 *bufp = NULL;
4076 } else {
4077 *bufp = buf;
4078 ASSERT(buf->b_data);
4079 }
4080 }
4081
4082 static void
4083 arc_read_done(zio_t *zio)
4084 {
4085 arc_buf_hdr_t *hdr;
4086 arc_buf_t *buf;
4087 arc_buf_t *abuf; /* buffer we're assigning to callback */
4088 kmutex_t *hash_lock = NULL;
4089 arc_callback_t *callback_list, *acb;
4090 int freeable = FALSE;
4091
4092 buf = zio->io_private;
4093 hdr = buf->b_hdr;
4094
4095 /*
4096 * The hdr was inserted into hash-table and removed from lists
4097 * prior to starting I/O. We should find this header, since
4098 * it's in the hash table, and it should be legit since it's
4099 * not possible to evict it during the I/O. The only possible
4100 * reason for it not to be found is if we were freed during the
4101 * read.
4102 */
4103 if (HDR_IN_HASH_TABLE(hdr)) {
4104 arc_buf_hdr_t *found;
4105
4106 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4107 ASSERT3U(hdr->b_dva.dva_word[0], ==,
4108 BP_IDENTITY(zio->io_bp)->dva_word[0]);
4109 ASSERT3U(hdr->b_dva.dva_word[1], ==,
4110 BP_IDENTITY(zio->io_bp)->dva_word[1]);
4111
4112 found = buf_hash_find(hdr->b_spa, zio->io_bp,
4113 &hash_lock);
4114
4115 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
4116 hash_lock == NULL) ||
4117 (found == hdr &&
4118 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4119 (found == hdr && HDR_L2_READING(hdr)));
4120 }
4121
4122 hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
4123 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4124 hdr->b_flags &= ~ARC_FLAG_L2CACHE;
4125
4126 /* byteswap if necessary */
4127 callback_list = hdr->b_l1hdr.b_acb;
4128 ASSERT(callback_list != NULL);
4129 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
4130 dmu_object_byteswap_t bswap =
4131 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4132 if (BP_GET_LEVEL(zio->io_bp) > 0)
4133 byteswap_uint64_array(buf->b_data, hdr->b_size);
4134 else
4135 dmu_ot_byteswap[bswap].ob_func(buf->b_data, hdr->b_size);
4136 }
4137
4138 arc_cksum_compute(buf, B_FALSE);
4139 arc_buf_watch(buf);
4140
4141 if (hash_lock && zio->io_error == 0 &&
4142 hdr->b_l1hdr.b_state == arc_anon) {
4143 /*
4144 * Only call arc_access on anonymous buffers. This is because
4145 * if we've issued an I/O for an evicted buffer, we've already
4146 * called arc_access (to prevent any simultaneous readers from
4147 * getting confused).
4148 */
4149 arc_access(hdr, hash_lock);
4150 }
4151
4152 /* create copies of the data buffer for the callers */
4153 abuf = buf;
4154 for (acb = callback_list; acb; acb = acb->acb_next) {
4155 if (acb->acb_done) {
4156 if (abuf == NULL) {
4157 ARCSTAT_BUMP(arcstat_duplicate_reads);
4158 abuf = arc_buf_clone(buf);
4159 }
4160 acb->acb_buf = abuf;
4161 abuf = NULL;
4162 }
4163 }
4164 hdr->b_l1hdr.b_acb = NULL;
4165 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4166 ASSERT(!HDR_BUF_AVAILABLE(hdr));
4167 if (abuf == buf) {
4168 ASSERT(buf->b_efunc == NULL);
4169 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4170 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4171 }
4172
4173 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4174 callback_list != NULL);
4175
4176 if (zio->io_error != 0) {
4177 hdr->b_flags |= ARC_FLAG_IO_ERROR;
4178 if (hdr->b_l1hdr.b_state != arc_anon)
4179 arc_change_state(arc_anon, hdr, hash_lock);
4180 if (HDR_IN_HASH_TABLE(hdr))
4181 buf_hash_remove(hdr);
4182 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4183 }
4184
4185 /*
4186 * Broadcast before we drop the hash_lock to avoid the possibility
4187 * that the hdr (and hence the cv) might be freed before we get to
4188 * the cv_broadcast().
4189 */
4190 cv_broadcast(&hdr->b_l1hdr.b_cv);
4191
4192 if (hash_lock != NULL) {
4193 mutex_exit(hash_lock);
4194 } else {
4195 /*
4196 * This block was freed while we waited for the read to
4197 * complete. It has been removed from the hash table and
4198 * moved to the anonymous state (so that it won't show up
4199 * in the cache).
4200 */
4201 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4202 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4203 }
4204
4205 /* execute each callback and free its structure */
4206 while ((acb = callback_list) != NULL) {
4207 if (acb->acb_done)
4208 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4209
4210 if (acb->acb_zio_dummy != NULL) {
4211 acb->acb_zio_dummy->io_error = zio->io_error;
4212 zio_nowait(acb->acb_zio_dummy);
4213 }
4214
4215 callback_list = acb->acb_next;
4216 kmem_free(acb, sizeof (arc_callback_t));
4217 }
4218
4219 if (freeable)
4220 arc_hdr_destroy(hdr);
4221 }
4222
4223 /*
4224 * "Read" the block at the specified DVA (in bp) via the
4225 * cache. If the block is found in the cache, invoke the provided
4226 * callback immediately and return. Note that the `zio' parameter
4227 * in the callback will be NULL in this case, since no IO was
4228 * required. If the block is not in the cache pass the read request
4229 * on to the spa with a substitute callback function, so that the
4230 * requested block will be added to the cache.
4231 *
4232 * If a read request arrives for a block that has a read in-progress,
4233 * either wait for the in-progress read to complete (and return the
4234 * results); or, if this is a read with a "done" func, add a record
4235 * to the read to invoke the "done" func when the read completes,
4236 * and return; or just return.
4237 *
4238 * arc_read_done() will invoke all the requested "done" functions
4239 * for readers of this block.
4240 */
4241 int
4242 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4243 void *private, zio_priority_t priority, int zio_flags,
4244 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4245 {
4246 arc_buf_hdr_t *hdr = NULL;
4247 arc_buf_t *buf = NULL;
4248 kmutex_t *hash_lock = NULL;
4249 zio_t *rzio;
4250 uint64_t guid = spa_load_guid(spa);
4251 int rc = 0;
4252
4253 ASSERT(!BP_IS_EMBEDDED(bp) ||
4254 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4255
4256 top:
4257 if (!BP_IS_EMBEDDED(bp)) {
4258 /*
4259 * Embedded BP's have no DVA and require no I/O to "read".
4260 * Create an anonymous arc buf to back it.
4261 */
4262 hdr = buf_hash_find(guid, bp, &hash_lock);
4263 }
4264
4265 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
4266
4267 *arc_flags |= ARC_FLAG_CACHED;
4268
4269 if (HDR_IO_IN_PROGRESS(hdr)) {
4270
4271 if (*arc_flags & ARC_FLAG_WAIT) {
4272 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4273 mutex_exit(hash_lock);
4274 goto top;
4275 }
4276 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4277
4278 if (done) {
4279 arc_callback_t *acb = NULL;
4280
4281 acb = kmem_zalloc(sizeof (arc_callback_t),
4282 KM_SLEEP);
4283 acb->acb_done = done;
4284 acb->acb_private = private;
4285 if (pio != NULL)
4286 acb->acb_zio_dummy = zio_null(pio,
4287 spa, NULL, NULL, NULL, zio_flags);
4288
4289 ASSERT(acb->acb_done != NULL);
4290 acb->acb_next = hdr->b_l1hdr.b_acb;
4291 hdr->b_l1hdr.b_acb = acb;
4292 add_reference(hdr, hash_lock, private);
4293 mutex_exit(hash_lock);
4294 goto out;
4295 }
4296 mutex_exit(hash_lock);
4297 goto out;
4298 }
4299
4300 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4301 hdr->b_l1hdr.b_state == arc_mfu);
4302
4303 if (done) {
4304 add_reference(hdr, hash_lock, private);
4305 /*
4306 * If this block is already in use, create a new
4307 * copy of the data so that we will be guaranteed
4308 * that arc_release() will always succeed.
4309 */
4310 buf = hdr->b_l1hdr.b_buf;
4311 ASSERT(buf);
4312 ASSERT(buf->b_data);
4313 if (HDR_BUF_AVAILABLE(hdr)) {
4314 ASSERT(buf->b_efunc == NULL);
4315 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4316 } else {
4317 buf = arc_buf_clone(buf);
4318 }
4319
4320 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
4321 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4322 hdr->b_flags |= ARC_FLAG_PREFETCH;
4323 }
4324 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4325 arc_access(hdr, hash_lock);
4326 if (*arc_flags & ARC_FLAG_L2CACHE)
4327 hdr->b_flags |= ARC_FLAG_L2CACHE;
4328 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4329 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4330 mutex_exit(hash_lock);
4331 ARCSTAT_BUMP(arcstat_hits);
4332 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4333 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4334 data, metadata, hits);
4335
4336 if (done)
4337 done(NULL, buf, private);
4338 } else {
4339 uint64_t size = BP_GET_LSIZE(bp);
4340 arc_callback_t *acb;
4341 vdev_t *vd = NULL;
4342 uint64_t addr = 0;
4343 boolean_t devw = B_FALSE;
4344 enum zio_compress b_compress = ZIO_COMPRESS_OFF;
4345 int32_t b_asize = 0;
4346
4347 /*
4348 * Gracefully handle a damaged logical block size as a
4349 * checksum error by passing a dummy zio to the done callback.
4350 */
4351 if (size > spa_maxblocksize(spa)) {
4352 if (done) {
4353 rzio = zio_null(pio, spa, NULL,
4354 NULL, NULL, zio_flags);
4355 rzio->io_error = ECKSUM;
4356 done(rzio, buf, private);
4357 zio_nowait(rzio);
4358 }
4359 rc = ECKSUM;
4360 goto out;
4361 }
4362
4363 if (hdr == NULL) {
4364 /* this block is not in the cache */
4365 arc_buf_hdr_t *exists = NULL;
4366 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4367 buf = arc_buf_alloc(spa, size, private, type);
4368 hdr = buf->b_hdr;
4369 if (!BP_IS_EMBEDDED(bp)) {
4370 hdr->b_dva = *BP_IDENTITY(bp);
4371 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4372 exists = buf_hash_insert(hdr, &hash_lock);
4373 }
4374 if (exists != NULL) {
4375 /* somebody beat us to the hash insert */
4376 mutex_exit(hash_lock);
4377 buf_discard_identity(hdr);
4378 (void) arc_buf_remove_ref(buf, private);
4379 goto top; /* restart the IO request */
4380 }
4381
4382 /* if this is a prefetch, we don't have a reference */
4383 if (*arc_flags & ARC_FLAG_PREFETCH) {
4384 (void) remove_reference(hdr, hash_lock,
4385 private);
4386 hdr->b_flags |= ARC_FLAG_PREFETCH;
4387 }
4388 if (*arc_flags & ARC_FLAG_L2CACHE)
4389 hdr->b_flags |= ARC_FLAG_L2CACHE;
4390 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4391 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4392 if (BP_GET_LEVEL(bp) > 0)
4393 hdr->b_flags |= ARC_FLAG_INDIRECT;
4394 } else {
4395 /*
4396 * This block is in the ghost cache. If it was L2-only
4397 * (and thus didn't have an L1 hdr), we realloc the
4398 * header to add an L1 hdr.
4399 */
4400 if (!HDR_HAS_L1HDR(hdr)) {
4401 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4402 hdr_full_cache);
4403 }
4404
4405 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4406 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4407 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4408 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4409
4410 /* if this is a prefetch, we don't have a reference */
4411 if (*arc_flags & ARC_FLAG_PREFETCH)
4412 hdr->b_flags |= ARC_FLAG_PREFETCH;
4413 else
4414 add_reference(hdr, hash_lock, private);
4415 if (*arc_flags & ARC_FLAG_L2CACHE)
4416 hdr->b_flags |= ARC_FLAG_L2CACHE;
4417 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4418 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4419 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4420 buf->b_hdr = hdr;
4421 buf->b_data = NULL;
4422 buf->b_efunc = NULL;
4423 buf->b_private = NULL;
4424 buf->b_next = NULL;
4425 hdr->b_l1hdr.b_buf = buf;
4426 ASSERT0(hdr->b_l1hdr.b_datacnt);
4427 hdr->b_l1hdr.b_datacnt = 1;
4428 arc_get_data_buf(buf);
4429 arc_access(hdr, hash_lock);
4430 }
4431
4432 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4433
4434 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4435 acb->acb_done = done;
4436 acb->acb_private = private;
4437
4438 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4439 hdr->b_l1hdr.b_acb = acb;
4440 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4441
4442 if (HDR_HAS_L2HDR(hdr) &&
4443 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4444 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4445 addr = hdr->b_l2hdr.b_daddr;
4446 b_compress = HDR_GET_COMPRESS(hdr);
4447 b_asize = hdr->b_l2hdr.b_asize;
4448 /*
4449 * Lock out device removal.
4450 */
4451 if (vdev_is_dead(vd) ||
4452 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4453 vd = NULL;
4454 }
4455
4456 if (hash_lock != NULL)
4457 mutex_exit(hash_lock);
4458
4459 /*
4460 * At this point, we have a level 1 cache miss. Try again in
4461 * L2ARC if possible.
4462 */
4463 ASSERT3U(hdr->b_size, ==, size);
4464 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4465 uint64_t, size, zbookmark_phys_t *, zb);
4466 ARCSTAT_BUMP(arcstat_misses);
4467 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4468 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4469 data, metadata, misses);
4470
4471 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
4472 /*
4473 * Read from the L2ARC if the following are true:
4474 * 1. The L2ARC vdev was previously cached.
4475 * 2. This buffer still has L2ARC metadata.
4476 * 3. This buffer isn't currently writing to the L2ARC.
4477 * 4. The L2ARC entry wasn't evicted, which may
4478 * also have invalidated the vdev.
4479 * 5. This isn't prefetch and l2arc_noprefetch is set.
4480 */
4481 if (HDR_HAS_L2HDR(hdr) &&
4482 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4483 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
4484 l2arc_read_callback_t *cb;
4485
4486 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4487 ARCSTAT_BUMP(arcstat_l2_hits);
4488 atomic_inc_32(&hdr->b_l2hdr.b_hits);
4489
4490 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
4491 KM_SLEEP);
4492 cb->l2rcb_buf = buf;
4493 cb->l2rcb_spa = spa;
4494 cb->l2rcb_bp = *bp;
4495 cb->l2rcb_zb = *zb;
4496 cb->l2rcb_flags = zio_flags;
4497 cb->l2rcb_compress = b_compress;
4498
4499 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4500 addr + size < vd->vdev_psize -
4501 VDEV_LABEL_END_SIZE);
4502
4503 /*
4504 * l2arc read. The SCL_L2ARC lock will be
4505 * released by l2arc_read_done().
4506 * Issue a null zio if the underlying buffer
4507 * was squashed to zero size by compression.
4508 */
4509 if (b_compress == ZIO_COMPRESS_EMPTY) {
4510 rzio = zio_null(pio, spa, vd,
4511 l2arc_read_done, cb,
4512 zio_flags | ZIO_FLAG_DONT_CACHE |
4513 ZIO_FLAG_CANFAIL |
4514 ZIO_FLAG_DONT_PROPAGATE |
4515 ZIO_FLAG_DONT_RETRY);
4516 } else {
4517 rzio = zio_read_phys(pio, vd, addr,
4518 b_asize, buf->b_data,
4519 ZIO_CHECKSUM_OFF,
4520 l2arc_read_done, cb, priority,
4521 zio_flags | ZIO_FLAG_DONT_CACHE |
4522 ZIO_FLAG_CANFAIL |
4523 ZIO_FLAG_DONT_PROPAGATE |
4524 ZIO_FLAG_DONT_RETRY, B_FALSE);
4525 }
4526 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4527 zio_t *, rzio);
4528 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
4529
4530 if (*arc_flags & ARC_FLAG_NOWAIT) {
4531 zio_nowait(rzio);
4532 goto out;
4533 }
4534
4535 ASSERT(*arc_flags & ARC_FLAG_WAIT);
4536 if (zio_wait(rzio) == 0)
4537 goto out;
4538
4539 /* l2arc read error; goto zio_read() */
4540 } else {
4541 DTRACE_PROBE1(l2arc__miss,
4542 arc_buf_hdr_t *, hdr);
4543 ARCSTAT_BUMP(arcstat_l2_misses);
4544 if (HDR_L2_WRITING(hdr))
4545 ARCSTAT_BUMP(arcstat_l2_rw_clash);
4546 spa_config_exit(spa, SCL_L2ARC, vd);
4547 }
4548 } else {
4549 if (vd != NULL)
4550 spa_config_exit(spa, SCL_L2ARC, vd);
4551 if (l2arc_ndev != 0) {
4552 DTRACE_PROBE1(l2arc__miss,
4553 arc_buf_hdr_t *, hdr);
4554 ARCSTAT_BUMP(arcstat_l2_misses);
4555 }
4556 }
4557
4558 rzio = zio_read(pio, spa, bp, buf->b_data, size,
4559 arc_read_done, buf, priority, zio_flags, zb);
4560
4561 if (*arc_flags & ARC_FLAG_WAIT) {
4562 rc = zio_wait(rzio);
4563 goto out;
4564 }
4565
4566 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4567 zio_nowait(rzio);
4568 }
4569
4570 out:
4571 spa_read_history_add(spa, zb, *arc_flags);
4572 return (rc);
4573 }
4574
4575 arc_prune_t *
4576 arc_add_prune_callback(arc_prune_func_t *func, void *private)
4577 {
4578 arc_prune_t *p;
4579
4580 p = kmem_alloc(sizeof (*p), KM_SLEEP);
4581 p->p_pfunc = func;
4582 p->p_private = private;
4583 list_link_init(&p->p_node);
4584 refcount_create(&p->p_refcnt);
4585
4586 mutex_enter(&arc_prune_mtx);
4587 refcount_add(&p->p_refcnt, &arc_prune_list);
4588 list_insert_head(&arc_prune_list, p);
4589 mutex_exit(&arc_prune_mtx);
4590
4591 return (p);
4592 }
4593
4594 void
4595 arc_remove_prune_callback(arc_prune_t *p)
4596 {
4597 mutex_enter(&arc_prune_mtx);
4598 list_remove(&arc_prune_list, p);
4599 if (refcount_remove(&p->p_refcnt, &arc_prune_list) == 0) {
4600 refcount_destroy(&p->p_refcnt);
4601 kmem_free(p, sizeof (*p));
4602 }
4603 mutex_exit(&arc_prune_mtx);
4604 }
4605
4606 void
4607 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4608 {
4609 ASSERT(buf->b_hdr != NULL);
4610 ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4611 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4612 func == NULL);
4613 ASSERT(buf->b_efunc == NULL);
4614 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4615
4616 buf->b_efunc = func;
4617 buf->b_private = private;
4618 }
4619
4620 /*
4621 * Notify the arc that a block was freed, and thus will never be used again.
4622 */
4623 void
4624 arc_freed(spa_t *spa, const blkptr_t *bp)
4625 {
4626 arc_buf_hdr_t *hdr;
4627 kmutex_t *hash_lock;
4628 uint64_t guid = spa_load_guid(spa);
4629
4630 ASSERT(!BP_IS_EMBEDDED(bp));
4631
4632 hdr = buf_hash_find(guid, bp, &hash_lock);
4633 if (hdr == NULL)
4634 return;
4635 if (HDR_BUF_AVAILABLE(hdr)) {
4636 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4637 add_reference(hdr, hash_lock, FTAG);
4638 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4639 mutex_exit(hash_lock);
4640
4641 arc_release(buf, FTAG);
4642 (void) arc_buf_remove_ref(buf, FTAG);
4643 } else {
4644 mutex_exit(hash_lock);
4645 }
4646
4647 }
4648
4649 /*
4650 * Clear the user eviction callback set by arc_set_callback(), first calling
4651 * it if it exists. Because the presence of a callback keeps an arc_buf cached
4652 * clearing the callback may result in the arc_buf being destroyed. However,
4653 * it will not result in the *last* arc_buf being destroyed, hence the data
4654 * will remain cached in the ARC. We make a copy of the arc buffer here so
4655 * that we can process the callback without holding any locks.
4656 *
4657 * It's possible that the callback is already in the process of being cleared
4658 * by another thread. In this case we can not clear the callback.
4659 *
4660 * Returns B_TRUE if the callback was successfully called and cleared.
4661 */
4662 boolean_t
4663 arc_clear_callback(arc_buf_t *buf)
4664 {
4665 arc_buf_hdr_t *hdr;
4666 kmutex_t *hash_lock;
4667 arc_evict_func_t *efunc = buf->b_efunc;
4668 void *private = buf->b_private;
4669
4670 mutex_enter(&buf->b_evict_lock);
4671 hdr = buf->b_hdr;
4672 if (hdr == NULL) {
4673 /*
4674 * We are in arc_do_user_evicts().
4675 */
4676 ASSERT(buf->b_data == NULL);
4677 mutex_exit(&buf->b_evict_lock);
4678 return (B_FALSE);
4679 } else if (buf->b_data == NULL) {
4680 /*
4681 * We are on the eviction list; process this buffer now
4682 * but let arc_do_user_evicts() do the reaping.
4683 */
4684 buf->b_efunc = NULL;
4685 mutex_exit(&buf->b_evict_lock);
4686 VERIFY0(efunc(private));
4687 return (B_TRUE);
4688 }
4689 hash_lock = HDR_LOCK(hdr);
4690 mutex_enter(hash_lock);
4691 hdr = buf->b_hdr;
4692 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4693
4694 ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4695 hdr->b_l1hdr.b_datacnt);
4696 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4697 hdr->b_l1hdr.b_state == arc_mfu);
4698
4699 buf->b_efunc = NULL;
4700 buf->b_private = NULL;
4701
4702 if (hdr->b_l1hdr.b_datacnt > 1) {
4703 mutex_exit(&buf->b_evict_lock);
4704 arc_buf_destroy(buf, TRUE);
4705 } else {
4706 ASSERT(buf == hdr->b_l1hdr.b_buf);
4707 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4708 mutex_exit(&buf->b_evict_lock);
4709 }
4710
4711 mutex_exit(hash_lock);
4712 VERIFY0(efunc(private));
4713 return (B_TRUE);
4714 }
4715
4716 /*
4717 * Release this buffer from the cache, making it an anonymous buffer. This
4718 * must be done after a read and prior to modifying the buffer contents.
4719 * If the buffer has more than one reference, we must make
4720 * a new hdr for the buffer.
4721 */
4722 void
4723 arc_release(arc_buf_t *buf, void *tag)
4724 {
4725 kmutex_t *hash_lock;
4726 arc_state_t *state;
4727 arc_buf_hdr_t *hdr = buf->b_hdr;
4728
4729 /*
4730 * It would be nice to assert that if its DMU metadata (level >
4731 * 0 || it's the dnode file), then it must be syncing context.
4732 * But we don't know that information at this level.
4733 */
4734
4735 mutex_enter(&buf->b_evict_lock);
4736
4737 ASSERT(HDR_HAS_L1HDR(hdr));
4738
4739 /*
4740 * We don't grab the hash lock prior to this check, because if
4741 * the buffer's header is in the arc_anon state, it won't be
4742 * linked into the hash table.
4743 */
4744 if (hdr->b_l1hdr.b_state == arc_anon) {
4745 mutex_exit(&buf->b_evict_lock);
4746 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4747 ASSERT(!HDR_IN_HASH_TABLE(hdr));
4748 ASSERT(!HDR_HAS_L2HDR(hdr));
4749 ASSERT(BUF_EMPTY(hdr));
4750
4751 ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4752 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4753 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4754
4755 ASSERT3P(buf->b_efunc, ==, NULL);
4756 ASSERT3P(buf->b_private, ==, NULL);
4757
4758 hdr->b_l1hdr.b_arc_access = 0;
4759 arc_buf_thaw(buf);
4760
4761 return;
4762 }
4763
4764 hash_lock = HDR_LOCK(hdr);
4765 mutex_enter(hash_lock);
4766
4767 /*
4768 * This assignment is only valid as long as the hash_lock is
4769 * held, we must be careful not to reference state or the
4770 * b_state field after dropping the lock.
4771 */
4772 state = hdr->b_l1hdr.b_state;
4773 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4774 ASSERT3P(state, !=, arc_anon);
4775
4776 /* this buffer is not on any list */
4777 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4778
4779 if (HDR_HAS_L2HDR(hdr)) {
4780 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4781
4782 /*
4783 * We have to recheck this conditional again now that
4784 * we're holding the l2ad_mtx to prevent a race with
4785 * another thread which might be concurrently calling
4786 * l2arc_evict(). In that case, l2arc_evict() might have
4787 * destroyed the header's L2 portion as we were waiting
4788 * to acquire the l2ad_mtx.
4789 */
4790 if (HDR_HAS_L2HDR(hdr))
4791 arc_hdr_l2hdr_destroy(hdr);
4792
4793 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4794 }
4795
4796 /*
4797 * Do we have more than one buf?
4798 */
4799 if (hdr->b_l1hdr.b_datacnt > 1) {
4800 arc_buf_hdr_t *nhdr;
4801 arc_buf_t **bufp;
4802 uint64_t blksz = hdr->b_size;
4803 uint64_t spa = hdr->b_spa;
4804 arc_buf_contents_t type = arc_buf_type(hdr);
4805 uint32_t flags = hdr->b_flags;
4806
4807 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
4808 /*
4809 * Pull the data off of this hdr and attach it to
4810 * a new anonymous hdr.
4811 */
4812 (void) remove_reference(hdr, hash_lock, tag);
4813 bufp = &hdr->b_l1hdr.b_buf;
4814 while (*bufp != buf)
4815 bufp = &(*bufp)->b_next;
4816 *bufp = buf->b_next;
4817 buf->b_next = NULL;
4818
4819 ASSERT3P(state, !=, arc_l2c_only);
4820
4821 (void) refcount_remove_many(
4822 &state->arcs_size, hdr->b_size, buf);
4823
4824 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4825 uint64_t *size;
4826
4827 ASSERT3P(state, !=, arc_l2c_only);
4828 size = &state->arcs_lsize[type];
4829 ASSERT3U(*size, >=, hdr->b_size);
4830 atomic_add_64(size, -hdr->b_size);
4831 }
4832
4833 /*
4834 * We're releasing a duplicate user data buffer, update
4835 * our statistics accordingly.
4836 */
4837 if (HDR_ISTYPE_DATA(hdr)) {
4838 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4839 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4840 -hdr->b_size);
4841 }
4842 hdr->b_l1hdr.b_datacnt -= 1;
4843 arc_cksum_verify(buf);
4844 arc_buf_unwatch(buf);
4845
4846 mutex_exit(hash_lock);
4847
4848 nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
4849 nhdr->b_size = blksz;
4850 nhdr->b_spa = spa;
4851
4852 nhdr->b_l1hdr.b_mru_hits = 0;
4853 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
4854 nhdr->b_l1hdr.b_mfu_hits = 0;
4855 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
4856 nhdr->b_l1hdr.b_l2_hits = 0;
4857 nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
4858 nhdr->b_flags |= arc_bufc_to_flags(type);
4859 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4860
4861 nhdr->b_l1hdr.b_buf = buf;
4862 nhdr->b_l1hdr.b_datacnt = 1;
4863 nhdr->b_l1hdr.b_state = arc_anon;
4864 nhdr->b_l1hdr.b_arc_access = 0;
4865 nhdr->b_l1hdr.b_tmp_cdata = NULL;
4866 nhdr->b_freeze_cksum = NULL;
4867
4868 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
4869 buf->b_hdr = nhdr;
4870 mutex_exit(&buf->b_evict_lock);
4871 (void) refcount_add_many(&arc_anon->arcs_size, blksz, buf);
4872 } else {
4873 mutex_exit(&buf->b_evict_lock);
4874 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
4875 /* protected by hash lock, or hdr is on arc_anon */
4876 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4877 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4878 hdr->b_l1hdr.b_mru_hits = 0;
4879 hdr->b_l1hdr.b_mru_ghost_hits = 0;
4880 hdr->b_l1hdr.b_mfu_hits = 0;
4881 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
4882 hdr->b_l1hdr.b_l2_hits = 0;
4883 arc_change_state(arc_anon, hdr, hash_lock);
4884 hdr->b_l1hdr.b_arc_access = 0;
4885 mutex_exit(hash_lock);
4886
4887 buf_discard_identity(hdr);
4888 arc_buf_thaw(buf);
4889 }
4890 buf->b_efunc = NULL;
4891 buf->b_private = NULL;
4892 }
4893
4894 int
4895 arc_released(arc_buf_t *buf)
4896 {
4897 int released;
4898
4899 mutex_enter(&buf->b_evict_lock);
4900 released = (buf->b_data != NULL &&
4901 buf->b_hdr->b_l1hdr.b_state == arc_anon);
4902 mutex_exit(&buf->b_evict_lock);
4903 return (released);
4904 }
4905
4906 #ifdef ZFS_DEBUG
4907 int
4908 arc_referenced(arc_buf_t *buf)
4909 {
4910 int referenced;
4911
4912 mutex_enter(&buf->b_evict_lock);
4913 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
4914 mutex_exit(&buf->b_evict_lock);
4915 return (referenced);
4916 }
4917 #endif
4918
4919 static void
4920 arc_write_ready(zio_t *zio)
4921 {
4922 arc_write_callback_t *callback = zio->io_private;
4923 arc_buf_t *buf = callback->awcb_buf;
4924 arc_buf_hdr_t *hdr = buf->b_hdr;
4925
4926 ASSERT(HDR_HAS_L1HDR(hdr));
4927 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
4928 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4929 callback->awcb_ready(zio, buf, callback->awcb_private);
4930
4931 /*
4932 * If the IO is already in progress, then this is a re-write
4933 * attempt, so we need to thaw and re-compute the cksum.
4934 * It is the responsibility of the callback to handle the
4935 * accounting for any re-write attempt.
4936 */
4937 if (HDR_IO_IN_PROGRESS(hdr)) {
4938 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
4939 if (hdr->b_freeze_cksum != NULL) {
4940 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
4941 hdr->b_freeze_cksum = NULL;
4942 }
4943 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
4944 }
4945 arc_cksum_compute(buf, B_FALSE);
4946 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4947 }
4948
4949 /*
4950 * The SPA calls this callback for each physical write that happens on behalf
4951 * of a logical write. See the comment in dbuf_write_physdone() for details.
4952 */
4953 static void
4954 arc_write_physdone(zio_t *zio)
4955 {
4956 arc_write_callback_t *cb = zio->io_private;
4957 if (cb->awcb_physdone != NULL)
4958 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
4959 }
4960
4961 static void
4962 arc_write_done(zio_t *zio)
4963 {
4964 arc_write_callback_t *callback = zio->io_private;
4965 arc_buf_t *buf = callback->awcb_buf;
4966 arc_buf_hdr_t *hdr = buf->b_hdr;
4967
4968 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4969
4970 if (zio->io_error == 0) {
4971 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
4972 buf_discard_identity(hdr);
4973 } else {
4974 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
4975 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
4976 }
4977 } else {
4978 ASSERT(BUF_EMPTY(hdr));
4979 }
4980
4981 /*
4982 * If the block to be written was all-zero or compressed enough to be
4983 * embedded in the BP, no write was performed so there will be no
4984 * dva/birth/checksum. The buffer must therefore remain anonymous
4985 * (and uncached).
4986 */
4987 if (!BUF_EMPTY(hdr)) {
4988 arc_buf_hdr_t *exists;
4989 kmutex_t *hash_lock;
4990
4991 ASSERT(zio->io_error == 0);
4992
4993 arc_cksum_verify(buf);
4994
4995 exists = buf_hash_insert(hdr, &hash_lock);
4996 if (exists != NULL) {
4997 /*
4998 * This can only happen if we overwrite for
4999 * sync-to-convergence, because we remove
5000 * buffers from the hash table when we arc_free().
5001 */
5002 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5003 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5004 panic("bad overwrite, hdr=%p exists=%p",
5005 (void *)hdr, (void *)exists);
5006 ASSERT(refcount_is_zero(
5007 &exists->b_l1hdr.b_refcnt));
5008 arc_change_state(arc_anon, exists, hash_lock);
5009 mutex_exit(hash_lock);
5010 arc_hdr_destroy(exists);
5011 exists = buf_hash_insert(hdr, &hash_lock);
5012 ASSERT3P(exists, ==, NULL);
5013 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5014 /* nopwrite */
5015 ASSERT(zio->io_prop.zp_nopwrite);
5016 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5017 panic("bad nopwrite, hdr=%p exists=%p",
5018 (void *)hdr, (void *)exists);
5019 } else {
5020 /* Dedup */
5021 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
5022 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5023 ASSERT(BP_GET_DEDUP(zio->io_bp));
5024 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5025 }
5026 }
5027 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
5028 /* if it's not anon, we are doing a scrub */
5029 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5030 arc_access(hdr, hash_lock);
5031 mutex_exit(hash_lock);
5032 } else {
5033 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
5034 }
5035
5036 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5037 callback->awcb_done(zio, buf, callback->awcb_private);
5038
5039 kmem_free(callback, sizeof (arc_write_callback_t));
5040 }
5041
5042 zio_t *
5043 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
5044 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
5045 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
5046 arc_done_func_t *done, void *private, zio_priority_t priority,
5047 int zio_flags, const zbookmark_phys_t *zb)
5048 {
5049 arc_buf_hdr_t *hdr = buf->b_hdr;
5050 arc_write_callback_t *callback;
5051 zio_t *zio;
5052
5053 ASSERT(ready != NULL);
5054 ASSERT(done != NULL);
5055 ASSERT(!HDR_IO_ERROR(hdr));
5056 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5057 ASSERT(hdr->b_l1hdr.b_acb == NULL);
5058 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
5059 if (l2arc)
5060 hdr->b_flags |= ARC_FLAG_L2CACHE;
5061 if (l2arc_compress)
5062 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
5063 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5064 callback->awcb_ready = ready;
5065 callback->awcb_physdone = physdone;
5066 callback->awcb_done = done;
5067 callback->awcb_private = private;
5068 callback->awcb_buf = buf;
5069
5070 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
5071 arc_write_ready, arc_write_physdone, arc_write_done, callback,
5072 priority, zio_flags, zb);
5073
5074 return (zio);
5075 }
5076
5077 static int
5078 arc_memory_throttle(uint64_t reserve, uint64_t txg)
5079 {
5080 #ifdef _KERNEL
5081 if (zfs_arc_memory_throttle_disable)
5082 return (0);
5083
5084 if (freemem > physmem * arc_lotsfree_percent / 100)
5085 return (0);
5086
5087 if (arc_reclaim_needed()) {
5088 /* memory is low, delay before restarting */
5089 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5090 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
5091 return (SET_ERROR(EAGAIN));
5092 }
5093 #endif
5094 return (0);
5095 }
5096
5097 void
5098 arc_tempreserve_clear(uint64_t reserve)
5099 {
5100 atomic_add_64(&arc_tempreserve, -reserve);
5101 ASSERT((int64_t)arc_tempreserve >= 0);
5102 }
5103
5104 int
5105 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5106 {
5107 int error;
5108 uint64_t anon_size;
5109
5110 if (reserve > arc_c/4 && !arc_no_grow)
5111 arc_c = MIN(arc_c_max, reserve * 4);
5112
5113 /*
5114 * Throttle when the calculated memory footprint for the TXG
5115 * exceeds the target ARC size.
5116 */
5117 if (reserve > arc_c) {
5118 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
5119 return (SET_ERROR(ERESTART));
5120 }
5121
5122 /*
5123 * Don't count loaned bufs as in flight dirty data to prevent long
5124 * network delays from blocking transactions that are ready to be
5125 * assigned to a txg.
5126 */
5127 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5128 arc_loaned_bytes), 0);
5129
5130 /*
5131 * Writes will, almost always, require additional memory allocations
5132 * in order to compress/encrypt/etc the data. We therefore need to
5133 * make sure that there is sufficient available memory for this.
5134 */
5135 error = arc_memory_throttle(reserve, txg);
5136 if (error != 0)
5137 return (error);
5138
5139 /*
5140 * Throttle writes when the amount of dirty data in the cache
5141 * gets too large. We try to keep the cache less than half full
5142 * of dirty blocks so that our sync times don't grow too large.
5143 * Note: if two requests come in concurrently, we might let them
5144 * both succeed, when one of them should fail. Not a huge deal.
5145 */
5146
5147 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5148 anon_size > arc_c / 4) {
5149 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5150 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5151 arc_tempreserve>>10,
5152 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
5153 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
5154 reserve>>10, arc_c>>10);
5155 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
5156 return (SET_ERROR(ERESTART));
5157 }
5158 atomic_add_64(&arc_tempreserve, reserve);
5159 return (0);
5160 }
5161
5162 static void
5163 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5164 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5165 {
5166 size->value.ui64 = refcount_count(&state->arcs_size);
5167 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
5168 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
5169 }
5170
5171 static int
5172 arc_kstat_update(kstat_t *ksp, int rw)
5173 {
5174 arc_stats_t *as = ksp->ks_data;
5175
5176 if (rw == KSTAT_WRITE) {
5177 return (EACCES);
5178 } else {
5179 arc_kstat_update_state(arc_anon,
5180 &as->arcstat_anon_size,
5181 &as->arcstat_anon_evictable_data,
5182 &as->arcstat_anon_evictable_metadata);
5183 arc_kstat_update_state(arc_mru,
5184 &as->arcstat_mru_size,
5185 &as->arcstat_mru_evictable_data,
5186 &as->arcstat_mru_evictable_metadata);
5187 arc_kstat_update_state(arc_mru_ghost,
5188 &as->arcstat_mru_ghost_size,
5189 &as->arcstat_mru_ghost_evictable_data,
5190 &as->arcstat_mru_ghost_evictable_metadata);
5191 arc_kstat_update_state(arc_mfu,
5192 &as->arcstat_mfu_size,
5193 &as->arcstat_mfu_evictable_data,
5194 &as->arcstat_mfu_evictable_metadata);
5195 arc_kstat_update_state(arc_mfu_ghost,
5196 &as->arcstat_mfu_ghost_size,
5197 &as->arcstat_mfu_ghost_evictable_data,
5198 &as->arcstat_mfu_ghost_evictable_metadata);
5199 }
5200
5201 return (0);
5202 }
5203
5204 /*
5205 * This function *must* return indices evenly distributed between all
5206 * sublists of the multilist. This is needed due to how the ARC eviction
5207 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5208 * distributed between all sublists and uses this assumption when
5209 * deciding which sublist to evict from and how much to evict from it.
5210 */
5211 unsigned int
5212 arc_state_multilist_index_func(multilist_t *ml, void *obj)
5213 {
5214 arc_buf_hdr_t *hdr = obj;
5215
5216 /*
5217 * We rely on b_dva to generate evenly distributed index
5218 * numbers using buf_hash below. So, as an added precaution,
5219 * let's make sure we never add empty buffers to the arc lists.
5220 */
5221 ASSERT(!BUF_EMPTY(hdr));
5222
5223 /*
5224 * The assumption here, is the hash value for a given
5225 * arc_buf_hdr_t will remain constant throughout its lifetime
5226 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
5227 * Thus, we don't need to store the header's sublist index
5228 * on insertion, as this index can be recalculated on removal.
5229 *
5230 * Also, the low order bits of the hash value are thought to be
5231 * distributed evenly. Otherwise, in the case that the multilist
5232 * has a power of two number of sublists, each sublists' usage
5233 * would not be evenly distributed.
5234 */
5235 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5236 multilist_get_num_sublists(ml));
5237 }
5238
5239 /*
5240 * Called during module initialization and periodically thereafter to
5241 * apply reasonable changes to the exposed performance tunings. Non-zero
5242 * zfs_* values which differ from the currently set values will be applied.
5243 */
5244 static void
5245 arc_tuning_update(void)
5246 {
5247 /* Valid range: 64M - <all physical memory> */
5248 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
5249 (zfs_arc_max > 64 << 20) && (zfs_arc_max < ptob(physmem)) &&
5250 (zfs_arc_max > arc_c_min)) {
5251 arc_c_max = zfs_arc_max;
5252 arc_c = arc_c_max;
5253 arc_p = (arc_c >> 1);
5254 arc_meta_limit = MIN(arc_meta_limit, arc_c_max);
5255 }
5256
5257 /* Valid range: 32M - <arc_c_max> */
5258 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
5259 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
5260 (zfs_arc_min <= arc_c_max)) {
5261 arc_c_min = zfs_arc_min;
5262 arc_c = MAX(arc_c, arc_c_min);
5263 }
5264
5265 /* Valid range: 16M - <arc_c_max> */
5266 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
5267 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
5268 (zfs_arc_meta_min <= arc_c_max)) {
5269 arc_meta_min = zfs_arc_meta_min;
5270 arc_meta_limit = MAX(arc_meta_limit, arc_meta_min);
5271 }
5272
5273 /* Valid range: <arc_meta_min> - <arc_c_max> */
5274 if ((zfs_arc_meta_limit) && (zfs_arc_meta_limit != arc_meta_limit) &&
5275 (zfs_arc_meta_limit >= zfs_arc_meta_min) &&
5276 (zfs_arc_meta_limit <= arc_c_max))
5277 arc_meta_limit = zfs_arc_meta_limit;
5278
5279 /* Valid range: 1 - N */
5280 if (zfs_arc_grow_retry)
5281 arc_grow_retry = zfs_arc_grow_retry;
5282
5283 /* Valid range: 1 - N */
5284 if (zfs_arc_shrink_shift) {
5285 arc_shrink_shift = zfs_arc_shrink_shift;
5286 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
5287 }
5288
5289 /* Valid range: 1 - N */
5290 if (zfs_arc_p_min_shift)
5291 arc_p_min_shift = zfs_arc_p_min_shift;
5292
5293 /* Valid range: 1 - N ticks */
5294 if (zfs_arc_min_prefetch_lifespan)
5295 arc_min_prefetch_lifespan = zfs_arc_min_prefetch_lifespan;
5296 }
5297
5298 void
5299 arc_init(void)
5300 {
5301 /*
5302 * allmem is "all memory that we could possibly use".
5303 */
5304 #ifdef _KERNEL
5305 uint64_t allmem = ptob(physmem);
5306 #else
5307 uint64_t allmem = (physmem * PAGESIZE) / 2;
5308 #endif
5309
5310 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5311 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5312 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5313
5314 mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5315 cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
5316
5317 /* Convert seconds to clock ticks */
5318 arc_min_prefetch_lifespan = 1 * hz;
5319
5320 /* Start out with 1/8 of all memory */
5321 arc_c = allmem / 8;
5322
5323 #ifdef _KERNEL
5324 /*
5325 * On architectures where the physical memory can be larger
5326 * than the addressable space (intel in 32-bit mode), we may
5327 * need to limit the cache to 1/8 of VM size.
5328 */
5329 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
5330
5331 /*
5332 * Register a shrinker to support synchronous (direct) memory
5333 * reclaim from the arc. This is done to prevent kswapd from
5334 * swapping out pages when it is preferable to shrink the arc.
5335 */
5336 spl_register_shrinker(&arc_shrinker);
5337 #endif
5338
5339 /* Set min cache to allow safe operation of arc_adapt() */
5340 arc_c_min = 2ULL << SPA_MAXBLOCKSHIFT;
5341 /* Set max to 1/2 of all memory */
5342 arc_c_max = allmem / 2;
5343
5344 arc_c = arc_c_max;
5345 arc_p = (arc_c >> 1);
5346
5347 /* Set min to 1/2 of arc_c_min */
5348 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
5349 /* Initialize maximum observed usage to zero */
5350 arc_meta_max = 0;
5351 /* Set limit to 3/4 of arc_c_max with a floor of arc_meta_min */
5352 arc_meta_limit = MAX((3 * arc_c_max) / 4, arc_meta_min);
5353
5354 /* Apply user specified tunings */
5355 arc_tuning_update();
5356
5357 if (zfs_arc_num_sublists_per_state < 1)
5358 zfs_arc_num_sublists_per_state = MAX(boot_ncpus, 1);
5359
5360 /* if kmem_flags are set, lets try to use less memory */
5361 if (kmem_debugging())
5362 arc_c = arc_c / 2;
5363 if (arc_c < arc_c_min)
5364 arc_c = arc_c_min;
5365
5366 arc_anon = &ARC_anon;
5367 arc_mru = &ARC_mru;
5368 arc_mru_ghost = &ARC_mru_ghost;
5369 arc_mfu = &ARC_mfu;
5370 arc_mfu_ghost = &ARC_mfu_ghost;
5371 arc_l2c_only = &ARC_l2c_only;
5372 arc_size = 0;
5373
5374 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5375 sizeof (arc_buf_hdr_t),
5376 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5377 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5378 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5379 sizeof (arc_buf_hdr_t),
5380 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5381 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5382 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5383 sizeof (arc_buf_hdr_t),
5384 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5385 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5386 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5387 sizeof (arc_buf_hdr_t),
5388 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5389 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5390 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5391 sizeof (arc_buf_hdr_t),
5392 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5393 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5394 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5395 sizeof (arc_buf_hdr_t),
5396 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5397 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5398 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5399 sizeof (arc_buf_hdr_t),
5400 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5401 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5402 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5403 sizeof (arc_buf_hdr_t),
5404 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5405 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5406 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5407 sizeof (arc_buf_hdr_t),
5408 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5409 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5410 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5411 sizeof (arc_buf_hdr_t),
5412 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5413 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5414
5415 arc_anon->arcs_state = ARC_STATE_ANON;
5416 arc_mru->arcs_state = ARC_STATE_MRU;
5417 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
5418 arc_mfu->arcs_state = ARC_STATE_MFU;
5419 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
5420 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
5421
5422 refcount_create(&arc_anon->arcs_size);
5423 refcount_create(&arc_mru->arcs_size);
5424 refcount_create(&arc_mru_ghost->arcs_size);
5425 refcount_create(&arc_mfu->arcs_size);
5426 refcount_create(&arc_mfu_ghost->arcs_size);
5427 refcount_create(&arc_l2c_only->arcs_size);
5428
5429 buf_init();
5430
5431 arc_reclaim_thread_exit = FALSE;
5432 arc_user_evicts_thread_exit = FALSE;
5433 list_create(&arc_prune_list, sizeof (arc_prune_t),
5434 offsetof(arc_prune_t, p_node));
5435 arc_eviction_list = NULL;
5436 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
5437 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5438
5439 arc_prune_taskq = taskq_create("arc_prune", max_ncpus, minclsyspri,
5440 max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
5441
5442 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5443 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5444
5445 if (arc_ksp != NULL) {
5446 arc_ksp->ks_data = &arc_stats;
5447 arc_ksp->ks_update = arc_kstat_update;
5448 kstat_install(arc_ksp);
5449 }
5450
5451 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
5452 TS_RUN, minclsyspri);
5453
5454 (void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
5455 TS_RUN, minclsyspri);
5456
5457 arc_dead = FALSE;
5458 arc_warm = B_FALSE;
5459
5460 /*
5461 * Calculate maximum amount of dirty data per pool.
5462 *
5463 * If it has been set by a module parameter, take that.
5464 * Otherwise, use a percentage of physical memory defined by
5465 * zfs_dirty_data_max_percent (default 10%) with a cap at
5466 * zfs_dirty_data_max_max (default 25% of physical memory).
5467 */
5468 if (zfs_dirty_data_max_max == 0)
5469 zfs_dirty_data_max_max = physmem * PAGESIZE *
5470 zfs_dirty_data_max_max_percent / 100;
5471
5472 if (zfs_dirty_data_max == 0) {
5473 zfs_dirty_data_max = physmem * PAGESIZE *
5474 zfs_dirty_data_max_percent / 100;
5475 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5476 zfs_dirty_data_max_max);
5477 }
5478 }
5479
5480 void
5481 arc_fini(void)
5482 {
5483 arc_prune_t *p;
5484
5485 #ifdef _KERNEL
5486 spl_unregister_shrinker(&arc_shrinker);
5487 #endif /* _KERNEL */
5488
5489 mutex_enter(&arc_reclaim_lock);
5490 arc_reclaim_thread_exit = TRUE;
5491 /*
5492 * The reclaim thread will set arc_reclaim_thread_exit back to
5493 * FALSE when it is finished exiting; we're waiting for that.
5494 */
5495 while (arc_reclaim_thread_exit) {
5496 cv_signal(&arc_reclaim_thread_cv);
5497 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5498 }
5499 mutex_exit(&arc_reclaim_lock);
5500
5501 mutex_enter(&arc_user_evicts_lock);
5502 arc_user_evicts_thread_exit = TRUE;
5503 /*
5504 * The user evicts thread will set arc_user_evicts_thread_exit
5505 * to FALSE when it is finished exiting; we're waiting for that.
5506 */
5507 while (arc_user_evicts_thread_exit) {
5508 cv_signal(&arc_user_evicts_cv);
5509 cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5510 }
5511 mutex_exit(&arc_user_evicts_lock);
5512
5513 /* Use TRUE to ensure *all* buffers are evicted */
5514 arc_flush(NULL, TRUE);
5515
5516 arc_dead = TRUE;
5517
5518 if (arc_ksp != NULL) {
5519 kstat_delete(arc_ksp);
5520 arc_ksp = NULL;
5521 }
5522
5523 taskq_wait(arc_prune_taskq);
5524 taskq_destroy(arc_prune_taskq);
5525
5526 mutex_enter(&arc_prune_mtx);
5527 while ((p = list_head(&arc_prune_list)) != NULL) {
5528 list_remove(&arc_prune_list, p);
5529 refcount_remove(&p->p_refcnt, &arc_prune_list);
5530 refcount_destroy(&p->p_refcnt);
5531 kmem_free(p, sizeof (*p));
5532 }
5533 mutex_exit(&arc_prune_mtx);
5534
5535 list_destroy(&arc_prune_list);
5536 mutex_destroy(&arc_prune_mtx);
5537 mutex_destroy(&arc_reclaim_lock);
5538 cv_destroy(&arc_reclaim_thread_cv);
5539 cv_destroy(&arc_reclaim_waiters_cv);
5540
5541 mutex_destroy(&arc_user_evicts_lock);
5542 cv_destroy(&arc_user_evicts_cv);
5543
5544 refcount_destroy(&arc_anon->arcs_size);
5545 refcount_destroy(&arc_mru->arcs_size);
5546 refcount_destroy(&arc_mru_ghost->arcs_size);
5547 refcount_destroy(&arc_mfu->arcs_size);
5548 refcount_destroy(&arc_mfu_ghost->arcs_size);
5549 refcount_destroy(&arc_l2c_only->arcs_size);
5550
5551 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5552 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5553 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5554 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5555 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5556 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5557 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5558 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5559 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
5560 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
5561
5562 buf_fini();
5563
5564 ASSERT0(arc_loaned_bytes);
5565 }
5566
5567 /*
5568 * Level 2 ARC
5569 *
5570 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5571 * It uses dedicated storage devices to hold cached data, which are populated
5572 * using large infrequent writes. The main role of this cache is to boost
5573 * the performance of random read workloads. The intended L2ARC devices
5574 * include short-stroked disks, solid state disks, and other media with
5575 * substantially faster read latency than disk.
5576 *
5577 * +-----------------------+
5578 * | ARC |
5579 * +-----------------------+
5580 * | ^ ^
5581 * | | |
5582 * l2arc_feed_thread() arc_read()
5583 * | | |
5584 * | l2arc read |
5585 * V | |
5586 * +---------------+ |
5587 * | L2ARC | |
5588 * +---------------+ |
5589 * | ^ |
5590 * l2arc_write() | |
5591 * | | |
5592 * V | |
5593 * +-------+ +-------+
5594 * | vdev | | vdev |
5595 * | cache | | cache |
5596 * +-------+ +-------+
5597 * +=========+ .-----.
5598 * : L2ARC : |-_____-|
5599 * : devices : | Disks |
5600 * +=========+ `-_____-'
5601 *
5602 * Read requests are satisfied from the following sources, in order:
5603 *
5604 * 1) ARC
5605 * 2) vdev cache of L2ARC devices
5606 * 3) L2ARC devices
5607 * 4) vdev cache of disks
5608 * 5) disks
5609 *
5610 * Some L2ARC device types exhibit extremely slow write performance.
5611 * To accommodate for this there are some significant differences between
5612 * the L2ARC and traditional cache design:
5613 *
5614 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
5615 * the ARC behave as usual, freeing buffers and placing headers on ghost
5616 * lists. The ARC does not send buffers to the L2ARC during eviction as
5617 * this would add inflated write latencies for all ARC memory pressure.
5618 *
5619 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5620 * It does this by periodically scanning buffers from the eviction-end of
5621 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
5622 * not already there. It scans until a headroom of buffers is satisfied,
5623 * which itself is a buffer for ARC eviction. If a compressible buffer is
5624 * found during scanning and selected for writing to an L2ARC device, we
5625 * temporarily boost scanning headroom during the next scan cycle to make
5626 * sure we adapt to compression effects (which might significantly reduce
5627 * the data volume we write to L2ARC). The thread that does this is
5628 * l2arc_feed_thread(), illustrated below; example sizes are included to
5629 * provide a better sense of ratio than this diagram:
5630 *
5631 * head --> tail
5632 * +---------------------+----------+
5633 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
5634 * +---------------------+----------+ | o L2ARC eligible
5635 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
5636 * +---------------------+----------+ |
5637 * 15.9 Gbytes ^ 32 Mbytes |
5638 * headroom |
5639 * l2arc_feed_thread()
5640 * |
5641 * l2arc write hand <--[oooo]--'
5642 * | 8 Mbyte
5643 * | write max
5644 * V
5645 * +==============================+
5646 * L2ARC dev |####|#|###|###| |####| ... |
5647 * +==============================+
5648 * 32 Gbytes
5649 *
5650 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5651 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5652 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
5653 * safe to say that this is an uncommon case, since buffers at the end of
5654 * the ARC lists have moved there due to inactivity.
5655 *
5656 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5657 * then the L2ARC simply misses copying some buffers. This serves as a
5658 * pressure valve to prevent heavy read workloads from both stalling the ARC
5659 * with waits and clogging the L2ARC with writes. This also helps prevent
5660 * the potential for the L2ARC to churn if it attempts to cache content too
5661 * quickly, such as during backups of the entire pool.
5662 *
5663 * 5. After system boot and before the ARC has filled main memory, there are
5664 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5665 * lists can remain mostly static. Instead of searching from tail of these
5666 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5667 * for eligible buffers, greatly increasing its chance of finding them.
5668 *
5669 * The L2ARC device write speed is also boosted during this time so that
5670 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
5671 * there are no L2ARC reads, and no fear of degrading read performance
5672 * through increased writes.
5673 *
5674 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
5675 * the vdev queue can aggregate them into larger and fewer writes. Each
5676 * device is written to in a rotor fashion, sweeping writes through
5677 * available space then repeating.
5678 *
5679 * 7. The L2ARC does not store dirty content. It never needs to flush
5680 * write buffers back to disk based storage.
5681 *
5682 * 8. If an ARC buffer is written (and dirtied) which also exists in the
5683 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5684 *
5685 * The performance of the L2ARC can be tweaked by a number of tunables, which
5686 * may be necessary for different workloads:
5687 *
5688 * l2arc_write_max max write bytes per interval
5689 * l2arc_write_boost extra write bytes during device warmup
5690 * l2arc_noprefetch skip caching prefetched buffers
5691 * l2arc_nocompress skip compressing buffers
5692 * l2arc_headroom number of max device writes to precache
5693 * l2arc_headroom_boost when we find compressed buffers during ARC
5694 * scanning, we multiply headroom by this
5695 * percentage factor for the next scan cycle,
5696 * since more compressed buffers are likely to
5697 * be present
5698 * l2arc_feed_secs seconds between L2ARC writing
5699 *
5700 * Tunables may be removed or added as future performance improvements are
5701 * integrated, and also may become zpool properties.
5702 *
5703 * There are three key functions that control how the L2ARC warms up:
5704 *
5705 * l2arc_write_eligible() check if a buffer is eligible to cache
5706 * l2arc_write_size() calculate how much to write
5707 * l2arc_write_interval() calculate sleep delay between writes
5708 *
5709 * These three functions determine what to write, how much, and how quickly
5710 * to send writes.
5711 */
5712
5713 static boolean_t
5714 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
5715 {
5716 /*
5717 * A buffer is *not* eligible for the L2ARC if it:
5718 * 1. belongs to a different spa.
5719 * 2. is already cached on the L2ARC.
5720 * 3. has an I/O in progress (it may be an incomplete read).
5721 * 4. is flagged not eligible (zfs property).
5722 */
5723 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
5724 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
5725 return (B_FALSE);
5726
5727 return (B_TRUE);
5728 }
5729
5730 static uint64_t
5731 l2arc_write_size(void)
5732 {
5733 uint64_t size;
5734
5735 /*
5736 * Make sure our globals have meaningful values in case the user
5737 * altered them.
5738 */
5739 size = l2arc_write_max;
5740 if (size == 0) {
5741 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5742 "be greater than zero, resetting it to the default (%d)",
5743 L2ARC_WRITE_SIZE);
5744 size = l2arc_write_max = L2ARC_WRITE_SIZE;
5745 }
5746
5747 if (arc_warm == B_FALSE)
5748 size += l2arc_write_boost;
5749
5750 return (size);
5751
5752 }
5753
5754 static clock_t
5755 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5756 {
5757 clock_t interval, next, now;
5758
5759 /*
5760 * If the ARC lists are busy, increase our write rate; if the
5761 * lists are stale, idle back. This is achieved by checking
5762 * how much we previously wrote - if it was more than half of
5763 * what we wanted, schedule the next write much sooner.
5764 */
5765 if (l2arc_feed_again && wrote > (wanted / 2))
5766 interval = (hz * l2arc_feed_min_ms) / 1000;
5767 else
5768 interval = hz * l2arc_feed_secs;
5769
5770 now = ddi_get_lbolt();
5771 next = MAX(now, MIN(now + interval, began + interval));
5772
5773 return (next);
5774 }
5775
5776 /*
5777 * Cycle through L2ARC devices. This is how L2ARC load balances.
5778 * If a device is returned, this also returns holding the spa config lock.
5779 */
5780 static l2arc_dev_t *
5781 l2arc_dev_get_next(void)
5782 {
5783 l2arc_dev_t *first, *next = NULL;
5784
5785 /*
5786 * Lock out the removal of spas (spa_namespace_lock), then removal
5787 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
5788 * both locks will be dropped and a spa config lock held instead.
5789 */
5790 mutex_enter(&spa_namespace_lock);
5791 mutex_enter(&l2arc_dev_mtx);
5792
5793 /* if there are no vdevs, there is nothing to do */
5794 if (l2arc_ndev == 0)
5795 goto out;
5796
5797 first = NULL;
5798 next = l2arc_dev_last;
5799 do {
5800 /* loop around the list looking for a non-faulted vdev */
5801 if (next == NULL) {
5802 next = list_head(l2arc_dev_list);
5803 } else {
5804 next = list_next(l2arc_dev_list, next);
5805 if (next == NULL)
5806 next = list_head(l2arc_dev_list);
5807 }
5808
5809 /* if we have come back to the start, bail out */
5810 if (first == NULL)
5811 first = next;
5812 else if (next == first)
5813 break;
5814
5815 } while (vdev_is_dead(next->l2ad_vdev));
5816
5817 /* if we were unable to find any usable vdevs, return NULL */
5818 if (vdev_is_dead(next->l2ad_vdev))
5819 next = NULL;
5820
5821 l2arc_dev_last = next;
5822
5823 out:
5824 mutex_exit(&l2arc_dev_mtx);
5825
5826 /*
5827 * Grab the config lock to prevent the 'next' device from being
5828 * removed while we are writing to it.
5829 */
5830 if (next != NULL)
5831 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5832 mutex_exit(&spa_namespace_lock);
5833
5834 return (next);
5835 }
5836
5837 /*
5838 * Free buffers that were tagged for destruction.
5839 */
5840 static void
5841 l2arc_do_free_on_write(void)
5842 {
5843 list_t *buflist;
5844 l2arc_data_free_t *df, *df_prev;
5845
5846 mutex_enter(&l2arc_free_on_write_mtx);
5847 buflist = l2arc_free_on_write;
5848
5849 for (df = list_tail(buflist); df; df = df_prev) {
5850 df_prev = list_prev(buflist, df);
5851 ASSERT(df->l2df_data != NULL);
5852 ASSERT(df->l2df_func != NULL);
5853 df->l2df_func(df->l2df_data, df->l2df_size);
5854 list_remove(buflist, df);
5855 kmem_free(df, sizeof (l2arc_data_free_t));
5856 }
5857
5858 mutex_exit(&l2arc_free_on_write_mtx);
5859 }
5860
5861 /*
5862 * A write to a cache device has completed. Update all headers to allow
5863 * reads from these buffers to begin.
5864 */
5865 static void
5866 l2arc_write_done(zio_t *zio)
5867 {
5868 l2arc_write_callback_t *cb;
5869 l2arc_dev_t *dev;
5870 list_t *buflist;
5871 arc_buf_hdr_t *head, *hdr, *hdr_prev;
5872 kmutex_t *hash_lock;
5873 int64_t bytes_dropped = 0;
5874
5875 cb = zio->io_private;
5876 ASSERT(cb != NULL);
5877 dev = cb->l2wcb_dev;
5878 ASSERT(dev != NULL);
5879 head = cb->l2wcb_head;
5880 ASSERT(head != NULL);
5881 buflist = &dev->l2ad_buflist;
5882 ASSERT(buflist != NULL);
5883 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
5884 l2arc_write_callback_t *, cb);
5885
5886 if (zio->io_error != 0)
5887 ARCSTAT_BUMP(arcstat_l2_writes_error);
5888
5889 /*
5890 * All writes completed, or an error was hit.
5891 */
5892 top:
5893 mutex_enter(&dev->l2ad_mtx);
5894 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
5895 hdr_prev = list_prev(buflist, hdr);
5896
5897 hash_lock = HDR_LOCK(hdr);
5898
5899 /*
5900 * We cannot use mutex_enter or else we can deadlock
5901 * with l2arc_write_buffers (due to swapping the order
5902 * the hash lock and l2ad_mtx are taken).
5903 */
5904 if (!mutex_tryenter(hash_lock)) {
5905 /*
5906 * Missed the hash lock. We must retry so we
5907 * don't leave the ARC_FLAG_L2_WRITING bit set.
5908 */
5909 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
5910
5911 /*
5912 * We don't want to rescan the headers we've
5913 * already marked as having been written out, so
5914 * we reinsert the head node so we can pick up
5915 * where we left off.
5916 */
5917 list_remove(buflist, head);
5918 list_insert_after(buflist, hdr, head);
5919
5920 mutex_exit(&dev->l2ad_mtx);
5921
5922 /*
5923 * We wait for the hash lock to become available
5924 * to try and prevent busy waiting, and increase
5925 * the chance we'll be able to acquire the lock
5926 * the next time around.
5927 */
5928 mutex_enter(hash_lock);
5929 mutex_exit(hash_lock);
5930 goto top;
5931 }
5932
5933 /*
5934 * We could not have been moved into the arc_l2c_only
5935 * state while in-flight due to our ARC_FLAG_L2_WRITING
5936 * bit being set. Let's just ensure that's being enforced.
5937 */
5938 ASSERT(HDR_HAS_L1HDR(hdr));
5939
5940 /*
5941 * We may have allocated a buffer for L2ARC compression,
5942 * we must release it to avoid leaking this data.
5943 */
5944 l2arc_release_cdata_buf(hdr);
5945
5946 if (zio->io_error != 0) {
5947 /*
5948 * Error - drop L2ARC entry.
5949 */
5950 list_remove(buflist, hdr);
5951 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
5952
5953 ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
5954 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
5955
5956 bytes_dropped += hdr->b_l2hdr.b_asize;
5957 (void) refcount_remove_many(&dev->l2ad_alloc,
5958 hdr->b_l2hdr.b_asize, hdr);
5959 }
5960
5961 /*
5962 * Allow ARC to begin reads and ghost list evictions to
5963 * this L2ARC entry.
5964 */
5965 hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
5966
5967 mutex_exit(hash_lock);
5968 }
5969
5970 atomic_inc_64(&l2arc_writes_done);
5971 list_remove(buflist, head);
5972 ASSERT(!HDR_HAS_L1HDR(head));
5973 kmem_cache_free(hdr_l2only_cache, head);
5974 mutex_exit(&dev->l2ad_mtx);
5975
5976 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
5977
5978 l2arc_do_free_on_write();
5979
5980 kmem_free(cb, sizeof (l2arc_write_callback_t));
5981 }
5982
5983 /*
5984 * A read to a cache device completed. Validate buffer contents before
5985 * handing over to the regular ARC routines.
5986 */
5987 static void
5988 l2arc_read_done(zio_t *zio)
5989 {
5990 l2arc_read_callback_t *cb;
5991 arc_buf_hdr_t *hdr;
5992 arc_buf_t *buf;
5993 kmutex_t *hash_lock;
5994 int equal;
5995
5996 ASSERT(zio->io_vd != NULL);
5997 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
5998
5999 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6000
6001 cb = zio->io_private;
6002 ASSERT(cb != NULL);
6003 buf = cb->l2rcb_buf;
6004 ASSERT(buf != NULL);
6005
6006 hash_lock = HDR_LOCK(buf->b_hdr);
6007 mutex_enter(hash_lock);
6008 hdr = buf->b_hdr;
6009 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6010
6011 /*
6012 * If the buffer was compressed, decompress it first.
6013 */
6014 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
6015 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
6016 ASSERT(zio->io_data != NULL);
6017
6018 /*
6019 * Check this survived the L2ARC journey.
6020 */
6021 equal = arc_cksum_equal(buf);
6022 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6023 mutex_exit(hash_lock);
6024 zio->io_private = buf;
6025 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
6026 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
6027 arc_read_done(zio);
6028 } else {
6029 mutex_exit(hash_lock);
6030 /*
6031 * Buffer didn't survive caching. Increment stats and
6032 * reissue to the original storage device.
6033 */
6034 if (zio->io_error != 0) {
6035 ARCSTAT_BUMP(arcstat_l2_io_error);
6036 } else {
6037 zio->io_error = SET_ERROR(EIO);
6038 }
6039 if (!equal)
6040 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6041
6042 /*
6043 * If there's no waiter, issue an async i/o to the primary
6044 * storage now. If there *is* a waiter, the caller must
6045 * issue the i/o in a context where it's OK to block.
6046 */
6047 if (zio->io_waiter == NULL) {
6048 zio_t *pio = zio_unique_parent(zio);
6049
6050 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6051
6052 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
6053 buf->b_data, zio->io_size, arc_read_done, buf,
6054 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
6055 }
6056 }
6057
6058 kmem_free(cb, sizeof (l2arc_read_callback_t));
6059 }
6060
6061 /*
6062 * This is the list priority from which the L2ARC will search for pages to
6063 * cache. This is used within loops (0..3) to cycle through lists in the
6064 * desired order. This order can have a significant effect on cache
6065 * performance.
6066 *
6067 * Currently the metadata lists are hit first, MFU then MRU, followed by
6068 * the data lists. This function returns a locked list, and also returns
6069 * the lock pointer.
6070 */
6071 static multilist_sublist_t *
6072 l2arc_sublist_lock(int list_num)
6073 {
6074 multilist_t *ml = NULL;
6075 unsigned int idx;
6076
6077 ASSERT(list_num >= 0 && list_num <= 3);
6078
6079 switch (list_num) {
6080 case 0:
6081 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
6082 break;
6083 case 1:
6084 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
6085 break;
6086 case 2:
6087 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
6088 break;
6089 case 3:
6090 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
6091 break;
6092 }
6093
6094 /*
6095 * Return a randomly-selected sublist. This is acceptable
6096 * because the caller feeds only a little bit of data for each
6097 * call (8MB). Subsequent calls will result in different
6098 * sublists being selected.
6099 */
6100 idx = multilist_get_random_index(ml);
6101 return (multilist_sublist_lock(ml, idx));
6102 }
6103
6104 /*
6105 * Evict buffers from the device write hand to the distance specified in
6106 * bytes. This distance may span populated buffers, it may span nothing.
6107 * This is clearing a region on the L2ARC device ready for writing.
6108 * If the 'all' boolean is set, every buffer is evicted.
6109 */
6110 static void
6111 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6112 {
6113 list_t *buflist;
6114 arc_buf_hdr_t *hdr, *hdr_prev;
6115 kmutex_t *hash_lock;
6116 uint64_t taddr;
6117
6118 buflist = &dev->l2ad_buflist;
6119
6120 if (!all && dev->l2ad_first) {
6121 /*
6122 * This is the first sweep through the device. There is
6123 * nothing to evict.
6124 */
6125 return;
6126 }
6127
6128 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6129 /*
6130 * When nearing the end of the device, evict to the end
6131 * before the device write hand jumps to the start.
6132 */
6133 taddr = dev->l2ad_end;
6134 } else {
6135 taddr = dev->l2ad_hand + distance;
6136 }
6137 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6138 uint64_t, taddr, boolean_t, all);
6139
6140 top:
6141 mutex_enter(&dev->l2ad_mtx);
6142 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6143 hdr_prev = list_prev(buflist, hdr);
6144
6145 hash_lock = HDR_LOCK(hdr);
6146
6147 /*
6148 * We cannot use mutex_enter or else we can deadlock
6149 * with l2arc_write_buffers (due to swapping the order
6150 * the hash lock and l2ad_mtx are taken).
6151 */
6152 if (!mutex_tryenter(hash_lock)) {
6153 /*
6154 * Missed the hash lock. Retry.
6155 */
6156 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6157 mutex_exit(&dev->l2ad_mtx);
6158 mutex_enter(hash_lock);
6159 mutex_exit(hash_lock);
6160 goto top;
6161 }
6162
6163 if (HDR_L2_WRITE_HEAD(hdr)) {
6164 /*
6165 * We hit a write head node. Leave it for
6166 * l2arc_write_done().
6167 */
6168 list_remove(buflist, hdr);
6169 mutex_exit(hash_lock);
6170 continue;
6171 }
6172
6173 if (!all && HDR_HAS_L2HDR(hdr) &&
6174 (hdr->b_l2hdr.b_daddr > taddr ||
6175 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6176 /*
6177 * We've evicted to the target address,
6178 * or the end of the device.
6179 */
6180 mutex_exit(hash_lock);
6181 break;
6182 }
6183
6184 ASSERT(HDR_HAS_L2HDR(hdr));
6185 if (!HDR_HAS_L1HDR(hdr)) {
6186 ASSERT(!HDR_L2_READING(hdr));
6187 /*
6188 * This doesn't exist in the ARC. Destroy.
6189 * arc_hdr_destroy() will call list_remove()
6190 * and decrement arcstat_l2_size.
6191 */
6192 arc_change_state(arc_anon, hdr, hash_lock);
6193 arc_hdr_destroy(hdr);
6194 } else {
6195 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6196 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6197 /*
6198 * Invalidate issued or about to be issued
6199 * reads, since we may be about to write
6200 * over this location.
6201 */
6202 if (HDR_L2_READING(hdr)) {
6203 ARCSTAT_BUMP(arcstat_l2_evict_reading);
6204 hdr->b_flags |= ARC_FLAG_L2_EVICTED;
6205 }
6206
6207 /* Ensure this header has finished being written */
6208 ASSERT(!HDR_L2_WRITING(hdr));
6209 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6210
6211 arc_hdr_l2hdr_destroy(hdr);
6212 }
6213 mutex_exit(hash_lock);
6214 }
6215 mutex_exit(&dev->l2ad_mtx);
6216 }
6217
6218 /*
6219 * Find and write ARC buffers to the L2ARC device.
6220 *
6221 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6222 * for reading until they have completed writing.
6223 * The headroom_boost is an in-out parameter used to maintain headroom boost
6224 * state between calls to this function.
6225 *
6226 * Returns the number of bytes actually written (which may be smaller than
6227 * the delta by which the device hand has changed due to alignment).
6228 */
6229 static uint64_t
6230 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
6231 boolean_t *headroom_boost)
6232 {
6233 arc_buf_hdr_t *hdr, *hdr_prev, *head;
6234 uint64_t write_asize, write_sz, headroom, buf_compress_minsz,
6235 stats_size;
6236 void *buf_data;
6237 boolean_t full;
6238 l2arc_write_callback_t *cb;
6239 zio_t *pio, *wzio;
6240 uint64_t guid = spa_load_guid(spa);
6241 int try;
6242 const boolean_t do_headroom_boost = *headroom_boost;
6243
6244 ASSERT(dev->l2ad_vdev != NULL);
6245
6246 /* Lower the flag now, we might want to raise it again later. */
6247 *headroom_boost = B_FALSE;
6248
6249 pio = NULL;
6250 write_sz = write_asize = 0;
6251 full = B_FALSE;
6252 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6253 head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
6254 head->b_flags |= ARC_FLAG_HAS_L2HDR;
6255
6256 /*
6257 * We will want to try to compress buffers that are at least 2x the
6258 * device sector size.
6259 */
6260 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
6261
6262 /*
6263 * Copy buffers for L2ARC writing.
6264 */
6265 for (try = 0; try <= 3; try++) {
6266 multilist_sublist_t *mls = l2arc_sublist_lock(try);
6267 uint64_t passed_sz = 0;
6268
6269 /*
6270 * L2ARC fast warmup.
6271 *
6272 * Until the ARC is warm and starts to evict, read from the
6273 * head of the ARC lists rather than the tail.
6274 */
6275 if (arc_warm == B_FALSE)
6276 hdr = multilist_sublist_head(mls);
6277 else
6278 hdr = multilist_sublist_tail(mls);
6279
6280 headroom = target_sz * l2arc_headroom;
6281 if (do_headroom_boost)
6282 headroom = (headroom * l2arc_headroom_boost) / 100;
6283
6284 for (; hdr; hdr = hdr_prev) {
6285 kmutex_t *hash_lock;
6286 uint64_t buf_sz;
6287 uint64_t buf_a_sz;
6288
6289 if (arc_warm == B_FALSE)
6290 hdr_prev = multilist_sublist_next(mls, hdr);
6291 else
6292 hdr_prev = multilist_sublist_prev(mls, hdr);
6293
6294 hash_lock = HDR_LOCK(hdr);
6295 if (!mutex_tryenter(hash_lock)) {
6296 /*
6297 * Skip this buffer rather than waiting.
6298 */
6299 continue;
6300 }
6301
6302 passed_sz += hdr->b_size;
6303 if (passed_sz > headroom) {
6304 /*
6305 * Searched too far.
6306 */
6307 mutex_exit(hash_lock);
6308 break;
6309 }
6310
6311 if (!l2arc_write_eligible(guid, hdr)) {
6312 mutex_exit(hash_lock);
6313 continue;
6314 }
6315
6316 /*
6317 * Assume that the buffer is not going to be compressed
6318 * and could take more space on disk because of a larger
6319 * disk block size.
6320 */
6321 buf_sz = hdr->b_size;
6322 buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6323
6324 if ((write_asize + buf_a_sz) > target_sz) {
6325 full = B_TRUE;
6326 mutex_exit(hash_lock);
6327 break;
6328 }
6329
6330 if (pio == NULL) {
6331 /*
6332 * Insert a dummy header on the buflist so
6333 * l2arc_write_done() can find where the
6334 * write buffers begin without searching.
6335 */
6336 mutex_enter(&dev->l2ad_mtx);
6337 list_insert_head(&dev->l2ad_buflist, head);
6338 mutex_exit(&dev->l2ad_mtx);
6339
6340 cb = kmem_alloc(sizeof (l2arc_write_callback_t),
6341 KM_SLEEP);
6342 cb->l2wcb_dev = dev;
6343 cb->l2wcb_head = head;
6344 pio = zio_root(spa, l2arc_write_done, cb,
6345 ZIO_FLAG_CANFAIL);
6346 }
6347
6348 /*
6349 * Create and add a new L2ARC header.
6350 */
6351 hdr->b_l2hdr.b_dev = dev;
6352 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
6353 hdr->b_flags |= ARC_FLAG_L2_WRITING;
6354 /*
6355 * Temporarily stash the data buffer in b_tmp_cdata.
6356 * The subsequent write step will pick it up from
6357 * there. This is because can't access b_l1hdr.b_buf
6358 * without holding the hash_lock, which we in turn
6359 * can't access without holding the ARC list locks
6360 * (which we want to avoid during compression/writing)
6361 */
6362 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
6363 hdr->b_l2hdr.b_asize = hdr->b_size;
6364 hdr->b_l2hdr.b_hits = 0;
6365 hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
6366
6367 /*
6368 * Explicitly set the b_daddr field to a known
6369 * value which means "invalid address". This
6370 * enables us to differentiate which stage of
6371 * l2arc_write_buffers() the particular header
6372 * is in (e.g. this loop, or the one below).
6373 * ARC_FLAG_L2_WRITING is not enough to make
6374 * this distinction, and we need to know in
6375 * order to do proper l2arc vdev accounting in
6376 * arc_release() and arc_hdr_destroy().
6377 *
6378 * Note, we can't use a new flag to distinguish
6379 * the two stages because we don't hold the
6380 * header's hash_lock below, in the second stage
6381 * of this function. Thus, we can't simply
6382 * change the b_flags field to denote that the
6383 * IO has been sent. We can change the b_daddr
6384 * field of the L2 portion, though, since we'll
6385 * be holding the l2ad_mtx; which is why we're
6386 * using it to denote the header's state change.
6387 */
6388 hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
6389 hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
6390
6391 mutex_enter(&dev->l2ad_mtx);
6392 list_insert_head(&dev->l2ad_buflist, hdr);
6393 mutex_exit(&dev->l2ad_mtx);
6394
6395 /*
6396 * Compute and store the buffer cksum before
6397 * writing. On debug the cksum is verified first.
6398 */
6399 arc_cksum_verify(hdr->b_l1hdr.b_buf);
6400 arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
6401
6402 mutex_exit(hash_lock);
6403
6404 write_sz += buf_sz;
6405 write_asize += buf_a_sz;
6406 }
6407
6408 multilist_sublist_unlock(mls);
6409
6410 if (full == B_TRUE)
6411 break;
6412 }
6413
6414 /* No buffers selected for writing? */
6415 if (pio == NULL) {
6416 ASSERT0(write_sz);
6417 ASSERT(!HDR_HAS_L1HDR(head));
6418 kmem_cache_free(hdr_l2only_cache, head);
6419 return (0);
6420 }
6421
6422 mutex_enter(&dev->l2ad_mtx);
6423
6424 /*
6425 * Note that elsewhere in this file arcstat_l2_asize
6426 * and the used space on l2ad_vdev are updated using b_asize,
6427 * which is not necessarily rounded up to the device block size.
6428 * Too keep accounting consistent we do the same here as well:
6429 * stats_size accumulates the sum of b_asize of the written buffers,
6430 * while write_asize accumulates the sum of b_asize rounded up
6431 * to the device block size.
6432 * The latter sum is used only to validate the corectness of the code.
6433 */
6434 stats_size = 0;
6435 write_asize = 0;
6436
6437 /*
6438 * Now start writing the buffers. We're starting at the write head
6439 * and work backwards, retracing the course of the buffer selector
6440 * loop above.
6441 */
6442 for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6443 hdr = list_prev(&dev->l2ad_buflist, hdr)) {
6444 uint64_t buf_sz;
6445
6446 /*
6447 * We rely on the L1 portion of the header below, so
6448 * it's invalid for this header to have been evicted out
6449 * of the ghost cache, prior to being written out. The
6450 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6451 */
6452 ASSERT(HDR_HAS_L1HDR(hdr));
6453
6454 /*
6455 * We shouldn't need to lock the buffer here, since we flagged
6456 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6457 * take care to only access its L2 cache parameters. In
6458 * particular, hdr->l1hdr.b_buf may be invalid by now due to
6459 * ARC eviction.
6460 */
6461 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6462
6463 if ((!l2arc_nocompress && HDR_L2COMPRESS(hdr)) &&
6464 hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
6465 if (l2arc_compress_buf(hdr)) {
6466 /*
6467 * If compression succeeded, enable headroom
6468 * boost on the next scan cycle.
6469 */
6470 *headroom_boost = B_TRUE;
6471 }
6472 }
6473
6474 /*
6475 * Pick up the buffer data we had previously stashed away
6476 * (and now potentially also compressed).
6477 */
6478 buf_data = hdr->b_l1hdr.b_tmp_cdata;
6479 buf_sz = hdr->b_l2hdr.b_asize;
6480
6481 /*
6482 * We need to do this regardless if buf_sz is zero or
6483 * not, otherwise, when this l2hdr is evicted we'll
6484 * remove a reference that was never added.
6485 */
6486 (void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
6487
6488 /* Compression may have squashed the buffer to zero length. */
6489 if (buf_sz != 0) {
6490 uint64_t buf_a_sz;
6491
6492 wzio = zio_write_phys(pio, dev->l2ad_vdev,
6493 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
6494 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
6495 ZIO_FLAG_CANFAIL, B_FALSE);
6496
6497 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6498 zio_t *, wzio);
6499 (void) zio_nowait(wzio);
6500
6501 stats_size += buf_sz;
6502
6503 /*
6504 * Keep the clock hand suitably device-aligned.
6505 */
6506 buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6507 write_asize += buf_a_sz;
6508 dev->l2ad_hand += buf_a_sz;
6509 }
6510 }
6511
6512 mutex_exit(&dev->l2ad_mtx);
6513
6514 ASSERT3U(write_asize, <=, target_sz);
6515 ARCSTAT_BUMP(arcstat_l2_writes_sent);
6516 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
6517 ARCSTAT_INCR(arcstat_l2_size, write_sz);
6518 ARCSTAT_INCR(arcstat_l2_asize, stats_size);
6519 vdev_space_update(dev->l2ad_vdev, stats_size, 0, 0);
6520
6521 /*
6522 * Bump device hand to the device start if it is approaching the end.
6523 * l2arc_evict() will already have evicted ahead for this case.
6524 */
6525 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
6526 dev->l2ad_hand = dev->l2ad_start;
6527 dev->l2ad_first = B_FALSE;
6528 }
6529
6530 dev->l2ad_writing = B_TRUE;
6531 (void) zio_wait(pio);
6532 dev->l2ad_writing = B_FALSE;
6533
6534 return (write_asize);
6535 }
6536
6537 /*
6538 * Compresses an L2ARC buffer.
6539 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
6540 * size in l2hdr->b_asize. This routine tries to compress the data and
6541 * depending on the compression result there are three possible outcomes:
6542 * *) The buffer was incompressible. The original l2hdr contents were left
6543 * untouched and are ready for writing to an L2 device.
6544 * *) The buffer was all-zeros, so there is no need to write it to an L2
6545 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6546 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6547 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6548 * data buffer which holds the compressed data to be written, and b_asize
6549 * tells us how much data there is. b_compress is set to the appropriate
6550 * compression algorithm. Once writing is done, invoke
6551 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6552 *
6553 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6554 * buffer was incompressible).
6555 */
6556 static boolean_t
6557 l2arc_compress_buf(arc_buf_hdr_t *hdr)
6558 {
6559 void *cdata;
6560 size_t csize, len, rounded;
6561 l2arc_buf_hdr_t *l2hdr;
6562
6563 ASSERT(HDR_HAS_L2HDR(hdr));
6564
6565 l2hdr = &hdr->b_l2hdr;
6566
6567 ASSERT(HDR_HAS_L1HDR(hdr));
6568 ASSERT(HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF);
6569 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6570
6571 len = l2hdr->b_asize;
6572 cdata = zio_data_buf_alloc(len);
6573 ASSERT3P(cdata, !=, NULL);
6574 csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
6575 cdata, l2hdr->b_asize);
6576
6577 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
6578 if (rounded > csize) {
6579 bzero((char *)cdata + csize, rounded - csize);
6580 csize = rounded;
6581 }
6582
6583 if (csize == 0) {
6584 /* zero block, indicate that there's nothing to write */
6585 zio_data_buf_free(cdata, len);
6586 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_EMPTY);
6587 l2hdr->b_asize = 0;
6588 hdr->b_l1hdr.b_tmp_cdata = NULL;
6589 ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6590 return (B_TRUE);
6591 } else if (csize > 0 && csize < len) {
6592 /*
6593 * Compression succeeded, we'll keep the cdata around for
6594 * writing and release it afterwards.
6595 */
6596 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_LZ4);
6597 l2hdr->b_asize = csize;
6598 hdr->b_l1hdr.b_tmp_cdata = cdata;
6599 ARCSTAT_BUMP(arcstat_l2_compress_successes);
6600 return (B_TRUE);
6601 } else {
6602 /*
6603 * Compression failed, release the compressed buffer.
6604 * l2hdr will be left unmodified.
6605 */
6606 zio_data_buf_free(cdata, len);
6607 ARCSTAT_BUMP(arcstat_l2_compress_failures);
6608 return (B_FALSE);
6609 }
6610 }
6611
6612 /*
6613 * Decompresses a zio read back from an l2arc device. On success, the
6614 * underlying zio's io_data buffer is overwritten by the uncompressed
6615 * version. On decompression error (corrupt compressed stream), the
6616 * zio->io_error value is set to signal an I/O error.
6617 *
6618 * Please note that the compressed data stream is not checksummed, so
6619 * if the underlying device is experiencing data corruption, we may feed
6620 * corrupt data to the decompressor, so the decompressor needs to be
6621 * able to handle this situation (LZ4 does).
6622 */
6623 static void
6624 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6625 {
6626 uint64_t csize;
6627 void *cdata;
6628
6629 ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6630
6631 if (zio->io_error != 0) {
6632 /*
6633 * An io error has occured, just restore the original io
6634 * size in preparation for a main pool read.
6635 */
6636 zio->io_orig_size = zio->io_size = hdr->b_size;
6637 return;
6638 }
6639
6640 if (c == ZIO_COMPRESS_EMPTY) {
6641 /*
6642 * An empty buffer results in a null zio, which means we
6643 * need to fill its io_data after we're done restoring the
6644 * buffer's contents.
6645 */
6646 ASSERT(hdr->b_l1hdr.b_buf != NULL);
6647 bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6648 zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
6649 } else {
6650 ASSERT(zio->io_data != NULL);
6651 /*
6652 * We copy the compressed data from the start of the arc buffer
6653 * (the zio_read will have pulled in only what we need, the
6654 * rest is garbage which we will overwrite at decompression)
6655 * and then decompress back to the ARC data buffer. This way we
6656 * can minimize copying by simply decompressing back over the
6657 * original compressed data (rather than decompressing to an
6658 * aux buffer and then copying back the uncompressed buffer,
6659 * which is likely to be much larger).
6660 */
6661 csize = zio->io_size;
6662 cdata = zio_data_buf_alloc(csize);
6663 bcopy(zio->io_data, cdata, csize);
6664 if (zio_decompress_data(c, cdata, zio->io_data, csize,
6665 hdr->b_size) != 0)
6666 zio->io_error = SET_ERROR(EIO);
6667 zio_data_buf_free(cdata, csize);
6668 }
6669
6670 /* Restore the expected uncompressed IO size. */
6671 zio->io_orig_size = zio->io_size = hdr->b_size;
6672 }
6673
6674 /*
6675 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6676 * This buffer serves as a temporary holder of compressed data while
6677 * the buffer entry is being written to an l2arc device. Once that is
6678 * done, we can dispose of it.
6679 */
6680 static void
6681 l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
6682 {
6683 enum zio_compress comp = HDR_GET_COMPRESS(hdr);
6684
6685 ASSERT(HDR_HAS_L1HDR(hdr));
6686 ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6687
6688 if (comp == ZIO_COMPRESS_OFF) {
6689 /*
6690 * In this case, b_tmp_cdata points to the same buffer
6691 * as the arc_buf_t's b_data field. We don't want to
6692 * free it, since the arc_buf_t will handle that.
6693 */
6694 hdr->b_l1hdr.b_tmp_cdata = NULL;
6695 } else if (comp == ZIO_COMPRESS_EMPTY) {
6696 /*
6697 * In this case, b_tmp_cdata was compressed to an empty
6698 * buffer, thus there's nothing to free and b_tmp_cdata
6699 * should have been set to NULL in l2arc_write_buffers().
6700 */
6701 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6702 } else {
6703 /*
6704 * If the data was compressed, then we've allocated a
6705 * temporary buffer for it, so now we need to release it.
6706 */
6707 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6708 zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
6709 hdr->b_size);
6710 hdr->b_l1hdr.b_tmp_cdata = NULL;
6711 }
6712
6713 }
6714
6715 /*
6716 * This thread feeds the L2ARC at regular intervals. This is the beating
6717 * heart of the L2ARC.
6718 */
6719 static void
6720 l2arc_feed_thread(void)
6721 {
6722 callb_cpr_t cpr;
6723 l2arc_dev_t *dev;
6724 spa_t *spa;
6725 uint64_t size, wrote;
6726 clock_t begin, next = ddi_get_lbolt();
6727 boolean_t headroom_boost = B_FALSE;
6728 fstrans_cookie_t cookie;
6729
6730 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6731
6732 mutex_enter(&l2arc_feed_thr_lock);
6733
6734 cookie = spl_fstrans_mark();
6735 while (l2arc_thread_exit == 0) {
6736 CALLB_CPR_SAFE_BEGIN(&cpr);
6737 (void) cv_timedwait_sig(&l2arc_feed_thr_cv,
6738 &l2arc_feed_thr_lock, next);
6739 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
6740 next = ddi_get_lbolt() + hz;
6741
6742 /*
6743 * Quick check for L2ARC devices.
6744 */
6745 mutex_enter(&l2arc_dev_mtx);
6746 if (l2arc_ndev == 0) {
6747 mutex_exit(&l2arc_dev_mtx);
6748 continue;
6749 }
6750 mutex_exit(&l2arc_dev_mtx);
6751 begin = ddi_get_lbolt();
6752
6753 /*
6754 * This selects the next l2arc device to write to, and in
6755 * doing so the next spa to feed from: dev->l2ad_spa. This
6756 * will return NULL if there are now no l2arc devices or if
6757 * they are all faulted.
6758 *
6759 * If a device is returned, its spa's config lock is also
6760 * held to prevent device removal. l2arc_dev_get_next()
6761 * will grab and release l2arc_dev_mtx.
6762 */
6763 if ((dev = l2arc_dev_get_next()) == NULL)
6764 continue;
6765
6766 spa = dev->l2ad_spa;
6767 ASSERT(spa != NULL);
6768
6769 /*
6770 * If the pool is read-only then force the feed thread to
6771 * sleep a little longer.
6772 */
6773 if (!spa_writeable(spa)) {
6774 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6775 spa_config_exit(spa, SCL_L2ARC, dev);
6776 continue;
6777 }
6778
6779 /*
6780 * Avoid contributing to memory pressure.
6781 */
6782 if (arc_reclaim_needed()) {
6783 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6784 spa_config_exit(spa, SCL_L2ARC, dev);
6785 continue;
6786 }
6787
6788 ARCSTAT_BUMP(arcstat_l2_feeds);
6789
6790 size = l2arc_write_size();
6791
6792 /*
6793 * Evict L2ARC buffers that will be overwritten.
6794 */
6795 l2arc_evict(dev, size, B_FALSE);
6796
6797 /*
6798 * Write ARC buffers.
6799 */
6800 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
6801
6802 /*
6803 * Calculate interval between writes.
6804 */
6805 next = l2arc_write_interval(begin, size, wrote);
6806 spa_config_exit(spa, SCL_L2ARC, dev);
6807 }
6808 spl_fstrans_unmark(cookie);
6809
6810 l2arc_thread_exit = 0;
6811 cv_broadcast(&l2arc_feed_thr_cv);
6812 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
6813 thread_exit();
6814 }
6815
6816 boolean_t
6817 l2arc_vdev_present(vdev_t *vd)
6818 {
6819 l2arc_dev_t *dev;
6820
6821 mutex_enter(&l2arc_dev_mtx);
6822 for (dev = list_head(l2arc_dev_list); dev != NULL;
6823 dev = list_next(l2arc_dev_list, dev)) {
6824 if (dev->l2ad_vdev == vd)
6825 break;
6826 }
6827 mutex_exit(&l2arc_dev_mtx);
6828
6829 return (dev != NULL);
6830 }
6831
6832 /*
6833 * Add a vdev for use by the L2ARC. By this point the spa has already
6834 * validated the vdev and opened it.
6835 */
6836 void
6837 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
6838 {
6839 l2arc_dev_t *adddev;
6840
6841 ASSERT(!l2arc_vdev_present(vd));
6842
6843 /*
6844 * Create a new l2arc device entry.
6845 */
6846 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
6847 adddev->l2ad_spa = spa;
6848 adddev->l2ad_vdev = vd;
6849 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
6850 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
6851 adddev->l2ad_hand = adddev->l2ad_start;
6852 adddev->l2ad_first = B_TRUE;
6853 adddev->l2ad_writing = B_FALSE;
6854 list_link_init(&adddev->l2ad_node);
6855
6856 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
6857 /*
6858 * This is a list of all ARC buffers that are still valid on the
6859 * device.
6860 */
6861 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
6862 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
6863
6864 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
6865 refcount_create(&adddev->l2ad_alloc);
6866
6867 /*
6868 * Add device to global list
6869 */
6870 mutex_enter(&l2arc_dev_mtx);
6871 list_insert_head(l2arc_dev_list, adddev);
6872 atomic_inc_64(&l2arc_ndev);
6873 mutex_exit(&l2arc_dev_mtx);
6874 }
6875
6876 /*
6877 * Remove a vdev from the L2ARC.
6878 */
6879 void
6880 l2arc_remove_vdev(vdev_t *vd)
6881 {
6882 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
6883
6884 /*
6885 * Find the device by vdev
6886 */
6887 mutex_enter(&l2arc_dev_mtx);
6888 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
6889 nextdev = list_next(l2arc_dev_list, dev);
6890 if (vd == dev->l2ad_vdev) {
6891 remdev = dev;
6892 break;
6893 }
6894 }
6895 ASSERT(remdev != NULL);
6896
6897 /*
6898 * Remove device from global list
6899 */
6900 list_remove(l2arc_dev_list, remdev);
6901 l2arc_dev_last = NULL; /* may have been invalidated */
6902 atomic_dec_64(&l2arc_ndev);
6903 mutex_exit(&l2arc_dev_mtx);
6904
6905 /*
6906 * Clear all buflists and ARC references. L2ARC device flush.
6907 */
6908 l2arc_evict(remdev, 0, B_TRUE);
6909 list_destroy(&remdev->l2ad_buflist);
6910 mutex_destroy(&remdev->l2ad_mtx);
6911 refcount_destroy(&remdev->l2ad_alloc);
6912 kmem_free(remdev, sizeof (l2arc_dev_t));
6913 }
6914
6915 void
6916 l2arc_init(void)
6917 {
6918 l2arc_thread_exit = 0;
6919 l2arc_ndev = 0;
6920 l2arc_writes_sent = 0;
6921 l2arc_writes_done = 0;
6922
6923 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
6924 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
6925 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
6926 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
6927
6928 l2arc_dev_list = &L2ARC_dev_list;
6929 l2arc_free_on_write = &L2ARC_free_on_write;
6930 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
6931 offsetof(l2arc_dev_t, l2ad_node));
6932 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
6933 offsetof(l2arc_data_free_t, l2df_list_node));
6934 }
6935
6936 void
6937 l2arc_fini(void)
6938 {
6939 /*
6940 * This is called from dmu_fini(), which is called from spa_fini();
6941 * Because of this, we can assume that all l2arc devices have
6942 * already been removed when the pools themselves were removed.
6943 */
6944
6945 l2arc_do_free_on_write();
6946
6947 mutex_destroy(&l2arc_feed_thr_lock);
6948 cv_destroy(&l2arc_feed_thr_cv);
6949 mutex_destroy(&l2arc_dev_mtx);
6950 mutex_destroy(&l2arc_free_on_write_mtx);
6951
6952 list_destroy(l2arc_dev_list);
6953 list_destroy(l2arc_free_on_write);
6954 }
6955
6956 void
6957 l2arc_start(void)
6958 {
6959 if (!(spa_mode_global & FWRITE))
6960 return;
6961
6962 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
6963 TS_RUN, minclsyspri);
6964 }
6965
6966 void
6967 l2arc_stop(void)
6968 {
6969 if (!(spa_mode_global & FWRITE))
6970 return;
6971
6972 mutex_enter(&l2arc_feed_thr_lock);
6973 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
6974 l2arc_thread_exit = 1;
6975 while (l2arc_thread_exit != 0)
6976 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
6977 mutex_exit(&l2arc_feed_thr_lock);
6978 }
6979
6980 #if defined(_KERNEL) && defined(HAVE_SPL)
6981 EXPORT_SYMBOL(arc_buf_size);
6982 EXPORT_SYMBOL(arc_write);
6983 EXPORT_SYMBOL(arc_read);
6984 EXPORT_SYMBOL(arc_buf_remove_ref);
6985 EXPORT_SYMBOL(arc_buf_info);
6986 EXPORT_SYMBOL(arc_getbuf_func);
6987 EXPORT_SYMBOL(arc_add_prune_callback);
6988 EXPORT_SYMBOL(arc_remove_prune_callback);
6989
6990 module_param(zfs_arc_min, ulong, 0644);
6991 MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
6992
6993 module_param(zfs_arc_max, ulong, 0644);
6994 MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
6995
6996 module_param(zfs_arc_meta_limit, ulong, 0644);
6997 MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
6998
6999 module_param(zfs_arc_meta_min, ulong, 0644);
7000 MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
7001
7002 module_param(zfs_arc_meta_prune, int, 0644);
7003 MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
7004
7005 module_param(zfs_arc_meta_adjust_restarts, int, 0644);
7006 MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
7007 "Limit number of restarts in arc_adjust_meta");
7008
7009 module_param(zfs_arc_meta_strategy, int, 0644);
7010 MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
7011
7012 module_param(zfs_arc_grow_retry, int, 0644);
7013 MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
7014
7015 module_param(zfs_arc_p_aggressive_disable, int, 0644);
7016 MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
7017
7018 module_param(zfs_arc_p_dampener_disable, int, 0644);
7019 MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
7020
7021 module_param(zfs_arc_shrink_shift, int, 0644);
7022 MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
7023
7024 module_param(zfs_arc_p_min_shift, int, 0644);
7025 MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
7026
7027 module_param(zfs_disable_dup_eviction, int, 0644);
7028 MODULE_PARM_DESC(zfs_disable_dup_eviction, "disable duplicate buffer eviction");
7029
7030 module_param(zfs_arc_average_blocksize, int, 0444);
7031 MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
7032
7033 module_param(zfs_arc_memory_throttle_disable, int, 0644);
7034 MODULE_PARM_DESC(zfs_arc_memory_throttle_disable, "disable memory throttle");
7035
7036 module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
7037 MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
7038
7039 module_param(zfs_arc_num_sublists_per_state, int, 0644);
7040 MODULE_PARM_DESC(zfs_arc_num_sublists_per_state,
7041 "Number of sublists used in each of the ARC state lists");
7042
7043 module_param(l2arc_write_max, ulong, 0644);
7044 MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
7045
7046 module_param(l2arc_write_boost, ulong, 0644);
7047 MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
7048
7049 module_param(l2arc_headroom, ulong, 0644);
7050 MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
7051
7052 module_param(l2arc_headroom_boost, ulong, 0644);
7053 MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
7054
7055 module_param(l2arc_feed_secs, ulong, 0644);
7056 MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
7057
7058 module_param(l2arc_feed_min_ms, ulong, 0644);
7059 MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
7060
7061 module_param(l2arc_noprefetch, int, 0644);
7062 MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
7063
7064 module_param(l2arc_nocompress, int, 0644);
7065 MODULE_PARM_DESC(l2arc_nocompress, "Skip compressing L2ARC buffers");
7066
7067 module_param(l2arc_feed_again, int, 0644);
7068 MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
7069
7070 module_param(l2arc_norw, int, 0644);
7071 MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
7072
7073 #endif