]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/arc.c
Return -1 from arc_shrinker_func()
[mirror_zfs.git] / module / zfs / arc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011 by Delphix. All rights reserved.
25 */
26
27 /*
28 * DVA-based Adjustable Replacement Cache
29 *
30 * While much of the theory of operation used here is
31 * based on the self-tuning, low overhead replacement cache
32 * presented by Megiddo and Modha at FAST 2003, there are some
33 * significant differences:
34 *
35 * 1. The Megiddo and Modha model assumes any page is evictable.
36 * Pages in its cache cannot be "locked" into memory. This makes
37 * the eviction algorithm simple: evict the last page in the list.
38 * This also make the performance characteristics easy to reason
39 * about. Our cache is not so simple. At any given moment, some
40 * subset of the blocks in the cache are un-evictable because we
41 * have handed out a reference to them. Blocks are only evictable
42 * when there are no external references active. This makes
43 * eviction far more problematic: we choose to evict the evictable
44 * blocks that are the "lowest" in the list.
45 *
46 * There are times when it is not possible to evict the requested
47 * space. In these circumstances we are unable to adjust the cache
48 * size. To prevent the cache growing unbounded at these times we
49 * implement a "cache throttle" that slows the flow of new data
50 * into the cache until we can make space available.
51 *
52 * 2. The Megiddo and Modha model assumes a fixed cache size.
53 * Pages are evicted when the cache is full and there is a cache
54 * miss. Our model has a variable sized cache. It grows with
55 * high use, but also tries to react to memory pressure from the
56 * operating system: decreasing its size when system memory is
57 * tight.
58 *
59 * 3. The Megiddo and Modha model assumes a fixed page size. All
60 * elements of the cache are therefor exactly the same size. So
61 * when adjusting the cache size following a cache miss, its simply
62 * a matter of choosing a single page to evict. In our model, we
63 * have variable sized cache blocks (rangeing from 512 bytes to
64 * 128K bytes). We therefor choose a set of blocks to evict to make
65 * space for a cache miss that approximates as closely as possible
66 * the space used by the new block.
67 *
68 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
69 * by N. Megiddo & D. Modha, FAST 2003
70 */
71
72 /*
73 * The locking model:
74 *
75 * A new reference to a cache buffer can be obtained in two
76 * ways: 1) via a hash table lookup using the DVA as a key,
77 * or 2) via one of the ARC lists. The arc_read() interface
78 * uses method 1, while the internal arc algorithms for
79 * adjusting the cache use method 2. We therefor provide two
80 * types of locks: 1) the hash table lock array, and 2) the
81 * arc list locks.
82 *
83 * Buffers do not have their own mutexes, rather they rely on the
84 * hash table mutexes for the bulk of their protection (i.e. most
85 * fields in the arc_buf_hdr_t are protected by these mutexes).
86 *
87 * buf_hash_find() returns the appropriate mutex (held) when it
88 * locates the requested buffer in the hash table. It returns
89 * NULL for the mutex if the buffer was not in the table.
90 *
91 * buf_hash_remove() expects the appropriate hash mutex to be
92 * already held before it is invoked.
93 *
94 * Each arc state also has a mutex which is used to protect the
95 * buffer list associated with the state. When attempting to
96 * obtain a hash table lock while holding an arc list lock you
97 * must use: mutex_tryenter() to avoid deadlock. Also note that
98 * the active state mutex must be held before the ghost state mutex.
99 *
100 * Arc buffers may have an associated eviction callback function.
101 * This function will be invoked prior to removing the buffer (e.g.
102 * in arc_do_user_evicts()). Note however that the data associated
103 * with the buffer may be evicted prior to the callback. The callback
104 * must be made with *no locks held* (to prevent deadlock). Additionally,
105 * the users of callbacks must ensure that their private data is
106 * protected from simultaneous callbacks from arc_buf_evict()
107 * and arc_do_user_evicts().
108 *
109 * It as also possible to register a callback which is run when the
110 * arc_meta_limit is reached and no buffers can be safely evicted. In
111 * this case the arc user should drop a reference on some arc buffers so
112 * they can be reclaimed and the arc_meta_limit honored. For example,
113 * when using the ZPL each dentry holds a references on a znode. These
114 * dentries must be pruned before the arc buffer holding the znode can
115 * be safely evicted.
116 *
117 * Note that the majority of the performance stats are manipulated
118 * with atomic operations.
119 *
120 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
121 *
122 * - L2ARC buflist creation
123 * - L2ARC buflist eviction
124 * - L2ARC write completion, which walks L2ARC buflists
125 * - ARC header destruction, as it removes from L2ARC buflists
126 * - ARC header release, as it removes from L2ARC buflists
127 */
128
129 #include <sys/spa.h>
130 #include <sys/zio.h>
131 #include <sys/zfs_context.h>
132 #include <sys/arc.h>
133 #include <sys/vdev.h>
134 #include <sys/vdev_impl.h>
135 #ifdef _KERNEL
136 #include <sys/vmsystm.h>
137 #include <vm/anon.h>
138 #include <sys/fs/swapnode.h>
139 #include <sys/zpl.h>
140 #endif
141 #include <sys/callb.h>
142 #include <sys/kstat.h>
143 #include <sys/dmu_tx.h>
144 #include <zfs_fletcher.h>
145
146 static kmutex_t arc_reclaim_thr_lock;
147 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */
148 static uint8_t arc_thread_exit;
149
150 /* number of bytes to prune from caches when at arc_meta_limit is reached */
151 int zfs_arc_meta_prune = 1048576;
152
153 typedef enum arc_reclaim_strategy {
154 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
155 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
156 } arc_reclaim_strategy_t;
157
158 /* number of seconds before growing cache again */
159 int zfs_arc_grow_retry = 5;
160
161 /* shift of arc_c for calculating both min and max arc_p */
162 int zfs_arc_p_min_shift = 4;
163
164 /* log2(fraction of arc to reclaim) */
165 int zfs_arc_shrink_shift = 5;
166
167 /*
168 * minimum lifespan of a prefetch block in clock ticks
169 * (initialized in arc_init())
170 */
171 int zfs_arc_min_prefetch_lifespan = HZ;
172
173 /* disable arc proactive arc throttle due to low memory */
174 int zfs_arc_memory_throttle_disable = 1;
175
176 /* disable duplicate buffer eviction */
177 int zfs_disable_dup_eviction = 0;
178
179 static int arc_dead;
180
181 /* expiration time for arc_no_grow */
182 static clock_t arc_grow_time = 0;
183
184 /*
185 * The arc has filled available memory and has now warmed up.
186 */
187 static boolean_t arc_warm;
188
189 /*
190 * These tunables are for performance analysis.
191 */
192 unsigned long zfs_arc_max = 0;
193 unsigned long zfs_arc_min = 0;
194 unsigned long zfs_arc_meta_limit = 0;
195
196 /*
197 * Note that buffers can be in one of 6 states:
198 * ARC_anon - anonymous (discussed below)
199 * ARC_mru - recently used, currently cached
200 * ARC_mru_ghost - recentely used, no longer in cache
201 * ARC_mfu - frequently used, currently cached
202 * ARC_mfu_ghost - frequently used, no longer in cache
203 * ARC_l2c_only - exists in L2ARC but not other states
204 * When there are no active references to the buffer, they are
205 * are linked onto a list in one of these arc states. These are
206 * the only buffers that can be evicted or deleted. Within each
207 * state there are multiple lists, one for meta-data and one for
208 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
209 * etc.) is tracked separately so that it can be managed more
210 * explicitly: favored over data, limited explicitly.
211 *
212 * Anonymous buffers are buffers that are not associated with
213 * a DVA. These are buffers that hold dirty block copies
214 * before they are written to stable storage. By definition,
215 * they are "ref'd" and are considered part of arc_mru
216 * that cannot be freed. Generally, they will aquire a DVA
217 * as they are written and migrate onto the arc_mru list.
218 *
219 * The ARC_l2c_only state is for buffers that are in the second
220 * level ARC but no longer in any of the ARC_m* lists. The second
221 * level ARC itself may also contain buffers that are in any of
222 * the ARC_m* states - meaning that a buffer can exist in two
223 * places. The reason for the ARC_l2c_only state is to keep the
224 * buffer header in the hash table, so that reads that hit the
225 * second level ARC benefit from these fast lookups.
226 */
227
228 typedef struct arc_state {
229 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */
230 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */
231 uint64_t arcs_size; /* total amount of data in this state */
232 kmutex_t arcs_mtx;
233 } arc_state_t;
234
235 /* The 6 states: */
236 static arc_state_t ARC_anon;
237 static arc_state_t ARC_mru;
238 static arc_state_t ARC_mru_ghost;
239 static arc_state_t ARC_mfu;
240 static arc_state_t ARC_mfu_ghost;
241 static arc_state_t ARC_l2c_only;
242
243 typedef struct arc_stats {
244 kstat_named_t arcstat_hits;
245 kstat_named_t arcstat_misses;
246 kstat_named_t arcstat_demand_data_hits;
247 kstat_named_t arcstat_demand_data_misses;
248 kstat_named_t arcstat_demand_metadata_hits;
249 kstat_named_t arcstat_demand_metadata_misses;
250 kstat_named_t arcstat_prefetch_data_hits;
251 kstat_named_t arcstat_prefetch_data_misses;
252 kstat_named_t arcstat_prefetch_metadata_hits;
253 kstat_named_t arcstat_prefetch_metadata_misses;
254 kstat_named_t arcstat_mru_hits;
255 kstat_named_t arcstat_mru_ghost_hits;
256 kstat_named_t arcstat_mfu_hits;
257 kstat_named_t arcstat_mfu_ghost_hits;
258 kstat_named_t arcstat_deleted;
259 kstat_named_t arcstat_recycle_miss;
260 kstat_named_t arcstat_mutex_miss;
261 kstat_named_t arcstat_evict_skip;
262 kstat_named_t arcstat_evict_l2_cached;
263 kstat_named_t arcstat_evict_l2_eligible;
264 kstat_named_t arcstat_evict_l2_ineligible;
265 kstat_named_t arcstat_hash_elements;
266 kstat_named_t arcstat_hash_elements_max;
267 kstat_named_t arcstat_hash_collisions;
268 kstat_named_t arcstat_hash_chains;
269 kstat_named_t arcstat_hash_chain_max;
270 kstat_named_t arcstat_p;
271 kstat_named_t arcstat_c;
272 kstat_named_t arcstat_c_min;
273 kstat_named_t arcstat_c_max;
274 kstat_named_t arcstat_size;
275 kstat_named_t arcstat_hdr_size;
276 kstat_named_t arcstat_data_size;
277 kstat_named_t arcstat_other_size;
278 kstat_named_t arcstat_anon_size;
279 kstat_named_t arcstat_anon_evict_data;
280 kstat_named_t arcstat_anon_evict_metadata;
281 kstat_named_t arcstat_mru_size;
282 kstat_named_t arcstat_mru_evict_data;
283 kstat_named_t arcstat_mru_evict_metadata;
284 kstat_named_t arcstat_mru_ghost_size;
285 kstat_named_t arcstat_mru_ghost_evict_data;
286 kstat_named_t arcstat_mru_ghost_evict_metadata;
287 kstat_named_t arcstat_mfu_size;
288 kstat_named_t arcstat_mfu_evict_data;
289 kstat_named_t arcstat_mfu_evict_metadata;
290 kstat_named_t arcstat_mfu_ghost_size;
291 kstat_named_t arcstat_mfu_ghost_evict_data;
292 kstat_named_t arcstat_mfu_ghost_evict_metadata;
293 kstat_named_t arcstat_l2_hits;
294 kstat_named_t arcstat_l2_misses;
295 kstat_named_t arcstat_l2_feeds;
296 kstat_named_t arcstat_l2_rw_clash;
297 kstat_named_t arcstat_l2_read_bytes;
298 kstat_named_t arcstat_l2_write_bytes;
299 kstat_named_t arcstat_l2_writes_sent;
300 kstat_named_t arcstat_l2_writes_done;
301 kstat_named_t arcstat_l2_writes_error;
302 kstat_named_t arcstat_l2_writes_hdr_miss;
303 kstat_named_t arcstat_l2_evict_lock_retry;
304 kstat_named_t arcstat_l2_evict_reading;
305 kstat_named_t arcstat_l2_free_on_write;
306 kstat_named_t arcstat_l2_abort_lowmem;
307 kstat_named_t arcstat_l2_cksum_bad;
308 kstat_named_t arcstat_l2_io_error;
309 kstat_named_t arcstat_l2_size;
310 kstat_named_t arcstat_l2_hdr_size;
311 kstat_named_t arcstat_memory_throttle_count;
312 kstat_named_t arcstat_duplicate_buffers;
313 kstat_named_t arcstat_duplicate_buffers_size;
314 kstat_named_t arcstat_duplicate_reads;
315 kstat_named_t arcstat_memory_direct_count;
316 kstat_named_t arcstat_memory_indirect_count;
317 kstat_named_t arcstat_no_grow;
318 kstat_named_t arcstat_tempreserve;
319 kstat_named_t arcstat_loaned_bytes;
320 kstat_named_t arcstat_prune;
321 kstat_named_t arcstat_meta_used;
322 kstat_named_t arcstat_meta_limit;
323 kstat_named_t arcstat_meta_max;
324 } arc_stats_t;
325
326 static arc_stats_t arc_stats = {
327 { "hits", KSTAT_DATA_UINT64 },
328 { "misses", KSTAT_DATA_UINT64 },
329 { "demand_data_hits", KSTAT_DATA_UINT64 },
330 { "demand_data_misses", KSTAT_DATA_UINT64 },
331 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
332 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
333 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
334 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
335 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
336 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
337 { "mru_hits", KSTAT_DATA_UINT64 },
338 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
339 { "mfu_hits", KSTAT_DATA_UINT64 },
340 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
341 { "deleted", KSTAT_DATA_UINT64 },
342 { "recycle_miss", KSTAT_DATA_UINT64 },
343 { "mutex_miss", KSTAT_DATA_UINT64 },
344 { "evict_skip", KSTAT_DATA_UINT64 },
345 { "evict_l2_cached", KSTAT_DATA_UINT64 },
346 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
347 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
348 { "hash_elements", KSTAT_DATA_UINT64 },
349 { "hash_elements_max", KSTAT_DATA_UINT64 },
350 { "hash_collisions", KSTAT_DATA_UINT64 },
351 { "hash_chains", KSTAT_DATA_UINT64 },
352 { "hash_chain_max", KSTAT_DATA_UINT64 },
353 { "p", KSTAT_DATA_UINT64 },
354 { "c", KSTAT_DATA_UINT64 },
355 { "c_min", KSTAT_DATA_UINT64 },
356 { "c_max", KSTAT_DATA_UINT64 },
357 { "size", KSTAT_DATA_UINT64 },
358 { "hdr_size", KSTAT_DATA_UINT64 },
359 { "data_size", KSTAT_DATA_UINT64 },
360 { "other_size", KSTAT_DATA_UINT64 },
361 { "anon_size", KSTAT_DATA_UINT64 },
362 { "anon_evict_data", KSTAT_DATA_UINT64 },
363 { "anon_evict_metadata", KSTAT_DATA_UINT64 },
364 { "mru_size", KSTAT_DATA_UINT64 },
365 { "mru_evict_data", KSTAT_DATA_UINT64 },
366 { "mru_evict_metadata", KSTAT_DATA_UINT64 },
367 { "mru_ghost_size", KSTAT_DATA_UINT64 },
368 { "mru_ghost_evict_data", KSTAT_DATA_UINT64 },
369 { "mru_ghost_evict_metadata", KSTAT_DATA_UINT64 },
370 { "mfu_size", KSTAT_DATA_UINT64 },
371 { "mfu_evict_data", KSTAT_DATA_UINT64 },
372 { "mfu_evict_metadata", KSTAT_DATA_UINT64 },
373 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
374 { "mfu_ghost_evict_data", KSTAT_DATA_UINT64 },
375 { "mfu_ghost_evict_metadata", KSTAT_DATA_UINT64 },
376 { "l2_hits", KSTAT_DATA_UINT64 },
377 { "l2_misses", KSTAT_DATA_UINT64 },
378 { "l2_feeds", KSTAT_DATA_UINT64 },
379 { "l2_rw_clash", KSTAT_DATA_UINT64 },
380 { "l2_read_bytes", KSTAT_DATA_UINT64 },
381 { "l2_write_bytes", KSTAT_DATA_UINT64 },
382 { "l2_writes_sent", KSTAT_DATA_UINT64 },
383 { "l2_writes_done", KSTAT_DATA_UINT64 },
384 { "l2_writes_error", KSTAT_DATA_UINT64 },
385 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 },
386 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
387 { "l2_evict_reading", KSTAT_DATA_UINT64 },
388 { "l2_free_on_write", KSTAT_DATA_UINT64 },
389 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
390 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
391 { "l2_io_error", KSTAT_DATA_UINT64 },
392 { "l2_size", KSTAT_DATA_UINT64 },
393 { "l2_hdr_size", KSTAT_DATA_UINT64 },
394 { "memory_throttle_count", KSTAT_DATA_UINT64 },
395 { "duplicate_buffers", KSTAT_DATA_UINT64 },
396 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
397 { "duplicate_reads", KSTAT_DATA_UINT64 },
398 { "memory_direct_count", KSTAT_DATA_UINT64 },
399 { "memory_indirect_count", KSTAT_DATA_UINT64 },
400 { "arc_no_grow", KSTAT_DATA_UINT64 },
401 { "arc_tempreserve", KSTAT_DATA_UINT64 },
402 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
403 { "arc_prune", KSTAT_DATA_UINT64 },
404 { "arc_meta_used", KSTAT_DATA_UINT64 },
405 { "arc_meta_limit", KSTAT_DATA_UINT64 },
406 { "arc_meta_max", KSTAT_DATA_UINT64 },
407 };
408
409 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
410
411 #define ARCSTAT_INCR(stat, val) \
412 atomic_add_64(&arc_stats.stat.value.ui64, (val));
413
414 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
415 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
416
417 #define ARCSTAT_MAX(stat, val) { \
418 uint64_t m; \
419 while ((val) > (m = arc_stats.stat.value.ui64) && \
420 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
421 continue; \
422 }
423
424 #define ARCSTAT_MAXSTAT(stat) \
425 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
426
427 /*
428 * We define a macro to allow ARC hits/misses to be easily broken down by
429 * two separate conditions, giving a total of four different subtypes for
430 * each of hits and misses (so eight statistics total).
431 */
432 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
433 if (cond1) { \
434 if (cond2) { \
435 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
436 } else { \
437 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
438 } \
439 } else { \
440 if (cond2) { \
441 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
442 } else { \
443 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
444 } \
445 }
446
447 kstat_t *arc_ksp;
448 static arc_state_t *arc_anon;
449 static arc_state_t *arc_mru;
450 static arc_state_t *arc_mru_ghost;
451 static arc_state_t *arc_mfu;
452 static arc_state_t *arc_mfu_ghost;
453 static arc_state_t *arc_l2c_only;
454
455 /*
456 * There are several ARC variables that are critical to export as kstats --
457 * but we don't want to have to grovel around in the kstat whenever we wish to
458 * manipulate them. For these variables, we therefore define them to be in
459 * terms of the statistic variable. This assures that we are not introducing
460 * the possibility of inconsistency by having shadow copies of the variables,
461 * while still allowing the code to be readable.
462 */
463 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
464 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
465 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
466 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
467 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
468 #define arc_no_grow ARCSTAT(arcstat_no_grow)
469 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
470 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
471 #define arc_meta_used ARCSTAT(arcstat_meta_used)
472 #define arc_meta_limit ARCSTAT(arcstat_meta_limit)
473 #define arc_meta_max ARCSTAT(arcstat_meta_max)
474
475 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
476
477 typedef struct arc_callback arc_callback_t;
478
479 struct arc_callback {
480 void *acb_private;
481 arc_done_func_t *acb_done;
482 arc_buf_t *acb_buf;
483 zio_t *acb_zio_dummy;
484 arc_callback_t *acb_next;
485 };
486
487 typedef struct arc_write_callback arc_write_callback_t;
488
489 struct arc_write_callback {
490 void *awcb_private;
491 arc_done_func_t *awcb_ready;
492 arc_done_func_t *awcb_done;
493 arc_buf_t *awcb_buf;
494 };
495
496 struct arc_buf_hdr {
497 /* protected by hash lock */
498 dva_t b_dva;
499 uint64_t b_birth;
500 uint64_t b_cksum0;
501
502 kmutex_t b_freeze_lock;
503 zio_cksum_t *b_freeze_cksum;
504
505 arc_buf_hdr_t *b_hash_next;
506 arc_buf_t *b_buf;
507 uint32_t b_flags;
508 uint32_t b_datacnt;
509
510 arc_callback_t *b_acb;
511 kcondvar_t b_cv;
512
513 /* immutable */
514 arc_buf_contents_t b_type;
515 uint64_t b_size;
516 uint64_t b_spa;
517
518 /* protected by arc state mutex */
519 arc_state_t *b_state;
520 list_node_t b_arc_node;
521
522 /* updated atomically */
523 clock_t b_arc_access;
524
525 /* self protecting */
526 refcount_t b_refcnt;
527
528 l2arc_buf_hdr_t *b_l2hdr;
529 list_node_t b_l2node;
530 };
531
532 static list_t arc_prune_list;
533 static kmutex_t arc_prune_mtx;
534 static arc_buf_t *arc_eviction_list;
535 static kmutex_t arc_eviction_mtx;
536 static arc_buf_hdr_t arc_eviction_hdr;
537 static void arc_get_data_buf(arc_buf_t *buf);
538 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
539 static int arc_evict_needed(arc_buf_contents_t type);
540 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
541
542 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
543
544 #define GHOST_STATE(state) \
545 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
546 (state) == arc_l2c_only)
547
548 /*
549 * Private ARC flags. These flags are private ARC only flags that will show up
550 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can
551 * be passed in as arc_flags in things like arc_read. However, these flags
552 * should never be passed and should only be set by ARC code. When adding new
553 * public flags, make sure not to smash the private ones.
554 */
555
556 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */
557 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */
558 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */
559 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */
560 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */
561 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */
562 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */
563 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */
564 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */
565 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */
566
567 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE)
568 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
569 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR)
570 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH)
571 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ)
572 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE)
573 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
574 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE)
575 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \
576 (hdr)->b_l2hdr != NULL)
577 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING)
578 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED)
579 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD)
580
581 /*
582 * Other sizes
583 */
584
585 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
586 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
587
588 /*
589 * Hash table routines
590 */
591
592 #define HT_LOCK_ALIGN 64
593 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
594
595 struct ht_lock {
596 kmutex_t ht_lock;
597 #ifdef _KERNEL
598 unsigned char pad[HT_LOCK_PAD];
599 #endif
600 };
601
602 #define BUF_LOCKS 256
603 typedef struct buf_hash_table {
604 uint64_t ht_mask;
605 arc_buf_hdr_t **ht_table;
606 struct ht_lock ht_locks[BUF_LOCKS];
607 } buf_hash_table_t;
608
609 static buf_hash_table_t buf_hash_table;
610
611 #define BUF_HASH_INDEX(spa, dva, birth) \
612 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
613 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
614 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
615 #define HDR_LOCK(hdr) \
616 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
617
618 uint64_t zfs_crc64_table[256];
619
620 /*
621 * Level 2 ARC
622 */
623
624 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
625 #define L2ARC_HEADROOM 2 /* num of writes */
626 #define L2ARC_FEED_SECS 1 /* caching interval secs */
627 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
628
629 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
630 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
631
632 /*
633 * L2ARC Performance Tunables
634 */
635 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
636 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
637 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
638 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
639 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
640 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
641 int l2arc_feed_again = B_TRUE; /* turbo warmup */
642 int l2arc_norw = B_FALSE; /* no reads during writes */
643
644 /*
645 * L2ARC Internals
646 */
647 typedef struct l2arc_dev {
648 vdev_t *l2ad_vdev; /* vdev */
649 spa_t *l2ad_spa; /* spa */
650 uint64_t l2ad_hand; /* next write location */
651 uint64_t l2ad_write; /* desired write size, bytes */
652 uint64_t l2ad_boost; /* warmup write boost, bytes */
653 uint64_t l2ad_start; /* first addr on device */
654 uint64_t l2ad_end; /* last addr on device */
655 uint64_t l2ad_evict; /* last addr eviction reached */
656 boolean_t l2ad_first; /* first sweep through */
657 boolean_t l2ad_writing; /* currently writing */
658 list_t *l2ad_buflist; /* buffer list */
659 list_node_t l2ad_node; /* device list node */
660 } l2arc_dev_t;
661
662 static list_t L2ARC_dev_list; /* device list */
663 static list_t *l2arc_dev_list; /* device list pointer */
664 static kmutex_t l2arc_dev_mtx; /* device list mutex */
665 static l2arc_dev_t *l2arc_dev_last; /* last device used */
666 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */
667 static list_t L2ARC_free_on_write; /* free after write buf list */
668 static list_t *l2arc_free_on_write; /* free after write list ptr */
669 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
670 static uint64_t l2arc_ndev; /* number of devices */
671
672 typedef struct l2arc_read_callback {
673 arc_buf_t *l2rcb_buf; /* read buffer */
674 spa_t *l2rcb_spa; /* spa */
675 blkptr_t l2rcb_bp; /* original blkptr */
676 zbookmark_t l2rcb_zb; /* original bookmark */
677 int l2rcb_flags; /* original flags */
678 } l2arc_read_callback_t;
679
680 typedef struct l2arc_write_callback {
681 l2arc_dev_t *l2wcb_dev; /* device info */
682 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
683 } l2arc_write_callback_t;
684
685 struct l2arc_buf_hdr {
686 /* protected by arc_buf_hdr mutex */
687 l2arc_dev_t *b_dev; /* L2ARC device */
688 uint64_t b_daddr; /* disk address, offset byte */
689 };
690
691 typedef struct l2arc_data_free {
692 /* protected by l2arc_free_on_write_mtx */
693 void *l2df_data;
694 size_t l2df_size;
695 void (*l2df_func)(void *, size_t);
696 list_node_t l2df_list_node;
697 } l2arc_data_free_t;
698
699 static kmutex_t l2arc_feed_thr_lock;
700 static kcondvar_t l2arc_feed_thr_cv;
701 static uint8_t l2arc_thread_exit;
702
703 static void l2arc_read_done(zio_t *zio);
704 static void l2arc_hdr_stat_add(void);
705 static void l2arc_hdr_stat_remove(void);
706
707 static uint64_t
708 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
709 {
710 uint8_t *vdva = (uint8_t *)dva;
711 uint64_t crc = -1ULL;
712 int i;
713
714 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
715
716 for (i = 0; i < sizeof (dva_t); i++)
717 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
718
719 crc ^= (spa>>8) ^ birth;
720
721 return (crc);
722 }
723
724 #define BUF_EMPTY(buf) \
725 ((buf)->b_dva.dva_word[0] == 0 && \
726 (buf)->b_dva.dva_word[1] == 0 && \
727 (buf)->b_birth == 0)
728
729 #define BUF_EQUAL(spa, dva, birth, buf) \
730 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
731 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
732 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
733
734 static void
735 buf_discard_identity(arc_buf_hdr_t *hdr)
736 {
737 hdr->b_dva.dva_word[0] = 0;
738 hdr->b_dva.dva_word[1] = 0;
739 hdr->b_birth = 0;
740 hdr->b_cksum0 = 0;
741 }
742
743 static arc_buf_hdr_t *
744 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
745 {
746 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
747 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
748 arc_buf_hdr_t *buf;
749
750 mutex_enter(hash_lock);
751 for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
752 buf = buf->b_hash_next) {
753 if (BUF_EQUAL(spa, dva, birth, buf)) {
754 *lockp = hash_lock;
755 return (buf);
756 }
757 }
758 mutex_exit(hash_lock);
759 *lockp = NULL;
760 return (NULL);
761 }
762
763 /*
764 * Insert an entry into the hash table. If there is already an element
765 * equal to elem in the hash table, then the already existing element
766 * will be returned and the new element will not be inserted.
767 * Otherwise returns NULL.
768 */
769 static arc_buf_hdr_t *
770 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
771 {
772 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
773 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
774 arc_buf_hdr_t *fbuf;
775 uint32_t i;
776
777 ASSERT(!HDR_IN_HASH_TABLE(buf));
778 *lockp = hash_lock;
779 mutex_enter(hash_lock);
780 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
781 fbuf = fbuf->b_hash_next, i++) {
782 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
783 return (fbuf);
784 }
785
786 buf->b_hash_next = buf_hash_table.ht_table[idx];
787 buf_hash_table.ht_table[idx] = buf;
788 buf->b_flags |= ARC_IN_HASH_TABLE;
789
790 /* collect some hash table performance data */
791 if (i > 0) {
792 ARCSTAT_BUMP(arcstat_hash_collisions);
793 if (i == 1)
794 ARCSTAT_BUMP(arcstat_hash_chains);
795
796 ARCSTAT_MAX(arcstat_hash_chain_max, i);
797 }
798
799 ARCSTAT_BUMP(arcstat_hash_elements);
800 ARCSTAT_MAXSTAT(arcstat_hash_elements);
801
802 return (NULL);
803 }
804
805 static void
806 buf_hash_remove(arc_buf_hdr_t *buf)
807 {
808 arc_buf_hdr_t *fbuf, **bufp;
809 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
810
811 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
812 ASSERT(HDR_IN_HASH_TABLE(buf));
813
814 bufp = &buf_hash_table.ht_table[idx];
815 while ((fbuf = *bufp) != buf) {
816 ASSERT(fbuf != NULL);
817 bufp = &fbuf->b_hash_next;
818 }
819 *bufp = buf->b_hash_next;
820 buf->b_hash_next = NULL;
821 buf->b_flags &= ~ARC_IN_HASH_TABLE;
822
823 /* collect some hash table performance data */
824 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
825
826 if (buf_hash_table.ht_table[idx] &&
827 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
828 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
829 }
830
831 /*
832 * Global data structures and functions for the buf kmem cache.
833 */
834 static kmem_cache_t *hdr_cache;
835 static kmem_cache_t *buf_cache;
836
837 static void
838 buf_fini(void)
839 {
840 int i;
841
842 #if defined(_KERNEL) && defined(HAVE_SPL)
843 /* Large allocations which do not require contiguous pages
844 * should be using vmem_free() in the linux kernel */
845 vmem_free(buf_hash_table.ht_table,
846 (buf_hash_table.ht_mask + 1) * sizeof (void *));
847 #else
848 kmem_free(buf_hash_table.ht_table,
849 (buf_hash_table.ht_mask + 1) * sizeof (void *));
850 #endif
851 for (i = 0; i < BUF_LOCKS; i++)
852 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
853 kmem_cache_destroy(hdr_cache);
854 kmem_cache_destroy(buf_cache);
855 }
856
857 /*
858 * Constructor callback - called when the cache is empty
859 * and a new buf is requested.
860 */
861 /* ARGSUSED */
862 static int
863 hdr_cons(void *vbuf, void *unused, int kmflag)
864 {
865 arc_buf_hdr_t *buf = vbuf;
866
867 bzero(buf, sizeof (arc_buf_hdr_t));
868 refcount_create(&buf->b_refcnt);
869 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
870 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
871 list_link_init(&buf->b_arc_node);
872 list_link_init(&buf->b_l2node);
873 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
874
875 return (0);
876 }
877
878 /* ARGSUSED */
879 static int
880 buf_cons(void *vbuf, void *unused, int kmflag)
881 {
882 arc_buf_t *buf = vbuf;
883
884 bzero(buf, sizeof (arc_buf_t));
885 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
886 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
887
888 return (0);
889 }
890
891 /*
892 * Destructor callback - called when a cached buf is
893 * no longer required.
894 */
895 /* ARGSUSED */
896 static void
897 hdr_dest(void *vbuf, void *unused)
898 {
899 arc_buf_hdr_t *buf = vbuf;
900
901 ASSERT(BUF_EMPTY(buf));
902 refcount_destroy(&buf->b_refcnt);
903 cv_destroy(&buf->b_cv);
904 mutex_destroy(&buf->b_freeze_lock);
905 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
906 }
907
908 /* ARGSUSED */
909 static void
910 buf_dest(void *vbuf, void *unused)
911 {
912 arc_buf_t *buf = vbuf;
913
914 mutex_destroy(&buf->b_evict_lock);
915 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
916 }
917
918 static void
919 buf_init(void)
920 {
921 uint64_t *ct;
922 uint64_t hsize = 1ULL << 12;
923 int i, j;
924
925 /*
926 * The hash table is big enough to fill all of physical memory
927 * with an average 64K block size. The table will take up
928 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
929 */
930 while (hsize * 65536 < physmem * PAGESIZE)
931 hsize <<= 1;
932 retry:
933 buf_hash_table.ht_mask = hsize - 1;
934 #if defined(_KERNEL) && defined(HAVE_SPL)
935 /* Large allocations which do not require contiguous pages
936 * should be using vmem_alloc() in the linux kernel */
937 buf_hash_table.ht_table =
938 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
939 #else
940 buf_hash_table.ht_table =
941 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
942 #endif
943 if (buf_hash_table.ht_table == NULL) {
944 ASSERT(hsize > (1ULL << 8));
945 hsize >>= 1;
946 goto retry;
947 }
948
949 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
950 0, hdr_cons, hdr_dest, NULL, NULL, NULL, 0);
951 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
952 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
953
954 for (i = 0; i < 256; i++)
955 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
956 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
957
958 for (i = 0; i < BUF_LOCKS; i++) {
959 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
960 NULL, MUTEX_DEFAULT, NULL);
961 }
962 }
963
964 #define ARC_MINTIME (hz>>4) /* 62 ms */
965
966 static void
967 arc_cksum_verify(arc_buf_t *buf)
968 {
969 zio_cksum_t zc;
970
971 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
972 return;
973
974 mutex_enter(&buf->b_hdr->b_freeze_lock);
975 if (buf->b_hdr->b_freeze_cksum == NULL ||
976 (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
977 mutex_exit(&buf->b_hdr->b_freeze_lock);
978 return;
979 }
980 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
981 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
982 panic("buffer modified while frozen!");
983 mutex_exit(&buf->b_hdr->b_freeze_lock);
984 }
985
986 static int
987 arc_cksum_equal(arc_buf_t *buf)
988 {
989 zio_cksum_t zc;
990 int equal;
991
992 mutex_enter(&buf->b_hdr->b_freeze_lock);
993 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
994 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
995 mutex_exit(&buf->b_hdr->b_freeze_lock);
996
997 return (equal);
998 }
999
1000 static void
1001 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1002 {
1003 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1004 return;
1005
1006 mutex_enter(&buf->b_hdr->b_freeze_lock);
1007 if (buf->b_hdr->b_freeze_cksum != NULL) {
1008 mutex_exit(&buf->b_hdr->b_freeze_lock);
1009 return;
1010 }
1011 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1012 KM_PUSHPAGE);
1013 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1014 buf->b_hdr->b_freeze_cksum);
1015 mutex_exit(&buf->b_hdr->b_freeze_lock);
1016 }
1017
1018 void
1019 arc_buf_thaw(arc_buf_t *buf)
1020 {
1021 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1022 if (buf->b_hdr->b_state != arc_anon)
1023 panic("modifying non-anon buffer!");
1024 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1025 panic("modifying buffer while i/o in progress!");
1026 arc_cksum_verify(buf);
1027 }
1028
1029 mutex_enter(&buf->b_hdr->b_freeze_lock);
1030 if (buf->b_hdr->b_freeze_cksum != NULL) {
1031 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1032 buf->b_hdr->b_freeze_cksum = NULL;
1033 }
1034
1035 mutex_exit(&buf->b_hdr->b_freeze_lock);
1036 }
1037
1038 void
1039 arc_buf_freeze(arc_buf_t *buf)
1040 {
1041 kmutex_t *hash_lock;
1042
1043 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1044 return;
1045
1046 hash_lock = HDR_LOCK(buf->b_hdr);
1047 mutex_enter(hash_lock);
1048
1049 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1050 buf->b_hdr->b_state == arc_anon);
1051 arc_cksum_compute(buf, B_FALSE);
1052 mutex_exit(hash_lock);
1053 }
1054
1055 static void
1056 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1057 {
1058 ASSERT(MUTEX_HELD(hash_lock));
1059
1060 if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1061 (ab->b_state != arc_anon)) {
1062 uint64_t delta = ab->b_size * ab->b_datacnt;
1063 list_t *list = &ab->b_state->arcs_list[ab->b_type];
1064 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1065
1066 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1067 mutex_enter(&ab->b_state->arcs_mtx);
1068 ASSERT(list_link_active(&ab->b_arc_node));
1069 list_remove(list, ab);
1070 if (GHOST_STATE(ab->b_state)) {
1071 ASSERT0(ab->b_datacnt);
1072 ASSERT3P(ab->b_buf, ==, NULL);
1073 delta = ab->b_size;
1074 }
1075 ASSERT(delta > 0);
1076 ASSERT3U(*size, >=, delta);
1077 atomic_add_64(size, -delta);
1078 mutex_exit(&ab->b_state->arcs_mtx);
1079 /* remove the prefetch flag if we get a reference */
1080 if (ab->b_flags & ARC_PREFETCH)
1081 ab->b_flags &= ~ARC_PREFETCH;
1082 }
1083 }
1084
1085 static int
1086 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1087 {
1088 int cnt;
1089 arc_state_t *state = ab->b_state;
1090
1091 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1092 ASSERT(!GHOST_STATE(state));
1093
1094 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1095 (state != arc_anon)) {
1096 uint64_t *size = &state->arcs_lsize[ab->b_type];
1097
1098 ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1099 mutex_enter(&state->arcs_mtx);
1100 ASSERT(!list_link_active(&ab->b_arc_node));
1101 list_insert_head(&state->arcs_list[ab->b_type], ab);
1102 ASSERT(ab->b_datacnt > 0);
1103 atomic_add_64(size, ab->b_size * ab->b_datacnt);
1104 mutex_exit(&state->arcs_mtx);
1105 }
1106 return (cnt);
1107 }
1108
1109 /*
1110 * Move the supplied buffer to the indicated state. The mutex
1111 * for the buffer must be held by the caller.
1112 */
1113 static void
1114 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1115 {
1116 arc_state_t *old_state = ab->b_state;
1117 int64_t refcnt = refcount_count(&ab->b_refcnt);
1118 uint64_t from_delta, to_delta;
1119
1120 ASSERT(MUTEX_HELD(hash_lock));
1121 ASSERT(new_state != old_state);
1122 ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1123 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1124 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1125
1126 from_delta = to_delta = ab->b_datacnt * ab->b_size;
1127
1128 /*
1129 * If this buffer is evictable, transfer it from the
1130 * old state list to the new state list.
1131 */
1132 if (refcnt == 0) {
1133 if (old_state != arc_anon) {
1134 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1135 uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1136
1137 if (use_mutex)
1138 mutex_enter(&old_state->arcs_mtx);
1139
1140 ASSERT(list_link_active(&ab->b_arc_node));
1141 list_remove(&old_state->arcs_list[ab->b_type], ab);
1142
1143 /*
1144 * If prefetching out of the ghost cache,
1145 * we will have a non-zero datacnt.
1146 */
1147 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1148 /* ghost elements have a ghost size */
1149 ASSERT(ab->b_buf == NULL);
1150 from_delta = ab->b_size;
1151 }
1152 ASSERT3U(*size, >=, from_delta);
1153 atomic_add_64(size, -from_delta);
1154
1155 if (use_mutex)
1156 mutex_exit(&old_state->arcs_mtx);
1157 }
1158 if (new_state != arc_anon) {
1159 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1160 uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1161
1162 if (use_mutex)
1163 mutex_enter(&new_state->arcs_mtx);
1164
1165 list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1166
1167 /* ghost elements have a ghost size */
1168 if (GHOST_STATE(new_state)) {
1169 ASSERT(ab->b_datacnt == 0);
1170 ASSERT(ab->b_buf == NULL);
1171 to_delta = ab->b_size;
1172 }
1173 atomic_add_64(size, to_delta);
1174
1175 if (use_mutex)
1176 mutex_exit(&new_state->arcs_mtx);
1177 }
1178 }
1179
1180 ASSERT(!BUF_EMPTY(ab));
1181 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1182 buf_hash_remove(ab);
1183
1184 /* adjust state sizes */
1185 if (to_delta)
1186 atomic_add_64(&new_state->arcs_size, to_delta);
1187 if (from_delta) {
1188 ASSERT3U(old_state->arcs_size, >=, from_delta);
1189 atomic_add_64(&old_state->arcs_size, -from_delta);
1190 }
1191 ab->b_state = new_state;
1192
1193 /* adjust l2arc hdr stats */
1194 if (new_state == arc_l2c_only)
1195 l2arc_hdr_stat_add();
1196 else if (old_state == arc_l2c_only)
1197 l2arc_hdr_stat_remove();
1198 }
1199
1200 void
1201 arc_space_consume(uint64_t space, arc_space_type_t type)
1202 {
1203 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1204
1205 switch (type) {
1206 default:
1207 break;
1208 case ARC_SPACE_DATA:
1209 ARCSTAT_INCR(arcstat_data_size, space);
1210 break;
1211 case ARC_SPACE_OTHER:
1212 ARCSTAT_INCR(arcstat_other_size, space);
1213 break;
1214 case ARC_SPACE_HDRS:
1215 ARCSTAT_INCR(arcstat_hdr_size, space);
1216 break;
1217 case ARC_SPACE_L2HDRS:
1218 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1219 break;
1220 }
1221
1222 atomic_add_64(&arc_meta_used, space);
1223 atomic_add_64(&arc_size, space);
1224 }
1225
1226 void
1227 arc_space_return(uint64_t space, arc_space_type_t type)
1228 {
1229 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1230
1231 switch (type) {
1232 default:
1233 break;
1234 case ARC_SPACE_DATA:
1235 ARCSTAT_INCR(arcstat_data_size, -space);
1236 break;
1237 case ARC_SPACE_OTHER:
1238 ARCSTAT_INCR(arcstat_other_size, -space);
1239 break;
1240 case ARC_SPACE_HDRS:
1241 ARCSTAT_INCR(arcstat_hdr_size, -space);
1242 break;
1243 case ARC_SPACE_L2HDRS:
1244 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1245 break;
1246 }
1247
1248 ASSERT(arc_meta_used >= space);
1249 if (arc_meta_max < arc_meta_used)
1250 arc_meta_max = arc_meta_used;
1251 atomic_add_64(&arc_meta_used, -space);
1252 ASSERT(arc_size >= space);
1253 atomic_add_64(&arc_size, -space);
1254 }
1255
1256 arc_buf_t *
1257 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1258 {
1259 arc_buf_hdr_t *hdr;
1260 arc_buf_t *buf;
1261
1262 ASSERT3U(size, >, 0);
1263 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1264 ASSERT(BUF_EMPTY(hdr));
1265 hdr->b_size = size;
1266 hdr->b_type = type;
1267 hdr->b_spa = spa_load_guid(spa);
1268 hdr->b_state = arc_anon;
1269 hdr->b_arc_access = 0;
1270 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1271 buf->b_hdr = hdr;
1272 buf->b_data = NULL;
1273 buf->b_efunc = NULL;
1274 buf->b_private = NULL;
1275 buf->b_next = NULL;
1276 hdr->b_buf = buf;
1277 arc_get_data_buf(buf);
1278 hdr->b_datacnt = 1;
1279 hdr->b_flags = 0;
1280 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1281 (void) refcount_add(&hdr->b_refcnt, tag);
1282
1283 return (buf);
1284 }
1285
1286 static char *arc_onloan_tag = "onloan";
1287
1288 /*
1289 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1290 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1291 * buffers must be returned to the arc before they can be used by the DMU or
1292 * freed.
1293 */
1294 arc_buf_t *
1295 arc_loan_buf(spa_t *spa, int size)
1296 {
1297 arc_buf_t *buf;
1298
1299 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1300
1301 atomic_add_64(&arc_loaned_bytes, size);
1302 return (buf);
1303 }
1304
1305 /*
1306 * Return a loaned arc buffer to the arc.
1307 */
1308 void
1309 arc_return_buf(arc_buf_t *buf, void *tag)
1310 {
1311 arc_buf_hdr_t *hdr = buf->b_hdr;
1312
1313 ASSERT(buf->b_data != NULL);
1314 (void) refcount_add(&hdr->b_refcnt, tag);
1315 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1316
1317 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1318 }
1319
1320 /* Detach an arc_buf from a dbuf (tag) */
1321 void
1322 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1323 {
1324 arc_buf_hdr_t *hdr;
1325
1326 ASSERT(buf->b_data != NULL);
1327 hdr = buf->b_hdr;
1328 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1329 (void) refcount_remove(&hdr->b_refcnt, tag);
1330 buf->b_efunc = NULL;
1331 buf->b_private = NULL;
1332
1333 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1334 }
1335
1336 static arc_buf_t *
1337 arc_buf_clone(arc_buf_t *from)
1338 {
1339 arc_buf_t *buf;
1340 arc_buf_hdr_t *hdr = from->b_hdr;
1341 uint64_t size = hdr->b_size;
1342
1343 ASSERT(hdr->b_state != arc_anon);
1344
1345 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1346 buf->b_hdr = hdr;
1347 buf->b_data = NULL;
1348 buf->b_efunc = NULL;
1349 buf->b_private = NULL;
1350 buf->b_next = hdr->b_buf;
1351 hdr->b_buf = buf;
1352 arc_get_data_buf(buf);
1353 bcopy(from->b_data, buf->b_data, size);
1354
1355 /*
1356 * This buffer already exists in the arc so create a duplicate
1357 * copy for the caller. If the buffer is associated with user data
1358 * then track the size and number of duplicates. These stats will be
1359 * updated as duplicate buffers are created and destroyed.
1360 */
1361 if (hdr->b_type == ARC_BUFC_DATA) {
1362 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1363 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1364 }
1365 hdr->b_datacnt += 1;
1366 return (buf);
1367 }
1368
1369 void
1370 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1371 {
1372 arc_buf_hdr_t *hdr;
1373 kmutex_t *hash_lock;
1374
1375 /*
1376 * Check to see if this buffer is evicted. Callers
1377 * must verify b_data != NULL to know if the add_ref
1378 * was successful.
1379 */
1380 mutex_enter(&buf->b_evict_lock);
1381 if (buf->b_data == NULL) {
1382 mutex_exit(&buf->b_evict_lock);
1383 return;
1384 }
1385 hash_lock = HDR_LOCK(buf->b_hdr);
1386 mutex_enter(hash_lock);
1387 hdr = buf->b_hdr;
1388 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1389 mutex_exit(&buf->b_evict_lock);
1390
1391 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1392 add_reference(hdr, hash_lock, tag);
1393 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1394 arc_access(hdr, hash_lock);
1395 mutex_exit(hash_lock);
1396 ARCSTAT_BUMP(arcstat_hits);
1397 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1398 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1399 data, metadata, hits);
1400 }
1401
1402 /*
1403 * Free the arc data buffer. If it is an l2arc write in progress,
1404 * the buffer is placed on l2arc_free_on_write to be freed later.
1405 */
1406 static void
1407 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1408 void *data, size_t size)
1409 {
1410 if (HDR_L2_WRITING(hdr)) {
1411 l2arc_data_free_t *df;
1412 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_PUSHPAGE);
1413 df->l2df_data = data;
1414 df->l2df_size = size;
1415 df->l2df_func = free_func;
1416 mutex_enter(&l2arc_free_on_write_mtx);
1417 list_insert_head(l2arc_free_on_write, df);
1418 mutex_exit(&l2arc_free_on_write_mtx);
1419 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1420 } else {
1421 free_func(data, size);
1422 }
1423 }
1424
1425 static void
1426 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1427 {
1428 arc_buf_t **bufp;
1429
1430 /* free up data associated with the buf */
1431 if (buf->b_data) {
1432 arc_state_t *state = buf->b_hdr->b_state;
1433 uint64_t size = buf->b_hdr->b_size;
1434 arc_buf_contents_t type = buf->b_hdr->b_type;
1435
1436 arc_cksum_verify(buf);
1437
1438 if (!recycle) {
1439 if (type == ARC_BUFC_METADATA) {
1440 arc_buf_data_free(buf->b_hdr, zio_buf_free,
1441 buf->b_data, size);
1442 arc_space_return(size, ARC_SPACE_DATA);
1443 } else {
1444 ASSERT(type == ARC_BUFC_DATA);
1445 arc_buf_data_free(buf->b_hdr,
1446 zio_data_buf_free, buf->b_data, size);
1447 ARCSTAT_INCR(arcstat_data_size, -size);
1448 atomic_add_64(&arc_size, -size);
1449 }
1450 }
1451 if (list_link_active(&buf->b_hdr->b_arc_node)) {
1452 uint64_t *cnt = &state->arcs_lsize[type];
1453
1454 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1455 ASSERT(state != arc_anon);
1456
1457 ASSERT3U(*cnt, >=, size);
1458 atomic_add_64(cnt, -size);
1459 }
1460 ASSERT3U(state->arcs_size, >=, size);
1461 atomic_add_64(&state->arcs_size, -size);
1462 buf->b_data = NULL;
1463
1464 /*
1465 * If we're destroying a duplicate buffer make sure
1466 * that the appropriate statistics are updated.
1467 */
1468 if (buf->b_hdr->b_datacnt > 1 &&
1469 buf->b_hdr->b_type == ARC_BUFC_DATA) {
1470 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1471 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1472 }
1473 ASSERT(buf->b_hdr->b_datacnt > 0);
1474 buf->b_hdr->b_datacnt -= 1;
1475 }
1476
1477 /* only remove the buf if requested */
1478 if (!all)
1479 return;
1480
1481 /* remove the buf from the hdr list */
1482 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1483 continue;
1484 *bufp = buf->b_next;
1485 buf->b_next = NULL;
1486
1487 ASSERT(buf->b_efunc == NULL);
1488
1489 /* clean up the buf */
1490 buf->b_hdr = NULL;
1491 kmem_cache_free(buf_cache, buf);
1492 }
1493
1494 static void
1495 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1496 {
1497 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1498
1499 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1500 ASSERT3P(hdr->b_state, ==, arc_anon);
1501 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1502
1503 if (l2hdr != NULL) {
1504 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1505 /*
1506 * To prevent arc_free() and l2arc_evict() from
1507 * attempting to free the same buffer at the same time,
1508 * a FREE_IN_PROGRESS flag is given to arc_free() to
1509 * give it priority. l2arc_evict() can't destroy this
1510 * header while we are waiting on l2arc_buflist_mtx.
1511 *
1512 * The hdr may be removed from l2ad_buflist before we
1513 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1514 */
1515 if (!buflist_held) {
1516 mutex_enter(&l2arc_buflist_mtx);
1517 l2hdr = hdr->b_l2hdr;
1518 }
1519
1520 if (l2hdr != NULL) {
1521 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1522 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1523 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1524 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
1525 if (hdr->b_state == arc_l2c_only)
1526 l2arc_hdr_stat_remove();
1527 hdr->b_l2hdr = NULL;
1528 }
1529
1530 if (!buflist_held)
1531 mutex_exit(&l2arc_buflist_mtx);
1532 }
1533
1534 if (!BUF_EMPTY(hdr)) {
1535 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1536 buf_discard_identity(hdr);
1537 }
1538 while (hdr->b_buf) {
1539 arc_buf_t *buf = hdr->b_buf;
1540
1541 if (buf->b_efunc) {
1542 mutex_enter(&arc_eviction_mtx);
1543 mutex_enter(&buf->b_evict_lock);
1544 ASSERT(buf->b_hdr != NULL);
1545 arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1546 hdr->b_buf = buf->b_next;
1547 buf->b_hdr = &arc_eviction_hdr;
1548 buf->b_next = arc_eviction_list;
1549 arc_eviction_list = buf;
1550 mutex_exit(&buf->b_evict_lock);
1551 mutex_exit(&arc_eviction_mtx);
1552 } else {
1553 arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1554 }
1555 }
1556 if (hdr->b_freeze_cksum != NULL) {
1557 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1558 hdr->b_freeze_cksum = NULL;
1559 }
1560
1561 ASSERT(!list_link_active(&hdr->b_arc_node));
1562 ASSERT3P(hdr->b_hash_next, ==, NULL);
1563 ASSERT3P(hdr->b_acb, ==, NULL);
1564 kmem_cache_free(hdr_cache, hdr);
1565 }
1566
1567 void
1568 arc_buf_free(arc_buf_t *buf, void *tag)
1569 {
1570 arc_buf_hdr_t *hdr = buf->b_hdr;
1571 int hashed = hdr->b_state != arc_anon;
1572
1573 ASSERT(buf->b_efunc == NULL);
1574 ASSERT(buf->b_data != NULL);
1575
1576 if (hashed) {
1577 kmutex_t *hash_lock = HDR_LOCK(hdr);
1578
1579 mutex_enter(hash_lock);
1580 hdr = buf->b_hdr;
1581 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1582
1583 (void) remove_reference(hdr, hash_lock, tag);
1584 if (hdr->b_datacnt > 1) {
1585 arc_buf_destroy(buf, FALSE, TRUE);
1586 } else {
1587 ASSERT(buf == hdr->b_buf);
1588 ASSERT(buf->b_efunc == NULL);
1589 hdr->b_flags |= ARC_BUF_AVAILABLE;
1590 }
1591 mutex_exit(hash_lock);
1592 } else if (HDR_IO_IN_PROGRESS(hdr)) {
1593 int destroy_hdr;
1594 /*
1595 * We are in the middle of an async write. Don't destroy
1596 * this buffer unless the write completes before we finish
1597 * decrementing the reference count.
1598 */
1599 mutex_enter(&arc_eviction_mtx);
1600 (void) remove_reference(hdr, NULL, tag);
1601 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1602 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1603 mutex_exit(&arc_eviction_mtx);
1604 if (destroy_hdr)
1605 arc_hdr_destroy(hdr);
1606 } else {
1607 if (remove_reference(hdr, NULL, tag) > 0)
1608 arc_buf_destroy(buf, FALSE, TRUE);
1609 else
1610 arc_hdr_destroy(hdr);
1611 }
1612 }
1613
1614 int
1615 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1616 {
1617 arc_buf_hdr_t *hdr = buf->b_hdr;
1618 kmutex_t *hash_lock = NULL;
1619 int no_callback = (buf->b_efunc == NULL);
1620
1621 if (hdr->b_state == arc_anon) {
1622 ASSERT(hdr->b_datacnt == 1);
1623 arc_buf_free(buf, tag);
1624 return (no_callback);
1625 }
1626
1627 hash_lock = HDR_LOCK(hdr);
1628 mutex_enter(hash_lock);
1629 hdr = buf->b_hdr;
1630 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1631 ASSERT(hdr->b_state != arc_anon);
1632 ASSERT(buf->b_data != NULL);
1633
1634 (void) remove_reference(hdr, hash_lock, tag);
1635 if (hdr->b_datacnt > 1) {
1636 if (no_callback)
1637 arc_buf_destroy(buf, FALSE, TRUE);
1638 } else if (no_callback) {
1639 ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1640 ASSERT(buf->b_efunc == NULL);
1641 hdr->b_flags |= ARC_BUF_AVAILABLE;
1642 }
1643 ASSERT(no_callback || hdr->b_datacnt > 1 ||
1644 refcount_is_zero(&hdr->b_refcnt));
1645 mutex_exit(hash_lock);
1646 return (no_callback);
1647 }
1648
1649 int
1650 arc_buf_size(arc_buf_t *buf)
1651 {
1652 return (buf->b_hdr->b_size);
1653 }
1654
1655 /*
1656 * Called from the DMU to determine if the current buffer should be
1657 * evicted. In order to ensure proper locking, the eviction must be initiated
1658 * from the DMU. Return true if the buffer is associated with user data and
1659 * duplicate buffers still exist.
1660 */
1661 boolean_t
1662 arc_buf_eviction_needed(arc_buf_t *buf)
1663 {
1664 arc_buf_hdr_t *hdr;
1665 boolean_t evict_needed = B_FALSE;
1666
1667 if (zfs_disable_dup_eviction)
1668 return (B_FALSE);
1669
1670 mutex_enter(&buf->b_evict_lock);
1671 hdr = buf->b_hdr;
1672 if (hdr == NULL) {
1673 /*
1674 * We are in arc_do_user_evicts(); let that function
1675 * perform the eviction.
1676 */
1677 ASSERT(buf->b_data == NULL);
1678 mutex_exit(&buf->b_evict_lock);
1679 return (B_FALSE);
1680 } else if (buf->b_data == NULL) {
1681 /*
1682 * We have already been added to the arc eviction list;
1683 * recommend eviction.
1684 */
1685 ASSERT3P(hdr, ==, &arc_eviction_hdr);
1686 mutex_exit(&buf->b_evict_lock);
1687 return (B_TRUE);
1688 }
1689
1690 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1691 evict_needed = B_TRUE;
1692
1693 mutex_exit(&buf->b_evict_lock);
1694 return (evict_needed);
1695 }
1696
1697 /*
1698 * Evict buffers from list until we've removed the specified number of
1699 * bytes. Move the removed buffers to the appropriate evict state.
1700 * If the recycle flag is set, then attempt to "recycle" a buffer:
1701 * - look for a buffer to evict that is `bytes' long.
1702 * - return the data block from this buffer rather than freeing it.
1703 * This flag is used by callers that are trying to make space for a
1704 * new buffer in a full arc cache.
1705 *
1706 * This function makes a "best effort". It skips over any buffers
1707 * it can't get a hash_lock on, and so may not catch all candidates.
1708 * It may also return without evicting as much space as requested.
1709 */
1710 static void *
1711 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1712 arc_buf_contents_t type)
1713 {
1714 arc_state_t *evicted_state;
1715 uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1716 arc_buf_hdr_t *ab, *ab_prev = NULL;
1717 list_t *list = &state->arcs_list[type];
1718 kmutex_t *hash_lock;
1719 boolean_t have_lock;
1720 void *stolen = NULL;
1721
1722 ASSERT(state == arc_mru || state == arc_mfu);
1723
1724 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1725
1726 mutex_enter(&state->arcs_mtx);
1727 mutex_enter(&evicted_state->arcs_mtx);
1728
1729 for (ab = list_tail(list); ab; ab = ab_prev) {
1730 ab_prev = list_prev(list, ab);
1731 /* prefetch buffers have a minimum lifespan */
1732 if (HDR_IO_IN_PROGRESS(ab) ||
1733 (spa && ab->b_spa != spa) ||
1734 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1735 ddi_get_lbolt() - ab->b_arc_access <
1736 zfs_arc_min_prefetch_lifespan)) {
1737 skipped++;
1738 continue;
1739 }
1740 /* "lookahead" for better eviction candidate */
1741 if (recycle && ab->b_size != bytes &&
1742 ab_prev && ab_prev->b_size == bytes)
1743 continue;
1744 hash_lock = HDR_LOCK(ab);
1745 have_lock = MUTEX_HELD(hash_lock);
1746 if (have_lock || mutex_tryenter(hash_lock)) {
1747 ASSERT0(refcount_count(&ab->b_refcnt));
1748 ASSERT(ab->b_datacnt > 0);
1749 while (ab->b_buf) {
1750 arc_buf_t *buf = ab->b_buf;
1751 if (!mutex_tryenter(&buf->b_evict_lock)) {
1752 missed += 1;
1753 break;
1754 }
1755 if (buf->b_data) {
1756 bytes_evicted += ab->b_size;
1757 if (recycle && ab->b_type == type &&
1758 ab->b_size == bytes &&
1759 !HDR_L2_WRITING(ab)) {
1760 stolen = buf->b_data;
1761 recycle = FALSE;
1762 }
1763 }
1764 if (buf->b_efunc) {
1765 mutex_enter(&arc_eviction_mtx);
1766 arc_buf_destroy(buf,
1767 buf->b_data == stolen, FALSE);
1768 ab->b_buf = buf->b_next;
1769 buf->b_hdr = &arc_eviction_hdr;
1770 buf->b_next = arc_eviction_list;
1771 arc_eviction_list = buf;
1772 mutex_exit(&arc_eviction_mtx);
1773 mutex_exit(&buf->b_evict_lock);
1774 } else {
1775 mutex_exit(&buf->b_evict_lock);
1776 arc_buf_destroy(buf,
1777 buf->b_data == stolen, TRUE);
1778 }
1779 }
1780
1781 if (ab->b_l2hdr) {
1782 ARCSTAT_INCR(arcstat_evict_l2_cached,
1783 ab->b_size);
1784 } else {
1785 if (l2arc_write_eligible(ab->b_spa, ab)) {
1786 ARCSTAT_INCR(arcstat_evict_l2_eligible,
1787 ab->b_size);
1788 } else {
1789 ARCSTAT_INCR(
1790 arcstat_evict_l2_ineligible,
1791 ab->b_size);
1792 }
1793 }
1794
1795 if (ab->b_datacnt == 0) {
1796 arc_change_state(evicted_state, ab, hash_lock);
1797 ASSERT(HDR_IN_HASH_TABLE(ab));
1798 ab->b_flags |= ARC_IN_HASH_TABLE;
1799 ab->b_flags &= ~ARC_BUF_AVAILABLE;
1800 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1801 }
1802 if (!have_lock)
1803 mutex_exit(hash_lock);
1804 if (bytes >= 0 && bytes_evicted >= bytes)
1805 break;
1806 } else {
1807 missed += 1;
1808 }
1809 }
1810
1811 mutex_exit(&evicted_state->arcs_mtx);
1812 mutex_exit(&state->arcs_mtx);
1813
1814 if (bytes_evicted < bytes)
1815 dprintf("only evicted %lld bytes from %x\n",
1816 (longlong_t)bytes_evicted, state);
1817
1818 if (skipped)
1819 ARCSTAT_INCR(arcstat_evict_skip, skipped);
1820
1821 if (missed)
1822 ARCSTAT_INCR(arcstat_mutex_miss, missed);
1823
1824 /*
1825 * We have just evicted some date into the ghost state, make
1826 * sure we also adjust the ghost state size if necessary.
1827 */
1828 if (arc_no_grow &&
1829 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1830 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1831 arc_mru_ghost->arcs_size - arc_c;
1832
1833 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1834 int64_t todelete =
1835 MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1836 arc_evict_ghost(arc_mru_ghost, 0, todelete);
1837 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1838 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1839 arc_mru_ghost->arcs_size +
1840 arc_mfu_ghost->arcs_size - arc_c);
1841 arc_evict_ghost(arc_mfu_ghost, 0, todelete);
1842 }
1843 }
1844
1845 return (stolen);
1846 }
1847
1848 /*
1849 * Remove buffers from list until we've removed the specified number of
1850 * bytes. Destroy the buffers that are removed.
1851 */
1852 static void
1853 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1854 {
1855 arc_buf_hdr_t *ab, *ab_prev;
1856 arc_buf_hdr_t marker;
1857 list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1858 kmutex_t *hash_lock;
1859 uint64_t bytes_deleted = 0;
1860 uint64_t bufs_skipped = 0;
1861
1862 ASSERT(GHOST_STATE(state));
1863 bzero(&marker, sizeof(marker));
1864 top:
1865 mutex_enter(&state->arcs_mtx);
1866 for (ab = list_tail(list); ab; ab = ab_prev) {
1867 ab_prev = list_prev(list, ab);
1868 if (spa && ab->b_spa != spa)
1869 continue;
1870
1871 /* ignore markers */
1872 if (ab->b_spa == 0)
1873 continue;
1874
1875 hash_lock = HDR_LOCK(ab);
1876 /* caller may be trying to modify this buffer, skip it */
1877 if (MUTEX_HELD(hash_lock))
1878 continue;
1879 if (mutex_tryenter(hash_lock)) {
1880 ASSERT(!HDR_IO_IN_PROGRESS(ab));
1881 ASSERT(ab->b_buf == NULL);
1882 ARCSTAT_BUMP(arcstat_deleted);
1883 bytes_deleted += ab->b_size;
1884
1885 if (ab->b_l2hdr != NULL) {
1886 /*
1887 * This buffer is cached on the 2nd Level ARC;
1888 * don't destroy the header.
1889 */
1890 arc_change_state(arc_l2c_only, ab, hash_lock);
1891 mutex_exit(hash_lock);
1892 } else {
1893 arc_change_state(arc_anon, ab, hash_lock);
1894 mutex_exit(hash_lock);
1895 arc_hdr_destroy(ab);
1896 }
1897
1898 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1899 if (bytes >= 0 && bytes_deleted >= bytes)
1900 break;
1901 } else if (bytes < 0) {
1902 /*
1903 * Insert a list marker and then wait for the
1904 * hash lock to become available. Once its
1905 * available, restart from where we left off.
1906 */
1907 list_insert_after(list, ab, &marker);
1908 mutex_exit(&state->arcs_mtx);
1909 mutex_enter(hash_lock);
1910 mutex_exit(hash_lock);
1911 mutex_enter(&state->arcs_mtx);
1912 ab_prev = list_prev(list, &marker);
1913 list_remove(list, &marker);
1914 } else
1915 bufs_skipped += 1;
1916 }
1917 mutex_exit(&state->arcs_mtx);
1918
1919 if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1920 (bytes < 0 || bytes_deleted < bytes)) {
1921 list = &state->arcs_list[ARC_BUFC_METADATA];
1922 goto top;
1923 }
1924
1925 if (bufs_skipped) {
1926 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1927 ASSERT(bytes >= 0);
1928 }
1929
1930 if (bytes_deleted < bytes)
1931 dprintf("only deleted %lld bytes from %p\n",
1932 (longlong_t)bytes_deleted, state);
1933 }
1934
1935 static void
1936 arc_adjust(void)
1937 {
1938 int64_t adjustment, delta;
1939
1940 /*
1941 * Adjust MRU size
1942 */
1943
1944 adjustment = MIN((int64_t)(arc_size - arc_c),
1945 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
1946 arc_p));
1947
1948 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1949 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
1950 (void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
1951 adjustment -= delta;
1952 }
1953
1954 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1955 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
1956 (void) arc_evict(arc_mru, 0, delta, FALSE,
1957 ARC_BUFC_METADATA);
1958 }
1959
1960 /*
1961 * Adjust MFU size
1962 */
1963
1964 adjustment = arc_size - arc_c;
1965
1966 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1967 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
1968 (void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
1969 adjustment -= delta;
1970 }
1971
1972 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1973 int64_t delta = MIN(adjustment,
1974 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
1975 (void) arc_evict(arc_mfu, 0, delta, FALSE,
1976 ARC_BUFC_METADATA);
1977 }
1978
1979 /*
1980 * Adjust ghost lists
1981 */
1982
1983 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
1984
1985 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
1986 delta = MIN(arc_mru_ghost->arcs_size, adjustment);
1987 arc_evict_ghost(arc_mru_ghost, 0, delta);
1988 }
1989
1990 adjustment =
1991 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
1992
1993 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
1994 delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
1995 arc_evict_ghost(arc_mfu_ghost, 0, delta);
1996 }
1997 }
1998
1999 /*
2000 * Request that arc user drop references so that N bytes can be released
2001 * from the cache. This provides a mechanism to ensure the arc can honor
2002 * the arc_meta_limit and reclaim buffers which are pinned in the cache
2003 * by higher layers. (i.e. the zpl)
2004 */
2005 static void
2006 arc_do_user_prune(int64_t adjustment)
2007 {
2008 arc_prune_func_t *func;
2009 void *private;
2010 arc_prune_t *cp, *np;
2011
2012 mutex_enter(&arc_prune_mtx);
2013
2014 cp = list_head(&arc_prune_list);
2015 while (cp != NULL) {
2016 func = cp->p_pfunc;
2017 private = cp->p_private;
2018 np = list_next(&arc_prune_list, cp);
2019 refcount_add(&cp->p_refcnt, func);
2020 mutex_exit(&arc_prune_mtx);
2021
2022 if (func != NULL)
2023 func(adjustment, private);
2024
2025 mutex_enter(&arc_prune_mtx);
2026
2027 /* User removed prune callback concurrently with execution */
2028 if (refcount_remove(&cp->p_refcnt, func) == 0) {
2029 ASSERT(!list_link_active(&cp->p_node));
2030 refcount_destroy(&cp->p_refcnt);
2031 kmem_free(cp, sizeof (*cp));
2032 }
2033
2034 cp = np;
2035 }
2036
2037 ARCSTAT_BUMP(arcstat_prune);
2038 mutex_exit(&arc_prune_mtx);
2039 }
2040
2041 static void
2042 arc_do_user_evicts(void)
2043 {
2044 mutex_enter(&arc_eviction_mtx);
2045 while (arc_eviction_list != NULL) {
2046 arc_buf_t *buf = arc_eviction_list;
2047 arc_eviction_list = buf->b_next;
2048 mutex_enter(&buf->b_evict_lock);
2049 buf->b_hdr = NULL;
2050 mutex_exit(&buf->b_evict_lock);
2051 mutex_exit(&arc_eviction_mtx);
2052
2053 if (buf->b_efunc != NULL)
2054 VERIFY(buf->b_efunc(buf) == 0);
2055
2056 buf->b_efunc = NULL;
2057 buf->b_private = NULL;
2058 kmem_cache_free(buf_cache, buf);
2059 mutex_enter(&arc_eviction_mtx);
2060 }
2061 mutex_exit(&arc_eviction_mtx);
2062 }
2063
2064 /*
2065 * Evict only meta data objects from the cache leaving the data objects.
2066 * This is only used to enforce the tunable arc_meta_limit, if we are
2067 * unable to evict enough buffers notify the user via the prune callback.
2068 */
2069 void
2070 arc_adjust_meta(int64_t adjustment, boolean_t may_prune)
2071 {
2072 int64_t delta;
2073
2074 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2075 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2076 arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_METADATA);
2077 adjustment -= delta;
2078 }
2079
2080 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2081 delta = MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2082 arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_METADATA);
2083 adjustment -= delta;
2084 }
2085
2086 if (may_prune && (adjustment > 0) && (arc_meta_used > arc_meta_limit))
2087 arc_do_user_prune(zfs_arc_meta_prune);
2088 }
2089
2090 /*
2091 * Flush all *evictable* data from the cache for the given spa.
2092 * NOTE: this will not touch "active" (i.e. referenced) data.
2093 */
2094 void
2095 arc_flush(spa_t *spa)
2096 {
2097 uint64_t guid = 0;
2098
2099 if (spa)
2100 guid = spa_load_guid(spa);
2101
2102 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
2103 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2104 if (spa)
2105 break;
2106 }
2107 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
2108 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2109 if (spa)
2110 break;
2111 }
2112 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
2113 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2114 if (spa)
2115 break;
2116 }
2117 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
2118 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2119 if (spa)
2120 break;
2121 }
2122
2123 arc_evict_ghost(arc_mru_ghost, guid, -1);
2124 arc_evict_ghost(arc_mfu_ghost, guid, -1);
2125
2126 mutex_enter(&arc_reclaim_thr_lock);
2127 arc_do_user_evicts();
2128 mutex_exit(&arc_reclaim_thr_lock);
2129 ASSERT(spa || arc_eviction_list == NULL);
2130 }
2131
2132 void
2133 arc_shrink(uint64_t bytes)
2134 {
2135 if (arc_c > arc_c_min) {
2136 uint64_t to_free;
2137
2138 to_free = bytes ? bytes : arc_c >> zfs_arc_shrink_shift;
2139
2140 if (arc_c > arc_c_min + to_free)
2141 atomic_add_64(&arc_c, -to_free);
2142 else
2143 arc_c = arc_c_min;
2144
2145 atomic_add_64(&arc_p, -(arc_p >> zfs_arc_shrink_shift));
2146 if (arc_c > arc_size)
2147 arc_c = MAX(arc_size, arc_c_min);
2148 if (arc_p > arc_c)
2149 arc_p = (arc_c >> 1);
2150 ASSERT(arc_c >= arc_c_min);
2151 ASSERT((int64_t)arc_p >= 0);
2152 }
2153
2154 if (arc_size > arc_c)
2155 arc_adjust();
2156 }
2157
2158 static void
2159 arc_kmem_reap_now(arc_reclaim_strategy_t strat, uint64_t bytes)
2160 {
2161 size_t i;
2162 kmem_cache_t *prev_cache = NULL;
2163 kmem_cache_t *prev_data_cache = NULL;
2164 extern kmem_cache_t *zio_buf_cache[];
2165 extern kmem_cache_t *zio_data_buf_cache[];
2166
2167 /*
2168 * An aggressive reclamation will shrink the cache size as well as
2169 * reap free buffers from the arc kmem caches.
2170 */
2171 if (strat == ARC_RECLAIM_AGGR)
2172 arc_shrink(bytes);
2173
2174 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2175 if (zio_buf_cache[i] != prev_cache) {
2176 prev_cache = zio_buf_cache[i];
2177 kmem_cache_reap_now(zio_buf_cache[i]);
2178 }
2179 if (zio_data_buf_cache[i] != prev_data_cache) {
2180 prev_data_cache = zio_data_buf_cache[i];
2181 kmem_cache_reap_now(zio_data_buf_cache[i]);
2182 }
2183 }
2184
2185 kmem_cache_reap_now(buf_cache);
2186 kmem_cache_reap_now(hdr_cache);
2187 }
2188
2189 /*
2190 * Unlike other ZFS implementations this thread is only responsible for
2191 * adapting the target ARC size on Linux. The responsibility for memory
2192 * reclamation has been entirely delegated to the arc_shrinker_func()
2193 * which is registered with the VM. To reflect this change in behavior
2194 * the arc_reclaim thread has been renamed to arc_adapt.
2195 */
2196 static void
2197 arc_adapt_thread(void)
2198 {
2199 callb_cpr_t cpr;
2200 int64_t prune;
2201
2202 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2203
2204 mutex_enter(&arc_reclaim_thr_lock);
2205 while (arc_thread_exit == 0) {
2206 #ifndef _KERNEL
2207 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
2208
2209 if (spa_get_random(100) == 0) {
2210
2211 if (arc_no_grow) {
2212 if (last_reclaim == ARC_RECLAIM_CONS) {
2213 last_reclaim = ARC_RECLAIM_AGGR;
2214 } else {
2215 last_reclaim = ARC_RECLAIM_CONS;
2216 }
2217 } else {
2218 arc_no_grow = TRUE;
2219 last_reclaim = ARC_RECLAIM_AGGR;
2220 membar_producer();
2221 }
2222
2223 /* reset the growth delay for every reclaim */
2224 arc_grow_time = ddi_get_lbolt()+(zfs_arc_grow_retry * hz);
2225
2226 arc_kmem_reap_now(last_reclaim, 0);
2227 arc_warm = B_TRUE;
2228 }
2229 #endif /* !_KERNEL */
2230
2231 /* No recent memory pressure allow the ARC to grow. */
2232 if (arc_no_grow && ddi_get_lbolt() >= arc_grow_time)
2233 arc_no_grow = FALSE;
2234
2235 /*
2236 * Keep meta data usage within limits, arc_shrink() is not
2237 * used to avoid collapsing the arc_c value when only the
2238 * arc_meta_limit is being exceeded.
2239 */
2240 prune = (int64_t)arc_meta_used - (int64_t)arc_meta_limit;
2241 if (prune > 0)
2242 arc_adjust_meta(prune, B_TRUE);
2243
2244 arc_adjust();
2245
2246 if (arc_eviction_list != NULL)
2247 arc_do_user_evicts();
2248
2249 /* block until needed, or one second, whichever is shorter */
2250 CALLB_CPR_SAFE_BEGIN(&cpr);
2251 (void) cv_timedwait_interruptible(&arc_reclaim_thr_cv,
2252 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2253 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2254
2255
2256 /* Allow the module options to be changed */
2257 if (zfs_arc_max > 64 << 20 &&
2258 zfs_arc_max < physmem * PAGESIZE &&
2259 zfs_arc_max != arc_c_max)
2260 arc_c_max = zfs_arc_max;
2261
2262 if (zfs_arc_min > 0 &&
2263 zfs_arc_min < arc_c_max &&
2264 zfs_arc_min != arc_c_min)
2265 arc_c_min = zfs_arc_min;
2266
2267 if (zfs_arc_meta_limit > 0 &&
2268 zfs_arc_meta_limit <= arc_c_max &&
2269 zfs_arc_meta_limit != arc_meta_limit)
2270 arc_meta_limit = zfs_arc_meta_limit;
2271
2272
2273
2274 }
2275
2276 arc_thread_exit = 0;
2277 cv_broadcast(&arc_reclaim_thr_cv);
2278 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */
2279 thread_exit();
2280 }
2281
2282 #ifdef _KERNEL
2283 /*
2284 * Determine the amount of memory eligible for eviction contained in the
2285 * ARC. All clean data reported by the ghost lists can always be safely
2286 * evicted. Due to arc_c_min, the same does not hold for all clean data
2287 * contained by the regular mru and mfu lists.
2288 *
2289 * In the case of the regular mru and mfu lists, we need to report as
2290 * much clean data as possible, such that evicting that same reported
2291 * data will not bring arc_size below arc_c_min. Thus, in certain
2292 * circumstances, the total amount of clean data in the mru and mfu
2293 * lists might not actually be evictable.
2294 *
2295 * The following two distinct cases are accounted for:
2296 *
2297 * 1. The sum of the amount of dirty data contained by both the mru and
2298 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
2299 * is greater than or equal to arc_c_min.
2300 * (i.e. amount of dirty data >= arc_c_min)
2301 *
2302 * This is the easy case; all clean data contained by the mru and mfu
2303 * lists is evictable. Evicting all clean data can only drop arc_size
2304 * to the amount of dirty data, which is greater than arc_c_min.
2305 *
2306 * 2. The sum of the amount of dirty data contained by both the mru and
2307 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
2308 * is less than arc_c_min.
2309 * (i.e. arc_c_min > amount of dirty data)
2310 *
2311 * 2.1. arc_size is greater than or equal arc_c_min.
2312 * (i.e. arc_size >= arc_c_min > amount of dirty data)
2313 *
2314 * In this case, not all clean data from the regular mru and mfu
2315 * lists is actually evictable; we must leave enough clean data
2316 * to keep arc_size above arc_c_min. Thus, the maximum amount of
2317 * evictable data from the two lists combined, is exactly the
2318 * difference between arc_size and arc_c_min.
2319 *
2320 * 2.2. arc_size is less than arc_c_min
2321 * (i.e. arc_c_min > arc_size > amount of dirty data)
2322 *
2323 * In this case, none of the data contained in the mru and mfu
2324 * lists is evictable, even if it's clean. Since arc_size is
2325 * already below arc_c_min, evicting any more would only
2326 * increase this negative difference.
2327 */
2328 static uint64_t
2329 arc_evictable_memory(void) {
2330 uint64_t arc_clean =
2331 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
2332 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
2333 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
2334 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
2335 uint64_t ghost_clean =
2336 arc_mru_ghost->arcs_lsize[ARC_BUFC_DATA] +
2337 arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] +
2338 arc_mfu_ghost->arcs_lsize[ARC_BUFC_DATA] +
2339 arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA];
2340 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
2341
2342 if (arc_dirty >= arc_c_min)
2343 return (ghost_clean + arc_clean);
2344
2345 return (ghost_clean + MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
2346 }
2347
2348 static int
2349 __arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
2350 {
2351 uint64_t pages;
2352
2353 /* The arc is considered warm once reclaim has occurred */
2354 if (unlikely(arc_warm == B_FALSE))
2355 arc_warm = B_TRUE;
2356
2357 /* Return the potential number of reclaimable pages */
2358 pages = btop(arc_evictable_memory());
2359 if (sc->nr_to_scan == 0)
2360 return (pages);
2361
2362 /* Not allowed to perform filesystem reclaim */
2363 if (!(sc->gfp_mask & __GFP_FS))
2364 return (-1);
2365
2366 /* Reclaim in progress */
2367 if (mutex_tryenter(&arc_reclaim_thr_lock) == 0)
2368 return (-1);
2369
2370 /*
2371 * Evict the requested number of pages by shrinking arc_c the
2372 * requested amount. If there is nothing left to evict just
2373 * reap whatever we can from the various arc slabs.
2374 */
2375 if (pages > 0) {
2376 arc_kmem_reap_now(ARC_RECLAIM_AGGR, ptob(sc->nr_to_scan));
2377 } else {
2378 arc_kmem_reap_now(ARC_RECLAIM_CONS, ptob(sc->nr_to_scan));
2379 }
2380
2381 /*
2382 * When direct reclaim is observed it usually indicates a rapid
2383 * increase in memory pressure. This occurs because the kswapd
2384 * threads were unable to asynchronously keep enough free memory
2385 * available. In this case set arc_no_grow to briefly pause arc
2386 * growth to avoid compounding the memory pressure.
2387 */
2388 if (current_is_kswapd()) {
2389 ARCSTAT_BUMP(arcstat_memory_indirect_count);
2390 } else {
2391 arc_no_grow = B_TRUE;
2392 arc_grow_time = ddi_get_lbolt() + (zfs_arc_grow_retry * hz);
2393 ARCSTAT_BUMP(arcstat_memory_direct_count);
2394 }
2395
2396 mutex_exit(&arc_reclaim_thr_lock);
2397
2398 return (-1);
2399 }
2400 SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
2401
2402 SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
2403 #endif /* _KERNEL */
2404
2405 /*
2406 * Adapt arc info given the number of bytes we are trying to add and
2407 * the state that we are comming from. This function is only called
2408 * when we are adding new content to the cache.
2409 */
2410 static void
2411 arc_adapt(int bytes, arc_state_t *state)
2412 {
2413 int mult;
2414 uint64_t arc_p_min = (arc_c >> zfs_arc_p_min_shift);
2415
2416 if (state == arc_l2c_only)
2417 return;
2418
2419 ASSERT(bytes > 0);
2420 /*
2421 * Adapt the target size of the MRU list:
2422 * - if we just hit in the MRU ghost list, then increase
2423 * the target size of the MRU list.
2424 * - if we just hit in the MFU ghost list, then increase
2425 * the target size of the MFU list by decreasing the
2426 * target size of the MRU list.
2427 */
2428 if (state == arc_mru_ghost) {
2429 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2430 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2431 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2432
2433 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2434 } else if (state == arc_mfu_ghost) {
2435 uint64_t delta;
2436
2437 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2438 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2439 mult = MIN(mult, 10);
2440
2441 delta = MIN(bytes * mult, arc_p);
2442 arc_p = MAX(arc_p_min, arc_p - delta);
2443 }
2444 ASSERT((int64_t)arc_p >= 0);
2445
2446 if (arc_no_grow)
2447 return;
2448
2449 if (arc_c >= arc_c_max)
2450 return;
2451
2452 /*
2453 * If we're within (2 * maxblocksize) bytes of the target
2454 * cache size, increment the target cache size
2455 */
2456 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2457 atomic_add_64(&arc_c, (int64_t)bytes);
2458 if (arc_c > arc_c_max)
2459 arc_c = arc_c_max;
2460 else if (state == arc_anon)
2461 atomic_add_64(&arc_p, (int64_t)bytes);
2462 if (arc_p > arc_c)
2463 arc_p = arc_c;
2464 }
2465 ASSERT((int64_t)arc_p >= 0);
2466 }
2467
2468 /*
2469 * Check if the cache has reached its limits and eviction is required
2470 * prior to insert.
2471 */
2472 static int
2473 arc_evict_needed(arc_buf_contents_t type)
2474 {
2475 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2476 return (1);
2477
2478 if (arc_no_grow)
2479 return (1);
2480
2481 return (arc_size > arc_c);
2482 }
2483
2484 /*
2485 * The buffer, supplied as the first argument, needs a data block.
2486 * So, if we are at cache max, determine which cache should be victimized.
2487 * We have the following cases:
2488 *
2489 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2490 * In this situation if we're out of space, but the resident size of the MFU is
2491 * under the limit, victimize the MFU cache to satisfy this insertion request.
2492 *
2493 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2494 * Here, we've used up all of the available space for the MRU, so we need to
2495 * evict from our own cache instead. Evict from the set of resident MRU
2496 * entries.
2497 *
2498 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2499 * c minus p represents the MFU space in the cache, since p is the size of the
2500 * cache that is dedicated to the MRU. In this situation there's still space on
2501 * the MFU side, so the MRU side needs to be victimized.
2502 *
2503 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2504 * MFU's resident set is consuming more space than it has been allotted. In
2505 * this situation, we must victimize our own cache, the MFU, for this insertion.
2506 */
2507 static void
2508 arc_get_data_buf(arc_buf_t *buf)
2509 {
2510 arc_state_t *state = buf->b_hdr->b_state;
2511 uint64_t size = buf->b_hdr->b_size;
2512 arc_buf_contents_t type = buf->b_hdr->b_type;
2513
2514 arc_adapt(size, state);
2515
2516 /*
2517 * We have not yet reached cache maximum size,
2518 * just allocate a new buffer.
2519 */
2520 if (!arc_evict_needed(type)) {
2521 if (type == ARC_BUFC_METADATA) {
2522 buf->b_data = zio_buf_alloc(size);
2523 arc_space_consume(size, ARC_SPACE_DATA);
2524 } else {
2525 ASSERT(type == ARC_BUFC_DATA);
2526 buf->b_data = zio_data_buf_alloc(size);
2527 ARCSTAT_INCR(arcstat_data_size, size);
2528 atomic_add_64(&arc_size, size);
2529 }
2530 goto out;
2531 }
2532
2533 /*
2534 * If we are prefetching from the mfu ghost list, this buffer
2535 * will end up on the mru list; so steal space from there.
2536 */
2537 if (state == arc_mfu_ghost)
2538 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2539 else if (state == arc_mru_ghost)
2540 state = arc_mru;
2541
2542 if (state == arc_mru || state == arc_anon) {
2543 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2544 state = (arc_mfu->arcs_lsize[type] >= size &&
2545 arc_p > mru_used) ? arc_mfu : arc_mru;
2546 } else {
2547 /* MFU cases */
2548 uint64_t mfu_space = arc_c - arc_p;
2549 state = (arc_mru->arcs_lsize[type] >= size &&
2550 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2551 }
2552
2553 if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
2554 if (type == ARC_BUFC_METADATA) {
2555 buf->b_data = zio_buf_alloc(size);
2556 arc_space_consume(size, ARC_SPACE_DATA);
2557
2558 /*
2559 * If we are unable to recycle an existing meta buffer
2560 * signal the reclaim thread. It will notify users
2561 * via the prune callback to drop references. The
2562 * prune callback in run in the context of the reclaim
2563 * thread to avoid deadlocking on the hash_lock.
2564 */
2565 cv_signal(&arc_reclaim_thr_cv);
2566 } else {
2567 ASSERT(type == ARC_BUFC_DATA);
2568 buf->b_data = zio_data_buf_alloc(size);
2569 ARCSTAT_INCR(arcstat_data_size, size);
2570 atomic_add_64(&arc_size, size);
2571 }
2572
2573 ARCSTAT_BUMP(arcstat_recycle_miss);
2574 }
2575 ASSERT(buf->b_data != NULL);
2576 out:
2577 /*
2578 * Update the state size. Note that ghost states have a
2579 * "ghost size" and so don't need to be updated.
2580 */
2581 if (!GHOST_STATE(buf->b_hdr->b_state)) {
2582 arc_buf_hdr_t *hdr = buf->b_hdr;
2583
2584 atomic_add_64(&hdr->b_state->arcs_size, size);
2585 if (list_link_active(&hdr->b_arc_node)) {
2586 ASSERT(refcount_is_zero(&hdr->b_refcnt));
2587 atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2588 }
2589 /*
2590 * If we are growing the cache, and we are adding anonymous
2591 * data, and we have outgrown arc_p, update arc_p
2592 */
2593 if (arc_size < arc_c && hdr->b_state == arc_anon &&
2594 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2595 arc_p = MIN(arc_c, arc_p + size);
2596 }
2597 }
2598
2599 /*
2600 * This routine is called whenever a buffer is accessed.
2601 * NOTE: the hash lock is dropped in this function.
2602 */
2603 static void
2604 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2605 {
2606 clock_t now;
2607
2608 ASSERT(MUTEX_HELD(hash_lock));
2609
2610 if (buf->b_state == arc_anon) {
2611 /*
2612 * This buffer is not in the cache, and does not
2613 * appear in our "ghost" list. Add the new buffer
2614 * to the MRU state.
2615 */
2616
2617 ASSERT(buf->b_arc_access == 0);
2618 buf->b_arc_access = ddi_get_lbolt();
2619 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2620 arc_change_state(arc_mru, buf, hash_lock);
2621
2622 } else if (buf->b_state == arc_mru) {
2623 now = ddi_get_lbolt();
2624
2625 /*
2626 * If this buffer is here because of a prefetch, then either:
2627 * - clear the flag if this is a "referencing" read
2628 * (any subsequent access will bump this into the MFU state).
2629 * or
2630 * - move the buffer to the head of the list if this is
2631 * another prefetch (to make it less likely to be evicted).
2632 */
2633 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2634 if (refcount_count(&buf->b_refcnt) == 0) {
2635 ASSERT(list_link_active(&buf->b_arc_node));
2636 } else {
2637 buf->b_flags &= ~ARC_PREFETCH;
2638 ARCSTAT_BUMP(arcstat_mru_hits);
2639 }
2640 buf->b_arc_access = now;
2641 return;
2642 }
2643
2644 /*
2645 * This buffer has been "accessed" only once so far,
2646 * but it is still in the cache. Move it to the MFU
2647 * state.
2648 */
2649 if (now > buf->b_arc_access + ARC_MINTIME) {
2650 /*
2651 * More than 125ms have passed since we
2652 * instantiated this buffer. Move it to the
2653 * most frequently used state.
2654 */
2655 buf->b_arc_access = now;
2656 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2657 arc_change_state(arc_mfu, buf, hash_lock);
2658 }
2659 ARCSTAT_BUMP(arcstat_mru_hits);
2660 } else if (buf->b_state == arc_mru_ghost) {
2661 arc_state_t *new_state;
2662 /*
2663 * This buffer has been "accessed" recently, but
2664 * was evicted from the cache. Move it to the
2665 * MFU state.
2666 */
2667
2668 if (buf->b_flags & ARC_PREFETCH) {
2669 new_state = arc_mru;
2670 if (refcount_count(&buf->b_refcnt) > 0)
2671 buf->b_flags &= ~ARC_PREFETCH;
2672 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2673 } else {
2674 new_state = arc_mfu;
2675 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2676 }
2677
2678 buf->b_arc_access = ddi_get_lbolt();
2679 arc_change_state(new_state, buf, hash_lock);
2680
2681 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2682 } else if (buf->b_state == arc_mfu) {
2683 /*
2684 * This buffer has been accessed more than once and is
2685 * still in the cache. Keep it in the MFU state.
2686 *
2687 * NOTE: an add_reference() that occurred when we did
2688 * the arc_read() will have kicked this off the list.
2689 * If it was a prefetch, we will explicitly move it to
2690 * the head of the list now.
2691 */
2692 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2693 ASSERT(refcount_count(&buf->b_refcnt) == 0);
2694 ASSERT(list_link_active(&buf->b_arc_node));
2695 }
2696 ARCSTAT_BUMP(arcstat_mfu_hits);
2697 buf->b_arc_access = ddi_get_lbolt();
2698 } else if (buf->b_state == arc_mfu_ghost) {
2699 arc_state_t *new_state = arc_mfu;
2700 /*
2701 * This buffer has been accessed more than once but has
2702 * been evicted from the cache. Move it back to the
2703 * MFU state.
2704 */
2705
2706 if (buf->b_flags & ARC_PREFETCH) {
2707 /*
2708 * This is a prefetch access...
2709 * move this block back to the MRU state.
2710 */
2711 ASSERT0(refcount_count(&buf->b_refcnt));
2712 new_state = arc_mru;
2713 }
2714
2715 buf->b_arc_access = ddi_get_lbolt();
2716 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2717 arc_change_state(new_state, buf, hash_lock);
2718
2719 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2720 } else if (buf->b_state == arc_l2c_only) {
2721 /*
2722 * This buffer is on the 2nd Level ARC.
2723 */
2724
2725 buf->b_arc_access = ddi_get_lbolt();
2726 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2727 arc_change_state(arc_mfu, buf, hash_lock);
2728 } else {
2729 ASSERT(!"invalid arc state");
2730 }
2731 }
2732
2733 /* a generic arc_done_func_t which you can use */
2734 /* ARGSUSED */
2735 void
2736 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2737 {
2738 if (zio == NULL || zio->io_error == 0)
2739 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2740 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2741 }
2742
2743 /* a generic arc_done_func_t */
2744 void
2745 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2746 {
2747 arc_buf_t **bufp = arg;
2748 if (zio && zio->io_error) {
2749 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2750 *bufp = NULL;
2751 } else {
2752 *bufp = buf;
2753 ASSERT(buf->b_data);
2754 }
2755 }
2756
2757 static void
2758 arc_read_done(zio_t *zio)
2759 {
2760 arc_buf_hdr_t *hdr, *found;
2761 arc_buf_t *buf;
2762 arc_buf_t *abuf; /* buffer we're assigning to callback */
2763 kmutex_t *hash_lock;
2764 arc_callback_t *callback_list, *acb;
2765 int freeable = FALSE;
2766
2767 buf = zio->io_private;
2768 hdr = buf->b_hdr;
2769
2770 /*
2771 * The hdr was inserted into hash-table and removed from lists
2772 * prior to starting I/O. We should find this header, since
2773 * it's in the hash table, and it should be legit since it's
2774 * not possible to evict it during the I/O. The only possible
2775 * reason for it not to be found is if we were freed during the
2776 * read.
2777 */
2778 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2779 &hash_lock);
2780
2781 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2782 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2783 (found == hdr && HDR_L2_READING(hdr)));
2784
2785 hdr->b_flags &= ~ARC_L2_EVICTED;
2786 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2787 hdr->b_flags &= ~ARC_L2CACHE;
2788
2789 /* byteswap if necessary */
2790 callback_list = hdr->b_acb;
2791 ASSERT(callback_list != NULL);
2792 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2793 dmu_object_byteswap_t bswap =
2794 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
2795 if (BP_GET_LEVEL(zio->io_bp) > 0)
2796 byteswap_uint64_array(buf->b_data, hdr->b_size);
2797 else
2798 dmu_ot_byteswap[bswap].ob_func(buf->b_data, hdr->b_size);
2799 }
2800
2801 arc_cksum_compute(buf, B_FALSE);
2802
2803 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2804 /*
2805 * Only call arc_access on anonymous buffers. This is because
2806 * if we've issued an I/O for an evicted buffer, we've already
2807 * called arc_access (to prevent any simultaneous readers from
2808 * getting confused).
2809 */
2810 arc_access(hdr, hash_lock);
2811 }
2812
2813 /* create copies of the data buffer for the callers */
2814 abuf = buf;
2815 for (acb = callback_list; acb; acb = acb->acb_next) {
2816 if (acb->acb_done) {
2817 if (abuf == NULL) {
2818 ARCSTAT_BUMP(arcstat_duplicate_reads);
2819 abuf = arc_buf_clone(buf);
2820 }
2821 acb->acb_buf = abuf;
2822 abuf = NULL;
2823 }
2824 }
2825 hdr->b_acb = NULL;
2826 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2827 ASSERT(!HDR_BUF_AVAILABLE(hdr));
2828 if (abuf == buf) {
2829 ASSERT(buf->b_efunc == NULL);
2830 ASSERT(hdr->b_datacnt == 1);
2831 hdr->b_flags |= ARC_BUF_AVAILABLE;
2832 }
2833
2834 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2835
2836 if (zio->io_error != 0) {
2837 hdr->b_flags |= ARC_IO_ERROR;
2838 if (hdr->b_state != arc_anon)
2839 arc_change_state(arc_anon, hdr, hash_lock);
2840 if (HDR_IN_HASH_TABLE(hdr))
2841 buf_hash_remove(hdr);
2842 freeable = refcount_is_zero(&hdr->b_refcnt);
2843 }
2844
2845 /*
2846 * Broadcast before we drop the hash_lock to avoid the possibility
2847 * that the hdr (and hence the cv) might be freed before we get to
2848 * the cv_broadcast().
2849 */
2850 cv_broadcast(&hdr->b_cv);
2851
2852 if (hash_lock) {
2853 mutex_exit(hash_lock);
2854 } else {
2855 /*
2856 * This block was freed while we waited for the read to
2857 * complete. It has been removed from the hash table and
2858 * moved to the anonymous state (so that it won't show up
2859 * in the cache).
2860 */
2861 ASSERT3P(hdr->b_state, ==, arc_anon);
2862 freeable = refcount_is_zero(&hdr->b_refcnt);
2863 }
2864
2865 /* execute each callback and free its structure */
2866 while ((acb = callback_list) != NULL) {
2867 if (acb->acb_done)
2868 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2869
2870 if (acb->acb_zio_dummy != NULL) {
2871 acb->acb_zio_dummy->io_error = zio->io_error;
2872 zio_nowait(acb->acb_zio_dummy);
2873 }
2874
2875 callback_list = acb->acb_next;
2876 kmem_free(acb, sizeof (arc_callback_t));
2877 }
2878
2879 if (freeable)
2880 arc_hdr_destroy(hdr);
2881 }
2882
2883 /*
2884 * "Read" the block at the specified DVA (in bp) via the
2885 * cache. If the block is found in the cache, invoke the provided
2886 * callback immediately and return. Note that the `zio' parameter
2887 * in the callback will be NULL in this case, since no IO was
2888 * required. If the block is not in the cache pass the read request
2889 * on to the spa with a substitute callback function, so that the
2890 * requested block will be added to the cache.
2891 *
2892 * If a read request arrives for a block that has a read in-progress,
2893 * either wait for the in-progress read to complete (and return the
2894 * results); or, if this is a read with a "done" func, add a record
2895 * to the read to invoke the "done" func when the read completes,
2896 * and return; or just return.
2897 *
2898 * arc_read_done() will invoke all the requested "done" functions
2899 * for readers of this block.
2900 */
2901 int
2902 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
2903 void *private, int priority, int zio_flags, uint32_t *arc_flags,
2904 const zbookmark_t *zb)
2905 {
2906 arc_buf_hdr_t *hdr;
2907 arc_buf_t *buf = NULL;
2908 kmutex_t *hash_lock;
2909 zio_t *rzio;
2910 uint64_t guid = spa_load_guid(spa);
2911
2912 top:
2913 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2914 &hash_lock);
2915 if (hdr && hdr->b_datacnt > 0) {
2916
2917 *arc_flags |= ARC_CACHED;
2918
2919 if (HDR_IO_IN_PROGRESS(hdr)) {
2920
2921 if (*arc_flags & ARC_WAIT) {
2922 cv_wait(&hdr->b_cv, hash_lock);
2923 mutex_exit(hash_lock);
2924 goto top;
2925 }
2926 ASSERT(*arc_flags & ARC_NOWAIT);
2927
2928 if (done) {
2929 arc_callback_t *acb = NULL;
2930
2931 acb = kmem_zalloc(sizeof (arc_callback_t),
2932 KM_PUSHPAGE);
2933 acb->acb_done = done;
2934 acb->acb_private = private;
2935 if (pio != NULL)
2936 acb->acb_zio_dummy = zio_null(pio,
2937 spa, NULL, NULL, NULL, zio_flags);
2938
2939 ASSERT(acb->acb_done != NULL);
2940 acb->acb_next = hdr->b_acb;
2941 hdr->b_acb = acb;
2942 add_reference(hdr, hash_lock, private);
2943 mutex_exit(hash_lock);
2944 return (0);
2945 }
2946 mutex_exit(hash_lock);
2947 return (0);
2948 }
2949
2950 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2951
2952 if (done) {
2953 add_reference(hdr, hash_lock, private);
2954 /*
2955 * If this block is already in use, create a new
2956 * copy of the data so that we will be guaranteed
2957 * that arc_release() will always succeed.
2958 */
2959 buf = hdr->b_buf;
2960 ASSERT(buf);
2961 ASSERT(buf->b_data);
2962 if (HDR_BUF_AVAILABLE(hdr)) {
2963 ASSERT(buf->b_efunc == NULL);
2964 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2965 } else {
2966 buf = arc_buf_clone(buf);
2967 }
2968
2969 } else if (*arc_flags & ARC_PREFETCH &&
2970 refcount_count(&hdr->b_refcnt) == 0) {
2971 hdr->b_flags |= ARC_PREFETCH;
2972 }
2973 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2974 arc_access(hdr, hash_lock);
2975 if (*arc_flags & ARC_L2CACHE)
2976 hdr->b_flags |= ARC_L2CACHE;
2977 mutex_exit(hash_lock);
2978 ARCSTAT_BUMP(arcstat_hits);
2979 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2980 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2981 data, metadata, hits);
2982
2983 if (done)
2984 done(NULL, buf, private);
2985 } else {
2986 uint64_t size = BP_GET_LSIZE(bp);
2987 arc_callback_t *acb;
2988 vdev_t *vd = NULL;
2989 uint64_t addr = -1;
2990 boolean_t devw = B_FALSE;
2991
2992 if (hdr == NULL) {
2993 /* this block is not in the cache */
2994 arc_buf_hdr_t *exists;
2995 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2996 buf = arc_buf_alloc(spa, size, private, type);
2997 hdr = buf->b_hdr;
2998 hdr->b_dva = *BP_IDENTITY(bp);
2999 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
3000 hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
3001 exists = buf_hash_insert(hdr, &hash_lock);
3002 if (exists) {
3003 /* somebody beat us to the hash insert */
3004 mutex_exit(hash_lock);
3005 buf_discard_identity(hdr);
3006 (void) arc_buf_remove_ref(buf, private);
3007 goto top; /* restart the IO request */
3008 }
3009 /* if this is a prefetch, we don't have a reference */
3010 if (*arc_flags & ARC_PREFETCH) {
3011 (void) remove_reference(hdr, hash_lock,
3012 private);
3013 hdr->b_flags |= ARC_PREFETCH;
3014 }
3015 if (*arc_flags & ARC_L2CACHE)
3016 hdr->b_flags |= ARC_L2CACHE;
3017 if (BP_GET_LEVEL(bp) > 0)
3018 hdr->b_flags |= ARC_INDIRECT;
3019 } else {
3020 /* this block is in the ghost cache */
3021 ASSERT(GHOST_STATE(hdr->b_state));
3022 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3023 ASSERT0(refcount_count(&hdr->b_refcnt));
3024 ASSERT(hdr->b_buf == NULL);
3025
3026 /* if this is a prefetch, we don't have a reference */
3027 if (*arc_flags & ARC_PREFETCH)
3028 hdr->b_flags |= ARC_PREFETCH;
3029 else
3030 add_reference(hdr, hash_lock, private);
3031 if (*arc_flags & ARC_L2CACHE)
3032 hdr->b_flags |= ARC_L2CACHE;
3033 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3034 buf->b_hdr = hdr;
3035 buf->b_data = NULL;
3036 buf->b_efunc = NULL;
3037 buf->b_private = NULL;
3038 buf->b_next = NULL;
3039 hdr->b_buf = buf;
3040 ASSERT(hdr->b_datacnt == 0);
3041 hdr->b_datacnt = 1;
3042 arc_get_data_buf(buf);
3043 arc_access(hdr, hash_lock);
3044 }
3045
3046 ASSERT(!GHOST_STATE(hdr->b_state));
3047
3048 acb = kmem_zalloc(sizeof (arc_callback_t), KM_PUSHPAGE);
3049 acb->acb_done = done;
3050 acb->acb_private = private;
3051
3052 ASSERT(hdr->b_acb == NULL);
3053 hdr->b_acb = acb;
3054 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3055
3056 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
3057 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
3058 devw = hdr->b_l2hdr->b_dev->l2ad_writing;
3059 addr = hdr->b_l2hdr->b_daddr;
3060 /*
3061 * Lock out device removal.
3062 */
3063 if (vdev_is_dead(vd) ||
3064 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3065 vd = NULL;
3066 }
3067
3068 mutex_exit(hash_lock);
3069
3070 ASSERT3U(hdr->b_size, ==, size);
3071 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3072 uint64_t, size, zbookmark_t *, zb);
3073 ARCSTAT_BUMP(arcstat_misses);
3074 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3075 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3076 data, metadata, misses);
3077
3078 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3079 /*
3080 * Read from the L2ARC if the following are true:
3081 * 1. The L2ARC vdev was previously cached.
3082 * 2. This buffer still has L2ARC metadata.
3083 * 3. This buffer isn't currently writing to the L2ARC.
3084 * 4. The L2ARC entry wasn't evicted, which may
3085 * also have invalidated the vdev.
3086 * 5. This isn't prefetch and l2arc_noprefetch is set.
3087 */
3088 if (hdr->b_l2hdr != NULL &&
3089 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3090 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3091 l2arc_read_callback_t *cb;
3092
3093 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3094 ARCSTAT_BUMP(arcstat_l2_hits);
3095
3096 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3097 KM_PUSHPAGE);
3098 cb->l2rcb_buf = buf;
3099 cb->l2rcb_spa = spa;
3100 cb->l2rcb_bp = *bp;
3101 cb->l2rcb_zb = *zb;
3102 cb->l2rcb_flags = zio_flags;
3103
3104 /*
3105 * l2arc read. The SCL_L2ARC lock will be
3106 * released by l2arc_read_done().
3107 */
3108 rzio = zio_read_phys(pio, vd, addr, size,
3109 buf->b_data, ZIO_CHECKSUM_OFF,
3110 l2arc_read_done, cb, priority, zio_flags |
3111 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
3112 ZIO_FLAG_DONT_PROPAGATE |
3113 ZIO_FLAG_DONT_RETRY, B_FALSE);
3114 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3115 zio_t *, rzio);
3116 ARCSTAT_INCR(arcstat_l2_read_bytes, size);
3117
3118 if (*arc_flags & ARC_NOWAIT) {
3119 zio_nowait(rzio);
3120 return (0);
3121 }
3122
3123 ASSERT(*arc_flags & ARC_WAIT);
3124 if (zio_wait(rzio) == 0)
3125 return (0);
3126
3127 /* l2arc read error; goto zio_read() */
3128 } else {
3129 DTRACE_PROBE1(l2arc__miss,
3130 arc_buf_hdr_t *, hdr);
3131 ARCSTAT_BUMP(arcstat_l2_misses);
3132 if (HDR_L2_WRITING(hdr))
3133 ARCSTAT_BUMP(arcstat_l2_rw_clash);
3134 spa_config_exit(spa, SCL_L2ARC, vd);
3135 }
3136 } else {
3137 if (vd != NULL)
3138 spa_config_exit(spa, SCL_L2ARC, vd);
3139 if (l2arc_ndev != 0) {
3140 DTRACE_PROBE1(l2arc__miss,
3141 arc_buf_hdr_t *, hdr);
3142 ARCSTAT_BUMP(arcstat_l2_misses);
3143 }
3144 }
3145
3146 rzio = zio_read(pio, spa, bp, buf->b_data, size,
3147 arc_read_done, buf, priority, zio_flags, zb);
3148
3149 if (*arc_flags & ARC_WAIT)
3150 return (zio_wait(rzio));
3151
3152 ASSERT(*arc_flags & ARC_NOWAIT);
3153 zio_nowait(rzio);
3154 }
3155 return (0);
3156 }
3157
3158 arc_prune_t *
3159 arc_add_prune_callback(arc_prune_func_t *func, void *private)
3160 {
3161 arc_prune_t *p;
3162
3163 p = kmem_alloc(sizeof(*p), KM_SLEEP);
3164 p->p_pfunc = func;
3165 p->p_private = private;
3166 list_link_init(&p->p_node);
3167 refcount_create(&p->p_refcnt);
3168
3169 mutex_enter(&arc_prune_mtx);
3170 refcount_add(&p->p_refcnt, &arc_prune_list);
3171 list_insert_head(&arc_prune_list, p);
3172 mutex_exit(&arc_prune_mtx);
3173
3174 return (p);
3175 }
3176
3177 void
3178 arc_remove_prune_callback(arc_prune_t *p)
3179 {
3180 mutex_enter(&arc_prune_mtx);
3181 list_remove(&arc_prune_list, p);
3182 if (refcount_remove(&p->p_refcnt, &arc_prune_list) == 0) {
3183 refcount_destroy(&p->p_refcnt);
3184 kmem_free(p, sizeof (*p));
3185 }
3186 mutex_exit(&arc_prune_mtx);
3187 }
3188
3189 void
3190 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3191 {
3192 ASSERT(buf->b_hdr != NULL);
3193 ASSERT(buf->b_hdr->b_state != arc_anon);
3194 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3195 ASSERT(buf->b_efunc == NULL);
3196 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3197
3198 buf->b_efunc = func;
3199 buf->b_private = private;
3200 }
3201
3202 /*
3203 * Notify the arc that a block was freed, and thus will never be used again.
3204 */
3205 void
3206 arc_freed(spa_t *spa, const blkptr_t *bp)
3207 {
3208 arc_buf_hdr_t *hdr;
3209 kmutex_t *hash_lock;
3210 uint64_t guid = spa_load_guid(spa);
3211
3212 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3213 &hash_lock);
3214 if (hdr == NULL)
3215 return;
3216 if (HDR_BUF_AVAILABLE(hdr)) {
3217 arc_buf_t *buf = hdr->b_buf;
3218 add_reference(hdr, hash_lock, FTAG);
3219 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3220 mutex_exit(hash_lock);
3221
3222 arc_release(buf, FTAG);
3223 (void) arc_buf_remove_ref(buf, FTAG);
3224 } else {
3225 mutex_exit(hash_lock);
3226 }
3227
3228 }
3229
3230 /*
3231 * This is used by the DMU to let the ARC know that a buffer is
3232 * being evicted, so the ARC should clean up. If this arc buf
3233 * is not yet in the evicted state, it will be put there.
3234 */
3235 int
3236 arc_buf_evict(arc_buf_t *buf)
3237 {
3238 arc_buf_hdr_t *hdr;
3239 kmutex_t *hash_lock;
3240 arc_buf_t **bufp;
3241
3242 mutex_enter(&buf->b_evict_lock);
3243 hdr = buf->b_hdr;
3244 if (hdr == NULL) {
3245 /*
3246 * We are in arc_do_user_evicts().
3247 */
3248 ASSERT(buf->b_data == NULL);
3249 mutex_exit(&buf->b_evict_lock);
3250 return (0);
3251 } else if (buf->b_data == NULL) {
3252 arc_buf_t copy = *buf; /* structure assignment */
3253 /*
3254 * We are on the eviction list; process this buffer now
3255 * but let arc_do_user_evicts() do the reaping.
3256 */
3257 buf->b_efunc = NULL;
3258 mutex_exit(&buf->b_evict_lock);
3259 VERIFY(copy.b_efunc(&copy) == 0);
3260 return (1);
3261 }
3262 hash_lock = HDR_LOCK(hdr);
3263 mutex_enter(hash_lock);
3264 hdr = buf->b_hdr;
3265 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3266
3267 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3268 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3269
3270 /*
3271 * Pull this buffer off of the hdr
3272 */
3273 bufp = &hdr->b_buf;
3274 while (*bufp != buf)
3275 bufp = &(*bufp)->b_next;
3276 *bufp = buf->b_next;
3277
3278 ASSERT(buf->b_data != NULL);
3279 arc_buf_destroy(buf, FALSE, FALSE);
3280
3281 if (hdr->b_datacnt == 0) {
3282 arc_state_t *old_state = hdr->b_state;
3283 arc_state_t *evicted_state;
3284
3285 ASSERT(hdr->b_buf == NULL);
3286 ASSERT(refcount_is_zero(&hdr->b_refcnt));
3287
3288 evicted_state =
3289 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3290
3291 mutex_enter(&old_state->arcs_mtx);
3292 mutex_enter(&evicted_state->arcs_mtx);
3293
3294 arc_change_state(evicted_state, hdr, hash_lock);
3295 ASSERT(HDR_IN_HASH_TABLE(hdr));
3296 hdr->b_flags |= ARC_IN_HASH_TABLE;
3297 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3298
3299 mutex_exit(&evicted_state->arcs_mtx);
3300 mutex_exit(&old_state->arcs_mtx);
3301 }
3302 mutex_exit(hash_lock);
3303 mutex_exit(&buf->b_evict_lock);
3304
3305 VERIFY(buf->b_efunc(buf) == 0);
3306 buf->b_efunc = NULL;
3307 buf->b_private = NULL;
3308 buf->b_hdr = NULL;
3309 buf->b_next = NULL;
3310 kmem_cache_free(buf_cache, buf);
3311 return (1);
3312 }
3313
3314 /*
3315 * Release this buffer from the cache. This must be done
3316 * after a read and prior to modifying the buffer contents.
3317 * If the buffer has more than one reference, we must make
3318 * a new hdr for the buffer.
3319 */
3320 void
3321 arc_release(arc_buf_t *buf, void *tag)
3322 {
3323 arc_buf_hdr_t *hdr;
3324 kmutex_t *hash_lock = NULL;
3325 l2arc_buf_hdr_t *l2hdr;
3326 uint64_t buf_size = 0;
3327
3328 /*
3329 * It would be nice to assert that if it's DMU metadata (level >
3330 * 0 || it's the dnode file), then it must be syncing context.
3331 * But we don't know that information at this level.
3332 */
3333
3334 mutex_enter(&buf->b_evict_lock);
3335 hdr = buf->b_hdr;
3336
3337 /* this buffer is not on any list */
3338 ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3339
3340 if (hdr->b_state == arc_anon) {
3341 /* this buffer is already released */
3342 ASSERT(buf->b_efunc == NULL);
3343 } else {
3344 hash_lock = HDR_LOCK(hdr);
3345 mutex_enter(hash_lock);
3346 hdr = buf->b_hdr;
3347 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3348 }
3349
3350 l2hdr = hdr->b_l2hdr;
3351 if (l2hdr) {
3352 mutex_enter(&l2arc_buflist_mtx);
3353 hdr->b_l2hdr = NULL;
3354 buf_size = hdr->b_size;
3355 }
3356
3357 /*
3358 * Do we have more than one buf?
3359 */
3360 if (hdr->b_datacnt > 1) {
3361 arc_buf_hdr_t *nhdr;
3362 arc_buf_t **bufp;
3363 uint64_t blksz = hdr->b_size;
3364 uint64_t spa = hdr->b_spa;
3365 arc_buf_contents_t type = hdr->b_type;
3366 uint32_t flags = hdr->b_flags;
3367
3368 ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3369 /*
3370 * Pull the data off of this hdr and attach it to
3371 * a new anonymous hdr.
3372 */
3373 (void) remove_reference(hdr, hash_lock, tag);
3374 bufp = &hdr->b_buf;
3375 while (*bufp != buf)
3376 bufp = &(*bufp)->b_next;
3377 *bufp = buf->b_next;
3378 buf->b_next = NULL;
3379
3380 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3381 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3382 if (refcount_is_zero(&hdr->b_refcnt)) {
3383 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3384 ASSERT3U(*size, >=, hdr->b_size);
3385 atomic_add_64(size, -hdr->b_size);
3386 }
3387
3388 /*
3389 * We're releasing a duplicate user data buffer, update
3390 * our statistics accordingly.
3391 */
3392 if (hdr->b_type == ARC_BUFC_DATA) {
3393 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3394 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3395 -hdr->b_size);
3396 }
3397 hdr->b_datacnt -= 1;
3398 arc_cksum_verify(buf);
3399
3400 mutex_exit(hash_lock);
3401
3402 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3403 nhdr->b_size = blksz;
3404 nhdr->b_spa = spa;
3405 nhdr->b_type = type;
3406 nhdr->b_buf = buf;
3407 nhdr->b_state = arc_anon;
3408 nhdr->b_arc_access = 0;
3409 nhdr->b_flags = flags & ARC_L2_WRITING;
3410 nhdr->b_l2hdr = NULL;
3411 nhdr->b_datacnt = 1;
3412 nhdr->b_freeze_cksum = NULL;
3413 (void) refcount_add(&nhdr->b_refcnt, tag);
3414 buf->b_hdr = nhdr;
3415 mutex_exit(&buf->b_evict_lock);
3416 atomic_add_64(&arc_anon->arcs_size, blksz);
3417 } else {
3418 mutex_exit(&buf->b_evict_lock);
3419 ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3420 ASSERT(!list_link_active(&hdr->b_arc_node));
3421 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3422 if (hdr->b_state != arc_anon)
3423 arc_change_state(arc_anon, hdr, hash_lock);
3424 hdr->b_arc_access = 0;
3425 if (hash_lock)
3426 mutex_exit(hash_lock);
3427
3428 buf_discard_identity(hdr);
3429 arc_buf_thaw(buf);
3430 }
3431 buf->b_efunc = NULL;
3432 buf->b_private = NULL;
3433
3434 if (l2hdr) {
3435 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3436 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3437 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
3438 ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3439 mutex_exit(&l2arc_buflist_mtx);
3440 }
3441 }
3442
3443 int
3444 arc_released(arc_buf_t *buf)
3445 {
3446 int released;
3447
3448 mutex_enter(&buf->b_evict_lock);
3449 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3450 mutex_exit(&buf->b_evict_lock);
3451 return (released);
3452 }
3453
3454 int
3455 arc_has_callback(arc_buf_t *buf)
3456 {
3457 int callback;
3458
3459 mutex_enter(&buf->b_evict_lock);
3460 callback = (buf->b_efunc != NULL);
3461 mutex_exit(&buf->b_evict_lock);
3462 return (callback);
3463 }
3464
3465 #ifdef ZFS_DEBUG
3466 int
3467 arc_referenced(arc_buf_t *buf)
3468 {
3469 int referenced;
3470
3471 mutex_enter(&buf->b_evict_lock);
3472 referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3473 mutex_exit(&buf->b_evict_lock);
3474 return (referenced);
3475 }
3476 #endif
3477
3478 static void
3479 arc_write_ready(zio_t *zio)
3480 {
3481 arc_write_callback_t *callback = zio->io_private;
3482 arc_buf_t *buf = callback->awcb_buf;
3483 arc_buf_hdr_t *hdr = buf->b_hdr;
3484
3485 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3486 callback->awcb_ready(zio, buf, callback->awcb_private);
3487
3488 /*
3489 * If the IO is already in progress, then this is a re-write
3490 * attempt, so we need to thaw and re-compute the cksum.
3491 * It is the responsibility of the callback to handle the
3492 * accounting for any re-write attempt.
3493 */
3494 if (HDR_IO_IN_PROGRESS(hdr)) {
3495 mutex_enter(&hdr->b_freeze_lock);
3496 if (hdr->b_freeze_cksum != NULL) {
3497 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3498 hdr->b_freeze_cksum = NULL;
3499 }
3500 mutex_exit(&hdr->b_freeze_lock);
3501 }
3502 arc_cksum_compute(buf, B_FALSE);
3503 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3504 }
3505
3506 static void
3507 arc_write_done(zio_t *zio)
3508 {
3509 arc_write_callback_t *callback = zio->io_private;
3510 arc_buf_t *buf = callback->awcb_buf;
3511 arc_buf_hdr_t *hdr = buf->b_hdr;
3512
3513 ASSERT(hdr->b_acb == NULL);
3514
3515 if (zio->io_error == 0) {
3516 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3517 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3518 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3519 } else {
3520 ASSERT(BUF_EMPTY(hdr));
3521 }
3522
3523 /*
3524 * If the block to be written was all-zero, we may have
3525 * compressed it away. In this case no write was performed
3526 * so there will be no dva/birth/checksum. The buffer must
3527 * therefore remain anonymous (and uncached).
3528 */
3529 if (!BUF_EMPTY(hdr)) {
3530 arc_buf_hdr_t *exists;
3531 kmutex_t *hash_lock;
3532
3533 ASSERT(zio->io_error == 0);
3534
3535 arc_cksum_verify(buf);
3536
3537 exists = buf_hash_insert(hdr, &hash_lock);
3538 if (exists) {
3539 /*
3540 * This can only happen if we overwrite for
3541 * sync-to-convergence, because we remove
3542 * buffers from the hash table when we arc_free().
3543 */
3544 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3545 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3546 panic("bad overwrite, hdr=%p exists=%p",
3547 (void *)hdr, (void *)exists);
3548 ASSERT(refcount_is_zero(&exists->b_refcnt));
3549 arc_change_state(arc_anon, exists, hash_lock);
3550 mutex_exit(hash_lock);
3551 arc_hdr_destroy(exists);
3552 exists = buf_hash_insert(hdr, &hash_lock);
3553 ASSERT3P(exists, ==, NULL);
3554 } else {
3555 /* Dedup */
3556 ASSERT(hdr->b_datacnt == 1);
3557 ASSERT(hdr->b_state == arc_anon);
3558 ASSERT(BP_GET_DEDUP(zio->io_bp));
3559 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3560 }
3561 }
3562 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3563 /* if it's not anon, we are doing a scrub */
3564 if (!exists && hdr->b_state == arc_anon)
3565 arc_access(hdr, hash_lock);
3566 mutex_exit(hash_lock);
3567 } else {
3568 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3569 }
3570
3571 ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3572 callback->awcb_done(zio, buf, callback->awcb_private);
3573
3574 kmem_free(callback, sizeof (arc_write_callback_t));
3575 }
3576
3577 zio_t *
3578 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3579 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3580 arc_done_func_t *ready, arc_done_func_t *done, void *private,
3581 int priority, int zio_flags, const zbookmark_t *zb)
3582 {
3583 arc_buf_hdr_t *hdr = buf->b_hdr;
3584 arc_write_callback_t *callback;
3585 zio_t *zio;
3586
3587 ASSERT(ready != NULL);
3588 ASSERT(done != NULL);
3589 ASSERT(!HDR_IO_ERROR(hdr));
3590 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3591 ASSERT(hdr->b_acb == NULL);
3592 if (l2arc)
3593 hdr->b_flags |= ARC_L2CACHE;
3594 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_PUSHPAGE);
3595 callback->awcb_ready = ready;
3596 callback->awcb_done = done;
3597 callback->awcb_private = private;
3598 callback->awcb_buf = buf;
3599
3600 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3601 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3602
3603 return (zio);
3604 }
3605
3606 static int
3607 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3608 {
3609 #ifdef _KERNEL
3610 uint64_t available_memory;
3611
3612 if (zfs_arc_memory_throttle_disable)
3613 return (0);
3614
3615 /* Easily reclaimable memory (free + inactive + arc-evictable) */
3616 available_memory = ptob(spl_kmem_availrmem()) + arc_evictable_memory();
3617
3618 if (available_memory <= zfs_write_limit_max) {
3619 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3620 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
3621 return (EAGAIN);
3622 }
3623
3624 if (inflight_data > available_memory / 4) {
3625 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3626 DMU_TX_STAT_BUMP(dmu_tx_memory_inflight);
3627 return (ERESTART);
3628 }
3629 #endif
3630 return (0);
3631 }
3632
3633 void
3634 arc_tempreserve_clear(uint64_t reserve)
3635 {
3636 atomic_add_64(&arc_tempreserve, -reserve);
3637 ASSERT((int64_t)arc_tempreserve >= 0);
3638 }
3639
3640 int
3641 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3642 {
3643 int error;
3644 uint64_t anon_size;
3645
3646 #ifdef ZFS_DEBUG
3647 /*
3648 * Once in a while, fail for no reason. Everything should cope.
3649 */
3650 if (spa_get_random(10000) == 0) {
3651 dprintf("forcing random failure\n");
3652 return (ERESTART);
3653 }
3654 #endif
3655 if (reserve > arc_c/4 && !arc_no_grow)
3656 arc_c = MIN(arc_c_max, reserve * 4);
3657 if (reserve > arc_c) {
3658 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
3659 return (ENOMEM);
3660 }
3661
3662 /*
3663 * Don't count loaned bufs as in flight dirty data to prevent long
3664 * network delays from blocking transactions that are ready to be
3665 * assigned to a txg.
3666 */
3667 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3668
3669 /*
3670 * Writes will, almost always, require additional memory allocations
3671 * in order to compress/encrypt/etc the data. We therefor need to
3672 * make sure that there is sufficient available memory for this.
3673 */
3674 if ((error = arc_memory_throttle(reserve, anon_size, txg)))
3675 return (error);
3676
3677 /*
3678 * Throttle writes when the amount of dirty data in the cache
3679 * gets too large. We try to keep the cache less than half full
3680 * of dirty blocks so that our sync times don't grow too large.
3681 * Note: if two requests come in concurrently, we might let them
3682 * both succeed, when one of them should fail. Not a huge deal.
3683 */
3684
3685 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3686 anon_size > arc_c / 4) {
3687 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3688 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3689 arc_tempreserve>>10,
3690 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3691 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3692 reserve>>10, arc_c>>10);
3693 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
3694 return (ERESTART);
3695 }
3696 atomic_add_64(&arc_tempreserve, reserve);
3697 return (0);
3698 }
3699
3700 static void
3701 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
3702 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
3703 {
3704 size->value.ui64 = state->arcs_size;
3705 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
3706 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
3707 }
3708
3709 static int
3710 arc_kstat_update(kstat_t *ksp, int rw)
3711 {
3712 arc_stats_t *as = ksp->ks_data;
3713
3714 if (rw == KSTAT_WRITE) {
3715 return (EACCES);
3716 } else {
3717 arc_kstat_update_state(arc_anon,
3718 &as->arcstat_anon_size,
3719 &as->arcstat_anon_evict_data,
3720 &as->arcstat_anon_evict_metadata);
3721 arc_kstat_update_state(arc_mru,
3722 &as->arcstat_mru_size,
3723 &as->arcstat_mru_evict_data,
3724 &as->arcstat_mru_evict_metadata);
3725 arc_kstat_update_state(arc_mru_ghost,
3726 &as->arcstat_mru_ghost_size,
3727 &as->arcstat_mru_ghost_evict_data,
3728 &as->arcstat_mru_ghost_evict_metadata);
3729 arc_kstat_update_state(arc_mfu,
3730 &as->arcstat_mfu_size,
3731 &as->arcstat_mfu_evict_data,
3732 &as->arcstat_mfu_evict_metadata);
3733 arc_kstat_update_state(arc_mfu_ghost,
3734 &as->arcstat_mfu_ghost_size,
3735 &as->arcstat_mfu_ghost_evict_data,
3736 &as->arcstat_mfu_ghost_evict_metadata);
3737 }
3738
3739 return (0);
3740 }
3741
3742 void
3743 arc_init(void)
3744 {
3745 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3746 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3747
3748 /* Convert seconds to clock ticks */
3749 zfs_arc_min_prefetch_lifespan = 1 * hz;
3750
3751 /* Start out with 1/8 of all memory */
3752 arc_c = physmem * PAGESIZE / 8;
3753
3754 #ifdef _KERNEL
3755 /*
3756 * On architectures where the physical memory can be larger
3757 * than the addressable space (intel in 32-bit mode), we may
3758 * need to limit the cache to 1/8 of VM size.
3759 */
3760 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3761 /*
3762 * Register a shrinker to support synchronous (direct) memory
3763 * reclaim from the arc. This is done to prevent kswapd from
3764 * swapping out pages when it is preferable to shrink the arc.
3765 */
3766 spl_register_shrinker(&arc_shrinker);
3767 #endif
3768
3769 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3770 arc_c_min = MAX(arc_c / 4, 64<<20);
3771 /* set max to 1/2 of all memory */
3772 arc_c_max = MAX(arc_c * 4, arc_c_max);
3773
3774 /*
3775 * Allow the tunables to override our calculations if they are
3776 * reasonable (ie. over 64MB)
3777 */
3778 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3779 arc_c_max = zfs_arc_max;
3780 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3781 arc_c_min = zfs_arc_min;
3782
3783 arc_c = arc_c_max;
3784 arc_p = (arc_c >> 1);
3785
3786 /* limit meta-data to 1/4 of the arc capacity */
3787 arc_meta_limit = arc_c_max / 4;
3788 arc_meta_max = 0;
3789
3790 /* Allow the tunable to override if it is reasonable */
3791 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3792 arc_meta_limit = zfs_arc_meta_limit;
3793
3794 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3795 arc_c_min = arc_meta_limit / 2;
3796
3797 /* if kmem_flags are set, lets try to use less memory */
3798 if (kmem_debugging())
3799 arc_c = arc_c / 2;
3800 if (arc_c < arc_c_min)
3801 arc_c = arc_c_min;
3802
3803 arc_anon = &ARC_anon;
3804 arc_mru = &ARC_mru;
3805 arc_mru_ghost = &ARC_mru_ghost;
3806 arc_mfu = &ARC_mfu;
3807 arc_mfu_ghost = &ARC_mfu_ghost;
3808 arc_l2c_only = &ARC_l2c_only;
3809 arc_size = 0;
3810
3811 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3812 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3813 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3814 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3815 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3816 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3817
3818 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3819 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3820 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3821 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3822 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3823 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3824 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3825 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3826 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3827 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3828 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3829 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3830 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3831 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3832 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3833 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3834 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3835 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3836 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3837 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3838
3839 buf_init();
3840
3841 arc_thread_exit = 0;
3842 list_create(&arc_prune_list, sizeof (arc_prune_t),
3843 offsetof(arc_prune_t, p_node));
3844 arc_eviction_list = NULL;
3845 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
3846 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3847 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3848
3849 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3850 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3851
3852 if (arc_ksp != NULL) {
3853 arc_ksp->ks_data = &arc_stats;
3854 arc_ksp->ks_update = arc_kstat_update;
3855 kstat_install(arc_ksp);
3856 }
3857
3858 (void) thread_create(NULL, 0, arc_adapt_thread, NULL, 0, &p0,
3859 TS_RUN, minclsyspri);
3860
3861 arc_dead = FALSE;
3862 arc_warm = B_FALSE;
3863
3864 if (zfs_write_limit_max == 0)
3865 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3866 else
3867 zfs_write_limit_shift = 0;
3868 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3869 }
3870
3871 void
3872 arc_fini(void)
3873 {
3874 arc_prune_t *p;
3875
3876 mutex_enter(&arc_reclaim_thr_lock);
3877 #ifdef _KERNEL
3878 spl_unregister_shrinker(&arc_shrinker);
3879 #endif /* _KERNEL */
3880
3881 arc_thread_exit = 1;
3882 while (arc_thread_exit != 0)
3883 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3884 mutex_exit(&arc_reclaim_thr_lock);
3885
3886 arc_flush(NULL);
3887
3888 arc_dead = TRUE;
3889
3890 if (arc_ksp != NULL) {
3891 kstat_delete(arc_ksp);
3892 arc_ksp = NULL;
3893 }
3894
3895 mutex_enter(&arc_prune_mtx);
3896 while ((p = list_head(&arc_prune_list)) != NULL) {
3897 list_remove(&arc_prune_list, p);
3898 refcount_remove(&p->p_refcnt, &arc_prune_list);
3899 refcount_destroy(&p->p_refcnt);
3900 kmem_free(p, sizeof (*p));
3901 }
3902 mutex_exit(&arc_prune_mtx);
3903
3904 list_destroy(&arc_prune_list);
3905 mutex_destroy(&arc_prune_mtx);
3906 mutex_destroy(&arc_eviction_mtx);
3907 mutex_destroy(&arc_reclaim_thr_lock);
3908 cv_destroy(&arc_reclaim_thr_cv);
3909
3910 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3911 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3912 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3913 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3914 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3915 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3916 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3917 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3918
3919 mutex_destroy(&arc_anon->arcs_mtx);
3920 mutex_destroy(&arc_mru->arcs_mtx);
3921 mutex_destroy(&arc_mru_ghost->arcs_mtx);
3922 mutex_destroy(&arc_mfu->arcs_mtx);
3923 mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3924 mutex_destroy(&arc_l2c_only->arcs_mtx);
3925
3926 mutex_destroy(&zfs_write_limit_lock);
3927
3928 buf_fini();
3929
3930 ASSERT(arc_loaned_bytes == 0);
3931 }
3932
3933 /*
3934 * Level 2 ARC
3935 *
3936 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3937 * It uses dedicated storage devices to hold cached data, which are populated
3938 * using large infrequent writes. The main role of this cache is to boost
3939 * the performance of random read workloads. The intended L2ARC devices
3940 * include short-stroked disks, solid state disks, and other media with
3941 * substantially faster read latency than disk.
3942 *
3943 * +-----------------------+
3944 * | ARC |
3945 * +-----------------------+
3946 * | ^ ^
3947 * | | |
3948 * l2arc_feed_thread() arc_read()
3949 * | | |
3950 * | l2arc read |
3951 * V | |
3952 * +---------------+ |
3953 * | L2ARC | |
3954 * +---------------+ |
3955 * | ^ |
3956 * l2arc_write() | |
3957 * | | |
3958 * V | |
3959 * +-------+ +-------+
3960 * | vdev | | vdev |
3961 * | cache | | cache |
3962 * +-------+ +-------+
3963 * +=========+ .-----.
3964 * : L2ARC : |-_____-|
3965 * : devices : | Disks |
3966 * +=========+ `-_____-'
3967 *
3968 * Read requests are satisfied from the following sources, in order:
3969 *
3970 * 1) ARC
3971 * 2) vdev cache of L2ARC devices
3972 * 3) L2ARC devices
3973 * 4) vdev cache of disks
3974 * 5) disks
3975 *
3976 * Some L2ARC device types exhibit extremely slow write performance.
3977 * To accommodate for this there are some significant differences between
3978 * the L2ARC and traditional cache design:
3979 *
3980 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
3981 * the ARC behave as usual, freeing buffers and placing headers on ghost
3982 * lists. The ARC does not send buffers to the L2ARC during eviction as
3983 * this would add inflated write latencies for all ARC memory pressure.
3984 *
3985 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3986 * It does this by periodically scanning buffers from the eviction-end of
3987 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3988 * not already there. It scans until a headroom of buffers is satisfied,
3989 * which itself is a buffer for ARC eviction. The thread that does this is
3990 * l2arc_feed_thread(), illustrated below; example sizes are included to
3991 * provide a better sense of ratio than this diagram:
3992 *
3993 * head --> tail
3994 * +---------------------+----------+
3995 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
3996 * +---------------------+----------+ | o L2ARC eligible
3997 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
3998 * +---------------------+----------+ |
3999 * 15.9 Gbytes ^ 32 Mbytes |
4000 * headroom |
4001 * l2arc_feed_thread()
4002 * |
4003 * l2arc write hand <--[oooo]--'
4004 * | 8 Mbyte
4005 * | write max
4006 * V
4007 * +==============================+
4008 * L2ARC dev |####|#|###|###| |####| ... |
4009 * +==============================+
4010 * 32 Gbytes
4011 *
4012 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
4013 * evicted, then the L2ARC has cached a buffer much sooner than it probably
4014 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
4015 * safe to say that this is an uncommon case, since buffers at the end of
4016 * the ARC lists have moved there due to inactivity.
4017 *
4018 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
4019 * then the L2ARC simply misses copying some buffers. This serves as a
4020 * pressure valve to prevent heavy read workloads from both stalling the ARC
4021 * with waits and clogging the L2ARC with writes. This also helps prevent
4022 * the potential for the L2ARC to churn if it attempts to cache content too
4023 * quickly, such as during backups of the entire pool.
4024 *
4025 * 5. After system boot and before the ARC has filled main memory, there are
4026 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4027 * lists can remain mostly static. Instead of searching from tail of these
4028 * lists as pictured, the l2arc_feed_thread() will search from the list heads
4029 * for eligible buffers, greatly increasing its chance of finding them.
4030 *
4031 * The L2ARC device write speed is also boosted during this time so that
4032 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
4033 * there are no L2ARC reads, and no fear of degrading read performance
4034 * through increased writes.
4035 *
4036 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
4037 * the vdev queue can aggregate them into larger and fewer writes. Each
4038 * device is written to in a rotor fashion, sweeping writes through
4039 * available space then repeating.
4040 *
4041 * 7. The L2ARC does not store dirty content. It never needs to flush
4042 * write buffers back to disk based storage.
4043 *
4044 * 8. If an ARC buffer is written (and dirtied) which also exists in the
4045 * L2ARC, the now stale L2ARC buffer is immediately dropped.
4046 *
4047 * The performance of the L2ARC can be tweaked by a number of tunables, which
4048 * may be necessary for different workloads:
4049 *
4050 * l2arc_write_max max write bytes per interval
4051 * l2arc_write_boost extra write bytes during device warmup
4052 * l2arc_noprefetch skip caching prefetched buffers
4053 * l2arc_headroom number of max device writes to precache
4054 * l2arc_feed_secs seconds between L2ARC writing
4055 *
4056 * Tunables may be removed or added as future performance improvements are
4057 * integrated, and also may become zpool properties.
4058 *
4059 * There are three key functions that control how the L2ARC warms up:
4060 *
4061 * l2arc_write_eligible() check if a buffer is eligible to cache
4062 * l2arc_write_size() calculate how much to write
4063 * l2arc_write_interval() calculate sleep delay between writes
4064 *
4065 * These three functions determine what to write, how much, and how quickly
4066 * to send writes.
4067 */
4068
4069 static boolean_t
4070 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4071 {
4072 /*
4073 * A buffer is *not* eligible for the L2ARC if it:
4074 * 1. belongs to a different spa.
4075 * 2. is already cached on the L2ARC.
4076 * 3. has an I/O in progress (it may be an incomplete read).
4077 * 4. is flagged not eligible (zfs property).
4078 */
4079 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
4080 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
4081 return (B_FALSE);
4082
4083 return (B_TRUE);
4084 }
4085
4086 static uint64_t
4087 l2arc_write_size(l2arc_dev_t *dev)
4088 {
4089 uint64_t size;
4090
4091 size = dev->l2ad_write;
4092
4093 if (arc_warm == B_FALSE)
4094 size += dev->l2ad_boost;
4095
4096 return (size);
4097
4098 }
4099
4100 static clock_t
4101 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4102 {
4103 clock_t interval, next, now;
4104
4105 /*
4106 * If the ARC lists are busy, increase our write rate; if the
4107 * lists are stale, idle back. This is achieved by checking
4108 * how much we previously wrote - if it was more than half of
4109 * what we wanted, schedule the next write much sooner.
4110 */
4111 if (l2arc_feed_again && wrote > (wanted / 2))
4112 interval = (hz * l2arc_feed_min_ms) / 1000;
4113 else
4114 interval = hz * l2arc_feed_secs;
4115
4116 now = ddi_get_lbolt();
4117 next = MAX(now, MIN(now + interval, began + interval));
4118
4119 return (next);
4120 }
4121
4122 static void
4123 l2arc_hdr_stat_add(void)
4124 {
4125 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE);
4126 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4127 }
4128
4129 static void
4130 l2arc_hdr_stat_remove(void)
4131 {
4132 ARCSTAT_INCR(arcstat_l2_hdr_size, -HDR_SIZE);
4133 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4134 }
4135
4136 /*
4137 * Cycle through L2ARC devices. This is how L2ARC load balances.
4138 * If a device is returned, this also returns holding the spa config lock.
4139 */
4140 static l2arc_dev_t *
4141 l2arc_dev_get_next(void)
4142 {
4143 l2arc_dev_t *first, *next = NULL;
4144
4145 /*
4146 * Lock out the removal of spas (spa_namespace_lock), then removal
4147 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
4148 * both locks will be dropped and a spa config lock held instead.
4149 */
4150 mutex_enter(&spa_namespace_lock);
4151 mutex_enter(&l2arc_dev_mtx);
4152
4153 /* if there are no vdevs, there is nothing to do */
4154 if (l2arc_ndev == 0)
4155 goto out;
4156
4157 first = NULL;
4158 next = l2arc_dev_last;
4159 do {
4160 /* loop around the list looking for a non-faulted vdev */
4161 if (next == NULL) {
4162 next = list_head(l2arc_dev_list);
4163 } else {
4164 next = list_next(l2arc_dev_list, next);
4165 if (next == NULL)
4166 next = list_head(l2arc_dev_list);
4167 }
4168
4169 /* if we have come back to the start, bail out */
4170 if (first == NULL)
4171 first = next;
4172 else if (next == first)
4173 break;
4174
4175 } while (vdev_is_dead(next->l2ad_vdev));
4176
4177 /* if we were unable to find any usable vdevs, return NULL */
4178 if (vdev_is_dead(next->l2ad_vdev))
4179 next = NULL;
4180
4181 l2arc_dev_last = next;
4182
4183 out:
4184 mutex_exit(&l2arc_dev_mtx);
4185
4186 /*
4187 * Grab the config lock to prevent the 'next' device from being
4188 * removed while we are writing to it.
4189 */
4190 if (next != NULL)
4191 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4192 mutex_exit(&spa_namespace_lock);
4193
4194 return (next);
4195 }
4196
4197 /*
4198 * Free buffers that were tagged for destruction.
4199 */
4200 static void
4201 l2arc_do_free_on_write(void)
4202 {
4203 list_t *buflist;
4204 l2arc_data_free_t *df, *df_prev;
4205
4206 mutex_enter(&l2arc_free_on_write_mtx);
4207 buflist = l2arc_free_on_write;
4208
4209 for (df = list_tail(buflist); df; df = df_prev) {
4210 df_prev = list_prev(buflist, df);
4211 ASSERT(df->l2df_data != NULL);
4212 ASSERT(df->l2df_func != NULL);
4213 df->l2df_func(df->l2df_data, df->l2df_size);
4214 list_remove(buflist, df);
4215 kmem_free(df, sizeof (l2arc_data_free_t));
4216 }
4217
4218 mutex_exit(&l2arc_free_on_write_mtx);
4219 }
4220
4221 /*
4222 * A write to a cache device has completed. Update all headers to allow
4223 * reads from these buffers to begin.
4224 */
4225 static void
4226 l2arc_write_done(zio_t *zio)
4227 {
4228 l2arc_write_callback_t *cb;
4229 l2arc_dev_t *dev;
4230 list_t *buflist;
4231 arc_buf_hdr_t *head, *ab, *ab_prev;
4232 l2arc_buf_hdr_t *abl2;
4233 kmutex_t *hash_lock;
4234
4235 cb = zio->io_private;
4236 ASSERT(cb != NULL);
4237 dev = cb->l2wcb_dev;
4238 ASSERT(dev != NULL);
4239 head = cb->l2wcb_head;
4240 ASSERT(head != NULL);
4241 buflist = dev->l2ad_buflist;
4242 ASSERT(buflist != NULL);
4243 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4244 l2arc_write_callback_t *, cb);
4245
4246 if (zio->io_error != 0)
4247 ARCSTAT_BUMP(arcstat_l2_writes_error);
4248
4249 mutex_enter(&l2arc_buflist_mtx);
4250
4251 /*
4252 * All writes completed, or an error was hit.
4253 */
4254 for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4255 ab_prev = list_prev(buflist, ab);
4256
4257 hash_lock = HDR_LOCK(ab);
4258 if (!mutex_tryenter(hash_lock)) {
4259 /*
4260 * This buffer misses out. It may be in a stage
4261 * of eviction. Its ARC_L2_WRITING flag will be
4262 * left set, denying reads to this buffer.
4263 */
4264 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4265 continue;
4266 }
4267
4268 if (zio->io_error != 0) {
4269 /*
4270 * Error - drop L2ARC entry.
4271 */
4272 list_remove(buflist, ab);
4273 abl2 = ab->b_l2hdr;
4274 ab->b_l2hdr = NULL;
4275 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4276 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
4277 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4278 }
4279
4280 /*
4281 * Allow ARC to begin reads to this L2ARC entry.
4282 */
4283 ab->b_flags &= ~ARC_L2_WRITING;
4284
4285 mutex_exit(hash_lock);
4286 }
4287
4288 atomic_inc_64(&l2arc_writes_done);
4289 list_remove(buflist, head);
4290 kmem_cache_free(hdr_cache, head);
4291 mutex_exit(&l2arc_buflist_mtx);
4292
4293 l2arc_do_free_on_write();
4294
4295 kmem_free(cb, sizeof (l2arc_write_callback_t));
4296 }
4297
4298 /*
4299 * A read to a cache device completed. Validate buffer contents before
4300 * handing over to the regular ARC routines.
4301 */
4302 static void
4303 l2arc_read_done(zio_t *zio)
4304 {
4305 l2arc_read_callback_t *cb;
4306 arc_buf_hdr_t *hdr;
4307 arc_buf_t *buf;
4308 kmutex_t *hash_lock;
4309 int equal;
4310
4311 ASSERT(zio->io_vd != NULL);
4312 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4313
4314 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4315
4316 cb = zio->io_private;
4317 ASSERT(cb != NULL);
4318 buf = cb->l2rcb_buf;
4319 ASSERT(buf != NULL);
4320
4321 hash_lock = HDR_LOCK(buf->b_hdr);
4322 mutex_enter(hash_lock);
4323 hdr = buf->b_hdr;
4324 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4325
4326 /*
4327 * Check this survived the L2ARC journey.
4328 */
4329 equal = arc_cksum_equal(buf);
4330 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4331 mutex_exit(hash_lock);
4332 zio->io_private = buf;
4333 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
4334 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
4335 arc_read_done(zio);
4336 } else {
4337 mutex_exit(hash_lock);
4338 /*
4339 * Buffer didn't survive caching. Increment stats and
4340 * reissue to the original storage device.
4341 */
4342 if (zio->io_error != 0) {
4343 ARCSTAT_BUMP(arcstat_l2_io_error);
4344 } else {
4345 zio->io_error = EIO;
4346 }
4347 if (!equal)
4348 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4349
4350 /*
4351 * If there's no waiter, issue an async i/o to the primary
4352 * storage now. If there *is* a waiter, the caller must
4353 * issue the i/o in a context where it's OK to block.
4354 */
4355 if (zio->io_waiter == NULL) {
4356 zio_t *pio = zio_unique_parent(zio);
4357
4358 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4359
4360 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4361 buf->b_data, zio->io_size, arc_read_done, buf,
4362 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4363 }
4364 }
4365
4366 kmem_free(cb, sizeof (l2arc_read_callback_t));
4367 }
4368
4369 /*
4370 * This is the list priority from which the L2ARC will search for pages to
4371 * cache. This is used within loops (0..3) to cycle through lists in the
4372 * desired order. This order can have a significant effect on cache
4373 * performance.
4374 *
4375 * Currently the metadata lists are hit first, MFU then MRU, followed by
4376 * the data lists. This function returns a locked list, and also returns
4377 * the lock pointer.
4378 */
4379 static list_t *
4380 l2arc_list_locked(int list_num, kmutex_t **lock)
4381 {
4382 list_t *list = NULL;
4383
4384 ASSERT(list_num >= 0 && list_num <= 3);
4385
4386 switch (list_num) {
4387 case 0:
4388 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4389 *lock = &arc_mfu->arcs_mtx;
4390 break;
4391 case 1:
4392 list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4393 *lock = &arc_mru->arcs_mtx;
4394 break;
4395 case 2:
4396 list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4397 *lock = &arc_mfu->arcs_mtx;
4398 break;
4399 case 3:
4400 list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4401 *lock = &arc_mru->arcs_mtx;
4402 break;
4403 }
4404
4405 ASSERT(!(MUTEX_HELD(*lock)));
4406 mutex_enter(*lock);
4407 return (list);
4408 }
4409
4410 /*
4411 * Evict buffers from the device write hand to the distance specified in
4412 * bytes. This distance may span populated buffers, it may span nothing.
4413 * This is clearing a region on the L2ARC device ready for writing.
4414 * If the 'all' boolean is set, every buffer is evicted.
4415 */
4416 static void
4417 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4418 {
4419 list_t *buflist;
4420 l2arc_buf_hdr_t *abl2;
4421 arc_buf_hdr_t *ab, *ab_prev;
4422 kmutex_t *hash_lock;
4423 uint64_t taddr;
4424
4425 buflist = dev->l2ad_buflist;
4426
4427 if (buflist == NULL)
4428 return;
4429
4430 if (!all && dev->l2ad_first) {
4431 /*
4432 * This is the first sweep through the device. There is
4433 * nothing to evict.
4434 */
4435 return;
4436 }
4437
4438 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4439 /*
4440 * When nearing the end of the device, evict to the end
4441 * before the device write hand jumps to the start.
4442 */
4443 taddr = dev->l2ad_end;
4444 } else {
4445 taddr = dev->l2ad_hand + distance;
4446 }
4447 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4448 uint64_t, taddr, boolean_t, all);
4449
4450 top:
4451 mutex_enter(&l2arc_buflist_mtx);
4452 for (ab = list_tail(buflist); ab; ab = ab_prev) {
4453 ab_prev = list_prev(buflist, ab);
4454
4455 hash_lock = HDR_LOCK(ab);
4456 if (!mutex_tryenter(hash_lock)) {
4457 /*
4458 * Missed the hash lock. Retry.
4459 */
4460 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4461 mutex_exit(&l2arc_buflist_mtx);
4462 mutex_enter(hash_lock);
4463 mutex_exit(hash_lock);
4464 goto top;
4465 }
4466
4467 if (HDR_L2_WRITE_HEAD(ab)) {
4468 /*
4469 * We hit a write head node. Leave it for
4470 * l2arc_write_done().
4471 */
4472 list_remove(buflist, ab);
4473 mutex_exit(hash_lock);
4474 continue;
4475 }
4476
4477 if (!all && ab->b_l2hdr != NULL &&
4478 (ab->b_l2hdr->b_daddr > taddr ||
4479 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4480 /*
4481 * We've evicted to the target address,
4482 * or the end of the device.
4483 */
4484 mutex_exit(hash_lock);
4485 break;
4486 }
4487
4488 if (HDR_FREE_IN_PROGRESS(ab)) {
4489 /*
4490 * Already on the path to destruction.
4491 */
4492 mutex_exit(hash_lock);
4493 continue;
4494 }
4495
4496 if (ab->b_state == arc_l2c_only) {
4497 ASSERT(!HDR_L2_READING(ab));
4498 /*
4499 * This doesn't exist in the ARC. Destroy.
4500 * arc_hdr_destroy() will call list_remove()
4501 * and decrement arcstat_l2_size.
4502 */
4503 arc_change_state(arc_anon, ab, hash_lock);
4504 arc_hdr_destroy(ab);
4505 } else {
4506 /*
4507 * Invalidate issued or about to be issued
4508 * reads, since we may be about to write
4509 * over this location.
4510 */
4511 if (HDR_L2_READING(ab)) {
4512 ARCSTAT_BUMP(arcstat_l2_evict_reading);
4513 ab->b_flags |= ARC_L2_EVICTED;
4514 }
4515
4516 /*
4517 * Tell ARC this no longer exists in L2ARC.
4518 */
4519 if (ab->b_l2hdr != NULL) {
4520 abl2 = ab->b_l2hdr;
4521 ab->b_l2hdr = NULL;
4522 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4523 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
4524 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4525 }
4526 list_remove(buflist, ab);
4527
4528 /*
4529 * This may have been leftover after a
4530 * failed write.
4531 */
4532 ab->b_flags &= ~ARC_L2_WRITING;
4533 }
4534 mutex_exit(hash_lock);
4535 }
4536 mutex_exit(&l2arc_buflist_mtx);
4537
4538 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4539 dev->l2ad_evict = taddr;
4540 }
4541
4542 /*
4543 * Find and write ARC buffers to the L2ARC device.
4544 *
4545 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4546 * for reading until they have completed writing.
4547 */
4548 static uint64_t
4549 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4550 {
4551 arc_buf_hdr_t *ab, *ab_prev, *head;
4552 l2arc_buf_hdr_t *hdrl2;
4553 list_t *list;
4554 uint64_t passed_sz, write_sz, buf_sz, headroom;
4555 void *buf_data;
4556 kmutex_t *hash_lock, *list_lock = NULL;
4557 boolean_t have_lock, full;
4558 l2arc_write_callback_t *cb;
4559 zio_t *pio, *wzio;
4560 uint64_t guid = spa_load_guid(spa);
4561 int try;
4562
4563 ASSERT(dev->l2ad_vdev != NULL);
4564
4565 pio = NULL;
4566 write_sz = 0;
4567 full = B_FALSE;
4568 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4569 head->b_flags |= ARC_L2_WRITE_HEAD;
4570
4571 /*
4572 * Copy buffers for L2ARC writing.
4573 */
4574 mutex_enter(&l2arc_buflist_mtx);
4575 for (try = 0; try <= 3; try++) {
4576 list = l2arc_list_locked(try, &list_lock);
4577 passed_sz = 0;
4578
4579 /*
4580 * L2ARC fast warmup.
4581 *
4582 * Until the ARC is warm and starts to evict, read from the
4583 * head of the ARC lists rather than the tail.
4584 */
4585 headroom = target_sz * l2arc_headroom;
4586 if (arc_warm == B_FALSE)
4587 ab = list_head(list);
4588 else
4589 ab = list_tail(list);
4590
4591 for (; ab; ab = ab_prev) {
4592 if (arc_warm == B_FALSE)
4593 ab_prev = list_next(list, ab);
4594 else
4595 ab_prev = list_prev(list, ab);
4596
4597 hash_lock = HDR_LOCK(ab);
4598 have_lock = MUTEX_HELD(hash_lock);
4599 if (!have_lock && !mutex_tryenter(hash_lock)) {
4600 /*
4601 * Skip this buffer rather than waiting.
4602 */
4603 continue;
4604 }
4605
4606 passed_sz += ab->b_size;
4607 if (passed_sz > headroom) {
4608 /*
4609 * Searched too far.
4610 */
4611 mutex_exit(hash_lock);
4612 break;
4613 }
4614
4615 if (!l2arc_write_eligible(guid, ab)) {
4616 mutex_exit(hash_lock);
4617 continue;
4618 }
4619
4620 if ((write_sz + ab->b_size) > target_sz) {
4621 full = B_TRUE;
4622 mutex_exit(hash_lock);
4623 break;
4624 }
4625
4626 if (pio == NULL) {
4627 /*
4628 * Insert a dummy header on the buflist so
4629 * l2arc_write_done() can find where the
4630 * write buffers begin without searching.
4631 */
4632 list_insert_head(dev->l2ad_buflist, head);
4633
4634 cb = kmem_alloc(sizeof (l2arc_write_callback_t),
4635 KM_PUSHPAGE);
4636 cb->l2wcb_dev = dev;
4637 cb->l2wcb_head = head;
4638 pio = zio_root(spa, l2arc_write_done, cb,
4639 ZIO_FLAG_CANFAIL);
4640 }
4641
4642 /*
4643 * Create and add a new L2ARC header.
4644 */
4645 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t),
4646 KM_PUSHPAGE);
4647 hdrl2->b_dev = dev;
4648 hdrl2->b_daddr = dev->l2ad_hand;
4649 arc_space_consume(L2HDR_SIZE, ARC_SPACE_L2HDRS);
4650
4651 ab->b_flags |= ARC_L2_WRITING;
4652 ab->b_l2hdr = hdrl2;
4653 list_insert_head(dev->l2ad_buflist, ab);
4654 buf_data = ab->b_buf->b_data;
4655 buf_sz = ab->b_size;
4656
4657 /*
4658 * Compute and store the buffer cksum before
4659 * writing. On debug the cksum is verified first.
4660 */
4661 arc_cksum_verify(ab->b_buf);
4662 arc_cksum_compute(ab->b_buf, B_TRUE);
4663
4664 mutex_exit(hash_lock);
4665
4666 wzio = zio_write_phys(pio, dev->l2ad_vdev,
4667 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4668 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4669 ZIO_FLAG_CANFAIL, B_FALSE);
4670
4671 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4672 zio_t *, wzio);
4673 (void) zio_nowait(wzio);
4674
4675 /*
4676 * Keep the clock hand suitably device-aligned.
4677 */
4678 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4679
4680 write_sz += buf_sz;
4681 dev->l2ad_hand += buf_sz;
4682 }
4683
4684 mutex_exit(list_lock);
4685
4686 if (full == B_TRUE)
4687 break;
4688 }
4689 mutex_exit(&l2arc_buflist_mtx);
4690
4691 if (pio == NULL) {
4692 ASSERT0(write_sz);
4693 kmem_cache_free(hdr_cache, head);
4694 return (0);
4695 }
4696
4697 ASSERT3U(write_sz, <=, target_sz);
4698 ARCSTAT_BUMP(arcstat_l2_writes_sent);
4699 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4700 ARCSTAT_INCR(arcstat_l2_size, write_sz);
4701 vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);
4702
4703 /*
4704 * Bump device hand to the device start if it is approaching the end.
4705 * l2arc_evict() will already have evicted ahead for this case.
4706 */
4707 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4708 vdev_space_update(dev->l2ad_vdev,
4709 dev->l2ad_end - dev->l2ad_hand, 0, 0);
4710 dev->l2ad_hand = dev->l2ad_start;
4711 dev->l2ad_evict = dev->l2ad_start;
4712 dev->l2ad_first = B_FALSE;
4713 }
4714
4715 dev->l2ad_writing = B_TRUE;
4716 (void) zio_wait(pio);
4717 dev->l2ad_writing = B_FALSE;
4718
4719 return (write_sz);
4720 }
4721
4722 /*
4723 * This thread feeds the L2ARC at regular intervals. This is the beating
4724 * heart of the L2ARC.
4725 */
4726 static void
4727 l2arc_feed_thread(void)
4728 {
4729 callb_cpr_t cpr;
4730 l2arc_dev_t *dev;
4731 spa_t *spa;
4732 uint64_t size, wrote;
4733 clock_t begin, next = ddi_get_lbolt();
4734
4735 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4736
4737 mutex_enter(&l2arc_feed_thr_lock);
4738
4739 while (l2arc_thread_exit == 0) {
4740 CALLB_CPR_SAFE_BEGIN(&cpr);
4741 (void) cv_timedwait_interruptible(&l2arc_feed_thr_cv,
4742 &l2arc_feed_thr_lock, next);
4743 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4744 next = ddi_get_lbolt() + hz;
4745
4746 /*
4747 * Quick check for L2ARC devices.
4748 */
4749 mutex_enter(&l2arc_dev_mtx);
4750 if (l2arc_ndev == 0) {
4751 mutex_exit(&l2arc_dev_mtx);
4752 continue;
4753 }
4754 mutex_exit(&l2arc_dev_mtx);
4755 begin = ddi_get_lbolt();
4756
4757 /*
4758 * This selects the next l2arc device to write to, and in
4759 * doing so the next spa to feed from: dev->l2ad_spa. This
4760 * will return NULL if there are now no l2arc devices or if
4761 * they are all faulted.
4762 *
4763 * If a device is returned, its spa's config lock is also
4764 * held to prevent device removal. l2arc_dev_get_next()
4765 * will grab and release l2arc_dev_mtx.
4766 */
4767 if ((dev = l2arc_dev_get_next()) == NULL)
4768 continue;
4769
4770 spa = dev->l2ad_spa;
4771 ASSERT(spa != NULL);
4772
4773 /*
4774 * If the pool is read-only then force the feed thread to
4775 * sleep a little longer.
4776 */
4777 if (!spa_writeable(spa)) {
4778 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
4779 spa_config_exit(spa, SCL_L2ARC, dev);
4780 continue;
4781 }
4782
4783 /*
4784 * Avoid contributing to memory pressure.
4785 */
4786 if (arc_no_grow) {
4787 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4788 spa_config_exit(spa, SCL_L2ARC, dev);
4789 continue;
4790 }
4791
4792 ARCSTAT_BUMP(arcstat_l2_feeds);
4793
4794 size = l2arc_write_size(dev);
4795
4796 /*
4797 * Evict L2ARC buffers that will be overwritten.
4798 */
4799 l2arc_evict(dev, size, B_FALSE);
4800
4801 /*
4802 * Write ARC buffers.
4803 */
4804 wrote = l2arc_write_buffers(spa, dev, size);
4805
4806 /*
4807 * Calculate interval between writes.
4808 */
4809 next = l2arc_write_interval(begin, size, wrote);
4810 spa_config_exit(spa, SCL_L2ARC, dev);
4811 }
4812
4813 l2arc_thread_exit = 0;
4814 cv_broadcast(&l2arc_feed_thr_cv);
4815 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
4816 thread_exit();
4817 }
4818
4819 boolean_t
4820 l2arc_vdev_present(vdev_t *vd)
4821 {
4822 l2arc_dev_t *dev;
4823
4824 mutex_enter(&l2arc_dev_mtx);
4825 for (dev = list_head(l2arc_dev_list); dev != NULL;
4826 dev = list_next(l2arc_dev_list, dev)) {
4827 if (dev->l2ad_vdev == vd)
4828 break;
4829 }
4830 mutex_exit(&l2arc_dev_mtx);
4831
4832 return (dev != NULL);
4833 }
4834
4835 /*
4836 * Add a vdev for use by the L2ARC. By this point the spa has already
4837 * validated the vdev and opened it.
4838 */
4839 void
4840 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
4841 {
4842 l2arc_dev_t *adddev;
4843
4844 ASSERT(!l2arc_vdev_present(vd));
4845
4846 /*
4847 * Create a new l2arc device entry.
4848 */
4849 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4850 adddev->l2ad_spa = spa;
4851 adddev->l2ad_vdev = vd;
4852 adddev->l2ad_write = l2arc_write_max;
4853 adddev->l2ad_boost = l2arc_write_boost;
4854 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
4855 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
4856 adddev->l2ad_hand = adddev->l2ad_start;
4857 adddev->l2ad_evict = adddev->l2ad_start;
4858 adddev->l2ad_first = B_TRUE;
4859 adddev->l2ad_writing = B_FALSE;
4860 list_link_init(&adddev->l2ad_node);
4861 ASSERT3U(adddev->l2ad_write, >, 0);
4862
4863 /*
4864 * This is a list of all ARC buffers that are still valid on the
4865 * device.
4866 */
4867 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4868 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4869 offsetof(arc_buf_hdr_t, b_l2node));
4870
4871 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
4872
4873 /*
4874 * Add device to global list
4875 */
4876 mutex_enter(&l2arc_dev_mtx);
4877 list_insert_head(l2arc_dev_list, adddev);
4878 atomic_inc_64(&l2arc_ndev);
4879 mutex_exit(&l2arc_dev_mtx);
4880 }
4881
4882 /*
4883 * Remove a vdev from the L2ARC.
4884 */
4885 void
4886 l2arc_remove_vdev(vdev_t *vd)
4887 {
4888 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4889
4890 /*
4891 * Find the device by vdev
4892 */
4893 mutex_enter(&l2arc_dev_mtx);
4894 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4895 nextdev = list_next(l2arc_dev_list, dev);
4896 if (vd == dev->l2ad_vdev) {
4897 remdev = dev;
4898 break;
4899 }
4900 }
4901 ASSERT(remdev != NULL);
4902
4903 /*
4904 * Remove device from global list
4905 */
4906 list_remove(l2arc_dev_list, remdev);
4907 l2arc_dev_last = NULL; /* may have been invalidated */
4908 atomic_dec_64(&l2arc_ndev);
4909 mutex_exit(&l2arc_dev_mtx);
4910
4911 /*
4912 * Clear all buflists and ARC references. L2ARC device flush.
4913 */
4914 l2arc_evict(remdev, 0, B_TRUE);
4915 list_destroy(remdev->l2ad_buflist);
4916 kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4917 kmem_free(remdev, sizeof (l2arc_dev_t));
4918 }
4919
4920 void
4921 l2arc_init(void)
4922 {
4923 l2arc_thread_exit = 0;
4924 l2arc_ndev = 0;
4925 l2arc_writes_sent = 0;
4926 l2arc_writes_done = 0;
4927
4928 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4929 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4930 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4931 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4932 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4933
4934 l2arc_dev_list = &L2ARC_dev_list;
4935 l2arc_free_on_write = &L2ARC_free_on_write;
4936 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4937 offsetof(l2arc_dev_t, l2ad_node));
4938 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4939 offsetof(l2arc_data_free_t, l2df_list_node));
4940 }
4941
4942 void
4943 l2arc_fini(void)
4944 {
4945 /*
4946 * This is called from dmu_fini(), which is called from spa_fini();
4947 * Because of this, we can assume that all l2arc devices have
4948 * already been removed when the pools themselves were removed.
4949 */
4950
4951 l2arc_do_free_on_write();
4952
4953 mutex_destroy(&l2arc_feed_thr_lock);
4954 cv_destroy(&l2arc_feed_thr_cv);
4955 mutex_destroy(&l2arc_dev_mtx);
4956 mutex_destroy(&l2arc_buflist_mtx);
4957 mutex_destroy(&l2arc_free_on_write_mtx);
4958
4959 list_destroy(l2arc_dev_list);
4960 list_destroy(l2arc_free_on_write);
4961 }
4962
4963 void
4964 l2arc_start(void)
4965 {
4966 if (!(spa_mode_global & FWRITE))
4967 return;
4968
4969 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4970 TS_RUN, minclsyspri);
4971 }
4972
4973 void
4974 l2arc_stop(void)
4975 {
4976 if (!(spa_mode_global & FWRITE))
4977 return;
4978
4979 mutex_enter(&l2arc_feed_thr_lock);
4980 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
4981 l2arc_thread_exit = 1;
4982 while (l2arc_thread_exit != 0)
4983 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4984 mutex_exit(&l2arc_feed_thr_lock);
4985 }
4986
4987 #if defined(_KERNEL) && defined(HAVE_SPL)
4988 EXPORT_SYMBOL(arc_read);
4989 EXPORT_SYMBOL(arc_buf_remove_ref);
4990 EXPORT_SYMBOL(arc_getbuf_func);
4991 EXPORT_SYMBOL(arc_add_prune_callback);
4992 EXPORT_SYMBOL(arc_remove_prune_callback);
4993
4994 module_param(zfs_arc_min, ulong, 0644);
4995 MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
4996
4997 module_param(zfs_arc_max, ulong, 0644);
4998 MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
4999
5000 module_param(zfs_arc_meta_limit, ulong, 0644);
5001 MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
5002
5003 module_param(zfs_arc_meta_prune, int, 0644);
5004 MODULE_PARM_DESC(zfs_arc_meta_prune, "Bytes of meta data to prune");
5005
5006 module_param(zfs_arc_grow_retry, int, 0644);
5007 MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
5008
5009 module_param(zfs_arc_shrink_shift, int, 0644);
5010 MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
5011
5012 module_param(zfs_arc_p_min_shift, int, 0644);
5013 MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
5014
5015 module_param(zfs_disable_dup_eviction, int, 0644);
5016 MODULE_PARM_DESC(zfs_disable_dup_eviction, "disable duplicate buffer eviction");
5017
5018 module_param(zfs_arc_memory_throttle_disable, int, 0644);
5019 MODULE_PARM_DESC(zfs_arc_memory_throttle_disable, "disable memory throttle");
5020
5021 module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
5022 MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
5023
5024 module_param(l2arc_write_max, ulong, 0644);
5025 MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
5026
5027 module_param(l2arc_write_boost, ulong, 0644);
5028 MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
5029
5030 module_param(l2arc_headroom, ulong, 0644);
5031 MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
5032
5033 module_param(l2arc_feed_secs, ulong, 0644);
5034 MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
5035
5036 module_param(l2arc_feed_min_ms, ulong, 0644);
5037 MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
5038
5039 module_param(l2arc_noprefetch, int, 0644);
5040 MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
5041
5042 module_param(l2arc_feed_again, int, 0644);
5043 MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
5044
5045 module_param(l2arc_norw, int, 0644);
5046 MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
5047
5048 #endif