]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dbuf.c
Cleanup: Specify unsignedness on things that should not be signed
[mirror_zfs.git] / module / zfs / dbuf.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2019, Klara Inc.
28 * Copyright (c) 2019, Allan Jude
29 */
30
31 #include <sys/zfs_context.h>
32 #include <sys/arc.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_send.h>
35 #include <sys/dmu_impl.h>
36 #include <sys/dbuf.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/spa.h>
42 #include <sys/zio.h>
43 #include <sys/dmu_zfetch.h>
44 #include <sys/sa.h>
45 #include <sys/sa_impl.h>
46 #include <sys/zfeature.h>
47 #include <sys/blkptr.h>
48 #include <sys/range_tree.h>
49 #include <sys/trace_zfs.h>
50 #include <sys/callb.h>
51 #include <sys/abd.h>
52 #include <sys/vdev.h>
53 #include <cityhash.h>
54 #include <sys/spa_impl.h>
55 #include <sys/wmsum.h>
56 #include <sys/vdev_impl.h>
57
58 static kstat_t *dbuf_ksp;
59
60 typedef struct dbuf_stats {
61 /*
62 * Various statistics about the size of the dbuf cache.
63 */
64 kstat_named_t cache_count;
65 kstat_named_t cache_size_bytes;
66 kstat_named_t cache_size_bytes_max;
67 /*
68 * Statistics regarding the bounds on the dbuf cache size.
69 */
70 kstat_named_t cache_target_bytes;
71 kstat_named_t cache_lowater_bytes;
72 kstat_named_t cache_hiwater_bytes;
73 /*
74 * Total number of dbuf cache evictions that have occurred.
75 */
76 kstat_named_t cache_total_evicts;
77 /*
78 * The distribution of dbuf levels in the dbuf cache and
79 * the total size of all dbufs at each level.
80 */
81 kstat_named_t cache_levels[DN_MAX_LEVELS];
82 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
83 /*
84 * Statistics about the dbuf hash table.
85 */
86 kstat_named_t hash_hits;
87 kstat_named_t hash_misses;
88 kstat_named_t hash_collisions;
89 kstat_named_t hash_elements;
90 kstat_named_t hash_elements_max;
91 /*
92 * Number of sublists containing more than one dbuf in the dbuf
93 * hash table. Keep track of the longest hash chain.
94 */
95 kstat_named_t hash_chains;
96 kstat_named_t hash_chain_max;
97 /*
98 * Number of times a dbuf_create() discovers that a dbuf was
99 * already created and in the dbuf hash table.
100 */
101 kstat_named_t hash_insert_race;
102 /*
103 * Number of entries in the hash table dbuf and mutex arrays.
104 */
105 kstat_named_t hash_table_count;
106 kstat_named_t hash_mutex_count;
107 /*
108 * Statistics about the size of the metadata dbuf cache.
109 */
110 kstat_named_t metadata_cache_count;
111 kstat_named_t metadata_cache_size_bytes;
112 kstat_named_t metadata_cache_size_bytes_max;
113 /*
114 * For diagnostic purposes, this is incremented whenever we can't add
115 * something to the metadata cache because it's full, and instead put
116 * the data in the regular dbuf cache.
117 */
118 kstat_named_t metadata_cache_overflow;
119 } dbuf_stats_t;
120
121 dbuf_stats_t dbuf_stats = {
122 { "cache_count", KSTAT_DATA_UINT64 },
123 { "cache_size_bytes", KSTAT_DATA_UINT64 },
124 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
125 { "cache_target_bytes", KSTAT_DATA_UINT64 },
126 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
127 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
128 { "cache_total_evicts", KSTAT_DATA_UINT64 },
129 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
130 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
131 { "hash_hits", KSTAT_DATA_UINT64 },
132 { "hash_misses", KSTAT_DATA_UINT64 },
133 { "hash_collisions", KSTAT_DATA_UINT64 },
134 { "hash_elements", KSTAT_DATA_UINT64 },
135 { "hash_elements_max", KSTAT_DATA_UINT64 },
136 { "hash_chains", KSTAT_DATA_UINT64 },
137 { "hash_chain_max", KSTAT_DATA_UINT64 },
138 { "hash_insert_race", KSTAT_DATA_UINT64 },
139 { "hash_table_count", KSTAT_DATA_UINT64 },
140 { "hash_mutex_count", KSTAT_DATA_UINT64 },
141 { "metadata_cache_count", KSTAT_DATA_UINT64 },
142 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
143 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
144 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
145 };
146
147 struct {
148 wmsum_t cache_count;
149 wmsum_t cache_total_evicts;
150 wmsum_t cache_levels[DN_MAX_LEVELS];
151 wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
152 wmsum_t hash_hits;
153 wmsum_t hash_misses;
154 wmsum_t hash_collisions;
155 wmsum_t hash_chains;
156 wmsum_t hash_insert_race;
157 wmsum_t metadata_cache_count;
158 wmsum_t metadata_cache_overflow;
159 } dbuf_sums;
160
161 #define DBUF_STAT_INCR(stat, val) \
162 wmsum_add(&dbuf_sums.stat, val);
163 #define DBUF_STAT_DECR(stat, val) \
164 DBUF_STAT_INCR(stat, -(val));
165 #define DBUF_STAT_BUMP(stat) \
166 DBUF_STAT_INCR(stat, 1);
167 #define DBUF_STAT_BUMPDOWN(stat) \
168 DBUF_STAT_INCR(stat, -1);
169 #define DBUF_STAT_MAX(stat, v) { \
170 uint64_t _m; \
171 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
172 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
173 continue; \
174 }
175
176 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
177 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
178 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
179 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags);
180
181 /*
182 * Global data structures and functions for the dbuf cache.
183 */
184 static kmem_cache_t *dbuf_kmem_cache;
185 static taskq_t *dbu_evict_taskq;
186
187 static kthread_t *dbuf_cache_evict_thread;
188 static kmutex_t dbuf_evict_lock;
189 static kcondvar_t dbuf_evict_cv;
190 static boolean_t dbuf_evict_thread_exit;
191
192 /*
193 * There are two dbuf caches; each dbuf can only be in one of them at a time.
194 *
195 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
196 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
197 * that represent the metadata that describes filesystems/snapshots/
198 * bookmarks/properties/etc. We only evict from this cache when we export a
199 * pool, to short-circuit as much I/O as possible for all administrative
200 * commands that need the metadata. There is no eviction policy for this
201 * cache, because we try to only include types in it which would occupy a
202 * very small amount of space per object but create a large impact on the
203 * performance of these commands. Instead, after it reaches a maximum size
204 * (which should only happen on very small memory systems with a very large
205 * number of filesystem objects), we stop taking new dbufs into the
206 * metadata cache, instead putting them in the normal dbuf cache.
207 *
208 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
209 * are not currently held but have been recently released. These dbufs
210 * are not eligible for arc eviction until they are aged out of the cache.
211 * Dbufs that are aged out of the cache will be immediately destroyed and
212 * become eligible for arc eviction.
213 *
214 * Dbufs are added to these caches once the last hold is released. If a dbuf is
215 * later accessed and still exists in the dbuf cache, then it will be removed
216 * from the cache and later re-added to the head of the cache.
217 *
218 * If a given dbuf meets the requirements for the metadata cache, it will go
219 * there, otherwise it will be considered for the generic LRU dbuf cache. The
220 * caches and the refcounts tracking their sizes are stored in an array indexed
221 * by those caches' matching enum values (from dbuf_cached_state_t).
222 */
223 typedef struct dbuf_cache {
224 multilist_t cache;
225 zfs_refcount_t size ____cacheline_aligned;
226 } dbuf_cache_t;
227 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
228
229 /* Size limits for the caches */
230 static unsigned long dbuf_cache_max_bytes = ULONG_MAX;
231 static unsigned long dbuf_metadata_cache_max_bytes = ULONG_MAX;
232
233 /* Set the default sizes of the caches to log2 fraction of arc size */
234 static uint_t dbuf_cache_shift = 5;
235 static uint_t dbuf_metadata_cache_shift = 6;
236
237 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
238 static uint_t dbuf_mutex_cache_shift = 0;
239
240 static unsigned long dbuf_cache_target_bytes(void);
241 static unsigned long dbuf_metadata_cache_target_bytes(void);
242
243 /*
244 * The LRU dbuf cache uses a three-stage eviction policy:
245 * - A low water marker designates when the dbuf eviction thread
246 * should stop evicting from the dbuf cache.
247 * - When we reach the maximum size (aka mid water mark), we
248 * signal the eviction thread to run.
249 * - The high water mark indicates when the eviction thread
250 * is unable to keep up with the incoming load and eviction must
251 * happen in the context of the calling thread.
252 *
253 * The dbuf cache:
254 * (max size)
255 * low water mid water hi water
256 * +----------------------------------------+----------+----------+
257 * | | | |
258 * | | | |
259 * | | | |
260 * | | | |
261 * +----------------------------------------+----------+----------+
262 * stop signal evict
263 * evicting eviction directly
264 * thread
265 *
266 * The high and low water marks indicate the operating range for the eviction
267 * thread. The low water mark is, by default, 90% of the total size of the
268 * cache and the high water mark is at 110% (both of these percentages can be
269 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
270 * respectively). The eviction thread will try to ensure that the cache remains
271 * within this range by waking up every second and checking if the cache is
272 * above the low water mark. The thread can also be woken up by callers adding
273 * elements into the cache if the cache is larger than the mid water (i.e max
274 * cache size). Once the eviction thread is woken up and eviction is required,
275 * it will continue evicting buffers until it's able to reduce the cache size
276 * to the low water mark. If the cache size continues to grow and hits the high
277 * water mark, then callers adding elements to the cache will begin to evict
278 * directly from the cache until the cache is no longer above the high water
279 * mark.
280 */
281
282 /*
283 * The percentage above and below the maximum cache size.
284 */
285 static uint_t dbuf_cache_hiwater_pct = 10;
286 static uint_t dbuf_cache_lowater_pct = 10;
287
288 static int
289 dbuf_cons(void *vdb, void *unused, int kmflag)
290 {
291 (void) unused, (void) kmflag;
292 dmu_buf_impl_t *db = vdb;
293 memset(db, 0, sizeof (dmu_buf_impl_t));
294
295 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
296 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL);
297 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
298 multilist_link_init(&db->db_cache_link);
299 zfs_refcount_create(&db->db_holds);
300
301 return (0);
302 }
303
304 static void
305 dbuf_dest(void *vdb, void *unused)
306 {
307 (void) unused;
308 dmu_buf_impl_t *db = vdb;
309 mutex_destroy(&db->db_mtx);
310 rw_destroy(&db->db_rwlock);
311 cv_destroy(&db->db_changed);
312 ASSERT(!multilist_link_active(&db->db_cache_link));
313 zfs_refcount_destroy(&db->db_holds);
314 }
315
316 /*
317 * dbuf hash table routines
318 */
319 static dbuf_hash_table_t dbuf_hash_table;
320
321 /*
322 * We use Cityhash for this. It's fast, and has good hash properties without
323 * requiring any large static buffers.
324 */
325 static uint64_t
326 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
327 {
328 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
329 }
330
331 #define DTRACE_SET_STATE(db, why) \
332 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \
333 const char *, why)
334
335 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
336 ((dbuf)->db.db_object == (obj) && \
337 (dbuf)->db_objset == (os) && \
338 (dbuf)->db_level == (level) && \
339 (dbuf)->db_blkid == (blkid))
340
341 dmu_buf_impl_t *
342 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
343 {
344 dbuf_hash_table_t *h = &dbuf_hash_table;
345 uint64_t hv;
346 uint64_t idx;
347 dmu_buf_impl_t *db;
348
349 hv = dbuf_hash(os, obj, level, blkid);
350 idx = hv & h->hash_table_mask;
351
352 mutex_enter(DBUF_HASH_MUTEX(h, idx));
353 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
354 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
355 mutex_enter(&db->db_mtx);
356 if (db->db_state != DB_EVICTING) {
357 mutex_exit(DBUF_HASH_MUTEX(h, idx));
358 return (db);
359 }
360 mutex_exit(&db->db_mtx);
361 }
362 }
363 mutex_exit(DBUF_HASH_MUTEX(h, idx));
364 return (NULL);
365 }
366
367 static dmu_buf_impl_t *
368 dbuf_find_bonus(objset_t *os, uint64_t object)
369 {
370 dnode_t *dn;
371 dmu_buf_impl_t *db = NULL;
372
373 if (dnode_hold(os, object, FTAG, &dn) == 0) {
374 rw_enter(&dn->dn_struct_rwlock, RW_READER);
375 if (dn->dn_bonus != NULL) {
376 db = dn->dn_bonus;
377 mutex_enter(&db->db_mtx);
378 }
379 rw_exit(&dn->dn_struct_rwlock);
380 dnode_rele(dn, FTAG);
381 }
382 return (db);
383 }
384
385 /*
386 * Insert an entry into the hash table. If there is already an element
387 * equal to elem in the hash table, then the already existing element
388 * will be returned and the new element will not be inserted.
389 * Otherwise returns NULL.
390 */
391 static dmu_buf_impl_t *
392 dbuf_hash_insert(dmu_buf_impl_t *db)
393 {
394 dbuf_hash_table_t *h = &dbuf_hash_table;
395 objset_t *os = db->db_objset;
396 uint64_t obj = db->db.db_object;
397 int level = db->db_level;
398 uint64_t blkid, hv, idx;
399 dmu_buf_impl_t *dbf;
400 uint32_t i;
401
402 blkid = db->db_blkid;
403 hv = dbuf_hash(os, obj, level, blkid);
404 idx = hv & h->hash_table_mask;
405
406 mutex_enter(DBUF_HASH_MUTEX(h, idx));
407 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
408 dbf = dbf->db_hash_next, i++) {
409 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
410 mutex_enter(&dbf->db_mtx);
411 if (dbf->db_state != DB_EVICTING) {
412 mutex_exit(DBUF_HASH_MUTEX(h, idx));
413 return (dbf);
414 }
415 mutex_exit(&dbf->db_mtx);
416 }
417 }
418
419 if (i > 0) {
420 DBUF_STAT_BUMP(hash_collisions);
421 if (i == 1)
422 DBUF_STAT_BUMP(hash_chains);
423
424 DBUF_STAT_MAX(hash_chain_max, i);
425 }
426
427 mutex_enter(&db->db_mtx);
428 db->db_hash_next = h->hash_table[idx];
429 h->hash_table[idx] = db;
430 mutex_exit(DBUF_HASH_MUTEX(h, idx));
431 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64);
432 DBUF_STAT_MAX(hash_elements_max, he);
433
434 return (NULL);
435 }
436
437 /*
438 * This returns whether this dbuf should be stored in the metadata cache, which
439 * is based on whether it's from one of the dnode types that store data related
440 * to traversing dataset hierarchies.
441 */
442 static boolean_t
443 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
444 {
445 DB_DNODE_ENTER(db);
446 dmu_object_type_t type = DB_DNODE(db)->dn_type;
447 DB_DNODE_EXIT(db);
448
449 /* Check if this dbuf is one of the types we care about */
450 if (DMU_OT_IS_METADATA_CACHED(type)) {
451 /* If we hit this, then we set something up wrong in dmu_ot */
452 ASSERT(DMU_OT_IS_METADATA(type));
453
454 /*
455 * Sanity check for small-memory systems: don't allocate too
456 * much memory for this purpose.
457 */
458 if (zfs_refcount_count(
459 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
460 dbuf_metadata_cache_target_bytes()) {
461 DBUF_STAT_BUMP(metadata_cache_overflow);
462 return (B_FALSE);
463 }
464
465 return (B_TRUE);
466 }
467
468 return (B_FALSE);
469 }
470
471 /*
472 * Remove an entry from the hash table. It must be in the EVICTING state.
473 */
474 static void
475 dbuf_hash_remove(dmu_buf_impl_t *db)
476 {
477 dbuf_hash_table_t *h = &dbuf_hash_table;
478 uint64_t hv, idx;
479 dmu_buf_impl_t *dbf, **dbp;
480
481 hv = dbuf_hash(db->db_objset, db->db.db_object,
482 db->db_level, db->db_blkid);
483 idx = hv & h->hash_table_mask;
484
485 /*
486 * We mustn't hold db_mtx to maintain lock ordering:
487 * DBUF_HASH_MUTEX > db_mtx.
488 */
489 ASSERT(zfs_refcount_is_zero(&db->db_holds));
490 ASSERT(db->db_state == DB_EVICTING);
491 ASSERT(!MUTEX_HELD(&db->db_mtx));
492
493 mutex_enter(DBUF_HASH_MUTEX(h, idx));
494 dbp = &h->hash_table[idx];
495 while ((dbf = *dbp) != db) {
496 dbp = &dbf->db_hash_next;
497 ASSERT(dbf != NULL);
498 }
499 *dbp = db->db_hash_next;
500 db->db_hash_next = NULL;
501 if (h->hash_table[idx] &&
502 h->hash_table[idx]->db_hash_next == NULL)
503 DBUF_STAT_BUMPDOWN(hash_chains);
504 mutex_exit(DBUF_HASH_MUTEX(h, idx));
505 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64);
506 }
507
508 typedef enum {
509 DBVU_EVICTING,
510 DBVU_NOT_EVICTING
511 } dbvu_verify_type_t;
512
513 static void
514 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
515 {
516 #ifdef ZFS_DEBUG
517 int64_t holds;
518
519 if (db->db_user == NULL)
520 return;
521
522 /* Only data blocks support the attachment of user data. */
523 ASSERT(db->db_level == 0);
524
525 /* Clients must resolve a dbuf before attaching user data. */
526 ASSERT(db->db.db_data != NULL);
527 ASSERT3U(db->db_state, ==, DB_CACHED);
528
529 holds = zfs_refcount_count(&db->db_holds);
530 if (verify_type == DBVU_EVICTING) {
531 /*
532 * Immediate eviction occurs when holds == dirtycnt.
533 * For normal eviction buffers, holds is zero on
534 * eviction, except when dbuf_fix_old_data() calls
535 * dbuf_clear_data(). However, the hold count can grow
536 * during eviction even though db_mtx is held (see
537 * dmu_bonus_hold() for an example), so we can only
538 * test the generic invariant that holds >= dirtycnt.
539 */
540 ASSERT3U(holds, >=, db->db_dirtycnt);
541 } else {
542 if (db->db_user_immediate_evict == TRUE)
543 ASSERT3U(holds, >=, db->db_dirtycnt);
544 else
545 ASSERT3U(holds, >, 0);
546 }
547 #endif
548 }
549
550 static void
551 dbuf_evict_user(dmu_buf_impl_t *db)
552 {
553 dmu_buf_user_t *dbu = db->db_user;
554
555 ASSERT(MUTEX_HELD(&db->db_mtx));
556
557 if (dbu == NULL)
558 return;
559
560 dbuf_verify_user(db, DBVU_EVICTING);
561 db->db_user = NULL;
562
563 #ifdef ZFS_DEBUG
564 if (dbu->dbu_clear_on_evict_dbufp != NULL)
565 *dbu->dbu_clear_on_evict_dbufp = NULL;
566 #endif
567
568 /*
569 * There are two eviction callbacks - one that we call synchronously
570 * and one that we invoke via a taskq. The async one is useful for
571 * avoiding lock order reversals and limiting stack depth.
572 *
573 * Note that if we have a sync callback but no async callback,
574 * it's likely that the sync callback will free the structure
575 * containing the dbu. In that case we need to take care to not
576 * dereference dbu after calling the sync evict func.
577 */
578 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
579
580 if (dbu->dbu_evict_func_sync != NULL)
581 dbu->dbu_evict_func_sync(dbu);
582
583 if (has_async) {
584 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
585 dbu, 0, &dbu->dbu_tqent);
586 }
587 }
588
589 boolean_t
590 dbuf_is_metadata(dmu_buf_impl_t *db)
591 {
592 /*
593 * Consider indirect blocks and spill blocks to be meta data.
594 */
595 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
596 return (B_TRUE);
597 } else {
598 boolean_t is_metadata;
599
600 DB_DNODE_ENTER(db);
601 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
602 DB_DNODE_EXIT(db);
603
604 return (is_metadata);
605 }
606 }
607
608 /*
609 * We want to exclude buffers that are on a special allocation class from
610 * L2ARC.
611 */
612 boolean_t
613 dbuf_is_l2cacheable(dmu_buf_impl_t *db)
614 {
615 vdev_t *vd = NULL;
616 zfs_cache_type_t cache = db->db_objset->os_secondary_cache;
617 blkptr_t *bp = db->db_blkptr;
618
619 if (bp != NULL && !BP_IS_HOLE(bp)) {
620 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
621 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
622
623 if (vdev < rvd->vdev_children)
624 vd = rvd->vdev_child[vdev];
625
626 if (cache == ZFS_CACHE_ALL ||
627 (dbuf_is_metadata(db) && cache == ZFS_CACHE_METADATA)) {
628 if (vd == NULL)
629 return (B_TRUE);
630
631 if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
632 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) ||
633 l2arc_exclude_special == 0)
634 return (B_TRUE);
635 }
636 }
637
638 return (B_FALSE);
639 }
640
641 static inline boolean_t
642 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
643 {
644 vdev_t *vd = NULL;
645 zfs_cache_type_t cache = dn->dn_objset->os_secondary_cache;
646
647 if (bp != NULL && !BP_IS_HOLE(bp)) {
648 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
649 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
650
651 if (vdev < rvd->vdev_children)
652 vd = rvd->vdev_child[vdev];
653
654 if (cache == ZFS_CACHE_ALL || ((level > 0 ||
655 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)) &&
656 cache == ZFS_CACHE_METADATA)) {
657 if (vd == NULL)
658 return (B_TRUE);
659
660 if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
661 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) ||
662 l2arc_exclude_special == 0)
663 return (B_TRUE);
664 }
665 }
666
667 return (B_FALSE);
668 }
669
670
671 /*
672 * This function *must* return indices evenly distributed between all
673 * sublists of the multilist. This is needed due to how the dbuf eviction
674 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
675 * distributed between all sublists and uses this assumption when
676 * deciding which sublist to evict from and how much to evict from it.
677 */
678 static unsigned int
679 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
680 {
681 dmu_buf_impl_t *db = obj;
682
683 /*
684 * The assumption here, is the hash value for a given
685 * dmu_buf_impl_t will remain constant throughout it's lifetime
686 * (i.e. it's objset, object, level and blkid fields don't change).
687 * Thus, we don't need to store the dbuf's sublist index
688 * on insertion, as this index can be recalculated on removal.
689 *
690 * Also, the low order bits of the hash value are thought to be
691 * distributed evenly. Otherwise, in the case that the multilist
692 * has a power of two number of sublists, each sublists' usage
693 * would not be evenly distributed. In this context full 64bit
694 * division would be a waste of time, so limit it to 32 bits.
695 */
696 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
697 db->db_level, db->db_blkid) %
698 multilist_get_num_sublists(ml));
699 }
700
701 /*
702 * The target size of the dbuf cache can grow with the ARC target,
703 * unless limited by the tunable dbuf_cache_max_bytes.
704 */
705 static inline unsigned long
706 dbuf_cache_target_bytes(void)
707 {
708 return (MIN(dbuf_cache_max_bytes,
709 arc_target_bytes() >> dbuf_cache_shift));
710 }
711
712 /*
713 * The target size of the dbuf metadata cache can grow with the ARC target,
714 * unless limited by the tunable dbuf_metadata_cache_max_bytes.
715 */
716 static inline unsigned long
717 dbuf_metadata_cache_target_bytes(void)
718 {
719 return (MIN(dbuf_metadata_cache_max_bytes,
720 arc_target_bytes() >> dbuf_metadata_cache_shift));
721 }
722
723 static inline uint64_t
724 dbuf_cache_hiwater_bytes(void)
725 {
726 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
727 return (dbuf_cache_target +
728 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
729 }
730
731 static inline uint64_t
732 dbuf_cache_lowater_bytes(void)
733 {
734 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
735 return (dbuf_cache_target -
736 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
737 }
738
739 static inline boolean_t
740 dbuf_cache_above_lowater(void)
741 {
742 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
743 dbuf_cache_lowater_bytes());
744 }
745
746 /*
747 * Evict the oldest eligible dbuf from the dbuf cache.
748 */
749 static void
750 dbuf_evict_one(void)
751 {
752 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
753 multilist_sublist_t *mls = multilist_sublist_lock(
754 &dbuf_caches[DB_DBUF_CACHE].cache, idx);
755
756 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
757
758 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
759 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
760 db = multilist_sublist_prev(mls, db);
761 }
762
763 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
764 multilist_sublist_t *, mls);
765
766 if (db != NULL) {
767 multilist_sublist_remove(mls, db);
768 multilist_sublist_unlock(mls);
769 (void) zfs_refcount_remove_many(
770 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db);
771 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
772 DBUF_STAT_BUMPDOWN(cache_count);
773 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
774 db->db.db_size);
775 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
776 db->db_caching_status = DB_NO_CACHE;
777 dbuf_destroy(db);
778 DBUF_STAT_BUMP(cache_total_evicts);
779 } else {
780 multilist_sublist_unlock(mls);
781 }
782 }
783
784 /*
785 * The dbuf evict thread is responsible for aging out dbufs from the
786 * cache. Once the cache has reached it's maximum size, dbufs are removed
787 * and destroyed. The eviction thread will continue running until the size
788 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
789 * out of the cache it is destroyed and becomes eligible for arc eviction.
790 */
791 static __attribute__((noreturn)) void
792 dbuf_evict_thread(void *unused)
793 {
794 (void) unused;
795 callb_cpr_t cpr;
796
797 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
798
799 mutex_enter(&dbuf_evict_lock);
800 while (!dbuf_evict_thread_exit) {
801 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
802 CALLB_CPR_SAFE_BEGIN(&cpr);
803 (void) cv_timedwait_idle_hires(&dbuf_evict_cv,
804 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
805 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
806 }
807 mutex_exit(&dbuf_evict_lock);
808
809 /*
810 * Keep evicting as long as we're above the low water mark
811 * for the cache. We do this without holding the locks to
812 * minimize lock contention.
813 */
814 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
815 dbuf_evict_one();
816 }
817
818 mutex_enter(&dbuf_evict_lock);
819 }
820
821 dbuf_evict_thread_exit = B_FALSE;
822 cv_broadcast(&dbuf_evict_cv);
823 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
824 thread_exit();
825 }
826
827 /*
828 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
829 * If the dbuf cache is at its high water mark, then evict a dbuf from the
830 * dbuf cache using the caller's context.
831 */
832 static void
833 dbuf_evict_notify(uint64_t size)
834 {
835 /*
836 * We check if we should evict without holding the dbuf_evict_lock,
837 * because it's OK to occasionally make the wrong decision here,
838 * and grabbing the lock results in massive lock contention.
839 */
840 if (size > dbuf_cache_target_bytes()) {
841 if (size > dbuf_cache_hiwater_bytes())
842 dbuf_evict_one();
843 cv_signal(&dbuf_evict_cv);
844 }
845 }
846
847 static int
848 dbuf_kstat_update(kstat_t *ksp, int rw)
849 {
850 dbuf_stats_t *ds = ksp->ks_data;
851 dbuf_hash_table_t *h = &dbuf_hash_table;
852
853 if (rw == KSTAT_WRITE)
854 return (SET_ERROR(EACCES));
855
856 ds->cache_count.value.ui64 =
857 wmsum_value(&dbuf_sums.cache_count);
858 ds->cache_size_bytes.value.ui64 =
859 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
860 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
861 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
862 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
863 ds->cache_total_evicts.value.ui64 =
864 wmsum_value(&dbuf_sums.cache_total_evicts);
865 for (int i = 0; i < DN_MAX_LEVELS; i++) {
866 ds->cache_levels[i].value.ui64 =
867 wmsum_value(&dbuf_sums.cache_levels[i]);
868 ds->cache_levels_bytes[i].value.ui64 =
869 wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
870 }
871 ds->hash_hits.value.ui64 =
872 wmsum_value(&dbuf_sums.hash_hits);
873 ds->hash_misses.value.ui64 =
874 wmsum_value(&dbuf_sums.hash_misses);
875 ds->hash_collisions.value.ui64 =
876 wmsum_value(&dbuf_sums.hash_collisions);
877 ds->hash_chains.value.ui64 =
878 wmsum_value(&dbuf_sums.hash_chains);
879 ds->hash_insert_race.value.ui64 =
880 wmsum_value(&dbuf_sums.hash_insert_race);
881 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
882 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
883 ds->metadata_cache_count.value.ui64 =
884 wmsum_value(&dbuf_sums.metadata_cache_count);
885 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
886 &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
887 ds->metadata_cache_overflow.value.ui64 =
888 wmsum_value(&dbuf_sums.metadata_cache_overflow);
889 return (0);
890 }
891
892 void
893 dbuf_init(void)
894 {
895 uint64_t hmsize, hsize = 1ULL << 16;
896 dbuf_hash_table_t *h = &dbuf_hash_table;
897
898 /*
899 * The hash table is big enough to fill one eighth of physical memory
900 * with an average block size of zfs_arc_average_blocksize (default 8K).
901 * By default, the table will take up
902 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
903 */
904 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
905 hsize <<= 1;
906
907 h->hash_table = NULL;
908 while (h->hash_table == NULL) {
909 h->hash_table_mask = hsize - 1;
910
911 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
912 if (h->hash_table == NULL)
913 hsize >>= 1;
914
915 ASSERT3U(hsize, >=, 1ULL << 10);
916 }
917
918 /*
919 * The hash table buckets are protected by an array of mutexes where
920 * each mutex is reponsible for protecting 128 buckets. A minimum
921 * array size of 8192 is targeted to avoid contention.
922 */
923 if (dbuf_mutex_cache_shift == 0)
924 hmsize = MAX(hsize >> 7, 1ULL << 13);
925 else
926 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);
927
928 h->hash_mutexes = NULL;
929 while (h->hash_mutexes == NULL) {
930 h->hash_mutex_mask = hmsize - 1;
931
932 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
933 KM_SLEEP);
934 if (h->hash_mutexes == NULL)
935 hmsize >>= 1;
936 }
937
938 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
939 sizeof (dmu_buf_impl_t),
940 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
941
942 for (int i = 0; i < hmsize; i++)
943 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
944
945 dbuf_stats_init(h);
946
947 /*
948 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
949 * configuration is not required.
950 */
951 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
952
953 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
954 multilist_create(&dbuf_caches[dcs].cache,
955 sizeof (dmu_buf_impl_t),
956 offsetof(dmu_buf_impl_t, db_cache_link),
957 dbuf_cache_multilist_index_func);
958 zfs_refcount_create(&dbuf_caches[dcs].size);
959 }
960
961 dbuf_evict_thread_exit = B_FALSE;
962 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
963 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
964 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
965 NULL, 0, &p0, TS_RUN, minclsyspri);
966
967 wmsum_init(&dbuf_sums.cache_count, 0);
968 wmsum_init(&dbuf_sums.cache_total_evicts, 0);
969 for (int i = 0; i < DN_MAX_LEVELS; i++) {
970 wmsum_init(&dbuf_sums.cache_levels[i], 0);
971 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
972 }
973 wmsum_init(&dbuf_sums.hash_hits, 0);
974 wmsum_init(&dbuf_sums.hash_misses, 0);
975 wmsum_init(&dbuf_sums.hash_collisions, 0);
976 wmsum_init(&dbuf_sums.hash_chains, 0);
977 wmsum_init(&dbuf_sums.hash_insert_race, 0);
978 wmsum_init(&dbuf_sums.metadata_cache_count, 0);
979 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
980
981 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
982 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
983 KSTAT_FLAG_VIRTUAL);
984 if (dbuf_ksp != NULL) {
985 for (int i = 0; i < DN_MAX_LEVELS; i++) {
986 snprintf(dbuf_stats.cache_levels[i].name,
987 KSTAT_STRLEN, "cache_level_%d", i);
988 dbuf_stats.cache_levels[i].data_type =
989 KSTAT_DATA_UINT64;
990 snprintf(dbuf_stats.cache_levels_bytes[i].name,
991 KSTAT_STRLEN, "cache_level_%d_bytes", i);
992 dbuf_stats.cache_levels_bytes[i].data_type =
993 KSTAT_DATA_UINT64;
994 }
995 dbuf_ksp->ks_data = &dbuf_stats;
996 dbuf_ksp->ks_update = dbuf_kstat_update;
997 kstat_install(dbuf_ksp);
998 }
999 }
1000
1001 void
1002 dbuf_fini(void)
1003 {
1004 dbuf_hash_table_t *h = &dbuf_hash_table;
1005
1006 dbuf_stats_destroy();
1007
1008 for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
1009 mutex_destroy(&h->hash_mutexes[i]);
1010
1011 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
1012 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
1013 sizeof (kmutex_t));
1014
1015 kmem_cache_destroy(dbuf_kmem_cache);
1016 taskq_destroy(dbu_evict_taskq);
1017
1018 mutex_enter(&dbuf_evict_lock);
1019 dbuf_evict_thread_exit = B_TRUE;
1020 while (dbuf_evict_thread_exit) {
1021 cv_signal(&dbuf_evict_cv);
1022 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1023 }
1024 mutex_exit(&dbuf_evict_lock);
1025
1026 mutex_destroy(&dbuf_evict_lock);
1027 cv_destroy(&dbuf_evict_cv);
1028
1029 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1030 zfs_refcount_destroy(&dbuf_caches[dcs].size);
1031 multilist_destroy(&dbuf_caches[dcs].cache);
1032 }
1033
1034 if (dbuf_ksp != NULL) {
1035 kstat_delete(dbuf_ksp);
1036 dbuf_ksp = NULL;
1037 }
1038
1039 wmsum_fini(&dbuf_sums.cache_count);
1040 wmsum_fini(&dbuf_sums.cache_total_evicts);
1041 for (int i = 0; i < DN_MAX_LEVELS; i++) {
1042 wmsum_fini(&dbuf_sums.cache_levels[i]);
1043 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1044 }
1045 wmsum_fini(&dbuf_sums.hash_hits);
1046 wmsum_fini(&dbuf_sums.hash_misses);
1047 wmsum_fini(&dbuf_sums.hash_collisions);
1048 wmsum_fini(&dbuf_sums.hash_chains);
1049 wmsum_fini(&dbuf_sums.hash_insert_race);
1050 wmsum_fini(&dbuf_sums.metadata_cache_count);
1051 wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1052 }
1053
1054 /*
1055 * Other stuff.
1056 */
1057
1058 #ifdef ZFS_DEBUG
1059 static void
1060 dbuf_verify(dmu_buf_impl_t *db)
1061 {
1062 dnode_t *dn;
1063 dbuf_dirty_record_t *dr;
1064 uint32_t txg_prev;
1065
1066 ASSERT(MUTEX_HELD(&db->db_mtx));
1067
1068 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1069 return;
1070
1071 ASSERT(db->db_objset != NULL);
1072 DB_DNODE_ENTER(db);
1073 dn = DB_DNODE(db);
1074 if (dn == NULL) {
1075 ASSERT(db->db_parent == NULL);
1076 ASSERT(db->db_blkptr == NULL);
1077 } else {
1078 ASSERT3U(db->db.db_object, ==, dn->dn_object);
1079 ASSERT3P(db->db_objset, ==, dn->dn_objset);
1080 ASSERT3U(db->db_level, <, dn->dn_nlevels);
1081 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1082 db->db_blkid == DMU_SPILL_BLKID ||
1083 !avl_is_empty(&dn->dn_dbufs));
1084 }
1085 if (db->db_blkid == DMU_BONUS_BLKID) {
1086 ASSERT(dn != NULL);
1087 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1088 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1089 } else if (db->db_blkid == DMU_SPILL_BLKID) {
1090 ASSERT(dn != NULL);
1091 ASSERT0(db->db.db_offset);
1092 } else {
1093 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1094 }
1095
1096 if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1097 ASSERT(dr->dr_dbuf == db);
1098 txg_prev = dr->dr_txg;
1099 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1100 dr = list_next(&db->db_dirty_records, dr)) {
1101 ASSERT(dr->dr_dbuf == db);
1102 ASSERT(txg_prev > dr->dr_txg);
1103 txg_prev = dr->dr_txg;
1104 }
1105 }
1106
1107 /*
1108 * We can't assert that db_size matches dn_datablksz because it
1109 * can be momentarily different when another thread is doing
1110 * dnode_set_blksz().
1111 */
1112 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1113 dr = db->db_data_pending;
1114 /*
1115 * It should only be modified in syncing context, so
1116 * make sure we only have one copy of the data.
1117 */
1118 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1119 }
1120
1121 /* verify db->db_blkptr */
1122 if (db->db_blkptr) {
1123 if (db->db_parent == dn->dn_dbuf) {
1124 /* db is pointed to by the dnode */
1125 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1126 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1127 ASSERT(db->db_parent == NULL);
1128 else
1129 ASSERT(db->db_parent != NULL);
1130 if (db->db_blkid != DMU_SPILL_BLKID)
1131 ASSERT3P(db->db_blkptr, ==,
1132 &dn->dn_phys->dn_blkptr[db->db_blkid]);
1133 } else {
1134 /* db is pointed to by an indirect block */
1135 int epb __maybe_unused = db->db_parent->db.db_size >>
1136 SPA_BLKPTRSHIFT;
1137 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1138 ASSERT3U(db->db_parent->db.db_object, ==,
1139 db->db.db_object);
1140 /*
1141 * dnode_grow_indblksz() can make this fail if we don't
1142 * have the parent's rwlock. XXX indblksz no longer
1143 * grows. safe to do this now?
1144 */
1145 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
1146 ASSERT3P(db->db_blkptr, ==,
1147 ((blkptr_t *)db->db_parent->db.db_data +
1148 db->db_blkid % epb));
1149 }
1150 }
1151 }
1152 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1153 (db->db_buf == NULL || db->db_buf->b_data) &&
1154 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1155 db->db_state != DB_FILL && !dn->dn_free_txg) {
1156 /*
1157 * If the blkptr isn't set but they have nonzero data,
1158 * it had better be dirty, otherwise we'll lose that
1159 * data when we evict this buffer.
1160 *
1161 * There is an exception to this rule for indirect blocks; in
1162 * this case, if the indirect block is a hole, we fill in a few
1163 * fields on each of the child blocks (importantly, birth time)
1164 * to prevent hole birth times from being lost when you
1165 * partially fill in a hole.
1166 */
1167 if (db->db_dirtycnt == 0) {
1168 if (db->db_level == 0) {
1169 uint64_t *buf = db->db.db_data;
1170 int i;
1171
1172 for (i = 0; i < db->db.db_size >> 3; i++) {
1173 ASSERT(buf[i] == 0);
1174 }
1175 } else {
1176 blkptr_t *bps = db->db.db_data;
1177 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1178 db->db.db_size);
1179 /*
1180 * We want to verify that all the blkptrs in the
1181 * indirect block are holes, but we may have
1182 * automatically set up a few fields for them.
1183 * We iterate through each blkptr and verify
1184 * they only have those fields set.
1185 */
1186 for (int i = 0;
1187 i < db->db.db_size / sizeof (blkptr_t);
1188 i++) {
1189 blkptr_t *bp = &bps[i];
1190 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1191 &bp->blk_cksum));
1192 ASSERT(
1193 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1194 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1195 DVA_IS_EMPTY(&bp->blk_dva[2]));
1196 ASSERT0(bp->blk_fill);
1197 ASSERT0(bp->blk_pad[0]);
1198 ASSERT0(bp->blk_pad[1]);
1199 ASSERT(!BP_IS_EMBEDDED(bp));
1200 ASSERT(BP_IS_HOLE(bp));
1201 ASSERT0(bp->blk_phys_birth);
1202 }
1203 }
1204 }
1205 }
1206 DB_DNODE_EXIT(db);
1207 }
1208 #endif
1209
1210 static void
1211 dbuf_clear_data(dmu_buf_impl_t *db)
1212 {
1213 ASSERT(MUTEX_HELD(&db->db_mtx));
1214 dbuf_evict_user(db);
1215 ASSERT3P(db->db_buf, ==, NULL);
1216 db->db.db_data = NULL;
1217 if (db->db_state != DB_NOFILL) {
1218 db->db_state = DB_UNCACHED;
1219 DTRACE_SET_STATE(db, "clear data");
1220 }
1221 }
1222
1223 static void
1224 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1225 {
1226 ASSERT(MUTEX_HELD(&db->db_mtx));
1227 ASSERT(buf != NULL);
1228
1229 db->db_buf = buf;
1230 ASSERT(buf->b_data != NULL);
1231 db->db.db_data = buf->b_data;
1232 }
1233
1234 static arc_buf_t *
1235 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1236 {
1237 spa_t *spa = db->db_objset->os_spa;
1238
1239 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1240 }
1241
1242 /*
1243 * Loan out an arc_buf for read. Return the loaned arc_buf.
1244 */
1245 arc_buf_t *
1246 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1247 {
1248 arc_buf_t *abuf;
1249
1250 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1251 mutex_enter(&db->db_mtx);
1252 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1253 int blksz = db->db.db_size;
1254 spa_t *spa = db->db_objset->os_spa;
1255
1256 mutex_exit(&db->db_mtx);
1257 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1258 memcpy(abuf->b_data, db->db.db_data, blksz);
1259 } else {
1260 abuf = db->db_buf;
1261 arc_loan_inuse_buf(abuf, db);
1262 db->db_buf = NULL;
1263 dbuf_clear_data(db);
1264 mutex_exit(&db->db_mtx);
1265 }
1266 return (abuf);
1267 }
1268
1269 /*
1270 * Calculate which level n block references the data at the level 0 offset
1271 * provided.
1272 */
1273 uint64_t
1274 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1275 {
1276 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1277 /*
1278 * The level n blkid is equal to the level 0 blkid divided by
1279 * the number of level 0s in a level n block.
1280 *
1281 * The level 0 blkid is offset >> datablkshift =
1282 * offset / 2^datablkshift.
1283 *
1284 * The number of level 0s in a level n is the number of block
1285 * pointers in an indirect block, raised to the power of level.
1286 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1287 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1288 *
1289 * Thus, the level n blkid is: offset /
1290 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1291 * = offset / 2^(datablkshift + level *
1292 * (indblkshift - SPA_BLKPTRSHIFT))
1293 * = offset >> (datablkshift + level *
1294 * (indblkshift - SPA_BLKPTRSHIFT))
1295 */
1296
1297 const unsigned exp = dn->dn_datablkshift +
1298 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1299
1300 if (exp >= 8 * sizeof (offset)) {
1301 /* This only happens on the highest indirection level */
1302 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1303 return (0);
1304 }
1305
1306 ASSERT3U(exp, <, 8 * sizeof (offset));
1307
1308 return (offset >> exp);
1309 } else {
1310 ASSERT3U(offset, <, dn->dn_datablksz);
1311 return (0);
1312 }
1313 }
1314
1315 /*
1316 * This function is used to lock the parent of the provided dbuf. This should be
1317 * used when modifying or reading db_blkptr.
1318 */
1319 db_lock_type_t
1320 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
1321 {
1322 enum db_lock_type ret = DLT_NONE;
1323 if (db->db_parent != NULL) {
1324 rw_enter(&db->db_parent->db_rwlock, rw);
1325 ret = DLT_PARENT;
1326 } else if (dmu_objset_ds(db->db_objset) != NULL) {
1327 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1328 tag);
1329 ret = DLT_OBJSET;
1330 }
1331 /*
1332 * We only return a DLT_NONE lock when it's the top-most indirect block
1333 * of the meta-dnode of the MOS.
1334 */
1335 return (ret);
1336 }
1337
1338 /*
1339 * We need to pass the lock type in because it's possible that the block will
1340 * move from being the topmost indirect block in a dnode (and thus, have no
1341 * parent) to not the top-most via an indirection increase. This would cause a
1342 * panic if we didn't pass the lock type in.
1343 */
1344 void
1345 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
1346 {
1347 if (type == DLT_PARENT)
1348 rw_exit(&db->db_parent->db_rwlock);
1349 else if (type == DLT_OBJSET)
1350 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1351 }
1352
1353 static void
1354 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1355 arc_buf_t *buf, void *vdb)
1356 {
1357 (void) zb, (void) bp;
1358 dmu_buf_impl_t *db = vdb;
1359
1360 mutex_enter(&db->db_mtx);
1361 ASSERT3U(db->db_state, ==, DB_READ);
1362 /*
1363 * All reads are synchronous, so we must have a hold on the dbuf
1364 */
1365 ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1366 ASSERT(db->db_buf == NULL);
1367 ASSERT(db->db.db_data == NULL);
1368 if (buf == NULL) {
1369 /* i/o error */
1370 ASSERT(zio == NULL || zio->io_error != 0);
1371 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1372 ASSERT3P(db->db_buf, ==, NULL);
1373 db->db_state = DB_UNCACHED;
1374 DTRACE_SET_STATE(db, "i/o error");
1375 } else if (db->db_level == 0 && db->db_freed_in_flight) {
1376 /* freed in flight */
1377 ASSERT(zio == NULL || zio->io_error == 0);
1378 arc_release(buf, db);
1379 memset(buf->b_data, 0, db->db.db_size);
1380 arc_buf_freeze(buf);
1381 db->db_freed_in_flight = FALSE;
1382 dbuf_set_data(db, buf);
1383 db->db_state = DB_CACHED;
1384 DTRACE_SET_STATE(db, "freed in flight");
1385 } else {
1386 /* success */
1387 ASSERT(zio == NULL || zio->io_error == 0);
1388 dbuf_set_data(db, buf);
1389 db->db_state = DB_CACHED;
1390 DTRACE_SET_STATE(db, "successful read");
1391 }
1392 cv_broadcast(&db->db_changed);
1393 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1394 }
1395
1396 /*
1397 * Shortcut for performing reads on bonus dbufs. Returns
1398 * an error if we fail to verify the dnode associated with
1399 * a decrypted block. Otherwise success.
1400 */
1401 static int
1402 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
1403 {
1404 int bonuslen, max_bonuslen, err;
1405
1406 err = dbuf_read_verify_dnode_crypt(db, flags);
1407 if (err)
1408 return (err);
1409
1410 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1411 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1412 ASSERT(MUTEX_HELD(&db->db_mtx));
1413 ASSERT(DB_DNODE_HELD(db));
1414 ASSERT3U(bonuslen, <=, db->db.db_size);
1415 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1416 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1417 if (bonuslen < max_bonuslen)
1418 memset(db->db.db_data, 0, max_bonuslen);
1419 if (bonuslen)
1420 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen);
1421 db->db_state = DB_CACHED;
1422 DTRACE_SET_STATE(db, "bonus buffer filled");
1423 return (0);
1424 }
1425
1426 static void
1427 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn)
1428 {
1429 blkptr_t *bps = db->db.db_data;
1430 uint32_t indbs = 1ULL << dn->dn_indblkshift;
1431 int n_bps = indbs >> SPA_BLKPTRSHIFT;
1432
1433 for (int i = 0; i < n_bps; i++) {
1434 blkptr_t *bp = &bps[i];
1435
1436 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, indbs);
1437 BP_SET_LSIZE(bp, BP_GET_LEVEL(db->db_blkptr) == 1 ?
1438 dn->dn_datablksz : BP_GET_LSIZE(db->db_blkptr));
1439 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1440 BP_SET_LEVEL(bp, BP_GET_LEVEL(db->db_blkptr) - 1);
1441 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1442 }
1443 }
1444
1445 /*
1446 * Handle reads on dbufs that are holes, if necessary. This function
1447 * requires that the dbuf's mutex is held. Returns success (0) if action
1448 * was taken, ENOENT if no action was taken.
1449 */
1450 static int
1451 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn)
1452 {
1453 ASSERT(MUTEX_HELD(&db->db_mtx));
1454
1455 int is_hole = db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr);
1456 /*
1457 * For level 0 blocks only, if the above check fails:
1458 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1459 * processes the delete record and clears the bp while we are waiting
1460 * for the dn_mtx (resulting in a "no" from block_freed).
1461 */
1462 if (!is_hole && db->db_level == 0) {
1463 is_hole = dnode_block_freed(dn, db->db_blkid) ||
1464 BP_IS_HOLE(db->db_blkptr);
1465 }
1466
1467 if (is_hole) {
1468 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1469 memset(db->db.db_data, 0, db->db.db_size);
1470
1471 if (db->db_blkptr != NULL && db->db_level > 0 &&
1472 BP_IS_HOLE(db->db_blkptr) &&
1473 db->db_blkptr->blk_birth != 0) {
1474 dbuf_handle_indirect_hole(db, dn);
1475 }
1476 db->db_state = DB_CACHED;
1477 DTRACE_SET_STATE(db, "hole read satisfied");
1478 return (0);
1479 }
1480 return (ENOENT);
1481 }
1482
1483 /*
1484 * This function ensures that, when doing a decrypting read of a block,
1485 * we make sure we have decrypted the dnode associated with it. We must do
1486 * this so that we ensure we are fully authenticating the checksum-of-MACs
1487 * tree from the root of the objset down to this block. Indirect blocks are
1488 * always verified against their secure checksum-of-MACs assuming that the
1489 * dnode containing them is correct. Now that we are doing a decrypting read,
1490 * we can be sure that the key is loaded and verify that assumption. This is
1491 * especially important considering that we always read encrypted dnode
1492 * blocks as raw data (without verifying their MACs) to start, and
1493 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1494 */
1495 static int
1496 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1497 {
1498 int err = 0;
1499 objset_t *os = db->db_objset;
1500 arc_buf_t *dnode_abuf;
1501 dnode_t *dn;
1502 zbookmark_phys_t zb;
1503
1504 ASSERT(MUTEX_HELD(&db->db_mtx));
1505
1506 if (!os->os_encrypted || os->os_raw_receive ||
1507 (flags & DB_RF_NO_DECRYPT) != 0)
1508 return (0);
1509
1510 DB_DNODE_ENTER(db);
1511 dn = DB_DNODE(db);
1512 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1513
1514 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1515 DB_DNODE_EXIT(db);
1516 return (0);
1517 }
1518
1519 SET_BOOKMARK(&zb, dmu_objset_id(os),
1520 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1521 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1522
1523 /*
1524 * An error code of EACCES tells us that the key is still not
1525 * available. This is ok if we are only reading authenticated
1526 * (and therefore non-encrypted) blocks.
1527 */
1528 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1529 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1530 (db->db_blkid == DMU_BONUS_BLKID &&
1531 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1532 err = 0;
1533
1534 DB_DNODE_EXIT(db);
1535
1536 return (err);
1537 }
1538
1539 /*
1540 * Drops db_mtx and the parent lock specified by dblt and tag before
1541 * returning.
1542 */
1543 static int
1544 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags,
1545 db_lock_type_t dblt, const void *tag)
1546 {
1547 dnode_t *dn;
1548 zbookmark_phys_t zb;
1549 uint32_t aflags = ARC_FLAG_NOWAIT;
1550 int err, zio_flags;
1551
1552 err = zio_flags = 0;
1553 DB_DNODE_ENTER(db);
1554 dn = DB_DNODE(db);
1555 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1556 ASSERT(MUTEX_HELD(&db->db_mtx));
1557 ASSERT(db->db_state == DB_UNCACHED);
1558 ASSERT(db->db_buf == NULL);
1559 ASSERT(db->db_parent == NULL ||
1560 RW_LOCK_HELD(&db->db_parent->db_rwlock));
1561
1562 if (db->db_blkid == DMU_BONUS_BLKID) {
1563 err = dbuf_read_bonus(db, dn, flags);
1564 goto early_unlock;
1565 }
1566
1567 err = dbuf_read_hole(db, dn);
1568 if (err == 0)
1569 goto early_unlock;
1570
1571 /*
1572 * Any attempt to read a redacted block should result in an error. This
1573 * will never happen under normal conditions, but can be useful for
1574 * debugging purposes.
1575 */
1576 if (BP_IS_REDACTED(db->db_blkptr)) {
1577 ASSERT(dsl_dataset_feature_is_active(
1578 db->db_objset->os_dsl_dataset,
1579 SPA_FEATURE_REDACTED_DATASETS));
1580 err = SET_ERROR(EIO);
1581 goto early_unlock;
1582 }
1583
1584 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1585 db->db.db_object, db->db_level, db->db_blkid);
1586
1587 /*
1588 * All bps of an encrypted os should have the encryption bit set.
1589 * If this is not true it indicates tampering and we report an error.
1590 */
1591 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1592 spa_log_error(db->db_objset->os_spa, &zb);
1593 zfs_panic_recover("unencrypted block in encrypted "
1594 "object set %llu", dmu_objset_id(db->db_objset));
1595 err = SET_ERROR(EIO);
1596 goto early_unlock;
1597 }
1598
1599 err = dbuf_read_verify_dnode_crypt(db, flags);
1600 if (err != 0)
1601 goto early_unlock;
1602
1603 DB_DNODE_EXIT(db);
1604
1605 db->db_state = DB_READ;
1606 DTRACE_SET_STATE(db, "read issued");
1607 mutex_exit(&db->db_mtx);
1608
1609 if (dbuf_is_l2cacheable(db))
1610 aflags |= ARC_FLAG_L2CACHE;
1611
1612 dbuf_add_ref(db, NULL);
1613
1614 zio_flags = (flags & DB_RF_CANFAIL) ?
1615 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1616
1617 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1618 zio_flags |= ZIO_FLAG_RAW;
1619 /*
1620 * The zio layer will copy the provided blkptr later, but we need to
1621 * do this now so that we can release the parent's rwlock. We have to
1622 * do that now so that if dbuf_read_done is called synchronously (on
1623 * an l1 cache hit) we don't acquire the db_mtx while holding the
1624 * parent's rwlock, which would be a lock ordering violation.
1625 */
1626 blkptr_t bp = *db->db_blkptr;
1627 dmu_buf_unlock_parent(db, dblt, tag);
1628 (void) arc_read(zio, db->db_objset->os_spa, &bp,
1629 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1630 &aflags, &zb);
1631 return (err);
1632 early_unlock:
1633 DB_DNODE_EXIT(db);
1634 mutex_exit(&db->db_mtx);
1635 dmu_buf_unlock_parent(db, dblt, tag);
1636 return (err);
1637 }
1638
1639 /*
1640 * This is our just-in-time copy function. It makes a copy of buffers that
1641 * have been modified in a previous transaction group before we access them in
1642 * the current active group.
1643 *
1644 * This function is used in three places: when we are dirtying a buffer for the
1645 * first time in a txg, when we are freeing a range in a dnode that includes
1646 * this buffer, and when we are accessing a buffer which was received compressed
1647 * and later referenced in a WRITE_BYREF record.
1648 *
1649 * Note that when we are called from dbuf_free_range() we do not put a hold on
1650 * the buffer, we just traverse the active dbuf list for the dnode.
1651 */
1652 static void
1653 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1654 {
1655 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1656
1657 ASSERT(MUTEX_HELD(&db->db_mtx));
1658 ASSERT(db->db.db_data != NULL);
1659 ASSERT(db->db_level == 0);
1660 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1661
1662 if (dr == NULL ||
1663 (dr->dt.dl.dr_data !=
1664 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1665 return;
1666
1667 /*
1668 * If the last dirty record for this dbuf has not yet synced
1669 * and its referencing the dbuf data, either:
1670 * reset the reference to point to a new copy,
1671 * or (if there a no active holders)
1672 * just null out the current db_data pointer.
1673 */
1674 ASSERT3U(dr->dr_txg, >=, txg - 2);
1675 if (db->db_blkid == DMU_BONUS_BLKID) {
1676 dnode_t *dn = DB_DNODE(db);
1677 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1678 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1679 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1680 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
1681 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1682 dnode_t *dn = DB_DNODE(db);
1683 int size = arc_buf_size(db->db_buf);
1684 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1685 spa_t *spa = db->db_objset->os_spa;
1686 enum zio_compress compress_type =
1687 arc_get_compression(db->db_buf);
1688 uint8_t complevel = arc_get_complevel(db->db_buf);
1689
1690 if (arc_is_encrypted(db->db_buf)) {
1691 boolean_t byteorder;
1692 uint8_t salt[ZIO_DATA_SALT_LEN];
1693 uint8_t iv[ZIO_DATA_IV_LEN];
1694 uint8_t mac[ZIO_DATA_MAC_LEN];
1695
1696 arc_get_raw_params(db->db_buf, &byteorder, salt,
1697 iv, mac);
1698 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1699 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1700 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1701 compress_type, complevel);
1702 } else if (compress_type != ZIO_COMPRESS_OFF) {
1703 ASSERT3U(type, ==, ARC_BUFC_DATA);
1704 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1705 size, arc_buf_lsize(db->db_buf), compress_type,
1706 complevel);
1707 } else {
1708 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1709 }
1710 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
1711 } else {
1712 db->db_buf = NULL;
1713 dbuf_clear_data(db);
1714 }
1715 }
1716
1717 int
1718 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1719 {
1720 int err = 0;
1721 boolean_t prefetch;
1722 dnode_t *dn;
1723
1724 /*
1725 * We don't have to hold the mutex to check db_state because it
1726 * can't be freed while we have a hold on the buffer.
1727 */
1728 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1729
1730 if (db->db_state == DB_NOFILL)
1731 return (SET_ERROR(EIO));
1732
1733 DB_DNODE_ENTER(db);
1734 dn = DB_DNODE(db);
1735
1736 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1737 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1738 DBUF_IS_CACHEABLE(db);
1739
1740 mutex_enter(&db->db_mtx);
1741 if (db->db_state == DB_CACHED) {
1742 spa_t *spa = dn->dn_objset->os_spa;
1743
1744 /*
1745 * Ensure that this block's dnode has been decrypted if
1746 * the caller has requested decrypted data.
1747 */
1748 err = dbuf_read_verify_dnode_crypt(db, flags);
1749
1750 /*
1751 * If the arc buf is compressed or encrypted and the caller
1752 * requested uncompressed data, we need to untransform it
1753 * before returning. We also call arc_untransform() on any
1754 * unauthenticated blocks, which will verify their MAC if
1755 * the key is now available.
1756 */
1757 if (err == 0 && db->db_buf != NULL &&
1758 (flags & DB_RF_NO_DECRYPT) == 0 &&
1759 (arc_is_encrypted(db->db_buf) ||
1760 arc_is_unauthenticated(db->db_buf) ||
1761 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1762 zbookmark_phys_t zb;
1763
1764 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1765 db->db.db_object, db->db_level, db->db_blkid);
1766 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1767 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1768 dbuf_set_data(db, db->db_buf);
1769 }
1770 mutex_exit(&db->db_mtx);
1771 if (err == 0 && prefetch) {
1772 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1773 B_FALSE, flags & DB_RF_HAVESTRUCT);
1774 }
1775 DB_DNODE_EXIT(db);
1776 DBUF_STAT_BUMP(hash_hits);
1777 } else if (db->db_state == DB_UNCACHED) {
1778 spa_t *spa = dn->dn_objset->os_spa;
1779 boolean_t need_wait = B_FALSE;
1780
1781 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1782
1783 if (zio == NULL &&
1784 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1785 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1786 need_wait = B_TRUE;
1787 }
1788 err = dbuf_read_impl(db, zio, flags, dblt, FTAG);
1789 /*
1790 * dbuf_read_impl has dropped db_mtx and our parent's rwlock
1791 * for us
1792 */
1793 if (!err && prefetch) {
1794 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1795 db->db_state != DB_CACHED,
1796 flags & DB_RF_HAVESTRUCT);
1797 }
1798
1799 DB_DNODE_EXIT(db);
1800 DBUF_STAT_BUMP(hash_misses);
1801
1802 /*
1803 * If we created a zio_root we must execute it to avoid
1804 * leaking it, even if it isn't attached to any work due
1805 * to an error in dbuf_read_impl().
1806 */
1807 if (need_wait) {
1808 if (err == 0)
1809 err = zio_wait(zio);
1810 else
1811 VERIFY0(zio_wait(zio));
1812 }
1813 } else {
1814 /*
1815 * Another reader came in while the dbuf was in flight
1816 * between UNCACHED and CACHED. Either a writer will finish
1817 * writing the buffer (sending the dbuf to CACHED) or the
1818 * first reader's request will reach the read_done callback
1819 * and send the dbuf to CACHED. Otherwise, a failure
1820 * occurred and the dbuf went to UNCACHED.
1821 */
1822 mutex_exit(&db->db_mtx);
1823 if (prefetch) {
1824 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1825 B_TRUE, flags & DB_RF_HAVESTRUCT);
1826 }
1827 DB_DNODE_EXIT(db);
1828 DBUF_STAT_BUMP(hash_misses);
1829
1830 /* Skip the wait per the caller's request. */
1831 if ((flags & DB_RF_NEVERWAIT) == 0) {
1832 mutex_enter(&db->db_mtx);
1833 while (db->db_state == DB_READ ||
1834 db->db_state == DB_FILL) {
1835 ASSERT(db->db_state == DB_READ ||
1836 (flags & DB_RF_HAVESTRUCT) == 0);
1837 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1838 db, zio_t *, zio);
1839 cv_wait(&db->db_changed, &db->db_mtx);
1840 }
1841 if (db->db_state == DB_UNCACHED)
1842 err = SET_ERROR(EIO);
1843 mutex_exit(&db->db_mtx);
1844 }
1845 }
1846
1847 return (err);
1848 }
1849
1850 static void
1851 dbuf_noread(dmu_buf_impl_t *db)
1852 {
1853 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1854 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1855 mutex_enter(&db->db_mtx);
1856 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1857 cv_wait(&db->db_changed, &db->db_mtx);
1858 if (db->db_state == DB_UNCACHED) {
1859 ASSERT(db->db_buf == NULL);
1860 ASSERT(db->db.db_data == NULL);
1861 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1862 db->db_state = DB_FILL;
1863 DTRACE_SET_STATE(db, "assigning filled buffer");
1864 } else if (db->db_state == DB_NOFILL) {
1865 dbuf_clear_data(db);
1866 } else {
1867 ASSERT3U(db->db_state, ==, DB_CACHED);
1868 }
1869 mutex_exit(&db->db_mtx);
1870 }
1871
1872 void
1873 dbuf_unoverride(dbuf_dirty_record_t *dr)
1874 {
1875 dmu_buf_impl_t *db = dr->dr_dbuf;
1876 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1877 uint64_t txg = dr->dr_txg;
1878
1879 ASSERT(MUTEX_HELD(&db->db_mtx));
1880 /*
1881 * This assert is valid because dmu_sync() expects to be called by
1882 * a zilog's get_data while holding a range lock. This call only
1883 * comes from dbuf_dirty() callers who must also hold a range lock.
1884 */
1885 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1886 ASSERT(db->db_level == 0);
1887
1888 if (db->db_blkid == DMU_BONUS_BLKID ||
1889 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1890 return;
1891
1892 ASSERT(db->db_data_pending != dr);
1893
1894 /* free this block */
1895 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1896 zio_free(db->db_objset->os_spa, txg, bp);
1897
1898 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1899 dr->dt.dl.dr_nopwrite = B_FALSE;
1900 dr->dt.dl.dr_has_raw_params = B_FALSE;
1901
1902 /*
1903 * Release the already-written buffer, so we leave it in
1904 * a consistent dirty state. Note that all callers are
1905 * modifying the buffer, so they will immediately do
1906 * another (redundant) arc_release(). Therefore, leave
1907 * the buf thawed to save the effort of freezing &
1908 * immediately re-thawing it.
1909 */
1910 arc_release(dr->dt.dl.dr_data, db);
1911 }
1912
1913 /*
1914 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1915 * data blocks in the free range, so that any future readers will find
1916 * empty blocks.
1917 */
1918 void
1919 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1920 dmu_tx_t *tx)
1921 {
1922 dmu_buf_impl_t *db_search;
1923 dmu_buf_impl_t *db, *db_next;
1924 uint64_t txg = tx->tx_txg;
1925 avl_index_t where;
1926 dbuf_dirty_record_t *dr;
1927
1928 if (end_blkid > dn->dn_maxblkid &&
1929 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1930 end_blkid = dn->dn_maxblkid;
1931 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1932 (u_longlong_t)end_blkid);
1933
1934 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1935 db_search->db_level = 0;
1936 db_search->db_blkid = start_blkid;
1937 db_search->db_state = DB_SEARCH;
1938
1939 mutex_enter(&dn->dn_dbufs_mtx);
1940 db = avl_find(&dn->dn_dbufs, db_search, &where);
1941 ASSERT3P(db, ==, NULL);
1942
1943 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1944
1945 for (; db != NULL; db = db_next) {
1946 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1947 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1948
1949 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1950 break;
1951 }
1952 ASSERT3U(db->db_blkid, >=, start_blkid);
1953
1954 /* found a level 0 buffer in the range */
1955 mutex_enter(&db->db_mtx);
1956 if (dbuf_undirty(db, tx)) {
1957 /* mutex has been dropped and dbuf destroyed */
1958 continue;
1959 }
1960
1961 if (db->db_state == DB_UNCACHED ||
1962 db->db_state == DB_NOFILL ||
1963 db->db_state == DB_EVICTING) {
1964 ASSERT(db->db.db_data == NULL);
1965 mutex_exit(&db->db_mtx);
1966 continue;
1967 }
1968 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1969 /* will be handled in dbuf_read_done or dbuf_rele */
1970 db->db_freed_in_flight = TRUE;
1971 mutex_exit(&db->db_mtx);
1972 continue;
1973 }
1974 if (zfs_refcount_count(&db->db_holds) == 0) {
1975 ASSERT(db->db_buf);
1976 dbuf_destroy(db);
1977 continue;
1978 }
1979 /* The dbuf is referenced */
1980
1981 dr = list_head(&db->db_dirty_records);
1982 if (dr != NULL) {
1983 if (dr->dr_txg == txg) {
1984 /*
1985 * This buffer is "in-use", re-adjust the file
1986 * size to reflect that this buffer may
1987 * contain new data when we sync.
1988 */
1989 if (db->db_blkid != DMU_SPILL_BLKID &&
1990 db->db_blkid > dn->dn_maxblkid)
1991 dn->dn_maxblkid = db->db_blkid;
1992 dbuf_unoverride(dr);
1993 } else {
1994 /*
1995 * This dbuf is not dirty in the open context.
1996 * Either uncache it (if its not referenced in
1997 * the open context) or reset its contents to
1998 * empty.
1999 */
2000 dbuf_fix_old_data(db, txg);
2001 }
2002 }
2003 /* clear the contents if its cached */
2004 if (db->db_state == DB_CACHED) {
2005 ASSERT(db->db.db_data != NULL);
2006 arc_release(db->db_buf, db);
2007 rw_enter(&db->db_rwlock, RW_WRITER);
2008 memset(db->db.db_data, 0, db->db.db_size);
2009 rw_exit(&db->db_rwlock);
2010 arc_buf_freeze(db->db_buf);
2011 }
2012
2013 mutex_exit(&db->db_mtx);
2014 }
2015
2016 mutex_exit(&dn->dn_dbufs_mtx);
2017 kmem_free(db_search, sizeof (dmu_buf_impl_t));
2018 }
2019
2020 void
2021 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2022 {
2023 arc_buf_t *buf, *old_buf;
2024 dbuf_dirty_record_t *dr;
2025 int osize = db->db.db_size;
2026 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2027 dnode_t *dn;
2028
2029 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2030
2031 DB_DNODE_ENTER(db);
2032 dn = DB_DNODE(db);
2033
2034 /*
2035 * XXX we should be doing a dbuf_read, checking the return
2036 * value and returning that up to our callers
2037 */
2038 dmu_buf_will_dirty(&db->db, tx);
2039
2040 /* create the data buffer for the new block */
2041 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2042
2043 /* copy old block data to the new block */
2044 old_buf = db->db_buf;
2045 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
2046 /* zero the remainder */
2047 if (size > osize)
2048 memset((uint8_t *)buf->b_data + osize, 0, size - osize);
2049
2050 mutex_enter(&db->db_mtx);
2051 dbuf_set_data(db, buf);
2052 arc_buf_destroy(old_buf, db);
2053 db->db.db_size = size;
2054
2055 dr = list_head(&db->db_dirty_records);
2056 /* dirty record added by dmu_buf_will_dirty() */
2057 VERIFY(dr != NULL);
2058 if (db->db_level == 0)
2059 dr->dt.dl.dr_data = buf;
2060 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2061 ASSERT3U(dr->dr_accounted, ==, osize);
2062 dr->dr_accounted = size;
2063 mutex_exit(&db->db_mtx);
2064
2065 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2066 DB_DNODE_EXIT(db);
2067 }
2068
2069 void
2070 dbuf_release_bp(dmu_buf_impl_t *db)
2071 {
2072 objset_t *os __maybe_unused = db->db_objset;
2073
2074 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2075 ASSERT(arc_released(os->os_phys_buf) ||
2076 list_link_active(&os->os_dsl_dataset->ds_synced_link));
2077 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2078
2079 (void) arc_release(db->db_buf, db);
2080 }
2081
2082 /*
2083 * We already have a dirty record for this TXG, and we are being
2084 * dirtied again.
2085 */
2086 static void
2087 dbuf_redirty(dbuf_dirty_record_t *dr)
2088 {
2089 dmu_buf_impl_t *db = dr->dr_dbuf;
2090
2091 ASSERT(MUTEX_HELD(&db->db_mtx));
2092
2093 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2094 /*
2095 * If this buffer has already been written out,
2096 * we now need to reset its state.
2097 */
2098 dbuf_unoverride(dr);
2099 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2100 db->db_state != DB_NOFILL) {
2101 /* Already released on initial dirty, so just thaw. */
2102 ASSERT(arc_released(db->db_buf));
2103 arc_buf_thaw(db->db_buf);
2104 }
2105 }
2106 }
2107
2108 dbuf_dirty_record_t *
2109 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2110 {
2111 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2112 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2113 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2114 ASSERT(dn->dn_maxblkid >= blkid);
2115
2116 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2117 list_link_init(&dr->dr_dirty_node);
2118 list_link_init(&dr->dr_dbuf_node);
2119 dr->dr_dnode = dn;
2120 dr->dr_txg = tx->tx_txg;
2121 dr->dt.dll.dr_blkid = blkid;
2122 dr->dr_accounted = dn->dn_datablksz;
2123
2124 /*
2125 * There should not be any dbuf for the block that we're dirtying.
2126 * Otherwise the buffer contents could be inconsistent between the
2127 * dbuf and the lightweight dirty record.
2128 */
2129 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid));
2130
2131 mutex_enter(&dn->dn_mtx);
2132 int txgoff = tx->tx_txg & TXG_MASK;
2133 if (dn->dn_free_ranges[txgoff] != NULL) {
2134 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2135 }
2136
2137 if (dn->dn_nlevels == 1) {
2138 ASSERT3U(blkid, <, dn->dn_nblkptr);
2139 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2140 mutex_exit(&dn->dn_mtx);
2141 rw_exit(&dn->dn_struct_rwlock);
2142 dnode_setdirty(dn, tx);
2143 } else {
2144 mutex_exit(&dn->dn_mtx);
2145
2146 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2147 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2148 1, blkid >> epbs, FTAG);
2149 rw_exit(&dn->dn_struct_rwlock);
2150 if (parent_db == NULL) {
2151 kmem_free(dr, sizeof (*dr));
2152 return (NULL);
2153 }
2154 int err = dbuf_read(parent_db, NULL,
2155 (DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2156 if (err != 0) {
2157 dbuf_rele(parent_db, FTAG);
2158 kmem_free(dr, sizeof (*dr));
2159 return (NULL);
2160 }
2161
2162 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2163 dbuf_rele(parent_db, FTAG);
2164 mutex_enter(&parent_dr->dt.di.dr_mtx);
2165 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2166 list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2167 mutex_exit(&parent_dr->dt.di.dr_mtx);
2168 dr->dr_parent = parent_dr;
2169 }
2170
2171 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2172
2173 return (dr);
2174 }
2175
2176 dbuf_dirty_record_t *
2177 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2178 {
2179 dnode_t *dn;
2180 objset_t *os;
2181 dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2182 int txgoff = tx->tx_txg & TXG_MASK;
2183 boolean_t drop_struct_rwlock = B_FALSE;
2184
2185 ASSERT(tx->tx_txg != 0);
2186 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2187 DMU_TX_DIRTY_BUF(tx, db);
2188
2189 DB_DNODE_ENTER(db);
2190 dn = DB_DNODE(db);
2191 /*
2192 * Shouldn't dirty a regular buffer in syncing context. Private
2193 * objects may be dirtied in syncing context, but only if they
2194 * were already pre-dirtied in open context.
2195 */
2196 #ifdef ZFS_DEBUG
2197 if (dn->dn_objset->os_dsl_dataset != NULL) {
2198 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2199 RW_READER, FTAG);
2200 }
2201 ASSERT(!dmu_tx_is_syncing(tx) ||
2202 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2203 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2204 dn->dn_objset->os_dsl_dataset == NULL);
2205 if (dn->dn_objset->os_dsl_dataset != NULL)
2206 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2207 #endif
2208 /*
2209 * We make this assert for private objects as well, but after we
2210 * check if we're already dirty. They are allowed to re-dirty
2211 * in syncing context.
2212 */
2213 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2214 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2215 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2216
2217 mutex_enter(&db->db_mtx);
2218 /*
2219 * XXX make this true for indirects too? The problem is that
2220 * transactions created with dmu_tx_create_assigned() from
2221 * syncing context don't bother holding ahead.
2222 */
2223 ASSERT(db->db_level != 0 ||
2224 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2225 db->db_state == DB_NOFILL);
2226
2227 mutex_enter(&dn->dn_mtx);
2228 dnode_set_dirtyctx(dn, tx, db);
2229 if (tx->tx_txg > dn->dn_dirty_txg)
2230 dn->dn_dirty_txg = tx->tx_txg;
2231 mutex_exit(&dn->dn_mtx);
2232
2233 if (db->db_blkid == DMU_SPILL_BLKID)
2234 dn->dn_have_spill = B_TRUE;
2235
2236 /*
2237 * If this buffer is already dirty, we're done.
2238 */
2239 dr_head = list_head(&db->db_dirty_records);
2240 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2241 db->db.db_object == DMU_META_DNODE_OBJECT);
2242 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2243 if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2244 DB_DNODE_EXIT(db);
2245
2246 dbuf_redirty(dr_next);
2247 mutex_exit(&db->db_mtx);
2248 return (dr_next);
2249 }
2250
2251 /*
2252 * Only valid if not already dirty.
2253 */
2254 ASSERT(dn->dn_object == 0 ||
2255 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2256 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2257
2258 ASSERT3U(dn->dn_nlevels, >, db->db_level);
2259
2260 /*
2261 * We should only be dirtying in syncing context if it's the
2262 * mos or we're initializing the os or it's a special object.
2263 * However, we are allowed to dirty in syncing context provided
2264 * we already dirtied it in open context. Hence we must make
2265 * this assertion only if we're not already dirty.
2266 */
2267 os = dn->dn_objset;
2268 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2269 #ifdef ZFS_DEBUG
2270 if (dn->dn_objset->os_dsl_dataset != NULL)
2271 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2272 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2273 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2274 if (dn->dn_objset->os_dsl_dataset != NULL)
2275 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2276 #endif
2277 ASSERT(db->db.db_size != 0);
2278
2279 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2280
2281 if (db->db_blkid != DMU_BONUS_BLKID) {
2282 dmu_objset_willuse_space(os, db->db.db_size, tx);
2283 }
2284
2285 /*
2286 * If this buffer is dirty in an old transaction group we need
2287 * to make a copy of it so that the changes we make in this
2288 * transaction group won't leak out when we sync the older txg.
2289 */
2290 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2291 list_link_init(&dr->dr_dirty_node);
2292 list_link_init(&dr->dr_dbuf_node);
2293 dr->dr_dnode = dn;
2294 if (db->db_level == 0) {
2295 void *data_old = db->db_buf;
2296
2297 if (db->db_state != DB_NOFILL) {
2298 if (db->db_blkid == DMU_BONUS_BLKID) {
2299 dbuf_fix_old_data(db, tx->tx_txg);
2300 data_old = db->db.db_data;
2301 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2302 /*
2303 * Release the data buffer from the cache so
2304 * that we can modify it without impacting
2305 * possible other users of this cached data
2306 * block. Note that indirect blocks and
2307 * private objects are not released until the
2308 * syncing state (since they are only modified
2309 * then).
2310 */
2311 arc_release(db->db_buf, db);
2312 dbuf_fix_old_data(db, tx->tx_txg);
2313 data_old = db->db_buf;
2314 }
2315 ASSERT(data_old != NULL);
2316 }
2317 dr->dt.dl.dr_data = data_old;
2318 } else {
2319 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2320 list_create(&dr->dt.di.dr_children,
2321 sizeof (dbuf_dirty_record_t),
2322 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2323 }
2324 if (db->db_blkid != DMU_BONUS_BLKID)
2325 dr->dr_accounted = db->db.db_size;
2326 dr->dr_dbuf = db;
2327 dr->dr_txg = tx->tx_txg;
2328 list_insert_before(&db->db_dirty_records, dr_next, dr);
2329
2330 /*
2331 * We could have been freed_in_flight between the dbuf_noread
2332 * and dbuf_dirty. We win, as though the dbuf_noread() had
2333 * happened after the free.
2334 */
2335 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2336 db->db_blkid != DMU_SPILL_BLKID) {
2337 mutex_enter(&dn->dn_mtx);
2338 if (dn->dn_free_ranges[txgoff] != NULL) {
2339 range_tree_clear(dn->dn_free_ranges[txgoff],
2340 db->db_blkid, 1);
2341 }
2342 mutex_exit(&dn->dn_mtx);
2343 db->db_freed_in_flight = FALSE;
2344 }
2345
2346 /*
2347 * This buffer is now part of this txg
2348 */
2349 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2350 db->db_dirtycnt += 1;
2351 ASSERT3U(db->db_dirtycnt, <=, 3);
2352
2353 mutex_exit(&db->db_mtx);
2354
2355 if (db->db_blkid == DMU_BONUS_BLKID ||
2356 db->db_blkid == DMU_SPILL_BLKID) {
2357 mutex_enter(&dn->dn_mtx);
2358 ASSERT(!list_link_active(&dr->dr_dirty_node));
2359 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2360 mutex_exit(&dn->dn_mtx);
2361 dnode_setdirty(dn, tx);
2362 DB_DNODE_EXIT(db);
2363 return (dr);
2364 }
2365
2366 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2367 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2368 drop_struct_rwlock = B_TRUE;
2369 }
2370
2371 /*
2372 * If we are overwriting a dedup BP, then unless it is snapshotted,
2373 * when we get to syncing context we will need to decrement its
2374 * refcount in the DDT. Prefetch the relevant DDT block so that
2375 * syncing context won't have to wait for the i/o.
2376 */
2377 if (db->db_blkptr != NULL) {
2378 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2379 ddt_prefetch(os->os_spa, db->db_blkptr);
2380 dmu_buf_unlock_parent(db, dblt, FTAG);
2381 }
2382
2383 /*
2384 * We need to hold the dn_struct_rwlock to make this assertion,
2385 * because it protects dn_phys / dn_next_nlevels from changing.
2386 */
2387 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2388 dn->dn_phys->dn_nlevels > db->db_level ||
2389 dn->dn_next_nlevels[txgoff] > db->db_level ||
2390 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2391 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2392
2393
2394 if (db->db_level == 0) {
2395 ASSERT(!db->db_objset->os_raw_receive ||
2396 dn->dn_maxblkid >= db->db_blkid);
2397 dnode_new_blkid(dn, db->db_blkid, tx,
2398 drop_struct_rwlock, B_FALSE);
2399 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2400 }
2401
2402 if (db->db_level+1 < dn->dn_nlevels) {
2403 dmu_buf_impl_t *parent = db->db_parent;
2404 dbuf_dirty_record_t *di;
2405 int parent_held = FALSE;
2406
2407 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2408 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2409 parent = dbuf_hold_level(dn, db->db_level + 1,
2410 db->db_blkid >> epbs, FTAG);
2411 ASSERT(parent != NULL);
2412 parent_held = TRUE;
2413 }
2414 if (drop_struct_rwlock)
2415 rw_exit(&dn->dn_struct_rwlock);
2416 ASSERT3U(db->db_level + 1, ==, parent->db_level);
2417 di = dbuf_dirty(parent, tx);
2418 if (parent_held)
2419 dbuf_rele(parent, FTAG);
2420
2421 mutex_enter(&db->db_mtx);
2422 /*
2423 * Since we've dropped the mutex, it's possible that
2424 * dbuf_undirty() might have changed this out from under us.
2425 */
2426 if (list_head(&db->db_dirty_records) == dr ||
2427 dn->dn_object == DMU_META_DNODE_OBJECT) {
2428 mutex_enter(&di->dt.di.dr_mtx);
2429 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2430 ASSERT(!list_link_active(&dr->dr_dirty_node));
2431 list_insert_tail(&di->dt.di.dr_children, dr);
2432 mutex_exit(&di->dt.di.dr_mtx);
2433 dr->dr_parent = di;
2434 }
2435 mutex_exit(&db->db_mtx);
2436 } else {
2437 ASSERT(db->db_level + 1 == dn->dn_nlevels);
2438 ASSERT(db->db_blkid < dn->dn_nblkptr);
2439 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2440 mutex_enter(&dn->dn_mtx);
2441 ASSERT(!list_link_active(&dr->dr_dirty_node));
2442 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2443 mutex_exit(&dn->dn_mtx);
2444 if (drop_struct_rwlock)
2445 rw_exit(&dn->dn_struct_rwlock);
2446 }
2447
2448 dnode_setdirty(dn, tx);
2449 DB_DNODE_EXIT(db);
2450 return (dr);
2451 }
2452
2453 static void
2454 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2455 {
2456 dmu_buf_impl_t *db = dr->dr_dbuf;
2457
2458 if (dr->dt.dl.dr_data != db->db.db_data) {
2459 struct dnode *dn = dr->dr_dnode;
2460 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2461
2462 kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2463 arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2464 }
2465 db->db_data_pending = NULL;
2466 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2467 list_remove(&db->db_dirty_records, dr);
2468 if (dr->dr_dbuf->db_level != 0) {
2469 mutex_destroy(&dr->dt.di.dr_mtx);
2470 list_destroy(&dr->dt.di.dr_children);
2471 }
2472 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2473 ASSERT3U(db->db_dirtycnt, >, 0);
2474 db->db_dirtycnt -= 1;
2475 }
2476
2477 /*
2478 * Undirty a buffer in the transaction group referenced by the given
2479 * transaction. Return whether this evicted the dbuf.
2480 */
2481 static boolean_t
2482 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2483 {
2484 uint64_t txg = tx->tx_txg;
2485
2486 ASSERT(txg != 0);
2487
2488 /*
2489 * Due to our use of dn_nlevels below, this can only be called
2490 * in open context, unless we are operating on the MOS.
2491 * From syncing context, dn_nlevels may be different from the
2492 * dn_nlevels used when dbuf was dirtied.
2493 */
2494 ASSERT(db->db_objset ==
2495 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2496 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2497 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2498 ASSERT0(db->db_level);
2499 ASSERT(MUTEX_HELD(&db->db_mtx));
2500
2501 /*
2502 * If this buffer is not dirty, we're done.
2503 */
2504 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2505 if (dr == NULL)
2506 return (B_FALSE);
2507 ASSERT(dr->dr_dbuf == db);
2508
2509 dnode_t *dn = dr->dr_dnode;
2510
2511 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2512
2513 ASSERT(db->db.db_size != 0);
2514
2515 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2516 dr->dr_accounted, txg);
2517
2518 list_remove(&db->db_dirty_records, dr);
2519
2520 /*
2521 * Note that there are three places in dbuf_dirty()
2522 * where this dirty record may be put on a list.
2523 * Make sure to do a list_remove corresponding to
2524 * every one of those list_insert calls.
2525 */
2526 if (dr->dr_parent) {
2527 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2528 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2529 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2530 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2531 db->db_level + 1 == dn->dn_nlevels) {
2532 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2533 mutex_enter(&dn->dn_mtx);
2534 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2535 mutex_exit(&dn->dn_mtx);
2536 }
2537
2538 if (db->db_state != DB_NOFILL) {
2539 dbuf_unoverride(dr);
2540
2541 ASSERT(db->db_buf != NULL);
2542 ASSERT(dr->dt.dl.dr_data != NULL);
2543 if (dr->dt.dl.dr_data != db->db_buf)
2544 arc_buf_destroy(dr->dt.dl.dr_data, db);
2545 }
2546
2547 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2548
2549 ASSERT(db->db_dirtycnt > 0);
2550 db->db_dirtycnt -= 1;
2551
2552 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2553 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2554 dbuf_destroy(db);
2555 return (B_TRUE);
2556 }
2557
2558 return (B_FALSE);
2559 }
2560
2561 static void
2562 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2563 {
2564 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2565
2566 ASSERT(tx->tx_txg != 0);
2567 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2568
2569 /*
2570 * Quick check for dirtiness. For already dirty blocks, this
2571 * reduces runtime of this function by >90%, and overall performance
2572 * by 50% for some workloads (e.g. file deletion with indirect blocks
2573 * cached).
2574 */
2575 mutex_enter(&db->db_mtx);
2576
2577 if (db->db_state == DB_CACHED) {
2578 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2579 /*
2580 * It's possible that it is already dirty but not cached,
2581 * because there are some calls to dbuf_dirty() that don't
2582 * go through dmu_buf_will_dirty().
2583 */
2584 if (dr != NULL) {
2585 /* This dbuf is already dirty and cached. */
2586 dbuf_redirty(dr);
2587 mutex_exit(&db->db_mtx);
2588 return;
2589 }
2590 }
2591 mutex_exit(&db->db_mtx);
2592
2593 DB_DNODE_ENTER(db);
2594 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2595 flags |= DB_RF_HAVESTRUCT;
2596 DB_DNODE_EXIT(db);
2597 (void) dbuf_read(db, NULL, flags);
2598 (void) dbuf_dirty(db, tx);
2599 }
2600
2601 void
2602 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2603 {
2604 dmu_buf_will_dirty_impl(db_fake,
2605 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2606 }
2607
2608 boolean_t
2609 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2610 {
2611 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2612 dbuf_dirty_record_t *dr;
2613
2614 mutex_enter(&db->db_mtx);
2615 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2616 mutex_exit(&db->db_mtx);
2617 return (dr != NULL);
2618 }
2619
2620 void
2621 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2622 {
2623 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2624
2625 db->db_state = DB_NOFILL;
2626 DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2627 dmu_buf_will_fill(db_fake, tx);
2628 }
2629
2630 void
2631 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2632 {
2633 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2634
2635 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2636 ASSERT(tx->tx_txg != 0);
2637 ASSERT(db->db_level == 0);
2638 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2639
2640 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2641 dmu_tx_private_ok(tx));
2642
2643 dbuf_noread(db);
2644 (void) dbuf_dirty(db, tx);
2645 }
2646
2647 /*
2648 * This function is effectively the same as dmu_buf_will_dirty(), but
2649 * indicates the caller expects raw encrypted data in the db, and provides
2650 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2651 * blkptr_t when this dbuf is written. This is only used for blocks of
2652 * dnodes, during raw receive.
2653 */
2654 void
2655 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2656 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2657 {
2658 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2659 dbuf_dirty_record_t *dr;
2660
2661 /*
2662 * dr_has_raw_params is only processed for blocks of dnodes
2663 * (see dbuf_sync_dnode_leaf_crypt()).
2664 */
2665 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2666 ASSERT3U(db->db_level, ==, 0);
2667 ASSERT(db->db_objset->os_raw_receive);
2668
2669 dmu_buf_will_dirty_impl(db_fake,
2670 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2671
2672 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2673
2674 ASSERT3P(dr, !=, NULL);
2675
2676 dr->dt.dl.dr_has_raw_params = B_TRUE;
2677 dr->dt.dl.dr_byteorder = byteorder;
2678 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2679 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2680 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
2681 }
2682
2683 static void
2684 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2685 {
2686 struct dirty_leaf *dl;
2687 dbuf_dirty_record_t *dr;
2688
2689 dr = list_head(&db->db_dirty_records);
2690 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2691 dl = &dr->dt.dl;
2692 dl->dr_overridden_by = *bp;
2693 dl->dr_override_state = DR_OVERRIDDEN;
2694 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2695 }
2696
2697 void
2698 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx)
2699 {
2700 (void) tx;
2701 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2702 dbuf_states_t old_state;
2703 mutex_enter(&db->db_mtx);
2704 DBUF_VERIFY(db);
2705
2706 old_state = db->db_state;
2707 db->db_state = DB_CACHED;
2708 if (old_state == DB_FILL) {
2709 if (db->db_level == 0 && db->db_freed_in_flight) {
2710 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2711 /* we were freed while filling */
2712 /* XXX dbuf_undirty? */
2713 memset(db->db.db_data, 0, db->db.db_size);
2714 db->db_freed_in_flight = FALSE;
2715 DTRACE_SET_STATE(db,
2716 "fill done handling freed in flight");
2717 } else {
2718 DTRACE_SET_STATE(db, "fill done");
2719 }
2720 cv_broadcast(&db->db_changed);
2721 }
2722 mutex_exit(&db->db_mtx);
2723 }
2724
2725 void
2726 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2727 bp_embedded_type_t etype, enum zio_compress comp,
2728 int uncompressed_size, int compressed_size, int byteorder,
2729 dmu_tx_t *tx)
2730 {
2731 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2732 struct dirty_leaf *dl;
2733 dmu_object_type_t type;
2734 dbuf_dirty_record_t *dr;
2735
2736 if (etype == BP_EMBEDDED_TYPE_DATA) {
2737 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2738 SPA_FEATURE_EMBEDDED_DATA));
2739 }
2740
2741 DB_DNODE_ENTER(db);
2742 type = DB_DNODE(db)->dn_type;
2743 DB_DNODE_EXIT(db);
2744
2745 ASSERT0(db->db_level);
2746 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2747
2748 dmu_buf_will_not_fill(dbuf, tx);
2749
2750 dr = list_head(&db->db_dirty_records);
2751 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2752 dl = &dr->dt.dl;
2753 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2754 data, comp, uncompressed_size, compressed_size);
2755 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2756 BP_SET_TYPE(&dl->dr_overridden_by, type);
2757 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2758 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2759
2760 dl->dr_override_state = DR_OVERRIDDEN;
2761 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2762 }
2763
2764 void
2765 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
2766 {
2767 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2768 dmu_object_type_t type;
2769 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
2770 SPA_FEATURE_REDACTED_DATASETS));
2771
2772 DB_DNODE_ENTER(db);
2773 type = DB_DNODE(db)->dn_type;
2774 DB_DNODE_EXIT(db);
2775
2776 ASSERT0(db->db_level);
2777 dmu_buf_will_not_fill(dbuf, tx);
2778
2779 blkptr_t bp = { { { {0} } } };
2780 BP_SET_TYPE(&bp, type);
2781 BP_SET_LEVEL(&bp, 0);
2782 BP_SET_BIRTH(&bp, tx->tx_txg, 0);
2783 BP_SET_REDACTED(&bp);
2784 BPE_SET_LSIZE(&bp, dbuf->db_size);
2785
2786 dbuf_override_impl(db, &bp, tx);
2787 }
2788
2789 /*
2790 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2791 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2792 */
2793 void
2794 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2795 {
2796 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2797 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2798 ASSERT(db->db_level == 0);
2799 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2800 ASSERT(buf != NULL);
2801 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
2802 ASSERT(tx->tx_txg != 0);
2803
2804 arc_return_buf(buf, db);
2805 ASSERT(arc_released(buf));
2806
2807 mutex_enter(&db->db_mtx);
2808
2809 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2810 cv_wait(&db->db_changed, &db->db_mtx);
2811
2812 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2813
2814 if (db->db_state == DB_CACHED &&
2815 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2816 /*
2817 * In practice, we will never have a case where we have an
2818 * encrypted arc buffer while additional holds exist on the
2819 * dbuf. We don't handle this here so we simply assert that
2820 * fact instead.
2821 */
2822 ASSERT(!arc_is_encrypted(buf));
2823 mutex_exit(&db->db_mtx);
2824 (void) dbuf_dirty(db, tx);
2825 memcpy(db->db.db_data, buf->b_data, db->db.db_size);
2826 arc_buf_destroy(buf, db);
2827 return;
2828 }
2829
2830 if (db->db_state == DB_CACHED) {
2831 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2832
2833 ASSERT(db->db_buf != NULL);
2834 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2835 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2836
2837 if (!arc_released(db->db_buf)) {
2838 ASSERT(dr->dt.dl.dr_override_state ==
2839 DR_OVERRIDDEN);
2840 arc_release(db->db_buf, db);
2841 }
2842 dr->dt.dl.dr_data = buf;
2843 arc_buf_destroy(db->db_buf, db);
2844 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2845 arc_release(db->db_buf, db);
2846 arc_buf_destroy(db->db_buf, db);
2847 }
2848 db->db_buf = NULL;
2849 }
2850 ASSERT(db->db_buf == NULL);
2851 dbuf_set_data(db, buf);
2852 db->db_state = DB_FILL;
2853 DTRACE_SET_STATE(db, "filling assigned arcbuf");
2854 mutex_exit(&db->db_mtx);
2855 (void) dbuf_dirty(db, tx);
2856 dmu_buf_fill_done(&db->db, tx);
2857 }
2858
2859 void
2860 dbuf_destroy(dmu_buf_impl_t *db)
2861 {
2862 dnode_t *dn;
2863 dmu_buf_impl_t *parent = db->db_parent;
2864 dmu_buf_impl_t *dndb;
2865
2866 ASSERT(MUTEX_HELD(&db->db_mtx));
2867 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2868
2869 if (db->db_buf != NULL) {
2870 arc_buf_destroy(db->db_buf, db);
2871 db->db_buf = NULL;
2872 }
2873
2874 if (db->db_blkid == DMU_BONUS_BLKID) {
2875 int slots = DB_DNODE(db)->dn_num_slots;
2876 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2877 if (db->db.db_data != NULL) {
2878 kmem_free(db->db.db_data, bonuslen);
2879 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2880 db->db_state = DB_UNCACHED;
2881 DTRACE_SET_STATE(db, "buffer cleared");
2882 }
2883 }
2884
2885 dbuf_clear_data(db);
2886
2887 if (multilist_link_active(&db->db_cache_link)) {
2888 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2889 db->db_caching_status == DB_DBUF_METADATA_CACHE);
2890
2891 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
2892 (void) zfs_refcount_remove_many(
2893 &dbuf_caches[db->db_caching_status].size,
2894 db->db.db_size, db);
2895
2896 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
2897 DBUF_STAT_BUMPDOWN(metadata_cache_count);
2898 } else {
2899 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2900 DBUF_STAT_BUMPDOWN(cache_count);
2901 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2902 db->db.db_size);
2903 }
2904 db->db_caching_status = DB_NO_CACHE;
2905 }
2906
2907 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2908 ASSERT(db->db_data_pending == NULL);
2909 ASSERT(list_is_empty(&db->db_dirty_records));
2910
2911 db->db_state = DB_EVICTING;
2912 DTRACE_SET_STATE(db, "buffer eviction started");
2913 db->db_blkptr = NULL;
2914
2915 /*
2916 * Now that db_state is DB_EVICTING, nobody else can find this via
2917 * the hash table. We can now drop db_mtx, which allows us to
2918 * acquire the dn_dbufs_mtx.
2919 */
2920 mutex_exit(&db->db_mtx);
2921
2922 DB_DNODE_ENTER(db);
2923 dn = DB_DNODE(db);
2924 dndb = dn->dn_dbuf;
2925 if (db->db_blkid != DMU_BONUS_BLKID) {
2926 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2927 if (needlock)
2928 mutex_enter_nested(&dn->dn_dbufs_mtx,
2929 NESTED_SINGLE);
2930 avl_remove(&dn->dn_dbufs, db);
2931 membar_producer();
2932 DB_DNODE_EXIT(db);
2933 if (needlock)
2934 mutex_exit(&dn->dn_dbufs_mtx);
2935 /*
2936 * Decrementing the dbuf count means that the hold corresponding
2937 * to the removed dbuf is no longer discounted in dnode_move(),
2938 * so the dnode cannot be moved until after we release the hold.
2939 * The membar_producer() ensures visibility of the decremented
2940 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2941 * release any lock.
2942 */
2943 mutex_enter(&dn->dn_mtx);
2944 dnode_rele_and_unlock(dn, db, B_TRUE);
2945 db->db_dnode_handle = NULL;
2946
2947 dbuf_hash_remove(db);
2948 } else {
2949 DB_DNODE_EXIT(db);
2950 }
2951
2952 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2953
2954 db->db_parent = NULL;
2955
2956 ASSERT(db->db_buf == NULL);
2957 ASSERT(db->db.db_data == NULL);
2958 ASSERT(db->db_hash_next == NULL);
2959 ASSERT(db->db_blkptr == NULL);
2960 ASSERT(db->db_data_pending == NULL);
2961 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
2962 ASSERT(!multilist_link_active(&db->db_cache_link));
2963
2964 /*
2965 * If this dbuf is referenced from an indirect dbuf,
2966 * decrement the ref count on the indirect dbuf.
2967 */
2968 if (parent && parent != dndb) {
2969 mutex_enter(&parent->db_mtx);
2970 dbuf_rele_and_unlock(parent, db, B_TRUE);
2971 }
2972
2973 kmem_cache_free(dbuf_kmem_cache, db);
2974 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2975 }
2976
2977 /*
2978 * Note: While bpp will always be updated if the function returns success,
2979 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2980 * this happens when the dnode is the meta-dnode, or {user|group|project}used
2981 * object.
2982 */
2983 __attribute__((always_inline))
2984 static inline int
2985 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2986 dmu_buf_impl_t **parentp, blkptr_t **bpp)
2987 {
2988 *parentp = NULL;
2989 *bpp = NULL;
2990
2991 ASSERT(blkid != DMU_BONUS_BLKID);
2992
2993 if (blkid == DMU_SPILL_BLKID) {
2994 mutex_enter(&dn->dn_mtx);
2995 if (dn->dn_have_spill &&
2996 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2997 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2998 else
2999 *bpp = NULL;
3000 dbuf_add_ref(dn->dn_dbuf, NULL);
3001 *parentp = dn->dn_dbuf;
3002 mutex_exit(&dn->dn_mtx);
3003 return (0);
3004 }
3005
3006 int nlevels =
3007 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
3008 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
3009
3010 ASSERT3U(level * epbs, <, 64);
3011 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3012 /*
3013 * This assertion shouldn't trip as long as the max indirect block size
3014 * is less than 1M. The reason for this is that up to that point,
3015 * the number of levels required to address an entire object with blocks
3016 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
3017 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3018 * (i.e. we can address the entire object), objects will all use at most
3019 * N-1 levels and the assertion won't overflow. However, once epbs is
3020 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
3021 * enough to address an entire object, so objects will have 5 levels,
3022 * but then this assertion will overflow.
3023 *
3024 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3025 * need to redo this logic to handle overflows.
3026 */
3027 ASSERT(level >= nlevels ||
3028 ((nlevels - level - 1) * epbs) +
3029 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3030 if (level >= nlevels ||
3031 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3032 ((nlevels - level - 1) * epbs)) ||
3033 (fail_sparse &&
3034 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3035 /* the buffer has no parent yet */
3036 return (SET_ERROR(ENOENT));
3037 } else if (level < nlevels-1) {
3038 /* this block is referenced from an indirect block */
3039 int err;
3040
3041 err = dbuf_hold_impl(dn, level + 1,
3042 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3043
3044 if (err)
3045 return (err);
3046 err = dbuf_read(*parentp, NULL,
3047 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
3048 if (err) {
3049 dbuf_rele(*parentp, NULL);
3050 *parentp = NULL;
3051 return (err);
3052 }
3053 rw_enter(&(*parentp)->db_rwlock, RW_READER);
3054 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3055 (blkid & ((1ULL << epbs) - 1));
3056 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
3057 ASSERT(BP_IS_HOLE(*bpp));
3058 rw_exit(&(*parentp)->db_rwlock);
3059 return (0);
3060 } else {
3061 /* the block is referenced from the dnode */
3062 ASSERT3U(level, ==, nlevels-1);
3063 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3064 blkid < dn->dn_phys->dn_nblkptr);
3065 if (dn->dn_dbuf) {
3066 dbuf_add_ref(dn->dn_dbuf, NULL);
3067 *parentp = dn->dn_dbuf;
3068 }
3069 *bpp = &dn->dn_phys->dn_blkptr[blkid];
3070 return (0);
3071 }
3072 }
3073
3074 static dmu_buf_impl_t *
3075 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3076 dmu_buf_impl_t *parent, blkptr_t *blkptr)
3077 {
3078 objset_t *os = dn->dn_objset;
3079 dmu_buf_impl_t *db, *odb;
3080
3081 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3082 ASSERT(dn->dn_type != DMU_OT_NONE);
3083
3084 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3085
3086 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3087 offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3088
3089 db->db_objset = os;
3090 db->db.db_object = dn->dn_object;
3091 db->db_level = level;
3092 db->db_blkid = blkid;
3093 db->db_dirtycnt = 0;
3094 db->db_dnode_handle = dn->dn_handle;
3095 db->db_parent = parent;
3096 db->db_blkptr = blkptr;
3097
3098 db->db_user = NULL;
3099 db->db_user_immediate_evict = FALSE;
3100 db->db_freed_in_flight = FALSE;
3101 db->db_pending_evict = FALSE;
3102
3103 if (blkid == DMU_BONUS_BLKID) {
3104 ASSERT3P(parent, ==, dn->dn_dbuf);
3105 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3106 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3107 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3108 db->db.db_offset = DMU_BONUS_BLKID;
3109 db->db_state = DB_UNCACHED;
3110 DTRACE_SET_STATE(db, "bonus buffer created");
3111 db->db_caching_status = DB_NO_CACHE;
3112 /* the bonus dbuf is not placed in the hash table */
3113 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3114 return (db);
3115 } else if (blkid == DMU_SPILL_BLKID) {
3116 db->db.db_size = (blkptr != NULL) ?
3117 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3118 db->db.db_offset = 0;
3119 } else {
3120 int blocksize =
3121 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3122 db->db.db_size = blocksize;
3123 db->db.db_offset = db->db_blkid * blocksize;
3124 }
3125
3126 /*
3127 * Hold the dn_dbufs_mtx while we get the new dbuf
3128 * in the hash table *and* added to the dbufs list.
3129 * This prevents a possible deadlock with someone
3130 * trying to look up this dbuf before it's added to the
3131 * dn_dbufs list.
3132 */
3133 mutex_enter(&dn->dn_dbufs_mtx);
3134 db->db_state = DB_EVICTING; /* not worth logging this state change */
3135 if ((odb = dbuf_hash_insert(db)) != NULL) {
3136 /* someone else inserted it first */
3137 mutex_exit(&dn->dn_dbufs_mtx);
3138 kmem_cache_free(dbuf_kmem_cache, db);
3139 DBUF_STAT_BUMP(hash_insert_race);
3140 return (odb);
3141 }
3142 avl_add(&dn->dn_dbufs, db);
3143
3144 db->db_state = DB_UNCACHED;
3145 DTRACE_SET_STATE(db, "regular buffer created");
3146 db->db_caching_status = DB_NO_CACHE;
3147 mutex_exit(&dn->dn_dbufs_mtx);
3148 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3149
3150 if (parent && parent != dn->dn_dbuf)
3151 dbuf_add_ref(parent, db);
3152
3153 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3154 zfs_refcount_count(&dn->dn_holds) > 0);
3155 (void) zfs_refcount_add(&dn->dn_holds, db);
3156
3157 dprintf_dbuf(db, "db=%p\n", db);
3158
3159 return (db);
3160 }
3161
3162 /*
3163 * This function returns a block pointer and information about the object,
3164 * given a dnode and a block. This is a publicly accessible version of
3165 * dbuf_findbp that only returns some information, rather than the
3166 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
3167 * should be locked as (at least) a reader.
3168 */
3169 int
3170 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3171 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3172 {
3173 dmu_buf_impl_t *dbp = NULL;
3174 blkptr_t *bp2;
3175 int err = 0;
3176 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3177
3178 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3179 if (err == 0) {
3180 *bp = *bp2;
3181 if (dbp != NULL)
3182 dbuf_rele(dbp, NULL);
3183 if (datablkszsec != NULL)
3184 *datablkszsec = dn->dn_phys->dn_datablkszsec;
3185 if (indblkshift != NULL)
3186 *indblkshift = dn->dn_phys->dn_indblkshift;
3187 }
3188
3189 return (err);
3190 }
3191
3192 typedef struct dbuf_prefetch_arg {
3193 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
3194 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3195 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3196 int dpa_curlevel; /* The current level that we're reading */
3197 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3198 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3199 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3200 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3201 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3202 void *dpa_arg; /* prefetch completion arg */
3203 } dbuf_prefetch_arg_t;
3204
3205 static void
3206 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3207 {
3208 if (dpa->dpa_cb != NULL) {
3209 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3210 dpa->dpa_zb.zb_blkid, io_done);
3211 }
3212 kmem_free(dpa, sizeof (*dpa));
3213 }
3214
3215 static void
3216 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3217 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3218 {
3219 (void) zio, (void) zb, (void) iobp;
3220 dbuf_prefetch_arg_t *dpa = private;
3221
3222 if (abuf != NULL)
3223 arc_buf_destroy(abuf, private);
3224
3225 dbuf_prefetch_fini(dpa, B_TRUE);
3226 }
3227
3228 /*
3229 * Actually issue the prefetch read for the block given.
3230 */
3231 static void
3232 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3233 {
3234 ASSERT(!BP_IS_REDACTED(bp) ||
3235 dsl_dataset_feature_is_active(
3236 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3237 SPA_FEATURE_REDACTED_DATASETS));
3238
3239 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
3240 return (dbuf_prefetch_fini(dpa, B_FALSE));
3241
3242 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3243 arc_flags_t aflags =
3244 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3245 ARC_FLAG_NO_BUF;
3246
3247 /* dnodes are always read as raw and then converted later */
3248 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3249 dpa->dpa_curlevel == 0)
3250 zio_flags |= ZIO_FLAG_RAW;
3251
3252 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3253 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3254 ASSERT(dpa->dpa_zio != NULL);
3255 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3256 dbuf_issue_final_prefetch_done, dpa,
3257 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3258 }
3259
3260 /*
3261 * Called when an indirect block above our prefetch target is read in. This
3262 * will either read in the next indirect block down the tree or issue the actual
3263 * prefetch if the next block down is our target.
3264 */
3265 static void
3266 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3267 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3268 {
3269 (void) zb, (void) iobp;
3270 dbuf_prefetch_arg_t *dpa = private;
3271
3272 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3273 ASSERT3S(dpa->dpa_curlevel, >, 0);
3274
3275 if (abuf == NULL) {
3276 ASSERT(zio == NULL || zio->io_error != 0);
3277 dbuf_prefetch_fini(dpa, B_TRUE);
3278 return;
3279 }
3280 ASSERT(zio == NULL || zio->io_error == 0);
3281
3282 /*
3283 * The dpa_dnode is only valid if we are called with a NULL
3284 * zio. This indicates that the arc_read() returned without
3285 * first calling zio_read() to issue a physical read. Once
3286 * a physical read is made the dpa_dnode must be invalidated
3287 * as the locks guarding it may have been dropped. If the
3288 * dpa_dnode is still valid, then we want to add it to the dbuf
3289 * cache. To do so, we must hold the dbuf associated with the block
3290 * we just prefetched, read its contents so that we associate it
3291 * with an arc_buf_t, and then release it.
3292 */
3293 if (zio != NULL) {
3294 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3295 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3296 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3297 } else {
3298 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3299 }
3300 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3301
3302 dpa->dpa_dnode = NULL;
3303 } else if (dpa->dpa_dnode != NULL) {
3304 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3305 (dpa->dpa_epbs * (dpa->dpa_curlevel -
3306 dpa->dpa_zb.zb_level));
3307 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3308 dpa->dpa_curlevel, curblkid, FTAG);
3309 if (db == NULL) {
3310 arc_buf_destroy(abuf, private);
3311 dbuf_prefetch_fini(dpa, B_TRUE);
3312 return;
3313 }
3314 (void) dbuf_read(db, NULL,
3315 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
3316 dbuf_rele(db, FTAG);
3317 }
3318
3319 dpa->dpa_curlevel--;
3320 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3321 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3322 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3323 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3324
3325 ASSERT(!BP_IS_REDACTED(bp) ||
3326 dsl_dataset_feature_is_active(
3327 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3328 SPA_FEATURE_REDACTED_DATASETS));
3329 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3330 arc_buf_destroy(abuf, private);
3331 dbuf_prefetch_fini(dpa, B_TRUE);
3332 return;
3333 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3334 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3335 dbuf_issue_final_prefetch(dpa, bp);
3336 } else {
3337 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3338 zbookmark_phys_t zb;
3339
3340 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3341 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3342 iter_aflags |= ARC_FLAG_L2CACHE;
3343
3344 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3345
3346 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3347 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3348
3349 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3350 bp, dbuf_prefetch_indirect_done, dpa,
3351 ZIO_PRIORITY_SYNC_READ,
3352 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3353 &iter_aflags, &zb);
3354 }
3355
3356 arc_buf_destroy(abuf, private);
3357 }
3358
3359 /*
3360 * Issue prefetch reads for the given block on the given level. If the indirect
3361 * blocks above that block are not in memory, we will read them in
3362 * asynchronously. As a result, this call never blocks waiting for a read to
3363 * complete. Note that the prefetch might fail if the dataset is encrypted and
3364 * the encryption key is unmapped before the IO completes.
3365 */
3366 int
3367 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3368 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3369 void *arg)
3370 {
3371 blkptr_t bp;
3372 int epbs, nlevels, curlevel;
3373 uint64_t curblkid;
3374
3375 ASSERT(blkid != DMU_BONUS_BLKID);
3376 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3377
3378 if (blkid > dn->dn_maxblkid)
3379 goto no_issue;
3380
3381 if (level == 0 && dnode_block_freed(dn, blkid))
3382 goto no_issue;
3383
3384 /*
3385 * This dnode hasn't been written to disk yet, so there's nothing to
3386 * prefetch.
3387 */
3388 nlevels = dn->dn_phys->dn_nlevels;
3389 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3390 goto no_issue;
3391
3392 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3393 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3394 goto no_issue;
3395
3396 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3397 level, blkid);
3398 if (db != NULL) {
3399 mutex_exit(&db->db_mtx);
3400 /*
3401 * This dbuf already exists. It is either CACHED, or
3402 * (we assume) about to be read or filled.
3403 */
3404 goto no_issue;
3405 }
3406
3407 /*
3408 * Find the closest ancestor (indirect block) of the target block
3409 * that is present in the cache. In this indirect block, we will
3410 * find the bp that is at curlevel, curblkid.
3411 */
3412 curlevel = level;
3413 curblkid = blkid;
3414 while (curlevel < nlevels - 1) {
3415 int parent_level = curlevel + 1;
3416 uint64_t parent_blkid = curblkid >> epbs;
3417 dmu_buf_impl_t *db;
3418
3419 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3420 FALSE, TRUE, FTAG, &db) == 0) {
3421 blkptr_t *bpp = db->db_buf->b_data;
3422 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3423 dbuf_rele(db, FTAG);
3424 break;
3425 }
3426
3427 curlevel = parent_level;
3428 curblkid = parent_blkid;
3429 }
3430
3431 if (curlevel == nlevels - 1) {
3432 /* No cached indirect blocks found. */
3433 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3434 bp = dn->dn_phys->dn_blkptr[curblkid];
3435 }
3436 ASSERT(!BP_IS_REDACTED(&bp) ||
3437 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3438 SPA_FEATURE_REDACTED_DATASETS));
3439 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3440 goto no_issue;
3441
3442 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3443
3444 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3445 ZIO_FLAG_CANFAIL);
3446
3447 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3448 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3449 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3450 dn->dn_object, level, blkid);
3451 dpa->dpa_curlevel = curlevel;
3452 dpa->dpa_prio = prio;
3453 dpa->dpa_aflags = aflags;
3454 dpa->dpa_spa = dn->dn_objset->os_spa;
3455 dpa->dpa_dnode = dn;
3456 dpa->dpa_epbs = epbs;
3457 dpa->dpa_zio = pio;
3458 dpa->dpa_cb = cb;
3459 dpa->dpa_arg = arg;
3460
3461 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3462 if (dnode_level_is_l2cacheable(&bp, dn, level))
3463 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3464
3465 /*
3466 * If we have the indirect just above us, no need to do the asynchronous
3467 * prefetch chain; we'll just run the last step ourselves. If we're at
3468 * a higher level, though, we want to issue the prefetches for all the
3469 * indirect blocks asynchronously, so we can go on with whatever we were
3470 * doing.
3471 */
3472 if (curlevel == level) {
3473 ASSERT3U(curblkid, ==, blkid);
3474 dbuf_issue_final_prefetch(dpa, &bp);
3475 } else {
3476 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3477 zbookmark_phys_t zb;
3478
3479 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3480 if (dnode_level_is_l2cacheable(&bp, dn, level))
3481 iter_aflags |= ARC_FLAG_L2CACHE;
3482
3483 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3484 dn->dn_object, curlevel, curblkid);
3485 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3486 &bp, dbuf_prefetch_indirect_done, dpa,
3487 ZIO_PRIORITY_SYNC_READ,
3488 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3489 &iter_aflags, &zb);
3490 }
3491 /*
3492 * We use pio here instead of dpa_zio since it's possible that
3493 * dpa may have already been freed.
3494 */
3495 zio_nowait(pio);
3496 return (1);
3497 no_issue:
3498 if (cb != NULL)
3499 cb(arg, level, blkid, B_FALSE);
3500 return (0);
3501 }
3502
3503 int
3504 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3505 arc_flags_t aflags)
3506 {
3507
3508 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3509 }
3510
3511 /*
3512 * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3513 * the case of encrypted, compressed and uncompressed buffers by
3514 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3515 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3516 *
3517 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3518 */
3519 noinline static void
3520 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3521 {
3522 dbuf_dirty_record_t *dr = db->db_data_pending;
3523 arc_buf_t *data = dr->dt.dl.dr_data;
3524 enum zio_compress compress_type = arc_get_compression(data);
3525 uint8_t complevel = arc_get_complevel(data);
3526
3527 if (arc_is_encrypted(data)) {
3528 boolean_t byteorder;
3529 uint8_t salt[ZIO_DATA_SALT_LEN];
3530 uint8_t iv[ZIO_DATA_IV_LEN];
3531 uint8_t mac[ZIO_DATA_MAC_LEN];
3532
3533 arc_get_raw_params(data, &byteorder, salt, iv, mac);
3534 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3535 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3536 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3537 compress_type, complevel));
3538 } else if (compress_type != ZIO_COMPRESS_OFF) {
3539 dbuf_set_data(db, arc_alloc_compressed_buf(
3540 dn->dn_objset->os_spa, db, arc_buf_size(data),
3541 arc_buf_lsize(data), compress_type, complevel));
3542 } else {
3543 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3544 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3545 }
3546
3547 rw_enter(&db->db_rwlock, RW_WRITER);
3548 memcpy(db->db.db_data, data->b_data, arc_buf_size(data));
3549 rw_exit(&db->db_rwlock);
3550 }
3551
3552 /*
3553 * Returns with db_holds incremented, and db_mtx not held.
3554 * Note: dn_struct_rwlock must be held.
3555 */
3556 int
3557 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3558 boolean_t fail_sparse, boolean_t fail_uncached,
3559 const void *tag, dmu_buf_impl_t **dbp)
3560 {
3561 dmu_buf_impl_t *db, *parent = NULL;
3562
3563 /* If the pool has been created, verify the tx_sync_lock is not held */
3564 spa_t *spa = dn->dn_objset->os_spa;
3565 dsl_pool_t *dp = spa->spa_dsl_pool;
3566 if (dp != NULL) {
3567 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3568 }
3569
3570 ASSERT(blkid != DMU_BONUS_BLKID);
3571 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3572 ASSERT3U(dn->dn_nlevels, >, level);
3573
3574 *dbp = NULL;
3575
3576 /* dbuf_find() returns with db_mtx held */
3577 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
3578
3579 if (db == NULL) {
3580 blkptr_t *bp = NULL;
3581 int err;
3582
3583 if (fail_uncached)
3584 return (SET_ERROR(ENOENT));
3585
3586 ASSERT3P(parent, ==, NULL);
3587 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3588 if (fail_sparse) {
3589 if (err == 0 && bp && BP_IS_HOLE(bp))
3590 err = SET_ERROR(ENOENT);
3591 if (err) {
3592 if (parent)
3593 dbuf_rele(parent, NULL);
3594 return (err);
3595 }
3596 }
3597 if (err && err != ENOENT)
3598 return (err);
3599 db = dbuf_create(dn, level, blkid, parent, bp);
3600 }
3601
3602 if (fail_uncached && db->db_state != DB_CACHED) {
3603 mutex_exit(&db->db_mtx);
3604 return (SET_ERROR(ENOENT));
3605 }
3606
3607 if (db->db_buf != NULL) {
3608 arc_buf_access(db->db_buf);
3609 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3610 }
3611
3612 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3613
3614 /*
3615 * If this buffer is currently syncing out, and we are
3616 * still referencing it from db_data, we need to make a copy
3617 * of it in case we decide we want to dirty it again in this txg.
3618 */
3619 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3620 dn->dn_object != DMU_META_DNODE_OBJECT &&
3621 db->db_state == DB_CACHED && db->db_data_pending) {
3622 dbuf_dirty_record_t *dr = db->db_data_pending;
3623 if (dr->dt.dl.dr_data == db->db_buf)
3624 dbuf_hold_copy(dn, db);
3625 }
3626
3627 if (multilist_link_active(&db->db_cache_link)) {
3628 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3629 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3630 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3631
3632 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3633 (void) zfs_refcount_remove_many(
3634 &dbuf_caches[db->db_caching_status].size,
3635 db->db.db_size, db);
3636
3637 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3638 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3639 } else {
3640 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3641 DBUF_STAT_BUMPDOWN(cache_count);
3642 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3643 db->db.db_size);
3644 }
3645 db->db_caching_status = DB_NO_CACHE;
3646 }
3647 (void) zfs_refcount_add(&db->db_holds, tag);
3648 DBUF_VERIFY(db);
3649 mutex_exit(&db->db_mtx);
3650
3651 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3652 if (parent)
3653 dbuf_rele(parent, NULL);
3654
3655 ASSERT3P(DB_DNODE(db), ==, dn);
3656 ASSERT3U(db->db_blkid, ==, blkid);
3657 ASSERT3U(db->db_level, ==, level);
3658 *dbp = db;
3659
3660 return (0);
3661 }
3662
3663 dmu_buf_impl_t *
3664 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
3665 {
3666 return (dbuf_hold_level(dn, 0, blkid, tag));
3667 }
3668
3669 dmu_buf_impl_t *
3670 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
3671 {
3672 dmu_buf_impl_t *db;
3673 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3674 return (err ? NULL : db);
3675 }
3676
3677 void
3678 dbuf_create_bonus(dnode_t *dn)
3679 {
3680 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3681
3682 ASSERT(dn->dn_bonus == NULL);
3683 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3684 }
3685
3686 int
3687 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3688 {
3689 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3690
3691 if (db->db_blkid != DMU_SPILL_BLKID)
3692 return (SET_ERROR(ENOTSUP));
3693 if (blksz == 0)
3694 blksz = SPA_MINBLOCKSIZE;
3695 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3696 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3697
3698 dbuf_new_size(db, blksz, tx);
3699
3700 return (0);
3701 }
3702
3703 void
3704 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3705 {
3706 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3707 }
3708
3709 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3710 void
3711 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
3712 {
3713 int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3714 VERIFY3S(holds, >, 1);
3715 }
3716
3717 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3718 boolean_t
3719 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3720 const void *tag)
3721 {
3722 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3723 dmu_buf_impl_t *found_db;
3724 boolean_t result = B_FALSE;
3725
3726 if (blkid == DMU_BONUS_BLKID)
3727 found_db = dbuf_find_bonus(os, obj);
3728 else
3729 found_db = dbuf_find(os, obj, 0, blkid);
3730
3731 if (found_db != NULL) {
3732 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3733 (void) zfs_refcount_add(&db->db_holds, tag);
3734 result = B_TRUE;
3735 }
3736 mutex_exit(&found_db->db_mtx);
3737 }
3738 return (result);
3739 }
3740
3741 /*
3742 * If you call dbuf_rele() you had better not be referencing the dnode handle
3743 * unless you have some other direct or indirect hold on the dnode. (An indirect
3744 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3745 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3746 * dnode's parent dbuf evicting its dnode handles.
3747 */
3748 void
3749 dbuf_rele(dmu_buf_impl_t *db, const void *tag)
3750 {
3751 mutex_enter(&db->db_mtx);
3752 dbuf_rele_and_unlock(db, tag, B_FALSE);
3753 }
3754
3755 void
3756 dmu_buf_rele(dmu_buf_t *db, const void *tag)
3757 {
3758 dbuf_rele((dmu_buf_impl_t *)db, tag);
3759 }
3760
3761 /*
3762 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3763 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3764 * argument should be set if we are already in the dbuf-evicting code
3765 * path, in which case we don't want to recursively evict. This allows us to
3766 * avoid deeply nested stacks that would have a call flow similar to this:
3767 *
3768 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3769 * ^ |
3770 * | |
3771 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3772 *
3773 */
3774 void
3775 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
3776 {
3777 int64_t holds;
3778 uint64_t size;
3779
3780 ASSERT(MUTEX_HELD(&db->db_mtx));
3781 DBUF_VERIFY(db);
3782
3783 /*
3784 * Remove the reference to the dbuf before removing its hold on the
3785 * dnode so we can guarantee in dnode_move() that a referenced bonus
3786 * buffer has a corresponding dnode hold.
3787 */
3788 holds = zfs_refcount_remove(&db->db_holds, tag);
3789 ASSERT(holds >= 0);
3790
3791 /*
3792 * We can't freeze indirects if there is a possibility that they
3793 * may be modified in the current syncing context.
3794 */
3795 if (db->db_buf != NULL &&
3796 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3797 arc_buf_freeze(db->db_buf);
3798 }
3799
3800 if (holds == db->db_dirtycnt &&
3801 db->db_level == 0 && db->db_user_immediate_evict)
3802 dbuf_evict_user(db);
3803
3804 if (holds == 0) {
3805 if (db->db_blkid == DMU_BONUS_BLKID) {
3806 dnode_t *dn;
3807 boolean_t evict_dbuf = db->db_pending_evict;
3808
3809 /*
3810 * If the dnode moves here, we cannot cross this
3811 * barrier until the move completes.
3812 */
3813 DB_DNODE_ENTER(db);
3814
3815 dn = DB_DNODE(db);
3816 atomic_dec_32(&dn->dn_dbufs_count);
3817
3818 /*
3819 * Decrementing the dbuf count means that the bonus
3820 * buffer's dnode hold is no longer discounted in
3821 * dnode_move(). The dnode cannot move until after
3822 * the dnode_rele() below.
3823 */
3824 DB_DNODE_EXIT(db);
3825
3826 /*
3827 * Do not reference db after its lock is dropped.
3828 * Another thread may evict it.
3829 */
3830 mutex_exit(&db->db_mtx);
3831
3832 if (evict_dbuf)
3833 dnode_evict_bonus(dn);
3834
3835 dnode_rele(dn, db);
3836 } else if (db->db_buf == NULL) {
3837 /*
3838 * This is a special case: we never associated this
3839 * dbuf with any data allocated from the ARC.
3840 */
3841 ASSERT(db->db_state == DB_UNCACHED ||
3842 db->db_state == DB_NOFILL);
3843 dbuf_destroy(db);
3844 } else if (arc_released(db->db_buf)) {
3845 /*
3846 * This dbuf has anonymous data associated with it.
3847 */
3848 dbuf_destroy(db);
3849 } else {
3850 boolean_t do_arc_evict = B_FALSE;
3851 blkptr_t bp;
3852 spa_t *spa = dmu_objset_spa(db->db_objset);
3853
3854 if (!DBUF_IS_CACHEABLE(db) &&
3855 db->db_blkptr != NULL &&
3856 !BP_IS_HOLE(db->db_blkptr) &&
3857 !BP_IS_EMBEDDED(db->db_blkptr)) {
3858 do_arc_evict = B_TRUE;
3859 bp = *db->db_blkptr;
3860 }
3861
3862 if (!DBUF_IS_CACHEABLE(db) ||
3863 db->db_pending_evict) {
3864 dbuf_destroy(db);
3865 } else if (!multilist_link_active(&db->db_cache_link)) {
3866 ASSERT3U(db->db_caching_status, ==,
3867 DB_NO_CACHE);
3868
3869 dbuf_cached_state_t dcs =
3870 dbuf_include_in_metadata_cache(db) ?
3871 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
3872 db->db_caching_status = dcs;
3873
3874 multilist_insert(&dbuf_caches[dcs].cache, db);
3875 uint64_t db_size = db->db.db_size;
3876 size = zfs_refcount_add_many(
3877 &dbuf_caches[dcs].size, db_size, db);
3878 uint8_t db_level = db->db_level;
3879 mutex_exit(&db->db_mtx);
3880
3881 if (dcs == DB_DBUF_METADATA_CACHE) {
3882 DBUF_STAT_BUMP(metadata_cache_count);
3883 DBUF_STAT_MAX(
3884 metadata_cache_size_bytes_max,
3885 size);
3886 } else {
3887 DBUF_STAT_BUMP(cache_count);
3888 DBUF_STAT_MAX(cache_size_bytes_max,
3889 size);
3890 DBUF_STAT_BUMP(cache_levels[db_level]);
3891 DBUF_STAT_INCR(
3892 cache_levels_bytes[db_level],
3893 db_size);
3894 }
3895
3896 if (dcs == DB_DBUF_CACHE && !evicting)
3897 dbuf_evict_notify(size);
3898 }
3899
3900 if (do_arc_evict)
3901 arc_freed(spa, &bp);
3902 }
3903 } else {
3904 mutex_exit(&db->db_mtx);
3905 }
3906
3907 }
3908
3909 #pragma weak dmu_buf_refcount = dbuf_refcount
3910 uint64_t
3911 dbuf_refcount(dmu_buf_impl_t *db)
3912 {
3913 return (zfs_refcount_count(&db->db_holds));
3914 }
3915
3916 uint64_t
3917 dmu_buf_user_refcount(dmu_buf_t *db_fake)
3918 {
3919 uint64_t holds;
3920 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3921
3922 mutex_enter(&db->db_mtx);
3923 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
3924 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
3925 mutex_exit(&db->db_mtx);
3926
3927 return (holds);
3928 }
3929
3930 void *
3931 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3932 dmu_buf_user_t *new_user)
3933 {
3934 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3935
3936 mutex_enter(&db->db_mtx);
3937 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3938 if (db->db_user == old_user)
3939 db->db_user = new_user;
3940 else
3941 old_user = db->db_user;
3942 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3943 mutex_exit(&db->db_mtx);
3944
3945 return (old_user);
3946 }
3947
3948 void *
3949 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3950 {
3951 return (dmu_buf_replace_user(db_fake, NULL, user));
3952 }
3953
3954 void *
3955 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3956 {
3957 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3958
3959 db->db_user_immediate_evict = TRUE;
3960 return (dmu_buf_set_user(db_fake, user));
3961 }
3962
3963 void *
3964 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3965 {
3966 return (dmu_buf_replace_user(db_fake, user, NULL));
3967 }
3968
3969 void *
3970 dmu_buf_get_user(dmu_buf_t *db_fake)
3971 {
3972 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3973
3974 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3975 return (db->db_user);
3976 }
3977
3978 void
3979 dmu_buf_user_evict_wait(void)
3980 {
3981 taskq_wait(dbu_evict_taskq);
3982 }
3983
3984 blkptr_t *
3985 dmu_buf_get_blkptr(dmu_buf_t *db)
3986 {
3987 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3988 return (dbi->db_blkptr);
3989 }
3990
3991 objset_t *
3992 dmu_buf_get_objset(dmu_buf_t *db)
3993 {
3994 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3995 return (dbi->db_objset);
3996 }
3997
3998 dnode_t *
3999 dmu_buf_dnode_enter(dmu_buf_t *db)
4000 {
4001 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4002 DB_DNODE_ENTER(dbi);
4003 return (DB_DNODE(dbi));
4004 }
4005
4006 void
4007 dmu_buf_dnode_exit(dmu_buf_t *db)
4008 {
4009 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4010 DB_DNODE_EXIT(dbi);
4011 }
4012
4013 static void
4014 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
4015 {
4016 /* ASSERT(dmu_tx_is_syncing(tx) */
4017 ASSERT(MUTEX_HELD(&db->db_mtx));
4018
4019 if (db->db_blkptr != NULL)
4020 return;
4021
4022 if (db->db_blkid == DMU_SPILL_BLKID) {
4023 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
4024 BP_ZERO(db->db_blkptr);
4025 return;
4026 }
4027 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4028 /*
4029 * This buffer was allocated at a time when there was
4030 * no available blkptrs from the dnode, or it was
4031 * inappropriate to hook it in (i.e., nlevels mismatch).
4032 */
4033 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4034 ASSERT(db->db_parent == NULL);
4035 db->db_parent = dn->dn_dbuf;
4036 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4037 DBUF_VERIFY(db);
4038 } else {
4039 dmu_buf_impl_t *parent = db->db_parent;
4040 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4041
4042 ASSERT(dn->dn_phys->dn_nlevels > 1);
4043 if (parent == NULL) {
4044 mutex_exit(&db->db_mtx);
4045 rw_enter(&dn->dn_struct_rwlock, RW_READER);
4046 parent = dbuf_hold_level(dn, db->db_level + 1,
4047 db->db_blkid >> epbs, db);
4048 rw_exit(&dn->dn_struct_rwlock);
4049 mutex_enter(&db->db_mtx);
4050 db->db_parent = parent;
4051 }
4052 db->db_blkptr = (blkptr_t *)parent->db.db_data +
4053 (db->db_blkid & ((1ULL << epbs) - 1));
4054 DBUF_VERIFY(db);
4055 }
4056 }
4057
4058 static void
4059 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4060 {
4061 dmu_buf_impl_t *db = dr->dr_dbuf;
4062 void *data = dr->dt.dl.dr_data;
4063
4064 ASSERT0(db->db_level);
4065 ASSERT(MUTEX_HELD(&db->db_mtx));
4066 ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4067 ASSERT(data != NULL);
4068
4069 dnode_t *dn = dr->dr_dnode;
4070 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4071 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4072 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
4073
4074 dbuf_sync_leaf_verify_bonus_dnode(dr);
4075
4076 dbuf_undirty_bonus(dr);
4077 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4078 }
4079
4080 /*
4081 * When syncing out a blocks of dnodes, adjust the block to deal with
4082 * encryption. Normally, we make sure the block is decrypted before writing
4083 * it. If we have crypt params, then we are writing a raw (encrypted) block,
4084 * from a raw receive. In this case, set the ARC buf's crypt params so
4085 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4086 */
4087 static void
4088 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4089 {
4090 int err;
4091 dmu_buf_impl_t *db = dr->dr_dbuf;
4092
4093 ASSERT(MUTEX_HELD(&db->db_mtx));
4094 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4095 ASSERT3U(db->db_level, ==, 0);
4096
4097 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4098 zbookmark_phys_t zb;
4099
4100 /*
4101 * Unfortunately, there is currently no mechanism for
4102 * syncing context to handle decryption errors. An error
4103 * here is only possible if an attacker maliciously
4104 * changed a dnode block and updated the associated
4105 * checksums going up the block tree.
4106 */
4107 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4108 db->db.db_object, db->db_level, db->db_blkid);
4109 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4110 &zb, B_TRUE);
4111 if (err)
4112 panic("Invalid dnode block MAC");
4113 } else if (dr->dt.dl.dr_has_raw_params) {
4114 (void) arc_release(dr->dt.dl.dr_data, db);
4115 arc_convert_to_raw(dr->dt.dl.dr_data,
4116 dmu_objset_id(db->db_objset),
4117 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4118 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4119 }
4120 }
4121
4122 /*
4123 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4124 * is critical the we not allow the compiler to inline this function in to
4125 * dbuf_sync_list() thereby drastically bloating the stack usage.
4126 */
4127 noinline static void
4128 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4129 {
4130 dmu_buf_impl_t *db = dr->dr_dbuf;
4131 dnode_t *dn = dr->dr_dnode;
4132
4133 ASSERT(dmu_tx_is_syncing(tx));
4134
4135 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4136
4137 mutex_enter(&db->db_mtx);
4138
4139 ASSERT(db->db_level > 0);
4140 DBUF_VERIFY(db);
4141
4142 /* Read the block if it hasn't been read yet. */
4143 if (db->db_buf == NULL) {
4144 mutex_exit(&db->db_mtx);
4145 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4146 mutex_enter(&db->db_mtx);
4147 }
4148 ASSERT3U(db->db_state, ==, DB_CACHED);
4149 ASSERT(db->db_buf != NULL);
4150
4151 /* Indirect block size must match what the dnode thinks it is. */
4152 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4153 dbuf_check_blkptr(dn, db);
4154
4155 /* Provide the pending dirty record to child dbufs */
4156 db->db_data_pending = dr;
4157
4158 mutex_exit(&db->db_mtx);
4159
4160 dbuf_write(dr, db->db_buf, tx);
4161
4162 zio_t *zio = dr->dr_zio;
4163 mutex_enter(&dr->dt.di.dr_mtx);
4164 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4165 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4166 mutex_exit(&dr->dt.di.dr_mtx);
4167 zio_nowait(zio);
4168 }
4169
4170 /*
4171 * Verify that the size of the data in our bonus buffer does not exceed
4172 * its recorded size.
4173 *
4174 * The purpose of this verification is to catch any cases in development
4175 * where the size of a phys structure (i.e space_map_phys_t) grows and,
4176 * due to incorrect feature management, older pools expect to read more
4177 * data even though they didn't actually write it to begin with.
4178 *
4179 * For a example, this would catch an error in the feature logic where we
4180 * open an older pool and we expect to write the space map histogram of
4181 * a space map with size SPACE_MAP_SIZE_V0.
4182 */
4183 static void
4184 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4185 {
4186 #ifdef ZFS_DEBUG
4187 dnode_t *dn = dr->dr_dnode;
4188
4189 /*
4190 * Encrypted bonus buffers can have data past their bonuslen.
4191 * Skip the verification of these blocks.
4192 */
4193 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4194 return;
4195
4196 uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4197 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4198 ASSERT3U(bonuslen, <=, maxbonuslen);
4199
4200 arc_buf_t *datap = dr->dt.dl.dr_data;
4201 char *datap_end = ((char *)datap) + bonuslen;
4202 char *datap_max = ((char *)datap) + maxbonuslen;
4203
4204 /* ensure that everything is zero after our data */
4205 for (; datap_end < datap_max; datap_end++)
4206 ASSERT(*datap_end == 0);
4207 #endif
4208 }
4209
4210 static blkptr_t *
4211 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4212 {
4213 /* This must be a lightweight dirty record. */
4214 ASSERT3P(dr->dr_dbuf, ==, NULL);
4215 dnode_t *dn = dr->dr_dnode;
4216
4217 if (dn->dn_phys->dn_nlevels == 1) {
4218 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4219 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4220 } else {
4221 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4222 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4223 VERIFY3U(parent_db->db_level, ==, 1);
4224 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn);
4225 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4226 blkptr_t *bp = parent_db->db.db_data;
4227 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4228 }
4229 }
4230
4231 static void
4232 dbuf_lightweight_ready(zio_t *zio)
4233 {
4234 dbuf_dirty_record_t *dr = zio->io_private;
4235 blkptr_t *bp = zio->io_bp;
4236
4237 if (zio->io_error != 0)
4238 return;
4239
4240 dnode_t *dn = dr->dr_dnode;
4241
4242 blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4243 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4244 int64_t delta = bp_get_dsize_sync(spa, bp) -
4245 bp_get_dsize_sync(spa, bp_orig);
4246 dnode_diduse_space(dn, delta);
4247
4248 uint64_t blkid = dr->dt.dll.dr_blkid;
4249 mutex_enter(&dn->dn_mtx);
4250 if (blkid > dn->dn_phys->dn_maxblkid) {
4251 ASSERT0(dn->dn_objset->os_raw_receive);
4252 dn->dn_phys->dn_maxblkid = blkid;
4253 }
4254 mutex_exit(&dn->dn_mtx);
4255
4256 if (!BP_IS_EMBEDDED(bp)) {
4257 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4258 BP_SET_FILL(bp, fill);
4259 }
4260
4261 dmu_buf_impl_t *parent_db;
4262 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4263 if (dr->dr_parent == NULL) {
4264 parent_db = dn->dn_dbuf;
4265 } else {
4266 parent_db = dr->dr_parent->dr_dbuf;
4267 }
4268 rw_enter(&parent_db->db_rwlock, RW_WRITER);
4269 *bp_orig = *bp;
4270 rw_exit(&parent_db->db_rwlock);
4271 }
4272
4273 static void
4274 dbuf_lightweight_physdone(zio_t *zio)
4275 {
4276 dbuf_dirty_record_t *dr = zio->io_private;
4277 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
4278 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4279
4280 /*
4281 * The callback will be called io_phys_children times. Retire one
4282 * portion of our dirty space each time we are called. Any rounding
4283 * error will be cleaned up by dbuf_lightweight_done().
4284 */
4285 int delta = dr->dr_accounted / zio->io_phys_children;
4286 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4287 }
4288
4289 static void
4290 dbuf_lightweight_done(zio_t *zio)
4291 {
4292 dbuf_dirty_record_t *dr = zio->io_private;
4293
4294 VERIFY0(zio->io_error);
4295
4296 objset_t *os = dr->dr_dnode->dn_objset;
4297 dmu_tx_t *tx = os->os_synctx;
4298
4299 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4300 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4301 } else {
4302 dsl_dataset_t *ds = os->os_dsl_dataset;
4303 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4304 dsl_dataset_block_born(ds, zio->io_bp, tx);
4305 }
4306
4307 /*
4308 * See comment in dbuf_write_done().
4309 */
4310 if (zio->io_phys_children == 0) {
4311 dsl_pool_undirty_space(dmu_objset_pool(os),
4312 dr->dr_accounted, zio->io_txg);
4313 } else {
4314 dsl_pool_undirty_space(dmu_objset_pool(os),
4315 dr->dr_accounted % zio->io_phys_children, zio->io_txg);
4316 }
4317
4318 abd_free(dr->dt.dll.dr_abd);
4319 kmem_free(dr, sizeof (*dr));
4320 }
4321
4322 noinline static void
4323 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4324 {
4325 dnode_t *dn = dr->dr_dnode;
4326 zio_t *pio;
4327 if (dn->dn_phys->dn_nlevels == 1) {
4328 pio = dn->dn_zio;
4329 } else {
4330 pio = dr->dr_parent->dr_zio;
4331 }
4332
4333 zbookmark_phys_t zb = {
4334 .zb_objset = dmu_objset_id(dn->dn_objset),
4335 .zb_object = dn->dn_object,
4336 .zb_level = 0,
4337 .zb_blkid = dr->dt.dll.dr_blkid,
4338 };
4339
4340 /*
4341 * See comment in dbuf_write(). This is so that zio->io_bp_orig
4342 * will have the old BP in dbuf_lightweight_done().
4343 */
4344 dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4345
4346 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4347 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4348 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4349 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4350 dbuf_lightweight_physdone, dbuf_lightweight_done, dr,
4351 ZIO_PRIORITY_ASYNC_WRITE,
4352 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4353
4354 zio_nowait(dr->dr_zio);
4355 }
4356
4357 /*
4358 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4359 * critical the we not allow the compiler to inline this function in to
4360 * dbuf_sync_list() thereby drastically bloating the stack usage.
4361 */
4362 noinline static void
4363 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4364 {
4365 arc_buf_t **datap = &dr->dt.dl.dr_data;
4366 dmu_buf_impl_t *db = dr->dr_dbuf;
4367 dnode_t *dn = dr->dr_dnode;
4368 objset_t *os;
4369 uint64_t txg = tx->tx_txg;
4370
4371 ASSERT(dmu_tx_is_syncing(tx));
4372
4373 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4374
4375 mutex_enter(&db->db_mtx);
4376 /*
4377 * To be synced, we must be dirtied. But we
4378 * might have been freed after the dirty.
4379 */
4380 if (db->db_state == DB_UNCACHED) {
4381 /* This buffer has been freed since it was dirtied */
4382 ASSERT(db->db.db_data == NULL);
4383 } else if (db->db_state == DB_FILL) {
4384 /* This buffer was freed and is now being re-filled */
4385 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4386 } else {
4387 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4388 }
4389 DBUF_VERIFY(db);
4390
4391 if (db->db_blkid == DMU_SPILL_BLKID) {
4392 mutex_enter(&dn->dn_mtx);
4393 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4394 /*
4395 * In the previous transaction group, the bonus buffer
4396 * was entirely used to store the attributes for the
4397 * dnode which overrode the dn_spill field. However,
4398 * when adding more attributes to the file a spill
4399 * block was required to hold the extra attributes.
4400 *
4401 * Make sure to clear the garbage left in the dn_spill
4402 * field from the previous attributes in the bonus
4403 * buffer. Otherwise, after writing out the spill
4404 * block to the new allocated dva, it will free
4405 * the old block pointed to by the invalid dn_spill.
4406 */
4407 db->db_blkptr = NULL;
4408 }
4409 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4410 mutex_exit(&dn->dn_mtx);
4411 }
4412
4413 /*
4414 * If this is a bonus buffer, simply copy the bonus data into the
4415 * dnode. It will be written out when the dnode is synced (and it
4416 * will be synced, since it must have been dirty for dbuf_sync to
4417 * be called).
4418 */
4419 if (db->db_blkid == DMU_BONUS_BLKID) {
4420 ASSERT(dr->dr_dbuf == db);
4421 dbuf_sync_bonus(dr, tx);
4422 return;
4423 }
4424
4425 os = dn->dn_objset;
4426
4427 /*
4428 * This function may have dropped the db_mtx lock allowing a dmu_sync
4429 * operation to sneak in. As a result, we need to ensure that we
4430 * don't check the dr_override_state until we have returned from
4431 * dbuf_check_blkptr.
4432 */
4433 dbuf_check_blkptr(dn, db);
4434
4435 /*
4436 * If this buffer is in the middle of an immediate write,
4437 * wait for the synchronous IO to complete.
4438 */
4439 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4440 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4441 cv_wait(&db->db_changed, &db->db_mtx);
4442 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
4443 }
4444
4445 /*
4446 * If this is a dnode block, ensure it is appropriately encrypted
4447 * or decrypted, depending on what we are writing to it this txg.
4448 */
4449 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4450 dbuf_prepare_encrypted_dnode_leaf(dr);
4451
4452 if (db->db_state != DB_NOFILL &&
4453 dn->dn_object != DMU_META_DNODE_OBJECT &&
4454 zfs_refcount_count(&db->db_holds) > 1 &&
4455 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
4456 *datap == db->db_buf) {
4457 /*
4458 * If this buffer is currently "in use" (i.e., there
4459 * are active holds and db_data still references it),
4460 * then make a copy before we start the write so that
4461 * any modifications from the open txg will not leak
4462 * into this write.
4463 *
4464 * NOTE: this copy does not need to be made for
4465 * objects only modified in the syncing context (e.g.
4466 * DNONE_DNODE blocks).
4467 */
4468 int psize = arc_buf_size(*datap);
4469 int lsize = arc_buf_lsize(*datap);
4470 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4471 enum zio_compress compress_type = arc_get_compression(*datap);
4472 uint8_t complevel = arc_get_complevel(*datap);
4473
4474 if (arc_is_encrypted(*datap)) {
4475 boolean_t byteorder;
4476 uint8_t salt[ZIO_DATA_SALT_LEN];
4477 uint8_t iv[ZIO_DATA_IV_LEN];
4478 uint8_t mac[ZIO_DATA_MAC_LEN];
4479
4480 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4481 *datap = arc_alloc_raw_buf(os->os_spa, db,
4482 dmu_objset_id(os), byteorder, salt, iv, mac,
4483 dn->dn_type, psize, lsize, compress_type,
4484 complevel);
4485 } else if (compress_type != ZIO_COMPRESS_OFF) {
4486 ASSERT3U(type, ==, ARC_BUFC_DATA);
4487 *datap = arc_alloc_compressed_buf(os->os_spa, db,
4488 psize, lsize, compress_type, complevel);
4489 } else {
4490 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
4491 }
4492 memcpy((*datap)->b_data, db->db.db_data, psize);
4493 }
4494 db->db_data_pending = dr;
4495
4496 mutex_exit(&db->db_mtx);
4497
4498 dbuf_write(dr, *datap, tx);
4499
4500 ASSERT(!list_link_active(&dr->dr_dirty_node));
4501 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4502 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4503 } else {
4504 zio_nowait(dr->dr_zio);
4505 }
4506 }
4507
4508 void
4509 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4510 {
4511 dbuf_dirty_record_t *dr;
4512
4513 while ((dr = list_head(list))) {
4514 if (dr->dr_zio != NULL) {
4515 /*
4516 * If we find an already initialized zio then we
4517 * are processing the meta-dnode, and we have finished.
4518 * The dbufs for all dnodes are put back on the list
4519 * during processing, so that we can zio_wait()
4520 * these IOs after initiating all child IOs.
4521 */
4522 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4523 DMU_META_DNODE_OBJECT);
4524 break;
4525 }
4526 list_remove(list, dr);
4527 if (dr->dr_dbuf == NULL) {
4528 dbuf_sync_lightweight(dr, tx);
4529 } else {
4530 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4531 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4532 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4533 }
4534 if (dr->dr_dbuf->db_level > 0)
4535 dbuf_sync_indirect(dr, tx);
4536 else
4537 dbuf_sync_leaf(dr, tx);
4538 }
4539 }
4540 }
4541
4542 static void
4543 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4544 {
4545 (void) buf;
4546 dmu_buf_impl_t *db = vdb;
4547 dnode_t *dn;
4548 blkptr_t *bp = zio->io_bp;
4549 blkptr_t *bp_orig = &zio->io_bp_orig;
4550 spa_t *spa = zio->io_spa;
4551 int64_t delta;
4552 uint64_t fill = 0;
4553 int i;
4554
4555 ASSERT3P(db->db_blkptr, !=, NULL);
4556 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4557
4558 DB_DNODE_ENTER(db);
4559 dn = DB_DNODE(db);
4560 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4561 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4562 zio->io_prev_space_delta = delta;
4563
4564 if (bp->blk_birth != 0) {
4565 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4566 BP_GET_TYPE(bp) == dn->dn_type) ||
4567 (db->db_blkid == DMU_SPILL_BLKID &&
4568 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4569 BP_IS_EMBEDDED(bp));
4570 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4571 }
4572
4573 mutex_enter(&db->db_mtx);
4574
4575 #ifdef ZFS_DEBUG
4576 if (db->db_blkid == DMU_SPILL_BLKID) {
4577 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4578 ASSERT(!(BP_IS_HOLE(bp)) &&
4579 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4580 }
4581 #endif
4582
4583 if (db->db_level == 0) {
4584 mutex_enter(&dn->dn_mtx);
4585 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4586 db->db_blkid != DMU_SPILL_BLKID) {
4587 ASSERT0(db->db_objset->os_raw_receive);
4588 dn->dn_phys->dn_maxblkid = db->db_blkid;
4589 }
4590 mutex_exit(&dn->dn_mtx);
4591
4592 if (dn->dn_type == DMU_OT_DNODE) {
4593 i = 0;
4594 while (i < db->db.db_size) {
4595 dnode_phys_t *dnp =
4596 (void *)(((char *)db->db.db_data) + i);
4597
4598 i += DNODE_MIN_SIZE;
4599 if (dnp->dn_type != DMU_OT_NONE) {
4600 fill++;
4601 i += dnp->dn_extra_slots *
4602 DNODE_MIN_SIZE;
4603 }
4604 }
4605 } else {
4606 if (BP_IS_HOLE(bp)) {
4607 fill = 0;
4608 } else {
4609 fill = 1;
4610 }
4611 }
4612 } else {
4613 blkptr_t *ibp = db->db.db_data;
4614 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4615 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4616 if (BP_IS_HOLE(ibp))
4617 continue;
4618 fill += BP_GET_FILL(ibp);
4619 }
4620 }
4621 DB_DNODE_EXIT(db);
4622
4623 if (!BP_IS_EMBEDDED(bp))
4624 BP_SET_FILL(bp, fill);
4625
4626 mutex_exit(&db->db_mtx);
4627
4628 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
4629 *db->db_blkptr = *bp;
4630 dmu_buf_unlock_parent(db, dblt, FTAG);
4631 }
4632
4633 /*
4634 * This function gets called just prior to running through the compression
4635 * stage of the zio pipeline. If we're an indirect block comprised of only
4636 * holes, then we want this indirect to be compressed away to a hole. In
4637 * order to do that we must zero out any information about the holes that
4638 * this indirect points to prior to before we try to compress it.
4639 */
4640 static void
4641 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4642 {
4643 (void) zio, (void) buf;
4644 dmu_buf_impl_t *db = vdb;
4645 dnode_t *dn;
4646 blkptr_t *bp;
4647 unsigned int epbs, i;
4648
4649 ASSERT3U(db->db_level, >, 0);
4650 DB_DNODE_ENTER(db);
4651 dn = DB_DNODE(db);
4652 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4653 ASSERT3U(epbs, <, 31);
4654
4655 /* Determine if all our children are holes */
4656 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4657 if (!BP_IS_HOLE(bp))
4658 break;
4659 }
4660
4661 /*
4662 * If all the children are holes, then zero them all out so that
4663 * we may get compressed away.
4664 */
4665 if (i == 1ULL << epbs) {
4666 /*
4667 * We only found holes. Grab the rwlock to prevent
4668 * anybody from reading the blocks we're about to
4669 * zero out.
4670 */
4671 rw_enter(&db->db_rwlock, RW_WRITER);
4672 memset(db->db.db_data, 0, db->db.db_size);
4673 rw_exit(&db->db_rwlock);
4674 }
4675 DB_DNODE_EXIT(db);
4676 }
4677
4678 /*
4679 * The SPA will call this callback several times for each zio - once
4680 * for every physical child i/o (zio->io_phys_children times). This
4681 * allows the DMU to monitor the progress of each logical i/o. For example,
4682 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
4683 * block. There may be a long delay before all copies/fragments are completed,
4684 * so this callback allows us to retire dirty space gradually, as the physical
4685 * i/os complete.
4686 */
4687 static void
4688 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
4689 {
4690 (void) buf;
4691 dmu_buf_impl_t *db = arg;
4692 objset_t *os = db->db_objset;
4693 dsl_pool_t *dp = dmu_objset_pool(os);
4694 dbuf_dirty_record_t *dr;
4695 int delta = 0;
4696
4697 dr = db->db_data_pending;
4698 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4699
4700 /*
4701 * The callback will be called io_phys_children times. Retire one
4702 * portion of our dirty space each time we are called. Any rounding
4703 * error will be cleaned up by dbuf_write_done().
4704 */
4705 delta = dr->dr_accounted / zio->io_phys_children;
4706 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4707 }
4708
4709 static void
4710 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4711 {
4712 (void) buf;
4713 dmu_buf_impl_t *db = vdb;
4714 blkptr_t *bp_orig = &zio->io_bp_orig;
4715 blkptr_t *bp = db->db_blkptr;
4716 objset_t *os = db->db_objset;
4717 dmu_tx_t *tx = os->os_synctx;
4718
4719 ASSERT0(zio->io_error);
4720 ASSERT(db->db_blkptr == bp);
4721
4722 /*
4723 * For nopwrites and rewrites we ensure that the bp matches our
4724 * original and bypass all the accounting.
4725 */
4726 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4727 ASSERT(BP_EQUAL(bp, bp_orig));
4728 } else {
4729 dsl_dataset_t *ds = os->os_dsl_dataset;
4730 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4731 dsl_dataset_block_born(ds, bp, tx);
4732 }
4733
4734 mutex_enter(&db->db_mtx);
4735
4736 DBUF_VERIFY(db);
4737
4738 dbuf_dirty_record_t *dr = db->db_data_pending;
4739 dnode_t *dn = dr->dr_dnode;
4740 ASSERT(!list_link_active(&dr->dr_dirty_node));
4741 ASSERT(dr->dr_dbuf == db);
4742 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
4743 list_remove(&db->db_dirty_records, dr);
4744
4745 #ifdef ZFS_DEBUG
4746 if (db->db_blkid == DMU_SPILL_BLKID) {
4747 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4748 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4749 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4750 }
4751 #endif
4752
4753 if (db->db_level == 0) {
4754 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4755 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4756 if (db->db_state != DB_NOFILL) {
4757 if (dr->dt.dl.dr_data != db->db_buf)
4758 arc_buf_destroy(dr->dt.dl.dr_data, db);
4759 }
4760 } else {
4761 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4762 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4763 if (!BP_IS_HOLE(db->db_blkptr)) {
4764 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
4765 SPA_BLKPTRSHIFT;
4766 ASSERT3U(db->db_blkid, <=,
4767 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4768 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4769 db->db.db_size);
4770 }
4771 mutex_destroy(&dr->dt.di.dr_mtx);
4772 list_destroy(&dr->dt.di.dr_children);
4773 }
4774
4775 cv_broadcast(&db->db_changed);
4776 ASSERT(db->db_dirtycnt > 0);
4777 db->db_dirtycnt -= 1;
4778 db->db_data_pending = NULL;
4779 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4780
4781 /*
4782 * If we didn't do a physical write in this ZIO and we
4783 * still ended up here, it means that the space of the
4784 * dbuf that we just released (and undirtied) above hasn't
4785 * been marked as undirtied in the pool's accounting.
4786 *
4787 * Thus, we undirty that space in the pool's view of the
4788 * world here. For physical writes this type of update
4789 * happens in dbuf_write_physdone().
4790 *
4791 * If we did a physical write, cleanup any rounding errors
4792 * that came up due to writing multiple copies of a block
4793 * on disk [see dbuf_write_physdone()].
4794 */
4795 if (zio->io_phys_children == 0) {
4796 dsl_pool_undirty_space(dmu_objset_pool(os),
4797 dr->dr_accounted, zio->io_txg);
4798 } else {
4799 dsl_pool_undirty_space(dmu_objset_pool(os),
4800 dr->dr_accounted % zio->io_phys_children, zio->io_txg);
4801 }
4802
4803 kmem_free(dr, sizeof (dbuf_dirty_record_t));
4804 }
4805
4806 static void
4807 dbuf_write_nofill_ready(zio_t *zio)
4808 {
4809 dbuf_write_ready(zio, NULL, zio->io_private);
4810 }
4811
4812 static void
4813 dbuf_write_nofill_done(zio_t *zio)
4814 {
4815 dbuf_write_done(zio, NULL, zio->io_private);
4816 }
4817
4818 static void
4819 dbuf_write_override_ready(zio_t *zio)
4820 {
4821 dbuf_dirty_record_t *dr = zio->io_private;
4822 dmu_buf_impl_t *db = dr->dr_dbuf;
4823
4824 dbuf_write_ready(zio, NULL, db);
4825 }
4826
4827 static void
4828 dbuf_write_override_done(zio_t *zio)
4829 {
4830 dbuf_dirty_record_t *dr = zio->io_private;
4831 dmu_buf_impl_t *db = dr->dr_dbuf;
4832 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4833
4834 mutex_enter(&db->db_mtx);
4835 if (!BP_EQUAL(zio->io_bp, obp)) {
4836 if (!BP_IS_HOLE(obp))
4837 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4838 arc_release(dr->dt.dl.dr_data, db);
4839 }
4840 mutex_exit(&db->db_mtx);
4841
4842 dbuf_write_done(zio, NULL, db);
4843
4844 if (zio->io_abd != NULL)
4845 abd_free(zio->io_abd);
4846 }
4847
4848 typedef struct dbuf_remap_impl_callback_arg {
4849 objset_t *drica_os;
4850 uint64_t drica_blk_birth;
4851 dmu_tx_t *drica_tx;
4852 } dbuf_remap_impl_callback_arg_t;
4853
4854 static void
4855 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4856 void *arg)
4857 {
4858 dbuf_remap_impl_callback_arg_t *drica = arg;
4859 objset_t *os = drica->drica_os;
4860 spa_t *spa = dmu_objset_spa(os);
4861 dmu_tx_t *tx = drica->drica_tx;
4862
4863 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4864
4865 if (os == spa_meta_objset(spa)) {
4866 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4867 } else {
4868 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4869 size, drica->drica_blk_birth, tx);
4870 }
4871 }
4872
4873 static void
4874 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
4875 {
4876 blkptr_t bp_copy = *bp;
4877 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4878 dbuf_remap_impl_callback_arg_t drica;
4879
4880 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4881
4882 drica.drica_os = dn->dn_objset;
4883 drica.drica_blk_birth = bp->blk_birth;
4884 drica.drica_tx = tx;
4885 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4886 &drica)) {
4887 /*
4888 * If the blkptr being remapped is tracked by a livelist,
4889 * then we need to make sure the livelist reflects the update.
4890 * First, cancel out the old blkptr by appending a 'FREE'
4891 * entry. Next, add an 'ALLOC' to track the new version. This
4892 * way we avoid trying to free an inaccurate blkptr at delete.
4893 * Note that embedded blkptrs are not tracked in livelists.
4894 */
4895 if (dn->dn_objset != spa_meta_objset(spa)) {
4896 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
4897 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4898 bp->blk_birth > ds->ds_dir->dd_origin_txg) {
4899 ASSERT(!BP_IS_EMBEDDED(bp));
4900 ASSERT(dsl_dir_is_clone(ds->ds_dir));
4901 ASSERT(spa_feature_is_enabled(spa,
4902 SPA_FEATURE_LIVELIST));
4903 bplist_append(&ds->ds_dir->dd_pending_frees,
4904 bp);
4905 bplist_append(&ds->ds_dir->dd_pending_allocs,
4906 &bp_copy);
4907 }
4908 }
4909
4910 /*
4911 * The db_rwlock prevents dbuf_read_impl() from
4912 * dereferencing the BP while we are changing it. To
4913 * avoid lock contention, only grab it when we are actually
4914 * changing the BP.
4915 */
4916 if (rw != NULL)
4917 rw_enter(rw, RW_WRITER);
4918 *bp = bp_copy;
4919 if (rw != NULL)
4920 rw_exit(rw);
4921 }
4922 }
4923
4924 /*
4925 * Remap any existing BP's to concrete vdevs, if possible.
4926 */
4927 static void
4928 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4929 {
4930 spa_t *spa = dmu_objset_spa(db->db_objset);
4931 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4932
4933 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4934 return;
4935
4936 if (db->db_level > 0) {
4937 blkptr_t *bp = db->db.db_data;
4938 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4939 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
4940 }
4941 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4942 dnode_phys_t *dnp = db->db.db_data;
4943 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4944 DMU_OT_DNODE);
4945 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4946 i += dnp[i].dn_extra_slots + 1) {
4947 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4948 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
4949 &dn->dn_dbuf->db_rwlock);
4950 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
4951 tx);
4952 }
4953 }
4954 }
4955 }
4956
4957
4958 /* Issue I/O to commit a dirty buffer to disk. */
4959 static void
4960 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4961 {
4962 dmu_buf_impl_t *db = dr->dr_dbuf;
4963 dnode_t *dn = dr->dr_dnode;
4964 objset_t *os;
4965 dmu_buf_impl_t *parent = db->db_parent;
4966 uint64_t txg = tx->tx_txg;
4967 zbookmark_phys_t zb;
4968 zio_prop_t zp;
4969 zio_t *pio; /* parent I/O */
4970 int wp_flag = 0;
4971
4972 ASSERT(dmu_tx_is_syncing(tx));
4973
4974 os = dn->dn_objset;
4975
4976 if (db->db_state != DB_NOFILL) {
4977 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4978 /*
4979 * Private object buffers are released here rather
4980 * than in dbuf_dirty() since they are only modified
4981 * in the syncing context and we don't want the
4982 * overhead of making multiple copies of the data.
4983 */
4984 if (BP_IS_HOLE(db->db_blkptr)) {
4985 arc_buf_thaw(data);
4986 } else {
4987 dbuf_release_bp(db);
4988 }
4989 dbuf_remap(dn, db, tx);
4990 }
4991 }
4992
4993 if (parent != dn->dn_dbuf) {
4994 /* Our parent is an indirect block. */
4995 /* We have a dirty parent that has been scheduled for write. */
4996 ASSERT(parent && parent->db_data_pending);
4997 /* Our parent's buffer is one level closer to the dnode. */
4998 ASSERT(db->db_level == parent->db_level-1);
4999 /*
5000 * We're about to modify our parent's db_data by modifying
5001 * our block pointer, so the parent must be released.
5002 */
5003 ASSERT(arc_released(parent->db_buf));
5004 pio = parent->db_data_pending->dr_zio;
5005 } else {
5006 /* Our parent is the dnode itself. */
5007 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
5008 db->db_blkid != DMU_SPILL_BLKID) ||
5009 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
5010 if (db->db_blkid != DMU_SPILL_BLKID)
5011 ASSERT3P(db->db_blkptr, ==,
5012 &dn->dn_phys->dn_blkptr[db->db_blkid]);
5013 pio = dn->dn_zio;
5014 }
5015
5016 ASSERT(db->db_level == 0 || data == db->db_buf);
5017 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
5018 ASSERT(pio);
5019
5020 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
5021 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
5022 db->db.db_object, db->db_level, db->db_blkid);
5023
5024 if (db->db_blkid == DMU_SPILL_BLKID)
5025 wp_flag = WP_SPILL;
5026 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
5027
5028 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5029
5030 /*
5031 * We copy the blkptr now (rather than when we instantiate the dirty
5032 * record), because its value can change between open context and
5033 * syncing context. We do not need to hold dn_struct_rwlock to read
5034 * db_blkptr because we are in syncing context.
5035 */
5036 dr->dr_bp_copy = *db->db_blkptr;
5037
5038 if (db->db_level == 0 &&
5039 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5040 /*
5041 * The BP for this block has been provided by open context
5042 * (by dmu_sync() or dmu_buf_write_embedded()).
5043 */
5044 abd_t *contents = (data != NULL) ?
5045 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5046
5047 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5048 contents, db->db.db_size, db->db.db_size, &zp,
5049 dbuf_write_override_ready, NULL, NULL,
5050 dbuf_write_override_done,
5051 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5052 mutex_enter(&db->db_mtx);
5053 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5054 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5055 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
5056 mutex_exit(&db->db_mtx);
5057 } else if (db->db_state == DB_NOFILL) {
5058 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5059 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5060 dr->dr_zio = zio_write(pio, os->os_spa, txg,
5061 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5062 dbuf_write_nofill_ready, NULL, NULL,
5063 dbuf_write_nofill_done, db,
5064 ZIO_PRIORITY_ASYNC_WRITE,
5065 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5066 } else {
5067 ASSERT(arc_released(data));
5068
5069 /*
5070 * For indirect blocks, we want to setup the children
5071 * ready callback so that we can properly handle an indirect
5072 * block that only contains holes.
5073 */
5074 arc_write_done_func_t *children_ready_cb = NULL;
5075 if (db->db_level != 0)
5076 children_ready_cb = dbuf_write_children_ready;
5077
5078 dr->dr_zio = arc_write(pio, os->os_spa, txg,
5079 &dr->dr_bp_copy, data, dbuf_is_l2cacheable(db),
5080 &zp, dbuf_write_ready,
5081 children_ready_cb, dbuf_write_physdone,
5082 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
5083 ZIO_FLAG_MUSTSUCCEED, &zb);
5084 }
5085 }
5086
5087 EXPORT_SYMBOL(dbuf_find);
5088 EXPORT_SYMBOL(dbuf_is_metadata);
5089 EXPORT_SYMBOL(dbuf_destroy);
5090 EXPORT_SYMBOL(dbuf_loan_arcbuf);
5091 EXPORT_SYMBOL(dbuf_whichblock);
5092 EXPORT_SYMBOL(dbuf_read);
5093 EXPORT_SYMBOL(dbuf_unoverride);
5094 EXPORT_SYMBOL(dbuf_free_range);
5095 EXPORT_SYMBOL(dbuf_new_size);
5096 EXPORT_SYMBOL(dbuf_release_bp);
5097 EXPORT_SYMBOL(dbuf_dirty);
5098 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5099 EXPORT_SYMBOL(dmu_buf_will_dirty);
5100 EXPORT_SYMBOL(dmu_buf_is_dirty);
5101 EXPORT_SYMBOL(dmu_buf_will_not_fill);
5102 EXPORT_SYMBOL(dmu_buf_will_fill);
5103 EXPORT_SYMBOL(dmu_buf_fill_done);
5104 EXPORT_SYMBOL(dmu_buf_rele);
5105 EXPORT_SYMBOL(dbuf_assign_arcbuf);
5106 EXPORT_SYMBOL(dbuf_prefetch);
5107 EXPORT_SYMBOL(dbuf_hold_impl);
5108 EXPORT_SYMBOL(dbuf_hold);
5109 EXPORT_SYMBOL(dbuf_hold_level);
5110 EXPORT_SYMBOL(dbuf_create_bonus);
5111 EXPORT_SYMBOL(dbuf_spill_set_blksz);
5112 EXPORT_SYMBOL(dbuf_rm_spill);
5113 EXPORT_SYMBOL(dbuf_add_ref);
5114 EXPORT_SYMBOL(dbuf_rele);
5115 EXPORT_SYMBOL(dbuf_rele_and_unlock);
5116 EXPORT_SYMBOL(dbuf_refcount);
5117 EXPORT_SYMBOL(dbuf_sync_list);
5118 EXPORT_SYMBOL(dmu_buf_set_user);
5119 EXPORT_SYMBOL(dmu_buf_set_user_ie);
5120 EXPORT_SYMBOL(dmu_buf_get_user);
5121 EXPORT_SYMBOL(dmu_buf_get_blkptr);
5122
5123 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, ULONG, ZMOD_RW,
5124 "Maximum size in bytes of the dbuf cache.");
5125
5126 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5127 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5128
5129 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5130 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5131
5132 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, ULONG, ZMOD_RW,
5133 "Maximum size in bytes of dbuf metadata cache.");
5134
5135 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
5136 "Set size of dbuf cache to log2 fraction of arc size.");
5137
5138 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
5139 "Set size of dbuf metadata cache to log2 fraction of arc size.");
5140
5141 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
5142 "Set size of dbuf cache mutex array as log2 shift.");