]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/arc.c
Make arc_prune() asynchronous
[mirror_zfs.git] / module / zfs / arc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
26 */
27
28 /*
29 * DVA-based Adjustable Replacement Cache
30 *
31 * While much of the theory of operation used here is
32 * based on the self-tuning, low overhead replacement cache
33 * presented by Megiddo and Modha at FAST 2003, there are some
34 * significant differences:
35 *
36 * 1. The Megiddo and Modha model assumes any page is evictable.
37 * Pages in its cache cannot be "locked" into memory. This makes
38 * the eviction algorithm simple: evict the last page in the list.
39 * This also make the performance characteristics easy to reason
40 * about. Our cache is not so simple. At any given moment, some
41 * subset of the blocks in the cache are un-evictable because we
42 * have handed out a reference to them. Blocks are only evictable
43 * when there are no external references active. This makes
44 * eviction far more problematic: we choose to evict the evictable
45 * blocks that are the "lowest" in the list.
46 *
47 * There are times when it is not possible to evict the requested
48 * space. In these circumstances we are unable to adjust the cache
49 * size. To prevent the cache growing unbounded at these times we
50 * implement a "cache throttle" that slows the flow of new data
51 * into the cache until we can make space available.
52 *
53 * 2. The Megiddo and Modha model assumes a fixed cache size.
54 * Pages are evicted when the cache is full and there is a cache
55 * miss. Our model has a variable sized cache. It grows with
56 * high use, but also tries to react to memory pressure from the
57 * operating system: decreasing its size when system memory is
58 * tight.
59 *
60 * 3. The Megiddo and Modha model assumes a fixed page size. All
61 * elements of the cache are therefore exactly the same size. So
62 * when adjusting the cache size following a cache miss, its simply
63 * a matter of choosing a single page to evict. In our model, we
64 * have variable sized cache blocks (rangeing from 512 bytes to
65 * 128K bytes). We therefore choose a set of blocks to evict to make
66 * space for a cache miss that approximates as closely as possible
67 * the space used by the new block.
68 *
69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70 * by N. Megiddo & D. Modha, FAST 2003
71 */
72
73 /*
74 * The locking model:
75 *
76 * A new reference to a cache buffer can be obtained in two
77 * ways: 1) via a hash table lookup using the DVA as a key,
78 * or 2) via one of the ARC lists. The arc_read() interface
79 * uses method 1, while the internal arc algorithms for
80 * adjusting the cache use method 2. We therefore provide two
81 * types of locks: 1) the hash table lock array, and 2) the
82 * arc list locks.
83 *
84 * Buffers do not have their own mutexes, rather they rely on the
85 * hash table mutexes for the bulk of their protection (i.e. most
86 * fields in the arc_buf_hdr_t are protected by these mutexes).
87 *
88 * buf_hash_find() returns the appropriate mutex (held) when it
89 * locates the requested buffer in the hash table. It returns
90 * NULL for the mutex if the buffer was not in the table.
91 *
92 * buf_hash_remove() expects the appropriate hash mutex to be
93 * already held before it is invoked.
94 *
95 * Each arc state also has a mutex which is used to protect the
96 * buffer list associated with the state. When attempting to
97 * obtain a hash table lock while holding an arc list lock you
98 * must use: mutex_tryenter() to avoid deadlock. Also note that
99 * the active state mutex must be held before the ghost state mutex.
100 *
101 * Arc buffers may have an associated eviction callback function.
102 * This function will be invoked prior to removing the buffer (e.g.
103 * in arc_do_user_evicts()). Note however that the data associated
104 * with the buffer may be evicted prior to the callback. The callback
105 * must be made with *no locks held* (to prevent deadlock). Additionally,
106 * the users of callbacks must ensure that their private data is
107 * protected from simultaneous callbacks from arc_clear_callback()
108 * and arc_do_user_evicts().
109 *
110 * It as also possible to register a callback which is run when the
111 * arc_meta_limit is reached and no buffers can be safely evicted. In
112 * this case the arc user should drop a reference on some arc buffers so
113 * they can be reclaimed and the arc_meta_limit honored. For example,
114 * when using the ZPL each dentry holds a references on a znode. These
115 * dentries must be pruned before the arc buffer holding the znode can
116 * be safely evicted.
117 *
118 * Note that the majority of the performance stats are manipulated
119 * with atomic operations.
120 *
121 * The L2ARC uses the l2ad_mtx on each vdev for the following:
122 *
123 * - L2ARC buflist creation
124 * - L2ARC buflist eviction
125 * - L2ARC write completion, which walks L2ARC buflists
126 * - ARC header destruction, as it removes from L2ARC buflists
127 * - ARC header release, as it removes from L2ARC buflists
128 */
129
130 #include <sys/spa.h>
131 #include <sys/zio.h>
132 #include <sys/zio_compress.h>
133 #include <sys/zfs_context.h>
134 #include <sys/arc.h>
135 #include <sys/vdev.h>
136 #include <sys/vdev_impl.h>
137 #include <sys/dsl_pool.h>
138 #include <sys/multilist.h>
139 #ifdef _KERNEL
140 #include <sys/vmsystm.h>
141 #include <vm/anon.h>
142 #include <sys/fs/swapnode.h>
143 #include <sys/zpl.h>
144 #include <linux/mm_compat.h>
145 #endif
146 #include <sys/callb.h>
147 #include <sys/kstat.h>
148 #include <sys/dmu_tx.h>
149 #include <zfs_fletcher.h>
150 #include <sys/arc_impl.h>
151 #include <sys/trace_arc.h>
152
153 #ifndef _KERNEL
154 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
155 boolean_t arc_watch = B_FALSE;
156 #endif
157
158 static kmutex_t arc_reclaim_lock;
159 static kcondvar_t arc_reclaim_thread_cv;
160 static boolean_t arc_reclaim_thread_exit;
161 static kcondvar_t arc_reclaim_waiters_cv;
162
163 static kmutex_t arc_user_evicts_lock;
164 static kcondvar_t arc_user_evicts_cv;
165 static boolean_t arc_user_evicts_thread_exit;
166
167 /* number of objects to prune from caches when arc_meta_limit is reached */
168 int zfs_arc_meta_prune = 10000;
169
170 /* The preferred strategy to employ when arc_meta_limit is reached */
171 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
172
173 typedef enum arc_reclaim_strategy {
174 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
175 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
176 } arc_reclaim_strategy_t;
177
178 /*
179 * The number of headers to evict in arc_evict_state_impl() before
180 * dropping the sublist lock and evicting from another sublist. A lower
181 * value means we're more likely to evict the "correct" header (i.e. the
182 * oldest header in the arc state), but comes with higher overhead
183 * (i.e. more invocations of arc_evict_state_impl()).
184 */
185 int zfs_arc_evict_batch_limit = 10;
186
187 /*
188 * The number of sublists used for each of the arc state lists. If this
189 * is not set to a suitable value by the user, it will be configured to
190 * the number of CPUs on the system in arc_init().
191 */
192 int zfs_arc_num_sublists_per_state = 0;
193
194 /* number of seconds before growing cache again */
195 int zfs_arc_grow_retry = 5;
196
197 /* shift of arc_c for calculating overflow limit in arc_get_data_buf */
198 int zfs_arc_overflow_shift = 8;
199
200 /* disable anon data aggressively growing arc_p */
201 int zfs_arc_p_aggressive_disable = 1;
202
203 /* disable arc_p adapt dampener in arc_adapt */
204 int zfs_arc_p_dampener_disable = 1;
205
206 /* log2(fraction of arc to reclaim) */
207 int zfs_arc_shrink_shift = 5;
208
209 /*
210 * minimum lifespan of a prefetch block in clock ticks
211 * (initialized in arc_init())
212 */
213 int zfs_arc_min_prefetch_lifespan = HZ;
214
215 /* disable arc proactive arc throttle due to low memory */
216 int zfs_arc_memory_throttle_disable = 1;
217
218 /* disable duplicate buffer eviction */
219 int zfs_disable_dup_eviction = 0;
220
221 /* average block used to size buf_hash_table */
222 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
223
224 /*
225 * minimum lifespan of a prefetch block in clock ticks
226 * (initialized in arc_init())
227 */
228 static int arc_min_prefetch_lifespan;
229
230 /*
231 * If this percent of memory is free, don't throttle.
232 */
233 int arc_lotsfree_percent = 10;
234
235 static int arc_dead;
236
237 /* expiration time for arc_no_grow */
238 static clock_t arc_grow_time = 0;
239
240 /*
241 * The arc has filled available memory and has now warmed up.
242 */
243 static boolean_t arc_warm;
244
245 /*
246 * These tunables are for performance analysis.
247 */
248 unsigned long zfs_arc_max = 0;
249 unsigned long zfs_arc_min = 0;
250 unsigned long zfs_arc_meta_limit = 0;
251 unsigned long zfs_arc_meta_min = 0;
252
253 /*
254 * Limit the number of restarts in arc_adjust_meta()
255 */
256 unsigned long zfs_arc_meta_adjust_restarts = 4096;
257
258 /* The 6 states: */
259 static arc_state_t ARC_anon;
260 static arc_state_t ARC_mru;
261 static arc_state_t ARC_mru_ghost;
262 static arc_state_t ARC_mfu;
263 static arc_state_t ARC_mfu_ghost;
264 static arc_state_t ARC_l2c_only;
265
266 typedef struct arc_stats {
267 kstat_named_t arcstat_hits;
268 kstat_named_t arcstat_misses;
269 kstat_named_t arcstat_demand_data_hits;
270 kstat_named_t arcstat_demand_data_misses;
271 kstat_named_t arcstat_demand_metadata_hits;
272 kstat_named_t arcstat_demand_metadata_misses;
273 kstat_named_t arcstat_prefetch_data_hits;
274 kstat_named_t arcstat_prefetch_data_misses;
275 kstat_named_t arcstat_prefetch_metadata_hits;
276 kstat_named_t arcstat_prefetch_metadata_misses;
277 kstat_named_t arcstat_mru_hits;
278 kstat_named_t arcstat_mru_ghost_hits;
279 kstat_named_t arcstat_mfu_hits;
280 kstat_named_t arcstat_mfu_ghost_hits;
281 kstat_named_t arcstat_deleted;
282 /*
283 * Number of buffers that could not be evicted because the hash lock
284 * was held by another thread. The lock may not necessarily be held
285 * by something using the same buffer, since hash locks are shared
286 * by multiple buffers.
287 */
288 kstat_named_t arcstat_mutex_miss;
289 /*
290 * Number of buffers skipped because they have I/O in progress, are
291 * indrect prefetch buffers that have not lived long enough, or are
292 * not from the spa we're trying to evict from.
293 */
294 kstat_named_t arcstat_evict_skip;
295 /*
296 * Number of times arc_evict_state() was unable to evict enough
297 * buffers to reach its target amount.
298 */
299 kstat_named_t arcstat_evict_not_enough;
300 kstat_named_t arcstat_evict_l2_cached;
301 kstat_named_t arcstat_evict_l2_eligible;
302 kstat_named_t arcstat_evict_l2_ineligible;
303 kstat_named_t arcstat_evict_l2_skip;
304 kstat_named_t arcstat_hash_elements;
305 kstat_named_t arcstat_hash_elements_max;
306 kstat_named_t arcstat_hash_collisions;
307 kstat_named_t arcstat_hash_chains;
308 kstat_named_t arcstat_hash_chain_max;
309 kstat_named_t arcstat_p;
310 kstat_named_t arcstat_c;
311 kstat_named_t arcstat_c_min;
312 kstat_named_t arcstat_c_max;
313 kstat_named_t arcstat_size;
314 kstat_named_t arcstat_hdr_size;
315 kstat_named_t arcstat_data_size;
316 kstat_named_t arcstat_meta_size;
317 kstat_named_t arcstat_other_size;
318 kstat_named_t arcstat_anon_size;
319 kstat_named_t arcstat_anon_evict_data;
320 kstat_named_t arcstat_anon_evict_metadata;
321 kstat_named_t arcstat_mru_size;
322 kstat_named_t arcstat_mru_evict_data;
323 kstat_named_t arcstat_mru_evict_metadata;
324 kstat_named_t arcstat_mru_ghost_size;
325 kstat_named_t arcstat_mru_ghost_evict_data;
326 kstat_named_t arcstat_mru_ghost_evict_metadata;
327 kstat_named_t arcstat_mfu_size;
328 kstat_named_t arcstat_mfu_evict_data;
329 kstat_named_t arcstat_mfu_evict_metadata;
330 kstat_named_t arcstat_mfu_ghost_size;
331 kstat_named_t arcstat_mfu_ghost_evict_data;
332 kstat_named_t arcstat_mfu_ghost_evict_metadata;
333 kstat_named_t arcstat_l2_hits;
334 kstat_named_t arcstat_l2_misses;
335 kstat_named_t arcstat_l2_feeds;
336 kstat_named_t arcstat_l2_rw_clash;
337 kstat_named_t arcstat_l2_read_bytes;
338 kstat_named_t arcstat_l2_write_bytes;
339 kstat_named_t arcstat_l2_writes_sent;
340 kstat_named_t arcstat_l2_writes_done;
341 kstat_named_t arcstat_l2_writes_error;
342 kstat_named_t arcstat_l2_writes_lock_retry;
343 kstat_named_t arcstat_l2_evict_lock_retry;
344 kstat_named_t arcstat_l2_evict_reading;
345 kstat_named_t arcstat_l2_evict_l1cached;
346 kstat_named_t arcstat_l2_free_on_write;
347 kstat_named_t arcstat_l2_cdata_free_on_write;
348 kstat_named_t arcstat_l2_abort_lowmem;
349 kstat_named_t arcstat_l2_cksum_bad;
350 kstat_named_t arcstat_l2_io_error;
351 kstat_named_t arcstat_l2_size;
352 kstat_named_t arcstat_l2_asize;
353 kstat_named_t arcstat_l2_hdr_size;
354 kstat_named_t arcstat_l2_compress_successes;
355 kstat_named_t arcstat_l2_compress_zeros;
356 kstat_named_t arcstat_l2_compress_failures;
357 kstat_named_t arcstat_memory_throttle_count;
358 kstat_named_t arcstat_duplicate_buffers;
359 kstat_named_t arcstat_duplicate_buffers_size;
360 kstat_named_t arcstat_duplicate_reads;
361 kstat_named_t arcstat_memory_direct_count;
362 kstat_named_t arcstat_memory_indirect_count;
363 kstat_named_t arcstat_no_grow;
364 kstat_named_t arcstat_tempreserve;
365 kstat_named_t arcstat_loaned_bytes;
366 kstat_named_t arcstat_prune;
367 kstat_named_t arcstat_meta_used;
368 kstat_named_t arcstat_meta_limit;
369 kstat_named_t arcstat_meta_max;
370 kstat_named_t arcstat_meta_min;
371 } arc_stats_t;
372
373 static arc_stats_t arc_stats = {
374 { "hits", KSTAT_DATA_UINT64 },
375 { "misses", KSTAT_DATA_UINT64 },
376 { "demand_data_hits", KSTAT_DATA_UINT64 },
377 { "demand_data_misses", KSTAT_DATA_UINT64 },
378 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
379 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
380 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
381 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
382 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
383 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
384 { "mru_hits", KSTAT_DATA_UINT64 },
385 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
386 { "mfu_hits", KSTAT_DATA_UINT64 },
387 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
388 { "deleted", KSTAT_DATA_UINT64 },
389 { "mutex_miss", KSTAT_DATA_UINT64 },
390 { "evict_skip", KSTAT_DATA_UINT64 },
391 { "evict_not_enough", KSTAT_DATA_UINT64 },
392 { "evict_l2_cached", KSTAT_DATA_UINT64 },
393 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
394 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
395 { "evict_l2_skip", KSTAT_DATA_UINT64 },
396 { "hash_elements", KSTAT_DATA_UINT64 },
397 { "hash_elements_max", KSTAT_DATA_UINT64 },
398 { "hash_collisions", KSTAT_DATA_UINT64 },
399 { "hash_chains", KSTAT_DATA_UINT64 },
400 { "hash_chain_max", KSTAT_DATA_UINT64 },
401 { "p", KSTAT_DATA_UINT64 },
402 { "c", KSTAT_DATA_UINT64 },
403 { "c_min", KSTAT_DATA_UINT64 },
404 { "c_max", KSTAT_DATA_UINT64 },
405 { "size", KSTAT_DATA_UINT64 },
406 { "hdr_size", KSTAT_DATA_UINT64 },
407 { "data_size", KSTAT_DATA_UINT64 },
408 { "meta_size", KSTAT_DATA_UINT64 },
409 { "other_size", KSTAT_DATA_UINT64 },
410 { "anon_size", KSTAT_DATA_UINT64 },
411 { "anon_evict_data", KSTAT_DATA_UINT64 },
412 { "anon_evict_metadata", KSTAT_DATA_UINT64 },
413 { "mru_size", KSTAT_DATA_UINT64 },
414 { "mru_evict_data", KSTAT_DATA_UINT64 },
415 { "mru_evict_metadata", KSTAT_DATA_UINT64 },
416 { "mru_ghost_size", KSTAT_DATA_UINT64 },
417 { "mru_ghost_evict_data", KSTAT_DATA_UINT64 },
418 { "mru_ghost_evict_metadata", KSTAT_DATA_UINT64 },
419 { "mfu_size", KSTAT_DATA_UINT64 },
420 { "mfu_evict_data", KSTAT_DATA_UINT64 },
421 { "mfu_evict_metadata", KSTAT_DATA_UINT64 },
422 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
423 { "mfu_ghost_evict_data", KSTAT_DATA_UINT64 },
424 { "mfu_ghost_evict_metadata", KSTAT_DATA_UINT64 },
425 { "l2_hits", KSTAT_DATA_UINT64 },
426 { "l2_misses", KSTAT_DATA_UINT64 },
427 { "l2_feeds", KSTAT_DATA_UINT64 },
428 { "l2_rw_clash", KSTAT_DATA_UINT64 },
429 { "l2_read_bytes", KSTAT_DATA_UINT64 },
430 { "l2_write_bytes", KSTAT_DATA_UINT64 },
431 { "l2_writes_sent", KSTAT_DATA_UINT64 },
432 { "l2_writes_done", KSTAT_DATA_UINT64 },
433 { "l2_writes_error", KSTAT_DATA_UINT64 },
434 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
435 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
436 { "l2_evict_reading", KSTAT_DATA_UINT64 },
437 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
438 { "l2_free_on_write", KSTAT_DATA_UINT64 },
439 { "l2_cdata_free_on_write", KSTAT_DATA_UINT64 },
440 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
441 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
442 { "l2_io_error", KSTAT_DATA_UINT64 },
443 { "l2_size", KSTAT_DATA_UINT64 },
444 { "l2_asize", KSTAT_DATA_UINT64 },
445 { "l2_hdr_size", KSTAT_DATA_UINT64 },
446 { "l2_compress_successes", KSTAT_DATA_UINT64 },
447 { "l2_compress_zeros", KSTAT_DATA_UINT64 },
448 { "l2_compress_failures", KSTAT_DATA_UINT64 },
449 { "memory_throttle_count", KSTAT_DATA_UINT64 },
450 { "duplicate_buffers", KSTAT_DATA_UINT64 },
451 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
452 { "duplicate_reads", KSTAT_DATA_UINT64 },
453 { "memory_direct_count", KSTAT_DATA_UINT64 },
454 { "memory_indirect_count", KSTAT_DATA_UINT64 },
455 { "arc_no_grow", KSTAT_DATA_UINT64 },
456 { "arc_tempreserve", KSTAT_DATA_UINT64 },
457 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
458 { "arc_prune", KSTAT_DATA_UINT64 },
459 { "arc_meta_used", KSTAT_DATA_UINT64 },
460 { "arc_meta_limit", KSTAT_DATA_UINT64 },
461 { "arc_meta_max", KSTAT_DATA_UINT64 },
462 { "arc_meta_min", KSTAT_DATA_UINT64 },
463 };
464
465 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
466
467 #define ARCSTAT_INCR(stat, val) \
468 atomic_add_64(&arc_stats.stat.value.ui64, (val))
469
470 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
471 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
472
473 #define ARCSTAT_MAX(stat, val) { \
474 uint64_t m; \
475 while ((val) > (m = arc_stats.stat.value.ui64) && \
476 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
477 continue; \
478 }
479
480 #define ARCSTAT_MAXSTAT(stat) \
481 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
482
483 /*
484 * We define a macro to allow ARC hits/misses to be easily broken down by
485 * two separate conditions, giving a total of four different subtypes for
486 * each of hits and misses (so eight statistics total).
487 */
488 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
489 if (cond1) { \
490 if (cond2) { \
491 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
492 } else { \
493 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
494 } \
495 } else { \
496 if (cond2) { \
497 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
498 } else { \
499 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
500 } \
501 }
502
503 kstat_t *arc_ksp;
504 static arc_state_t *arc_anon;
505 static arc_state_t *arc_mru;
506 static arc_state_t *arc_mru_ghost;
507 static arc_state_t *arc_mfu;
508 static arc_state_t *arc_mfu_ghost;
509 static arc_state_t *arc_l2c_only;
510
511 /*
512 * There are several ARC variables that are critical to export as kstats --
513 * but we don't want to have to grovel around in the kstat whenever we wish to
514 * manipulate them. For these variables, we therefore define them to be in
515 * terms of the statistic variable. This assures that we are not introducing
516 * the possibility of inconsistency by having shadow copies of the variables,
517 * while still allowing the code to be readable.
518 */
519 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
520 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
521 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
522 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
523 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
524 #define arc_no_grow ARCSTAT(arcstat_no_grow)
525 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
526 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
527 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
528 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
529 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
530 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
531
532 #define L2ARC_IS_VALID_COMPRESS(_c_) \
533 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
534
535 static list_t arc_prune_list;
536 static kmutex_t arc_prune_mtx;
537 static taskq_t *arc_prune_taskq;
538 static arc_buf_t *arc_eviction_list;
539 static arc_buf_hdr_t arc_eviction_hdr;
540
541 #define GHOST_STATE(state) \
542 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
543 (state) == arc_l2c_only)
544
545 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
546 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
547 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
548 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
549 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
550 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
551
552 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
553 #define HDR_L2COMPRESS(hdr) ((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
554 #define HDR_L2_READING(hdr) \
555 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
556 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
557 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
558 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
559 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
560
561 #define HDR_ISTYPE_METADATA(hdr) \
562 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
563 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
564
565 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
566 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
567
568 /* For storing compression mode in b_flags */
569 #define HDR_COMPRESS_OFFSET 24
570 #define HDR_COMPRESS_NBITS 7
571
572 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET(hdr->b_flags, \
573 HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS))
574 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET(hdr->b_flags, \
575 HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS, (cmp))
576
577 /*
578 * Other sizes
579 */
580
581 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
582 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
583
584 /*
585 * Hash table routines
586 */
587
588 #define HT_LOCK_ALIGN 64
589 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
590
591 struct ht_lock {
592 kmutex_t ht_lock;
593 #ifdef _KERNEL
594 unsigned char pad[HT_LOCK_PAD];
595 #endif
596 };
597
598 #define BUF_LOCKS 8192
599 typedef struct buf_hash_table {
600 uint64_t ht_mask;
601 arc_buf_hdr_t **ht_table;
602 struct ht_lock ht_locks[BUF_LOCKS];
603 } buf_hash_table_t;
604
605 static buf_hash_table_t buf_hash_table;
606
607 #define BUF_HASH_INDEX(spa, dva, birth) \
608 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
609 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
610 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
611 #define HDR_LOCK(hdr) \
612 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
613
614 uint64_t zfs_crc64_table[256];
615
616 /*
617 * Level 2 ARC
618 */
619
620 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
621 #define L2ARC_HEADROOM 2 /* num of writes */
622 /*
623 * If we discover during ARC scan any buffers to be compressed, we boost
624 * our headroom for the next scanning cycle by this percentage multiple.
625 */
626 #define L2ARC_HEADROOM_BOOST 200
627 #define L2ARC_FEED_SECS 1 /* caching interval secs */
628 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
629
630 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
631 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
632
633 /* L2ARC Performance Tunables */
634 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
635 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
636 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
637 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
638 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
639 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
640 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
641 int l2arc_nocompress = B_FALSE; /* don't compress bufs */
642 int l2arc_feed_again = B_TRUE; /* turbo warmup */
643 int l2arc_norw = B_FALSE; /* no reads during writes */
644
645 /*
646 * L2ARC Internals
647 */
648 static list_t L2ARC_dev_list; /* device list */
649 static list_t *l2arc_dev_list; /* device list pointer */
650 static kmutex_t l2arc_dev_mtx; /* device list mutex */
651 static l2arc_dev_t *l2arc_dev_last; /* last device used */
652 static list_t L2ARC_free_on_write; /* free after write buf list */
653 static list_t *l2arc_free_on_write; /* free after write list ptr */
654 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
655 static uint64_t l2arc_ndev; /* number of devices */
656
657 typedef struct l2arc_read_callback {
658 arc_buf_t *l2rcb_buf; /* read buffer */
659 spa_t *l2rcb_spa; /* spa */
660 blkptr_t l2rcb_bp; /* original blkptr */
661 zbookmark_phys_t l2rcb_zb; /* original bookmark */
662 int l2rcb_flags; /* original flags */
663 enum zio_compress l2rcb_compress; /* applied compress */
664 } l2arc_read_callback_t;
665
666 typedef struct l2arc_data_free {
667 /* protected by l2arc_free_on_write_mtx */
668 void *l2df_data;
669 size_t l2df_size;
670 void (*l2df_func)(void *, size_t);
671 list_node_t l2df_list_node;
672 } l2arc_data_free_t;
673
674 static kmutex_t l2arc_feed_thr_lock;
675 static kcondvar_t l2arc_feed_thr_cv;
676 static uint8_t l2arc_thread_exit;
677
678 static void arc_get_data_buf(arc_buf_t *);
679 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
680 static boolean_t arc_is_overflowing(void);
681 static void arc_buf_watch(arc_buf_t *);
682
683 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
684 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
685
686 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
687 static void l2arc_read_done(zio_t *);
688
689 static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
690 static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
691 static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
692
693 static uint64_t
694 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
695 {
696 uint8_t *vdva = (uint8_t *)dva;
697 uint64_t crc = -1ULL;
698 int i;
699
700 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
701
702 for (i = 0; i < sizeof (dva_t); i++)
703 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
704
705 crc ^= (spa>>8) ^ birth;
706
707 return (crc);
708 }
709
710 #define BUF_EMPTY(buf) \
711 ((buf)->b_dva.dva_word[0] == 0 && \
712 (buf)->b_dva.dva_word[1] == 0)
713
714 #define BUF_EQUAL(spa, dva, birth, buf) \
715 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
716 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
717 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
718
719 static void
720 buf_discard_identity(arc_buf_hdr_t *hdr)
721 {
722 hdr->b_dva.dva_word[0] = 0;
723 hdr->b_dva.dva_word[1] = 0;
724 hdr->b_birth = 0;
725 }
726
727 static arc_buf_hdr_t *
728 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
729 {
730 const dva_t *dva = BP_IDENTITY(bp);
731 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
732 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
733 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
734 arc_buf_hdr_t *hdr;
735
736 mutex_enter(hash_lock);
737 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
738 hdr = hdr->b_hash_next) {
739 if (BUF_EQUAL(spa, dva, birth, hdr)) {
740 *lockp = hash_lock;
741 return (hdr);
742 }
743 }
744 mutex_exit(hash_lock);
745 *lockp = NULL;
746 return (NULL);
747 }
748
749 /*
750 * Insert an entry into the hash table. If there is already an element
751 * equal to elem in the hash table, then the already existing element
752 * will be returned and the new element will not be inserted.
753 * Otherwise returns NULL.
754 * If lockp == NULL, the caller is assumed to already hold the hash lock.
755 */
756 static arc_buf_hdr_t *
757 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
758 {
759 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
760 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
761 arc_buf_hdr_t *fhdr;
762 uint32_t i;
763
764 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
765 ASSERT(hdr->b_birth != 0);
766 ASSERT(!HDR_IN_HASH_TABLE(hdr));
767
768 if (lockp != NULL) {
769 *lockp = hash_lock;
770 mutex_enter(hash_lock);
771 } else {
772 ASSERT(MUTEX_HELD(hash_lock));
773 }
774
775 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
776 fhdr = fhdr->b_hash_next, i++) {
777 if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
778 return (fhdr);
779 }
780
781 hdr->b_hash_next = buf_hash_table.ht_table[idx];
782 buf_hash_table.ht_table[idx] = hdr;
783 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
784
785 /* collect some hash table performance data */
786 if (i > 0) {
787 ARCSTAT_BUMP(arcstat_hash_collisions);
788 if (i == 1)
789 ARCSTAT_BUMP(arcstat_hash_chains);
790
791 ARCSTAT_MAX(arcstat_hash_chain_max, i);
792 }
793
794 ARCSTAT_BUMP(arcstat_hash_elements);
795 ARCSTAT_MAXSTAT(arcstat_hash_elements);
796
797 return (NULL);
798 }
799
800 static void
801 buf_hash_remove(arc_buf_hdr_t *hdr)
802 {
803 arc_buf_hdr_t *fhdr, **hdrp;
804 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
805
806 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
807 ASSERT(HDR_IN_HASH_TABLE(hdr));
808
809 hdrp = &buf_hash_table.ht_table[idx];
810 while ((fhdr = *hdrp) != hdr) {
811 ASSERT(fhdr != NULL);
812 hdrp = &fhdr->b_hash_next;
813 }
814 *hdrp = hdr->b_hash_next;
815 hdr->b_hash_next = NULL;
816 hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
817
818 /* collect some hash table performance data */
819 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
820
821 if (buf_hash_table.ht_table[idx] &&
822 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
823 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
824 }
825
826 /*
827 * Global data structures and functions for the buf kmem cache.
828 */
829 static kmem_cache_t *hdr_full_cache;
830 static kmem_cache_t *hdr_l2only_cache;
831 static kmem_cache_t *buf_cache;
832
833 static void
834 buf_fini(void)
835 {
836 int i;
837
838 #if defined(_KERNEL) && defined(HAVE_SPL)
839 /*
840 * Large allocations which do not require contiguous pages
841 * should be using vmem_free() in the linux kernel\
842 */
843 vmem_free(buf_hash_table.ht_table,
844 (buf_hash_table.ht_mask + 1) * sizeof (void *));
845 #else
846 kmem_free(buf_hash_table.ht_table,
847 (buf_hash_table.ht_mask + 1) * sizeof (void *));
848 #endif
849 for (i = 0; i < BUF_LOCKS; i++)
850 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
851 kmem_cache_destroy(hdr_full_cache);
852 kmem_cache_destroy(hdr_l2only_cache);
853 kmem_cache_destroy(buf_cache);
854 }
855
856 /*
857 * Constructor callback - called when the cache is empty
858 * and a new buf is requested.
859 */
860 /* ARGSUSED */
861 static int
862 hdr_full_cons(void *vbuf, void *unused, int kmflag)
863 {
864 arc_buf_hdr_t *hdr = vbuf;
865
866 bzero(hdr, HDR_FULL_SIZE);
867 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
868 refcount_create(&hdr->b_l1hdr.b_refcnt);
869 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
870 list_link_init(&hdr->b_l1hdr.b_arc_node);
871 list_link_init(&hdr->b_l2hdr.b_l2node);
872 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
873 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
874
875 return (0);
876 }
877
878 /* ARGSUSED */
879 static int
880 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
881 {
882 arc_buf_hdr_t *hdr = vbuf;
883
884 bzero(hdr, HDR_L2ONLY_SIZE);
885 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
886
887 return (0);
888 }
889
890 /* ARGSUSED */
891 static int
892 buf_cons(void *vbuf, void *unused, int kmflag)
893 {
894 arc_buf_t *buf = vbuf;
895
896 bzero(buf, sizeof (arc_buf_t));
897 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
898 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
899
900 return (0);
901 }
902
903 /*
904 * Destructor callback - called when a cached buf is
905 * no longer required.
906 */
907 /* ARGSUSED */
908 static void
909 hdr_full_dest(void *vbuf, void *unused)
910 {
911 arc_buf_hdr_t *hdr = vbuf;
912
913 ASSERT(BUF_EMPTY(hdr));
914 cv_destroy(&hdr->b_l1hdr.b_cv);
915 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
916 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
917 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
918 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
919 }
920
921 /* ARGSUSED */
922 static void
923 hdr_l2only_dest(void *vbuf, void *unused)
924 {
925 ASSERTV(arc_buf_hdr_t *hdr = vbuf);
926
927 ASSERT(BUF_EMPTY(hdr));
928 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
929 }
930
931 /* ARGSUSED */
932 static void
933 buf_dest(void *vbuf, void *unused)
934 {
935 arc_buf_t *buf = vbuf;
936
937 mutex_destroy(&buf->b_evict_lock);
938 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
939 }
940
941 static void
942 buf_init(void)
943 {
944 uint64_t *ct;
945 uint64_t hsize = 1ULL << 12;
946 int i, j;
947
948 /*
949 * The hash table is big enough to fill all of physical memory
950 * with an average block size of zfs_arc_average_blocksize (default 8K).
951 * By default, the table will take up
952 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
953 */
954 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
955 hsize <<= 1;
956 retry:
957 buf_hash_table.ht_mask = hsize - 1;
958 #if defined(_KERNEL) && defined(HAVE_SPL)
959 /*
960 * Large allocations which do not require contiguous pages
961 * should be using vmem_alloc() in the linux kernel
962 */
963 buf_hash_table.ht_table =
964 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
965 #else
966 buf_hash_table.ht_table =
967 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
968 #endif
969 if (buf_hash_table.ht_table == NULL) {
970 ASSERT(hsize > (1ULL << 8));
971 hsize >>= 1;
972 goto retry;
973 }
974
975 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
976 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0);
977 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
978 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
979 NULL, NULL, 0);
980 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
981 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
982
983 for (i = 0; i < 256; i++)
984 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
985 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
986
987 for (i = 0; i < BUF_LOCKS; i++) {
988 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
989 NULL, MUTEX_DEFAULT, NULL);
990 }
991 }
992
993 /*
994 * Transition between the two allocation states for the arc_buf_hdr struct.
995 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
996 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
997 * version is used when a cache buffer is only in the L2ARC in order to reduce
998 * memory usage.
999 */
1000 static arc_buf_hdr_t *
1001 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1002 {
1003 arc_buf_hdr_t *nhdr;
1004 l2arc_dev_t *dev;
1005
1006 ASSERT(HDR_HAS_L2HDR(hdr));
1007 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1008 (old == hdr_l2only_cache && new == hdr_full_cache));
1009
1010 dev = hdr->b_l2hdr.b_dev;
1011 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1012
1013 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1014 buf_hash_remove(hdr);
1015
1016 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1017 if (new == hdr_full_cache) {
1018 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1019 /*
1020 * arc_access and arc_change_state need to be aware that a
1021 * header has just come out of L2ARC, so we set its state to
1022 * l2c_only even though it's about to change.
1023 */
1024 nhdr->b_l1hdr.b_state = arc_l2c_only;
1025
1026 /* Verify previous threads set to NULL before freeing */
1027 ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1028 } else {
1029 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1030 ASSERT0(hdr->b_l1hdr.b_datacnt);
1031
1032 /*
1033 * If we've reached here, We must have been called from
1034 * arc_evict_hdr(), as such we should have already been
1035 * removed from any ghost list we were previously on
1036 * (which protects us from racing with arc_evict_state),
1037 * thus no locking is needed during this check.
1038 */
1039 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1040
1041 /*
1042 * A buffer must not be moved into the arc_l2c_only
1043 * state if it's not finished being written out to the
1044 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1045 * might try to be accessed, even though it was removed.
1046 */
1047 VERIFY(!HDR_L2_WRITING(hdr));
1048 VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1049
1050 nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1051 }
1052 /*
1053 * The header has been reallocated so we need to re-insert it into any
1054 * lists it was on.
1055 */
1056 (void) buf_hash_insert(nhdr, NULL);
1057
1058 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1059
1060 mutex_enter(&dev->l2ad_mtx);
1061
1062 /*
1063 * We must place the realloc'ed header back into the list at
1064 * the same spot. Otherwise, if it's placed earlier in the list,
1065 * l2arc_write_buffers() could find it during the function's
1066 * write phase, and try to write it out to the l2arc.
1067 */
1068 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1069 list_remove(&dev->l2ad_buflist, hdr);
1070
1071 mutex_exit(&dev->l2ad_mtx);
1072
1073 buf_discard_identity(hdr);
1074 hdr->b_freeze_cksum = NULL;
1075 kmem_cache_free(old, hdr);
1076
1077 return (nhdr);
1078 }
1079
1080
1081 #define ARC_MINTIME (hz>>4) /* 62 ms */
1082
1083 static void
1084 arc_cksum_verify(arc_buf_t *buf)
1085 {
1086 zio_cksum_t zc;
1087
1088 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1089 return;
1090
1091 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1092 if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1093 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1094 return;
1095 }
1096 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1097 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1098 panic("buffer modified while frozen!");
1099 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1100 }
1101
1102 static int
1103 arc_cksum_equal(arc_buf_t *buf)
1104 {
1105 zio_cksum_t zc;
1106 int equal;
1107
1108 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1109 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1110 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1111 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1112
1113 return (equal);
1114 }
1115
1116 static void
1117 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1118 {
1119 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1120 return;
1121
1122 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1123 if (buf->b_hdr->b_freeze_cksum != NULL) {
1124 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1125 return;
1126 }
1127 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1128 KM_SLEEP);
1129 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1130 buf->b_hdr->b_freeze_cksum);
1131 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1132 arc_buf_watch(buf);
1133 }
1134
1135 #ifndef _KERNEL
1136 void
1137 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1138 {
1139 panic("Got SIGSEGV at address: 0x%lx\n", (long) si->si_addr);
1140 }
1141 #endif
1142
1143 /* ARGSUSED */
1144 static void
1145 arc_buf_unwatch(arc_buf_t *buf)
1146 {
1147 #ifndef _KERNEL
1148 if (arc_watch) {
1149 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size,
1150 PROT_READ | PROT_WRITE));
1151 }
1152 #endif
1153 }
1154
1155 /* ARGSUSED */
1156 static void
1157 arc_buf_watch(arc_buf_t *buf)
1158 {
1159 #ifndef _KERNEL
1160 if (arc_watch)
1161 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size, PROT_READ));
1162 #endif
1163 }
1164
1165 static arc_buf_contents_t
1166 arc_buf_type(arc_buf_hdr_t *hdr)
1167 {
1168 if (HDR_ISTYPE_METADATA(hdr)) {
1169 return (ARC_BUFC_METADATA);
1170 } else {
1171 return (ARC_BUFC_DATA);
1172 }
1173 }
1174
1175 static uint32_t
1176 arc_bufc_to_flags(arc_buf_contents_t type)
1177 {
1178 switch (type) {
1179 case ARC_BUFC_DATA:
1180 /* metadata field is 0 if buffer contains normal data */
1181 return (0);
1182 case ARC_BUFC_METADATA:
1183 return (ARC_FLAG_BUFC_METADATA);
1184 default:
1185 break;
1186 }
1187 panic("undefined ARC buffer type!");
1188 return ((uint32_t)-1);
1189 }
1190
1191 void
1192 arc_buf_thaw(arc_buf_t *buf)
1193 {
1194 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1195 if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
1196 panic("modifying non-anon buffer!");
1197 if (HDR_IO_IN_PROGRESS(buf->b_hdr))
1198 panic("modifying buffer while i/o in progress!");
1199 arc_cksum_verify(buf);
1200 }
1201
1202 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1203 if (buf->b_hdr->b_freeze_cksum != NULL) {
1204 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1205 buf->b_hdr->b_freeze_cksum = NULL;
1206 }
1207
1208 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1209
1210 arc_buf_unwatch(buf);
1211 }
1212
1213 void
1214 arc_buf_freeze(arc_buf_t *buf)
1215 {
1216 kmutex_t *hash_lock;
1217
1218 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1219 return;
1220
1221 hash_lock = HDR_LOCK(buf->b_hdr);
1222 mutex_enter(hash_lock);
1223
1224 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1225 buf->b_hdr->b_l1hdr.b_state == arc_anon);
1226 arc_cksum_compute(buf, B_FALSE);
1227 mutex_exit(hash_lock);
1228
1229 }
1230
1231 static void
1232 add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1233 {
1234 arc_state_t *state;
1235
1236 ASSERT(HDR_HAS_L1HDR(hdr));
1237 ASSERT(MUTEX_HELD(hash_lock));
1238
1239 state = hdr->b_l1hdr.b_state;
1240
1241 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1242 (state != arc_anon)) {
1243 /* We don't use the L2-only state list. */
1244 if (state != arc_l2c_only) {
1245 arc_buf_contents_t type = arc_buf_type(hdr);
1246 uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
1247 multilist_t *list = &state->arcs_list[type];
1248 uint64_t *size = &state->arcs_lsize[type];
1249
1250 multilist_remove(list, hdr);
1251
1252 if (GHOST_STATE(state)) {
1253 ASSERT0(hdr->b_l1hdr.b_datacnt);
1254 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1255 delta = hdr->b_size;
1256 }
1257 ASSERT(delta > 0);
1258 ASSERT3U(*size, >=, delta);
1259 atomic_add_64(size, -delta);
1260 }
1261 /* remove the prefetch flag if we get a reference */
1262 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1263 }
1264 }
1265
1266 static int
1267 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1268 {
1269 int cnt;
1270 arc_state_t *state = hdr->b_l1hdr.b_state;
1271
1272 ASSERT(HDR_HAS_L1HDR(hdr));
1273 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1274 ASSERT(!GHOST_STATE(state));
1275
1276 /*
1277 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1278 * check to prevent usage of the arc_l2c_only list.
1279 */
1280 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1281 (state != arc_anon)) {
1282 arc_buf_contents_t type = arc_buf_type(hdr);
1283 multilist_t *list = &state->arcs_list[type];
1284 uint64_t *size = &state->arcs_lsize[type];
1285
1286 multilist_insert(list, hdr);
1287
1288 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1289 atomic_add_64(size, hdr->b_size *
1290 hdr->b_l1hdr.b_datacnt);
1291 }
1292 return (cnt);
1293 }
1294
1295 /*
1296 * Returns detailed information about a specific arc buffer. When the
1297 * state_index argument is set the function will calculate the arc header
1298 * list position for its arc state. Since this requires a linear traversal
1299 * callers are strongly encourage not to do this. However, it can be helpful
1300 * for targeted analysis so the functionality is provided.
1301 */
1302 void
1303 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
1304 {
1305 arc_buf_hdr_t *hdr = ab->b_hdr;
1306 l1arc_buf_hdr_t *l1hdr = NULL;
1307 l2arc_buf_hdr_t *l2hdr = NULL;
1308 arc_state_t *state = NULL;
1309
1310 if (HDR_HAS_L1HDR(hdr)) {
1311 l1hdr = &hdr->b_l1hdr;
1312 state = l1hdr->b_state;
1313 }
1314 if (HDR_HAS_L2HDR(hdr))
1315 l2hdr = &hdr->b_l2hdr;
1316
1317 memset(abi, 0, sizeof (arc_buf_info_t));
1318 abi->abi_flags = hdr->b_flags;
1319
1320 if (l1hdr) {
1321 abi->abi_datacnt = l1hdr->b_datacnt;
1322 abi->abi_access = l1hdr->b_arc_access;
1323 abi->abi_mru_hits = l1hdr->b_mru_hits;
1324 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
1325 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
1326 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
1327 abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
1328 }
1329
1330 if (l2hdr) {
1331 abi->abi_l2arc_dattr = l2hdr->b_daddr;
1332 abi->abi_l2arc_asize = l2hdr->b_asize;
1333 abi->abi_l2arc_compress = HDR_GET_COMPRESS(hdr);
1334 abi->abi_l2arc_hits = l2hdr->b_hits;
1335 }
1336
1337 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
1338 abi->abi_state_contents = arc_buf_type(hdr);
1339 abi->abi_size = hdr->b_size;
1340 }
1341
1342 /*
1343 * Move the supplied buffer to the indicated state. The hash lock
1344 * for the buffer must be held by the caller.
1345 */
1346 static void
1347 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1348 kmutex_t *hash_lock)
1349 {
1350 arc_state_t *old_state;
1351 int64_t refcnt;
1352 uint32_t datacnt;
1353 uint64_t from_delta, to_delta;
1354 arc_buf_contents_t buftype = arc_buf_type(hdr);
1355
1356 /*
1357 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1358 * in arc_read() when bringing a buffer out of the L2ARC. However, the
1359 * L1 hdr doesn't always exist when we change state to arc_anon before
1360 * destroying a header, in which case reallocating to add the L1 hdr is
1361 * pointless.
1362 */
1363 if (HDR_HAS_L1HDR(hdr)) {
1364 old_state = hdr->b_l1hdr.b_state;
1365 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1366 datacnt = hdr->b_l1hdr.b_datacnt;
1367 } else {
1368 old_state = arc_l2c_only;
1369 refcnt = 0;
1370 datacnt = 0;
1371 }
1372
1373 ASSERT(MUTEX_HELD(hash_lock));
1374 ASSERT3P(new_state, !=, old_state);
1375 ASSERT(refcnt == 0 || datacnt > 0);
1376 ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1377 ASSERT(old_state != arc_anon || datacnt <= 1);
1378
1379 from_delta = to_delta = datacnt * hdr->b_size;
1380
1381 /*
1382 * If this buffer is evictable, transfer it from the
1383 * old state list to the new state list.
1384 */
1385 if (refcnt == 0) {
1386 if (old_state != arc_anon && old_state != arc_l2c_only) {
1387 uint64_t *size = &old_state->arcs_lsize[buftype];
1388
1389 ASSERT(HDR_HAS_L1HDR(hdr));
1390 multilist_remove(&old_state->arcs_list[buftype], hdr);
1391
1392 /*
1393 * If prefetching out of the ghost cache,
1394 * we will have a non-zero datacnt.
1395 */
1396 if (GHOST_STATE(old_state) && datacnt == 0) {
1397 /* ghost elements have a ghost size */
1398 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1399 from_delta = hdr->b_size;
1400 }
1401 ASSERT3U(*size, >=, from_delta);
1402 atomic_add_64(size, -from_delta);
1403 }
1404 if (new_state != arc_anon && new_state != arc_l2c_only) {
1405 uint64_t *size = &new_state->arcs_lsize[buftype];
1406
1407 /*
1408 * An L1 header always exists here, since if we're
1409 * moving to some L1-cached state (i.e. not l2c_only or
1410 * anonymous), we realloc the header to add an L1hdr
1411 * beforehand.
1412 */
1413 ASSERT(HDR_HAS_L1HDR(hdr));
1414 multilist_insert(&new_state->arcs_list[buftype], hdr);
1415
1416 /* ghost elements have a ghost size */
1417 if (GHOST_STATE(new_state)) {
1418 ASSERT0(datacnt);
1419 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1420 to_delta = hdr->b_size;
1421 }
1422 atomic_add_64(size, to_delta);
1423 }
1424 }
1425
1426 ASSERT(!BUF_EMPTY(hdr));
1427 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1428 buf_hash_remove(hdr);
1429
1430 /* adjust state sizes (ignore arc_l2c_only) */
1431 if (to_delta && new_state != arc_l2c_only)
1432 atomic_add_64(&new_state->arcs_size, to_delta);
1433 if (from_delta && old_state != arc_l2c_only) {
1434 ASSERT3U(old_state->arcs_size, >=, from_delta);
1435 atomic_add_64(&old_state->arcs_size, -from_delta);
1436 }
1437 if (HDR_HAS_L1HDR(hdr))
1438 hdr->b_l1hdr.b_state = new_state;
1439
1440 /*
1441 * L2 headers should never be on the L2 state list since they don't
1442 * have L1 headers allocated.
1443 */
1444 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
1445 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
1446 }
1447
1448 void
1449 arc_space_consume(uint64_t space, arc_space_type_t type)
1450 {
1451 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1452
1453 switch (type) {
1454 default:
1455 break;
1456 case ARC_SPACE_DATA:
1457 ARCSTAT_INCR(arcstat_data_size, space);
1458 break;
1459 case ARC_SPACE_META:
1460 ARCSTAT_INCR(arcstat_meta_size, space);
1461 break;
1462 case ARC_SPACE_OTHER:
1463 ARCSTAT_INCR(arcstat_other_size, space);
1464 break;
1465 case ARC_SPACE_HDRS:
1466 ARCSTAT_INCR(arcstat_hdr_size, space);
1467 break;
1468 case ARC_SPACE_L2HDRS:
1469 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1470 break;
1471 }
1472
1473 if (type != ARC_SPACE_DATA) {
1474 ARCSTAT_INCR(arcstat_meta_used, space);
1475 if (arc_meta_max < arc_meta_used)
1476 arc_meta_max = arc_meta_used;
1477 }
1478
1479 atomic_add_64(&arc_size, space);
1480 }
1481
1482 void
1483 arc_space_return(uint64_t space, arc_space_type_t type)
1484 {
1485 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1486
1487 switch (type) {
1488 default:
1489 break;
1490 case ARC_SPACE_DATA:
1491 ARCSTAT_INCR(arcstat_data_size, -space);
1492 break;
1493 case ARC_SPACE_META:
1494 ARCSTAT_INCR(arcstat_meta_size, -space);
1495 break;
1496 case ARC_SPACE_OTHER:
1497 ARCSTAT_INCR(arcstat_other_size, -space);
1498 break;
1499 case ARC_SPACE_HDRS:
1500 ARCSTAT_INCR(arcstat_hdr_size, -space);
1501 break;
1502 case ARC_SPACE_L2HDRS:
1503 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1504 break;
1505 }
1506
1507 if (type != ARC_SPACE_DATA) {
1508 ASSERT(arc_meta_used >= space);
1509 ARCSTAT_INCR(arcstat_meta_used, -space);
1510 }
1511
1512 ASSERT(arc_size >= space);
1513 atomic_add_64(&arc_size, -space);
1514 }
1515
1516 arc_buf_t *
1517 arc_buf_alloc(spa_t *spa, uint64_t size, void *tag, arc_buf_contents_t type)
1518 {
1519 arc_buf_hdr_t *hdr;
1520 arc_buf_t *buf;
1521
1522 VERIFY3U(size, <=, spa_maxblocksize(spa));
1523 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
1524 ASSERT(BUF_EMPTY(hdr));
1525 ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
1526 hdr->b_size = size;
1527 hdr->b_spa = spa_load_guid(spa);
1528 hdr->b_l1hdr.b_mru_hits = 0;
1529 hdr->b_l1hdr.b_mru_ghost_hits = 0;
1530 hdr->b_l1hdr.b_mfu_hits = 0;
1531 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
1532 hdr->b_l1hdr.b_l2_hits = 0;
1533
1534 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1535 buf->b_hdr = hdr;
1536 buf->b_data = NULL;
1537 buf->b_efunc = NULL;
1538 buf->b_private = NULL;
1539 buf->b_next = NULL;
1540
1541 hdr->b_flags = arc_bufc_to_flags(type);
1542 hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1543
1544 hdr->b_l1hdr.b_buf = buf;
1545 hdr->b_l1hdr.b_state = arc_anon;
1546 hdr->b_l1hdr.b_arc_access = 0;
1547 hdr->b_l1hdr.b_datacnt = 1;
1548 hdr->b_l1hdr.b_tmp_cdata = NULL;
1549
1550 arc_get_data_buf(buf);
1551
1552 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1553 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1554
1555 return (buf);
1556 }
1557
1558 static char *arc_onloan_tag = "onloan";
1559
1560 /*
1561 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1562 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1563 * buffers must be returned to the arc before they can be used by the DMU or
1564 * freed.
1565 */
1566 arc_buf_t *
1567 arc_loan_buf(spa_t *spa, uint64_t size)
1568 {
1569 arc_buf_t *buf;
1570
1571 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1572
1573 atomic_add_64(&arc_loaned_bytes, size);
1574 return (buf);
1575 }
1576
1577 /*
1578 * Return a loaned arc buffer to the arc.
1579 */
1580 void
1581 arc_return_buf(arc_buf_t *buf, void *tag)
1582 {
1583 arc_buf_hdr_t *hdr = buf->b_hdr;
1584
1585 ASSERT(buf->b_data != NULL);
1586 ASSERT(HDR_HAS_L1HDR(hdr));
1587 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1588 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
1589
1590 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1591 }
1592
1593 /* Detach an arc_buf from a dbuf (tag) */
1594 void
1595 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1596 {
1597 arc_buf_hdr_t *hdr = buf->b_hdr;
1598
1599 ASSERT(buf->b_data != NULL);
1600 ASSERT(HDR_HAS_L1HDR(hdr));
1601 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
1602 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
1603 buf->b_efunc = NULL;
1604 buf->b_private = NULL;
1605
1606 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1607 }
1608
1609 static arc_buf_t *
1610 arc_buf_clone(arc_buf_t *from)
1611 {
1612 arc_buf_t *buf;
1613 arc_buf_hdr_t *hdr = from->b_hdr;
1614 uint64_t size = hdr->b_size;
1615
1616 ASSERT(HDR_HAS_L1HDR(hdr));
1617 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
1618
1619 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1620 buf->b_hdr = hdr;
1621 buf->b_data = NULL;
1622 buf->b_efunc = NULL;
1623 buf->b_private = NULL;
1624 buf->b_next = hdr->b_l1hdr.b_buf;
1625 hdr->b_l1hdr.b_buf = buf;
1626 arc_get_data_buf(buf);
1627 bcopy(from->b_data, buf->b_data, size);
1628
1629 /*
1630 * This buffer already exists in the arc so create a duplicate
1631 * copy for the caller. If the buffer is associated with user data
1632 * then track the size and number of duplicates. These stats will be
1633 * updated as duplicate buffers are created and destroyed.
1634 */
1635 if (HDR_ISTYPE_DATA(hdr)) {
1636 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1637 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1638 }
1639 hdr->b_l1hdr.b_datacnt += 1;
1640 return (buf);
1641 }
1642
1643 void
1644 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1645 {
1646 arc_buf_hdr_t *hdr;
1647 kmutex_t *hash_lock;
1648
1649 /*
1650 * Check to see if this buffer is evicted. Callers
1651 * must verify b_data != NULL to know if the add_ref
1652 * was successful.
1653 */
1654 mutex_enter(&buf->b_evict_lock);
1655 if (buf->b_data == NULL) {
1656 mutex_exit(&buf->b_evict_lock);
1657 return;
1658 }
1659 hash_lock = HDR_LOCK(buf->b_hdr);
1660 mutex_enter(hash_lock);
1661 hdr = buf->b_hdr;
1662 ASSERT(HDR_HAS_L1HDR(hdr));
1663 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1664 mutex_exit(&buf->b_evict_lock);
1665
1666 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
1667 hdr->b_l1hdr.b_state == arc_mfu);
1668
1669 add_reference(hdr, hash_lock, tag);
1670 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1671 arc_access(hdr, hash_lock);
1672 mutex_exit(hash_lock);
1673 ARCSTAT_BUMP(arcstat_hits);
1674 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
1675 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
1676 data, metadata, hits);
1677 }
1678
1679 static void
1680 arc_buf_free_on_write(void *data, size_t size,
1681 void (*free_func)(void *, size_t))
1682 {
1683 l2arc_data_free_t *df;
1684
1685 df = kmem_alloc(sizeof (*df), KM_SLEEP);
1686 df->l2df_data = data;
1687 df->l2df_size = size;
1688 df->l2df_func = free_func;
1689 mutex_enter(&l2arc_free_on_write_mtx);
1690 list_insert_head(l2arc_free_on_write, df);
1691 mutex_exit(&l2arc_free_on_write_mtx);
1692 }
1693
1694 /*
1695 * Free the arc data buffer. If it is an l2arc write in progress,
1696 * the buffer is placed on l2arc_free_on_write to be freed later.
1697 */
1698 static void
1699 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1700 {
1701 arc_buf_hdr_t *hdr = buf->b_hdr;
1702
1703 if (HDR_L2_WRITING(hdr)) {
1704 arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
1705 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1706 } else {
1707 free_func(buf->b_data, hdr->b_size);
1708 }
1709 }
1710
1711 static void
1712 arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
1713 {
1714 ASSERT(HDR_HAS_L2HDR(hdr));
1715 ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
1716
1717 /*
1718 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
1719 * that doesn't exist, the header is in the arc_l2c_only state,
1720 * and there isn't anything to free (it's already been freed).
1721 */
1722 if (!HDR_HAS_L1HDR(hdr))
1723 return;
1724
1725 /*
1726 * The header isn't being written to the l2arc device, thus it
1727 * shouldn't have a b_tmp_cdata to free.
1728 */
1729 if (!HDR_L2_WRITING(hdr)) {
1730 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1731 return;
1732 }
1733
1734 /*
1735 * The header does not have compression enabled. This can be due
1736 * to the buffer not being compressible, or because we're
1737 * freeing the buffer before the second phase of
1738 * l2arc_write_buffer() has started (which does the compression
1739 * step). In either case, b_tmp_cdata does not point to a
1740 * separately compressed buffer, so there's nothing to free (it
1741 * points to the same buffer as the arc_buf_t's b_data field).
1742 */
1743 if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) {
1744 hdr->b_l1hdr.b_tmp_cdata = NULL;
1745 return;
1746 }
1747
1748 /*
1749 * There's nothing to free since the buffer was all zero's and
1750 * compressed to a zero length buffer.
1751 */
1752 if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_EMPTY) {
1753 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1754 return;
1755 }
1756
1757 ASSERT(L2ARC_IS_VALID_COMPRESS(HDR_GET_COMPRESS(hdr)));
1758
1759 arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
1760 hdr->b_size, zio_data_buf_free);
1761
1762 ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
1763 hdr->b_l1hdr.b_tmp_cdata = NULL;
1764 }
1765
1766 /*
1767 * Free up buf->b_data and if 'remove' is set, then pull the
1768 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
1769 */
1770 static void
1771 arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
1772 {
1773 arc_buf_t **bufp;
1774
1775 /* free up data associated with the buf */
1776 if (buf->b_data != NULL) {
1777 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
1778 uint64_t size = buf->b_hdr->b_size;
1779 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
1780
1781 arc_cksum_verify(buf);
1782 arc_buf_unwatch(buf);
1783
1784 if (type == ARC_BUFC_METADATA) {
1785 arc_buf_data_free(buf, zio_buf_free);
1786 arc_space_return(size, ARC_SPACE_META);
1787 } else {
1788 ASSERT(type == ARC_BUFC_DATA);
1789 arc_buf_data_free(buf, zio_data_buf_free);
1790 arc_space_return(size, ARC_SPACE_DATA);
1791 }
1792
1793 /* protected by hash lock, if in the hash table */
1794 if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
1795 uint64_t *cnt = &state->arcs_lsize[type];
1796
1797 ASSERT(refcount_is_zero(
1798 &buf->b_hdr->b_l1hdr.b_refcnt));
1799 ASSERT(state != arc_anon && state != arc_l2c_only);
1800
1801 ASSERT3U(*cnt, >=, size);
1802 atomic_add_64(cnt, -size);
1803 }
1804 ASSERT3U(state->arcs_size, >=, size);
1805 atomic_add_64(&state->arcs_size, -size);
1806 buf->b_data = NULL;
1807
1808 /*
1809 * If we're destroying a duplicate buffer make sure
1810 * that the appropriate statistics are updated.
1811 */
1812 if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
1813 HDR_ISTYPE_DATA(buf->b_hdr)) {
1814 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1815 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1816 }
1817 ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
1818 buf->b_hdr->b_l1hdr.b_datacnt -= 1;
1819 }
1820
1821 /* only remove the buf if requested */
1822 if (!remove)
1823 return;
1824
1825 /* remove the buf from the hdr list */
1826 for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
1827 bufp = &(*bufp)->b_next)
1828 continue;
1829 *bufp = buf->b_next;
1830 buf->b_next = NULL;
1831
1832 ASSERT(buf->b_efunc == NULL);
1833
1834 /* clean up the buf */
1835 buf->b_hdr = NULL;
1836 kmem_cache_free(buf_cache, buf);
1837 }
1838
1839 static void
1840 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1841 {
1842 if (HDR_HAS_L1HDR(hdr)) {
1843 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
1844 hdr->b_l1hdr.b_datacnt > 0);
1845 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1846 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1847 }
1848 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1849 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1850
1851 if (HDR_HAS_L2HDR(hdr)) {
1852 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
1853 boolean_t buflist_held = MUTEX_HELD(&l2hdr->b_dev->l2ad_mtx);
1854
1855 if (!buflist_held) {
1856 mutex_enter(&l2hdr->b_dev->l2ad_mtx);
1857 l2hdr = &hdr->b_l2hdr;
1858 }
1859
1860 list_remove(&l2hdr->b_dev->l2ad_buflist, hdr);
1861
1862 /*
1863 * We don't want to leak the b_tmp_cdata buffer that was
1864 * allocated in l2arc_write_buffers()
1865 */
1866 arc_buf_l2_cdata_free(hdr);
1867
1868 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1869 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1870 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
1871
1872 if (!buflist_held)
1873 mutex_exit(&l2hdr->b_dev->l2ad_mtx);
1874
1875 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
1876 }
1877
1878 if (!BUF_EMPTY(hdr))
1879 buf_discard_identity(hdr);
1880
1881 if (hdr->b_freeze_cksum != NULL) {
1882 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1883 hdr->b_freeze_cksum = NULL;
1884 }
1885
1886 if (HDR_HAS_L1HDR(hdr)) {
1887 while (hdr->b_l1hdr.b_buf) {
1888 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
1889
1890 if (buf->b_efunc != NULL) {
1891 mutex_enter(&arc_user_evicts_lock);
1892 mutex_enter(&buf->b_evict_lock);
1893 ASSERT(buf->b_hdr != NULL);
1894 arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
1895 hdr->b_l1hdr.b_buf = buf->b_next;
1896 buf->b_hdr = &arc_eviction_hdr;
1897 buf->b_next = arc_eviction_list;
1898 arc_eviction_list = buf;
1899 mutex_exit(&buf->b_evict_lock);
1900 cv_signal(&arc_user_evicts_cv);
1901 mutex_exit(&arc_user_evicts_lock);
1902 } else {
1903 arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
1904 }
1905 }
1906 }
1907
1908 ASSERT3P(hdr->b_hash_next, ==, NULL);
1909 if (HDR_HAS_L1HDR(hdr)) {
1910 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1911 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
1912 kmem_cache_free(hdr_full_cache, hdr);
1913 } else {
1914 kmem_cache_free(hdr_l2only_cache, hdr);
1915 }
1916 }
1917
1918 void
1919 arc_buf_free(arc_buf_t *buf, void *tag)
1920 {
1921 arc_buf_hdr_t *hdr = buf->b_hdr;
1922 int hashed = hdr->b_l1hdr.b_state != arc_anon;
1923
1924 ASSERT(buf->b_efunc == NULL);
1925 ASSERT(buf->b_data != NULL);
1926
1927 if (hashed) {
1928 kmutex_t *hash_lock = HDR_LOCK(hdr);
1929
1930 mutex_enter(hash_lock);
1931 hdr = buf->b_hdr;
1932 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1933
1934 (void) remove_reference(hdr, hash_lock, tag);
1935 if (hdr->b_l1hdr.b_datacnt > 1) {
1936 arc_buf_destroy(buf, TRUE);
1937 } else {
1938 ASSERT(buf == hdr->b_l1hdr.b_buf);
1939 ASSERT(buf->b_efunc == NULL);
1940 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
1941 }
1942 mutex_exit(hash_lock);
1943 } else if (HDR_IO_IN_PROGRESS(hdr)) {
1944 int destroy_hdr;
1945 /*
1946 * We are in the middle of an async write. Don't destroy
1947 * this buffer unless the write completes before we finish
1948 * decrementing the reference count.
1949 */
1950 mutex_enter(&arc_user_evicts_lock);
1951 (void) remove_reference(hdr, NULL, tag);
1952 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1953 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1954 mutex_exit(&arc_user_evicts_lock);
1955 if (destroy_hdr)
1956 arc_hdr_destroy(hdr);
1957 } else {
1958 if (remove_reference(hdr, NULL, tag) > 0)
1959 arc_buf_destroy(buf, TRUE);
1960 else
1961 arc_hdr_destroy(hdr);
1962 }
1963 }
1964
1965 boolean_t
1966 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1967 {
1968 arc_buf_hdr_t *hdr = buf->b_hdr;
1969 kmutex_t *hash_lock = NULL;
1970 boolean_t no_callback = (buf->b_efunc == NULL);
1971
1972 if (hdr->b_l1hdr.b_state == arc_anon) {
1973 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
1974 arc_buf_free(buf, tag);
1975 return (no_callback);
1976 }
1977
1978 hash_lock = HDR_LOCK(hdr);
1979 mutex_enter(hash_lock);
1980 hdr = buf->b_hdr;
1981 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1982 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1983 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
1984 ASSERT(buf->b_data != NULL);
1985
1986 (void) remove_reference(hdr, hash_lock, tag);
1987 if (hdr->b_l1hdr.b_datacnt > 1) {
1988 if (no_callback)
1989 arc_buf_destroy(buf, TRUE);
1990 } else if (no_callback) {
1991 ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
1992 ASSERT(buf->b_efunc == NULL);
1993 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
1994 }
1995 ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
1996 refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1997 mutex_exit(hash_lock);
1998 return (no_callback);
1999 }
2000
2001 uint64_t
2002 arc_buf_size(arc_buf_t *buf)
2003 {
2004 return (buf->b_hdr->b_size);
2005 }
2006
2007 /*
2008 * Called from the DMU to determine if the current buffer should be
2009 * evicted. In order to ensure proper locking, the eviction must be initiated
2010 * from the DMU. Return true if the buffer is associated with user data and
2011 * duplicate buffers still exist.
2012 */
2013 boolean_t
2014 arc_buf_eviction_needed(arc_buf_t *buf)
2015 {
2016 arc_buf_hdr_t *hdr;
2017 boolean_t evict_needed = B_FALSE;
2018
2019 if (zfs_disable_dup_eviction)
2020 return (B_FALSE);
2021
2022 mutex_enter(&buf->b_evict_lock);
2023 hdr = buf->b_hdr;
2024 if (hdr == NULL) {
2025 /*
2026 * We are in arc_do_user_evicts(); let that function
2027 * perform the eviction.
2028 */
2029 ASSERT(buf->b_data == NULL);
2030 mutex_exit(&buf->b_evict_lock);
2031 return (B_FALSE);
2032 } else if (buf->b_data == NULL) {
2033 /*
2034 * We have already been added to the arc eviction list;
2035 * recommend eviction.
2036 */
2037 ASSERT3P(hdr, ==, &arc_eviction_hdr);
2038 mutex_exit(&buf->b_evict_lock);
2039 return (B_TRUE);
2040 }
2041
2042 if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
2043 evict_needed = B_TRUE;
2044
2045 mutex_exit(&buf->b_evict_lock);
2046 return (evict_needed);
2047 }
2048
2049 /*
2050 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2051 * state of the header is dependent on its state prior to entering this
2052 * function. The following transitions are possible:
2053 *
2054 * - arc_mru -> arc_mru_ghost
2055 * - arc_mfu -> arc_mfu_ghost
2056 * - arc_mru_ghost -> arc_l2c_only
2057 * - arc_mru_ghost -> deleted
2058 * - arc_mfu_ghost -> arc_l2c_only
2059 * - arc_mfu_ghost -> deleted
2060 */
2061 static int64_t
2062 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
2063 {
2064 arc_state_t *evicted_state, *state;
2065 int64_t bytes_evicted = 0;
2066
2067 ASSERT(MUTEX_HELD(hash_lock));
2068 ASSERT(HDR_HAS_L1HDR(hdr));
2069
2070 state = hdr->b_l1hdr.b_state;
2071 if (GHOST_STATE(state)) {
2072 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2073 ASSERT(hdr->b_l1hdr.b_buf == NULL);
2074
2075 /*
2076 * l2arc_write_buffers() relies on a header's L1 portion
2077 * (i.e. its b_tmp_cdata field) during its write phase.
2078 * Thus, we cannot push a header onto the arc_l2c_only
2079 * state (removing its L1 piece) until the header is
2080 * done being written to the l2arc.
2081 */
2082 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2083 ARCSTAT_BUMP(arcstat_evict_l2_skip);
2084 return (bytes_evicted);
2085 }
2086
2087 ARCSTAT_BUMP(arcstat_deleted);
2088 bytes_evicted += hdr->b_size;
2089
2090 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2091
2092 if (HDR_HAS_L2HDR(hdr)) {
2093 /*
2094 * This buffer is cached on the 2nd Level ARC;
2095 * don't destroy the header.
2096 */
2097 arc_change_state(arc_l2c_only, hdr, hash_lock);
2098 /*
2099 * dropping from L1+L2 cached to L2-only,
2100 * realloc to remove the L1 header.
2101 */
2102 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2103 hdr_l2only_cache);
2104 } else {
2105 arc_change_state(arc_anon, hdr, hash_lock);
2106 arc_hdr_destroy(hdr);
2107 }
2108 return (bytes_evicted);
2109 }
2110
2111 ASSERT(state == arc_mru || state == arc_mfu);
2112 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2113
2114 /* prefetch buffers have a minimum lifespan */
2115 if (HDR_IO_IN_PROGRESS(hdr) ||
2116 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2117 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2118 arc_min_prefetch_lifespan)) {
2119 ARCSTAT_BUMP(arcstat_evict_skip);
2120 return (bytes_evicted);
2121 }
2122
2123 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2124 ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2125 while (hdr->b_l1hdr.b_buf) {
2126 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2127 if (!mutex_tryenter(&buf->b_evict_lock)) {
2128 ARCSTAT_BUMP(arcstat_mutex_miss);
2129 break;
2130 }
2131 if (buf->b_data != NULL)
2132 bytes_evicted += hdr->b_size;
2133 if (buf->b_efunc != NULL) {
2134 mutex_enter(&arc_user_evicts_lock);
2135 arc_buf_destroy(buf, FALSE);
2136 hdr->b_l1hdr.b_buf = buf->b_next;
2137 buf->b_hdr = &arc_eviction_hdr;
2138 buf->b_next = arc_eviction_list;
2139 arc_eviction_list = buf;
2140 cv_signal(&arc_user_evicts_cv);
2141 mutex_exit(&arc_user_evicts_lock);
2142 mutex_exit(&buf->b_evict_lock);
2143 } else {
2144 mutex_exit(&buf->b_evict_lock);
2145 arc_buf_destroy(buf, TRUE);
2146 }
2147 }
2148
2149 if (HDR_HAS_L2HDR(hdr)) {
2150 ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2151 } else {
2152 if (l2arc_write_eligible(hdr->b_spa, hdr))
2153 ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2154 else
2155 ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2156 }
2157
2158 if (hdr->b_l1hdr.b_datacnt == 0) {
2159 arc_change_state(evicted_state, hdr, hash_lock);
2160 ASSERT(HDR_IN_HASH_TABLE(hdr));
2161 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2162 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2163 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2164 }
2165
2166 return (bytes_evicted);
2167 }
2168
2169 static uint64_t
2170 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2171 uint64_t spa, int64_t bytes)
2172 {
2173 multilist_sublist_t *mls;
2174 uint64_t bytes_evicted = 0;
2175 arc_buf_hdr_t *hdr;
2176 kmutex_t *hash_lock;
2177 int evict_count = 0;
2178
2179 ASSERT3P(marker, !=, NULL);
2180 ASSERTV(if (bytes < 0) ASSERT(bytes == ARC_EVICT_ALL));
2181
2182 mls = multilist_sublist_lock(ml, idx);
2183
2184 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2185 hdr = multilist_sublist_prev(mls, marker)) {
2186 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2187 (evict_count >= zfs_arc_evict_batch_limit))
2188 break;
2189
2190 /*
2191 * To keep our iteration location, move the marker
2192 * forward. Since we're not holding hdr's hash lock, we
2193 * must be very careful and not remove 'hdr' from the
2194 * sublist. Otherwise, other consumers might mistake the
2195 * 'hdr' as not being on a sublist when they call the
2196 * multilist_link_active() function (they all rely on
2197 * the hash lock protecting concurrent insertions and
2198 * removals). multilist_sublist_move_forward() was
2199 * specifically implemented to ensure this is the case
2200 * (only 'marker' will be removed and re-inserted).
2201 */
2202 multilist_sublist_move_forward(mls, marker);
2203
2204 /*
2205 * The only case where the b_spa field should ever be
2206 * zero, is the marker headers inserted by
2207 * arc_evict_state(). It's possible for multiple threads
2208 * to be calling arc_evict_state() concurrently (e.g.
2209 * dsl_pool_close() and zio_inject_fault()), so we must
2210 * skip any markers we see from these other threads.
2211 */
2212 if (hdr->b_spa == 0)
2213 continue;
2214
2215 /* we're only interested in evicting buffers of a certain spa */
2216 if (spa != 0 && hdr->b_spa != spa) {
2217 ARCSTAT_BUMP(arcstat_evict_skip);
2218 continue;
2219 }
2220
2221 hash_lock = HDR_LOCK(hdr);
2222
2223 /*
2224 * We aren't calling this function from any code path
2225 * that would already be holding a hash lock, so we're
2226 * asserting on this assumption to be defensive in case
2227 * this ever changes. Without this check, it would be
2228 * possible to incorrectly increment arcstat_mutex_miss
2229 * below (e.g. if the code changed such that we called
2230 * this function with a hash lock held).
2231 */
2232 ASSERT(!MUTEX_HELD(hash_lock));
2233
2234 if (mutex_tryenter(hash_lock)) {
2235 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2236 mutex_exit(hash_lock);
2237
2238 bytes_evicted += evicted;
2239
2240 /*
2241 * If evicted is zero, arc_evict_hdr() must have
2242 * decided to skip this header, don't increment
2243 * evict_count in this case.
2244 */
2245 if (evicted != 0)
2246 evict_count++;
2247
2248 /*
2249 * If arc_size isn't overflowing, signal any
2250 * threads that might happen to be waiting.
2251 *
2252 * For each header evicted, we wake up a single
2253 * thread. If we used cv_broadcast, we could
2254 * wake up "too many" threads causing arc_size
2255 * to significantly overflow arc_c; since
2256 * arc_get_data_buf() doesn't check for overflow
2257 * when it's woken up (it doesn't because it's
2258 * possible for the ARC to be overflowing while
2259 * full of un-evictable buffers, and the
2260 * function should proceed in this case).
2261 *
2262 * If threads are left sleeping, due to not
2263 * using cv_broadcast, they will be woken up
2264 * just before arc_reclaim_thread() sleeps.
2265 */
2266 mutex_enter(&arc_reclaim_lock);
2267 if (!arc_is_overflowing())
2268 cv_signal(&arc_reclaim_waiters_cv);
2269 mutex_exit(&arc_reclaim_lock);
2270 } else {
2271 ARCSTAT_BUMP(arcstat_mutex_miss);
2272 }
2273 }
2274
2275 multilist_sublist_unlock(mls);
2276
2277 return (bytes_evicted);
2278 }
2279
2280 /*
2281 * Evict buffers from the given arc state, until we've removed the
2282 * specified number of bytes. Move the removed buffers to the
2283 * appropriate evict state.
2284 *
2285 * This function makes a "best effort". It skips over any buffers
2286 * it can't get a hash_lock on, and so, may not catch all candidates.
2287 * It may also return without evicting as much space as requested.
2288 *
2289 * If bytes is specified using the special value ARC_EVICT_ALL, this
2290 * will evict all available (i.e. unlocked and evictable) buffers from
2291 * the given arc state; which is used by arc_flush().
2292 */
2293 static uint64_t
2294 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2295 arc_buf_contents_t type)
2296 {
2297 uint64_t total_evicted = 0;
2298 multilist_t *ml = &state->arcs_list[type];
2299 int num_sublists;
2300 arc_buf_hdr_t **markers;
2301 int i;
2302
2303 ASSERTV(if (bytes < 0) ASSERT(bytes == ARC_EVICT_ALL));
2304
2305 num_sublists = multilist_get_num_sublists(ml);
2306
2307 /*
2308 * If we've tried to evict from each sublist, made some
2309 * progress, but still have not hit the target number of bytes
2310 * to evict, we want to keep trying. The markers allow us to
2311 * pick up where we left off for each individual sublist, rather
2312 * than starting from the tail each time.
2313 */
2314 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2315 for (i = 0; i < num_sublists; i++) {
2316 multilist_sublist_t *mls;
2317
2318 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2319
2320 /*
2321 * A b_spa of 0 is used to indicate that this header is
2322 * a marker. This fact is used in arc_adjust_type() and
2323 * arc_evict_state_impl().
2324 */
2325 markers[i]->b_spa = 0;
2326
2327 mls = multilist_sublist_lock(ml, i);
2328 multilist_sublist_insert_tail(mls, markers[i]);
2329 multilist_sublist_unlock(mls);
2330 }
2331
2332 /*
2333 * While we haven't hit our target number of bytes to evict, or
2334 * we're evicting all available buffers.
2335 */
2336 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2337 /*
2338 * Start eviction using a randomly selected sublist,
2339 * this is to try and evenly balance eviction across all
2340 * sublists. Always starting at the same sublist
2341 * (e.g. index 0) would cause evictions to favor certain
2342 * sublists over others.
2343 */
2344 int sublist_idx = multilist_get_random_index(ml);
2345 uint64_t scan_evicted = 0;
2346
2347 for (i = 0; i < num_sublists; i++) {
2348 uint64_t bytes_remaining;
2349 uint64_t bytes_evicted;
2350
2351 if (bytes == ARC_EVICT_ALL)
2352 bytes_remaining = ARC_EVICT_ALL;
2353 else if (total_evicted < bytes)
2354 bytes_remaining = bytes - total_evicted;
2355 else
2356 break;
2357
2358 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
2359 markers[sublist_idx], spa, bytes_remaining);
2360
2361 scan_evicted += bytes_evicted;
2362 total_evicted += bytes_evicted;
2363
2364 /* we've reached the end, wrap to the beginning */
2365 if (++sublist_idx >= num_sublists)
2366 sublist_idx = 0;
2367 }
2368
2369 /*
2370 * If we didn't evict anything during this scan, we have
2371 * no reason to believe we'll evict more during another
2372 * scan, so break the loop.
2373 */
2374 if (scan_evicted == 0) {
2375 /* This isn't possible, let's make that obvious */
2376 ASSERT3S(bytes, !=, 0);
2377
2378 /*
2379 * When bytes is ARC_EVICT_ALL, the only way to
2380 * break the loop is when scan_evicted is zero.
2381 * In that case, we actually have evicted enough,
2382 * so we don't want to increment the kstat.
2383 */
2384 if (bytes != ARC_EVICT_ALL) {
2385 ASSERT3S(total_evicted, <, bytes);
2386 ARCSTAT_BUMP(arcstat_evict_not_enough);
2387 }
2388
2389 break;
2390 }
2391 }
2392
2393 for (i = 0; i < num_sublists; i++) {
2394 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2395 multilist_sublist_remove(mls, markers[i]);
2396 multilist_sublist_unlock(mls);
2397
2398 kmem_cache_free(hdr_full_cache, markers[i]);
2399 }
2400 kmem_free(markers, sizeof (*markers) * num_sublists);
2401
2402 return (total_evicted);
2403 }
2404
2405 /*
2406 * Flush all "evictable" data of the given type from the arc state
2407 * specified. This will not evict any "active" buffers (i.e. referenced).
2408 *
2409 * When 'retry' is set to FALSE, the function will make a single pass
2410 * over the state and evict any buffers that it can. Since it doesn't
2411 * continually retry the eviction, it might end up leaving some buffers
2412 * in the ARC due to lock misses.
2413 *
2414 * When 'retry' is set to TRUE, the function will continually retry the
2415 * eviction until *all* evictable buffers have been removed from the
2416 * state. As a result, if concurrent insertions into the state are
2417 * allowed (e.g. if the ARC isn't shutting down), this function might
2418 * wind up in an infinite loop, continually trying to evict buffers.
2419 */
2420 static uint64_t
2421 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
2422 boolean_t retry)
2423 {
2424 uint64_t evicted = 0;
2425
2426 while (state->arcs_lsize[type] != 0) {
2427 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
2428
2429 if (!retry)
2430 break;
2431 }
2432
2433 return (evicted);
2434 }
2435
2436 /*
2437 * Helper function for arc_prune() it is responsible for safely handling
2438 * the execution of a registered arc_prune_func_t.
2439 */
2440 static void
2441 arc_prune_task(void *ptr)
2442 {
2443 arc_prune_t *ap = (arc_prune_t *)ptr;
2444 arc_prune_func_t *func = ap->p_pfunc;
2445
2446 if (func != NULL)
2447 func(ap->p_adjust, ap->p_private);
2448
2449 /* Callback unregistered concurrently with execution */
2450 if (refcount_remove(&ap->p_refcnt, func) == 0) {
2451 ASSERT(!list_link_active(&ap->p_node));
2452 refcount_destroy(&ap->p_refcnt);
2453 kmem_free(ap, sizeof (*ap));
2454 }
2455 }
2456
2457 /*
2458 * Notify registered consumers they must drop holds on a portion of the ARC
2459 * buffered they reference. This provides a mechanism to ensure the ARC can
2460 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
2461 * is analogous to dnlc_reduce_cache() but more generic.
2462 *
2463 * This operation is performed asyncronously so it may be safely called
2464 * in the context of the arc_adapt_thread(). A reference is taken here
2465 * for each registered arc_prune_t and the arc_prune_task() is responsible
2466 * for releasing it once the registered arc_prune_func_t has completed.
2467 */
2468 static void
2469 arc_prune_async(int64_t adjust)
2470 {
2471 arc_prune_t *ap;
2472
2473 mutex_enter(&arc_prune_mtx);
2474 for (ap = list_head(&arc_prune_list); ap != NULL;
2475 ap = list_next(&arc_prune_list, ap)) {
2476
2477 if (refcount_count(&ap->p_refcnt) >= 2)
2478 continue;
2479
2480 refcount_add(&ap->p_refcnt, ap->p_pfunc);
2481 ap->p_adjust = adjust;
2482 taskq_dispatch(arc_prune_taskq, arc_prune_task, ap, TQ_SLEEP);
2483 ARCSTAT_BUMP(arcstat_prune);
2484 }
2485 mutex_exit(&arc_prune_mtx);
2486 }
2487
2488 static void
2489 arc_prune(int64_t adjust)
2490 {
2491 arc_prune_async(adjust);
2492 taskq_wait_outstanding(arc_prune_taskq, 0);
2493 }
2494
2495 /*
2496 * Evict the specified number of bytes from the state specified,
2497 * restricting eviction to the spa and type given. This function
2498 * prevents us from trying to evict more from a state's list than
2499 * is "evictable", and to skip evicting altogether when passed a
2500 * negative value for "bytes". In contrast, arc_evict_state() will
2501 * evict everything it can, when passed a negative value for "bytes".
2502 */
2503 static uint64_t
2504 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
2505 arc_buf_contents_t type)
2506 {
2507 int64_t delta;
2508
2509 if (bytes > 0 && state->arcs_lsize[type] > 0) {
2510 delta = MIN(state->arcs_lsize[type], bytes);
2511 return (arc_evict_state(state, spa, delta, type));
2512 }
2513
2514 return (0);
2515 }
2516
2517 /*
2518 * The goal of this function is to evict enough meta data buffers from the
2519 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
2520 * more complicated than it appears because it is common for data buffers
2521 * to have holds on meta data buffers. In addition, dnode meta data buffers
2522 * will be held by the dnodes in the block preventing them from being freed.
2523 * This means we can't simply traverse the ARC and expect to always find
2524 * enough unheld meta data buffer to release.
2525 *
2526 * Therefore, this function has been updated to make alternating passes
2527 * over the ARC releasing data buffers and then newly unheld meta data
2528 * buffers. This ensures forward progress is maintained and arc_meta_used
2529 * will decrease. Normally this is sufficient, but if required the ARC
2530 * will call the registered prune callbacks causing dentry and inodes to
2531 * be dropped from the VFS cache. This will make dnode meta data buffers
2532 * available for reclaim.
2533 */
2534 static uint64_t
2535 arc_adjust_meta_balanced(void)
2536 {
2537 int64_t adjustmnt, delta, prune = 0;
2538 uint64_t total_evicted = 0;
2539 arc_buf_contents_t type = ARC_BUFC_DATA;
2540 unsigned long restarts = zfs_arc_meta_adjust_restarts;
2541
2542 restart:
2543 /*
2544 * This slightly differs than the way we evict from the mru in
2545 * arc_adjust because we don't have a "target" value (i.e. no
2546 * "meta" arc_p). As a result, I think we can completely
2547 * cannibalize the metadata in the MRU before we evict the
2548 * metadata from the MFU. I think we probably need to implement a
2549 * "metadata arc_p" value to do this properly.
2550 */
2551 adjustmnt = arc_meta_used - arc_meta_limit;
2552
2553 if (adjustmnt > 0 && arc_mru->arcs_lsize[type] > 0) {
2554 delta = MIN(arc_mru->arcs_lsize[type], adjustmnt);
2555 total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
2556 adjustmnt -= delta;
2557 }
2558
2559 /*
2560 * We can't afford to recalculate adjustmnt here. If we do,
2561 * new metadata buffers can sneak into the MRU or ANON lists,
2562 * thus penalize the MFU metadata. Although the fudge factor is
2563 * small, it has been empirically shown to be significant for
2564 * certain workloads (e.g. creating many empty directories). As
2565 * such, we use the original calculation for adjustmnt, and
2566 * simply decrement the amount of data evicted from the MRU.
2567 */
2568
2569 if (adjustmnt > 0 && arc_mfu->arcs_lsize[type] > 0) {
2570 delta = MIN(arc_mfu->arcs_lsize[type], adjustmnt);
2571 total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
2572 }
2573
2574 adjustmnt = arc_meta_used - arc_meta_limit;
2575
2576 if (adjustmnt > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
2577 delta = MIN(adjustmnt,
2578 arc_mru_ghost->arcs_lsize[type]);
2579 total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
2580 adjustmnt -= delta;
2581 }
2582
2583 if (adjustmnt > 0 && arc_mfu_ghost->arcs_lsize[type] > 0) {
2584 delta = MIN(adjustmnt,
2585 arc_mfu_ghost->arcs_lsize[type]);
2586 total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
2587 }
2588
2589 /*
2590 * If after attempting to make the requested adjustment to the ARC
2591 * the meta limit is still being exceeded then request that the
2592 * higher layers drop some cached objects which have holds on ARC
2593 * meta buffers. Requests to the upper layers will be made with
2594 * increasingly large scan sizes until the ARC is below the limit.
2595 */
2596 if (arc_meta_used > arc_meta_limit) {
2597 if (type == ARC_BUFC_DATA) {
2598 type = ARC_BUFC_METADATA;
2599 } else {
2600 type = ARC_BUFC_DATA;
2601
2602 if (zfs_arc_meta_prune) {
2603 prune += zfs_arc_meta_prune;
2604 arc_prune_async(prune);
2605 }
2606 }
2607
2608 if (restarts > 0) {
2609 restarts--;
2610 goto restart;
2611 }
2612 }
2613 return (total_evicted);
2614 }
2615
2616 /*
2617 * Evict metadata buffers from the cache, such that arc_meta_used is
2618 * capped by the arc_meta_limit tunable.
2619 */
2620 static uint64_t
2621 arc_adjust_meta_only(void)
2622 {
2623 uint64_t total_evicted = 0;
2624 int64_t target;
2625
2626 /*
2627 * If we're over the meta limit, we want to evict enough
2628 * metadata to get back under the meta limit. We don't want to
2629 * evict so much that we drop the MRU below arc_p, though. If
2630 * we're over the meta limit more than we're over arc_p, we
2631 * evict some from the MRU here, and some from the MFU below.
2632 */
2633 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
2634 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size - arc_p));
2635
2636 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2637
2638 /*
2639 * Similar to the above, we want to evict enough bytes to get us
2640 * below the meta limit, but not so much as to drop us below the
2641 * space alloted to the MFU (which is defined as arc_c - arc_p).
2642 */
2643 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
2644 (int64_t)(arc_mfu->arcs_size - (arc_c - arc_p)));
2645
2646 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2647
2648 return (total_evicted);
2649 }
2650
2651 static uint64_t
2652 arc_adjust_meta(void)
2653 {
2654 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
2655 return (arc_adjust_meta_only());
2656 else
2657 return (arc_adjust_meta_balanced());
2658 }
2659
2660 /*
2661 * Return the type of the oldest buffer in the given arc state
2662 *
2663 * This function will select a random sublist of type ARC_BUFC_DATA and
2664 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
2665 * is compared, and the type which contains the "older" buffer will be
2666 * returned.
2667 */
2668 static arc_buf_contents_t
2669 arc_adjust_type(arc_state_t *state)
2670 {
2671 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
2672 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
2673 int data_idx = multilist_get_random_index(data_ml);
2674 int meta_idx = multilist_get_random_index(meta_ml);
2675 multilist_sublist_t *data_mls;
2676 multilist_sublist_t *meta_mls;
2677 arc_buf_contents_t type;
2678 arc_buf_hdr_t *data_hdr;
2679 arc_buf_hdr_t *meta_hdr;
2680
2681 /*
2682 * We keep the sublist lock until we're finished, to prevent
2683 * the headers from being destroyed via arc_evict_state().
2684 */
2685 data_mls = multilist_sublist_lock(data_ml, data_idx);
2686 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
2687
2688 /*
2689 * These two loops are to ensure we skip any markers that
2690 * might be at the tail of the lists due to arc_evict_state().
2691 */
2692
2693 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
2694 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
2695 if (data_hdr->b_spa != 0)
2696 break;
2697 }
2698
2699 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
2700 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
2701 if (meta_hdr->b_spa != 0)
2702 break;
2703 }
2704
2705 if (data_hdr == NULL && meta_hdr == NULL) {
2706 type = ARC_BUFC_DATA;
2707 } else if (data_hdr == NULL) {
2708 ASSERT3P(meta_hdr, !=, NULL);
2709 type = ARC_BUFC_METADATA;
2710 } else if (meta_hdr == NULL) {
2711 ASSERT3P(data_hdr, !=, NULL);
2712 type = ARC_BUFC_DATA;
2713 } else {
2714 ASSERT3P(data_hdr, !=, NULL);
2715 ASSERT3P(meta_hdr, !=, NULL);
2716
2717 /* The headers can't be on the sublist without an L1 header */
2718 ASSERT(HDR_HAS_L1HDR(data_hdr));
2719 ASSERT(HDR_HAS_L1HDR(meta_hdr));
2720
2721 if (data_hdr->b_l1hdr.b_arc_access <
2722 meta_hdr->b_l1hdr.b_arc_access) {
2723 type = ARC_BUFC_DATA;
2724 } else {
2725 type = ARC_BUFC_METADATA;
2726 }
2727 }
2728
2729 multilist_sublist_unlock(meta_mls);
2730 multilist_sublist_unlock(data_mls);
2731
2732 return (type);
2733 }
2734
2735 /*
2736 * Evict buffers from the cache, such that arc_size is capped by arc_c.
2737 */
2738 static uint64_t
2739 arc_adjust(void)
2740 {
2741 uint64_t total_evicted = 0;
2742 uint64_t bytes;
2743 int64_t target;
2744
2745 /*
2746 * If we're over arc_meta_limit, we want to correct that before
2747 * potentially evicting data buffers below.
2748 */
2749 total_evicted += arc_adjust_meta();
2750
2751 /*
2752 * Adjust MRU size
2753 *
2754 * If we're over the target cache size, we want to evict enough
2755 * from the list to get back to our target size. We don't want
2756 * to evict too much from the MRU, such that it drops below
2757 * arc_p. So, if we're over our target cache size more than
2758 * the MRU is over arc_p, we'll evict enough to get back to
2759 * arc_p here, and then evict more from the MFU below.
2760 */
2761 target = MIN((int64_t)(arc_size - arc_c),
2762 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2763 arc_p));
2764
2765 /*
2766 * If we're below arc_meta_min, always prefer to evict data.
2767 * Otherwise, try to satisfy the requested number of bytes to
2768 * evict from the type which contains older buffers; in an
2769 * effort to keep newer buffers in the cache regardless of their
2770 * type. If we cannot satisfy the number of bytes from this
2771 * type, spill over into the next type.
2772 */
2773 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
2774 arc_meta_used > arc_meta_min) {
2775 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2776 total_evicted += bytes;
2777
2778 /*
2779 * If we couldn't evict our target number of bytes from
2780 * metadata, we try to get the rest from data.
2781 */
2782 target -= bytes;
2783
2784 total_evicted +=
2785 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
2786 } else {
2787 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
2788 total_evicted += bytes;
2789
2790 /*
2791 * If we couldn't evict our target number of bytes from
2792 * data, we try to get the rest from metadata.
2793 */
2794 target -= bytes;
2795
2796 total_evicted +=
2797 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2798 }
2799
2800 /*
2801 * Adjust MFU size
2802 *
2803 * Now that we've tried to evict enough from the MRU to get its
2804 * size back to arc_p, if we're still above the target cache
2805 * size, we evict the rest from the MFU.
2806 */
2807 target = arc_size - arc_c;
2808
2809 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
2810 arc_meta_used > arc_meta_min) {
2811 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2812 total_evicted += bytes;
2813
2814 /*
2815 * If we couldn't evict our target number of bytes from
2816 * metadata, we try to get the rest from data.
2817 */
2818 target -= bytes;
2819
2820 total_evicted +=
2821 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
2822 } else {
2823 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
2824 total_evicted += bytes;
2825
2826 /*
2827 * If we couldn't evict our target number of bytes from
2828 * data, we try to get the rest from data.
2829 */
2830 target -= bytes;
2831
2832 total_evicted +=
2833 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2834 }
2835
2836 /*
2837 * Adjust ghost lists
2838 *
2839 * In addition to the above, the ARC also defines target values
2840 * for the ghost lists. The sum of the mru list and mru ghost
2841 * list should never exceed the target size of the cache, and
2842 * the sum of the mru list, mfu list, mru ghost list, and mfu
2843 * ghost list should never exceed twice the target size of the
2844 * cache. The following logic enforces these limits on the ghost
2845 * caches, and evicts from them as needed.
2846 */
2847 target = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2848
2849 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
2850 total_evicted += bytes;
2851
2852 target -= bytes;
2853
2854 total_evicted +=
2855 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
2856
2857 /*
2858 * We assume the sum of the mru list and mfu list is less than
2859 * or equal to arc_c (we enforced this above), which means we
2860 * can use the simpler of the two equations below:
2861 *
2862 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
2863 * mru ghost + mfu ghost <= arc_c
2864 */
2865 target = arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2866
2867 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
2868 total_evicted += bytes;
2869
2870 target -= bytes;
2871
2872 total_evicted +=
2873 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
2874
2875 return (total_evicted);
2876 }
2877
2878 static void
2879 arc_do_user_evicts(void)
2880 {
2881 mutex_enter(&arc_user_evicts_lock);
2882 while (arc_eviction_list != NULL) {
2883 arc_buf_t *buf = arc_eviction_list;
2884 arc_eviction_list = buf->b_next;
2885 mutex_enter(&buf->b_evict_lock);
2886 buf->b_hdr = NULL;
2887 mutex_exit(&buf->b_evict_lock);
2888 mutex_exit(&arc_user_evicts_lock);
2889
2890 if (buf->b_efunc != NULL)
2891 VERIFY0(buf->b_efunc(buf->b_private));
2892
2893 buf->b_efunc = NULL;
2894 buf->b_private = NULL;
2895 kmem_cache_free(buf_cache, buf);
2896 mutex_enter(&arc_user_evicts_lock);
2897 }
2898 mutex_exit(&arc_user_evicts_lock);
2899 }
2900
2901 void
2902 arc_flush(spa_t *spa, boolean_t retry)
2903 {
2904 uint64_t guid = 0;
2905
2906 /*
2907 * If retry is TRUE, a spa must not be specified since we have
2908 * no good way to determine if all of a spa's buffers have been
2909 * evicted from an arc state.
2910 */
2911 ASSERT(!retry || spa == 0);
2912
2913 if (spa != NULL)
2914 guid = spa_load_guid(spa);
2915
2916 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
2917 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
2918
2919 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
2920 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
2921
2922 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
2923 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
2924
2925 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
2926 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
2927
2928 arc_do_user_evicts();
2929 ASSERT(spa || arc_eviction_list == NULL);
2930 }
2931
2932 void
2933 arc_shrink(uint64_t bytes)
2934 {
2935 if (arc_c > arc_c_min) {
2936 uint64_t to_free;
2937
2938 to_free = bytes ? bytes : arc_c >> zfs_arc_shrink_shift;
2939
2940 if (arc_c > arc_c_min + to_free)
2941 atomic_add_64(&arc_c, -to_free);
2942 else
2943 arc_c = arc_c_min;
2944
2945 to_free = bytes ? bytes : arc_p >> zfs_arc_shrink_shift;
2946
2947 if (arc_p > to_free)
2948 atomic_add_64(&arc_p, -to_free);
2949 else
2950 arc_p = 0;
2951
2952 if (arc_c > arc_size)
2953 arc_c = MAX(arc_size, arc_c_min);
2954 if (arc_p > arc_c)
2955 arc_p = (arc_c >> 1);
2956 ASSERT(arc_c >= arc_c_min);
2957 ASSERT((int64_t)arc_p >= 0);
2958 }
2959
2960 if (arc_size > arc_c)
2961 (void) arc_adjust();
2962 }
2963
2964 static void
2965 arc_kmem_reap_now(arc_reclaim_strategy_t strat, uint64_t bytes)
2966 {
2967 size_t i;
2968 kmem_cache_t *prev_cache = NULL;
2969 kmem_cache_t *prev_data_cache = NULL;
2970 extern kmem_cache_t *zio_buf_cache[];
2971 extern kmem_cache_t *zio_data_buf_cache[];
2972
2973 if ((arc_meta_used >= arc_meta_limit) && zfs_arc_meta_prune) {
2974 /*
2975 * We are exceeding our meta-data cache limit.
2976 * Prune some entries to release holds on meta-data.
2977 */
2978 arc_prune(zfs_arc_meta_prune);
2979 }
2980
2981 /*
2982 * An aggressive reclamation will shrink the cache size as well as
2983 * reap free buffers from the arc kmem caches.
2984 */
2985 if (strat == ARC_RECLAIM_AGGR)
2986 arc_shrink(bytes);
2987
2988 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2989 if (zio_buf_cache[i] != prev_cache) {
2990 prev_cache = zio_buf_cache[i];
2991 kmem_cache_reap_now(zio_buf_cache[i]);
2992 }
2993 if (zio_data_buf_cache[i] != prev_data_cache) {
2994 prev_data_cache = zio_data_buf_cache[i];
2995 kmem_cache_reap_now(zio_data_buf_cache[i]);
2996 }
2997 }
2998
2999 kmem_cache_reap_now(buf_cache);
3000 kmem_cache_reap_now(hdr_full_cache);
3001 kmem_cache_reap_now(hdr_l2only_cache);
3002 }
3003
3004 /*
3005 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3006 * enough data and signal them to proceed. When this happens, the threads in
3007 * arc_get_data_buf() are sleeping while holding the hash lock for their
3008 * particular arc header. Thus, we must be careful to never sleep on a
3009 * hash lock in this thread. This is to prevent the following deadlock:
3010 *
3011 * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3012 * waiting for the reclaim thread to signal it.
3013 *
3014 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3015 * fails, and goes to sleep forever.
3016 *
3017 * This possible deadlock is avoided by always acquiring a hash lock
3018 * using mutex_tryenter() from arc_reclaim_thread().
3019 */
3020 static void
3021 arc_adapt_thread(void)
3022 {
3023 callb_cpr_t cpr;
3024 fstrans_cookie_t cookie;
3025 uint64_t arc_evicted;
3026
3027 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
3028
3029 cookie = spl_fstrans_mark();
3030 mutex_enter(&arc_reclaim_lock);
3031 while (arc_reclaim_thread_exit == 0) {
3032 #ifndef _KERNEL
3033 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
3034
3035 mutex_exit(&arc_reclaim_lock);
3036 if (spa_get_random(100) == 0) {
3037
3038 if (arc_no_grow) {
3039 if (last_reclaim == ARC_RECLAIM_CONS) {
3040 last_reclaim = ARC_RECLAIM_AGGR;
3041 } else {
3042 last_reclaim = ARC_RECLAIM_CONS;
3043 }
3044 } else {
3045 arc_no_grow = TRUE;
3046 last_reclaim = ARC_RECLAIM_AGGR;
3047 membar_producer();
3048 }
3049
3050 /* reset the growth delay for every reclaim */
3051 arc_grow_time = ddi_get_lbolt() +
3052 (zfs_arc_grow_retry * hz);
3053
3054 arc_kmem_reap_now(last_reclaim, 0);
3055 arc_warm = B_TRUE;
3056 }
3057 #else /* _KERNEL */
3058 mutex_exit(&arc_reclaim_lock);
3059 #endif /* !_KERNEL */
3060
3061 /* No recent memory pressure allow the ARC to grow. */
3062 if (arc_no_grow &&
3063 ddi_time_after_eq(ddi_get_lbolt(), arc_grow_time))
3064 arc_no_grow = FALSE;
3065
3066 arc_evicted = arc_adjust();
3067
3068 /*
3069 * We're either no longer overflowing, or we
3070 * can't evict anything more, so we should wake
3071 * up any threads before we go to sleep.
3072 */
3073 if (arc_size <= arc_c || arc_evicted == 0)
3074 cv_broadcast(&arc_reclaim_waiters_cv);
3075
3076 mutex_enter(&arc_reclaim_lock);
3077
3078 /* block until needed, or one second, whichever is shorter */
3079 CALLB_CPR_SAFE_BEGIN(&cpr);
3080 (void) cv_timedwait_interruptible(&arc_reclaim_thread_cv,
3081 &arc_reclaim_lock, (ddi_get_lbolt() + hz));
3082 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3083
3084
3085 /* Allow the module options to be changed */
3086 if (zfs_arc_max > 64 << 20 &&
3087 zfs_arc_max < physmem * PAGESIZE &&
3088 zfs_arc_max != arc_c_max)
3089 arc_c_max = zfs_arc_max;
3090
3091 if (zfs_arc_min > 0 &&
3092 zfs_arc_min < arc_c_max &&
3093 zfs_arc_min != arc_c_min)
3094 arc_c_min = zfs_arc_min;
3095
3096 if (zfs_arc_meta_limit > 0 &&
3097 zfs_arc_meta_limit <= arc_c_max &&
3098 zfs_arc_meta_limit != arc_meta_limit)
3099 arc_meta_limit = zfs_arc_meta_limit;
3100 }
3101
3102 arc_reclaim_thread_exit = 0;
3103 cv_broadcast(&arc_reclaim_thread_cv);
3104 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
3105 spl_fstrans_unmark(cookie);
3106 thread_exit();
3107 }
3108
3109 static void
3110 arc_user_evicts_thread(void)
3111 {
3112 callb_cpr_t cpr;
3113 fstrans_cookie_t cookie;
3114
3115 CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
3116
3117 cookie = spl_fstrans_mark();
3118 mutex_enter(&arc_user_evicts_lock);
3119 while (!arc_user_evicts_thread_exit) {
3120 mutex_exit(&arc_user_evicts_lock);
3121
3122 arc_do_user_evicts();
3123
3124 /*
3125 * This is necessary in order for the mdb ::arc dcmd to
3126 * show up to date information. Since the ::arc command
3127 * does not call the kstat's update function, without
3128 * this call, the command may show stale stats for the
3129 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3130 * with this change, the data might be up to 1 second
3131 * out of date; but that should suffice. The arc_state_t
3132 * structures can be queried directly if more accurate
3133 * information is needed.
3134 */
3135 if (arc_ksp != NULL)
3136 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3137
3138 mutex_enter(&arc_user_evicts_lock);
3139
3140 /*
3141 * Block until signaled, or after one second (we need to
3142 * call the arc's kstat update function regularly).
3143 */
3144 CALLB_CPR_SAFE_BEGIN(&cpr);
3145 (void) cv_timedwait_interruptible(&arc_user_evicts_cv,
3146 &arc_user_evicts_lock, ddi_get_lbolt() + hz);
3147 CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
3148 }
3149
3150 arc_user_evicts_thread_exit = FALSE;
3151 cv_broadcast(&arc_user_evicts_cv);
3152 CALLB_CPR_EXIT(&cpr); /* drops arc_user_evicts_lock */
3153 spl_fstrans_unmark(cookie);
3154 thread_exit();
3155 }
3156
3157 #ifdef _KERNEL
3158 /*
3159 * Determine the amount of memory eligible for eviction contained in the
3160 * ARC. All clean data reported by the ghost lists can always be safely
3161 * evicted. Due to arc_c_min, the same does not hold for all clean data
3162 * contained by the regular mru and mfu lists.
3163 *
3164 * In the case of the regular mru and mfu lists, we need to report as
3165 * much clean data as possible, such that evicting that same reported
3166 * data will not bring arc_size below arc_c_min. Thus, in certain
3167 * circumstances, the total amount of clean data in the mru and mfu
3168 * lists might not actually be evictable.
3169 *
3170 * The following two distinct cases are accounted for:
3171 *
3172 * 1. The sum of the amount of dirty data contained by both the mru and
3173 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
3174 * is greater than or equal to arc_c_min.
3175 * (i.e. amount of dirty data >= arc_c_min)
3176 *
3177 * This is the easy case; all clean data contained by the mru and mfu
3178 * lists is evictable. Evicting all clean data can only drop arc_size
3179 * to the amount of dirty data, which is greater than arc_c_min.
3180 *
3181 * 2. The sum of the amount of dirty data contained by both the mru and
3182 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
3183 * is less than arc_c_min.
3184 * (i.e. arc_c_min > amount of dirty data)
3185 *
3186 * 2.1. arc_size is greater than or equal arc_c_min.
3187 * (i.e. arc_size >= arc_c_min > amount of dirty data)
3188 *
3189 * In this case, not all clean data from the regular mru and mfu
3190 * lists is actually evictable; we must leave enough clean data
3191 * to keep arc_size above arc_c_min. Thus, the maximum amount of
3192 * evictable data from the two lists combined, is exactly the
3193 * difference between arc_size and arc_c_min.
3194 *
3195 * 2.2. arc_size is less than arc_c_min
3196 * (i.e. arc_c_min > arc_size > amount of dirty data)
3197 *
3198 * In this case, none of the data contained in the mru and mfu
3199 * lists is evictable, even if it's clean. Since arc_size is
3200 * already below arc_c_min, evicting any more would only
3201 * increase this negative difference.
3202 */
3203 static uint64_t
3204 arc_evictable_memory(void) {
3205 uint64_t arc_clean =
3206 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3207 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3208 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3209 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3210 uint64_t ghost_clean =
3211 arc_mru_ghost->arcs_lsize[ARC_BUFC_DATA] +
3212 arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] +
3213 arc_mfu_ghost->arcs_lsize[ARC_BUFC_DATA] +
3214 arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA];
3215 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
3216
3217 if (arc_dirty >= arc_c_min)
3218 return (ghost_clean + arc_clean);
3219
3220 return (ghost_clean + MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
3221 }
3222
3223 /*
3224 * If sc->nr_to_scan is zero, the caller is requesting a query of the
3225 * number of objects which can potentially be freed. If it is nonzero,
3226 * the request is to free that many objects.
3227 *
3228 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
3229 * in struct shrinker and also require the shrinker to return the number
3230 * of objects freed.
3231 *
3232 * Older kernels require the shrinker to return the number of freeable
3233 * objects following the freeing of nr_to_free.
3234 */
3235 static spl_shrinker_t
3236 __arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
3237 {
3238 int64_t pages;
3239
3240 /* The arc is considered warm once reclaim has occurred */
3241 if (unlikely(arc_warm == B_FALSE))
3242 arc_warm = B_TRUE;
3243
3244 /* Return the potential number of reclaimable pages */
3245 pages = btop((int64_t)arc_evictable_memory());
3246 if (sc->nr_to_scan == 0)
3247 return (pages);
3248
3249 /* Not allowed to perform filesystem reclaim */
3250 if (!(sc->gfp_mask & __GFP_FS))
3251 return (SHRINK_STOP);
3252
3253 /* Reclaim in progress */
3254 if (mutex_tryenter(&arc_reclaim_lock) == 0)
3255 return (SHRINK_STOP);
3256
3257 mutex_exit(&arc_reclaim_lock);
3258
3259 /*
3260 * Evict the requested number of pages by shrinking arc_c the
3261 * requested amount. If there is nothing left to evict just
3262 * reap whatever we can from the various arc slabs.
3263 */
3264 if (pages > 0) {
3265 arc_kmem_reap_now(ARC_RECLAIM_AGGR, ptob(sc->nr_to_scan));
3266
3267 #ifdef HAVE_SPLIT_SHRINKER_CALLBACK
3268 pages = MAX(pages - btop(arc_evictable_memory()), 0);
3269 #else
3270 pages = btop(arc_evictable_memory());
3271 #endif
3272 } else {
3273 arc_kmem_reap_now(ARC_RECLAIM_CONS, ptob(sc->nr_to_scan));
3274 pages = SHRINK_STOP;
3275 }
3276
3277 /*
3278 * We've reaped what we can, wake up threads.
3279 */
3280 cv_broadcast(&arc_reclaim_waiters_cv);
3281
3282 /*
3283 * When direct reclaim is observed it usually indicates a rapid
3284 * increase in memory pressure. This occurs because the kswapd
3285 * threads were unable to asynchronously keep enough free memory
3286 * available. In this case set arc_no_grow to briefly pause arc
3287 * growth to avoid compounding the memory pressure.
3288 */
3289 if (current_is_kswapd()) {
3290 ARCSTAT_BUMP(arcstat_memory_indirect_count);
3291 } else {
3292 arc_no_grow = B_TRUE;
3293 arc_grow_time = ddi_get_lbolt() + (zfs_arc_grow_retry * hz);
3294 ARCSTAT_BUMP(arcstat_memory_direct_count);
3295 }
3296
3297 return (pages);
3298 }
3299 SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
3300
3301 SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
3302 #endif /* _KERNEL */
3303
3304 /*
3305 * Adapt arc info given the number of bytes we are trying to add and
3306 * the state that we are comming from. This function is only called
3307 * when we are adding new content to the cache.
3308 */
3309 static void
3310 arc_adapt(int bytes, arc_state_t *state)
3311 {
3312 int mult;
3313
3314 if (state == arc_l2c_only)
3315 return;
3316
3317 ASSERT(bytes > 0);
3318 /*
3319 * Adapt the target size of the MRU list:
3320 * - if we just hit in the MRU ghost list, then increase
3321 * the target size of the MRU list.
3322 * - if we just hit in the MFU ghost list, then increase
3323 * the target size of the MFU list by decreasing the
3324 * target size of the MRU list.
3325 */
3326 if (state == arc_mru_ghost) {
3327 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
3328 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
3329
3330 if (!zfs_arc_p_dampener_disable)
3331 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
3332
3333 arc_p = MIN(arc_c, arc_p + bytes * mult);
3334 } else if (state == arc_mfu_ghost) {
3335 uint64_t delta;
3336
3337 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
3338 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
3339
3340 if (!zfs_arc_p_dampener_disable)
3341 mult = MIN(mult, 10);
3342
3343 delta = MIN(bytes * mult, arc_p);
3344 arc_p = MAX(0, arc_p - delta);
3345 }
3346 ASSERT((int64_t)arc_p >= 0);
3347
3348 if (arc_no_grow)
3349 return;
3350
3351 if (arc_c >= arc_c_max)
3352 return;
3353
3354 /*
3355 * If we're within (2 * maxblocksize) bytes of the target
3356 * cache size, increment the target cache size
3357 */
3358 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
3359 atomic_add_64(&arc_c, (int64_t)bytes);
3360 if (arc_c > arc_c_max)
3361 arc_c = arc_c_max;
3362 else if (state == arc_anon)
3363 atomic_add_64(&arc_p, (int64_t)bytes);
3364 if (arc_p > arc_c)
3365 arc_p = arc_c;
3366 }
3367 ASSERT((int64_t)arc_p >= 0);
3368 }
3369
3370 /*
3371 * Check if arc_size has grown past our upper threshold, determined by
3372 * zfs_arc_overflow_shift.
3373 */
3374 static boolean_t
3375 arc_is_overflowing(void)
3376 {
3377 /* Always allow at least one block of overflow */
3378 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3379 arc_c >> zfs_arc_overflow_shift);
3380
3381 return (arc_size >= arc_c + overflow);
3382 }
3383
3384 /*
3385 * The buffer, supplied as the first argument, needs a data block. If we
3386 * are hitting the hard limit for the cache size, we must sleep, waiting
3387 * for the eviction thread to catch up. If we're past the target size
3388 * but below the hard limit, we'll only signal the reclaim thread and
3389 * continue on.
3390 */
3391 static void
3392 arc_get_data_buf(arc_buf_t *buf)
3393 {
3394 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
3395 uint64_t size = buf->b_hdr->b_size;
3396 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
3397
3398 arc_adapt(size, state);
3399
3400 /*
3401 * If arc_size is currently overflowing, and has grown past our
3402 * upper limit, we must be adding data faster than the evict
3403 * thread can evict. Thus, to ensure we don't compound the
3404 * problem by adding more data and forcing arc_size to grow even
3405 * further past it's target size, we halt and wait for the
3406 * eviction thread to catch up.
3407 *
3408 * It's also possible that the reclaim thread is unable to evict
3409 * enough buffers to get arc_size below the overflow limit (e.g.
3410 * due to buffers being un-evictable, or hash lock collisions).
3411 * In this case, we want to proceed regardless if we're
3412 * overflowing; thus we don't use a while loop here.
3413 */
3414 if (arc_is_overflowing()) {
3415 mutex_enter(&arc_reclaim_lock);
3416
3417 /*
3418 * Now that we've acquired the lock, we may no longer be
3419 * over the overflow limit, lets check.
3420 *
3421 * We're ignoring the case of spurious wake ups. If that
3422 * were to happen, it'd let this thread consume an ARC
3423 * buffer before it should have (i.e. before we're under
3424 * the overflow limit and were signalled by the reclaim
3425 * thread). As long as that is a rare occurrence, it
3426 * shouldn't cause any harm.
3427 */
3428 if (arc_is_overflowing()) {
3429 cv_signal(&arc_reclaim_thread_cv);
3430 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
3431 }
3432
3433 mutex_exit(&arc_reclaim_lock);
3434 }
3435
3436 if (type == ARC_BUFC_METADATA) {
3437 buf->b_data = zio_buf_alloc(size);
3438 arc_space_consume(size, ARC_SPACE_META);
3439 } else {
3440 ASSERT(type == ARC_BUFC_DATA);
3441 buf->b_data = zio_data_buf_alloc(size);
3442 arc_space_consume(size, ARC_SPACE_DATA);
3443 }
3444
3445 /*
3446 * Update the state size. Note that ghost states have a
3447 * "ghost size" and so don't need to be updated.
3448 */
3449 if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
3450 arc_buf_hdr_t *hdr = buf->b_hdr;
3451
3452 atomic_add_64(&hdr->b_l1hdr.b_state->arcs_size, size);
3453
3454 /*
3455 * If this is reached via arc_read, the link is
3456 * protected by the hash lock. If reached via
3457 * arc_buf_alloc, the header should not be accessed by
3458 * any other thread. And, if reached via arc_read_done,
3459 * the hash lock will protect it if it's found in the
3460 * hash table; otherwise no other thread should be
3461 * trying to [add|remove]_reference it.
3462 */
3463 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
3464 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3465 atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
3466 size);
3467 }
3468 /*
3469 * If we are growing the cache, and we are adding anonymous
3470 * data, and we have outgrown arc_p, update arc_p
3471 */
3472 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
3473 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
3474 arc_p = MIN(arc_c, arc_p + size);
3475 }
3476 }
3477
3478 /*
3479 * This routine is called whenever a buffer is accessed.
3480 * NOTE: the hash lock is dropped in this function.
3481 */
3482 static void
3483 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3484 {
3485 clock_t now;
3486
3487 ASSERT(MUTEX_HELD(hash_lock));
3488 ASSERT(HDR_HAS_L1HDR(hdr));
3489
3490 if (hdr->b_l1hdr.b_state == arc_anon) {
3491 /*
3492 * This buffer is not in the cache, and does not
3493 * appear in our "ghost" list. Add the new buffer
3494 * to the MRU state.
3495 */
3496
3497 ASSERT0(hdr->b_l1hdr.b_arc_access);
3498 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3499 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3500 arc_change_state(arc_mru, hdr, hash_lock);
3501
3502 } else if (hdr->b_l1hdr.b_state == arc_mru) {
3503 now = ddi_get_lbolt();
3504
3505 /*
3506 * If this buffer is here because of a prefetch, then either:
3507 * - clear the flag if this is a "referencing" read
3508 * (any subsequent access will bump this into the MFU state).
3509 * or
3510 * - move the buffer to the head of the list if this is
3511 * another prefetch (to make it less likely to be evicted).
3512 */
3513 if (HDR_PREFETCH(hdr)) {
3514 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
3515 /* link protected by hash lock */
3516 ASSERT(multilist_link_active(
3517 &hdr->b_l1hdr.b_arc_node));
3518 } else {
3519 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3520 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
3521 ARCSTAT_BUMP(arcstat_mru_hits);
3522 }
3523 hdr->b_l1hdr.b_arc_access = now;
3524 return;
3525 }
3526
3527 /*
3528 * This buffer has been "accessed" only once so far,
3529 * but it is still in the cache. Move it to the MFU
3530 * state.
3531 */
3532 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
3533 ARC_MINTIME)) {
3534 /*
3535 * More than 125ms have passed since we
3536 * instantiated this buffer. Move it to the
3537 * most frequently used state.
3538 */
3539 hdr->b_l1hdr.b_arc_access = now;
3540 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3541 arc_change_state(arc_mfu, hdr, hash_lock);
3542 }
3543 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
3544 ARCSTAT_BUMP(arcstat_mru_hits);
3545 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
3546 arc_state_t *new_state;
3547 /*
3548 * This buffer has been "accessed" recently, but
3549 * was evicted from the cache. Move it to the
3550 * MFU state.
3551 */
3552
3553 if (HDR_PREFETCH(hdr)) {
3554 new_state = arc_mru;
3555 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
3556 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3557 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3558 } else {
3559 new_state = arc_mfu;
3560 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3561 }
3562
3563 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3564 arc_change_state(new_state, hdr, hash_lock);
3565
3566 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
3567 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
3568 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
3569 /*
3570 * This buffer has been accessed more than once and is
3571 * still in the cache. Keep it in the MFU state.
3572 *
3573 * NOTE: an add_reference() that occurred when we did
3574 * the arc_read() will have kicked this off the list.
3575 * If it was a prefetch, we will explicitly move it to
3576 * the head of the list now.
3577 */
3578 if ((HDR_PREFETCH(hdr)) != 0) {
3579 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3580 /* link protected by hash_lock */
3581 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3582 }
3583 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
3584 ARCSTAT_BUMP(arcstat_mfu_hits);
3585 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3586 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
3587 arc_state_t *new_state = arc_mfu;
3588 /*
3589 * This buffer has been accessed more than once but has
3590 * been evicted from the cache. Move it back to the
3591 * MFU state.
3592 */
3593
3594 if (HDR_PREFETCH(hdr)) {
3595 /*
3596 * This is a prefetch access...
3597 * move this block back to the MRU state.
3598 */
3599 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3600 new_state = arc_mru;
3601 }
3602
3603 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3604 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3605 arc_change_state(new_state, hdr, hash_lock);
3606
3607 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
3608 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
3609 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
3610 /*
3611 * This buffer is on the 2nd Level ARC.
3612 */
3613
3614 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3615 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3616 arc_change_state(arc_mfu, hdr, hash_lock);
3617 } else {
3618 cmn_err(CE_PANIC, "invalid arc state 0x%p",
3619 hdr->b_l1hdr.b_state);
3620 }
3621 }
3622
3623 /* a generic arc_done_func_t which you can use */
3624 /* ARGSUSED */
3625 void
3626 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
3627 {
3628 if (zio == NULL || zio->io_error == 0)
3629 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
3630 VERIFY(arc_buf_remove_ref(buf, arg));
3631 }
3632
3633 /* a generic arc_done_func_t */
3634 void
3635 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
3636 {
3637 arc_buf_t **bufp = arg;
3638 if (zio && zio->io_error) {
3639 VERIFY(arc_buf_remove_ref(buf, arg));
3640 *bufp = NULL;
3641 } else {
3642 *bufp = buf;
3643 ASSERT(buf->b_data);
3644 }
3645 }
3646
3647 static void
3648 arc_read_done(zio_t *zio)
3649 {
3650 arc_buf_hdr_t *hdr;
3651 arc_buf_t *buf;
3652 arc_buf_t *abuf; /* buffer we're assigning to callback */
3653 kmutex_t *hash_lock = NULL;
3654 arc_callback_t *callback_list, *acb;
3655 int freeable = FALSE;
3656
3657 buf = zio->io_private;
3658 hdr = buf->b_hdr;
3659
3660 /*
3661 * The hdr was inserted into hash-table and removed from lists
3662 * prior to starting I/O. We should find this header, since
3663 * it's in the hash table, and it should be legit since it's
3664 * not possible to evict it during the I/O. The only possible
3665 * reason for it not to be found is if we were freed during the
3666 * read.
3667 */
3668 if (HDR_IN_HASH_TABLE(hdr)) {
3669 arc_buf_hdr_t *found;
3670
3671 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
3672 ASSERT3U(hdr->b_dva.dva_word[0], ==,
3673 BP_IDENTITY(zio->io_bp)->dva_word[0]);
3674 ASSERT3U(hdr->b_dva.dva_word[1], ==,
3675 BP_IDENTITY(zio->io_bp)->dva_word[1]);
3676
3677 found = buf_hash_find(hdr->b_spa, zio->io_bp,
3678 &hash_lock);
3679
3680 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
3681 hash_lock == NULL) ||
3682 (found == hdr &&
3683 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
3684 (found == hdr && HDR_L2_READING(hdr)));
3685 }
3686
3687 hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
3688 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
3689 hdr->b_flags &= ~ARC_FLAG_L2CACHE;
3690
3691 /* byteswap if necessary */
3692 callback_list = hdr->b_l1hdr.b_acb;
3693 ASSERT(callback_list != NULL);
3694 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
3695 dmu_object_byteswap_t bswap =
3696 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
3697 if (BP_GET_LEVEL(zio->io_bp) > 0)
3698 byteswap_uint64_array(buf->b_data, hdr->b_size);
3699 else
3700 dmu_ot_byteswap[bswap].ob_func(buf->b_data, hdr->b_size);
3701 }
3702
3703 arc_cksum_compute(buf, B_FALSE);
3704 arc_buf_watch(buf);
3705
3706 if (hash_lock && zio->io_error == 0 &&
3707 hdr->b_l1hdr.b_state == arc_anon) {
3708 /*
3709 * Only call arc_access on anonymous buffers. This is because
3710 * if we've issued an I/O for an evicted buffer, we've already
3711 * called arc_access (to prevent any simultaneous readers from
3712 * getting confused).
3713 */
3714 arc_access(hdr, hash_lock);
3715 }
3716
3717 /* create copies of the data buffer for the callers */
3718 abuf = buf;
3719 for (acb = callback_list; acb; acb = acb->acb_next) {
3720 if (acb->acb_done) {
3721 if (abuf == NULL) {
3722 ARCSTAT_BUMP(arcstat_duplicate_reads);
3723 abuf = arc_buf_clone(buf);
3724 }
3725 acb->acb_buf = abuf;
3726 abuf = NULL;
3727 }
3728 }
3729 hdr->b_l1hdr.b_acb = NULL;
3730 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
3731 ASSERT(!HDR_BUF_AVAILABLE(hdr));
3732 if (abuf == buf) {
3733 ASSERT(buf->b_efunc == NULL);
3734 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
3735 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
3736 }
3737
3738 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
3739 callback_list != NULL);
3740
3741 if (zio->io_error != 0) {
3742 hdr->b_flags |= ARC_FLAG_IO_ERROR;
3743 if (hdr->b_l1hdr.b_state != arc_anon)
3744 arc_change_state(arc_anon, hdr, hash_lock);
3745 if (HDR_IN_HASH_TABLE(hdr))
3746 buf_hash_remove(hdr);
3747 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
3748 }
3749
3750 /*
3751 * Broadcast before we drop the hash_lock to avoid the possibility
3752 * that the hdr (and hence the cv) might be freed before we get to
3753 * the cv_broadcast().
3754 */
3755 cv_broadcast(&hdr->b_l1hdr.b_cv);
3756
3757 if (hash_lock != NULL) {
3758 mutex_exit(hash_lock);
3759 } else {
3760 /*
3761 * This block was freed while we waited for the read to
3762 * complete. It has been removed from the hash table and
3763 * moved to the anonymous state (so that it won't show up
3764 * in the cache).
3765 */
3766 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3767 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
3768 }
3769
3770 /* execute each callback and free its structure */
3771 while ((acb = callback_list) != NULL) {
3772 if (acb->acb_done)
3773 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
3774
3775 if (acb->acb_zio_dummy != NULL) {
3776 acb->acb_zio_dummy->io_error = zio->io_error;
3777 zio_nowait(acb->acb_zio_dummy);
3778 }
3779
3780 callback_list = acb->acb_next;
3781 kmem_free(acb, sizeof (arc_callback_t));
3782 }
3783
3784 if (freeable)
3785 arc_hdr_destroy(hdr);
3786 }
3787
3788 /*
3789 * "Read" the block at the specified DVA (in bp) via the
3790 * cache. If the block is found in the cache, invoke the provided
3791 * callback immediately and return. Note that the `zio' parameter
3792 * in the callback will be NULL in this case, since no IO was
3793 * required. If the block is not in the cache pass the read request
3794 * on to the spa with a substitute callback function, so that the
3795 * requested block will be added to the cache.
3796 *
3797 * If a read request arrives for a block that has a read in-progress,
3798 * either wait for the in-progress read to complete (and return the
3799 * results); or, if this is a read with a "done" func, add a record
3800 * to the read to invoke the "done" func when the read completes,
3801 * and return; or just return.
3802 *
3803 * arc_read_done() will invoke all the requested "done" functions
3804 * for readers of this block.
3805 */
3806 int
3807 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
3808 void *private, zio_priority_t priority, int zio_flags,
3809 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
3810 {
3811 arc_buf_hdr_t *hdr = NULL;
3812 arc_buf_t *buf = NULL;
3813 kmutex_t *hash_lock = NULL;
3814 zio_t *rzio;
3815 uint64_t guid = spa_load_guid(spa);
3816 int rc = 0;
3817
3818 ASSERT(!BP_IS_EMBEDDED(bp) ||
3819 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
3820
3821 top:
3822 if (!BP_IS_EMBEDDED(bp)) {
3823 /*
3824 * Embedded BP's have no DVA and require no I/O to "read".
3825 * Create an anonymous arc buf to back it.
3826 */
3827 hdr = buf_hash_find(guid, bp, &hash_lock);
3828 }
3829
3830 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
3831
3832 *arc_flags |= ARC_FLAG_CACHED;
3833
3834 if (HDR_IO_IN_PROGRESS(hdr)) {
3835
3836 if (*arc_flags & ARC_FLAG_WAIT) {
3837 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
3838 mutex_exit(hash_lock);
3839 goto top;
3840 }
3841 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
3842
3843 if (done) {
3844 arc_callback_t *acb = NULL;
3845
3846 acb = kmem_zalloc(sizeof (arc_callback_t),
3847 KM_SLEEP);
3848 acb->acb_done = done;
3849 acb->acb_private = private;
3850 if (pio != NULL)
3851 acb->acb_zio_dummy = zio_null(pio,
3852 spa, NULL, NULL, NULL, zio_flags);
3853
3854 ASSERT(acb->acb_done != NULL);
3855 acb->acb_next = hdr->b_l1hdr.b_acb;
3856 hdr->b_l1hdr.b_acb = acb;
3857 add_reference(hdr, hash_lock, private);
3858 mutex_exit(hash_lock);
3859 goto out;
3860 }
3861 mutex_exit(hash_lock);
3862 goto out;
3863 }
3864
3865 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
3866 hdr->b_l1hdr.b_state == arc_mfu);
3867
3868 if (done) {
3869 add_reference(hdr, hash_lock, private);
3870 /*
3871 * If this block is already in use, create a new
3872 * copy of the data so that we will be guaranteed
3873 * that arc_release() will always succeed.
3874 */
3875 buf = hdr->b_l1hdr.b_buf;
3876 ASSERT(buf);
3877 ASSERT(buf->b_data);
3878 if (HDR_BUF_AVAILABLE(hdr)) {
3879 ASSERT(buf->b_efunc == NULL);
3880 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
3881 } else {
3882 buf = arc_buf_clone(buf);
3883 }
3884
3885 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
3886 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
3887 hdr->b_flags |= ARC_FLAG_PREFETCH;
3888 }
3889 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
3890 arc_access(hdr, hash_lock);
3891 if (*arc_flags & ARC_FLAG_L2CACHE)
3892 hdr->b_flags |= ARC_FLAG_L2CACHE;
3893 if (*arc_flags & ARC_FLAG_L2COMPRESS)
3894 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
3895 mutex_exit(hash_lock);
3896 ARCSTAT_BUMP(arcstat_hits);
3897 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
3898 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
3899 data, metadata, hits);
3900
3901 if (done)
3902 done(NULL, buf, private);
3903 } else {
3904 uint64_t size = BP_GET_LSIZE(bp);
3905 arc_callback_t *acb;
3906 vdev_t *vd = NULL;
3907 uint64_t addr = 0;
3908 boolean_t devw = B_FALSE;
3909 enum zio_compress b_compress = ZIO_COMPRESS_OFF;
3910 int32_t b_asize = 0;
3911
3912 /*
3913 * Gracefully handle a damaged logical block size as a
3914 * checksum error by passing a dummy zio to the done callback.
3915 */
3916 if (size > spa_maxblocksize(spa)) {
3917 if (done) {
3918 rzio = zio_null(pio, spa, NULL,
3919 NULL, NULL, zio_flags);
3920 rzio->io_error = ECKSUM;
3921 done(rzio, buf, private);
3922 zio_nowait(rzio);
3923 }
3924 rc = ECKSUM;
3925 goto out;
3926 }
3927
3928 if (hdr == NULL) {
3929 /* this block is not in the cache */
3930 arc_buf_hdr_t *exists = NULL;
3931 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3932 buf = arc_buf_alloc(spa, size, private, type);
3933 hdr = buf->b_hdr;
3934 if (!BP_IS_EMBEDDED(bp)) {
3935 hdr->b_dva = *BP_IDENTITY(bp);
3936 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
3937 exists = buf_hash_insert(hdr, &hash_lock);
3938 }
3939 if (exists != NULL) {
3940 /* somebody beat us to the hash insert */
3941 mutex_exit(hash_lock);
3942 buf_discard_identity(hdr);
3943 (void) arc_buf_remove_ref(buf, private);
3944 goto top; /* restart the IO request */
3945 }
3946
3947 /* if this is a prefetch, we don't have a reference */
3948 if (*arc_flags & ARC_FLAG_PREFETCH) {
3949 (void) remove_reference(hdr, hash_lock,
3950 private);
3951 hdr->b_flags |= ARC_FLAG_PREFETCH;
3952 }
3953 if (*arc_flags & ARC_FLAG_L2CACHE)
3954 hdr->b_flags |= ARC_FLAG_L2CACHE;
3955 if (*arc_flags & ARC_FLAG_L2COMPRESS)
3956 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
3957 if (BP_GET_LEVEL(bp) > 0)
3958 hdr->b_flags |= ARC_FLAG_INDIRECT;
3959 } else {
3960 /*
3961 * This block is in the ghost cache. If it was L2-only
3962 * (and thus didn't have an L1 hdr), we realloc the
3963 * header to add an L1 hdr.
3964 */
3965 if (!HDR_HAS_L1HDR(hdr)) {
3966 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
3967 hdr_full_cache);
3968 }
3969
3970 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
3971 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3972 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3973 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3974
3975 /* if this is a prefetch, we don't have a reference */
3976 if (*arc_flags & ARC_FLAG_PREFETCH)
3977 hdr->b_flags |= ARC_FLAG_PREFETCH;
3978 else
3979 add_reference(hdr, hash_lock, private);
3980 if (*arc_flags & ARC_FLAG_L2CACHE)
3981 hdr->b_flags |= ARC_FLAG_L2CACHE;
3982 if (*arc_flags & ARC_FLAG_L2COMPRESS)
3983 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
3984 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3985 buf->b_hdr = hdr;
3986 buf->b_data = NULL;
3987 buf->b_efunc = NULL;
3988 buf->b_private = NULL;
3989 buf->b_next = NULL;
3990 hdr->b_l1hdr.b_buf = buf;
3991 ASSERT0(hdr->b_l1hdr.b_datacnt);
3992 hdr->b_l1hdr.b_datacnt = 1;
3993 arc_get_data_buf(buf);
3994 arc_access(hdr, hash_lock);
3995 }
3996
3997 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
3998
3999 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4000 acb->acb_done = done;
4001 acb->acb_private = private;
4002
4003 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4004 hdr->b_l1hdr.b_acb = acb;
4005 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4006
4007 if (HDR_HAS_L2HDR(hdr) &&
4008 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4009 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4010 addr = hdr->b_l2hdr.b_daddr;
4011 b_compress = HDR_GET_COMPRESS(hdr);
4012 b_asize = hdr->b_l2hdr.b_asize;
4013 /*
4014 * Lock out device removal.
4015 */
4016 if (vdev_is_dead(vd) ||
4017 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4018 vd = NULL;
4019 }
4020
4021 if (hash_lock != NULL)
4022 mutex_exit(hash_lock);
4023
4024 /*
4025 * At this point, we have a level 1 cache miss. Try again in
4026 * L2ARC if possible.
4027 */
4028 ASSERT3U(hdr->b_size, ==, size);
4029 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4030 uint64_t, size, zbookmark_phys_t *, zb);
4031 ARCSTAT_BUMP(arcstat_misses);
4032 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4033 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4034 data, metadata, misses);
4035
4036 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
4037 /*
4038 * Read from the L2ARC if the following are true:
4039 * 1. The L2ARC vdev was previously cached.
4040 * 2. This buffer still has L2ARC metadata.
4041 * 3. This buffer isn't currently writing to the L2ARC.
4042 * 4. The L2ARC entry wasn't evicted, which may
4043 * also have invalidated the vdev.
4044 * 5. This isn't prefetch and l2arc_noprefetch is set.
4045 */
4046 if (HDR_HAS_L2HDR(hdr) &&
4047 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4048 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
4049 l2arc_read_callback_t *cb;
4050
4051 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4052 ARCSTAT_BUMP(arcstat_l2_hits);
4053 atomic_inc_32(&hdr->b_l2hdr.b_hits);
4054
4055 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
4056 KM_SLEEP);
4057 cb->l2rcb_buf = buf;
4058 cb->l2rcb_spa = spa;
4059 cb->l2rcb_bp = *bp;
4060 cb->l2rcb_zb = *zb;
4061 cb->l2rcb_flags = zio_flags;
4062 cb->l2rcb_compress = b_compress;
4063
4064 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4065 addr + size < vd->vdev_psize -
4066 VDEV_LABEL_END_SIZE);
4067
4068 /*
4069 * l2arc read. The SCL_L2ARC lock will be
4070 * released by l2arc_read_done().
4071 * Issue a null zio if the underlying buffer
4072 * was squashed to zero size by compression.
4073 */
4074 if (b_compress == ZIO_COMPRESS_EMPTY) {
4075 rzio = zio_null(pio, spa, vd,
4076 l2arc_read_done, cb,
4077 zio_flags | ZIO_FLAG_DONT_CACHE |
4078 ZIO_FLAG_CANFAIL |
4079 ZIO_FLAG_DONT_PROPAGATE |
4080 ZIO_FLAG_DONT_RETRY);
4081 } else {
4082 rzio = zio_read_phys(pio, vd, addr,
4083 b_asize, buf->b_data,
4084 ZIO_CHECKSUM_OFF,
4085 l2arc_read_done, cb, priority,
4086 zio_flags | ZIO_FLAG_DONT_CACHE |
4087 ZIO_FLAG_CANFAIL |
4088 ZIO_FLAG_DONT_PROPAGATE |
4089 ZIO_FLAG_DONT_RETRY, B_FALSE);
4090 }
4091 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4092 zio_t *, rzio);
4093 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
4094
4095 if (*arc_flags & ARC_FLAG_NOWAIT) {
4096 zio_nowait(rzio);
4097 goto out;
4098 }
4099
4100 ASSERT(*arc_flags & ARC_FLAG_WAIT);
4101 if (zio_wait(rzio) == 0)
4102 goto out;
4103
4104 /* l2arc read error; goto zio_read() */
4105 } else {
4106 DTRACE_PROBE1(l2arc__miss,
4107 arc_buf_hdr_t *, hdr);
4108 ARCSTAT_BUMP(arcstat_l2_misses);
4109 if (HDR_L2_WRITING(hdr))
4110 ARCSTAT_BUMP(arcstat_l2_rw_clash);
4111 spa_config_exit(spa, SCL_L2ARC, vd);
4112 }
4113 } else {
4114 if (vd != NULL)
4115 spa_config_exit(spa, SCL_L2ARC, vd);
4116 if (l2arc_ndev != 0) {
4117 DTRACE_PROBE1(l2arc__miss,
4118 arc_buf_hdr_t *, hdr);
4119 ARCSTAT_BUMP(arcstat_l2_misses);
4120 }
4121 }
4122
4123 rzio = zio_read(pio, spa, bp, buf->b_data, size,
4124 arc_read_done, buf, priority, zio_flags, zb);
4125
4126 if (*arc_flags & ARC_FLAG_WAIT) {
4127 rc = zio_wait(rzio);
4128 goto out;
4129 }
4130
4131 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4132 zio_nowait(rzio);
4133 }
4134
4135 out:
4136 spa_read_history_add(spa, zb, *arc_flags);
4137 return (rc);
4138 }
4139
4140 arc_prune_t *
4141 arc_add_prune_callback(arc_prune_func_t *func, void *private)
4142 {
4143 arc_prune_t *p;
4144
4145 p = kmem_alloc(sizeof (*p), KM_SLEEP);
4146 p->p_pfunc = func;
4147 p->p_private = private;
4148 list_link_init(&p->p_node);
4149 refcount_create(&p->p_refcnt);
4150
4151 mutex_enter(&arc_prune_mtx);
4152 refcount_add(&p->p_refcnt, &arc_prune_list);
4153 list_insert_head(&arc_prune_list, p);
4154 mutex_exit(&arc_prune_mtx);
4155
4156 return (p);
4157 }
4158
4159 void
4160 arc_remove_prune_callback(arc_prune_t *p)
4161 {
4162 mutex_enter(&arc_prune_mtx);
4163 list_remove(&arc_prune_list, p);
4164 if (refcount_remove(&p->p_refcnt, &arc_prune_list) == 0) {
4165 refcount_destroy(&p->p_refcnt);
4166 kmem_free(p, sizeof (*p));
4167 }
4168 mutex_exit(&arc_prune_mtx);
4169 }
4170
4171 void
4172 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4173 {
4174 ASSERT(buf->b_hdr != NULL);
4175 ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4176 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4177 func == NULL);
4178 ASSERT(buf->b_efunc == NULL);
4179 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4180
4181 buf->b_efunc = func;
4182 buf->b_private = private;
4183 }
4184
4185 /*
4186 * Notify the arc that a block was freed, and thus will never be used again.
4187 */
4188 void
4189 arc_freed(spa_t *spa, const blkptr_t *bp)
4190 {
4191 arc_buf_hdr_t *hdr;
4192 kmutex_t *hash_lock;
4193 uint64_t guid = spa_load_guid(spa);
4194
4195 ASSERT(!BP_IS_EMBEDDED(bp));
4196
4197 hdr = buf_hash_find(guid, bp, &hash_lock);
4198 if (hdr == NULL)
4199 return;
4200 if (HDR_BUF_AVAILABLE(hdr)) {
4201 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4202 add_reference(hdr, hash_lock, FTAG);
4203 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4204 mutex_exit(hash_lock);
4205
4206 arc_release(buf, FTAG);
4207 (void) arc_buf_remove_ref(buf, FTAG);
4208 } else {
4209 mutex_exit(hash_lock);
4210 }
4211
4212 }
4213
4214 /*
4215 * Clear the user eviction callback set by arc_set_callback(), first calling
4216 * it if it exists. Because the presence of a callback keeps an arc_buf cached
4217 * clearing the callback may result in the arc_buf being destroyed. However,
4218 * it will not result in the *last* arc_buf being destroyed, hence the data
4219 * will remain cached in the ARC. We make a copy of the arc buffer here so
4220 * that we can process the callback without holding any locks.
4221 *
4222 * It's possible that the callback is already in the process of being cleared
4223 * by another thread. In this case we can not clear the callback.
4224 *
4225 * Returns B_TRUE if the callback was successfully called and cleared.
4226 */
4227 boolean_t
4228 arc_clear_callback(arc_buf_t *buf)
4229 {
4230 arc_buf_hdr_t *hdr;
4231 kmutex_t *hash_lock;
4232 arc_evict_func_t *efunc = buf->b_efunc;
4233 void *private = buf->b_private;
4234
4235 mutex_enter(&buf->b_evict_lock);
4236 hdr = buf->b_hdr;
4237 if (hdr == NULL) {
4238 /*
4239 * We are in arc_do_user_evicts().
4240 */
4241 ASSERT(buf->b_data == NULL);
4242 mutex_exit(&buf->b_evict_lock);
4243 return (B_FALSE);
4244 } else if (buf->b_data == NULL) {
4245 /*
4246 * We are on the eviction list; process this buffer now
4247 * but let arc_do_user_evicts() do the reaping.
4248 */
4249 buf->b_efunc = NULL;
4250 mutex_exit(&buf->b_evict_lock);
4251 VERIFY0(efunc(private));
4252 return (B_TRUE);
4253 }
4254 hash_lock = HDR_LOCK(hdr);
4255 mutex_enter(hash_lock);
4256 hdr = buf->b_hdr;
4257 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4258
4259 ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4260 hdr->b_l1hdr.b_datacnt);
4261 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4262 hdr->b_l1hdr.b_state == arc_mfu);
4263
4264 buf->b_efunc = NULL;
4265 buf->b_private = NULL;
4266
4267 if (hdr->b_l1hdr.b_datacnt > 1) {
4268 mutex_exit(&buf->b_evict_lock);
4269 arc_buf_destroy(buf, TRUE);
4270 } else {
4271 ASSERT(buf == hdr->b_l1hdr.b_buf);
4272 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4273 mutex_exit(&buf->b_evict_lock);
4274 }
4275
4276 mutex_exit(hash_lock);
4277 VERIFY0(efunc(private));
4278 return (B_TRUE);
4279 }
4280
4281 /*
4282 * Release this buffer from the cache, making it an anonymous buffer. This
4283 * must be done after a read and prior to modifying the buffer contents.
4284 * If the buffer has more than one reference, we must make
4285 * a new hdr for the buffer.
4286 */
4287 void
4288 arc_release(arc_buf_t *buf, void *tag)
4289 {
4290 kmutex_t *hash_lock;
4291 arc_state_t *state;
4292 arc_buf_hdr_t *hdr = buf->b_hdr;
4293
4294 /*
4295 * It would be nice to assert that if its DMU metadata (level >
4296 * 0 || it's the dnode file), then it must be syncing context.
4297 * But we don't know that information at this level.
4298 */
4299
4300 mutex_enter(&buf->b_evict_lock);
4301
4302 ASSERT(HDR_HAS_L1HDR(hdr));
4303
4304 /*
4305 * We don't grab the hash lock prior to this check, because if
4306 * the buffer's header is in the arc_anon state, it won't be
4307 * linked into the hash table.
4308 */
4309 if (hdr->b_l1hdr.b_state == arc_anon) {
4310 mutex_exit(&buf->b_evict_lock);
4311 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4312 ASSERT(!HDR_IN_HASH_TABLE(hdr));
4313 ASSERT(!HDR_HAS_L2HDR(hdr));
4314 ASSERT(BUF_EMPTY(hdr));
4315
4316 ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4317 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4318 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4319
4320 ASSERT3P(buf->b_efunc, ==, NULL);
4321 ASSERT3P(buf->b_private, ==, NULL);
4322
4323 hdr->b_l1hdr.b_arc_access = 0;
4324 arc_buf_thaw(buf);
4325
4326 return;
4327 }
4328
4329 hash_lock = HDR_LOCK(hdr);
4330 mutex_enter(hash_lock);
4331
4332 /*
4333 * This assignment is only valid as long as the hash_lock is
4334 * held, we must be careful not to reference state or the
4335 * b_state field after dropping the lock.
4336 */
4337 state = hdr->b_l1hdr.b_state;
4338 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4339 ASSERT3P(state, !=, arc_anon);
4340
4341 /* this buffer is not on any list */
4342 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4343
4344 if (HDR_HAS_L2HDR(hdr)) {
4345 ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
4346 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
4347
4348 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4349 list_remove(&hdr->b_l2hdr.b_dev->l2ad_buflist, hdr);
4350
4351 /*
4352 * We don't want to leak the b_tmp_cdata buffer that was
4353 * allocated in l2arc_write_buffers()
4354 */
4355 arc_buf_l2_cdata_free(hdr);
4356
4357 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4358
4359 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
4360 }
4361
4362 /*
4363 * Do we have more than one buf?
4364 */
4365 if (hdr->b_l1hdr.b_datacnt > 1) {
4366 arc_buf_hdr_t *nhdr;
4367 arc_buf_t **bufp;
4368 uint64_t blksz = hdr->b_size;
4369 uint64_t spa = hdr->b_spa;
4370 arc_buf_contents_t type = arc_buf_type(hdr);
4371 uint32_t flags = hdr->b_flags;
4372
4373 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
4374 /*
4375 * Pull the data off of this hdr and attach it to
4376 * a new anonymous hdr.
4377 */
4378 (void) remove_reference(hdr, hash_lock, tag);
4379 bufp = &hdr->b_l1hdr.b_buf;
4380 while (*bufp != buf)
4381 bufp = &(*bufp)->b_next;
4382 *bufp = buf->b_next;
4383 buf->b_next = NULL;
4384
4385 ASSERT3P(state, !=, arc_l2c_only);
4386 ASSERT3U(state->arcs_size, >=, hdr->b_size);
4387 atomic_add_64(&state->arcs_size, -hdr->b_size);
4388 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4389 uint64_t *size;
4390
4391 ASSERT3P(state, !=, arc_l2c_only);
4392 size = &state->arcs_lsize[type];
4393 ASSERT3U(*size, >=, hdr->b_size);
4394 atomic_add_64(size, -hdr->b_size);
4395 }
4396
4397 /*
4398 * We're releasing a duplicate user data buffer, update
4399 * our statistics accordingly.
4400 */
4401 if (HDR_ISTYPE_DATA(hdr)) {
4402 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4403 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4404 -hdr->b_size);
4405 }
4406 hdr->b_l1hdr.b_datacnt -= 1;
4407 arc_cksum_verify(buf);
4408 arc_buf_unwatch(buf);
4409
4410 mutex_exit(hash_lock);
4411
4412 nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
4413 nhdr->b_size = blksz;
4414 nhdr->b_spa = spa;
4415
4416 nhdr->b_l1hdr.b_mru_hits = 0;
4417 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
4418 nhdr->b_l1hdr.b_mfu_hits = 0;
4419 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
4420 nhdr->b_l1hdr.b_l2_hits = 0;
4421 nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
4422 nhdr->b_flags |= arc_bufc_to_flags(type);
4423 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4424
4425 nhdr->b_l1hdr.b_buf = buf;
4426 nhdr->b_l1hdr.b_datacnt = 1;
4427 nhdr->b_l1hdr.b_state = arc_anon;
4428 nhdr->b_l1hdr.b_arc_access = 0;
4429 nhdr->b_l1hdr.b_tmp_cdata = NULL;
4430 nhdr->b_freeze_cksum = NULL;
4431
4432 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
4433 buf->b_hdr = nhdr;
4434 mutex_exit(&buf->b_evict_lock);
4435 atomic_add_64(&arc_anon->arcs_size, blksz);
4436 } else {
4437 mutex_exit(&buf->b_evict_lock);
4438 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
4439 /* protected by hash lock, or hdr is on arc_anon */
4440 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4441 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4442 hdr->b_l1hdr.b_mru_hits = 0;
4443 hdr->b_l1hdr.b_mru_ghost_hits = 0;
4444 hdr->b_l1hdr.b_mfu_hits = 0;
4445 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
4446 hdr->b_l1hdr.b_l2_hits = 0;
4447 arc_change_state(arc_anon, hdr, hash_lock);
4448 hdr->b_l1hdr.b_arc_access = 0;
4449 mutex_exit(hash_lock);
4450
4451 buf_discard_identity(hdr);
4452 arc_buf_thaw(buf);
4453 }
4454 buf->b_efunc = NULL;
4455 buf->b_private = NULL;
4456 }
4457
4458 int
4459 arc_released(arc_buf_t *buf)
4460 {
4461 int released;
4462
4463 mutex_enter(&buf->b_evict_lock);
4464 released = (buf->b_data != NULL &&
4465 buf->b_hdr->b_l1hdr.b_state == arc_anon);
4466 mutex_exit(&buf->b_evict_lock);
4467 return (released);
4468 }
4469
4470 #ifdef ZFS_DEBUG
4471 int
4472 arc_referenced(arc_buf_t *buf)
4473 {
4474 int referenced;
4475
4476 mutex_enter(&buf->b_evict_lock);
4477 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
4478 mutex_exit(&buf->b_evict_lock);
4479 return (referenced);
4480 }
4481 #endif
4482
4483 static void
4484 arc_write_ready(zio_t *zio)
4485 {
4486 arc_write_callback_t *callback = zio->io_private;
4487 arc_buf_t *buf = callback->awcb_buf;
4488 arc_buf_hdr_t *hdr = buf->b_hdr;
4489
4490 ASSERT(HDR_HAS_L1HDR(hdr));
4491 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
4492 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4493 callback->awcb_ready(zio, buf, callback->awcb_private);
4494
4495 /*
4496 * If the IO is already in progress, then this is a re-write
4497 * attempt, so we need to thaw and re-compute the cksum.
4498 * It is the responsibility of the callback to handle the
4499 * accounting for any re-write attempt.
4500 */
4501 if (HDR_IO_IN_PROGRESS(hdr)) {
4502 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
4503 if (hdr->b_freeze_cksum != NULL) {
4504 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
4505 hdr->b_freeze_cksum = NULL;
4506 }
4507 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
4508 }
4509 arc_cksum_compute(buf, B_FALSE);
4510 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4511 }
4512
4513 /*
4514 * The SPA calls this callback for each physical write that happens on behalf
4515 * of a logical write. See the comment in dbuf_write_physdone() for details.
4516 */
4517 static void
4518 arc_write_physdone(zio_t *zio)
4519 {
4520 arc_write_callback_t *cb = zio->io_private;
4521 if (cb->awcb_physdone != NULL)
4522 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
4523 }
4524
4525 static void
4526 arc_write_done(zio_t *zio)
4527 {
4528 arc_write_callback_t *callback = zio->io_private;
4529 arc_buf_t *buf = callback->awcb_buf;
4530 arc_buf_hdr_t *hdr = buf->b_hdr;
4531
4532 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4533
4534 if (zio->io_error == 0) {
4535 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
4536 buf_discard_identity(hdr);
4537 } else {
4538 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
4539 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
4540 }
4541 } else {
4542 ASSERT(BUF_EMPTY(hdr));
4543 }
4544
4545 /*
4546 * If the block to be written was all-zero or compressed enough to be
4547 * embedded in the BP, no write was performed so there will be no
4548 * dva/birth/checksum. The buffer must therefore remain anonymous
4549 * (and uncached).
4550 */
4551 if (!BUF_EMPTY(hdr)) {
4552 arc_buf_hdr_t *exists;
4553 kmutex_t *hash_lock;
4554
4555 ASSERT(zio->io_error == 0);
4556
4557 arc_cksum_verify(buf);
4558
4559 exists = buf_hash_insert(hdr, &hash_lock);
4560 if (exists != NULL) {
4561 /*
4562 * This can only happen if we overwrite for
4563 * sync-to-convergence, because we remove
4564 * buffers from the hash table when we arc_free().
4565 */
4566 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
4567 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4568 panic("bad overwrite, hdr=%p exists=%p",
4569 (void *)hdr, (void *)exists);
4570 ASSERT(refcount_is_zero(
4571 &exists->b_l1hdr.b_refcnt));
4572 arc_change_state(arc_anon, exists, hash_lock);
4573 mutex_exit(hash_lock);
4574 arc_hdr_destroy(exists);
4575 exists = buf_hash_insert(hdr, &hash_lock);
4576 ASSERT3P(exists, ==, NULL);
4577 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
4578 /* nopwrite */
4579 ASSERT(zio->io_prop.zp_nopwrite);
4580 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4581 panic("bad nopwrite, hdr=%p exists=%p",
4582 (void *)hdr, (void *)exists);
4583 } else {
4584 /* Dedup */
4585 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4586 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
4587 ASSERT(BP_GET_DEDUP(zio->io_bp));
4588 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
4589 }
4590 }
4591 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4592 /* if it's not anon, we are doing a scrub */
4593 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
4594 arc_access(hdr, hash_lock);
4595 mutex_exit(hash_lock);
4596 } else {
4597 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4598 }
4599
4600 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4601 callback->awcb_done(zio, buf, callback->awcb_private);
4602
4603 kmem_free(callback, sizeof (arc_write_callback_t));
4604 }
4605
4606 zio_t *
4607 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
4608 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
4609 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
4610 arc_done_func_t *done, void *private, zio_priority_t priority,
4611 int zio_flags, const zbookmark_phys_t *zb)
4612 {
4613 arc_buf_hdr_t *hdr = buf->b_hdr;
4614 arc_write_callback_t *callback;
4615 zio_t *zio;
4616
4617 ASSERT(ready != NULL);
4618 ASSERT(done != NULL);
4619 ASSERT(!HDR_IO_ERROR(hdr));
4620 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4621 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4622 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4623 if (l2arc)
4624 hdr->b_flags |= ARC_FLAG_L2CACHE;
4625 if (l2arc_compress)
4626 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4627 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
4628 callback->awcb_ready = ready;
4629 callback->awcb_physdone = physdone;
4630 callback->awcb_done = done;
4631 callback->awcb_private = private;
4632 callback->awcb_buf = buf;
4633
4634 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
4635 arc_write_ready, arc_write_physdone, arc_write_done, callback,
4636 priority, zio_flags, zb);
4637
4638 return (zio);
4639 }
4640
4641 static int
4642 arc_memory_throttle(uint64_t reserve, uint64_t txg)
4643 {
4644 #ifdef _KERNEL
4645 if (zfs_arc_memory_throttle_disable)
4646 return (0);
4647
4648 if (freemem <= physmem * arc_lotsfree_percent / 100) {
4649 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
4650 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
4651 return (SET_ERROR(EAGAIN));
4652 }
4653 #endif
4654 return (0);
4655 }
4656
4657 void
4658 arc_tempreserve_clear(uint64_t reserve)
4659 {
4660 atomic_add_64(&arc_tempreserve, -reserve);
4661 ASSERT((int64_t)arc_tempreserve >= 0);
4662 }
4663
4664 int
4665 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
4666 {
4667 int error;
4668 uint64_t anon_size;
4669
4670 if (reserve > arc_c/4 && !arc_no_grow)
4671 arc_c = MIN(arc_c_max, reserve * 4);
4672
4673 /*
4674 * Throttle when the calculated memory footprint for the TXG
4675 * exceeds the target ARC size.
4676 */
4677 if (reserve > arc_c) {
4678 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
4679 return (SET_ERROR(ERESTART));
4680 }
4681
4682 /*
4683 * Don't count loaned bufs as in flight dirty data to prevent long
4684 * network delays from blocking transactions that are ready to be
4685 * assigned to a txg.
4686 */
4687 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
4688
4689 /*
4690 * Writes will, almost always, require additional memory allocations
4691 * in order to compress/encrypt/etc the data. We therefore need to
4692 * make sure that there is sufficient available memory for this.
4693 */
4694 error = arc_memory_throttle(reserve, txg);
4695 if (error != 0)
4696 return (error);
4697
4698 /*
4699 * Throttle writes when the amount of dirty data in the cache
4700 * gets too large. We try to keep the cache less than half full
4701 * of dirty blocks so that our sync times don't grow too large.
4702 * Note: if two requests come in concurrently, we might let them
4703 * both succeed, when one of them should fail. Not a huge deal.
4704 */
4705
4706 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
4707 anon_size > arc_c / 4) {
4708 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
4709 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
4710 arc_tempreserve>>10,
4711 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
4712 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
4713 reserve>>10, arc_c>>10);
4714 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
4715 return (SET_ERROR(ERESTART));
4716 }
4717 atomic_add_64(&arc_tempreserve, reserve);
4718 return (0);
4719 }
4720
4721 static void
4722 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
4723 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
4724 {
4725 size->value.ui64 = state->arcs_size;
4726 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
4727 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
4728 }
4729
4730 static int
4731 arc_kstat_update(kstat_t *ksp, int rw)
4732 {
4733 arc_stats_t *as = ksp->ks_data;
4734
4735 if (rw == KSTAT_WRITE) {
4736 return (SET_ERROR(EACCES));
4737 } else {
4738 arc_kstat_update_state(arc_anon,
4739 &as->arcstat_anon_size,
4740 &as->arcstat_anon_evict_data,
4741 &as->arcstat_anon_evict_metadata);
4742 arc_kstat_update_state(arc_mru,
4743 &as->arcstat_mru_size,
4744 &as->arcstat_mru_evict_data,
4745 &as->arcstat_mru_evict_metadata);
4746 arc_kstat_update_state(arc_mru_ghost,
4747 &as->arcstat_mru_ghost_size,
4748 &as->arcstat_mru_ghost_evict_data,
4749 &as->arcstat_mru_ghost_evict_metadata);
4750 arc_kstat_update_state(arc_mfu,
4751 &as->arcstat_mfu_size,
4752 &as->arcstat_mfu_evict_data,
4753 &as->arcstat_mfu_evict_metadata);
4754 arc_kstat_update_state(arc_mfu_ghost,
4755 &as->arcstat_mfu_ghost_size,
4756 &as->arcstat_mfu_ghost_evict_data,
4757 &as->arcstat_mfu_ghost_evict_metadata);
4758 }
4759
4760 return (0);
4761 }
4762
4763 /*
4764 * This function *must* return indices evenly distributed between all
4765 * sublists of the multilist. This is needed due to how the ARC eviction
4766 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
4767 * distributed between all sublists and uses this assumption when
4768 * deciding which sublist to evict from and how much to evict from it.
4769 */
4770 unsigned int
4771 arc_state_multilist_index_func(multilist_t *ml, void *obj)
4772 {
4773 arc_buf_hdr_t *hdr = obj;
4774
4775 /*
4776 * We rely on b_dva to generate evenly distributed index
4777 * numbers using buf_hash below. So, as an added precaution,
4778 * let's make sure we never add empty buffers to the arc lists.
4779 */
4780 ASSERT(!BUF_EMPTY(hdr));
4781
4782 /*
4783 * The assumption here, is the hash value for a given
4784 * arc_buf_hdr_t will remain constant throughout its lifetime
4785 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
4786 * Thus, we don't need to store the header's sublist index
4787 * on insertion, as this index can be recalculated on removal.
4788 *
4789 * Also, the low order bits of the hash value are thought to be
4790 * distributed evenly. Otherwise, in the case that the multilist
4791 * has a power of two number of sublists, each sublists' usage
4792 * would not be evenly distributed.
4793 */
4794 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
4795 multilist_get_num_sublists(ml));
4796 }
4797
4798 void
4799 arc_init(void)
4800 {
4801 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
4802 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
4803 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
4804
4805 mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
4806 cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
4807
4808 /* Convert seconds to clock ticks */
4809 zfs_arc_min_prefetch_lifespan = 1 * hz;
4810
4811 /* Start out with 1/8 of all memory */
4812 arc_c = physmem * PAGESIZE / 8;
4813
4814 #ifdef _KERNEL
4815 /*
4816 * On architectures where the physical memory can be larger
4817 * than the addressable space (intel in 32-bit mode), we may
4818 * need to limit the cache to 1/8 of VM size.
4819 */
4820 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
4821 /*
4822 * Register a shrinker to support synchronous (direct) memory
4823 * reclaim from the arc. This is done to prevent kswapd from
4824 * swapping out pages when it is preferable to shrink the arc.
4825 */
4826 spl_register_shrinker(&arc_shrinker);
4827 #endif
4828
4829 /* set min cache to zero */
4830 arc_c_min = 4<<20;
4831 /* set max to 1/2 of all memory */
4832 arc_c_max = arc_c * 4;
4833
4834 /*
4835 * Allow the tunables to override our calculations if they are
4836 * reasonable (ie. over 64MB)
4837 */
4838 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
4839 arc_c_max = zfs_arc_max;
4840 if (zfs_arc_min > 0 && zfs_arc_min <= arc_c_max)
4841 arc_c_min = zfs_arc_min;
4842
4843 arc_c = arc_c_max;
4844 arc_p = (arc_c >> 1);
4845
4846 /* limit meta-data to 3/4 of the arc capacity */
4847 arc_meta_limit = (3 * arc_c_max) / 4;
4848 arc_meta_max = 0;
4849
4850 /* Allow the tunable to override if it is reasonable */
4851 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
4852 arc_meta_limit = zfs_arc_meta_limit;
4853
4854 if (zfs_arc_num_sublists_per_state < 1)
4855 zfs_arc_num_sublists_per_state = num_online_cpus();
4856
4857 /* if kmem_flags are set, lets try to use less memory */
4858 if (kmem_debugging())
4859 arc_c = arc_c / 2;
4860 if (arc_c < arc_c_min)
4861 arc_c = arc_c_min;
4862
4863 arc_anon = &ARC_anon;
4864 arc_mru = &ARC_mru;
4865 arc_mru_ghost = &ARC_mru_ghost;
4866 arc_mfu = &ARC_mfu;
4867 arc_mfu_ghost = &ARC_mfu_ghost;
4868 arc_l2c_only = &ARC_l2c_only;
4869 arc_size = 0;
4870
4871 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
4872 sizeof (arc_buf_hdr_t),
4873 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4874 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4875 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
4876 sizeof (arc_buf_hdr_t),
4877 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4878 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4879 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
4880 sizeof (arc_buf_hdr_t),
4881 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4882 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4883 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
4884 sizeof (arc_buf_hdr_t),
4885 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4886 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4887 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
4888 sizeof (arc_buf_hdr_t),
4889 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4890 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4891 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
4892 sizeof (arc_buf_hdr_t),
4893 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4894 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4895 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
4896 sizeof (arc_buf_hdr_t),
4897 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4898 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4899 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
4900 sizeof (arc_buf_hdr_t),
4901 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4902 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4903 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
4904 sizeof (arc_buf_hdr_t),
4905 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4906 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4907 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
4908 sizeof (arc_buf_hdr_t),
4909 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4910 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4911
4912 arc_anon->arcs_state = ARC_STATE_ANON;
4913 arc_mru->arcs_state = ARC_STATE_MRU;
4914 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
4915 arc_mfu->arcs_state = ARC_STATE_MFU;
4916 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
4917 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
4918
4919 buf_init();
4920
4921 arc_reclaim_thread_exit = FALSE;
4922 arc_user_evicts_thread_exit = FALSE;
4923 list_create(&arc_prune_list, sizeof (arc_prune_t),
4924 offsetof(arc_prune_t, p_node));
4925 arc_eviction_list = NULL;
4926 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
4927 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
4928
4929 arc_prune_taskq = taskq_create("arc_prune", max_ncpus, minclsyspri,
4930 max_ncpus, INT_MAX, TASKQ_PREPOPULATE);
4931
4932 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
4933 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
4934
4935 if (arc_ksp != NULL) {
4936 arc_ksp->ks_data = &arc_stats;
4937 arc_ksp->ks_update = arc_kstat_update;
4938 kstat_install(arc_ksp);
4939 }
4940
4941 (void) thread_create(NULL, 0, arc_adapt_thread, NULL, 0, &p0,
4942 TS_RUN, minclsyspri);
4943
4944 (void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
4945 TS_RUN, minclsyspri);
4946
4947 arc_dead = FALSE;
4948 arc_warm = B_FALSE;
4949
4950 /*
4951 * Calculate maximum amount of dirty data per pool.
4952 *
4953 * If it has been set by a module parameter, take that.
4954 * Otherwise, use a percentage of physical memory defined by
4955 * zfs_dirty_data_max_percent (default 10%) with a cap at
4956 * zfs_dirty_data_max_max (default 25% of physical memory).
4957 */
4958 if (zfs_dirty_data_max_max == 0)
4959 zfs_dirty_data_max_max = physmem * PAGESIZE *
4960 zfs_dirty_data_max_max_percent / 100;
4961
4962 if (zfs_dirty_data_max == 0) {
4963 zfs_dirty_data_max = physmem * PAGESIZE *
4964 zfs_dirty_data_max_percent / 100;
4965 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
4966 zfs_dirty_data_max_max);
4967 }
4968 }
4969
4970 void
4971 arc_fini(void)
4972 {
4973 arc_prune_t *p;
4974
4975 #ifdef _KERNEL
4976 spl_unregister_shrinker(&arc_shrinker);
4977 #endif /* _KERNEL */
4978
4979 mutex_enter(&arc_reclaim_lock);
4980 arc_reclaim_thread_exit = TRUE;
4981 /*
4982 * The reclaim thread will set arc_reclaim_thread_exit back to
4983 * FALSE when it is finished exiting; we're waiting for that.
4984 */
4985 while (arc_reclaim_thread_exit) {
4986 cv_signal(&arc_reclaim_thread_cv);
4987 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
4988 }
4989 mutex_exit(&arc_reclaim_lock);
4990
4991 mutex_enter(&arc_user_evicts_lock);
4992 arc_user_evicts_thread_exit = TRUE;
4993 /*
4994 * The user evicts thread will set arc_user_evicts_thread_exit
4995 * to FALSE when it is finished exiting; we're waiting for that.
4996 */
4997 while (arc_user_evicts_thread_exit) {
4998 cv_signal(&arc_user_evicts_cv);
4999 cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5000 }
5001 mutex_exit(&arc_user_evicts_lock);
5002
5003 /* Use TRUE to ensure *all* buffers are evicted */
5004 arc_flush(NULL, TRUE);
5005
5006 arc_dead = TRUE;
5007
5008 if (arc_ksp != NULL) {
5009 kstat_delete(arc_ksp);
5010 arc_ksp = NULL;
5011 }
5012
5013 taskq_wait(arc_prune_taskq);
5014 taskq_destroy(arc_prune_taskq);
5015
5016 mutex_enter(&arc_prune_mtx);
5017 while ((p = list_head(&arc_prune_list)) != NULL) {
5018 list_remove(&arc_prune_list, p);
5019 refcount_remove(&p->p_refcnt, &arc_prune_list);
5020 refcount_destroy(&p->p_refcnt);
5021 kmem_free(p, sizeof (*p));
5022 }
5023 mutex_exit(&arc_prune_mtx);
5024
5025 list_destroy(&arc_prune_list);
5026 mutex_destroy(&arc_prune_mtx);
5027 mutex_destroy(&arc_reclaim_lock);
5028 cv_destroy(&arc_reclaim_thread_cv);
5029 cv_destroy(&arc_reclaim_waiters_cv);
5030
5031 mutex_destroy(&arc_user_evicts_lock);
5032 cv_destroy(&arc_user_evicts_cv);
5033
5034 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5035 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5036 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5037 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5038 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5039 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5040 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5041 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5042 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
5043 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
5044
5045 buf_fini();
5046
5047 ASSERT0(arc_loaned_bytes);
5048 }
5049
5050 /*
5051 * Level 2 ARC
5052 *
5053 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5054 * It uses dedicated storage devices to hold cached data, which are populated
5055 * using large infrequent writes. The main role of this cache is to boost
5056 * the performance of random read workloads. The intended L2ARC devices
5057 * include short-stroked disks, solid state disks, and other media with
5058 * substantially faster read latency than disk.
5059 *
5060 * +-----------------------+
5061 * | ARC |
5062 * +-----------------------+
5063 * | ^ ^
5064 * | | |
5065 * l2arc_feed_thread() arc_read()
5066 * | | |
5067 * | l2arc read |
5068 * V | |
5069 * +---------------+ |
5070 * | L2ARC | |
5071 * +---------------+ |
5072 * | ^ |
5073 * l2arc_write() | |
5074 * | | |
5075 * V | |
5076 * +-------+ +-------+
5077 * | vdev | | vdev |
5078 * | cache | | cache |
5079 * +-------+ +-------+
5080 * +=========+ .-----.
5081 * : L2ARC : |-_____-|
5082 * : devices : | Disks |
5083 * +=========+ `-_____-'
5084 *
5085 * Read requests are satisfied from the following sources, in order:
5086 *
5087 * 1) ARC
5088 * 2) vdev cache of L2ARC devices
5089 * 3) L2ARC devices
5090 * 4) vdev cache of disks
5091 * 5) disks
5092 *
5093 * Some L2ARC device types exhibit extremely slow write performance.
5094 * To accommodate for this there are some significant differences between
5095 * the L2ARC and traditional cache design:
5096 *
5097 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
5098 * the ARC behave as usual, freeing buffers and placing headers on ghost
5099 * lists. The ARC does not send buffers to the L2ARC during eviction as
5100 * this would add inflated write latencies for all ARC memory pressure.
5101 *
5102 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5103 * It does this by periodically scanning buffers from the eviction-end of
5104 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
5105 * not already there. It scans until a headroom of buffers is satisfied,
5106 * which itself is a buffer for ARC eviction. If a compressible buffer is
5107 * found during scanning and selected for writing to an L2ARC device, we
5108 * temporarily boost scanning headroom during the next scan cycle to make
5109 * sure we adapt to compression effects (which might significantly reduce
5110 * the data volume we write to L2ARC). The thread that does this is
5111 * l2arc_feed_thread(), illustrated below; example sizes are included to
5112 * provide a better sense of ratio than this diagram:
5113 *
5114 * head --> tail
5115 * +---------------------+----------+
5116 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
5117 * +---------------------+----------+ | o L2ARC eligible
5118 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
5119 * +---------------------+----------+ |
5120 * 15.9 Gbytes ^ 32 Mbytes |
5121 * headroom |
5122 * l2arc_feed_thread()
5123 * |
5124 * l2arc write hand <--[oooo]--'
5125 * | 8 Mbyte
5126 * | write max
5127 * V
5128 * +==============================+
5129 * L2ARC dev |####|#|###|###| |####| ... |
5130 * +==============================+
5131 * 32 Gbytes
5132 *
5133 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5134 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5135 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
5136 * safe to say that this is an uncommon case, since buffers at the end of
5137 * the ARC lists have moved there due to inactivity.
5138 *
5139 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5140 * then the L2ARC simply misses copying some buffers. This serves as a
5141 * pressure valve to prevent heavy read workloads from both stalling the ARC
5142 * with waits and clogging the L2ARC with writes. This also helps prevent
5143 * the potential for the L2ARC to churn if it attempts to cache content too
5144 * quickly, such as during backups of the entire pool.
5145 *
5146 * 5. After system boot and before the ARC has filled main memory, there are
5147 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5148 * lists can remain mostly static. Instead of searching from tail of these
5149 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5150 * for eligible buffers, greatly increasing its chance of finding them.
5151 *
5152 * The L2ARC device write speed is also boosted during this time so that
5153 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
5154 * there are no L2ARC reads, and no fear of degrading read performance
5155 * through increased writes.
5156 *
5157 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
5158 * the vdev queue can aggregate them into larger and fewer writes. Each
5159 * device is written to in a rotor fashion, sweeping writes through
5160 * available space then repeating.
5161 *
5162 * 7. The L2ARC does not store dirty content. It never needs to flush
5163 * write buffers back to disk based storage.
5164 *
5165 * 8. If an ARC buffer is written (and dirtied) which also exists in the
5166 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5167 *
5168 * The performance of the L2ARC can be tweaked by a number of tunables, which
5169 * may be necessary for different workloads:
5170 *
5171 * l2arc_write_max max write bytes per interval
5172 * l2arc_write_boost extra write bytes during device warmup
5173 * l2arc_noprefetch skip caching prefetched buffers
5174 * l2arc_nocompress skip compressing buffers
5175 * l2arc_headroom number of max device writes to precache
5176 * l2arc_headroom_boost when we find compressed buffers during ARC
5177 * scanning, we multiply headroom by this
5178 * percentage factor for the next scan cycle,
5179 * since more compressed buffers are likely to
5180 * be present
5181 * l2arc_feed_secs seconds between L2ARC writing
5182 *
5183 * Tunables may be removed or added as future performance improvements are
5184 * integrated, and also may become zpool properties.
5185 *
5186 * There are three key functions that control how the L2ARC warms up:
5187 *
5188 * l2arc_write_eligible() check if a buffer is eligible to cache
5189 * l2arc_write_size() calculate how much to write
5190 * l2arc_write_interval() calculate sleep delay between writes
5191 *
5192 * These three functions determine what to write, how much, and how quickly
5193 * to send writes.
5194 */
5195
5196 static boolean_t
5197 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
5198 {
5199 /*
5200 * A buffer is *not* eligible for the L2ARC if it:
5201 * 1. belongs to a different spa.
5202 * 2. is already cached on the L2ARC.
5203 * 3. has an I/O in progress (it may be an incomplete read).
5204 * 4. is flagged not eligible (zfs property).
5205 */
5206 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
5207 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
5208 return (B_FALSE);
5209
5210 return (B_TRUE);
5211 }
5212
5213 static uint64_t
5214 l2arc_write_size(void)
5215 {
5216 uint64_t size;
5217
5218 /*
5219 * Make sure our globals have meaningful values in case the user
5220 * altered them.
5221 */
5222 size = l2arc_write_max;
5223 if (size == 0) {
5224 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5225 "be greater than zero, resetting it to the default (%d)",
5226 L2ARC_WRITE_SIZE);
5227 size = l2arc_write_max = L2ARC_WRITE_SIZE;
5228 }
5229
5230 if (arc_warm == B_FALSE)
5231 size += l2arc_write_boost;
5232
5233 return (size);
5234
5235 }
5236
5237 static clock_t
5238 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5239 {
5240 clock_t interval, next, now;
5241
5242 /*
5243 * If the ARC lists are busy, increase our write rate; if the
5244 * lists are stale, idle back. This is achieved by checking
5245 * how much we previously wrote - if it was more than half of
5246 * what we wanted, schedule the next write much sooner.
5247 */
5248 if (l2arc_feed_again && wrote > (wanted / 2))
5249 interval = (hz * l2arc_feed_min_ms) / 1000;
5250 else
5251 interval = hz * l2arc_feed_secs;
5252
5253 now = ddi_get_lbolt();
5254 next = MAX(now, MIN(now + interval, began + interval));
5255
5256 return (next);
5257 }
5258
5259 /*
5260 * Cycle through L2ARC devices. This is how L2ARC load balances.
5261 * If a device is returned, this also returns holding the spa config lock.
5262 */
5263 static l2arc_dev_t *
5264 l2arc_dev_get_next(void)
5265 {
5266 l2arc_dev_t *first, *next = NULL;
5267
5268 /*
5269 * Lock out the removal of spas (spa_namespace_lock), then removal
5270 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
5271 * both locks will be dropped and a spa config lock held instead.
5272 */
5273 mutex_enter(&spa_namespace_lock);
5274 mutex_enter(&l2arc_dev_mtx);
5275
5276 /* if there are no vdevs, there is nothing to do */
5277 if (l2arc_ndev == 0)
5278 goto out;
5279
5280 first = NULL;
5281 next = l2arc_dev_last;
5282 do {
5283 /* loop around the list looking for a non-faulted vdev */
5284 if (next == NULL) {
5285 next = list_head(l2arc_dev_list);
5286 } else {
5287 next = list_next(l2arc_dev_list, next);
5288 if (next == NULL)
5289 next = list_head(l2arc_dev_list);
5290 }
5291
5292 /* if we have come back to the start, bail out */
5293 if (first == NULL)
5294 first = next;
5295 else if (next == first)
5296 break;
5297
5298 } while (vdev_is_dead(next->l2ad_vdev));
5299
5300 /* if we were unable to find any usable vdevs, return NULL */
5301 if (vdev_is_dead(next->l2ad_vdev))
5302 next = NULL;
5303
5304 l2arc_dev_last = next;
5305
5306 out:
5307 mutex_exit(&l2arc_dev_mtx);
5308
5309 /*
5310 * Grab the config lock to prevent the 'next' device from being
5311 * removed while we are writing to it.
5312 */
5313 if (next != NULL)
5314 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5315 mutex_exit(&spa_namespace_lock);
5316
5317 return (next);
5318 }
5319
5320 /*
5321 * Free buffers that were tagged for destruction.
5322 */
5323 static void
5324 l2arc_do_free_on_write(void)
5325 {
5326 list_t *buflist;
5327 l2arc_data_free_t *df, *df_prev;
5328
5329 mutex_enter(&l2arc_free_on_write_mtx);
5330 buflist = l2arc_free_on_write;
5331
5332 for (df = list_tail(buflist); df; df = df_prev) {
5333 df_prev = list_prev(buflist, df);
5334 ASSERT(df->l2df_data != NULL);
5335 ASSERT(df->l2df_func != NULL);
5336 df->l2df_func(df->l2df_data, df->l2df_size);
5337 list_remove(buflist, df);
5338 kmem_free(df, sizeof (l2arc_data_free_t));
5339 }
5340
5341 mutex_exit(&l2arc_free_on_write_mtx);
5342 }
5343
5344 /*
5345 * A write to a cache device has completed. Update all headers to allow
5346 * reads from these buffers to begin.
5347 */
5348 static void
5349 l2arc_write_done(zio_t *zio)
5350 {
5351 l2arc_write_callback_t *cb;
5352 l2arc_dev_t *dev;
5353 list_t *buflist;
5354 arc_buf_hdr_t *head, *hdr, *hdr_prev;
5355 kmutex_t *hash_lock;
5356 int64_t bytes_dropped = 0;
5357
5358 cb = zio->io_private;
5359 ASSERT(cb != NULL);
5360 dev = cb->l2wcb_dev;
5361 ASSERT(dev != NULL);
5362 head = cb->l2wcb_head;
5363 ASSERT(head != NULL);
5364 buflist = &dev->l2ad_buflist;
5365 ASSERT(buflist != NULL);
5366 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
5367 l2arc_write_callback_t *, cb);
5368
5369 if (zio->io_error != 0)
5370 ARCSTAT_BUMP(arcstat_l2_writes_error);
5371
5372 /*
5373 * All writes completed, or an error was hit.
5374 */
5375 top:
5376 mutex_enter(&dev->l2ad_mtx);
5377 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
5378 hdr_prev = list_prev(buflist, hdr);
5379
5380 hash_lock = HDR_LOCK(hdr);
5381
5382 /*
5383 * We cannot use mutex_enter or else we can deadlock
5384 * with l2arc_write_buffers (due to swapping the order
5385 * the hash lock and l2ad_mtx are taken).
5386 */
5387 if (!mutex_tryenter(hash_lock)) {
5388 /*
5389 * Missed the hash lock. We must retry so we
5390 * don't leave the ARC_FLAG_L2_WRITING bit set.
5391 */
5392 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
5393
5394 /*
5395 * We don't want to rescan the headers we've
5396 * already marked as having been written out, so
5397 * we reinsert the head node so we can pick up
5398 * where we left off.
5399 */
5400 list_remove(buflist, head);
5401 list_insert_after(buflist, hdr, head);
5402
5403 mutex_exit(&dev->l2ad_mtx);
5404
5405 /*
5406 * We wait for the hash lock to become available
5407 * to try and prevent busy waiting, and increase
5408 * the chance we'll be able to acquire the lock
5409 * the next time around.
5410 */
5411 mutex_enter(hash_lock);
5412 mutex_exit(hash_lock);
5413 goto top;
5414 }
5415
5416 /*
5417 * We could not have been moved into the arc_l2c_only
5418 * state while in-flight due to our ARC_FLAG_L2_WRITING
5419 * bit being set. Let's just ensure that's being enforced.
5420 */
5421 ASSERT(HDR_HAS_L1HDR(hdr));
5422
5423 /*
5424 * We may have allocated a buffer for L2ARC compression,
5425 * we must release it to avoid leaking this data.
5426 */
5427 l2arc_release_cdata_buf(hdr);
5428
5429 if (zio->io_error != 0) {
5430 /*
5431 * Error - drop L2ARC entry.
5432 */
5433 list_remove(buflist, hdr);
5434 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
5435
5436 ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
5437 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
5438 }
5439
5440 /*
5441 * Allow ARC to begin reads and ghost list evictions to
5442 * this L2ARC entry.
5443 */
5444 hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
5445
5446 mutex_exit(hash_lock);
5447 }
5448
5449 atomic_inc_64(&l2arc_writes_done);
5450 list_remove(buflist, head);
5451 ASSERT(!HDR_HAS_L1HDR(head));
5452 kmem_cache_free(hdr_l2only_cache, head);
5453 mutex_exit(&dev->l2ad_mtx);
5454
5455 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
5456
5457 l2arc_do_free_on_write();
5458
5459 kmem_free(cb, sizeof (l2arc_write_callback_t));
5460 }
5461
5462 /*
5463 * A read to a cache device completed. Validate buffer contents before
5464 * handing over to the regular ARC routines.
5465 */
5466 static void
5467 l2arc_read_done(zio_t *zio)
5468 {
5469 l2arc_read_callback_t *cb;
5470 arc_buf_hdr_t *hdr;
5471 arc_buf_t *buf;
5472 kmutex_t *hash_lock;
5473 int equal;
5474
5475 ASSERT(zio->io_vd != NULL);
5476 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
5477
5478 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
5479
5480 cb = zio->io_private;
5481 ASSERT(cb != NULL);
5482 buf = cb->l2rcb_buf;
5483 ASSERT(buf != NULL);
5484
5485 hash_lock = HDR_LOCK(buf->b_hdr);
5486 mutex_enter(hash_lock);
5487 hdr = buf->b_hdr;
5488 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5489
5490 /*
5491 * If the buffer was compressed, decompress it first.
5492 */
5493 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
5494 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
5495 ASSERT(zio->io_data != NULL);
5496
5497 /*
5498 * Check this survived the L2ARC journey.
5499 */
5500 equal = arc_cksum_equal(buf);
5501 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
5502 mutex_exit(hash_lock);
5503 zio->io_private = buf;
5504 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
5505 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
5506 arc_read_done(zio);
5507 } else {
5508 mutex_exit(hash_lock);
5509 /*
5510 * Buffer didn't survive caching. Increment stats and
5511 * reissue to the original storage device.
5512 */
5513 if (zio->io_error != 0) {
5514 ARCSTAT_BUMP(arcstat_l2_io_error);
5515 } else {
5516 zio->io_error = SET_ERROR(EIO);
5517 }
5518 if (!equal)
5519 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
5520
5521 /*
5522 * If there's no waiter, issue an async i/o to the primary
5523 * storage now. If there *is* a waiter, the caller must
5524 * issue the i/o in a context where it's OK to block.
5525 */
5526 if (zio->io_waiter == NULL) {
5527 zio_t *pio = zio_unique_parent(zio);
5528
5529 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
5530
5531 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
5532 buf->b_data, zio->io_size, arc_read_done, buf,
5533 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
5534 }
5535 }
5536
5537 kmem_free(cb, sizeof (l2arc_read_callback_t));
5538 }
5539
5540 /*
5541 * This is the list priority from which the L2ARC will search for pages to
5542 * cache. This is used within loops (0..3) to cycle through lists in the
5543 * desired order. This order can have a significant effect on cache
5544 * performance.
5545 *
5546 * Currently the metadata lists are hit first, MFU then MRU, followed by
5547 * the data lists. This function returns a locked list, and also returns
5548 * the lock pointer.
5549 */
5550 static multilist_sublist_t *
5551 l2arc_sublist_lock(int list_num)
5552 {
5553 multilist_t *ml = NULL;
5554 unsigned int idx;
5555
5556 ASSERT(list_num >= 0 && list_num <= 3);
5557
5558 switch (list_num) {
5559 case 0:
5560 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
5561 break;
5562 case 1:
5563 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
5564 break;
5565 case 2:
5566 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
5567 break;
5568 case 3:
5569 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
5570 break;
5571 }
5572
5573 /*
5574 * Return a randomly-selected sublist. This is acceptable
5575 * because the caller feeds only a little bit of data for each
5576 * call (8MB). Subsequent calls will result in different
5577 * sublists being selected.
5578 */
5579 idx = multilist_get_random_index(ml);
5580 return (multilist_sublist_lock(ml, idx));
5581 }
5582
5583 /*
5584 * Evict buffers from the device write hand to the distance specified in
5585 * bytes. This distance may span populated buffers, it may span nothing.
5586 * This is clearing a region on the L2ARC device ready for writing.
5587 * If the 'all' boolean is set, every buffer is evicted.
5588 */
5589 static void
5590 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
5591 {
5592 list_t *buflist;
5593 arc_buf_hdr_t *hdr, *hdr_prev;
5594 kmutex_t *hash_lock;
5595 uint64_t taddr;
5596 int64_t bytes_evicted = 0;
5597
5598 buflist = &dev->l2ad_buflist;
5599
5600 if (!all && dev->l2ad_first) {
5601 /*
5602 * This is the first sweep through the device. There is
5603 * nothing to evict.
5604 */
5605 return;
5606 }
5607
5608 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
5609 /*
5610 * When nearing the end of the device, evict to the end
5611 * before the device write hand jumps to the start.
5612 */
5613 taddr = dev->l2ad_end;
5614 } else {
5615 taddr = dev->l2ad_hand + distance;
5616 }
5617 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
5618 uint64_t, taddr, boolean_t, all);
5619
5620 top:
5621 mutex_enter(&dev->l2ad_mtx);
5622 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
5623 hdr_prev = list_prev(buflist, hdr);
5624
5625 hash_lock = HDR_LOCK(hdr);
5626
5627 /*
5628 * We cannot use mutex_enter or else we can deadlock
5629 * with l2arc_write_buffers (due to swapping the order
5630 * the hash lock and l2ad_mtx are taken).
5631 */
5632 if (!mutex_tryenter(hash_lock)) {
5633 /*
5634 * Missed the hash lock. Retry.
5635 */
5636 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
5637 mutex_exit(&dev->l2ad_mtx);
5638 mutex_enter(hash_lock);
5639 mutex_exit(hash_lock);
5640 goto top;
5641 }
5642
5643 if (HDR_L2_WRITE_HEAD(hdr)) {
5644 /*
5645 * We hit a write head node. Leave it for
5646 * l2arc_write_done().
5647 */
5648 list_remove(buflist, hdr);
5649 mutex_exit(hash_lock);
5650 continue;
5651 }
5652
5653 if (!all && HDR_HAS_L2HDR(hdr) &&
5654 (hdr->b_l2hdr.b_daddr > taddr ||
5655 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
5656 /*
5657 * We've evicted to the target address,
5658 * or the end of the device.
5659 */
5660 mutex_exit(hash_lock);
5661 break;
5662 }
5663
5664 ASSERT(HDR_HAS_L2HDR(hdr));
5665 if (!HDR_HAS_L1HDR(hdr)) {
5666 ASSERT(!HDR_L2_READING(hdr));
5667 /*
5668 * This doesn't exist in the ARC. Destroy.
5669 * arc_hdr_destroy() will call list_remove()
5670 * and decrement arcstat_l2_size.
5671 */
5672 arc_change_state(arc_anon, hdr, hash_lock);
5673 arc_hdr_destroy(hdr);
5674 } else {
5675 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
5676 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
5677 /*
5678 * Invalidate issued or about to be issued
5679 * reads, since we may be about to write
5680 * over this location.
5681 */
5682 if (HDR_L2_READING(hdr)) {
5683 ARCSTAT_BUMP(arcstat_l2_evict_reading);
5684 hdr->b_flags |= ARC_FLAG_L2_EVICTED;
5685 }
5686
5687 /*
5688 * Tell ARC this no longer exists in L2ARC.
5689 */
5690 /* Tell ARC this no longer exists in L2ARC. */
5691 ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
5692 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
5693 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
5694 list_remove(buflist, hdr);
5695
5696 /* Ensure this header has finished being written */
5697 ASSERT(!HDR_L2_WRITING(hdr));
5698 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
5699 }
5700 mutex_exit(hash_lock);
5701 }
5702 mutex_exit(&dev->l2ad_mtx);
5703
5704 vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0);
5705 dev->l2ad_evict = taddr;
5706 }
5707
5708 /*
5709 * Find and write ARC buffers to the L2ARC device.
5710 *
5711 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
5712 * for reading until they have completed writing.
5713 * The headroom_boost is an in-out parameter used to maintain headroom boost
5714 * state between calls to this function.
5715 *
5716 * Returns the number of bytes actually written (which may be smaller than
5717 * the delta by which the device hand has changed due to alignment).
5718 */
5719 static uint64_t
5720 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
5721 boolean_t *headroom_boost)
5722 {
5723 arc_buf_hdr_t *hdr, *hdr_prev, *head;
5724 uint64_t write_asize, write_psize, write_sz, headroom,
5725 buf_compress_minsz;
5726 void *buf_data;
5727 boolean_t full;
5728 l2arc_write_callback_t *cb;
5729 zio_t *pio, *wzio;
5730 uint64_t guid = spa_load_guid(spa);
5731 int try;
5732 const boolean_t do_headroom_boost = *headroom_boost;
5733
5734 ASSERT(dev->l2ad_vdev != NULL);
5735
5736 /* Lower the flag now, we might want to raise it again later. */
5737 *headroom_boost = B_FALSE;
5738
5739 pio = NULL;
5740 write_sz = write_asize = write_psize = 0;
5741 full = B_FALSE;
5742 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
5743 head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
5744 head->b_flags |= ARC_FLAG_HAS_L2HDR;
5745
5746 /*
5747 * We will want to try to compress buffers that are at least 2x the
5748 * device sector size.
5749 */
5750 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
5751
5752 /*
5753 * Copy buffers for L2ARC writing.
5754 */
5755 for (try = 0; try <= 3; try++) {
5756 multilist_sublist_t *mls = l2arc_sublist_lock(try);
5757 uint64_t passed_sz = 0;
5758
5759 /*
5760 * L2ARC fast warmup.
5761 *
5762 * Until the ARC is warm and starts to evict, read from the
5763 * head of the ARC lists rather than the tail.
5764 */
5765 if (arc_warm == B_FALSE)
5766 hdr = multilist_sublist_head(mls);
5767 else
5768 hdr = multilist_sublist_tail(mls);
5769
5770 headroom = target_sz * l2arc_headroom;
5771 if (do_headroom_boost)
5772 headroom = (headroom * l2arc_headroom_boost) / 100;
5773
5774 for (; hdr; hdr = hdr_prev) {
5775 kmutex_t *hash_lock;
5776 uint64_t buf_sz;
5777
5778 if (arc_warm == B_FALSE)
5779 hdr_prev = multilist_sublist_next(mls, hdr);
5780 else
5781 hdr_prev = multilist_sublist_prev(mls, hdr);
5782
5783 hash_lock = HDR_LOCK(hdr);
5784 if (!mutex_tryenter(hash_lock)) {
5785 /*
5786 * Skip this buffer rather than waiting.
5787 */
5788 continue;
5789 }
5790
5791 passed_sz += hdr->b_size;
5792 if (passed_sz > headroom) {
5793 /*
5794 * Searched too far.
5795 */
5796 mutex_exit(hash_lock);
5797 break;
5798 }
5799
5800 if (!l2arc_write_eligible(guid, hdr)) {
5801 mutex_exit(hash_lock);
5802 continue;
5803 }
5804
5805 if ((write_sz + hdr->b_size) > target_sz) {
5806 full = B_TRUE;
5807 mutex_exit(hash_lock);
5808 break;
5809 }
5810
5811 if (pio == NULL) {
5812 /*
5813 * Insert a dummy header on the buflist so
5814 * l2arc_write_done() can find where the
5815 * write buffers begin without searching.
5816 */
5817 mutex_enter(&dev->l2ad_mtx);
5818 list_insert_head(&dev->l2ad_buflist, head);
5819 mutex_exit(&dev->l2ad_mtx);
5820
5821 cb = kmem_alloc(sizeof (l2arc_write_callback_t),
5822 KM_SLEEP);
5823 cb->l2wcb_dev = dev;
5824 cb->l2wcb_head = head;
5825 pio = zio_root(spa, l2arc_write_done, cb,
5826 ZIO_FLAG_CANFAIL);
5827 }
5828
5829 /*
5830 * Create and add a new L2ARC header.
5831 */
5832 hdr->b_l2hdr.b_dev = dev;
5833 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
5834 hdr->b_flags |= ARC_FLAG_L2_WRITING;
5835 /*
5836 * Temporarily stash the data buffer in b_tmp_cdata.
5837 * The subsequent write step will pick it up from
5838 * there. This is because can't access b_l1hdr.b_buf
5839 * without holding the hash_lock, which we in turn
5840 * can't access without holding the ARC list locks
5841 * (which we want to avoid during compression/writing)
5842 */
5843 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
5844 hdr->b_l2hdr.b_asize = hdr->b_size;
5845 hdr->b_l2hdr.b_hits = 0;
5846 hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
5847
5848 buf_sz = hdr->b_size;
5849 hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
5850
5851 mutex_enter(&dev->l2ad_mtx);
5852 list_insert_head(&dev->l2ad_buflist, hdr);
5853 mutex_exit(&dev->l2ad_mtx);
5854
5855 /*
5856 * Compute and store the buffer cksum before
5857 * writing. On debug the cksum is verified first.
5858 */
5859 arc_cksum_verify(hdr->b_l1hdr.b_buf);
5860 arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
5861
5862 mutex_exit(hash_lock);
5863
5864 write_sz += buf_sz;
5865 }
5866
5867 multilist_sublist_unlock(mls);
5868
5869 if (full == B_TRUE)
5870 break;
5871 }
5872
5873 /* No buffers selected for writing? */
5874 if (pio == NULL) {
5875 ASSERT0(write_sz);
5876 ASSERT(!HDR_HAS_L1HDR(head));
5877 kmem_cache_free(hdr_l2only_cache, head);
5878 return (0);
5879 }
5880
5881 mutex_enter(&dev->l2ad_mtx);
5882
5883 /*
5884 * Now start writing the buffers. We're starting at the write head
5885 * and work backwards, retracing the course of the buffer selector
5886 * loop above.
5887 */
5888 for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
5889 hdr = list_prev(&dev->l2ad_buflist, hdr)) {
5890 uint64_t buf_sz;
5891
5892 /*
5893 * We rely on the L1 portion of the header below, so
5894 * it's invalid for this header to have been evicted out
5895 * of the ghost cache, prior to being written out. The
5896 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
5897 */
5898 ASSERT(HDR_HAS_L1HDR(hdr));
5899
5900 /*
5901 * We shouldn't need to lock the buffer here, since we flagged
5902 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
5903 * take care to only access its L2 cache parameters. In
5904 * particular, hdr->l1hdr.b_buf may be invalid by now due to
5905 * ARC eviction.
5906 */
5907 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
5908
5909 if ((!l2arc_nocompress && HDR_L2COMPRESS(hdr)) &&
5910 hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
5911 if (l2arc_compress_buf(hdr)) {
5912 /*
5913 * If compression succeeded, enable headroom
5914 * boost on the next scan cycle.
5915 */
5916 *headroom_boost = B_TRUE;
5917 }
5918 }
5919
5920 /*
5921 * Pick up the buffer data we had previously stashed away
5922 * (and now potentially also compressed).
5923 */
5924 buf_data = hdr->b_l1hdr.b_tmp_cdata;
5925 buf_sz = hdr->b_l2hdr.b_asize;
5926
5927 /* Compression may have squashed the buffer to zero length. */
5928 if (buf_sz != 0) {
5929 uint64_t buf_p_sz;
5930
5931 wzio = zio_write_phys(pio, dev->l2ad_vdev,
5932 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
5933 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
5934 ZIO_FLAG_CANFAIL, B_FALSE);
5935
5936 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
5937 zio_t *, wzio);
5938 (void) zio_nowait(wzio);
5939
5940 write_asize += buf_sz;
5941 /*
5942 * Keep the clock hand suitably device-aligned.
5943 */
5944 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
5945 write_psize += buf_p_sz;
5946 dev->l2ad_hand += buf_p_sz;
5947 }
5948 }
5949
5950 mutex_exit(&dev->l2ad_mtx);
5951
5952 ASSERT3U(write_asize, <=, target_sz);
5953 ARCSTAT_BUMP(arcstat_l2_writes_sent);
5954 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
5955 ARCSTAT_INCR(arcstat_l2_size, write_sz);
5956 ARCSTAT_INCR(arcstat_l2_asize, write_asize);
5957 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
5958
5959 /*
5960 * Bump device hand to the device start if it is approaching the end.
5961 * l2arc_evict() will already have evicted ahead for this case.
5962 */
5963 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
5964 dev->l2ad_hand = dev->l2ad_start;
5965 dev->l2ad_evict = dev->l2ad_start;
5966 dev->l2ad_first = B_FALSE;
5967 }
5968
5969 dev->l2ad_writing = B_TRUE;
5970 (void) zio_wait(pio);
5971 dev->l2ad_writing = B_FALSE;
5972
5973 return (write_asize);
5974 }
5975
5976 /*
5977 * Compresses an L2ARC buffer.
5978 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
5979 * size in l2hdr->b_asize. This routine tries to compress the data and
5980 * depending on the compression result there are three possible outcomes:
5981 * *) The buffer was incompressible. The original l2hdr contents were left
5982 * untouched and are ready for writing to an L2 device.
5983 * *) The buffer was all-zeros, so there is no need to write it to an L2
5984 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
5985 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
5986 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
5987 * data buffer which holds the compressed data to be written, and b_asize
5988 * tells us how much data there is. b_compress is set to the appropriate
5989 * compression algorithm. Once writing is done, invoke
5990 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
5991 *
5992 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
5993 * buffer was incompressible).
5994 */
5995 static boolean_t
5996 l2arc_compress_buf(arc_buf_hdr_t *hdr)
5997 {
5998 void *cdata;
5999 size_t csize, len, rounded;
6000 l2arc_buf_hdr_t *l2hdr;
6001
6002 ASSERT(HDR_HAS_L2HDR(hdr));
6003
6004 l2hdr = &hdr->b_l2hdr;
6005
6006 ASSERT(HDR_HAS_L1HDR(hdr));
6007 ASSERT(HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF);
6008 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6009
6010 len = l2hdr->b_asize;
6011 cdata = zio_data_buf_alloc(len);
6012 ASSERT3P(cdata, !=, NULL);
6013 csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
6014 cdata, l2hdr->b_asize);
6015
6016 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
6017 if (rounded > csize) {
6018 bzero((char *)cdata + csize, rounded - csize);
6019 csize = rounded;
6020 }
6021
6022 if (csize == 0) {
6023 /* zero block, indicate that there's nothing to write */
6024 zio_data_buf_free(cdata, len);
6025 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_EMPTY);
6026 l2hdr->b_asize = 0;
6027 hdr->b_l1hdr.b_tmp_cdata = NULL;
6028 ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6029 return (B_TRUE);
6030 } else if (csize > 0 && csize < len) {
6031 /*
6032 * Compression succeeded, we'll keep the cdata around for
6033 * writing and release it afterwards.
6034 */
6035 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_LZ4);
6036 l2hdr->b_asize = csize;
6037 hdr->b_l1hdr.b_tmp_cdata = cdata;
6038 ARCSTAT_BUMP(arcstat_l2_compress_successes);
6039 return (B_TRUE);
6040 } else {
6041 /*
6042 * Compression failed, release the compressed buffer.
6043 * l2hdr will be left unmodified.
6044 */
6045 zio_data_buf_free(cdata, len);
6046 ARCSTAT_BUMP(arcstat_l2_compress_failures);
6047 return (B_FALSE);
6048 }
6049 }
6050
6051 /*
6052 * Decompresses a zio read back from an l2arc device. On success, the
6053 * underlying zio's io_data buffer is overwritten by the uncompressed
6054 * version. On decompression error (corrupt compressed stream), the
6055 * zio->io_error value is set to signal an I/O error.
6056 *
6057 * Please note that the compressed data stream is not checksummed, so
6058 * if the underlying device is experiencing data corruption, we may feed
6059 * corrupt data to the decompressor, so the decompressor needs to be
6060 * able to handle this situation (LZ4 does).
6061 */
6062 static void
6063 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6064 {
6065 uint64_t csize;
6066 void *cdata;
6067
6068 ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6069
6070 if (zio->io_error != 0) {
6071 /*
6072 * An io error has occured, just restore the original io
6073 * size in preparation for a main pool read.
6074 */
6075 zio->io_orig_size = zio->io_size = hdr->b_size;
6076 return;
6077 }
6078
6079 if (c == ZIO_COMPRESS_EMPTY) {
6080 /*
6081 * An empty buffer results in a null zio, which means we
6082 * need to fill its io_data after we're done restoring the
6083 * buffer's contents.
6084 */
6085 ASSERT(hdr->b_l1hdr.b_buf != NULL);
6086 bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6087 zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
6088 } else {
6089 ASSERT(zio->io_data != NULL);
6090 /*
6091 * We copy the compressed data from the start of the arc buffer
6092 * (the zio_read will have pulled in only what we need, the
6093 * rest is garbage which we will overwrite at decompression)
6094 * and then decompress back to the ARC data buffer. This way we
6095 * can minimize copying by simply decompressing back over the
6096 * original compressed data (rather than decompressing to an
6097 * aux buffer and then copying back the uncompressed buffer,
6098 * which is likely to be much larger).
6099 */
6100 csize = zio->io_size;
6101 cdata = zio_data_buf_alloc(csize);
6102 bcopy(zio->io_data, cdata, csize);
6103 if (zio_decompress_data(c, cdata, zio->io_data, csize,
6104 hdr->b_size) != 0)
6105 zio->io_error = SET_ERROR(EIO);
6106 zio_data_buf_free(cdata, csize);
6107 }
6108
6109 /* Restore the expected uncompressed IO size. */
6110 zio->io_orig_size = zio->io_size = hdr->b_size;
6111 }
6112
6113 /*
6114 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6115 * This buffer serves as a temporary holder of compressed data while
6116 * the buffer entry is being written to an l2arc device. Once that is
6117 * done, we can dispose of it.
6118 */
6119 static void
6120 l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
6121 {
6122 enum zio_compress comp = HDR_GET_COMPRESS(hdr);
6123
6124 ASSERT(HDR_HAS_L1HDR(hdr));
6125 ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6126
6127 if (comp == ZIO_COMPRESS_OFF) {
6128 /*
6129 * In this case, b_tmp_cdata points to the same buffer
6130 * as the arc_buf_t's b_data field. We don't want to
6131 * free it, since the arc_buf_t will handle that.
6132 */
6133 hdr->b_l1hdr.b_tmp_cdata = NULL;
6134 } else if (comp == ZIO_COMPRESS_EMPTY) {
6135 /*
6136 * In this case, b_tmp_cdata was compressed to an empty
6137 * buffer, thus there's nothing to free and b_tmp_cdata
6138 * should have been set to NULL in l2arc_write_buffers().
6139 */
6140 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6141 } else {
6142 /*
6143 * If the data was compressed, then we've allocated a
6144 * temporary buffer for it, so now we need to release it.
6145 */
6146 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6147 zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
6148 hdr->b_size);
6149 hdr->b_l1hdr.b_tmp_cdata = NULL;
6150 }
6151
6152 }
6153
6154 /*
6155 * This thread feeds the L2ARC at regular intervals. This is the beating
6156 * heart of the L2ARC.
6157 */
6158 static void
6159 l2arc_feed_thread(void)
6160 {
6161 callb_cpr_t cpr;
6162 l2arc_dev_t *dev;
6163 spa_t *spa;
6164 uint64_t size, wrote;
6165 clock_t begin, next = ddi_get_lbolt();
6166 boolean_t headroom_boost = B_FALSE;
6167 fstrans_cookie_t cookie;
6168
6169 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6170
6171 mutex_enter(&l2arc_feed_thr_lock);
6172
6173 cookie = spl_fstrans_mark();
6174 while (l2arc_thread_exit == 0) {
6175 CALLB_CPR_SAFE_BEGIN(&cpr);
6176 (void) cv_timedwait_interruptible(&l2arc_feed_thr_cv,
6177 &l2arc_feed_thr_lock, next);
6178 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
6179 next = ddi_get_lbolt() + hz;
6180
6181 /*
6182 * Quick check for L2ARC devices.
6183 */
6184 mutex_enter(&l2arc_dev_mtx);
6185 if (l2arc_ndev == 0) {
6186 mutex_exit(&l2arc_dev_mtx);
6187 continue;
6188 }
6189 mutex_exit(&l2arc_dev_mtx);
6190 begin = ddi_get_lbolt();
6191
6192 /*
6193 * This selects the next l2arc device to write to, and in
6194 * doing so the next spa to feed from: dev->l2ad_spa. This
6195 * will return NULL if there are now no l2arc devices or if
6196 * they are all faulted.
6197 *
6198 * If a device is returned, its spa's config lock is also
6199 * held to prevent device removal. l2arc_dev_get_next()
6200 * will grab and release l2arc_dev_mtx.
6201 */
6202 if ((dev = l2arc_dev_get_next()) == NULL)
6203 continue;
6204
6205 spa = dev->l2ad_spa;
6206 ASSERT(spa != NULL);
6207
6208 /*
6209 * If the pool is read-only then force the feed thread to
6210 * sleep a little longer.
6211 */
6212 if (!spa_writeable(spa)) {
6213 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6214 spa_config_exit(spa, SCL_L2ARC, dev);
6215 continue;
6216 }
6217
6218 /*
6219 * Avoid contributing to memory pressure.
6220 */
6221 if (arc_no_grow) {
6222 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6223 spa_config_exit(spa, SCL_L2ARC, dev);
6224 continue;
6225 }
6226
6227 ARCSTAT_BUMP(arcstat_l2_feeds);
6228
6229 size = l2arc_write_size();
6230
6231 /*
6232 * Evict L2ARC buffers that will be overwritten.
6233 */
6234 l2arc_evict(dev, size, B_FALSE);
6235
6236 /*
6237 * Write ARC buffers.
6238 */
6239 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
6240
6241 /*
6242 * Calculate interval between writes.
6243 */
6244 next = l2arc_write_interval(begin, size, wrote);
6245 spa_config_exit(spa, SCL_L2ARC, dev);
6246 }
6247 spl_fstrans_unmark(cookie);
6248
6249 l2arc_thread_exit = 0;
6250 cv_broadcast(&l2arc_feed_thr_cv);
6251 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
6252 thread_exit();
6253 }
6254
6255 boolean_t
6256 l2arc_vdev_present(vdev_t *vd)
6257 {
6258 l2arc_dev_t *dev;
6259
6260 mutex_enter(&l2arc_dev_mtx);
6261 for (dev = list_head(l2arc_dev_list); dev != NULL;
6262 dev = list_next(l2arc_dev_list, dev)) {
6263 if (dev->l2ad_vdev == vd)
6264 break;
6265 }
6266 mutex_exit(&l2arc_dev_mtx);
6267
6268 return (dev != NULL);
6269 }
6270
6271 /*
6272 * Add a vdev for use by the L2ARC. By this point the spa has already
6273 * validated the vdev and opened it.
6274 */
6275 void
6276 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
6277 {
6278 l2arc_dev_t *adddev;
6279
6280 ASSERT(!l2arc_vdev_present(vd));
6281
6282 /*
6283 * Create a new l2arc device entry.
6284 */
6285 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
6286 adddev->l2ad_spa = spa;
6287 adddev->l2ad_vdev = vd;
6288 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
6289 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
6290 adddev->l2ad_hand = adddev->l2ad_start;
6291 adddev->l2ad_evict = adddev->l2ad_start;
6292 adddev->l2ad_first = B_TRUE;
6293 adddev->l2ad_writing = B_FALSE;
6294 list_link_init(&adddev->l2ad_node);
6295
6296 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
6297 /*
6298 * This is a list of all ARC buffers that are still valid on the
6299 * device.
6300 */
6301 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
6302 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
6303
6304 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
6305
6306 /*
6307 * Add device to global list
6308 */
6309 mutex_enter(&l2arc_dev_mtx);
6310 list_insert_head(l2arc_dev_list, adddev);
6311 atomic_inc_64(&l2arc_ndev);
6312 mutex_exit(&l2arc_dev_mtx);
6313 }
6314
6315 /*
6316 * Remove a vdev from the L2ARC.
6317 */
6318 void
6319 l2arc_remove_vdev(vdev_t *vd)
6320 {
6321 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
6322
6323 /*
6324 * Find the device by vdev
6325 */
6326 mutex_enter(&l2arc_dev_mtx);
6327 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
6328 nextdev = list_next(l2arc_dev_list, dev);
6329 if (vd == dev->l2ad_vdev) {
6330 remdev = dev;
6331 break;
6332 }
6333 }
6334 ASSERT(remdev != NULL);
6335
6336 /*
6337 * Remove device from global list
6338 */
6339 list_remove(l2arc_dev_list, remdev);
6340 l2arc_dev_last = NULL; /* may have been invalidated */
6341 atomic_dec_64(&l2arc_ndev);
6342 mutex_exit(&l2arc_dev_mtx);
6343
6344 /*
6345 * Clear all buflists and ARC references. L2ARC device flush.
6346 */
6347 l2arc_evict(remdev, 0, B_TRUE);
6348 list_destroy(&remdev->l2ad_buflist);
6349 mutex_destroy(&remdev->l2ad_mtx);
6350 kmem_free(remdev, sizeof (l2arc_dev_t));
6351 }
6352
6353 void
6354 l2arc_init(void)
6355 {
6356 l2arc_thread_exit = 0;
6357 l2arc_ndev = 0;
6358 l2arc_writes_sent = 0;
6359 l2arc_writes_done = 0;
6360
6361 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
6362 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
6363 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
6364 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
6365
6366 l2arc_dev_list = &L2ARC_dev_list;
6367 l2arc_free_on_write = &L2ARC_free_on_write;
6368 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
6369 offsetof(l2arc_dev_t, l2ad_node));
6370 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
6371 offsetof(l2arc_data_free_t, l2df_list_node));
6372 }
6373
6374 void
6375 l2arc_fini(void)
6376 {
6377 /*
6378 * This is called from dmu_fini(), which is called from spa_fini();
6379 * Because of this, we can assume that all l2arc devices have
6380 * already been removed when the pools themselves were removed.
6381 */
6382
6383 l2arc_do_free_on_write();
6384
6385 mutex_destroy(&l2arc_feed_thr_lock);
6386 cv_destroy(&l2arc_feed_thr_cv);
6387 mutex_destroy(&l2arc_dev_mtx);
6388 mutex_destroy(&l2arc_free_on_write_mtx);
6389
6390 list_destroy(l2arc_dev_list);
6391 list_destroy(l2arc_free_on_write);
6392 }
6393
6394 void
6395 l2arc_start(void)
6396 {
6397 if (!(spa_mode_global & FWRITE))
6398 return;
6399
6400 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
6401 TS_RUN, minclsyspri);
6402 }
6403
6404 void
6405 l2arc_stop(void)
6406 {
6407 if (!(spa_mode_global & FWRITE))
6408 return;
6409
6410 mutex_enter(&l2arc_feed_thr_lock);
6411 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
6412 l2arc_thread_exit = 1;
6413 while (l2arc_thread_exit != 0)
6414 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
6415 mutex_exit(&l2arc_feed_thr_lock);
6416 }
6417
6418 #if defined(_KERNEL) && defined(HAVE_SPL)
6419 EXPORT_SYMBOL(arc_buf_size);
6420 EXPORT_SYMBOL(arc_write);
6421 EXPORT_SYMBOL(arc_read);
6422 EXPORT_SYMBOL(arc_buf_remove_ref);
6423 EXPORT_SYMBOL(arc_buf_info);
6424 EXPORT_SYMBOL(arc_getbuf_func);
6425 EXPORT_SYMBOL(arc_add_prune_callback);
6426 EXPORT_SYMBOL(arc_remove_prune_callback);
6427
6428 module_param(zfs_arc_min, ulong, 0644);
6429 MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
6430
6431 module_param(zfs_arc_max, ulong, 0644);
6432 MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
6433
6434 module_param(zfs_arc_meta_limit, ulong, 0644);
6435 MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
6436
6437 module_param(zfs_arc_meta_min, ulong, 0644);
6438 MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
6439
6440 module_param(zfs_arc_meta_prune, int, 0644);
6441 MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
6442
6443 module_param(zfs_arc_meta_adjust_restarts, ulong, 0644);
6444 MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
6445 "Limit number of restarts in arc_adjust_meta");
6446
6447 module_param(zfs_arc_meta_strategy, int, 0644);
6448 MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
6449
6450 module_param(zfs_arc_grow_retry, int, 0644);
6451 MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
6452
6453 module_param(zfs_arc_p_aggressive_disable, int, 0644);
6454 MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
6455
6456 module_param(zfs_arc_p_dampener_disable, int, 0644);
6457 MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
6458
6459 module_param(zfs_arc_shrink_shift, int, 0644);
6460 MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
6461
6462 module_param(zfs_disable_dup_eviction, int, 0644);
6463 MODULE_PARM_DESC(zfs_disable_dup_eviction, "disable duplicate buffer eviction");
6464
6465 module_param(zfs_arc_average_blocksize, int, 0444);
6466 MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
6467
6468 module_param(zfs_arc_memory_throttle_disable, int, 0644);
6469 MODULE_PARM_DESC(zfs_arc_memory_throttle_disable, "disable memory throttle");
6470
6471 module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
6472 MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
6473
6474 module_param(zfs_arc_num_sublists_per_state, int, 0644);
6475 MODULE_PARM_DESC(zfs_arc_num_sublists_per_state,
6476 "Number of sublists used in each of the ARC state lists");
6477
6478 module_param(l2arc_write_max, ulong, 0644);
6479 MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
6480
6481 module_param(l2arc_write_boost, ulong, 0644);
6482 MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
6483
6484 module_param(l2arc_headroom, ulong, 0644);
6485 MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
6486
6487 module_param(l2arc_headroom_boost, ulong, 0644);
6488 MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
6489
6490 module_param(l2arc_feed_secs, ulong, 0644);
6491 MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
6492
6493 module_param(l2arc_feed_min_ms, ulong, 0644);
6494 MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
6495
6496 module_param(l2arc_noprefetch, int, 0644);
6497 MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
6498
6499 module_param(l2arc_nocompress, int, 0644);
6500 MODULE_PARM_DESC(l2arc_nocompress, "Skip compressing L2ARC buffers");
6501
6502 module_param(l2arc_feed_again, int, 0644);
6503 MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
6504
6505 module_param(l2arc_norw, int, 0644);
6506 MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
6507
6508 #endif