]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/arc.c
Add L2ARC tunables
[mirror_zfs.git] / module / zfs / arc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /*
26 * DVA-based Adjustable Replacement Cache
27 *
28 * While much of the theory of operation used here is
29 * based on the self-tuning, low overhead replacement cache
30 * presented by Megiddo and Modha at FAST 2003, there are some
31 * significant differences:
32 *
33 * 1. The Megiddo and Modha model assumes any page is evictable.
34 * Pages in its cache cannot be "locked" into memory. This makes
35 * the eviction algorithm simple: evict the last page in the list.
36 * This also make the performance characteristics easy to reason
37 * about. Our cache is not so simple. At any given moment, some
38 * subset of the blocks in the cache are un-evictable because we
39 * have handed out a reference to them. Blocks are only evictable
40 * when there are no external references active. This makes
41 * eviction far more problematic: we choose to evict the evictable
42 * blocks that are the "lowest" in the list.
43 *
44 * There are times when it is not possible to evict the requested
45 * space. In these circumstances we are unable to adjust the cache
46 * size. To prevent the cache growing unbounded at these times we
47 * implement a "cache throttle" that slows the flow of new data
48 * into the cache until we can make space available.
49 *
50 * 2. The Megiddo and Modha model assumes a fixed cache size.
51 * Pages are evicted when the cache is full and there is a cache
52 * miss. Our model has a variable sized cache. It grows with
53 * high use, but also tries to react to memory pressure from the
54 * operating system: decreasing its size when system memory is
55 * tight.
56 *
57 * 3. The Megiddo and Modha model assumes a fixed page size. All
58 * elements of the cache are therefor exactly the same size. So
59 * when adjusting the cache size following a cache miss, its simply
60 * a matter of choosing a single page to evict. In our model, we
61 * have variable sized cache blocks (rangeing from 512 bytes to
62 * 128K bytes). We therefor choose a set of blocks to evict to make
63 * space for a cache miss that approximates as closely as possible
64 * the space used by the new block.
65 *
66 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
67 * by N. Megiddo & D. Modha, FAST 2003
68 */
69
70 /*
71 * The locking model:
72 *
73 * A new reference to a cache buffer can be obtained in two
74 * ways: 1) via a hash table lookup using the DVA as a key,
75 * or 2) via one of the ARC lists. The arc_read() interface
76 * uses method 1, while the internal arc algorithms for
77 * adjusting the cache use method 2. We therefor provide two
78 * types of locks: 1) the hash table lock array, and 2) the
79 * arc list locks.
80 *
81 * Buffers do not have their own mutexs, rather they rely on the
82 * hash table mutexs for the bulk of their protection (i.e. most
83 * fields in the arc_buf_hdr_t are protected by these mutexs).
84 *
85 * buf_hash_find() returns the appropriate mutex (held) when it
86 * locates the requested buffer in the hash table. It returns
87 * NULL for the mutex if the buffer was not in the table.
88 *
89 * buf_hash_remove() expects the appropriate hash mutex to be
90 * already held before it is invoked.
91 *
92 * Each arc state also has a mutex which is used to protect the
93 * buffer list associated with the state. When attempting to
94 * obtain a hash table lock while holding an arc list lock you
95 * must use: mutex_tryenter() to avoid deadlock. Also note that
96 * the active state mutex must be held before the ghost state mutex.
97 *
98 * Arc buffers may have an associated eviction callback function.
99 * This function will be invoked prior to removing the buffer (e.g.
100 * in arc_do_user_evicts()). Note however that the data associated
101 * with the buffer may be evicted prior to the callback. The callback
102 * must be made with *no locks held* (to prevent deadlock). Additionally,
103 * the users of callbacks must ensure that their private data is
104 * protected from simultaneous callbacks from arc_buf_evict()
105 * and arc_do_user_evicts().
106 *
107 * Note that the majority of the performance stats are manipulated
108 * with atomic operations.
109 *
110 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
111 *
112 * - L2ARC buflist creation
113 * - L2ARC buflist eviction
114 * - L2ARC write completion, which walks L2ARC buflists
115 * - ARC header destruction, as it removes from L2ARC buflists
116 * - ARC header release, as it removes from L2ARC buflists
117 */
118
119 #include <sys/spa.h>
120 #include <sys/zio.h>
121 #include <sys/zfs_context.h>
122 #include <sys/arc.h>
123 #include <sys/refcount.h>
124 #include <sys/vdev.h>
125 #include <sys/vdev_impl.h>
126 #ifdef _KERNEL
127 #include <sys/vmsystm.h>
128 #include <vm/anon.h>
129 #include <sys/fs/swapnode.h>
130 #include <sys/dnlc.h>
131 #endif
132 #include <sys/callb.h>
133 #include <sys/kstat.h>
134 #include <zfs_fletcher.h>
135
136 static kmutex_t arc_reclaim_thr_lock;
137 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */
138 static uint8_t arc_thread_exit;
139
140 extern int zfs_write_limit_shift;
141 extern uint64_t zfs_write_limit_max;
142 extern kmutex_t zfs_write_limit_lock;
143
144 #define ARC_REDUCE_DNLC_PERCENT 3
145 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
146
147 typedef enum arc_reclaim_strategy {
148 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
149 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
150 } arc_reclaim_strategy_t;
151
152 /* number of seconds before growing cache again */
153 static int arc_grow_retry = 60;
154
155 /* shift of arc_c for calculating both min and max arc_p */
156 static int arc_p_min_shift = 4;
157
158 /* log2(fraction of arc to reclaim) */
159 static int arc_shrink_shift = 5;
160
161 /*
162 * minimum lifespan of a prefetch block in clock ticks
163 * (initialized in arc_init())
164 */
165 static int arc_min_prefetch_lifespan;
166
167 static int arc_dead;
168
169 /*
170 * The arc has filled available memory and has now warmed up.
171 */
172 static boolean_t arc_warm;
173
174 /*
175 * These tunables are for performance analysis.
176 */
177 unsigned long zfs_arc_max = 0;
178 unsigned long zfs_arc_min = 0;
179 unsigned long zfs_arc_meta_limit = 0;
180 int zfs_arc_grow_retry = 0;
181 int zfs_arc_shrink_shift = 0;
182 int zfs_arc_p_min_shift = 0;
183 int zfs_arc_reduce_dnlc_percent = 0;
184
185 /*
186 * Note that buffers can be in one of 6 states:
187 * ARC_anon - anonymous (discussed below)
188 * ARC_mru - recently used, currently cached
189 * ARC_mru_ghost - recentely used, no longer in cache
190 * ARC_mfu - frequently used, currently cached
191 * ARC_mfu_ghost - frequently used, no longer in cache
192 * ARC_l2c_only - exists in L2ARC but not other states
193 * When there are no active references to the buffer, they are
194 * are linked onto a list in one of these arc states. These are
195 * the only buffers that can be evicted or deleted. Within each
196 * state there are multiple lists, one for meta-data and one for
197 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
198 * etc.) is tracked separately so that it can be managed more
199 * explicitly: favored over data, limited explicitly.
200 *
201 * Anonymous buffers are buffers that are not associated with
202 * a DVA. These are buffers that hold dirty block copies
203 * before they are written to stable storage. By definition,
204 * they are "ref'd" and are considered part of arc_mru
205 * that cannot be freed. Generally, they will aquire a DVA
206 * as they are written and migrate onto the arc_mru list.
207 *
208 * The ARC_l2c_only state is for buffers that are in the second
209 * level ARC but no longer in any of the ARC_m* lists. The second
210 * level ARC itself may also contain buffers that are in any of
211 * the ARC_m* states - meaning that a buffer can exist in two
212 * places. The reason for the ARC_l2c_only state is to keep the
213 * buffer header in the hash table, so that reads that hit the
214 * second level ARC benefit from these fast lookups.
215 */
216
217 typedef struct arc_state {
218 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */
219 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */
220 uint64_t arcs_size; /* total amount of data in this state */
221 kmutex_t arcs_mtx;
222 } arc_state_t;
223
224 /* The 6 states: */
225 static arc_state_t ARC_anon;
226 static arc_state_t ARC_mru;
227 static arc_state_t ARC_mru_ghost;
228 static arc_state_t ARC_mfu;
229 static arc_state_t ARC_mfu_ghost;
230 static arc_state_t ARC_l2c_only;
231
232 typedef struct arc_stats {
233 kstat_named_t arcstat_hits;
234 kstat_named_t arcstat_misses;
235 kstat_named_t arcstat_demand_data_hits;
236 kstat_named_t arcstat_demand_data_misses;
237 kstat_named_t arcstat_demand_metadata_hits;
238 kstat_named_t arcstat_demand_metadata_misses;
239 kstat_named_t arcstat_prefetch_data_hits;
240 kstat_named_t arcstat_prefetch_data_misses;
241 kstat_named_t arcstat_prefetch_metadata_hits;
242 kstat_named_t arcstat_prefetch_metadata_misses;
243 kstat_named_t arcstat_mru_hits;
244 kstat_named_t arcstat_mru_ghost_hits;
245 kstat_named_t arcstat_mfu_hits;
246 kstat_named_t arcstat_mfu_ghost_hits;
247 kstat_named_t arcstat_deleted;
248 kstat_named_t arcstat_recycle_miss;
249 kstat_named_t arcstat_mutex_miss;
250 kstat_named_t arcstat_evict_skip;
251 kstat_named_t arcstat_evict_l2_cached;
252 kstat_named_t arcstat_evict_l2_eligible;
253 kstat_named_t arcstat_evict_l2_ineligible;
254 kstat_named_t arcstat_hash_elements;
255 kstat_named_t arcstat_hash_elements_max;
256 kstat_named_t arcstat_hash_collisions;
257 kstat_named_t arcstat_hash_chains;
258 kstat_named_t arcstat_hash_chain_max;
259 kstat_named_t arcstat_p;
260 kstat_named_t arcstat_c;
261 kstat_named_t arcstat_c_min;
262 kstat_named_t arcstat_c_max;
263 kstat_named_t arcstat_size;
264 kstat_named_t arcstat_hdr_size;
265 kstat_named_t arcstat_data_size;
266 kstat_named_t arcstat_other_size;
267 kstat_named_t arcstat_l2_hits;
268 kstat_named_t arcstat_l2_misses;
269 kstat_named_t arcstat_l2_feeds;
270 kstat_named_t arcstat_l2_rw_clash;
271 kstat_named_t arcstat_l2_read_bytes;
272 kstat_named_t arcstat_l2_write_bytes;
273 kstat_named_t arcstat_l2_writes_sent;
274 kstat_named_t arcstat_l2_writes_done;
275 kstat_named_t arcstat_l2_writes_error;
276 kstat_named_t arcstat_l2_writes_hdr_miss;
277 kstat_named_t arcstat_l2_evict_lock_retry;
278 kstat_named_t arcstat_l2_evict_reading;
279 kstat_named_t arcstat_l2_free_on_write;
280 kstat_named_t arcstat_l2_abort_lowmem;
281 kstat_named_t arcstat_l2_cksum_bad;
282 kstat_named_t arcstat_l2_io_error;
283 kstat_named_t arcstat_l2_size;
284 kstat_named_t arcstat_l2_hdr_size;
285 kstat_named_t arcstat_memory_throttle_count;
286 kstat_named_t arcstat_memory_direct_count;
287 kstat_named_t arcstat_memory_indirect_count;
288 kstat_named_t arcstat_no_grow;
289 kstat_named_t arcstat_tempreserve;
290 kstat_named_t arcstat_loaned_bytes;
291 kstat_named_t arcstat_meta_used;
292 kstat_named_t arcstat_meta_limit;
293 kstat_named_t arcstat_meta_max;
294 } arc_stats_t;
295
296 static arc_stats_t arc_stats = {
297 { "hits", KSTAT_DATA_UINT64 },
298 { "misses", KSTAT_DATA_UINT64 },
299 { "demand_data_hits", KSTAT_DATA_UINT64 },
300 { "demand_data_misses", KSTAT_DATA_UINT64 },
301 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
302 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
303 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
304 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
305 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
306 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
307 { "mru_hits", KSTAT_DATA_UINT64 },
308 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
309 { "mfu_hits", KSTAT_DATA_UINT64 },
310 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
311 { "deleted", KSTAT_DATA_UINT64 },
312 { "recycle_miss", KSTAT_DATA_UINT64 },
313 { "mutex_miss", KSTAT_DATA_UINT64 },
314 { "evict_skip", KSTAT_DATA_UINT64 },
315 { "evict_l2_cached", KSTAT_DATA_UINT64 },
316 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
317 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
318 { "hash_elements", KSTAT_DATA_UINT64 },
319 { "hash_elements_max", KSTAT_DATA_UINT64 },
320 { "hash_collisions", KSTAT_DATA_UINT64 },
321 { "hash_chains", KSTAT_DATA_UINT64 },
322 { "hash_chain_max", KSTAT_DATA_UINT64 },
323 { "p", KSTAT_DATA_UINT64 },
324 { "c", KSTAT_DATA_UINT64 },
325 { "c_min", KSTAT_DATA_UINT64 },
326 { "c_max", KSTAT_DATA_UINT64 },
327 { "size", KSTAT_DATA_UINT64 },
328 { "hdr_size", KSTAT_DATA_UINT64 },
329 { "data_size", KSTAT_DATA_UINT64 },
330 { "other_size", KSTAT_DATA_UINT64 },
331 { "l2_hits", KSTAT_DATA_UINT64 },
332 { "l2_misses", KSTAT_DATA_UINT64 },
333 { "l2_feeds", KSTAT_DATA_UINT64 },
334 { "l2_rw_clash", KSTAT_DATA_UINT64 },
335 { "l2_read_bytes", KSTAT_DATA_UINT64 },
336 { "l2_write_bytes", KSTAT_DATA_UINT64 },
337 { "l2_writes_sent", KSTAT_DATA_UINT64 },
338 { "l2_writes_done", KSTAT_DATA_UINT64 },
339 { "l2_writes_error", KSTAT_DATA_UINT64 },
340 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 },
341 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
342 { "l2_evict_reading", KSTAT_DATA_UINT64 },
343 { "l2_free_on_write", KSTAT_DATA_UINT64 },
344 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
345 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
346 { "l2_io_error", KSTAT_DATA_UINT64 },
347 { "l2_size", KSTAT_DATA_UINT64 },
348 { "l2_hdr_size", KSTAT_DATA_UINT64 },
349 { "memory_throttle_count", KSTAT_DATA_UINT64 },
350 { "memory_direct_count", KSTAT_DATA_UINT64 },
351 { "memory_indirect_count", KSTAT_DATA_UINT64 },
352 { "arc_no_grow", KSTAT_DATA_UINT64 },
353 { "arc_tempreserve", KSTAT_DATA_UINT64 },
354 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
355 { "arc_meta_used", KSTAT_DATA_UINT64 },
356 { "arc_meta_limit", KSTAT_DATA_UINT64 },
357 { "arc_meta_max", KSTAT_DATA_UINT64 },
358 };
359
360 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
361
362 #define ARCSTAT_INCR(stat, val) \
363 atomic_add_64(&arc_stats.stat.value.ui64, (val));
364
365 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
366 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
367
368 #define ARCSTAT_MAX(stat, val) { \
369 uint64_t m; \
370 while ((val) > (m = arc_stats.stat.value.ui64) && \
371 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
372 continue; \
373 }
374
375 #define ARCSTAT_MAXSTAT(stat) \
376 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
377
378 /*
379 * We define a macro to allow ARC hits/misses to be easily broken down by
380 * two separate conditions, giving a total of four different subtypes for
381 * each of hits and misses (so eight statistics total).
382 */
383 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
384 if (cond1) { \
385 if (cond2) { \
386 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
387 } else { \
388 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
389 } \
390 } else { \
391 if (cond2) { \
392 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
393 } else { \
394 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
395 } \
396 }
397
398 kstat_t *arc_ksp;
399 static arc_state_t *arc_anon;
400 static arc_state_t *arc_mru;
401 static arc_state_t *arc_mru_ghost;
402 static arc_state_t *arc_mfu;
403 static arc_state_t *arc_mfu_ghost;
404 static arc_state_t *arc_l2c_only;
405
406 /*
407 * There are several ARC variables that are critical to export as kstats --
408 * but we don't want to have to grovel around in the kstat whenever we wish to
409 * manipulate them. For these variables, we therefore define them to be in
410 * terms of the statistic variable. This assures that we are not introducing
411 * the possibility of inconsistency by having shadow copies of the variables,
412 * while still allowing the code to be readable.
413 */
414 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
415 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
416 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
417 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
418 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
419 #define arc_no_grow ARCSTAT(arcstat_no_grow)
420 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
421 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
422 #define arc_meta_used ARCSTAT(arcstat_meta_used)
423 #define arc_meta_limit ARCSTAT(arcstat_meta_limit)
424 #define arc_meta_max ARCSTAT(arcstat_meta_max)
425
426 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
427
428 typedef struct arc_callback arc_callback_t;
429
430 struct arc_callback {
431 void *acb_private;
432 arc_done_func_t *acb_done;
433 arc_buf_t *acb_buf;
434 zio_t *acb_zio_dummy;
435 arc_callback_t *acb_next;
436 };
437
438 typedef struct arc_write_callback arc_write_callback_t;
439
440 struct arc_write_callback {
441 void *awcb_private;
442 arc_done_func_t *awcb_ready;
443 arc_done_func_t *awcb_done;
444 arc_buf_t *awcb_buf;
445 };
446
447 struct arc_buf_hdr {
448 /* protected by hash lock */
449 dva_t b_dva;
450 uint64_t b_birth;
451 uint64_t b_cksum0;
452
453 kmutex_t b_freeze_lock;
454 zio_cksum_t *b_freeze_cksum;
455 void *b_thawed;
456
457 arc_buf_hdr_t *b_hash_next;
458 arc_buf_t *b_buf;
459 uint32_t b_flags;
460 uint32_t b_datacnt;
461
462 arc_callback_t *b_acb;
463 kcondvar_t b_cv;
464
465 /* immutable */
466 arc_buf_contents_t b_type;
467 uint64_t b_size;
468 uint64_t b_spa;
469
470 /* protected by arc state mutex */
471 arc_state_t *b_state;
472 list_node_t b_arc_node;
473
474 /* updated atomically */
475 clock_t b_arc_access;
476
477 /* self protecting */
478 refcount_t b_refcnt;
479
480 l2arc_buf_hdr_t *b_l2hdr;
481 list_node_t b_l2node;
482 };
483
484 static arc_buf_t *arc_eviction_list;
485 static kmutex_t arc_eviction_mtx;
486 static arc_buf_hdr_t arc_eviction_hdr;
487 static void arc_get_data_buf(arc_buf_t *buf);
488 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
489 static int arc_evict_needed(arc_buf_contents_t type);
490 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
491
492 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
493
494 #define GHOST_STATE(state) \
495 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
496 (state) == arc_l2c_only)
497
498 /*
499 * Private ARC flags. These flags are private ARC only flags that will show up
500 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can
501 * be passed in as arc_flags in things like arc_read. However, these flags
502 * should never be passed and should only be set by ARC code. When adding new
503 * public flags, make sure not to smash the private ones.
504 */
505
506 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */
507 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */
508 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */
509 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */
510 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */
511 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */
512 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */
513 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */
514 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */
515 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */
516
517 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE)
518 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
519 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR)
520 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH)
521 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ)
522 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE)
523 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
524 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE)
525 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \
526 (hdr)->b_l2hdr != NULL)
527 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING)
528 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED)
529 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD)
530
531 /*
532 * Other sizes
533 */
534
535 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
536 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
537
538 /*
539 * Hash table routines
540 */
541
542 #define HT_LOCK_ALIGN 64
543 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
544
545 struct ht_lock {
546 kmutex_t ht_lock;
547 #ifdef _KERNEL
548 unsigned char pad[HT_LOCK_PAD];
549 #endif
550 };
551
552 #define BUF_LOCKS 256
553 typedef struct buf_hash_table {
554 uint64_t ht_mask;
555 arc_buf_hdr_t **ht_table;
556 struct ht_lock ht_locks[BUF_LOCKS];
557 } buf_hash_table_t;
558
559 static buf_hash_table_t buf_hash_table;
560
561 #define BUF_HASH_INDEX(spa, dva, birth) \
562 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
563 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
564 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
565 #define HDR_LOCK(hdr) \
566 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
567
568 uint64_t zfs_crc64_table[256];
569
570 /*
571 * Level 2 ARC
572 */
573
574 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
575 #define L2ARC_HEADROOM 2 /* num of writes */
576 #define L2ARC_FEED_SECS 1 /* caching interval secs */
577 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
578
579 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
580 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
581
582 /*
583 * L2ARC Performance Tunables
584 */
585 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
586 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
587 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
588 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
589 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
590 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
591 int l2arc_feed_again = B_TRUE; /* turbo warmup */
592 int l2arc_norw = B_TRUE; /* no reads during writes */
593
594 /*
595 * L2ARC Internals
596 */
597 typedef struct l2arc_dev {
598 vdev_t *l2ad_vdev; /* vdev */
599 spa_t *l2ad_spa; /* spa */
600 uint64_t l2ad_hand; /* next write location */
601 uint64_t l2ad_write; /* desired write size, bytes */
602 uint64_t l2ad_boost; /* warmup write boost, bytes */
603 uint64_t l2ad_start; /* first addr on device */
604 uint64_t l2ad_end; /* last addr on device */
605 uint64_t l2ad_evict; /* last addr eviction reached */
606 boolean_t l2ad_first; /* first sweep through */
607 boolean_t l2ad_writing; /* currently writing */
608 list_t *l2ad_buflist; /* buffer list */
609 list_node_t l2ad_node; /* device list node */
610 } l2arc_dev_t;
611
612 static list_t L2ARC_dev_list; /* device list */
613 static list_t *l2arc_dev_list; /* device list pointer */
614 static kmutex_t l2arc_dev_mtx; /* device list mutex */
615 static l2arc_dev_t *l2arc_dev_last; /* last device used */
616 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */
617 static list_t L2ARC_free_on_write; /* free after write buf list */
618 static list_t *l2arc_free_on_write; /* free after write list ptr */
619 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
620 static uint64_t l2arc_ndev; /* number of devices */
621
622 typedef struct l2arc_read_callback {
623 arc_buf_t *l2rcb_buf; /* read buffer */
624 spa_t *l2rcb_spa; /* spa */
625 blkptr_t l2rcb_bp; /* original blkptr */
626 zbookmark_t l2rcb_zb; /* original bookmark */
627 int l2rcb_flags; /* original flags */
628 } l2arc_read_callback_t;
629
630 typedef struct l2arc_write_callback {
631 l2arc_dev_t *l2wcb_dev; /* device info */
632 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
633 } l2arc_write_callback_t;
634
635 struct l2arc_buf_hdr {
636 /* protected by arc_buf_hdr mutex */
637 l2arc_dev_t *b_dev; /* L2ARC device */
638 uint64_t b_daddr; /* disk address, offset byte */
639 };
640
641 typedef struct l2arc_data_free {
642 /* protected by l2arc_free_on_write_mtx */
643 void *l2df_data;
644 size_t l2df_size;
645 void (*l2df_func)(void *, size_t);
646 list_node_t l2df_list_node;
647 } l2arc_data_free_t;
648
649 static kmutex_t l2arc_feed_thr_lock;
650 static kcondvar_t l2arc_feed_thr_cv;
651 static uint8_t l2arc_thread_exit;
652
653 static void l2arc_read_done(zio_t *zio);
654 static void l2arc_hdr_stat_add(void);
655 static void l2arc_hdr_stat_remove(void);
656
657 static uint64_t
658 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
659 {
660 uint8_t *vdva = (uint8_t *)dva;
661 uint64_t crc = -1ULL;
662 int i;
663
664 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
665
666 for (i = 0; i < sizeof (dva_t); i++)
667 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
668
669 crc ^= (spa>>8) ^ birth;
670
671 return (crc);
672 }
673
674 #define BUF_EMPTY(buf) \
675 ((buf)->b_dva.dva_word[0] == 0 && \
676 (buf)->b_dva.dva_word[1] == 0 && \
677 (buf)->b_birth == 0)
678
679 #define BUF_EQUAL(spa, dva, birth, buf) \
680 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
681 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
682 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
683
684 static void
685 buf_discard_identity(arc_buf_hdr_t *hdr)
686 {
687 hdr->b_dva.dva_word[0] = 0;
688 hdr->b_dva.dva_word[1] = 0;
689 hdr->b_birth = 0;
690 hdr->b_cksum0 = 0;
691 }
692
693 static arc_buf_hdr_t *
694 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
695 {
696 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
697 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
698 arc_buf_hdr_t *buf;
699
700 mutex_enter(hash_lock);
701 for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
702 buf = buf->b_hash_next) {
703 if (BUF_EQUAL(spa, dva, birth, buf)) {
704 *lockp = hash_lock;
705 return (buf);
706 }
707 }
708 mutex_exit(hash_lock);
709 *lockp = NULL;
710 return (NULL);
711 }
712
713 /*
714 * Insert an entry into the hash table. If there is already an element
715 * equal to elem in the hash table, then the already existing element
716 * will be returned and the new element will not be inserted.
717 * Otherwise returns NULL.
718 */
719 static arc_buf_hdr_t *
720 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
721 {
722 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
723 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
724 arc_buf_hdr_t *fbuf;
725 uint32_t i;
726
727 ASSERT(!HDR_IN_HASH_TABLE(buf));
728 *lockp = hash_lock;
729 mutex_enter(hash_lock);
730 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
731 fbuf = fbuf->b_hash_next, i++) {
732 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
733 return (fbuf);
734 }
735
736 buf->b_hash_next = buf_hash_table.ht_table[idx];
737 buf_hash_table.ht_table[idx] = buf;
738 buf->b_flags |= ARC_IN_HASH_TABLE;
739
740 /* collect some hash table performance data */
741 if (i > 0) {
742 ARCSTAT_BUMP(arcstat_hash_collisions);
743 if (i == 1)
744 ARCSTAT_BUMP(arcstat_hash_chains);
745
746 ARCSTAT_MAX(arcstat_hash_chain_max, i);
747 }
748
749 ARCSTAT_BUMP(arcstat_hash_elements);
750 ARCSTAT_MAXSTAT(arcstat_hash_elements);
751
752 return (NULL);
753 }
754
755 static void
756 buf_hash_remove(arc_buf_hdr_t *buf)
757 {
758 arc_buf_hdr_t *fbuf, **bufp;
759 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
760
761 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
762 ASSERT(HDR_IN_HASH_TABLE(buf));
763
764 bufp = &buf_hash_table.ht_table[idx];
765 while ((fbuf = *bufp) != buf) {
766 ASSERT(fbuf != NULL);
767 bufp = &fbuf->b_hash_next;
768 }
769 *bufp = buf->b_hash_next;
770 buf->b_hash_next = NULL;
771 buf->b_flags &= ~ARC_IN_HASH_TABLE;
772
773 /* collect some hash table performance data */
774 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
775
776 if (buf_hash_table.ht_table[idx] &&
777 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
778 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
779 }
780
781 /*
782 * Global data structures and functions for the buf kmem cache.
783 */
784 static kmem_cache_t *hdr_cache;
785 static kmem_cache_t *buf_cache;
786
787 static void
788 buf_fini(void)
789 {
790 int i;
791
792 #if defined(_KERNEL) && defined(HAVE_SPL)
793 /* Large allocations which do not require contiguous pages
794 * should be using vmem_free() in the linux kernel */
795 vmem_free(buf_hash_table.ht_table,
796 (buf_hash_table.ht_mask + 1) * sizeof (void *));
797 #else
798 kmem_free(buf_hash_table.ht_table,
799 (buf_hash_table.ht_mask + 1) * sizeof (void *));
800 #endif
801 for (i = 0; i < BUF_LOCKS; i++)
802 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
803 kmem_cache_destroy(hdr_cache);
804 kmem_cache_destroy(buf_cache);
805 }
806
807 /*
808 * Constructor callback - called when the cache is empty
809 * and a new buf is requested.
810 */
811 /* ARGSUSED */
812 static int
813 hdr_cons(void *vbuf, void *unused, int kmflag)
814 {
815 arc_buf_hdr_t *buf = vbuf;
816
817 bzero(buf, sizeof (arc_buf_hdr_t));
818 refcount_create(&buf->b_refcnt);
819 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
820 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
821 list_link_init(&buf->b_arc_node);
822 list_link_init(&buf->b_l2node);
823 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
824
825 return (0);
826 }
827
828 /* ARGSUSED */
829 static int
830 buf_cons(void *vbuf, void *unused, int kmflag)
831 {
832 arc_buf_t *buf = vbuf;
833
834 bzero(buf, sizeof (arc_buf_t));
835 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
836 rw_init(&buf->b_data_lock, NULL, RW_DEFAULT, NULL);
837 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
838
839 return (0);
840 }
841
842 /*
843 * Destructor callback - called when a cached buf is
844 * no longer required.
845 */
846 /* ARGSUSED */
847 static void
848 hdr_dest(void *vbuf, void *unused)
849 {
850 arc_buf_hdr_t *buf = vbuf;
851
852 ASSERT(BUF_EMPTY(buf));
853 refcount_destroy(&buf->b_refcnt);
854 cv_destroy(&buf->b_cv);
855 mutex_destroy(&buf->b_freeze_lock);
856 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
857 }
858
859 /* ARGSUSED */
860 static void
861 buf_dest(void *vbuf, void *unused)
862 {
863 arc_buf_t *buf = vbuf;
864
865 mutex_destroy(&buf->b_evict_lock);
866 rw_destroy(&buf->b_data_lock);
867 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
868 }
869
870 /*
871 * Reclaim callback -- invoked when memory is low.
872 */
873 /* ARGSUSED */
874 static void
875 hdr_recl(void *unused)
876 {
877 dprintf("hdr_recl called\n");
878 /*
879 * umem calls the reclaim func when we destroy the buf cache,
880 * which is after we do arc_fini().
881 */
882 if (!arc_dead)
883 cv_signal(&arc_reclaim_thr_cv);
884 }
885
886 static void
887 buf_init(void)
888 {
889 uint64_t *ct;
890 uint64_t hsize = 1ULL << 12;
891 int i, j;
892
893 /*
894 * The hash table is big enough to fill all of physical memory
895 * with an average 64K block size. The table will take up
896 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
897 */
898 while (hsize * 65536 < physmem * PAGESIZE)
899 hsize <<= 1;
900 retry:
901 buf_hash_table.ht_mask = hsize - 1;
902 #if defined(_KERNEL) && defined(HAVE_SPL)
903 /* Large allocations which do not require contiguous pages
904 * should be using vmem_alloc() in the linux kernel */
905 buf_hash_table.ht_table =
906 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
907 #else
908 buf_hash_table.ht_table =
909 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
910 #endif
911 if (buf_hash_table.ht_table == NULL) {
912 ASSERT(hsize > (1ULL << 8));
913 hsize >>= 1;
914 goto retry;
915 }
916
917 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
918 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
919 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
920 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
921
922 for (i = 0; i < 256; i++)
923 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
924 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
925
926 for (i = 0; i < BUF_LOCKS; i++) {
927 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
928 NULL, MUTEX_DEFAULT, NULL);
929 }
930 }
931
932 #define ARC_MINTIME (hz>>4) /* 62 ms */
933
934 static void
935 arc_cksum_verify(arc_buf_t *buf)
936 {
937 zio_cksum_t zc;
938
939 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
940 return;
941
942 mutex_enter(&buf->b_hdr->b_freeze_lock);
943 if (buf->b_hdr->b_freeze_cksum == NULL ||
944 (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
945 mutex_exit(&buf->b_hdr->b_freeze_lock);
946 return;
947 }
948 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
949 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
950 panic("buffer modified while frozen!");
951 mutex_exit(&buf->b_hdr->b_freeze_lock);
952 }
953
954 static int
955 arc_cksum_equal(arc_buf_t *buf)
956 {
957 zio_cksum_t zc;
958 int equal;
959
960 mutex_enter(&buf->b_hdr->b_freeze_lock);
961 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
962 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
963 mutex_exit(&buf->b_hdr->b_freeze_lock);
964
965 return (equal);
966 }
967
968 static void
969 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
970 {
971 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
972 return;
973
974 mutex_enter(&buf->b_hdr->b_freeze_lock);
975 if (buf->b_hdr->b_freeze_cksum != NULL) {
976 mutex_exit(&buf->b_hdr->b_freeze_lock);
977 return;
978 }
979 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
980 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
981 buf->b_hdr->b_freeze_cksum);
982 mutex_exit(&buf->b_hdr->b_freeze_lock);
983 }
984
985 void
986 arc_buf_thaw(arc_buf_t *buf)
987 {
988 if (zfs_flags & ZFS_DEBUG_MODIFY) {
989 if (buf->b_hdr->b_state != arc_anon)
990 panic("modifying non-anon buffer!");
991 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
992 panic("modifying buffer while i/o in progress!");
993 arc_cksum_verify(buf);
994 }
995
996 mutex_enter(&buf->b_hdr->b_freeze_lock);
997 if (buf->b_hdr->b_freeze_cksum != NULL) {
998 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
999 buf->b_hdr->b_freeze_cksum = NULL;
1000 }
1001
1002 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1003 if (buf->b_hdr->b_thawed)
1004 kmem_free(buf->b_hdr->b_thawed, 1);
1005 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1006 }
1007
1008 mutex_exit(&buf->b_hdr->b_freeze_lock);
1009 }
1010
1011 void
1012 arc_buf_freeze(arc_buf_t *buf)
1013 {
1014 kmutex_t *hash_lock;
1015
1016 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1017 return;
1018
1019 hash_lock = HDR_LOCK(buf->b_hdr);
1020 mutex_enter(hash_lock);
1021
1022 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1023 buf->b_hdr->b_state == arc_anon);
1024 arc_cksum_compute(buf, B_FALSE);
1025 mutex_exit(hash_lock);
1026 }
1027
1028 static void
1029 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1030 {
1031 ASSERT(MUTEX_HELD(hash_lock));
1032
1033 if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1034 (ab->b_state != arc_anon)) {
1035 uint64_t delta = ab->b_size * ab->b_datacnt;
1036 list_t *list = &ab->b_state->arcs_list[ab->b_type];
1037 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1038
1039 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1040 mutex_enter(&ab->b_state->arcs_mtx);
1041 ASSERT(list_link_active(&ab->b_arc_node));
1042 list_remove(list, ab);
1043 if (GHOST_STATE(ab->b_state)) {
1044 ASSERT3U(ab->b_datacnt, ==, 0);
1045 ASSERT3P(ab->b_buf, ==, NULL);
1046 delta = ab->b_size;
1047 }
1048 ASSERT(delta > 0);
1049 ASSERT3U(*size, >=, delta);
1050 atomic_add_64(size, -delta);
1051 mutex_exit(&ab->b_state->arcs_mtx);
1052 /* remove the prefetch flag if we get a reference */
1053 if (ab->b_flags & ARC_PREFETCH)
1054 ab->b_flags &= ~ARC_PREFETCH;
1055 }
1056 }
1057
1058 static int
1059 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1060 {
1061 int cnt;
1062 arc_state_t *state = ab->b_state;
1063
1064 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1065 ASSERT(!GHOST_STATE(state));
1066
1067 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1068 (state != arc_anon)) {
1069 uint64_t *size = &state->arcs_lsize[ab->b_type];
1070
1071 ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1072 mutex_enter(&state->arcs_mtx);
1073 ASSERT(!list_link_active(&ab->b_arc_node));
1074 list_insert_head(&state->arcs_list[ab->b_type], ab);
1075 ASSERT(ab->b_datacnt > 0);
1076 atomic_add_64(size, ab->b_size * ab->b_datacnt);
1077 mutex_exit(&state->arcs_mtx);
1078 }
1079 return (cnt);
1080 }
1081
1082 /*
1083 * Move the supplied buffer to the indicated state. The mutex
1084 * for the buffer must be held by the caller.
1085 */
1086 static void
1087 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1088 {
1089 arc_state_t *old_state = ab->b_state;
1090 int64_t refcnt = refcount_count(&ab->b_refcnt);
1091 uint64_t from_delta, to_delta;
1092
1093 ASSERT(MUTEX_HELD(hash_lock));
1094 ASSERT(new_state != old_state);
1095 ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1096 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1097 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1098
1099 from_delta = to_delta = ab->b_datacnt * ab->b_size;
1100
1101 /*
1102 * If this buffer is evictable, transfer it from the
1103 * old state list to the new state list.
1104 */
1105 if (refcnt == 0) {
1106 if (old_state != arc_anon) {
1107 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1108 uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1109
1110 if (use_mutex)
1111 mutex_enter(&old_state->arcs_mtx);
1112
1113 ASSERT(list_link_active(&ab->b_arc_node));
1114 list_remove(&old_state->arcs_list[ab->b_type], ab);
1115
1116 /*
1117 * If prefetching out of the ghost cache,
1118 * we will have a non-zero datacnt.
1119 */
1120 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1121 /* ghost elements have a ghost size */
1122 ASSERT(ab->b_buf == NULL);
1123 from_delta = ab->b_size;
1124 }
1125 ASSERT3U(*size, >=, from_delta);
1126 atomic_add_64(size, -from_delta);
1127
1128 if (use_mutex)
1129 mutex_exit(&old_state->arcs_mtx);
1130 }
1131 if (new_state != arc_anon) {
1132 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1133 uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1134
1135 if (use_mutex)
1136 mutex_enter(&new_state->arcs_mtx);
1137
1138 list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1139
1140 /* ghost elements have a ghost size */
1141 if (GHOST_STATE(new_state)) {
1142 ASSERT(ab->b_datacnt == 0);
1143 ASSERT(ab->b_buf == NULL);
1144 to_delta = ab->b_size;
1145 }
1146 atomic_add_64(size, to_delta);
1147
1148 if (use_mutex)
1149 mutex_exit(&new_state->arcs_mtx);
1150 }
1151 }
1152
1153 ASSERT(!BUF_EMPTY(ab));
1154 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1155 buf_hash_remove(ab);
1156
1157 /* adjust state sizes */
1158 if (to_delta)
1159 atomic_add_64(&new_state->arcs_size, to_delta);
1160 if (from_delta) {
1161 ASSERT3U(old_state->arcs_size, >=, from_delta);
1162 atomic_add_64(&old_state->arcs_size, -from_delta);
1163 }
1164 ab->b_state = new_state;
1165
1166 /* adjust l2arc hdr stats */
1167 if (new_state == arc_l2c_only)
1168 l2arc_hdr_stat_add();
1169 else if (old_state == arc_l2c_only)
1170 l2arc_hdr_stat_remove();
1171 }
1172
1173 void
1174 arc_space_consume(uint64_t space, arc_space_type_t type)
1175 {
1176 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1177
1178 switch (type) {
1179 default:
1180 break;
1181 case ARC_SPACE_DATA:
1182 ARCSTAT_INCR(arcstat_data_size, space);
1183 break;
1184 case ARC_SPACE_OTHER:
1185 ARCSTAT_INCR(arcstat_other_size, space);
1186 break;
1187 case ARC_SPACE_HDRS:
1188 ARCSTAT_INCR(arcstat_hdr_size, space);
1189 break;
1190 case ARC_SPACE_L2HDRS:
1191 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1192 break;
1193 }
1194
1195 atomic_add_64(&arc_meta_used, space);
1196 atomic_add_64(&arc_size, space);
1197 }
1198
1199 void
1200 arc_space_return(uint64_t space, arc_space_type_t type)
1201 {
1202 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1203
1204 switch (type) {
1205 default:
1206 break;
1207 case ARC_SPACE_DATA:
1208 ARCSTAT_INCR(arcstat_data_size, -space);
1209 break;
1210 case ARC_SPACE_OTHER:
1211 ARCSTAT_INCR(arcstat_other_size, -space);
1212 break;
1213 case ARC_SPACE_HDRS:
1214 ARCSTAT_INCR(arcstat_hdr_size, -space);
1215 break;
1216 case ARC_SPACE_L2HDRS:
1217 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1218 break;
1219 }
1220
1221 ASSERT(arc_meta_used >= space);
1222 if (arc_meta_max < arc_meta_used)
1223 arc_meta_max = arc_meta_used;
1224 atomic_add_64(&arc_meta_used, -space);
1225 ASSERT(arc_size >= space);
1226 atomic_add_64(&arc_size, -space);
1227 }
1228
1229 void *
1230 arc_data_buf_alloc(uint64_t size)
1231 {
1232 if (arc_evict_needed(ARC_BUFC_DATA))
1233 cv_signal(&arc_reclaim_thr_cv);
1234 atomic_add_64(&arc_size, size);
1235 return (zio_data_buf_alloc(size));
1236 }
1237
1238 void
1239 arc_data_buf_free(void *buf, uint64_t size)
1240 {
1241 zio_data_buf_free(buf, size);
1242 ASSERT(arc_size >= size);
1243 atomic_add_64(&arc_size, -size);
1244 }
1245
1246 arc_buf_t *
1247 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1248 {
1249 arc_buf_hdr_t *hdr;
1250 arc_buf_t *buf;
1251
1252 ASSERT3U(size, >, 0);
1253 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1254 ASSERT(BUF_EMPTY(hdr));
1255 hdr->b_size = size;
1256 hdr->b_type = type;
1257 hdr->b_spa = spa_guid(spa);
1258 hdr->b_state = arc_anon;
1259 hdr->b_arc_access = 0;
1260 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1261 buf->b_hdr = hdr;
1262 buf->b_data = NULL;
1263 buf->b_efunc = NULL;
1264 buf->b_private = NULL;
1265 buf->b_next = NULL;
1266 hdr->b_buf = buf;
1267 arc_get_data_buf(buf);
1268 hdr->b_datacnt = 1;
1269 hdr->b_flags = 0;
1270 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1271 (void) refcount_add(&hdr->b_refcnt, tag);
1272
1273 return (buf);
1274 }
1275
1276 static char *arc_onloan_tag = "onloan";
1277
1278 /*
1279 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1280 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1281 * buffers must be returned to the arc before they can be used by the DMU or
1282 * freed.
1283 */
1284 arc_buf_t *
1285 arc_loan_buf(spa_t *spa, int size)
1286 {
1287 arc_buf_t *buf;
1288
1289 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1290
1291 atomic_add_64(&arc_loaned_bytes, size);
1292 return (buf);
1293 }
1294
1295 /*
1296 * Return a loaned arc buffer to the arc.
1297 */
1298 void
1299 arc_return_buf(arc_buf_t *buf, void *tag)
1300 {
1301 arc_buf_hdr_t *hdr = buf->b_hdr;
1302
1303 ASSERT(buf->b_data != NULL);
1304 (void) refcount_add(&hdr->b_refcnt, tag);
1305 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1306
1307 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1308 }
1309
1310 /* Detach an arc_buf from a dbuf (tag) */
1311 void
1312 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1313 {
1314 arc_buf_hdr_t *hdr;
1315
1316 ASSERT(buf->b_data != NULL);
1317 hdr = buf->b_hdr;
1318 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1319 (void) refcount_remove(&hdr->b_refcnt, tag);
1320 buf->b_efunc = NULL;
1321 buf->b_private = NULL;
1322
1323 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1324 }
1325
1326 static arc_buf_t *
1327 arc_buf_clone(arc_buf_t *from)
1328 {
1329 arc_buf_t *buf;
1330 arc_buf_hdr_t *hdr = from->b_hdr;
1331 uint64_t size = hdr->b_size;
1332
1333 ASSERT(hdr->b_state != arc_anon);
1334
1335 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1336 buf->b_hdr = hdr;
1337 buf->b_data = NULL;
1338 buf->b_efunc = NULL;
1339 buf->b_private = NULL;
1340 buf->b_next = hdr->b_buf;
1341 hdr->b_buf = buf;
1342 arc_get_data_buf(buf);
1343 bcopy(from->b_data, buf->b_data, size);
1344 hdr->b_datacnt += 1;
1345 return (buf);
1346 }
1347
1348 void
1349 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1350 {
1351 arc_buf_hdr_t *hdr;
1352 kmutex_t *hash_lock;
1353
1354 /*
1355 * Check to see if this buffer is evicted. Callers
1356 * must verify b_data != NULL to know if the add_ref
1357 * was successful.
1358 */
1359 mutex_enter(&buf->b_evict_lock);
1360 if (buf->b_data == NULL) {
1361 mutex_exit(&buf->b_evict_lock);
1362 return;
1363 }
1364 hash_lock = HDR_LOCK(buf->b_hdr);
1365 mutex_enter(hash_lock);
1366 hdr = buf->b_hdr;
1367 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1368 mutex_exit(&buf->b_evict_lock);
1369
1370 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1371 add_reference(hdr, hash_lock, tag);
1372 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1373 arc_access(hdr, hash_lock);
1374 mutex_exit(hash_lock);
1375 ARCSTAT_BUMP(arcstat_hits);
1376 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1377 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1378 data, metadata, hits);
1379 }
1380
1381 /*
1382 * Free the arc data buffer. If it is an l2arc write in progress,
1383 * the buffer is placed on l2arc_free_on_write to be freed later.
1384 */
1385 static void
1386 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1387 void *data, size_t size)
1388 {
1389 if (HDR_L2_WRITING(hdr)) {
1390 l2arc_data_free_t *df;
1391 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1392 df->l2df_data = data;
1393 df->l2df_size = size;
1394 df->l2df_func = free_func;
1395 mutex_enter(&l2arc_free_on_write_mtx);
1396 list_insert_head(l2arc_free_on_write, df);
1397 mutex_exit(&l2arc_free_on_write_mtx);
1398 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1399 } else {
1400 free_func(data, size);
1401 }
1402 }
1403
1404 static void
1405 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1406 {
1407 arc_buf_t **bufp;
1408
1409 /* free up data associated with the buf */
1410 if (buf->b_data) {
1411 arc_state_t *state = buf->b_hdr->b_state;
1412 uint64_t size = buf->b_hdr->b_size;
1413 arc_buf_contents_t type = buf->b_hdr->b_type;
1414
1415 arc_cksum_verify(buf);
1416
1417 if (!recycle) {
1418 if (type == ARC_BUFC_METADATA) {
1419 arc_buf_data_free(buf->b_hdr, zio_buf_free,
1420 buf->b_data, size);
1421 arc_space_return(size, ARC_SPACE_DATA);
1422 } else {
1423 ASSERT(type == ARC_BUFC_DATA);
1424 arc_buf_data_free(buf->b_hdr,
1425 zio_data_buf_free, buf->b_data, size);
1426 ARCSTAT_INCR(arcstat_data_size, -size);
1427 atomic_add_64(&arc_size, -size);
1428 }
1429 }
1430 if (list_link_active(&buf->b_hdr->b_arc_node)) {
1431 uint64_t *cnt = &state->arcs_lsize[type];
1432
1433 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1434 ASSERT(state != arc_anon);
1435
1436 ASSERT3U(*cnt, >=, size);
1437 atomic_add_64(cnt, -size);
1438 }
1439 ASSERT3U(state->arcs_size, >=, size);
1440 atomic_add_64(&state->arcs_size, -size);
1441 buf->b_data = NULL;
1442 ASSERT(buf->b_hdr->b_datacnt > 0);
1443 buf->b_hdr->b_datacnt -= 1;
1444 }
1445
1446 /* only remove the buf if requested */
1447 if (!all)
1448 return;
1449
1450 /* remove the buf from the hdr list */
1451 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1452 continue;
1453 *bufp = buf->b_next;
1454 buf->b_next = NULL;
1455
1456 ASSERT(buf->b_efunc == NULL);
1457
1458 /* clean up the buf */
1459 buf->b_hdr = NULL;
1460 kmem_cache_free(buf_cache, buf);
1461 }
1462
1463 static void
1464 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1465 {
1466 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1467
1468 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1469 ASSERT3P(hdr->b_state, ==, arc_anon);
1470 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1471
1472 if (l2hdr != NULL) {
1473 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1474 /*
1475 * To prevent arc_free() and l2arc_evict() from
1476 * attempting to free the same buffer at the same time,
1477 * a FREE_IN_PROGRESS flag is given to arc_free() to
1478 * give it priority. l2arc_evict() can't destroy this
1479 * header while we are waiting on l2arc_buflist_mtx.
1480 *
1481 * The hdr may be removed from l2ad_buflist before we
1482 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1483 */
1484 if (!buflist_held) {
1485 mutex_enter(&l2arc_buflist_mtx);
1486 l2hdr = hdr->b_l2hdr;
1487 }
1488
1489 if (l2hdr != NULL) {
1490 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1491 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1492 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1493 if (hdr->b_state == arc_l2c_only)
1494 l2arc_hdr_stat_remove();
1495 hdr->b_l2hdr = NULL;
1496 }
1497
1498 if (!buflist_held)
1499 mutex_exit(&l2arc_buflist_mtx);
1500 }
1501
1502 if (!BUF_EMPTY(hdr)) {
1503 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1504 buf_discard_identity(hdr);
1505 }
1506 while (hdr->b_buf) {
1507 arc_buf_t *buf = hdr->b_buf;
1508
1509 if (buf->b_efunc) {
1510 mutex_enter(&arc_eviction_mtx);
1511 mutex_enter(&buf->b_evict_lock);
1512 ASSERT(buf->b_hdr != NULL);
1513 arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1514 hdr->b_buf = buf->b_next;
1515 buf->b_hdr = &arc_eviction_hdr;
1516 buf->b_next = arc_eviction_list;
1517 arc_eviction_list = buf;
1518 mutex_exit(&buf->b_evict_lock);
1519 mutex_exit(&arc_eviction_mtx);
1520 } else {
1521 arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1522 }
1523 }
1524 if (hdr->b_freeze_cksum != NULL) {
1525 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1526 hdr->b_freeze_cksum = NULL;
1527 }
1528 if (hdr->b_thawed) {
1529 kmem_free(hdr->b_thawed, 1);
1530 hdr->b_thawed = NULL;
1531 }
1532
1533 ASSERT(!list_link_active(&hdr->b_arc_node));
1534 ASSERT3P(hdr->b_hash_next, ==, NULL);
1535 ASSERT3P(hdr->b_acb, ==, NULL);
1536 kmem_cache_free(hdr_cache, hdr);
1537 }
1538
1539 void
1540 arc_buf_free(arc_buf_t *buf, void *tag)
1541 {
1542 arc_buf_hdr_t *hdr = buf->b_hdr;
1543 int hashed = hdr->b_state != arc_anon;
1544
1545 ASSERT(buf->b_efunc == NULL);
1546 ASSERT(buf->b_data != NULL);
1547
1548 if (hashed) {
1549 kmutex_t *hash_lock = HDR_LOCK(hdr);
1550
1551 mutex_enter(hash_lock);
1552 hdr = buf->b_hdr;
1553 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1554
1555 (void) remove_reference(hdr, hash_lock, tag);
1556 if (hdr->b_datacnt > 1) {
1557 arc_buf_destroy(buf, FALSE, TRUE);
1558 } else {
1559 ASSERT(buf == hdr->b_buf);
1560 ASSERT(buf->b_efunc == NULL);
1561 hdr->b_flags |= ARC_BUF_AVAILABLE;
1562 }
1563 mutex_exit(hash_lock);
1564 } else if (HDR_IO_IN_PROGRESS(hdr)) {
1565 int destroy_hdr;
1566 /*
1567 * We are in the middle of an async write. Don't destroy
1568 * this buffer unless the write completes before we finish
1569 * decrementing the reference count.
1570 */
1571 mutex_enter(&arc_eviction_mtx);
1572 (void) remove_reference(hdr, NULL, tag);
1573 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1574 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1575 mutex_exit(&arc_eviction_mtx);
1576 if (destroy_hdr)
1577 arc_hdr_destroy(hdr);
1578 } else {
1579 if (remove_reference(hdr, NULL, tag) > 0)
1580 arc_buf_destroy(buf, FALSE, TRUE);
1581 else
1582 arc_hdr_destroy(hdr);
1583 }
1584 }
1585
1586 int
1587 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1588 {
1589 arc_buf_hdr_t *hdr = buf->b_hdr;
1590 kmutex_t *hash_lock = HDR_LOCK(hdr);
1591 int no_callback = (buf->b_efunc == NULL);
1592
1593 if (hdr->b_state == arc_anon) {
1594 ASSERT(hdr->b_datacnt == 1);
1595 arc_buf_free(buf, tag);
1596 return (no_callback);
1597 }
1598
1599 mutex_enter(hash_lock);
1600 hdr = buf->b_hdr;
1601 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1602 ASSERT(hdr->b_state != arc_anon);
1603 ASSERT(buf->b_data != NULL);
1604
1605 (void) remove_reference(hdr, hash_lock, tag);
1606 if (hdr->b_datacnt > 1) {
1607 if (no_callback)
1608 arc_buf_destroy(buf, FALSE, TRUE);
1609 } else if (no_callback) {
1610 ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1611 ASSERT(buf->b_efunc == NULL);
1612 hdr->b_flags |= ARC_BUF_AVAILABLE;
1613 }
1614 ASSERT(no_callback || hdr->b_datacnt > 1 ||
1615 refcount_is_zero(&hdr->b_refcnt));
1616 mutex_exit(hash_lock);
1617 return (no_callback);
1618 }
1619
1620 int
1621 arc_buf_size(arc_buf_t *buf)
1622 {
1623 return (buf->b_hdr->b_size);
1624 }
1625
1626 /*
1627 * Evict buffers from list until we've removed the specified number of
1628 * bytes. Move the removed buffers to the appropriate evict state.
1629 * If the recycle flag is set, then attempt to "recycle" a buffer:
1630 * - look for a buffer to evict that is `bytes' long.
1631 * - return the data block from this buffer rather than freeing it.
1632 * This flag is used by callers that are trying to make space for a
1633 * new buffer in a full arc cache.
1634 *
1635 * This function makes a "best effort". It skips over any buffers
1636 * it can't get a hash_lock on, and so may not catch all candidates.
1637 * It may also return without evicting as much space as requested.
1638 */
1639 static void *
1640 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1641 arc_buf_contents_t type)
1642 {
1643 arc_state_t *evicted_state;
1644 uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1645 arc_buf_hdr_t *ab, *ab_prev = NULL;
1646 list_t *list = &state->arcs_list[type];
1647 kmutex_t *hash_lock;
1648 boolean_t have_lock;
1649 void *stolen = NULL;
1650
1651 ASSERT(state == arc_mru || state == arc_mfu);
1652
1653 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1654
1655 mutex_enter(&state->arcs_mtx);
1656 mutex_enter(&evicted_state->arcs_mtx);
1657
1658 for (ab = list_tail(list); ab; ab = ab_prev) {
1659 ab_prev = list_prev(list, ab);
1660 /* prefetch buffers have a minimum lifespan */
1661 if (HDR_IO_IN_PROGRESS(ab) ||
1662 (spa && ab->b_spa != spa) ||
1663 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1664 ddi_get_lbolt() - ab->b_arc_access <
1665 arc_min_prefetch_lifespan)) {
1666 skipped++;
1667 continue;
1668 }
1669 /* "lookahead" for better eviction candidate */
1670 if (recycle && ab->b_size != bytes &&
1671 ab_prev && ab_prev->b_size == bytes)
1672 continue;
1673 hash_lock = HDR_LOCK(ab);
1674 have_lock = MUTEX_HELD(hash_lock);
1675 if (have_lock || mutex_tryenter(hash_lock)) {
1676 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1677 ASSERT(ab->b_datacnt > 0);
1678 while (ab->b_buf) {
1679 arc_buf_t *buf = ab->b_buf;
1680 if (!mutex_tryenter(&buf->b_evict_lock)) {
1681 missed += 1;
1682 break;
1683 }
1684 if (buf->b_data) {
1685 bytes_evicted += ab->b_size;
1686 if (recycle && ab->b_type == type &&
1687 ab->b_size == bytes &&
1688 !HDR_L2_WRITING(ab)) {
1689 stolen = buf->b_data;
1690 recycle = FALSE;
1691 }
1692 }
1693 if (buf->b_efunc) {
1694 mutex_enter(&arc_eviction_mtx);
1695 arc_buf_destroy(buf,
1696 buf->b_data == stolen, FALSE);
1697 ab->b_buf = buf->b_next;
1698 buf->b_hdr = &arc_eviction_hdr;
1699 buf->b_next = arc_eviction_list;
1700 arc_eviction_list = buf;
1701 mutex_exit(&arc_eviction_mtx);
1702 mutex_exit(&buf->b_evict_lock);
1703 } else {
1704 mutex_exit(&buf->b_evict_lock);
1705 arc_buf_destroy(buf,
1706 buf->b_data == stolen, TRUE);
1707 }
1708 }
1709
1710 if (ab->b_l2hdr) {
1711 ARCSTAT_INCR(arcstat_evict_l2_cached,
1712 ab->b_size);
1713 } else {
1714 if (l2arc_write_eligible(ab->b_spa, ab)) {
1715 ARCSTAT_INCR(arcstat_evict_l2_eligible,
1716 ab->b_size);
1717 } else {
1718 ARCSTAT_INCR(
1719 arcstat_evict_l2_ineligible,
1720 ab->b_size);
1721 }
1722 }
1723
1724 if (ab->b_datacnt == 0) {
1725 arc_change_state(evicted_state, ab, hash_lock);
1726 ASSERT(HDR_IN_HASH_TABLE(ab));
1727 ab->b_flags |= ARC_IN_HASH_TABLE;
1728 ab->b_flags &= ~ARC_BUF_AVAILABLE;
1729 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1730 }
1731 if (!have_lock)
1732 mutex_exit(hash_lock);
1733 if (bytes >= 0 && bytes_evicted >= bytes)
1734 break;
1735 } else {
1736 missed += 1;
1737 }
1738 }
1739
1740 mutex_exit(&evicted_state->arcs_mtx);
1741 mutex_exit(&state->arcs_mtx);
1742
1743 if (bytes_evicted < bytes)
1744 dprintf("only evicted %lld bytes from %x\n",
1745 (longlong_t)bytes_evicted, state);
1746
1747 if (skipped)
1748 ARCSTAT_INCR(arcstat_evict_skip, skipped);
1749
1750 if (missed)
1751 ARCSTAT_INCR(arcstat_mutex_miss, missed);
1752
1753 /*
1754 * We have just evicted some date into the ghost state, make
1755 * sure we also adjust the ghost state size if necessary.
1756 */
1757 if (arc_no_grow &&
1758 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1759 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1760 arc_mru_ghost->arcs_size - arc_c;
1761
1762 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1763 int64_t todelete =
1764 MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1765 arc_evict_ghost(arc_mru_ghost, 0, todelete);
1766 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1767 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1768 arc_mru_ghost->arcs_size +
1769 arc_mfu_ghost->arcs_size - arc_c);
1770 arc_evict_ghost(arc_mfu_ghost, 0, todelete);
1771 }
1772 }
1773
1774 return (stolen);
1775 }
1776
1777 /*
1778 * Remove buffers from list until we've removed the specified number of
1779 * bytes. Destroy the buffers that are removed.
1780 */
1781 static void
1782 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1783 {
1784 arc_buf_hdr_t *ab, *ab_prev;
1785 arc_buf_hdr_t marker;
1786 list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1787 kmutex_t *hash_lock;
1788 uint64_t bytes_deleted = 0;
1789 uint64_t bufs_skipped = 0;
1790
1791 ASSERT(GHOST_STATE(state));
1792 bzero(&marker, sizeof(marker));
1793 top:
1794 mutex_enter(&state->arcs_mtx);
1795 for (ab = list_tail(list); ab; ab = ab_prev) {
1796 ab_prev = list_prev(list, ab);
1797 if (spa && ab->b_spa != spa)
1798 continue;
1799
1800 /* ignore markers */
1801 if (ab->b_spa == 0)
1802 continue;
1803
1804 hash_lock = HDR_LOCK(ab);
1805 /* caller may be trying to modify this buffer, skip it */
1806 if (MUTEX_HELD(hash_lock))
1807 continue;
1808 if (mutex_tryenter(hash_lock)) {
1809 ASSERT(!HDR_IO_IN_PROGRESS(ab));
1810 ASSERT(ab->b_buf == NULL);
1811 ARCSTAT_BUMP(arcstat_deleted);
1812 bytes_deleted += ab->b_size;
1813
1814 if (ab->b_l2hdr != NULL) {
1815 /*
1816 * This buffer is cached on the 2nd Level ARC;
1817 * don't destroy the header.
1818 */
1819 arc_change_state(arc_l2c_only, ab, hash_lock);
1820 mutex_exit(hash_lock);
1821 } else {
1822 arc_change_state(arc_anon, ab, hash_lock);
1823 mutex_exit(hash_lock);
1824 arc_hdr_destroy(ab);
1825 }
1826
1827 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1828 if (bytes >= 0 && bytes_deleted >= bytes)
1829 break;
1830 } else if (bytes < 0) {
1831 /*
1832 * Insert a list marker and then wait for the
1833 * hash lock to become available. Once its
1834 * available, restart from where we left off.
1835 */
1836 list_insert_after(list, ab, &marker);
1837 mutex_exit(&state->arcs_mtx);
1838 mutex_enter(hash_lock);
1839 mutex_exit(hash_lock);
1840 mutex_enter(&state->arcs_mtx);
1841 ab_prev = list_prev(list, &marker);
1842 list_remove(list, &marker);
1843 } else
1844 bufs_skipped += 1;
1845 }
1846 mutex_exit(&state->arcs_mtx);
1847
1848 if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1849 (bytes < 0 || bytes_deleted < bytes)) {
1850 list = &state->arcs_list[ARC_BUFC_METADATA];
1851 goto top;
1852 }
1853
1854 if (bufs_skipped) {
1855 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1856 ASSERT(bytes >= 0);
1857 }
1858
1859 if (bytes_deleted < bytes)
1860 dprintf("only deleted %lld bytes from %p\n",
1861 (longlong_t)bytes_deleted, state);
1862 }
1863
1864 static void
1865 arc_adjust(void)
1866 {
1867 int64_t adjustment, delta;
1868
1869 /*
1870 * Adjust MRU size
1871 */
1872
1873 adjustment = MIN((int64_t)(arc_size - arc_c),
1874 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
1875 arc_p));
1876
1877 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1878 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
1879 (void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
1880 adjustment -= delta;
1881 }
1882
1883 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1884 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
1885 (void) arc_evict(arc_mru, 0, delta, FALSE,
1886 ARC_BUFC_METADATA);
1887 }
1888
1889 /*
1890 * Adjust MFU size
1891 */
1892
1893 adjustment = arc_size - arc_c;
1894
1895 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1896 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
1897 (void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
1898 adjustment -= delta;
1899 }
1900
1901 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1902 int64_t delta = MIN(adjustment,
1903 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
1904 (void) arc_evict(arc_mfu, 0, delta, FALSE,
1905 ARC_BUFC_METADATA);
1906 }
1907
1908 /*
1909 * Adjust ghost lists
1910 */
1911
1912 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
1913
1914 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
1915 delta = MIN(arc_mru_ghost->arcs_size, adjustment);
1916 arc_evict_ghost(arc_mru_ghost, 0, delta);
1917 }
1918
1919 adjustment =
1920 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
1921
1922 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
1923 delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
1924 arc_evict_ghost(arc_mfu_ghost, 0, delta);
1925 }
1926 }
1927
1928 static void
1929 arc_do_user_evicts(void)
1930 {
1931 mutex_enter(&arc_eviction_mtx);
1932 while (arc_eviction_list != NULL) {
1933 arc_buf_t *buf = arc_eviction_list;
1934 arc_eviction_list = buf->b_next;
1935 mutex_enter(&buf->b_evict_lock);
1936 buf->b_hdr = NULL;
1937 mutex_exit(&buf->b_evict_lock);
1938 mutex_exit(&arc_eviction_mtx);
1939
1940 if (buf->b_efunc != NULL)
1941 VERIFY(buf->b_efunc(buf) == 0);
1942
1943 buf->b_efunc = NULL;
1944 buf->b_private = NULL;
1945 kmem_cache_free(buf_cache, buf);
1946 mutex_enter(&arc_eviction_mtx);
1947 }
1948 mutex_exit(&arc_eviction_mtx);
1949 }
1950
1951 /*
1952 * Flush all *evictable* data from the cache for the given spa.
1953 * NOTE: this will not touch "active" (i.e. referenced) data.
1954 */
1955 void
1956 arc_flush(spa_t *spa)
1957 {
1958 uint64_t guid = 0;
1959
1960 if (spa)
1961 guid = spa_guid(spa);
1962
1963 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
1964 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
1965 if (spa)
1966 break;
1967 }
1968 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
1969 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
1970 if (spa)
1971 break;
1972 }
1973 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
1974 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
1975 if (spa)
1976 break;
1977 }
1978 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
1979 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
1980 if (spa)
1981 break;
1982 }
1983
1984 arc_evict_ghost(arc_mru_ghost, guid, -1);
1985 arc_evict_ghost(arc_mfu_ghost, guid, -1);
1986
1987 mutex_enter(&arc_reclaim_thr_lock);
1988 arc_do_user_evicts();
1989 mutex_exit(&arc_reclaim_thr_lock);
1990 ASSERT(spa || arc_eviction_list == NULL);
1991 }
1992
1993 void
1994 arc_shrink(void)
1995 {
1996 if (arc_c > arc_c_min) {
1997 uint64_t to_free;
1998
1999 #ifdef _KERNEL
2000 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
2001 #else
2002 to_free = arc_c >> arc_shrink_shift;
2003 #endif
2004 if (arc_c > arc_c_min + to_free)
2005 atomic_add_64(&arc_c, -to_free);
2006 else
2007 arc_c = arc_c_min;
2008
2009 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2010 if (arc_c > arc_size)
2011 arc_c = MAX(arc_size, arc_c_min);
2012 if (arc_p > arc_c)
2013 arc_p = (arc_c >> 1);
2014 ASSERT(arc_c >= arc_c_min);
2015 ASSERT((int64_t)arc_p >= 0);
2016 }
2017
2018 if (arc_size > arc_c)
2019 arc_adjust();
2020 }
2021
2022 static int
2023 arc_reclaim_needed(void)
2024 {
2025 #ifdef _KERNEL
2026 uint64_t extra;
2027
2028 if (needfree)
2029 return (1);
2030
2031 /*
2032 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2033 */
2034 extra = desfree;
2035
2036 /*
2037 * check that we're out of range of the pageout scanner. It starts to
2038 * schedule paging if freemem is less than lotsfree and needfree.
2039 * lotsfree is the high-water mark for pageout, and needfree is the
2040 * number of needed free pages. We add extra pages here to make sure
2041 * the scanner doesn't start up while we're freeing memory.
2042 */
2043 if (freemem < lotsfree + needfree + extra)
2044 return (1);
2045
2046 /*
2047 * check to make sure that swapfs has enough space so that anon
2048 * reservations can still succeed. anon_resvmem() checks that the
2049 * availrmem is greater than swapfs_minfree, and the number of reserved
2050 * swap pages. We also add a bit of extra here just to prevent
2051 * circumstances from getting really dire.
2052 */
2053 if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2054 return (1);
2055
2056 #if defined(__i386)
2057 /*
2058 * If we're on an i386 platform, it's possible that we'll exhaust the
2059 * kernel heap space before we ever run out of available physical
2060 * memory. Most checks of the size of the heap_area compare against
2061 * tune.t_minarmem, which is the minimum available real memory that we
2062 * can have in the system. However, this is generally fixed at 25 pages
2063 * which is so low that it's useless. In this comparison, we seek to
2064 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2065 * heap is allocated. (Or, in the calculation, if less than 1/4th is
2066 * free)
2067 */
2068 if (btop(vmem_size(heap_arena, VMEM_FREE)) <
2069 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
2070 return (1);
2071 #endif
2072
2073 #else
2074 if (spa_get_random(100) == 0)
2075 return (1);
2076 #endif
2077 return (0);
2078 }
2079
2080 static void
2081 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2082 {
2083 size_t i;
2084 kmem_cache_t *prev_cache = NULL;
2085 kmem_cache_t *prev_data_cache = NULL;
2086 extern kmem_cache_t *zio_buf_cache[];
2087 extern kmem_cache_t *zio_data_buf_cache[];
2088 #ifdef _KERNEL
2089 int retry = 0;
2090
2091 while ((arc_meta_used >= arc_meta_limit) && (retry < 10)) {
2092 /*
2093 * We are exceeding our meta-data cache limit.
2094 * Purge some DNLC entries to release holds on meta-data.
2095 */
2096 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2097 retry++;
2098 }
2099 #if defined(__i386)
2100 /*
2101 * Reclaim unused memory from all kmem caches.
2102 */
2103 kmem_reap();
2104 #endif
2105 #endif
2106
2107 /*
2108 * An aggressive reclamation will shrink the cache size as well as
2109 * reap free buffers from the arc kmem caches.
2110 */
2111 if (strat == ARC_RECLAIM_AGGR)
2112 arc_shrink();
2113
2114 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2115 if (zio_buf_cache[i] != prev_cache) {
2116 prev_cache = zio_buf_cache[i];
2117 kmem_cache_reap_now(zio_buf_cache[i]);
2118 }
2119 if (zio_data_buf_cache[i] != prev_data_cache) {
2120 prev_data_cache = zio_data_buf_cache[i];
2121 kmem_cache_reap_now(zio_data_buf_cache[i]);
2122 }
2123 }
2124 kmem_cache_reap_now(buf_cache);
2125 kmem_cache_reap_now(hdr_cache);
2126 }
2127
2128 static void
2129 arc_reclaim_thread(void)
2130 {
2131 clock_t growtime = 0;
2132 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
2133 callb_cpr_t cpr;
2134
2135 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2136
2137 mutex_enter(&arc_reclaim_thr_lock);
2138 while (arc_thread_exit == 0) {
2139 if (arc_reclaim_needed()) {
2140
2141 if (arc_no_grow) {
2142 if (last_reclaim == ARC_RECLAIM_CONS) {
2143 last_reclaim = ARC_RECLAIM_AGGR;
2144 } else {
2145 last_reclaim = ARC_RECLAIM_CONS;
2146 }
2147 } else {
2148 arc_no_grow = TRUE;
2149 last_reclaim = ARC_RECLAIM_AGGR;
2150 membar_producer();
2151 }
2152
2153 /* reset the growth delay for every reclaim */
2154 growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2155
2156 arc_kmem_reap_now(last_reclaim);
2157 arc_warm = B_TRUE;
2158
2159 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2160 arc_no_grow = FALSE;
2161 }
2162
2163 /* Keep meta data usage within limits */
2164 if (arc_meta_used >= arc_meta_limit)
2165 arc_kmem_reap_now(ARC_RECLAIM_CONS);
2166
2167 arc_adjust();
2168
2169 if (arc_eviction_list != NULL)
2170 arc_do_user_evicts();
2171
2172 /* block until needed, or one second, whichever is shorter */
2173 CALLB_CPR_SAFE_BEGIN(&cpr);
2174 (void) cv_timedwait_interruptible(&arc_reclaim_thr_cv,
2175 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2176 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2177 }
2178
2179 arc_thread_exit = 0;
2180 cv_broadcast(&arc_reclaim_thr_cv);
2181 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */
2182 thread_exit();
2183 }
2184
2185 #ifdef _KERNEL
2186 /*
2187 * Under Linux the arc shrinker may be called for synchronous (direct)
2188 * reclaim, or asynchronous (indirect) reclaim. When called by kswapd
2189 * for indirect reclaim we take a conservative approach and just reap
2190 * free slabs from the ARC caches. If this proves to be insufficient
2191 * direct reclaim will be trigger. In direct reclaim a more aggressive
2192 * strategy is used, data is evicted from the ARC and free slabs reaped.
2193 */
2194 static int
2195 __arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
2196 {
2197 arc_reclaim_strategy_t strategy;
2198 int arc_reclaim;
2199
2200 /* Return number of reclaimable pages based on arc_shrink_shift */
2201 arc_reclaim = MAX(btop(((int64_t)arc_size - (int64_t)arc_c_min))
2202 >> arc_shrink_shift, 0);
2203 if (sc->nr_to_scan == 0)
2204 return (arc_reclaim);
2205
2206 /* Prevent reclaim below arc_c_min */
2207 if (arc_reclaim <= 0)
2208 return (-1);
2209
2210 /* Not allowed to perform filesystem reclaim */
2211 if (!(sc->gfp_mask & __GFP_FS))
2212 return (-1);
2213
2214 /* Reclaim in progress */
2215 if (mutex_tryenter(&arc_reclaim_thr_lock) == 0)
2216 return (-1);
2217
2218 if (current_is_kswapd()) {
2219 strategy = ARC_RECLAIM_CONS;
2220 ARCSTAT_INCR(arcstat_memory_indirect_count, 1);
2221 } else {
2222 strategy = ARC_RECLAIM_AGGR;
2223 ARCSTAT_INCR(arcstat_memory_direct_count, 1);
2224 }
2225
2226 arc_kmem_reap_now(strategy);
2227 arc_reclaim = MAX(btop(((int64_t)arc_size - (int64_t)arc_c_min))
2228 >> arc_shrink_shift, 0);
2229 mutex_exit(&arc_reclaim_thr_lock);
2230
2231 return (arc_reclaim);
2232 }
2233 SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
2234
2235 SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
2236 #endif /* _KERNEL */
2237
2238 /*
2239 * Adapt arc info given the number of bytes we are trying to add and
2240 * the state that we are comming from. This function is only called
2241 * when we are adding new content to the cache.
2242 */
2243 static void
2244 arc_adapt(int bytes, arc_state_t *state)
2245 {
2246 int mult;
2247 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2248
2249 if (state == arc_l2c_only)
2250 return;
2251
2252 ASSERT(bytes > 0);
2253 /*
2254 * Adapt the target size of the MRU list:
2255 * - if we just hit in the MRU ghost list, then increase
2256 * the target size of the MRU list.
2257 * - if we just hit in the MFU ghost list, then increase
2258 * the target size of the MFU list by decreasing the
2259 * target size of the MRU list.
2260 */
2261 if (state == arc_mru_ghost) {
2262 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2263 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2264 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2265
2266 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2267 } else if (state == arc_mfu_ghost) {
2268 uint64_t delta;
2269
2270 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2271 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2272 mult = MIN(mult, 10);
2273
2274 delta = MIN(bytes * mult, arc_p);
2275 arc_p = MAX(arc_p_min, arc_p - delta);
2276 }
2277 ASSERT((int64_t)arc_p >= 0);
2278
2279 if (arc_reclaim_needed()) {
2280 cv_signal(&arc_reclaim_thr_cv);
2281 return;
2282 }
2283
2284 if (arc_no_grow)
2285 return;
2286
2287 if (arc_c >= arc_c_max)
2288 return;
2289
2290 /*
2291 * If we're within (2 * maxblocksize) bytes of the target
2292 * cache size, increment the target cache size
2293 */
2294 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2295 atomic_add_64(&arc_c, (int64_t)bytes);
2296 if (arc_c > arc_c_max)
2297 arc_c = arc_c_max;
2298 else if (state == arc_anon)
2299 atomic_add_64(&arc_p, (int64_t)bytes);
2300 if (arc_p > arc_c)
2301 arc_p = arc_c;
2302 }
2303 ASSERT((int64_t)arc_p >= 0);
2304 }
2305
2306 /*
2307 * Check if the cache has reached its limits and eviction is required
2308 * prior to insert.
2309 */
2310 static int
2311 arc_evict_needed(arc_buf_contents_t type)
2312 {
2313 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2314 return (1);
2315
2316 #ifdef _KERNEL
2317 /*
2318 * If zio data pages are being allocated out of a separate heap segment,
2319 * then enforce that the size of available vmem for this area remains
2320 * above about 1/32nd free.
2321 */
2322 if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2323 vmem_size(zio_arena, VMEM_FREE) <
2324 (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2325 return (1);
2326 #endif
2327
2328 if (arc_reclaim_needed())
2329 return (1);
2330
2331 return (arc_size > arc_c);
2332 }
2333
2334 /*
2335 * The buffer, supplied as the first argument, needs a data block.
2336 * So, if we are at cache max, determine which cache should be victimized.
2337 * We have the following cases:
2338 *
2339 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2340 * In this situation if we're out of space, but the resident size of the MFU is
2341 * under the limit, victimize the MFU cache to satisfy this insertion request.
2342 *
2343 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2344 * Here, we've used up all of the available space for the MRU, so we need to
2345 * evict from our own cache instead. Evict from the set of resident MRU
2346 * entries.
2347 *
2348 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2349 * c minus p represents the MFU space in the cache, since p is the size of the
2350 * cache that is dedicated to the MRU. In this situation there's still space on
2351 * the MFU side, so the MRU side needs to be victimized.
2352 *
2353 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2354 * MFU's resident set is consuming more space than it has been allotted. In
2355 * this situation, we must victimize our own cache, the MFU, for this insertion.
2356 */
2357 static void
2358 arc_get_data_buf(arc_buf_t *buf)
2359 {
2360 arc_state_t *state = buf->b_hdr->b_state;
2361 uint64_t size = buf->b_hdr->b_size;
2362 arc_buf_contents_t type = buf->b_hdr->b_type;
2363
2364 arc_adapt(size, state);
2365
2366 /*
2367 * We have not yet reached cache maximum size,
2368 * just allocate a new buffer.
2369 */
2370 if (!arc_evict_needed(type)) {
2371 if (type == ARC_BUFC_METADATA) {
2372 buf->b_data = zio_buf_alloc(size);
2373 arc_space_consume(size, ARC_SPACE_DATA);
2374 } else {
2375 ASSERT(type == ARC_BUFC_DATA);
2376 buf->b_data = zio_data_buf_alloc(size);
2377 ARCSTAT_INCR(arcstat_data_size, size);
2378 atomic_add_64(&arc_size, size);
2379 }
2380 goto out;
2381 }
2382
2383 /*
2384 * If we are prefetching from the mfu ghost list, this buffer
2385 * will end up on the mru list; so steal space from there.
2386 */
2387 if (state == arc_mfu_ghost)
2388 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2389 else if (state == arc_mru_ghost)
2390 state = arc_mru;
2391
2392 if (state == arc_mru || state == arc_anon) {
2393 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2394 state = (arc_mfu->arcs_lsize[type] >= size &&
2395 arc_p > mru_used) ? arc_mfu : arc_mru;
2396 } else {
2397 /* MFU cases */
2398 uint64_t mfu_space = arc_c - arc_p;
2399 state = (arc_mru->arcs_lsize[type] >= size &&
2400 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2401 }
2402 if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
2403 if (type == ARC_BUFC_METADATA) {
2404 buf->b_data = zio_buf_alloc(size);
2405 arc_space_consume(size, ARC_SPACE_DATA);
2406 } else {
2407 ASSERT(type == ARC_BUFC_DATA);
2408 buf->b_data = zio_data_buf_alloc(size);
2409 ARCSTAT_INCR(arcstat_data_size, size);
2410 atomic_add_64(&arc_size, size);
2411 }
2412 ARCSTAT_BUMP(arcstat_recycle_miss);
2413 }
2414 ASSERT(buf->b_data != NULL);
2415 out:
2416 /*
2417 * Update the state size. Note that ghost states have a
2418 * "ghost size" and so don't need to be updated.
2419 */
2420 if (!GHOST_STATE(buf->b_hdr->b_state)) {
2421 arc_buf_hdr_t *hdr = buf->b_hdr;
2422
2423 atomic_add_64(&hdr->b_state->arcs_size, size);
2424 if (list_link_active(&hdr->b_arc_node)) {
2425 ASSERT(refcount_is_zero(&hdr->b_refcnt));
2426 atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2427 }
2428 /*
2429 * If we are growing the cache, and we are adding anonymous
2430 * data, and we have outgrown arc_p, update arc_p
2431 */
2432 if (arc_size < arc_c && hdr->b_state == arc_anon &&
2433 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2434 arc_p = MIN(arc_c, arc_p + size);
2435 }
2436 }
2437
2438 /*
2439 * This routine is called whenever a buffer is accessed.
2440 * NOTE: the hash lock is dropped in this function.
2441 */
2442 static void
2443 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2444 {
2445 clock_t now;
2446
2447 ASSERT(MUTEX_HELD(hash_lock));
2448
2449 if (buf->b_state == arc_anon) {
2450 /*
2451 * This buffer is not in the cache, and does not
2452 * appear in our "ghost" list. Add the new buffer
2453 * to the MRU state.
2454 */
2455
2456 ASSERT(buf->b_arc_access == 0);
2457 buf->b_arc_access = ddi_get_lbolt();
2458 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2459 arc_change_state(arc_mru, buf, hash_lock);
2460
2461 } else if (buf->b_state == arc_mru) {
2462 now = ddi_get_lbolt();
2463
2464 /*
2465 * If this buffer is here because of a prefetch, then either:
2466 * - clear the flag if this is a "referencing" read
2467 * (any subsequent access will bump this into the MFU state).
2468 * or
2469 * - move the buffer to the head of the list if this is
2470 * another prefetch (to make it less likely to be evicted).
2471 */
2472 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2473 if (refcount_count(&buf->b_refcnt) == 0) {
2474 ASSERT(list_link_active(&buf->b_arc_node));
2475 } else {
2476 buf->b_flags &= ~ARC_PREFETCH;
2477 ARCSTAT_BUMP(arcstat_mru_hits);
2478 }
2479 buf->b_arc_access = now;
2480 return;
2481 }
2482
2483 /*
2484 * This buffer has been "accessed" only once so far,
2485 * but it is still in the cache. Move it to the MFU
2486 * state.
2487 */
2488 if (now > buf->b_arc_access + ARC_MINTIME) {
2489 /*
2490 * More than 125ms have passed since we
2491 * instantiated this buffer. Move it to the
2492 * most frequently used state.
2493 */
2494 buf->b_arc_access = now;
2495 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2496 arc_change_state(arc_mfu, buf, hash_lock);
2497 }
2498 ARCSTAT_BUMP(arcstat_mru_hits);
2499 } else if (buf->b_state == arc_mru_ghost) {
2500 arc_state_t *new_state;
2501 /*
2502 * This buffer has been "accessed" recently, but
2503 * was evicted from the cache. Move it to the
2504 * MFU state.
2505 */
2506
2507 if (buf->b_flags & ARC_PREFETCH) {
2508 new_state = arc_mru;
2509 if (refcount_count(&buf->b_refcnt) > 0)
2510 buf->b_flags &= ~ARC_PREFETCH;
2511 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2512 } else {
2513 new_state = arc_mfu;
2514 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2515 }
2516
2517 buf->b_arc_access = ddi_get_lbolt();
2518 arc_change_state(new_state, buf, hash_lock);
2519
2520 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2521 } else if (buf->b_state == arc_mfu) {
2522 /*
2523 * This buffer has been accessed more than once and is
2524 * still in the cache. Keep it in the MFU state.
2525 *
2526 * NOTE: an add_reference() that occurred when we did
2527 * the arc_read() will have kicked this off the list.
2528 * If it was a prefetch, we will explicitly move it to
2529 * the head of the list now.
2530 */
2531 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2532 ASSERT(refcount_count(&buf->b_refcnt) == 0);
2533 ASSERT(list_link_active(&buf->b_arc_node));
2534 }
2535 ARCSTAT_BUMP(arcstat_mfu_hits);
2536 buf->b_arc_access = ddi_get_lbolt();
2537 } else if (buf->b_state == arc_mfu_ghost) {
2538 arc_state_t *new_state = arc_mfu;
2539 /*
2540 * This buffer has been accessed more than once but has
2541 * been evicted from the cache. Move it back to the
2542 * MFU state.
2543 */
2544
2545 if (buf->b_flags & ARC_PREFETCH) {
2546 /*
2547 * This is a prefetch access...
2548 * move this block back to the MRU state.
2549 */
2550 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2551 new_state = arc_mru;
2552 }
2553
2554 buf->b_arc_access = ddi_get_lbolt();
2555 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2556 arc_change_state(new_state, buf, hash_lock);
2557
2558 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2559 } else if (buf->b_state == arc_l2c_only) {
2560 /*
2561 * This buffer is on the 2nd Level ARC.
2562 */
2563
2564 buf->b_arc_access = ddi_get_lbolt();
2565 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2566 arc_change_state(arc_mfu, buf, hash_lock);
2567 } else {
2568 ASSERT(!"invalid arc state");
2569 }
2570 }
2571
2572 /* a generic arc_done_func_t which you can use */
2573 /* ARGSUSED */
2574 void
2575 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2576 {
2577 if (zio == NULL || zio->io_error == 0)
2578 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2579 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2580 }
2581
2582 /* a generic arc_done_func_t */
2583 void
2584 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2585 {
2586 arc_buf_t **bufp = arg;
2587 if (zio && zio->io_error) {
2588 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2589 *bufp = NULL;
2590 } else {
2591 *bufp = buf;
2592 ASSERT(buf->b_data);
2593 }
2594 }
2595
2596 static void
2597 arc_read_done(zio_t *zio)
2598 {
2599 arc_buf_hdr_t *hdr, *found;
2600 arc_buf_t *buf;
2601 arc_buf_t *abuf; /* buffer we're assigning to callback */
2602 kmutex_t *hash_lock;
2603 arc_callback_t *callback_list, *acb;
2604 int freeable = FALSE;
2605
2606 buf = zio->io_private;
2607 hdr = buf->b_hdr;
2608
2609 /*
2610 * The hdr was inserted into hash-table and removed from lists
2611 * prior to starting I/O. We should find this header, since
2612 * it's in the hash table, and it should be legit since it's
2613 * not possible to evict it during the I/O. The only possible
2614 * reason for it not to be found is if we were freed during the
2615 * read.
2616 */
2617 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2618 &hash_lock);
2619
2620 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2621 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2622 (found == hdr && HDR_L2_READING(hdr)));
2623
2624 hdr->b_flags &= ~ARC_L2_EVICTED;
2625 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2626 hdr->b_flags &= ~ARC_L2CACHE;
2627
2628 /* byteswap if necessary */
2629 callback_list = hdr->b_acb;
2630 ASSERT(callback_list != NULL);
2631 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2632 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2633 byteswap_uint64_array :
2634 dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
2635 func(buf->b_data, hdr->b_size);
2636 }
2637
2638 arc_cksum_compute(buf, B_FALSE);
2639
2640 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2641 /*
2642 * Only call arc_access on anonymous buffers. This is because
2643 * if we've issued an I/O for an evicted buffer, we've already
2644 * called arc_access (to prevent any simultaneous readers from
2645 * getting confused).
2646 */
2647 arc_access(hdr, hash_lock);
2648 }
2649
2650 /* create copies of the data buffer for the callers */
2651 abuf = buf;
2652 for (acb = callback_list; acb; acb = acb->acb_next) {
2653 if (acb->acb_done) {
2654 if (abuf == NULL)
2655 abuf = arc_buf_clone(buf);
2656 acb->acb_buf = abuf;
2657 abuf = NULL;
2658 }
2659 }
2660 hdr->b_acb = NULL;
2661 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2662 ASSERT(!HDR_BUF_AVAILABLE(hdr));
2663 if (abuf == buf) {
2664 ASSERT(buf->b_efunc == NULL);
2665 ASSERT(hdr->b_datacnt == 1);
2666 hdr->b_flags |= ARC_BUF_AVAILABLE;
2667 }
2668
2669 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2670
2671 if (zio->io_error != 0) {
2672 hdr->b_flags |= ARC_IO_ERROR;
2673 if (hdr->b_state != arc_anon)
2674 arc_change_state(arc_anon, hdr, hash_lock);
2675 if (HDR_IN_HASH_TABLE(hdr))
2676 buf_hash_remove(hdr);
2677 freeable = refcount_is_zero(&hdr->b_refcnt);
2678 }
2679
2680 /*
2681 * Broadcast before we drop the hash_lock to avoid the possibility
2682 * that the hdr (and hence the cv) might be freed before we get to
2683 * the cv_broadcast().
2684 */
2685 cv_broadcast(&hdr->b_cv);
2686
2687 if (hash_lock) {
2688 mutex_exit(hash_lock);
2689 } else {
2690 /*
2691 * This block was freed while we waited for the read to
2692 * complete. It has been removed from the hash table and
2693 * moved to the anonymous state (so that it won't show up
2694 * in the cache).
2695 */
2696 ASSERT3P(hdr->b_state, ==, arc_anon);
2697 freeable = refcount_is_zero(&hdr->b_refcnt);
2698 }
2699
2700 /* execute each callback and free its structure */
2701 while ((acb = callback_list) != NULL) {
2702 if (acb->acb_done)
2703 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2704
2705 if (acb->acb_zio_dummy != NULL) {
2706 acb->acb_zio_dummy->io_error = zio->io_error;
2707 zio_nowait(acb->acb_zio_dummy);
2708 }
2709
2710 callback_list = acb->acb_next;
2711 kmem_free(acb, sizeof (arc_callback_t));
2712 }
2713
2714 if (freeable)
2715 arc_hdr_destroy(hdr);
2716 }
2717
2718 /*
2719 * "Read" the block block at the specified DVA (in bp) via the
2720 * cache. If the block is found in the cache, invoke the provided
2721 * callback immediately and return. Note that the `zio' parameter
2722 * in the callback will be NULL in this case, since no IO was
2723 * required. If the block is not in the cache pass the read request
2724 * on to the spa with a substitute callback function, so that the
2725 * requested block will be added to the cache.
2726 *
2727 * If a read request arrives for a block that has a read in-progress,
2728 * either wait for the in-progress read to complete (and return the
2729 * results); or, if this is a read with a "done" func, add a record
2730 * to the read to invoke the "done" func when the read completes,
2731 * and return; or just return.
2732 *
2733 * arc_read_done() will invoke all the requested "done" functions
2734 * for readers of this block.
2735 *
2736 * Normal callers should use arc_read and pass the arc buffer and offset
2737 * for the bp. But if you know you don't need locking, you can use
2738 * arc_read_bp.
2739 */
2740 int
2741 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf,
2742 arc_done_func_t *done, void *private, int priority, int zio_flags,
2743 uint32_t *arc_flags, const zbookmark_t *zb)
2744 {
2745 int err;
2746
2747 if (pbuf == NULL) {
2748 /*
2749 * XXX This happens from traverse callback funcs, for
2750 * the objset_phys_t block.
2751 */
2752 return (arc_read_nolock(pio, spa, bp, done, private, priority,
2753 zio_flags, arc_flags, zb));
2754 }
2755
2756 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2757 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2758 rw_enter(&pbuf->b_data_lock, RW_READER);
2759
2760 err = arc_read_nolock(pio, spa, bp, done, private, priority,
2761 zio_flags, arc_flags, zb);
2762 rw_exit(&pbuf->b_data_lock);
2763
2764 return (err);
2765 }
2766
2767 int
2768 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp,
2769 arc_done_func_t *done, void *private, int priority, int zio_flags,
2770 uint32_t *arc_flags, const zbookmark_t *zb)
2771 {
2772 arc_buf_hdr_t *hdr;
2773 arc_buf_t *buf = NULL;
2774 kmutex_t *hash_lock;
2775 zio_t *rzio;
2776 uint64_t guid = spa_guid(spa);
2777
2778 top:
2779 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2780 &hash_lock);
2781 if (hdr && hdr->b_datacnt > 0) {
2782
2783 *arc_flags |= ARC_CACHED;
2784
2785 if (HDR_IO_IN_PROGRESS(hdr)) {
2786
2787 if (*arc_flags & ARC_WAIT) {
2788 cv_wait(&hdr->b_cv, hash_lock);
2789 mutex_exit(hash_lock);
2790 goto top;
2791 }
2792 ASSERT(*arc_flags & ARC_NOWAIT);
2793
2794 if (done) {
2795 arc_callback_t *acb = NULL;
2796
2797 acb = kmem_zalloc(sizeof (arc_callback_t),
2798 KM_PUSHPAGE);
2799 acb->acb_done = done;
2800 acb->acb_private = private;
2801 if (pio != NULL)
2802 acb->acb_zio_dummy = zio_null(pio,
2803 spa, NULL, NULL, NULL, zio_flags);
2804
2805 ASSERT(acb->acb_done != NULL);
2806 acb->acb_next = hdr->b_acb;
2807 hdr->b_acb = acb;
2808 add_reference(hdr, hash_lock, private);
2809 mutex_exit(hash_lock);
2810 return (0);
2811 }
2812 mutex_exit(hash_lock);
2813 return (0);
2814 }
2815
2816 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2817
2818 if (done) {
2819 add_reference(hdr, hash_lock, private);
2820 /*
2821 * If this block is already in use, create a new
2822 * copy of the data so that we will be guaranteed
2823 * that arc_release() will always succeed.
2824 */
2825 buf = hdr->b_buf;
2826 ASSERT(buf);
2827 ASSERT(buf->b_data);
2828 if (HDR_BUF_AVAILABLE(hdr)) {
2829 ASSERT(buf->b_efunc == NULL);
2830 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2831 } else {
2832 buf = arc_buf_clone(buf);
2833 }
2834
2835 } else if (*arc_flags & ARC_PREFETCH &&
2836 refcount_count(&hdr->b_refcnt) == 0) {
2837 hdr->b_flags |= ARC_PREFETCH;
2838 }
2839 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2840 arc_access(hdr, hash_lock);
2841 if (*arc_flags & ARC_L2CACHE)
2842 hdr->b_flags |= ARC_L2CACHE;
2843 mutex_exit(hash_lock);
2844 ARCSTAT_BUMP(arcstat_hits);
2845 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2846 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2847 data, metadata, hits);
2848
2849 if (done)
2850 done(NULL, buf, private);
2851 } else {
2852 uint64_t size = BP_GET_LSIZE(bp);
2853 arc_callback_t *acb;
2854 vdev_t *vd = NULL;
2855 uint64_t addr = -1;
2856 boolean_t devw = B_FALSE;
2857
2858 if (hdr == NULL) {
2859 /* this block is not in the cache */
2860 arc_buf_hdr_t *exists;
2861 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2862 buf = arc_buf_alloc(spa, size, private, type);
2863 hdr = buf->b_hdr;
2864 hdr->b_dva = *BP_IDENTITY(bp);
2865 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
2866 hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2867 exists = buf_hash_insert(hdr, &hash_lock);
2868 if (exists) {
2869 /* somebody beat us to the hash insert */
2870 mutex_exit(hash_lock);
2871 buf_discard_identity(hdr);
2872 (void) arc_buf_remove_ref(buf, private);
2873 goto top; /* restart the IO request */
2874 }
2875 /* if this is a prefetch, we don't have a reference */
2876 if (*arc_flags & ARC_PREFETCH) {
2877 (void) remove_reference(hdr, hash_lock,
2878 private);
2879 hdr->b_flags |= ARC_PREFETCH;
2880 }
2881 if (*arc_flags & ARC_L2CACHE)
2882 hdr->b_flags |= ARC_L2CACHE;
2883 if (BP_GET_LEVEL(bp) > 0)
2884 hdr->b_flags |= ARC_INDIRECT;
2885 } else {
2886 /* this block is in the ghost cache */
2887 ASSERT(GHOST_STATE(hdr->b_state));
2888 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2889 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2890 ASSERT(hdr->b_buf == NULL);
2891
2892 /* if this is a prefetch, we don't have a reference */
2893 if (*arc_flags & ARC_PREFETCH)
2894 hdr->b_flags |= ARC_PREFETCH;
2895 else
2896 add_reference(hdr, hash_lock, private);
2897 if (*arc_flags & ARC_L2CACHE)
2898 hdr->b_flags |= ARC_L2CACHE;
2899 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2900 buf->b_hdr = hdr;
2901 buf->b_data = NULL;
2902 buf->b_efunc = NULL;
2903 buf->b_private = NULL;
2904 buf->b_next = NULL;
2905 hdr->b_buf = buf;
2906 ASSERT(hdr->b_datacnt == 0);
2907 hdr->b_datacnt = 1;
2908 arc_get_data_buf(buf);
2909 arc_access(hdr, hash_lock);
2910 }
2911
2912 ASSERT(!GHOST_STATE(hdr->b_state));
2913
2914 acb = kmem_zalloc(sizeof (arc_callback_t), KM_PUSHPAGE);
2915 acb->acb_done = done;
2916 acb->acb_private = private;
2917
2918 ASSERT(hdr->b_acb == NULL);
2919 hdr->b_acb = acb;
2920 hdr->b_flags |= ARC_IO_IN_PROGRESS;
2921
2922 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2923 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2924 devw = hdr->b_l2hdr->b_dev->l2ad_writing;
2925 addr = hdr->b_l2hdr->b_daddr;
2926 /*
2927 * Lock out device removal.
2928 */
2929 if (vdev_is_dead(vd) ||
2930 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2931 vd = NULL;
2932 }
2933
2934 mutex_exit(hash_lock);
2935
2936 ASSERT3U(hdr->b_size, ==, size);
2937 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
2938 uint64_t, size, zbookmark_t *, zb);
2939 ARCSTAT_BUMP(arcstat_misses);
2940 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2941 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2942 data, metadata, misses);
2943
2944 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
2945 /*
2946 * Read from the L2ARC if the following are true:
2947 * 1. The L2ARC vdev was previously cached.
2948 * 2. This buffer still has L2ARC metadata.
2949 * 3. This buffer isn't currently writing to the L2ARC.
2950 * 4. The L2ARC entry wasn't evicted, which may
2951 * also have invalidated the vdev.
2952 * 5. This isn't prefetch and l2arc_noprefetch is set.
2953 */
2954 if (hdr->b_l2hdr != NULL &&
2955 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
2956 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
2957 l2arc_read_callback_t *cb;
2958
2959 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2960 ARCSTAT_BUMP(arcstat_l2_hits);
2961
2962 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2963 KM_PUSHPAGE);
2964 cb->l2rcb_buf = buf;
2965 cb->l2rcb_spa = spa;
2966 cb->l2rcb_bp = *bp;
2967 cb->l2rcb_zb = *zb;
2968 cb->l2rcb_flags = zio_flags;
2969
2970 /*
2971 * l2arc read. The SCL_L2ARC lock will be
2972 * released by l2arc_read_done().
2973 */
2974 rzio = zio_read_phys(pio, vd, addr, size,
2975 buf->b_data, ZIO_CHECKSUM_OFF,
2976 l2arc_read_done, cb, priority, zio_flags |
2977 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
2978 ZIO_FLAG_DONT_PROPAGATE |
2979 ZIO_FLAG_DONT_RETRY, B_FALSE);
2980 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2981 zio_t *, rzio);
2982 ARCSTAT_INCR(arcstat_l2_read_bytes, size);
2983
2984 if (*arc_flags & ARC_NOWAIT) {
2985 zio_nowait(rzio);
2986 return (0);
2987 }
2988
2989 ASSERT(*arc_flags & ARC_WAIT);
2990 if (zio_wait(rzio) == 0)
2991 return (0);
2992
2993 /* l2arc read error; goto zio_read() */
2994 } else {
2995 DTRACE_PROBE1(l2arc__miss,
2996 arc_buf_hdr_t *, hdr);
2997 ARCSTAT_BUMP(arcstat_l2_misses);
2998 if (HDR_L2_WRITING(hdr))
2999 ARCSTAT_BUMP(arcstat_l2_rw_clash);
3000 spa_config_exit(spa, SCL_L2ARC, vd);
3001 }
3002 } else {
3003 if (vd != NULL)
3004 spa_config_exit(spa, SCL_L2ARC, vd);
3005 if (l2arc_ndev != 0) {
3006 DTRACE_PROBE1(l2arc__miss,
3007 arc_buf_hdr_t *, hdr);
3008 ARCSTAT_BUMP(arcstat_l2_misses);
3009 }
3010 }
3011
3012 rzio = zio_read(pio, spa, bp, buf->b_data, size,
3013 arc_read_done, buf, priority, zio_flags, zb);
3014
3015 if (*arc_flags & ARC_WAIT)
3016 return (zio_wait(rzio));
3017
3018 ASSERT(*arc_flags & ARC_NOWAIT);
3019 zio_nowait(rzio);
3020 }
3021 return (0);
3022 }
3023
3024 void
3025 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3026 {
3027 ASSERT(buf->b_hdr != NULL);
3028 ASSERT(buf->b_hdr->b_state != arc_anon);
3029 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3030 ASSERT(buf->b_efunc == NULL);
3031 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3032
3033 buf->b_efunc = func;
3034 buf->b_private = private;
3035 }
3036
3037 /*
3038 * This is used by the DMU to let the ARC know that a buffer is
3039 * being evicted, so the ARC should clean up. If this arc buf
3040 * is not yet in the evicted state, it will be put there.
3041 */
3042 int
3043 arc_buf_evict(arc_buf_t *buf)
3044 {
3045 arc_buf_hdr_t *hdr;
3046 kmutex_t *hash_lock;
3047 arc_buf_t **bufp;
3048
3049 mutex_enter(&buf->b_evict_lock);
3050 hdr = buf->b_hdr;
3051 if (hdr == NULL) {
3052 /*
3053 * We are in arc_do_user_evicts().
3054 */
3055 ASSERT(buf->b_data == NULL);
3056 mutex_exit(&buf->b_evict_lock);
3057 return (0);
3058 } else if (buf->b_data == NULL) {
3059 arc_buf_t copy = *buf; /* structure assignment */
3060 /*
3061 * We are on the eviction list; process this buffer now
3062 * but let arc_do_user_evicts() do the reaping.
3063 */
3064 buf->b_efunc = NULL;
3065 mutex_exit(&buf->b_evict_lock);
3066 VERIFY(copy.b_efunc(&copy) == 0);
3067 return (1);
3068 }
3069 hash_lock = HDR_LOCK(hdr);
3070 mutex_enter(hash_lock);
3071 hdr = buf->b_hdr;
3072 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3073
3074 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3075 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3076
3077 /*
3078 * Pull this buffer off of the hdr
3079 */
3080 bufp = &hdr->b_buf;
3081 while (*bufp != buf)
3082 bufp = &(*bufp)->b_next;
3083 *bufp = buf->b_next;
3084
3085 ASSERT(buf->b_data != NULL);
3086 arc_buf_destroy(buf, FALSE, FALSE);
3087
3088 if (hdr->b_datacnt == 0) {
3089 arc_state_t *old_state = hdr->b_state;
3090 arc_state_t *evicted_state;
3091
3092 ASSERT(hdr->b_buf == NULL);
3093 ASSERT(refcount_is_zero(&hdr->b_refcnt));
3094
3095 evicted_state =
3096 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3097
3098 mutex_enter(&old_state->arcs_mtx);
3099 mutex_enter(&evicted_state->arcs_mtx);
3100
3101 arc_change_state(evicted_state, hdr, hash_lock);
3102 ASSERT(HDR_IN_HASH_TABLE(hdr));
3103 hdr->b_flags |= ARC_IN_HASH_TABLE;
3104 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3105
3106 mutex_exit(&evicted_state->arcs_mtx);
3107 mutex_exit(&old_state->arcs_mtx);
3108 }
3109 mutex_exit(hash_lock);
3110 mutex_exit(&buf->b_evict_lock);
3111
3112 VERIFY(buf->b_efunc(buf) == 0);
3113 buf->b_efunc = NULL;
3114 buf->b_private = NULL;
3115 buf->b_hdr = NULL;
3116 buf->b_next = NULL;
3117 kmem_cache_free(buf_cache, buf);
3118 return (1);
3119 }
3120
3121 /*
3122 * Release this buffer from the cache. This must be done
3123 * after a read and prior to modifying the buffer contents.
3124 * If the buffer has more than one reference, we must make
3125 * a new hdr for the buffer.
3126 */
3127 void
3128 arc_release(arc_buf_t *buf, void *tag)
3129 {
3130 arc_buf_hdr_t *hdr;
3131 kmutex_t *hash_lock = NULL;
3132 l2arc_buf_hdr_t *l2hdr;
3133 uint64_t buf_size = 0;
3134
3135 /*
3136 * It would be nice to assert that if it's DMU metadata (level >
3137 * 0 || it's the dnode file), then it must be syncing context.
3138 * But we don't know that information at this level.
3139 */
3140
3141 mutex_enter(&buf->b_evict_lock);
3142 hdr = buf->b_hdr;
3143
3144 /* this buffer is not on any list */
3145 ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3146
3147 if (hdr->b_state == arc_anon) {
3148 /* this buffer is already released */
3149 ASSERT(buf->b_efunc == NULL);
3150 } else {
3151 hash_lock = HDR_LOCK(hdr);
3152 mutex_enter(hash_lock);
3153 hdr = buf->b_hdr;
3154 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3155 }
3156
3157 l2hdr = hdr->b_l2hdr;
3158 if (l2hdr) {
3159 mutex_enter(&l2arc_buflist_mtx);
3160 hdr->b_l2hdr = NULL;
3161 buf_size = hdr->b_size;
3162 }
3163
3164 /*
3165 * Do we have more than one buf?
3166 */
3167 if (hdr->b_datacnt > 1) {
3168 arc_buf_hdr_t *nhdr;
3169 arc_buf_t **bufp;
3170 uint64_t blksz = hdr->b_size;
3171 uint64_t spa = hdr->b_spa;
3172 arc_buf_contents_t type = hdr->b_type;
3173 uint32_t flags = hdr->b_flags;
3174
3175 ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3176 /*
3177 * Pull the data off of this hdr and attach it to
3178 * a new anonymous hdr.
3179 */
3180 (void) remove_reference(hdr, hash_lock, tag);
3181 bufp = &hdr->b_buf;
3182 while (*bufp != buf)
3183 bufp = &(*bufp)->b_next;
3184 *bufp = buf->b_next;
3185 buf->b_next = NULL;
3186
3187 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3188 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3189 if (refcount_is_zero(&hdr->b_refcnt)) {
3190 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3191 ASSERT3U(*size, >=, hdr->b_size);
3192 atomic_add_64(size, -hdr->b_size);
3193 }
3194 hdr->b_datacnt -= 1;
3195 arc_cksum_verify(buf);
3196
3197 mutex_exit(hash_lock);
3198
3199 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3200 nhdr->b_size = blksz;
3201 nhdr->b_spa = spa;
3202 nhdr->b_type = type;
3203 nhdr->b_buf = buf;
3204 nhdr->b_state = arc_anon;
3205 nhdr->b_arc_access = 0;
3206 nhdr->b_flags = flags & ARC_L2_WRITING;
3207 nhdr->b_l2hdr = NULL;
3208 nhdr->b_datacnt = 1;
3209 nhdr->b_freeze_cksum = NULL;
3210 (void) refcount_add(&nhdr->b_refcnt, tag);
3211 buf->b_hdr = nhdr;
3212 mutex_exit(&buf->b_evict_lock);
3213 atomic_add_64(&arc_anon->arcs_size, blksz);
3214 } else {
3215 mutex_exit(&buf->b_evict_lock);
3216 ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3217 ASSERT(!list_link_active(&hdr->b_arc_node));
3218 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3219 if (hdr->b_state != arc_anon)
3220 arc_change_state(arc_anon, hdr, hash_lock);
3221 hdr->b_arc_access = 0;
3222 if (hash_lock)
3223 mutex_exit(hash_lock);
3224
3225 buf_discard_identity(hdr);
3226 arc_buf_thaw(buf);
3227 }
3228 buf->b_efunc = NULL;
3229 buf->b_private = NULL;
3230
3231 if (l2hdr) {
3232 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3233 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3234 ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3235 mutex_exit(&l2arc_buflist_mtx);
3236 }
3237 }
3238
3239 /*
3240 * Release this buffer. If it does not match the provided BP, fill it
3241 * with that block's contents.
3242 */
3243 /* ARGSUSED */
3244 int
3245 arc_release_bp(arc_buf_t *buf, void *tag, blkptr_t *bp, spa_t *spa,
3246 zbookmark_t *zb)
3247 {
3248 arc_release(buf, tag);
3249 return (0);
3250 }
3251
3252 int
3253 arc_released(arc_buf_t *buf)
3254 {
3255 int released;
3256
3257 mutex_enter(&buf->b_evict_lock);
3258 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3259 mutex_exit(&buf->b_evict_lock);
3260 return (released);
3261 }
3262
3263 int
3264 arc_has_callback(arc_buf_t *buf)
3265 {
3266 int callback;
3267
3268 mutex_enter(&buf->b_evict_lock);
3269 callback = (buf->b_efunc != NULL);
3270 mutex_exit(&buf->b_evict_lock);
3271 return (callback);
3272 }
3273
3274 #ifdef ZFS_DEBUG
3275 int
3276 arc_referenced(arc_buf_t *buf)
3277 {
3278 int referenced;
3279
3280 mutex_enter(&buf->b_evict_lock);
3281 referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3282 mutex_exit(&buf->b_evict_lock);
3283 return (referenced);
3284 }
3285 #endif
3286
3287 static void
3288 arc_write_ready(zio_t *zio)
3289 {
3290 arc_write_callback_t *callback = zio->io_private;
3291 arc_buf_t *buf = callback->awcb_buf;
3292 arc_buf_hdr_t *hdr = buf->b_hdr;
3293
3294 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3295 callback->awcb_ready(zio, buf, callback->awcb_private);
3296
3297 /*
3298 * If the IO is already in progress, then this is a re-write
3299 * attempt, so we need to thaw and re-compute the cksum.
3300 * It is the responsibility of the callback to handle the
3301 * accounting for any re-write attempt.
3302 */
3303 if (HDR_IO_IN_PROGRESS(hdr)) {
3304 mutex_enter(&hdr->b_freeze_lock);
3305 if (hdr->b_freeze_cksum != NULL) {
3306 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3307 hdr->b_freeze_cksum = NULL;
3308 }
3309 mutex_exit(&hdr->b_freeze_lock);
3310 }
3311 arc_cksum_compute(buf, B_FALSE);
3312 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3313 }
3314
3315 static void
3316 arc_write_done(zio_t *zio)
3317 {
3318 arc_write_callback_t *callback = zio->io_private;
3319 arc_buf_t *buf = callback->awcb_buf;
3320 arc_buf_hdr_t *hdr = buf->b_hdr;
3321
3322 ASSERT(hdr->b_acb == NULL);
3323
3324 if (zio->io_error == 0) {
3325 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3326 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3327 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3328 } else {
3329 ASSERT(BUF_EMPTY(hdr));
3330 }
3331
3332 /*
3333 * If the block to be written was all-zero, we may have
3334 * compressed it away. In this case no write was performed
3335 * so there will be no dva/birth/checksum. The buffer must
3336 * therefore remain anonymous (and uncached).
3337 */
3338 if (!BUF_EMPTY(hdr)) {
3339 arc_buf_hdr_t *exists;
3340 kmutex_t *hash_lock;
3341
3342 ASSERT(zio->io_error == 0);
3343
3344 arc_cksum_verify(buf);
3345
3346 exists = buf_hash_insert(hdr, &hash_lock);
3347 if (exists) {
3348 /*
3349 * This can only happen if we overwrite for
3350 * sync-to-convergence, because we remove
3351 * buffers from the hash table when we arc_free().
3352 */
3353 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3354 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3355 panic("bad overwrite, hdr=%p exists=%p",
3356 (void *)hdr, (void *)exists);
3357 ASSERT(refcount_is_zero(&exists->b_refcnt));
3358 arc_change_state(arc_anon, exists, hash_lock);
3359 mutex_exit(hash_lock);
3360 arc_hdr_destroy(exists);
3361 exists = buf_hash_insert(hdr, &hash_lock);
3362 ASSERT3P(exists, ==, NULL);
3363 } else {
3364 /* Dedup */
3365 ASSERT(hdr->b_datacnt == 1);
3366 ASSERT(hdr->b_state == arc_anon);
3367 ASSERT(BP_GET_DEDUP(zio->io_bp));
3368 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3369 }
3370 }
3371 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3372 /* if it's not anon, we are doing a scrub */
3373 if (!exists && hdr->b_state == arc_anon)
3374 arc_access(hdr, hash_lock);
3375 mutex_exit(hash_lock);
3376 } else {
3377 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3378 }
3379
3380 ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3381 callback->awcb_done(zio, buf, callback->awcb_private);
3382
3383 kmem_free(callback, sizeof (arc_write_callback_t));
3384 }
3385
3386 zio_t *
3387 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3388 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3389 arc_done_func_t *ready, arc_done_func_t *done, void *private,
3390 int priority, int zio_flags, const zbookmark_t *zb)
3391 {
3392 arc_buf_hdr_t *hdr = buf->b_hdr;
3393 arc_write_callback_t *callback;
3394 zio_t *zio;
3395
3396 ASSERT(ready != NULL);
3397 ASSERT(done != NULL);
3398 ASSERT(!HDR_IO_ERROR(hdr));
3399 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3400 ASSERT(hdr->b_acb == NULL);
3401 if (l2arc)
3402 hdr->b_flags |= ARC_L2CACHE;
3403 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3404 callback->awcb_ready = ready;
3405 callback->awcb_done = done;
3406 callback->awcb_private = private;
3407 callback->awcb_buf = buf;
3408
3409 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3410 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3411
3412 return (zio);
3413 }
3414
3415 static int
3416 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3417 {
3418 #ifdef _KERNEL
3419 uint64_t available_memory = ptob(freemem);
3420 static uint64_t page_load = 0;
3421 static uint64_t last_txg = 0;
3422
3423 #if defined(__i386)
3424 available_memory =
3425 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3426 #endif
3427 if (available_memory >= zfs_write_limit_max)
3428 return (0);
3429
3430 if (txg > last_txg) {
3431 last_txg = txg;
3432 page_load = 0;
3433 }
3434 /*
3435 * If we are in pageout, we know that memory is already tight,
3436 * the arc is already going to be evicting, so we just want to
3437 * continue to let page writes occur as quickly as possible.
3438 */
3439 if (curproc == proc_pageout) {
3440 if (page_load > MAX(ptob(minfree), available_memory) / 4)
3441 return (ERESTART);
3442 /* Note: reserve is inflated, so we deflate */
3443 page_load += reserve / 8;
3444 return (0);
3445 } else if (page_load > 0 && arc_reclaim_needed()) {
3446 /* memory is low, delay before restarting */
3447 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3448 return (EAGAIN);
3449 }
3450 page_load = 0;
3451
3452 if (arc_size > arc_c_min) {
3453 uint64_t evictable_memory =
3454 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3455 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3456 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3457 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3458 available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3459 }
3460
3461 if (inflight_data > available_memory / 4) {
3462 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3463 return (ERESTART);
3464 }
3465 #endif
3466 return (0);
3467 }
3468
3469 void
3470 arc_tempreserve_clear(uint64_t reserve)
3471 {
3472 atomic_add_64(&arc_tempreserve, -reserve);
3473 ASSERT((int64_t)arc_tempreserve >= 0);
3474 }
3475
3476 int
3477 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3478 {
3479 int error;
3480 uint64_t anon_size;
3481
3482 #ifdef ZFS_DEBUG
3483 /*
3484 * Once in a while, fail for no reason. Everything should cope.
3485 */
3486 if (spa_get_random(10000) == 0) {
3487 dprintf("forcing random failure\n");
3488 return (ERESTART);
3489 }
3490 #endif
3491 if (reserve > arc_c/4 && !arc_no_grow)
3492 arc_c = MIN(arc_c_max, reserve * 4);
3493 if (reserve > arc_c)
3494 return (ENOMEM);
3495
3496 /*
3497 * Don't count loaned bufs as in flight dirty data to prevent long
3498 * network delays from blocking transactions that are ready to be
3499 * assigned to a txg.
3500 */
3501 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3502
3503 /*
3504 * Writes will, almost always, require additional memory allocations
3505 * in order to compress/encrypt/etc the data. We therefor need to
3506 * make sure that there is sufficient available memory for this.
3507 */
3508 if ((error = arc_memory_throttle(reserve, anon_size, txg)))
3509 return (error);
3510
3511 /*
3512 * Throttle writes when the amount of dirty data in the cache
3513 * gets too large. We try to keep the cache less than half full
3514 * of dirty blocks so that our sync times don't grow too large.
3515 * Note: if two requests come in concurrently, we might let them
3516 * both succeed, when one of them should fail. Not a huge deal.
3517 */
3518
3519 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3520 anon_size > arc_c / 4) {
3521 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3522 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3523 arc_tempreserve>>10,
3524 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3525 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3526 reserve>>10, arc_c>>10);
3527 return (ERESTART);
3528 }
3529 atomic_add_64(&arc_tempreserve, reserve);
3530 return (0);
3531 }
3532
3533 void
3534 arc_init(void)
3535 {
3536 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3537 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3538
3539 /* Convert seconds to clock ticks */
3540 arc_min_prefetch_lifespan = 1 * hz;
3541
3542 /* Start out with 1/8 of all memory */
3543 arc_c = physmem * PAGESIZE / 8;
3544
3545 #ifdef _KERNEL
3546 /*
3547 * On architectures where the physical memory can be larger
3548 * than the addressable space (intel in 32-bit mode), we may
3549 * need to limit the cache to 1/8 of VM size.
3550 */
3551 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3552 /*
3553 * Register a shrinker to support synchronous (direct) memory
3554 * reclaim from the arc. This is done to prevent kswapd from
3555 * swapping out pages when it is preferable to shrink the arc.
3556 */
3557 spl_register_shrinker(&arc_shrinker);
3558 #endif
3559
3560 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3561 arc_c_min = MAX(arc_c / 4, 64<<20);
3562 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3563 if (arc_c * 8 >= 1<<30)
3564 arc_c_max = (arc_c * 8) - (1<<30);
3565 else
3566 arc_c_max = arc_c_min;
3567 arc_c_max = MAX(arc_c * 6, arc_c_max);
3568
3569 /*
3570 * Allow the tunables to override our calculations if they are
3571 * reasonable (ie. over 64MB)
3572 */
3573 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3574 arc_c_max = zfs_arc_max;
3575 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3576 arc_c_min = zfs_arc_min;
3577
3578 arc_c = arc_c_max;
3579 arc_p = (arc_c >> 1);
3580
3581 /* limit meta-data to 1/4 of the arc capacity */
3582 arc_meta_limit = arc_c_max / 4;
3583 arc_meta_max = 0;
3584
3585 /* Allow the tunable to override if it is reasonable */
3586 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3587 arc_meta_limit = zfs_arc_meta_limit;
3588
3589 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3590 arc_c_min = arc_meta_limit / 2;
3591
3592 if (zfs_arc_grow_retry > 0)
3593 arc_grow_retry = zfs_arc_grow_retry;
3594
3595 if (zfs_arc_shrink_shift > 0)
3596 arc_shrink_shift = zfs_arc_shrink_shift;
3597
3598 if (zfs_arc_p_min_shift > 0)
3599 arc_p_min_shift = zfs_arc_p_min_shift;
3600
3601 if (zfs_arc_reduce_dnlc_percent > 0)
3602 arc_reduce_dnlc_percent = zfs_arc_reduce_dnlc_percent;
3603
3604 /* if kmem_flags are set, lets try to use less memory */
3605 if (kmem_debugging())
3606 arc_c = arc_c / 2;
3607 if (arc_c < arc_c_min)
3608 arc_c = arc_c_min;
3609
3610 arc_anon = &ARC_anon;
3611 arc_mru = &ARC_mru;
3612 arc_mru_ghost = &ARC_mru_ghost;
3613 arc_mfu = &ARC_mfu;
3614 arc_mfu_ghost = &ARC_mfu_ghost;
3615 arc_l2c_only = &ARC_l2c_only;
3616 arc_size = 0;
3617
3618 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3619 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3620 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3621 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3622 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3623 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3624
3625 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3626 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3627 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3628 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3629 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3630 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3631 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3632 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3633 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3634 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3635 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3636 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3637 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3638 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3639 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3640 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3641 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3642 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3643 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3644 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3645
3646 buf_init();
3647
3648 arc_thread_exit = 0;
3649 arc_eviction_list = NULL;
3650 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3651 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3652
3653 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3654 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3655
3656 if (arc_ksp != NULL) {
3657 arc_ksp->ks_data = &arc_stats;
3658 kstat_install(arc_ksp);
3659 }
3660
3661 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3662 TS_RUN, minclsyspri);
3663
3664 arc_dead = FALSE;
3665 arc_warm = B_FALSE;
3666
3667 if (zfs_write_limit_max == 0)
3668 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3669 else
3670 zfs_write_limit_shift = 0;
3671 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3672 }
3673
3674 void
3675 arc_fini(void)
3676 {
3677 mutex_enter(&arc_reclaim_thr_lock);
3678 #ifdef _KERNEL
3679 spl_unregister_shrinker(&arc_shrinker);
3680 #endif /* _KERNEL */
3681
3682 arc_thread_exit = 1;
3683 while (arc_thread_exit != 0)
3684 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3685 mutex_exit(&arc_reclaim_thr_lock);
3686
3687 arc_flush(NULL);
3688
3689 arc_dead = TRUE;
3690
3691 if (arc_ksp != NULL) {
3692 kstat_delete(arc_ksp);
3693 arc_ksp = NULL;
3694 }
3695
3696 mutex_destroy(&arc_eviction_mtx);
3697 mutex_destroy(&arc_reclaim_thr_lock);
3698 cv_destroy(&arc_reclaim_thr_cv);
3699
3700 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3701 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3702 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3703 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3704 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3705 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3706 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3707 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3708
3709 mutex_destroy(&arc_anon->arcs_mtx);
3710 mutex_destroy(&arc_mru->arcs_mtx);
3711 mutex_destroy(&arc_mru_ghost->arcs_mtx);
3712 mutex_destroy(&arc_mfu->arcs_mtx);
3713 mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3714 mutex_destroy(&arc_l2c_only->arcs_mtx);
3715
3716 mutex_destroy(&zfs_write_limit_lock);
3717
3718 buf_fini();
3719
3720 ASSERT(arc_loaned_bytes == 0);
3721 }
3722
3723 /*
3724 * Level 2 ARC
3725 *
3726 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3727 * It uses dedicated storage devices to hold cached data, which are populated
3728 * using large infrequent writes. The main role of this cache is to boost
3729 * the performance of random read workloads. The intended L2ARC devices
3730 * include short-stroked disks, solid state disks, and other media with
3731 * substantially faster read latency than disk.
3732 *
3733 * +-----------------------+
3734 * | ARC |
3735 * +-----------------------+
3736 * | ^ ^
3737 * | | |
3738 * l2arc_feed_thread() arc_read()
3739 * | | |
3740 * | l2arc read |
3741 * V | |
3742 * +---------------+ |
3743 * | L2ARC | |
3744 * +---------------+ |
3745 * | ^ |
3746 * l2arc_write() | |
3747 * | | |
3748 * V | |
3749 * +-------+ +-------+
3750 * | vdev | | vdev |
3751 * | cache | | cache |
3752 * +-------+ +-------+
3753 * +=========+ .-----.
3754 * : L2ARC : |-_____-|
3755 * : devices : | Disks |
3756 * +=========+ `-_____-'
3757 *
3758 * Read requests are satisfied from the following sources, in order:
3759 *
3760 * 1) ARC
3761 * 2) vdev cache of L2ARC devices
3762 * 3) L2ARC devices
3763 * 4) vdev cache of disks
3764 * 5) disks
3765 *
3766 * Some L2ARC device types exhibit extremely slow write performance.
3767 * To accommodate for this there are some significant differences between
3768 * the L2ARC and traditional cache design:
3769 *
3770 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
3771 * the ARC behave as usual, freeing buffers and placing headers on ghost
3772 * lists. The ARC does not send buffers to the L2ARC during eviction as
3773 * this would add inflated write latencies for all ARC memory pressure.
3774 *
3775 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3776 * It does this by periodically scanning buffers from the eviction-end of
3777 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3778 * not already there. It scans until a headroom of buffers is satisfied,
3779 * which itself is a buffer for ARC eviction. The thread that does this is
3780 * l2arc_feed_thread(), illustrated below; example sizes are included to
3781 * provide a better sense of ratio than this diagram:
3782 *
3783 * head --> tail
3784 * +---------------------+----------+
3785 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
3786 * +---------------------+----------+ | o L2ARC eligible
3787 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
3788 * +---------------------+----------+ |
3789 * 15.9 Gbytes ^ 32 Mbytes |
3790 * headroom |
3791 * l2arc_feed_thread()
3792 * |
3793 * l2arc write hand <--[oooo]--'
3794 * | 8 Mbyte
3795 * | write max
3796 * V
3797 * +==============================+
3798 * L2ARC dev |####|#|###|###| |####| ... |
3799 * +==============================+
3800 * 32 Gbytes
3801 *
3802 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3803 * evicted, then the L2ARC has cached a buffer much sooner than it probably
3804 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
3805 * safe to say that this is an uncommon case, since buffers at the end of
3806 * the ARC lists have moved there due to inactivity.
3807 *
3808 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3809 * then the L2ARC simply misses copying some buffers. This serves as a
3810 * pressure valve to prevent heavy read workloads from both stalling the ARC
3811 * with waits and clogging the L2ARC with writes. This also helps prevent
3812 * the potential for the L2ARC to churn if it attempts to cache content too
3813 * quickly, such as during backups of the entire pool.
3814 *
3815 * 5. After system boot and before the ARC has filled main memory, there are
3816 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3817 * lists can remain mostly static. Instead of searching from tail of these
3818 * lists as pictured, the l2arc_feed_thread() will search from the list heads
3819 * for eligible buffers, greatly increasing its chance of finding them.
3820 *
3821 * The L2ARC device write speed is also boosted during this time so that
3822 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
3823 * there are no L2ARC reads, and no fear of degrading read performance
3824 * through increased writes.
3825 *
3826 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3827 * the vdev queue can aggregate them into larger and fewer writes. Each
3828 * device is written to in a rotor fashion, sweeping writes through
3829 * available space then repeating.
3830 *
3831 * 7. The L2ARC does not store dirty content. It never needs to flush
3832 * write buffers back to disk based storage.
3833 *
3834 * 8. If an ARC buffer is written (and dirtied) which also exists in the
3835 * L2ARC, the now stale L2ARC buffer is immediately dropped.
3836 *
3837 * The performance of the L2ARC can be tweaked by a number of tunables, which
3838 * may be necessary for different workloads:
3839 *
3840 * l2arc_write_max max write bytes per interval
3841 * l2arc_write_boost extra write bytes during device warmup
3842 * l2arc_noprefetch skip caching prefetched buffers
3843 * l2arc_headroom number of max device writes to precache
3844 * l2arc_feed_secs seconds between L2ARC writing
3845 *
3846 * Tunables may be removed or added as future performance improvements are
3847 * integrated, and also may become zpool properties.
3848 *
3849 * There are three key functions that control how the L2ARC warms up:
3850 *
3851 * l2arc_write_eligible() check if a buffer is eligible to cache
3852 * l2arc_write_size() calculate how much to write
3853 * l2arc_write_interval() calculate sleep delay between writes
3854 *
3855 * These three functions determine what to write, how much, and how quickly
3856 * to send writes.
3857 */
3858
3859 static boolean_t
3860 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
3861 {
3862 /*
3863 * A buffer is *not* eligible for the L2ARC if it:
3864 * 1. belongs to a different spa.
3865 * 2. is already cached on the L2ARC.
3866 * 3. has an I/O in progress (it may be an incomplete read).
3867 * 4. is flagged not eligible (zfs property).
3868 */
3869 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
3870 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
3871 return (B_FALSE);
3872
3873 return (B_TRUE);
3874 }
3875
3876 static uint64_t
3877 l2arc_write_size(l2arc_dev_t *dev)
3878 {
3879 uint64_t size;
3880
3881 size = dev->l2ad_write;
3882
3883 if (arc_warm == B_FALSE)
3884 size += dev->l2ad_boost;
3885
3886 return (size);
3887
3888 }
3889
3890 static clock_t
3891 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
3892 {
3893 clock_t interval, next, now;
3894
3895 /*
3896 * If the ARC lists are busy, increase our write rate; if the
3897 * lists are stale, idle back. This is achieved by checking
3898 * how much we previously wrote - if it was more than half of
3899 * what we wanted, schedule the next write much sooner.
3900 */
3901 if (l2arc_feed_again && wrote > (wanted / 2))
3902 interval = (hz * l2arc_feed_min_ms) / 1000;
3903 else
3904 interval = hz * l2arc_feed_secs;
3905
3906 now = ddi_get_lbolt();
3907 next = MAX(now, MIN(now + interval, began + interval));
3908
3909 return (next);
3910 }
3911
3912 static void
3913 l2arc_hdr_stat_add(void)
3914 {
3915 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3916 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3917 }
3918
3919 static void
3920 l2arc_hdr_stat_remove(void)
3921 {
3922 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3923 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3924 }
3925
3926 /*
3927 * Cycle through L2ARC devices. This is how L2ARC load balances.
3928 * If a device is returned, this also returns holding the spa config lock.
3929 */
3930 static l2arc_dev_t *
3931 l2arc_dev_get_next(void)
3932 {
3933 l2arc_dev_t *first, *next = NULL;
3934
3935 /*
3936 * Lock out the removal of spas (spa_namespace_lock), then removal
3937 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
3938 * both locks will be dropped and a spa config lock held instead.
3939 */
3940 mutex_enter(&spa_namespace_lock);
3941 mutex_enter(&l2arc_dev_mtx);
3942
3943 /* if there are no vdevs, there is nothing to do */
3944 if (l2arc_ndev == 0)
3945 goto out;
3946
3947 first = NULL;
3948 next = l2arc_dev_last;
3949 do {
3950 /* loop around the list looking for a non-faulted vdev */
3951 if (next == NULL) {
3952 next = list_head(l2arc_dev_list);
3953 } else {
3954 next = list_next(l2arc_dev_list, next);
3955 if (next == NULL)
3956 next = list_head(l2arc_dev_list);
3957 }
3958
3959 /* if we have come back to the start, bail out */
3960 if (first == NULL)
3961 first = next;
3962 else if (next == first)
3963 break;
3964
3965 } while (vdev_is_dead(next->l2ad_vdev));
3966
3967 /* if we were unable to find any usable vdevs, return NULL */
3968 if (vdev_is_dead(next->l2ad_vdev))
3969 next = NULL;
3970
3971 l2arc_dev_last = next;
3972
3973 out:
3974 mutex_exit(&l2arc_dev_mtx);
3975
3976 /*
3977 * Grab the config lock to prevent the 'next' device from being
3978 * removed while we are writing to it.
3979 */
3980 if (next != NULL)
3981 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
3982 mutex_exit(&spa_namespace_lock);
3983
3984 return (next);
3985 }
3986
3987 /*
3988 * Free buffers that were tagged for destruction.
3989 */
3990 static void
3991 l2arc_do_free_on_write(void)
3992 {
3993 list_t *buflist;
3994 l2arc_data_free_t *df, *df_prev;
3995
3996 mutex_enter(&l2arc_free_on_write_mtx);
3997 buflist = l2arc_free_on_write;
3998
3999 for (df = list_tail(buflist); df; df = df_prev) {
4000 df_prev = list_prev(buflist, df);
4001 ASSERT(df->l2df_data != NULL);
4002 ASSERT(df->l2df_func != NULL);
4003 df->l2df_func(df->l2df_data, df->l2df_size);
4004 list_remove(buflist, df);
4005 kmem_free(df, sizeof (l2arc_data_free_t));
4006 }
4007
4008 mutex_exit(&l2arc_free_on_write_mtx);
4009 }
4010
4011 /*
4012 * A write to a cache device has completed. Update all headers to allow
4013 * reads from these buffers to begin.
4014 */
4015 static void
4016 l2arc_write_done(zio_t *zio)
4017 {
4018 l2arc_write_callback_t *cb;
4019 l2arc_dev_t *dev;
4020 list_t *buflist;
4021 arc_buf_hdr_t *head, *ab, *ab_prev;
4022 l2arc_buf_hdr_t *abl2;
4023 kmutex_t *hash_lock;
4024
4025 cb = zio->io_private;
4026 ASSERT(cb != NULL);
4027 dev = cb->l2wcb_dev;
4028 ASSERT(dev != NULL);
4029 head = cb->l2wcb_head;
4030 ASSERT(head != NULL);
4031 buflist = dev->l2ad_buflist;
4032 ASSERT(buflist != NULL);
4033 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4034 l2arc_write_callback_t *, cb);
4035
4036 if (zio->io_error != 0)
4037 ARCSTAT_BUMP(arcstat_l2_writes_error);
4038
4039 mutex_enter(&l2arc_buflist_mtx);
4040
4041 /*
4042 * All writes completed, or an error was hit.
4043 */
4044 for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4045 ab_prev = list_prev(buflist, ab);
4046
4047 hash_lock = HDR_LOCK(ab);
4048 if (!mutex_tryenter(hash_lock)) {
4049 /*
4050 * This buffer misses out. It may be in a stage
4051 * of eviction. Its ARC_L2_WRITING flag will be
4052 * left set, denying reads to this buffer.
4053 */
4054 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4055 continue;
4056 }
4057
4058 if (zio->io_error != 0) {
4059 /*
4060 * Error - drop L2ARC entry.
4061 */
4062 list_remove(buflist, ab);
4063 abl2 = ab->b_l2hdr;
4064 ab->b_l2hdr = NULL;
4065 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4066 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4067 }
4068
4069 /*
4070 * Allow ARC to begin reads to this L2ARC entry.
4071 */
4072 ab->b_flags &= ~ARC_L2_WRITING;
4073
4074 mutex_exit(hash_lock);
4075 }
4076
4077 atomic_inc_64(&l2arc_writes_done);
4078 list_remove(buflist, head);
4079 kmem_cache_free(hdr_cache, head);
4080 mutex_exit(&l2arc_buflist_mtx);
4081
4082 l2arc_do_free_on_write();
4083
4084 kmem_free(cb, sizeof (l2arc_write_callback_t));
4085 }
4086
4087 /*
4088 * A read to a cache device completed. Validate buffer contents before
4089 * handing over to the regular ARC routines.
4090 */
4091 static void
4092 l2arc_read_done(zio_t *zio)
4093 {
4094 l2arc_read_callback_t *cb;
4095 arc_buf_hdr_t *hdr;
4096 arc_buf_t *buf;
4097 kmutex_t *hash_lock;
4098 int equal;
4099
4100 ASSERT(zio->io_vd != NULL);
4101 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4102
4103 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4104
4105 cb = zio->io_private;
4106 ASSERT(cb != NULL);
4107 buf = cb->l2rcb_buf;
4108 ASSERT(buf != NULL);
4109
4110 hash_lock = HDR_LOCK(buf->b_hdr);
4111 mutex_enter(hash_lock);
4112 hdr = buf->b_hdr;
4113 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4114
4115 /*
4116 * Check this survived the L2ARC journey.
4117 */
4118 equal = arc_cksum_equal(buf);
4119 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4120 mutex_exit(hash_lock);
4121 zio->io_private = buf;
4122 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
4123 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
4124 arc_read_done(zio);
4125 } else {
4126 mutex_exit(hash_lock);
4127 /*
4128 * Buffer didn't survive caching. Increment stats and
4129 * reissue to the original storage device.
4130 */
4131 if (zio->io_error != 0) {
4132 ARCSTAT_BUMP(arcstat_l2_io_error);
4133 } else {
4134 zio->io_error = EIO;
4135 }
4136 if (!equal)
4137 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4138
4139 /*
4140 * If there's no waiter, issue an async i/o to the primary
4141 * storage now. If there *is* a waiter, the caller must
4142 * issue the i/o in a context where it's OK to block.
4143 */
4144 if (zio->io_waiter == NULL) {
4145 zio_t *pio = zio_unique_parent(zio);
4146
4147 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4148
4149 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4150 buf->b_data, zio->io_size, arc_read_done, buf,
4151 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4152 }
4153 }
4154
4155 kmem_free(cb, sizeof (l2arc_read_callback_t));
4156 }
4157
4158 /*
4159 * This is the list priority from which the L2ARC will search for pages to
4160 * cache. This is used within loops (0..3) to cycle through lists in the
4161 * desired order. This order can have a significant effect on cache
4162 * performance.
4163 *
4164 * Currently the metadata lists are hit first, MFU then MRU, followed by
4165 * the data lists. This function returns a locked list, and also returns
4166 * the lock pointer.
4167 */
4168 static list_t *
4169 l2arc_list_locked(int list_num, kmutex_t **lock)
4170 {
4171 list_t *list = NULL;
4172
4173 ASSERT(list_num >= 0 && list_num <= 3);
4174
4175 switch (list_num) {
4176 case 0:
4177 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4178 *lock = &arc_mfu->arcs_mtx;
4179 break;
4180 case 1:
4181 list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4182 *lock = &arc_mru->arcs_mtx;
4183 break;
4184 case 2:
4185 list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4186 *lock = &arc_mfu->arcs_mtx;
4187 break;
4188 case 3:
4189 list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4190 *lock = &arc_mru->arcs_mtx;
4191 break;
4192 }
4193
4194 ASSERT(!(MUTEX_HELD(*lock)));
4195 mutex_enter(*lock);
4196 return (list);
4197 }
4198
4199 /*
4200 * Evict buffers from the device write hand to the distance specified in
4201 * bytes. This distance may span populated buffers, it may span nothing.
4202 * This is clearing a region on the L2ARC device ready for writing.
4203 * If the 'all' boolean is set, every buffer is evicted.
4204 */
4205 static void
4206 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4207 {
4208 list_t *buflist;
4209 l2arc_buf_hdr_t *abl2;
4210 arc_buf_hdr_t *ab, *ab_prev;
4211 kmutex_t *hash_lock;
4212 uint64_t taddr;
4213
4214 buflist = dev->l2ad_buflist;
4215
4216 if (buflist == NULL)
4217 return;
4218
4219 if (!all && dev->l2ad_first) {
4220 /*
4221 * This is the first sweep through the device. There is
4222 * nothing to evict.
4223 */
4224 return;
4225 }
4226
4227 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4228 /*
4229 * When nearing the end of the device, evict to the end
4230 * before the device write hand jumps to the start.
4231 */
4232 taddr = dev->l2ad_end;
4233 } else {
4234 taddr = dev->l2ad_hand + distance;
4235 }
4236 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4237 uint64_t, taddr, boolean_t, all);
4238
4239 top:
4240 mutex_enter(&l2arc_buflist_mtx);
4241 for (ab = list_tail(buflist); ab; ab = ab_prev) {
4242 ab_prev = list_prev(buflist, ab);
4243
4244 hash_lock = HDR_LOCK(ab);
4245 if (!mutex_tryenter(hash_lock)) {
4246 /*
4247 * Missed the hash lock. Retry.
4248 */
4249 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4250 mutex_exit(&l2arc_buflist_mtx);
4251 mutex_enter(hash_lock);
4252 mutex_exit(hash_lock);
4253 goto top;
4254 }
4255
4256 if (HDR_L2_WRITE_HEAD(ab)) {
4257 /*
4258 * We hit a write head node. Leave it for
4259 * l2arc_write_done().
4260 */
4261 list_remove(buflist, ab);
4262 mutex_exit(hash_lock);
4263 continue;
4264 }
4265
4266 if (!all && ab->b_l2hdr != NULL &&
4267 (ab->b_l2hdr->b_daddr > taddr ||
4268 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4269 /*
4270 * We've evicted to the target address,
4271 * or the end of the device.
4272 */
4273 mutex_exit(hash_lock);
4274 break;
4275 }
4276
4277 if (HDR_FREE_IN_PROGRESS(ab)) {
4278 /*
4279 * Already on the path to destruction.
4280 */
4281 mutex_exit(hash_lock);
4282 continue;
4283 }
4284
4285 if (ab->b_state == arc_l2c_only) {
4286 ASSERT(!HDR_L2_READING(ab));
4287 /*
4288 * This doesn't exist in the ARC. Destroy.
4289 * arc_hdr_destroy() will call list_remove()
4290 * and decrement arcstat_l2_size.
4291 */
4292 arc_change_state(arc_anon, ab, hash_lock);
4293 arc_hdr_destroy(ab);
4294 } else {
4295 /*
4296 * Invalidate issued or about to be issued
4297 * reads, since we may be about to write
4298 * over this location.
4299 */
4300 if (HDR_L2_READING(ab)) {
4301 ARCSTAT_BUMP(arcstat_l2_evict_reading);
4302 ab->b_flags |= ARC_L2_EVICTED;
4303 }
4304
4305 /*
4306 * Tell ARC this no longer exists in L2ARC.
4307 */
4308 if (ab->b_l2hdr != NULL) {
4309 abl2 = ab->b_l2hdr;
4310 ab->b_l2hdr = NULL;
4311 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4312 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4313 }
4314 list_remove(buflist, ab);
4315
4316 /*
4317 * This may have been leftover after a
4318 * failed write.
4319 */
4320 ab->b_flags &= ~ARC_L2_WRITING;
4321 }
4322 mutex_exit(hash_lock);
4323 }
4324 mutex_exit(&l2arc_buflist_mtx);
4325
4326 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4327 dev->l2ad_evict = taddr;
4328 }
4329
4330 /*
4331 * Find and write ARC buffers to the L2ARC device.
4332 *
4333 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4334 * for reading until they have completed writing.
4335 */
4336 static uint64_t
4337 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4338 {
4339 arc_buf_hdr_t *ab, *ab_prev, *head;
4340 l2arc_buf_hdr_t *hdrl2;
4341 list_t *list;
4342 uint64_t passed_sz, write_sz, buf_sz, headroom;
4343 void *buf_data;
4344 kmutex_t *hash_lock, *list_lock = NULL;
4345 boolean_t have_lock, full;
4346 l2arc_write_callback_t *cb;
4347 zio_t *pio, *wzio;
4348 uint64_t guid = spa_guid(spa);
4349 int try;
4350
4351 ASSERT(dev->l2ad_vdev != NULL);
4352
4353 pio = NULL;
4354 write_sz = 0;
4355 full = B_FALSE;
4356 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4357 head->b_flags |= ARC_L2_WRITE_HEAD;
4358
4359 /*
4360 * Copy buffers for L2ARC writing.
4361 */
4362 mutex_enter(&l2arc_buflist_mtx);
4363 for (try = 0; try <= 3; try++) {
4364 list = l2arc_list_locked(try, &list_lock);
4365 passed_sz = 0;
4366
4367 /*
4368 * L2ARC fast warmup.
4369 *
4370 * Until the ARC is warm and starts to evict, read from the
4371 * head of the ARC lists rather than the tail.
4372 */
4373 headroom = target_sz * l2arc_headroom;
4374 if (arc_warm == B_FALSE)
4375 ab = list_head(list);
4376 else
4377 ab = list_tail(list);
4378
4379 for (; ab; ab = ab_prev) {
4380 if (arc_warm == B_FALSE)
4381 ab_prev = list_next(list, ab);
4382 else
4383 ab_prev = list_prev(list, ab);
4384
4385 hash_lock = HDR_LOCK(ab);
4386 have_lock = MUTEX_HELD(hash_lock);
4387 if (!have_lock && !mutex_tryenter(hash_lock)) {
4388 /*
4389 * Skip this buffer rather than waiting.
4390 */
4391 continue;
4392 }
4393
4394 passed_sz += ab->b_size;
4395 if (passed_sz > headroom) {
4396 /*
4397 * Searched too far.
4398 */
4399 mutex_exit(hash_lock);
4400 break;
4401 }
4402
4403 if (!l2arc_write_eligible(guid, ab)) {
4404 mutex_exit(hash_lock);
4405 continue;
4406 }
4407
4408 if ((write_sz + ab->b_size) > target_sz) {
4409 full = B_TRUE;
4410 mutex_exit(hash_lock);
4411 break;
4412 }
4413
4414 if (pio == NULL) {
4415 /*
4416 * Insert a dummy header on the buflist so
4417 * l2arc_write_done() can find where the
4418 * write buffers begin without searching.
4419 */
4420 list_insert_head(dev->l2ad_buflist, head);
4421
4422 cb = kmem_alloc(
4423 sizeof (l2arc_write_callback_t), KM_SLEEP);
4424 cb->l2wcb_dev = dev;
4425 cb->l2wcb_head = head;
4426 pio = zio_root(spa, l2arc_write_done, cb,
4427 ZIO_FLAG_CANFAIL);
4428 }
4429
4430 /*
4431 * Create and add a new L2ARC header.
4432 */
4433 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4434 hdrl2->b_dev = dev;
4435 hdrl2->b_daddr = dev->l2ad_hand;
4436
4437 ab->b_flags |= ARC_L2_WRITING;
4438 ab->b_l2hdr = hdrl2;
4439 list_insert_head(dev->l2ad_buflist, ab);
4440 buf_data = ab->b_buf->b_data;
4441 buf_sz = ab->b_size;
4442
4443 /*
4444 * Compute and store the buffer cksum before
4445 * writing. On debug the cksum is verified first.
4446 */
4447 arc_cksum_verify(ab->b_buf);
4448 arc_cksum_compute(ab->b_buf, B_TRUE);
4449
4450 mutex_exit(hash_lock);
4451
4452 wzio = zio_write_phys(pio, dev->l2ad_vdev,
4453 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4454 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4455 ZIO_FLAG_CANFAIL, B_FALSE);
4456
4457 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4458 zio_t *, wzio);
4459 (void) zio_nowait(wzio);
4460
4461 /*
4462 * Keep the clock hand suitably device-aligned.
4463 */
4464 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4465
4466 write_sz += buf_sz;
4467 dev->l2ad_hand += buf_sz;
4468 }
4469
4470 mutex_exit(list_lock);
4471
4472 if (full == B_TRUE)
4473 break;
4474 }
4475 mutex_exit(&l2arc_buflist_mtx);
4476
4477 if (pio == NULL) {
4478 ASSERT3U(write_sz, ==, 0);
4479 kmem_cache_free(hdr_cache, head);
4480 return (0);
4481 }
4482
4483 ASSERT3U(write_sz, <=, target_sz);
4484 ARCSTAT_BUMP(arcstat_l2_writes_sent);
4485 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4486 ARCSTAT_INCR(arcstat_l2_size, write_sz);
4487 vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);
4488
4489 /*
4490 * Bump device hand to the device start if it is approaching the end.
4491 * l2arc_evict() will already have evicted ahead for this case.
4492 */
4493 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4494 vdev_space_update(dev->l2ad_vdev,
4495 dev->l2ad_end - dev->l2ad_hand, 0, 0);
4496 dev->l2ad_hand = dev->l2ad_start;
4497 dev->l2ad_evict = dev->l2ad_start;
4498 dev->l2ad_first = B_FALSE;
4499 }
4500
4501 dev->l2ad_writing = B_TRUE;
4502 (void) zio_wait(pio);
4503 dev->l2ad_writing = B_FALSE;
4504
4505 return (write_sz);
4506 }
4507
4508 /*
4509 * This thread feeds the L2ARC at regular intervals. This is the beating
4510 * heart of the L2ARC.
4511 */
4512 static void
4513 l2arc_feed_thread(void)
4514 {
4515 callb_cpr_t cpr;
4516 l2arc_dev_t *dev;
4517 spa_t *spa;
4518 uint64_t size, wrote;
4519 clock_t begin, next = ddi_get_lbolt();
4520
4521 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4522
4523 mutex_enter(&l2arc_feed_thr_lock);
4524
4525 while (l2arc_thread_exit == 0) {
4526 CALLB_CPR_SAFE_BEGIN(&cpr);
4527 (void) cv_timedwait_interruptible(&l2arc_feed_thr_cv,
4528 &l2arc_feed_thr_lock, next);
4529 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4530 next = ddi_get_lbolt() + hz;
4531
4532 /*
4533 * Quick check for L2ARC devices.
4534 */
4535 mutex_enter(&l2arc_dev_mtx);
4536 if (l2arc_ndev == 0) {
4537 mutex_exit(&l2arc_dev_mtx);
4538 continue;
4539 }
4540 mutex_exit(&l2arc_dev_mtx);
4541 begin = ddi_get_lbolt();
4542
4543 /*
4544 * This selects the next l2arc device to write to, and in
4545 * doing so the next spa to feed from: dev->l2ad_spa. This
4546 * will return NULL if there are now no l2arc devices or if
4547 * they are all faulted.
4548 *
4549 * If a device is returned, its spa's config lock is also
4550 * held to prevent device removal. l2arc_dev_get_next()
4551 * will grab and release l2arc_dev_mtx.
4552 */
4553 if ((dev = l2arc_dev_get_next()) == NULL)
4554 continue;
4555
4556 spa = dev->l2ad_spa;
4557 ASSERT(spa != NULL);
4558
4559 /*
4560 * If the pool is read-only then force the feed thread to
4561 * sleep a little longer.
4562 */
4563 if (!spa_writeable(spa)) {
4564 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
4565 spa_config_exit(spa, SCL_L2ARC, dev);
4566 continue;
4567 }
4568
4569 /*
4570 * Avoid contributing to memory pressure.
4571 */
4572 if (arc_reclaim_needed()) {
4573 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4574 spa_config_exit(spa, SCL_L2ARC, dev);
4575 continue;
4576 }
4577
4578 ARCSTAT_BUMP(arcstat_l2_feeds);
4579
4580 size = l2arc_write_size(dev);
4581
4582 /*
4583 * Evict L2ARC buffers that will be overwritten.
4584 */
4585 l2arc_evict(dev, size, B_FALSE);
4586
4587 /*
4588 * Write ARC buffers.
4589 */
4590 wrote = l2arc_write_buffers(spa, dev, size);
4591
4592 /*
4593 * Calculate interval between writes.
4594 */
4595 next = l2arc_write_interval(begin, size, wrote);
4596 spa_config_exit(spa, SCL_L2ARC, dev);
4597 }
4598
4599 l2arc_thread_exit = 0;
4600 cv_broadcast(&l2arc_feed_thr_cv);
4601 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
4602 thread_exit();
4603 }
4604
4605 boolean_t
4606 l2arc_vdev_present(vdev_t *vd)
4607 {
4608 l2arc_dev_t *dev;
4609
4610 mutex_enter(&l2arc_dev_mtx);
4611 for (dev = list_head(l2arc_dev_list); dev != NULL;
4612 dev = list_next(l2arc_dev_list, dev)) {
4613 if (dev->l2ad_vdev == vd)
4614 break;
4615 }
4616 mutex_exit(&l2arc_dev_mtx);
4617
4618 return (dev != NULL);
4619 }
4620
4621 /*
4622 * Add a vdev for use by the L2ARC. By this point the spa has already
4623 * validated the vdev and opened it.
4624 */
4625 void
4626 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
4627 {
4628 l2arc_dev_t *adddev;
4629
4630 ASSERT(!l2arc_vdev_present(vd));
4631
4632 /*
4633 * Create a new l2arc device entry.
4634 */
4635 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4636 adddev->l2ad_spa = spa;
4637 adddev->l2ad_vdev = vd;
4638 adddev->l2ad_write = l2arc_write_max;
4639 adddev->l2ad_boost = l2arc_write_boost;
4640 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
4641 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
4642 adddev->l2ad_hand = adddev->l2ad_start;
4643 adddev->l2ad_evict = adddev->l2ad_start;
4644 adddev->l2ad_first = B_TRUE;
4645 adddev->l2ad_writing = B_FALSE;
4646 list_link_init(&adddev->l2ad_node);
4647 ASSERT3U(adddev->l2ad_write, >, 0);
4648
4649 /*
4650 * This is a list of all ARC buffers that are still valid on the
4651 * device.
4652 */
4653 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4654 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4655 offsetof(arc_buf_hdr_t, b_l2node));
4656
4657 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
4658
4659 /*
4660 * Add device to global list
4661 */
4662 mutex_enter(&l2arc_dev_mtx);
4663 list_insert_head(l2arc_dev_list, adddev);
4664 atomic_inc_64(&l2arc_ndev);
4665 mutex_exit(&l2arc_dev_mtx);
4666 }
4667
4668 /*
4669 * Remove a vdev from the L2ARC.
4670 */
4671 void
4672 l2arc_remove_vdev(vdev_t *vd)
4673 {
4674 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4675
4676 /*
4677 * Find the device by vdev
4678 */
4679 mutex_enter(&l2arc_dev_mtx);
4680 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4681 nextdev = list_next(l2arc_dev_list, dev);
4682 if (vd == dev->l2ad_vdev) {
4683 remdev = dev;
4684 break;
4685 }
4686 }
4687 ASSERT(remdev != NULL);
4688
4689 /*
4690 * Remove device from global list
4691 */
4692 list_remove(l2arc_dev_list, remdev);
4693 l2arc_dev_last = NULL; /* may have been invalidated */
4694 atomic_dec_64(&l2arc_ndev);
4695 mutex_exit(&l2arc_dev_mtx);
4696
4697 /*
4698 * Clear all buflists and ARC references. L2ARC device flush.
4699 */
4700 l2arc_evict(remdev, 0, B_TRUE);
4701 list_destroy(remdev->l2ad_buflist);
4702 kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4703 kmem_free(remdev, sizeof (l2arc_dev_t));
4704 }
4705
4706 void
4707 l2arc_init(void)
4708 {
4709 l2arc_thread_exit = 0;
4710 l2arc_ndev = 0;
4711 l2arc_writes_sent = 0;
4712 l2arc_writes_done = 0;
4713
4714 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4715 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4716 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4717 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4718 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4719
4720 l2arc_dev_list = &L2ARC_dev_list;
4721 l2arc_free_on_write = &L2ARC_free_on_write;
4722 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4723 offsetof(l2arc_dev_t, l2ad_node));
4724 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4725 offsetof(l2arc_data_free_t, l2df_list_node));
4726 }
4727
4728 void
4729 l2arc_fini(void)
4730 {
4731 /*
4732 * This is called from dmu_fini(), which is called from spa_fini();
4733 * Because of this, we can assume that all l2arc devices have
4734 * already been removed when the pools themselves were removed.
4735 */
4736
4737 l2arc_do_free_on_write();
4738
4739 mutex_destroy(&l2arc_feed_thr_lock);
4740 cv_destroy(&l2arc_feed_thr_cv);
4741 mutex_destroy(&l2arc_dev_mtx);
4742 mutex_destroy(&l2arc_buflist_mtx);
4743 mutex_destroy(&l2arc_free_on_write_mtx);
4744
4745 list_destroy(l2arc_dev_list);
4746 list_destroy(l2arc_free_on_write);
4747 }
4748
4749 void
4750 l2arc_start(void)
4751 {
4752 if (!(spa_mode_global & FWRITE))
4753 return;
4754
4755 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4756 TS_RUN, minclsyspri);
4757 }
4758
4759 void
4760 l2arc_stop(void)
4761 {
4762 if (!(spa_mode_global & FWRITE))
4763 return;
4764
4765 mutex_enter(&l2arc_feed_thr_lock);
4766 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
4767 l2arc_thread_exit = 1;
4768 while (l2arc_thread_exit != 0)
4769 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4770 mutex_exit(&l2arc_feed_thr_lock);
4771 }
4772
4773 #if defined(_KERNEL) && defined(HAVE_SPL)
4774 EXPORT_SYMBOL(arc_read);
4775 EXPORT_SYMBOL(arc_buf_remove_ref);
4776 EXPORT_SYMBOL(arc_getbuf_func);
4777
4778 module_param(zfs_arc_min, ulong, 0444);
4779 MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
4780
4781 module_param(zfs_arc_max, ulong, 0444);
4782 MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
4783
4784 module_param(zfs_arc_meta_limit, ulong, 0444);
4785 MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
4786
4787 module_param(zfs_arc_reduce_dnlc_percent, int, 0444);
4788 MODULE_PARM_DESC(zfs_arc_reduce_dnlc_percent, "Meta reclaim percentage");
4789
4790 module_param(zfs_arc_grow_retry, int, 0444);
4791 MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
4792
4793 module_param(zfs_arc_shrink_shift, int, 0444);
4794 MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
4795
4796 module_param(zfs_arc_p_min_shift, int, 0444);
4797 MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
4798
4799 module_param(l2arc_write_max, ulong, 0444);
4800 MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
4801
4802 module_param(l2arc_write_boost, ulong, 0444);
4803 MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
4804
4805 module_param(l2arc_headroom, ulong, 0444);
4806 MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
4807
4808 module_param(l2arc_feed_secs, ulong, 0444);
4809 MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
4810
4811 module_param(l2arc_feed_min_ms, ulong, 0444);
4812 MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
4813
4814 module_param(l2arc_noprefetch, int, 0444);
4815 MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
4816
4817 module_param(l2arc_feed_again, int, 0444);
4818 MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
4819
4820 module_param(l2arc_norw, int, 0444);
4821 MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
4822
4823 #endif