]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dbuf.c
Fix coverity defects: CID 176037
[mirror_zfs.git] / module / zfs / dbuf.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/arc.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_send.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dbuf.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/spa.h>
40 #include <sys/zio.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/sa.h>
43 #include <sys/sa_impl.h>
44 #include <sys/zfeature.h>
45 #include <sys/blkptr.h>
46 #include <sys/range_tree.h>
47 #include <sys/trace_dbuf.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50 #include <sys/vdev.h>
51 #include <sys/cityhash.h>
52
53 kstat_t *dbuf_ksp;
54
55 typedef struct dbuf_stats {
56 /*
57 * Various statistics about the size of the dbuf cache.
58 */
59 kstat_named_t cache_count;
60 kstat_named_t cache_size_bytes;
61 kstat_named_t cache_size_bytes_max;
62 /*
63 * Statistics regarding the bounds on the dbuf cache size.
64 */
65 kstat_named_t cache_target_bytes;
66 kstat_named_t cache_lowater_bytes;
67 kstat_named_t cache_hiwater_bytes;
68 /*
69 * Total number of dbuf cache evictions that have occurred.
70 */
71 kstat_named_t cache_total_evicts;
72 /*
73 * The distribution of dbuf levels in the dbuf cache and
74 * the total size of all dbufs at each level.
75 */
76 kstat_named_t cache_levels[DN_MAX_LEVELS];
77 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
78 /*
79 * Statistics about the dbuf hash table.
80 */
81 kstat_named_t hash_hits;
82 kstat_named_t hash_misses;
83 kstat_named_t hash_collisions;
84 kstat_named_t hash_elements;
85 kstat_named_t hash_elements_max;
86 /*
87 * Number of sublists containing more than one dbuf in the dbuf
88 * hash table. Keep track of the longest hash chain.
89 */
90 kstat_named_t hash_chains;
91 kstat_named_t hash_chain_max;
92 /*
93 * Number of times a dbuf_create() discovers that a dbuf was
94 * already created and in the dbuf hash table.
95 */
96 kstat_named_t hash_insert_race;
97 } dbuf_stats_t;
98
99 dbuf_stats_t dbuf_stats = {
100 { "cache_count", KSTAT_DATA_UINT64 },
101 { "cache_size_bytes", KSTAT_DATA_UINT64 },
102 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
103 { "cache_target_bytes", KSTAT_DATA_UINT64 },
104 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
105 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
106 { "cache_total_evicts", KSTAT_DATA_UINT64 },
107 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
108 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
109 { "hash_hits", KSTAT_DATA_UINT64 },
110 { "hash_misses", KSTAT_DATA_UINT64 },
111 { "hash_collisions", KSTAT_DATA_UINT64 },
112 { "hash_elements", KSTAT_DATA_UINT64 },
113 { "hash_elements_max", KSTAT_DATA_UINT64 },
114 { "hash_chains", KSTAT_DATA_UINT64 },
115 { "hash_chain_max", KSTAT_DATA_UINT64 },
116 { "hash_insert_race", KSTAT_DATA_UINT64 }
117 };
118
119 #define DBUF_STAT_INCR(stat, val) \
120 atomic_add_64(&dbuf_stats.stat.value.ui64, (val));
121 #define DBUF_STAT_DECR(stat, val) \
122 DBUF_STAT_INCR(stat, -(val));
123 #define DBUF_STAT_BUMP(stat) \
124 DBUF_STAT_INCR(stat, 1);
125 #define DBUF_STAT_BUMPDOWN(stat) \
126 DBUF_STAT_INCR(stat, -1);
127 #define DBUF_STAT_MAX(stat, v) { \
128 uint64_t _m; \
129 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
130 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
131 continue; \
132 }
133
134 struct dbuf_hold_impl_data {
135 /* Function arguments */
136 dnode_t *dh_dn;
137 uint8_t dh_level;
138 uint64_t dh_blkid;
139 boolean_t dh_fail_sparse;
140 boolean_t dh_fail_uncached;
141 void *dh_tag;
142 dmu_buf_impl_t **dh_dbp;
143 /* Local variables */
144 dmu_buf_impl_t *dh_db;
145 dmu_buf_impl_t *dh_parent;
146 blkptr_t *dh_bp;
147 int dh_err;
148 dbuf_dirty_record_t *dh_dr;
149 int dh_depth;
150 };
151
152 static void __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
153 dnode_t *dn, uint8_t level, uint64_t blkid, boolean_t fail_sparse,
154 boolean_t fail_uncached,
155 void *tag, dmu_buf_impl_t **dbp, int depth);
156 static int __dbuf_hold_impl(struct dbuf_hold_impl_data *dh);
157
158 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
159 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
160
161 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
162 dmu_buf_evict_func_t *evict_func_sync,
163 dmu_buf_evict_func_t *evict_func_async,
164 dmu_buf_t **clear_on_evict_dbufp);
165
166 /*
167 * Global data structures and functions for the dbuf cache.
168 */
169 static kmem_cache_t *dbuf_kmem_cache;
170 static taskq_t *dbu_evict_taskq;
171
172 static kthread_t *dbuf_cache_evict_thread;
173 static kmutex_t dbuf_evict_lock;
174 static kcondvar_t dbuf_evict_cv;
175 static boolean_t dbuf_evict_thread_exit;
176
177 /*
178 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
179 * are not currently held but have been recently released. These dbufs
180 * are not eligible for arc eviction until they are aged out of the cache.
181 * Dbufs are added to the dbuf cache once the last hold is released. If a
182 * dbuf is later accessed and still exists in the dbuf cache, then it will
183 * be removed from the cache and later re-added to the head of the cache.
184 * Dbufs that are aged out of the cache will be immediately destroyed and
185 * become eligible for arc eviction.
186 */
187 static multilist_t *dbuf_cache;
188 static refcount_t dbuf_cache_size;
189 unsigned long dbuf_cache_max_bytes = 0;
190
191 /* Set the default size of the dbuf cache to log2 fraction of arc size. */
192 int dbuf_cache_shift = 5;
193
194 /*
195 * The dbuf cache uses a three-stage eviction policy:
196 * - A low water marker designates when the dbuf eviction thread
197 * should stop evicting from the dbuf cache.
198 * - When we reach the maximum size (aka mid water mark), we
199 * signal the eviction thread to run.
200 * - The high water mark indicates when the eviction thread
201 * is unable to keep up with the incoming load and eviction must
202 * happen in the context of the calling thread.
203 *
204 * The dbuf cache:
205 * (max size)
206 * low water mid water hi water
207 * +----------------------------------------+----------+----------+
208 * | | | |
209 * | | | |
210 * | | | |
211 * | | | |
212 * +----------------------------------------+----------+----------+
213 * stop signal evict
214 * evicting eviction directly
215 * thread
216 *
217 * The high and low water marks indicate the operating range for the eviction
218 * thread. The low water mark is, by default, 90% of the total size of the
219 * cache and the high water mark is at 110% (both of these percentages can be
220 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
221 * respectively). The eviction thread will try to ensure that the cache remains
222 * within this range by waking up every second and checking if the cache is
223 * above the low water mark. The thread can also be woken up by callers adding
224 * elements into the cache if the cache is larger than the mid water (i.e max
225 * cache size). Once the eviction thread is woken up and eviction is required,
226 * it will continue evicting buffers until it's able to reduce the cache size
227 * to the low water mark. If the cache size continues to grow and hits the high
228 * water mark, then callers adding elements to the cache will begin to evict
229 * directly from the cache until the cache is no longer above the high water
230 * mark.
231 */
232
233 /*
234 * The percentage above and below the maximum cache size.
235 */
236 uint_t dbuf_cache_hiwater_pct = 10;
237 uint_t dbuf_cache_lowater_pct = 10;
238
239 /* ARGSUSED */
240 static int
241 dbuf_cons(void *vdb, void *unused, int kmflag)
242 {
243 dmu_buf_impl_t *db = vdb;
244 bzero(db, sizeof (dmu_buf_impl_t));
245
246 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
247 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
248 multilist_link_init(&db->db_cache_link);
249 refcount_create(&db->db_holds);
250
251 return (0);
252 }
253
254 /* ARGSUSED */
255 static void
256 dbuf_dest(void *vdb, void *unused)
257 {
258 dmu_buf_impl_t *db = vdb;
259 mutex_destroy(&db->db_mtx);
260 cv_destroy(&db->db_changed);
261 ASSERT(!multilist_link_active(&db->db_cache_link));
262 refcount_destroy(&db->db_holds);
263 }
264
265 /*
266 * dbuf hash table routines
267 */
268 static dbuf_hash_table_t dbuf_hash_table;
269
270 static uint64_t dbuf_hash_count;
271
272 /*
273 * We use Cityhash for this. It's fast, and has good hash properties without
274 * requiring any large static buffers.
275 */
276 static uint64_t
277 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
278 {
279 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
280 }
281
282 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
283 ((dbuf)->db.db_object == (obj) && \
284 (dbuf)->db_objset == (os) && \
285 (dbuf)->db_level == (level) && \
286 (dbuf)->db_blkid == (blkid))
287
288 dmu_buf_impl_t *
289 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
290 {
291 dbuf_hash_table_t *h = &dbuf_hash_table;
292 uint64_t hv;
293 uint64_t idx;
294 dmu_buf_impl_t *db;
295
296 hv = dbuf_hash(os, obj, level, blkid);
297 idx = hv & h->hash_table_mask;
298
299 mutex_enter(DBUF_HASH_MUTEX(h, idx));
300 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
301 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
302 mutex_enter(&db->db_mtx);
303 if (db->db_state != DB_EVICTING) {
304 mutex_exit(DBUF_HASH_MUTEX(h, idx));
305 return (db);
306 }
307 mutex_exit(&db->db_mtx);
308 }
309 }
310 mutex_exit(DBUF_HASH_MUTEX(h, idx));
311 return (NULL);
312 }
313
314 static dmu_buf_impl_t *
315 dbuf_find_bonus(objset_t *os, uint64_t object)
316 {
317 dnode_t *dn;
318 dmu_buf_impl_t *db = NULL;
319
320 if (dnode_hold(os, object, FTAG, &dn) == 0) {
321 rw_enter(&dn->dn_struct_rwlock, RW_READER);
322 if (dn->dn_bonus != NULL) {
323 db = dn->dn_bonus;
324 mutex_enter(&db->db_mtx);
325 }
326 rw_exit(&dn->dn_struct_rwlock);
327 dnode_rele(dn, FTAG);
328 }
329 return (db);
330 }
331
332 /*
333 * Insert an entry into the hash table. If there is already an element
334 * equal to elem in the hash table, then the already existing element
335 * will be returned and the new element will not be inserted.
336 * Otherwise returns NULL.
337 */
338 static dmu_buf_impl_t *
339 dbuf_hash_insert(dmu_buf_impl_t *db)
340 {
341 dbuf_hash_table_t *h = &dbuf_hash_table;
342 objset_t *os = db->db_objset;
343 uint64_t obj = db->db.db_object;
344 int level = db->db_level;
345 uint64_t blkid, hv, idx;
346 dmu_buf_impl_t *dbf;
347 uint32_t i;
348
349 blkid = db->db_blkid;
350 hv = dbuf_hash(os, obj, level, blkid);
351 idx = hv & h->hash_table_mask;
352
353 mutex_enter(DBUF_HASH_MUTEX(h, idx));
354 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
355 dbf = dbf->db_hash_next, i++) {
356 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
357 mutex_enter(&dbf->db_mtx);
358 if (dbf->db_state != DB_EVICTING) {
359 mutex_exit(DBUF_HASH_MUTEX(h, idx));
360 return (dbf);
361 }
362 mutex_exit(&dbf->db_mtx);
363 }
364 }
365
366 if (i > 0) {
367 DBUF_STAT_BUMP(hash_collisions);
368 if (i == 1)
369 DBUF_STAT_BUMP(hash_chains);
370
371 DBUF_STAT_MAX(hash_chain_max, i);
372 }
373
374 mutex_enter(&db->db_mtx);
375 db->db_hash_next = h->hash_table[idx];
376 h->hash_table[idx] = db;
377 mutex_exit(DBUF_HASH_MUTEX(h, idx));
378 atomic_inc_64(&dbuf_hash_count);
379 DBUF_STAT_MAX(hash_elements_max, dbuf_hash_count);
380
381 return (NULL);
382 }
383
384 /*
385 * Remove an entry from the hash table. It must be in the EVICTING state.
386 */
387 static void
388 dbuf_hash_remove(dmu_buf_impl_t *db)
389 {
390 dbuf_hash_table_t *h = &dbuf_hash_table;
391 uint64_t hv, idx;
392 dmu_buf_impl_t *dbf, **dbp;
393
394 hv = dbuf_hash(db->db_objset, db->db.db_object,
395 db->db_level, db->db_blkid);
396 idx = hv & h->hash_table_mask;
397
398 /*
399 * We mustn't hold db_mtx to maintain lock ordering:
400 * DBUF_HASH_MUTEX > db_mtx.
401 */
402 ASSERT(refcount_is_zero(&db->db_holds));
403 ASSERT(db->db_state == DB_EVICTING);
404 ASSERT(!MUTEX_HELD(&db->db_mtx));
405
406 mutex_enter(DBUF_HASH_MUTEX(h, idx));
407 dbp = &h->hash_table[idx];
408 while ((dbf = *dbp) != db) {
409 dbp = &dbf->db_hash_next;
410 ASSERT(dbf != NULL);
411 }
412 *dbp = db->db_hash_next;
413 db->db_hash_next = NULL;
414 if (h->hash_table[idx] &&
415 h->hash_table[idx]->db_hash_next == NULL)
416 DBUF_STAT_BUMPDOWN(hash_chains);
417 mutex_exit(DBUF_HASH_MUTEX(h, idx));
418 atomic_dec_64(&dbuf_hash_count);
419 }
420
421 typedef enum {
422 DBVU_EVICTING,
423 DBVU_NOT_EVICTING
424 } dbvu_verify_type_t;
425
426 static void
427 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
428 {
429 #ifdef ZFS_DEBUG
430 int64_t holds;
431
432 if (db->db_user == NULL)
433 return;
434
435 /* Only data blocks support the attachment of user data. */
436 ASSERT(db->db_level == 0);
437
438 /* Clients must resolve a dbuf before attaching user data. */
439 ASSERT(db->db.db_data != NULL);
440 ASSERT3U(db->db_state, ==, DB_CACHED);
441
442 holds = refcount_count(&db->db_holds);
443 if (verify_type == DBVU_EVICTING) {
444 /*
445 * Immediate eviction occurs when holds == dirtycnt.
446 * For normal eviction buffers, holds is zero on
447 * eviction, except when dbuf_fix_old_data() calls
448 * dbuf_clear_data(). However, the hold count can grow
449 * during eviction even though db_mtx is held (see
450 * dmu_bonus_hold() for an example), so we can only
451 * test the generic invariant that holds >= dirtycnt.
452 */
453 ASSERT3U(holds, >=, db->db_dirtycnt);
454 } else {
455 if (db->db_user_immediate_evict == TRUE)
456 ASSERT3U(holds, >=, db->db_dirtycnt);
457 else
458 ASSERT3U(holds, >, 0);
459 }
460 #endif
461 }
462
463 static void
464 dbuf_evict_user(dmu_buf_impl_t *db)
465 {
466 dmu_buf_user_t *dbu = db->db_user;
467
468 ASSERT(MUTEX_HELD(&db->db_mtx));
469
470 if (dbu == NULL)
471 return;
472
473 dbuf_verify_user(db, DBVU_EVICTING);
474 db->db_user = NULL;
475
476 #ifdef ZFS_DEBUG
477 if (dbu->dbu_clear_on_evict_dbufp != NULL)
478 *dbu->dbu_clear_on_evict_dbufp = NULL;
479 #endif
480
481 /*
482 * There are two eviction callbacks - one that we call synchronously
483 * and one that we invoke via a taskq. The async one is useful for
484 * avoiding lock order reversals and limiting stack depth.
485 *
486 * Note that if we have a sync callback but no async callback,
487 * it's likely that the sync callback will free the structure
488 * containing the dbu. In that case we need to take care to not
489 * dereference dbu after calling the sync evict func.
490 */
491 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
492
493 if (dbu->dbu_evict_func_sync != NULL)
494 dbu->dbu_evict_func_sync(dbu);
495
496 if (has_async) {
497 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
498 dbu, 0, &dbu->dbu_tqent);
499 }
500 }
501
502 boolean_t
503 dbuf_is_metadata(dmu_buf_impl_t *db)
504 {
505 /*
506 * Consider indirect blocks and spill blocks to be meta data.
507 */
508 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
509 return (B_TRUE);
510 } else {
511 boolean_t is_metadata;
512
513 DB_DNODE_ENTER(db);
514 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
515 DB_DNODE_EXIT(db);
516
517 return (is_metadata);
518 }
519 }
520
521
522 /*
523 * This function *must* return indices evenly distributed between all
524 * sublists of the multilist. This is needed due to how the dbuf eviction
525 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
526 * distributed between all sublists and uses this assumption when
527 * deciding which sublist to evict from and how much to evict from it.
528 */
529 unsigned int
530 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
531 {
532 dmu_buf_impl_t *db = obj;
533
534 /*
535 * The assumption here, is the hash value for a given
536 * dmu_buf_impl_t will remain constant throughout it's lifetime
537 * (i.e. it's objset, object, level and blkid fields don't change).
538 * Thus, we don't need to store the dbuf's sublist index
539 * on insertion, as this index can be recalculated on removal.
540 *
541 * Also, the low order bits of the hash value are thought to be
542 * distributed evenly. Otherwise, in the case that the multilist
543 * has a power of two number of sublists, each sublists' usage
544 * would not be evenly distributed.
545 */
546 return (dbuf_hash(db->db_objset, db->db.db_object,
547 db->db_level, db->db_blkid) %
548 multilist_get_num_sublists(ml));
549 }
550
551 static inline unsigned long
552 dbuf_cache_target_bytes(void)
553 {
554 return MIN(dbuf_cache_max_bytes,
555 arc_target_bytes() >> dbuf_cache_shift);
556 }
557
558 static inline uint64_t
559 dbuf_cache_hiwater_bytes(void)
560 {
561 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
562 return (dbuf_cache_target +
563 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
564 }
565
566 static inline uint64_t
567 dbuf_cache_lowater_bytes(void)
568 {
569 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
570 return (dbuf_cache_target -
571 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
572 }
573
574 static inline boolean_t
575 dbuf_cache_above_hiwater(void)
576 {
577 return (refcount_count(&dbuf_cache_size) > dbuf_cache_hiwater_bytes());
578 }
579
580 static inline boolean_t
581 dbuf_cache_above_lowater(void)
582 {
583 return (refcount_count(&dbuf_cache_size) > dbuf_cache_lowater_bytes());
584 }
585
586 /*
587 * Evict the oldest eligible dbuf from the dbuf cache.
588 */
589 static void
590 dbuf_evict_one(void)
591 {
592 int idx = multilist_get_random_index(dbuf_cache);
593 multilist_sublist_t *mls = multilist_sublist_lock(dbuf_cache, idx);
594
595 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
596
597 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
598 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
599 db = multilist_sublist_prev(mls, db);
600 }
601
602 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
603 multilist_sublist_t *, mls);
604
605 if (db != NULL) {
606 multilist_sublist_remove(mls, db);
607 multilist_sublist_unlock(mls);
608 (void) refcount_remove_many(&dbuf_cache_size,
609 db->db.db_size, db);
610 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
611 DBUF_STAT_BUMPDOWN(cache_count);
612 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
613 db->db.db_size);
614 dbuf_destroy(db);
615 DBUF_STAT_MAX(cache_size_bytes_max,
616 refcount_count(&dbuf_cache_size));
617 DBUF_STAT_BUMP(cache_total_evicts);
618 } else {
619 multilist_sublist_unlock(mls);
620 }
621 }
622
623 /*
624 * The dbuf evict thread is responsible for aging out dbufs from the
625 * cache. Once the cache has reached it's maximum size, dbufs are removed
626 * and destroyed. The eviction thread will continue running until the size
627 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
628 * out of the cache it is destroyed and becomes eligible for arc eviction.
629 */
630 /* ARGSUSED */
631 static void
632 dbuf_evict_thread(void *unused)
633 {
634 callb_cpr_t cpr;
635
636 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
637
638 mutex_enter(&dbuf_evict_lock);
639 while (!dbuf_evict_thread_exit) {
640 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
641 CALLB_CPR_SAFE_BEGIN(&cpr);
642 (void) cv_timedwait_sig_hires(&dbuf_evict_cv,
643 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
644 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
645 }
646 mutex_exit(&dbuf_evict_lock);
647
648 /*
649 * Keep evicting as long as we're above the low water mark
650 * for the cache. We do this without holding the locks to
651 * minimize lock contention.
652 */
653 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
654 dbuf_evict_one();
655 }
656
657 mutex_enter(&dbuf_evict_lock);
658 }
659
660 dbuf_evict_thread_exit = B_FALSE;
661 cv_broadcast(&dbuf_evict_cv);
662 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
663 thread_exit();
664 }
665
666 /*
667 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
668 * If the dbuf cache is at its high water mark, then evict a dbuf from the
669 * dbuf cache using the callers context.
670 */
671 static void
672 dbuf_evict_notify(void)
673 {
674 /*
675 * We check if we should evict without holding the dbuf_evict_lock,
676 * because it's OK to occasionally make the wrong decision here,
677 * and grabbing the lock results in massive lock contention.
678 */
679 if (refcount_count(&dbuf_cache_size) > dbuf_cache_target_bytes()) {
680 if (dbuf_cache_above_hiwater())
681 dbuf_evict_one();
682 cv_signal(&dbuf_evict_cv);
683 }
684 }
685
686 static int
687 dbuf_kstat_update(kstat_t *ksp, int rw)
688 {
689 dbuf_stats_t *ds = ksp->ks_data;
690
691 if (rw == KSTAT_WRITE) {
692 return (SET_ERROR(EACCES));
693 } else {
694 ds->cache_size_bytes.value.ui64 =
695 refcount_count(&dbuf_cache_size);
696 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
697 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
698 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
699 ds->hash_elements.value.ui64 = dbuf_hash_count;
700 }
701
702 return (0);
703 }
704
705 void
706 dbuf_init(void)
707 {
708 uint64_t hsize = 1ULL << 16;
709 dbuf_hash_table_t *h = &dbuf_hash_table;
710 int i;
711
712 /*
713 * The hash table is big enough to fill all of physical memory
714 * with an average block size of zfs_arc_average_blocksize (default 8K).
715 * By default, the table will take up
716 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
717 */
718 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
719 hsize <<= 1;
720
721 retry:
722 h->hash_table_mask = hsize - 1;
723 #if defined(_KERNEL)
724 /*
725 * Large allocations which do not require contiguous pages
726 * should be using vmem_alloc() in the linux kernel
727 */
728 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
729 #else
730 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
731 #endif
732 if (h->hash_table == NULL) {
733 /* XXX - we should really return an error instead of assert */
734 ASSERT(hsize > (1ULL << 10));
735 hsize >>= 1;
736 goto retry;
737 }
738
739 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
740 sizeof (dmu_buf_impl_t),
741 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
742
743 for (i = 0; i < DBUF_MUTEXES; i++)
744 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
745
746 dbuf_stats_init(h);
747
748 /*
749 * Setup the parameters for the dbuf cache. We set the size of the
750 * dbuf cache to 1/32nd (default) of the target size of the ARC. If
751 * the value has been specified as a module option and it's not
752 * greater than the target size of the ARC, then we honor that value.
753 */
754 if (dbuf_cache_max_bytes == 0 ||
755 dbuf_cache_max_bytes >= arc_target_bytes()) {
756 dbuf_cache_max_bytes = arc_target_bytes() >> dbuf_cache_shift;
757 }
758
759 /*
760 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
761 * configuration is not required.
762 */
763 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
764
765 dbuf_cache = multilist_create(sizeof (dmu_buf_impl_t),
766 offsetof(dmu_buf_impl_t, db_cache_link),
767 dbuf_cache_multilist_index_func);
768 refcount_create(&dbuf_cache_size);
769
770 dbuf_evict_thread_exit = B_FALSE;
771 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
772 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
773 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
774 NULL, 0, &p0, TS_RUN, minclsyspri);
775
776 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
777 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
778 KSTAT_FLAG_VIRTUAL);
779 if (dbuf_ksp != NULL) {
780 dbuf_ksp->ks_data = &dbuf_stats;
781 dbuf_ksp->ks_update = dbuf_kstat_update;
782 kstat_install(dbuf_ksp);
783
784 for (i = 0; i < DN_MAX_LEVELS; i++) {
785 snprintf(dbuf_stats.cache_levels[i].name,
786 KSTAT_STRLEN, "cache_level_%d", i);
787 dbuf_stats.cache_levels[i].data_type =
788 KSTAT_DATA_UINT64;
789 snprintf(dbuf_stats.cache_levels_bytes[i].name,
790 KSTAT_STRLEN, "cache_level_%d_bytes", i);
791 dbuf_stats.cache_levels_bytes[i].data_type =
792 KSTAT_DATA_UINT64;
793 }
794 }
795 }
796
797 void
798 dbuf_fini(void)
799 {
800 dbuf_hash_table_t *h = &dbuf_hash_table;
801 int i;
802
803 dbuf_stats_destroy();
804
805 for (i = 0; i < DBUF_MUTEXES; i++)
806 mutex_destroy(&h->hash_mutexes[i]);
807 #if defined(_KERNEL)
808 /*
809 * Large allocations which do not require contiguous pages
810 * should be using vmem_free() in the linux kernel
811 */
812 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
813 #else
814 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
815 #endif
816 kmem_cache_destroy(dbuf_kmem_cache);
817 taskq_destroy(dbu_evict_taskq);
818
819 mutex_enter(&dbuf_evict_lock);
820 dbuf_evict_thread_exit = B_TRUE;
821 while (dbuf_evict_thread_exit) {
822 cv_signal(&dbuf_evict_cv);
823 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
824 }
825 mutex_exit(&dbuf_evict_lock);
826
827 mutex_destroy(&dbuf_evict_lock);
828 cv_destroy(&dbuf_evict_cv);
829
830 refcount_destroy(&dbuf_cache_size);
831 multilist_destroy(dbuf_cache);
832
833 if (dbuf_ksp != NULL) {
834 kstat_delete(dbuf_ksp);
835 dbuf_ksp = NULL;
836 }
837 }
838
839 /*
840 * Other stuff.
841 */
842
843 #ifdef ZFS_DEBUG
844 static void
845 dbuf_verify(dmu_buf_impl_t *db)
846 {
847 dnode_t *dn;
848 dbuf_dirty_record_t *dr;
849
850 ASSERT(MUTEX_HELD(&db->db_mtx));
851
852 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
853 return;
854
855 ASSERT(db->db_objset != NULL);
856 DB_DNODE_ENTER(db);
857 dn = DB_DNODE(db);
858 if (dn == NULL) {
859 ASSERT(db->db_parent == NULL);
860 ASSERT(db->db_blkptr == NULL);
861 } else {
862 ASSERT3U(db->db.db_object, ==, dn->dn_object);
863 ASSERT3P(db->db_objset, ==, dn->dn_objset);
864 ASSERT3U(db->db_level, <, dn->dn_nlevels);
865 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
866 db->db_blkid == DMU_SPILL_BLKID ||
867 !avl_is_empty(&dn->dn_dbufs));
868 }
869 if (db->db_blkid == DMU_BONUS_BLKID) {
870 ASSERT(dn != NULL);
871 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
872 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
873 } else if (db->db_blkid == DMU_SPILL_BLKID) {
874 ASSERT(dn != NULL);
875 ASSERT0(db->db.db_offset);
876 } else {
877 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
878 }
879
880 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
881 ASSERT(dr->dr_dbuf == db);
882
883 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
884 ASSERT(dr->dr_dbuf == db);
885
886 /*
887 * We can't assert that db_size matches dn_datablksz because it
888 * can be momentarily different when another thread is doing
889 * dnode_set_blksz().
890 */
891 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
892 dr = db->db_data_pending;
893 /*
894 * It should only be modified in syncing context, so
895 * make sure we only have one copy of the data.
896 */
897 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
898 }
899
900 /* verify db->db_blkptr */
901 if (db->db_blkptr) {
902 if (db->db_parent == dn->dn_dbuf) {
903 /* db is pointed to by the dnode */
904 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
905 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
906 ASSERT(db->db_parent == NULL);
907 else
908 ASSERT(db->db_parent != NULL);
909 if (db->db_blkid != DMU_SPILL_BLKID)
910 ASSERT3P(db->db_blkptr, ==,
911 &dn->dn_phys->dn_blkptr[db->db_blkid]);
912 } else {
913 /* db is pointed to by an indirect block */
914 ASSERTV(int epb = db->db_parent->db.db_size >>
915 SPA_BLKPTRSHIFT);
916 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
917 ASSERT3U(db->db_parent->db.db_object, ==,
918 db->db.db_object);
919 /*
920 * dnode_grow_indblksz() can make this fail if we don't
921 * have the struct_rwlock. XXX indblksz no longer
922 * grows. safe to do this now?
923 */
924 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
925 ASSERT3P(db->db_blkptr, ==,
926 ((blkptr_t *)db->db_parent->db.db_data +
927 db->db_blkid % epb));
928 }
929 }
930 }
931 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
932 (db->db_buf == NULL || db->db_buf->b_data) &&
933 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
934 db->db_state != DB_FILL && !dn->dn_free_txg) {
935 /*
936 * If the blkptr isn't set but they have nonzero data,
937 * it had better be dirty, otherwise we'll lose that
938 * data when we evict this buffer.
939 *
940 * There is an exception to this rule for indirect blocks; in
941 * this case, if the indirect block is a hole, we fill in a few
942 * fields on each of the child blocks (importantly, birth time)
943 * to prevent hole birth times from being lost when you
944 * partially fill in a hole.
945 */
946 if (db->db_dirtycnt == 0) {
947 if (db->db_level == 0) {
948 uint64_t *buf = db->db.db_data;
949 int i;
950
951 for (i = 0; i < db->db.db_size >> 3; i++) {
952 ASSERT(buf[i] == 0);
953 }
954 } else {
955 blkptr_t *bps = db->db.db_data;
956 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
957 db->db.db_size);
958 /*
959 * We want to verify that all the blkptrs in the
960 * indirect block are holes, but we may have
961 * automatically set up a few fields for them.
962 * We iterate through each blkptr and verify
963 * they only have those fields set.
964 */
965 for (int i = 0;
966 i < db->db.db_size / sizeof (blkptr_t);
967 i++) {
968 blkptr_t *bp = &bps[i];
969 ASSERT(ZIO_CHECKSUM_IS_ZERO(
970 &bp->blk_cksum));
971 ASSERT(
972 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
973 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
974 DVA_IS_EMPTY(&bp->blk_dva[2]));
975 ASSERT0(bp->blk_fill);
976 ASSERT0(bp->blk_pad[0]);
977 ASSERT0(bp->blk_pad[1]);
978 ASSERT(!BP_IS_EMBEDDED(bp));
979 ASSERT(BP_IS_HOLE(bp));
980 ASSERT0(bp->blk_phys_birth);
981 }
982 }
983 }
984 }
985 DB_DNODE_EXIT(db);
986 }
987 #endif
988
989 static void
990 dbuf_clear_data(dmu_buf_impl_t *db)
991 {
992 ASSERT(MUTEX_HELD(&db->db_mtx));
993 dbuf_evict_user(db);
994 ASSERT3P(db->db_buf, ==, NULL);
995 db->db.db_data = NULL;
996 if (db->db_state != DB_NOFILL)
997 db->db_state = DB_UNCACHED;
998 }
999
1000 static void
1001 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1002 {
1003 ASSERT(MUTEX_HELD(&db->db_mtx));
1004 ASSERT(buf != NULL);
1005
1006 db->db_buf = buf;
1007 ASSERT(buf->b_data != NULL);
1008 db->db.db_data = buf->b_data;
1009 }
1010
1011 /*
1012 * Loan out an arc_buf for read. Return the loaned arc_buf.
1013 */
1014 arc_buf_t *
1015 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1016 {
1017 arc_buf_t *abuf;
1018
1019 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1020 mutex_enter(&db->db_mtx);
1021 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
1022 int blksz = db->db.db_size;
1023 spa_t *spa = db->db_objset->os_spa;
1024
1025 mutex_exit(&db->db_mtx);
1026 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1027 bcopy(db->db.db_data, abuf->b_data, blksz);
1028 } else {
1029 abuf = db->db_buf;
1030 arc_loan_inuse_buf(abuf, db);
1031 db->db_buf = NULL;
1032 dbuf_clear_data(db);
1033 mutex_exit(&db->db_mtx);
1034 }
1035 return (abuf);
1036 }
1037
1038 /*
1039 * Calculate which level n block references the data at the level 0 offset
1040 * provided.
1041 */
1042 uint64_t
1043 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1044 {
1045 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1046 /*
1047 * The level n blkid is equal to the level 0 blkid divided by
1048 * the number of level 0s in a level n block.
1049 *
1050 * The level 0 blkid is offset >> datablkshift =
1051 * offset / 2^datablkshift.
1052 *
1053 * The number of level 0s in a level n is the number of block
1054 * pointers in an indirect block, raised to the power of level.
1055 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1056 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1057 *
1058 * Thus, the level n blkid is: offset /
1059 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
1060 * = offset / 2^(datablkshift + level *
1061 * (indblkshift - SPA_BLKPTRSHIFT))
1062 * = offset >> (datablkshift + level *
1063 * (indblkshift - SPA_BLKPTRSHIFT))
1064 */
1065
1066 const unsigned exp = dn->dn_datablkshift +
1067 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1068
1069 if (exp >= 8 * sizeof (offset)) {
1070 /* This only happens on the highest indirection level */
1071 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1072 return (0);
1073 }
1074
1075 ASSERT3U(exp, <, 8 * sizeof (offset));
1076
1077 return (offset >> exp);
1078 } else {
1079 ASSERT3U(offset, <, dn->dn_datablksz);
1080 return (0);
1081 }
1082 }
1083
1084 static void
1085 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1086 arc_buf_t *buf, void *vdb)
1087 {
1088 dmu_buf_impl_t *db = vdb;
1089
1090 mutex_enter(&db->db_mtx);
1091 ASSERT3U(db->db_state, ==, DB_READ);
1092 /*
1093 * All reads are synchronous, so we must have a hold on the dbuf
1094 */
1095 ASSERT(refcount_count(&db->db_holds) > 0);
1096 ASSERT(db->db_buf == NULL);
1097 ASSERT(db->db.db_data == NULL);
1098 if (db->db_level == 0 && db->db_freed_in_flight) {
1099 /* we were freed in flight; disregard any error */
1100 if (buf == NULL) {
1101 buf = arc_alloc_buf(db->db_objset->os_spa,
1102 db, DBUF_GET_BUFC_TYPE(db), db->db.db_size);
1103 }
1104 arc_release(buf, db);
1105 bzero(buf->b_data, db->db.db_size);
1106 arc_buf_freeze(buf);
1107 db->db_freed_in_flight = FALSE;
1108 dbuf_set_data(db, buf);
1109 db->db_state = DB_CACHED;
1110 } else if (buf != NULL) {
1111 dbuf_set_data(db, buf);
1112 db->db_state = DB_CACHED;
1113 } else {
1114 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1115 ASSERT3P(db->db_buf, ==, NULL);
1116 db->db_state = DB_UNCACHED;
1117 }
1118 cv_broadcast(&db->db_changed);
1119 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1120 }
1121
1122
1123 /*
1124 * This function ensures that, when doing a decrypting read of a block,
1125 * we make sure we have decrypted the dnode associated with it. We must do
1126 * this so that we ensure we are fully authenticating the checksum-of-MACs
1127 * tree from the root of the objset down to this block. Indirect blocks are
1128 * always verified against their secure checksum-of-MACs assuming that the
1129 * dnode containing them is correct. Now that we are doing a decrypting read,
1130 * we can be sure that the key is loaded and verify that assumption. This is
1131 * especially important considering that we always read encrypted dnode
1132 * blocks as raw data (without verifying their MACs) to start, and
1133 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1134 */
1135 static int
1136 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1137 {
1138 int err = 0;
1139 objset_t *os = db->db_objset;
1140 arc_buf_t *dnode_abuf;
1141 dnode_t *dn;
1142 zbookmark_phys_t zb;
1143
1144 ASSERT(MUTEX_HELD(&db->db_mtx));
1145
1146 if (!os->os_encrypted || os->os_raw_receive ||
1147 (flags & DB_RF_NO_DECRYPT) != 0)
1148 return (0);
1149
1150 DB_DNODE_ENTER(db);
1151 dn = DB_DNODE(db);
1152 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1153
1154 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1155 DB_DNODE_EXIT(db);
1156 return (0);
1157 }
1158
1159 SET_BOOKMARK(&zb, dmu_objset_id(os),
1160 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1161 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1162
1163 /*
1164 * An error code of EACCES tells us that the key is still not
1165 * available. This is ok if we are only reading authenticated
1166 * (and therefore non-encrypted) blocks.
1167 */
1168 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1169 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1170 (db->db_blkid == DMU_BONUS_BLKID &&
1171 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1172 err = 0;
1173
1174
1175 DB_DNODE_EXIT(db);
1176
1177 return (err);
1178 }
1179
1180 static int
1181 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1182 {
1183 dnode_t *dn;
1184 zbookmark_phys_t zb;
1185 uint32_t aflags = ARC_FLAG_NOWAIT;
1186 int err, zio_flags = 0;
1187
1188 DB_DNODE_ENTER(db);
1189 dn = DB_DNODE(db);
1190 ASSERT(!refcount_is_zero(&db->db_holds));
1191 /* We need the struct_rwlock to prevent db_blkptr from changing. */
1192 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1193 ASSERT(MUTEX_HELD(&db->db_mtx));
1194 ASSERT(db->db_state == DB_UNCACHED);
1195 ASSERT(db->db_buf == NULL);
1196
1197 if (db->db_blkid == DMU_BONUS_BLKID) {
1198 /*
1199 * The bonus length stored in the dnode may be less than
1200 * the maximum available space in the bonus buffer.
1201 */
1202 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1203 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1204
1205 /* if the underlying dnode block is encrypted, decrypt it */
1206 err = dbuf_read_verify_dnode_crypt(db, flags);
1207 if (err != 0) {
1208 DB_DNODE_EXIT(db);
1209 mutex_exit(&db->db_mtx);
1210 return (err);
1211 }
1212
1213 ASSERT3U(bonuslen, <=, db->db.db_size);
1214 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1215 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1216 if (bonuslen < max_bonuslen)
1217 bzero(db->db.db_data, max_bonuslen);
1218 if (bonuslen)
1219 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1220 DB_DNODE_EXIT(db);
1221 db->db_state = DB_CACHED;
1222 mutex_exit(&db->db_mtx);
1223 return (0);
1224 }
1225
1226 /*
1227 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1228 * processes the delete record and clears the bp while we are waiting
1229 * for the dn_mtx (resulting in a "no" from block_freed).
1230 */
1231 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1232 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1233 BP_IS_HOLE(db->db_blkptr)))) {
1234 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1235
1236 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1237 db->db.db_size));
1238 bzero(db->db.db_data, db->db.db_size);
1239
1240 if (db->db_blkptr != NULL && db->db_level > 0 &&
1241 BP_IS_HOLE(db->db_blkptr) &&
1242 db->db_blkptr->blk_birth != 0) {
1243 blkptr_t *bps = db->db.db_data;
1244 for (int i = 0; i < ((1 <<
1245 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1246 i++) {
1247 blkptr_t *bp = &bps[i];
1248 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1249 1 << dn->dn_indblkshift);
1250 BP_SET_LSIZE(bp,
1251 BP_GET_LEVEL(db->db_blkptr) == 1 ?
1252 dn->dn_datablksz :
1253 BP_GET_LSIZE(db->db_blkptr));
1254 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1255 BP_SET_LEVEL(bp,
1256 BP_GET_LEVEL(db->db_blkptr) - 1);
1257 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1258 }
1259 }
1260 DB_DNODE_EXIT(db);
1261 db->db_state = DB_CACHED;
1262 mutex_exit(&db->db_mtx);
1263 return (0);
1264 }
1265
1266
1267 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1268 db->db.db_object, db->db_level, db->db_blkid);
1269
1270 /*
1271 * All bps of an encrypted os should have the encryption bit set.
1272 * If this is not true it indicates tampering and we report an error.
1273 */
1274 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1275 spa_log_error(db->db_objset->os_spa, &zb);
1276 zfs_panic_recover("unencrypted block in encrypted "
1277 "object set %llu", dmu_objset_id(db->db_objset));
1278 DB_DNODE_EXIT(db);
1279 mutex_exit(&db->db_mtx);
1280 return (SET_ERROR(EIO));
1281 }
1282
1283 err = dbuf_read_verify_dnode_crypt(db, flags);
1284 if (err != 0) {
1285 DB_DNODE_EXIT(db);
1286 mutex_exit(&db->db_mtx);
1287 return (err);
1288 }
1289
1290 DB_DNODE_EXIT(db);
1291
1292 db->db_state = DB_READ;
1293 mutex_exit(&db->db_mtx);
1294
1295 if (DBUF_IS_L2CACHEABLE(db))
1296 aflags |= ARC_FLAG_L2CACHE;
1297
1298 dbuf_add_ref(db, NULL);
1299
1300 zio_flags = (flags & DB_RF_CANFAIL) ?
1301 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1302
1303 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1304 zio_flags |= ZIO_FLAG_RAW;
1305
1306 err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1307 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1308 &aflags, &zb);
1309
1310 return (err);
1311 }
1312
1313 /*
1314 * This is our just-in-time copy function. It makes a copy of buffers that
1315 * have been modified in a previous transaction group before we access them in
1316 * the current active group.
1317 *
1318 * This function is used in three places: when we are dirtying a buffer for the
1319 * first time in a txg, when we are freeing a range in a dnode that includes
1320 * this buffer, and when we are accessing a buffer which was received compressed
1321 * and later referenced in a WRITE_BYREF record.
1322 *
1323 * Note that when we are called from dbuf_free_range() we do not put a hold on
1324 * the buffer, we just traverse the active dbuf list for the dnode.
1325 */
1326 static void
1327 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1328 {
1329 dbuf_dirty_record_t *dr = db->db_last_dirty;
1330
1331 ASSERT(MUTEX_HELD(&db->db_mtx));
1332 ASSERT(db->db.db_data != NULL);
1333 ASSERT(db->db_level == 0);
1334 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1335
1336 if (dr == NULL ||
1337 (dr->dt.dl.dr_data !=
1338 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1339 return;
1340
1341 /*
1342 * If the last dirty record for this dbuf has not yet synced
1343 * and its referencing the dbuf data, either:
1344 * reset the reference to point to a new copy,
1345 * or (if there a no active holders)
1346 * just null out the current db_data pointer.
1347 */
1348 ASSERT3U(dr->dr_txg, >=, txg - 2);
1349 if (db->db_blkid == DMU_BONUS_BLKID) {
1350 dnode_t *dn = DB_DNODE(db);
1351 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1352 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1353 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1354 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1355 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1356 dnode_t *dn = DB_DNODE(db);
1357 int size = arc_buf_size(db->db_buf);
1358 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1359 spa_t *spa = db->db_objset->os_spa;
1360 enum zio_compress compress_type =
1361 arc_get_compression(db->db_buf);
1362
1363 if (arc_is_encrypted(db->db_buf)) {
1364 boolean_t byteorder;
1365 uint8_t salt[ZIO_DATA_SALT_LEN];
1366 uint8_t iv[ZIO_DATA_IV_LEN];
1367 uint8_t mac[ZIO_DATA_MAC_LEN];
1368
1369 arc_get_raw_params(db->db_buf, &byteorder, salt,
1370 iv, mac);
1371 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1372 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1373 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1374 compress_type);
1375 } else if (compress_type != ZIO_COMPRESS_OFF) {
1376 ASSERT3U(type, ==, ARC_BUFC_DATA);
1377 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1378 size, arc_buf_lsize(db->db_buf), compress_type);
1379 } else {
1380 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1381 }
1382 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1383 } else {
1384 db->db_buf = NULL;
1385 dbuf_clear_data(db);
1386 }
1387 }
1388
1389 int
1390 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1391 {
1392 int err = 0;
1393 boolean_t prefetch;
1394 dnode_t *dn;
1395
1396 /*
1397 * We don't have to hold the mutex to check db_state because it
1398 * can't be freed while we have a hold on the buffer.
1399 */
1400 ASSERT(!refcount_is_zero(&db->db_holds));
1401
1402 if (db->db_state == DB_NOFILL)
1403 return (SET_ERROR(EIO));
1404
1405 DB_DNODE_ENTER(db);
1406 dn = DB_DNODE(db);
1407 if ((flags & DB_RF_HAVESTRUCT) == 0)
1408 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1409
1410 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1411 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1412 DBUF_IS_CACHEABLE(db);
1413
1414 mutex_enter(&db->db_mtx);
1415 if (db->db_state == DB_CACHED) {
1416 spa_t *spa = dn->dn_objset->os_spa;
1417
1418 /*
1419 * Ensure that this block's dnode has been decrypted if
1420 * the caller has requested decrypted data.
1421 */
1422 err = dbuf_read_verify_dnode_crypt(db, flags);
1423
1424 /*
1425 * If the arc buf is compressed or encrypted and the caller
1426 * requested uncompressed data, we need to untransform it
1427 * before returning. We also call arc_untransform() on any
1428 * unauthenticated blocks, which will verify their MAC if
1429 * the key is now available.
1430 */
1431 if (err == 0 && db->db_buf != NULL &&
1432 (flags & DB_RF_NO_DECRYPT) == 0 &&
1433 (arc_is_encrypted(db->db_buf) ||
1434 arc_is_unauthenticated(db->db_buf) ||
1435 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1436 zbookmark_phys_t zb;
1437
1438 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1439 db->db.db_object, db->db_level, db->db_blkid);
1440 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1441 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1442 dbuf_set_data(db, db->db_buf);
1443 }
1444 mutex_exit(&db->db_mtx);
1445 if (err == 0 && prefetch)
1446 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1447 if ((flags & DB_RF_HAVESTRUCT) == 0)
1448 rw_exit(&dn->dn_struct_rwlock);
1449 DB_DNODE_EXIT(db);
1450 DBUF_STAT_BUMP(hash_hits);
1451 } else if (db->db_state == DB_UNCACHED) {
1452 spa_t *spa = dn->dn_objset->os_spa;
1453 boolean_t need_wait = B_FALSE;
1454
1455 if (zio == NULL &&
1456 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1457 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1458 need_wait = B_TRUE;
1459 }
1460 err = dbuf_read_impl(db, zio, flags);
1461
1462 /* dbuf_read_impl has dropped db_mtx for us */
1463
1464 if (!err && prefetch)
1465 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1466
1467 if ((flags & DB_RF_HAVESTRUCT) == 0)
1468 rw_exit(&dn->dn_struct_rwlock);
1469 DB_DNODE_EXIT(db);
1470 DBUF_STAT_BUMP(hash_misses);
1471
1472 if (!err && need_wait)
1473 err = zio_wait(zio);
1474 } else {
1475 /*
1476 * Another reader came in while the dbuf was in flight
1477 * between UNCACHED and CACHED. Either a writer will finish
1478 * writing the buffer (sending the dbuf to CACHED) or the
1479 * first reader's request will reach the read_done callback
1480 * and send the dbuf to CACHED. Otherwise, a failure
1481 * occurred and the dbuf went to UNCACHED.
1482 */
1483 mutex_exit(&db->db_mtx);
1484 if (prefetch)
1485 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1486 if ((flags & DB_RF_HAVESTRUCT) == 0)
1487 rw_exit(&dn->dn_struct_rwlock);
1488 DB_DNODE_EXIT(db);
1489 DBUF_STAT_BUMP(hash_misses);
1490
1491 /* Skip the wait per the caller's request. */
1492 mutex_enter(&db->db_mtx);
1493 if ((flags & DB_RF_NEVERWAIT) == 0) {
1494 while (db->db_state == DB_READ ||
1495 db->db_state == DB_FILL) {
1496 ASSERT(db->db_state == DB_READ ||
1497 (flags & DB_RF_HAVESTRUCT) == 0);
1498 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1499 db, zio_t *, zio);
1500 cv_wait(&db->db_changed, &db->db_mtx);
1501 }
1502 if (db->db_state == DB_UNCACHED)
1503 err = SET_ERROR(EIO);
1504 }
1505 mutex_exit(&db->db_mtx);
1506 }
1507
1508 return (err);
1509 }
1510
1511 static void
1512 dbuf_noread(dmu_buf_impl_t *db)
1513 {
1514 ASSERT(!refcount_is_zero(&db->db_holds));
1515 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1516 mutex_enter(&db->db_mtx);
1517 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1518 cv_wait(&db->db_changed, &db->db_mtx);
1519 if (db->db_state == DB_UNCACHED) {
1520 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1521 spa_t *spa = db->db_objset->os_spa;
1522
1523 ASSERT(db->db_buf == NULL);
1524 ASSERT(db->db.db_data == NULL);
1525 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1526 db->db_state = DB_FILL;
1527 } else if (db->db_state == DB_NOFILL) {
1528 dbuf_clear_data(db);
1529 } else {
1530 ASSERT3U(db->db_state, ==, DB_CACHED);
1531 }
1532 mutex_exit(&db->db_mtx);
1533 }
1534
1535 void
1536 dbuf_unoverride(dbuf_dirty_record_t *dr)
1537 {
1538 dmu_buf_impl_t *db = dr->dr_dbuf;
1539 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1540 uint64_t txg = dr->dr_txg;
1541
1542 ASSERT(MUTEX_HELD(&db->db_mtx));
1543 /*
1544 * This assert is valid because dmu_sync() expects to be called by
1545 * a zilog's get_data while holding a range lock. This call only
1546 * comes from dbuf_dirty() callers who must also hold a range lock.
1547 */
1548 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1549 ASSERT(db->db_level == 0);
1550
1551 if (db->db_blkid == DMU_BONUS_BLKID ||
1552 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1553 return;
1554
1555 ASSERT(db->db_data_pending != dr);
1556
1557 /* free this block */
1558 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1559 zio_free(db->db_objset->os_spa, txg, bp);
1560
1561 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1562 dr->dt.dl.dr_nopwrite = B_FALSE;
1563 dr->dt.dl.dr_has_raw_params = B_FALSE;
1564
1565 /*
1566 * Release the already-written buffer, so we leave it in
1567 * a consistent dirty state. Note that all callers are
1568 * modifying the buffer, so they will immediately do
1569 * another (redundant) arc_release(). Therefore, leave
1570 * the buf thawed to save the effort of freezing &
1571 * immediately re-thawing it.
1572 */
1573 arc_release(dr->dt.dl.dr_data, db);
1574 }
1575
1576 /*
1577 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1578 * data blocks in the free range, so that any future readers will find
1579 * empty blocks.
1580 */
1581 void
1582 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1583 dmu_tx_t *tx)
1584 {
1585 dmu_buf_impl_t *db_search;
1586 dmu_buf_impl_t *db, *db_next;
1587 uint64_t txg = tx->tx_txg;
1588 avl_index_t where;
1589
1590 if (end_blkid > dn->dn_maxblkid &&
1591 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1592 end_blkid = dn->dn_maxblkid;
1593 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1594
1595 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1596 db_search->db_level = 0;
1597 db_search->db_blkid = start_blkid;
1598 db_search->db_state = DB_SEARCH;
1599
1600 mutex_enter(&dn->dn_dbufs_mtx);
1601 db = avl_find(&dn->dn_dbufs, db_search, &where);
1602 ASSERT3P(db, ==, NULL);
1603
1604 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1605
1606 for (; db != NULL; db = db_next) {
1607 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1608 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1609
1610 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1611 break;
1612 }
1613 ASSERT3U(db->db_blkid, >=, start_blkid);
1614
1615 /* found a level 0 buffer in the range */
1616 mutex_enter(&db->db_mtx);
1617 if (dbuf_undirty(db, tx)) {
1618 /* mutex has been dropped and dbuf destroyed */
1619 continue;
1620 }
1621
1622 if (db->db_state == DB_UNCACHED ||
1623 db->db_state == DB_NOFILL ||
1624 db->db_state == DB_EVICTING) {
1625 ASSERT(db->db.db_data == NULL);
1626 mutex_exit(&db->db_mtx);
1627 continue;
1628 }
1629 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1630 /* will be handled in dbuf_read_done or dbuf_rele */
1631 db->db_freed_in_flight = TRUE;
1632 mutex_exit(&db->db_mtx);
1633 continue;
1634 }
1635 if (refcount_count(&db->db_holds) == 0) {
1636 ASSERT(db->db_buf);
1637 dbuf_destroy(db);
1638 continue;
1639 }
1640 /* The dbuf is referenced */
1641
1642 if (db->db_last_dirty != NULL) {
1643 dbuf_dirty_record_t *dr = db->db_last_dirty;
1644
1645 if (dr->dr_txg == txg) {
1646 /*
1647 * This buffer is "in-use", re-adjust the file
1648 * size to reflect that this buffer may
1649 * contain new data when we sync.
1650 */
1651 if (db->db_blkid != DMU_SPILL_BLKID &&
1652 db->db_blkid > dn->dn_maxblkid)
1653 dn->dn_maxblkid = db->db_blkid;
1654 dbuf_unoverride(dr);
1655 } else {
1656 /*
1657 * This dbuf is not dirty in the open context.
1658 * Either uncache it (if its not referenced in
1659 * the open context) or reset its contents to
1660 * empty.
1661 */
1662 dbuf_fix_old_data(db, txg);
1663 }
1664 }
1665 /* clear the contents if its cached */
1666 if (db->db_state == DB_CACHED) {
1667 ASSERT(db->db.db_data != NULL);
1668 arc_release(db->db_buf, db);
1669 bzero(db->db.db_data, db->db.db_size);
1670 arc_buf_freeze(db->db_buf);
1671 }
1672
1673 mutex_exit(&db->db_mtx);
1674 }
1675
1676 kmem_free(db_search, sizeof (dmu_buf_impl_t));
1677 mutex_exit(&dn->dn_dbufs_mtx);
1678 }
1679
1680 void
1681 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1682 {
1683 arc_buf_t *buf, *obuf;
1684 int osize = db->db.db_size;
1685 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1686 dnode_t *dn;
1687
1688 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1689
1690 DB_DNODE_ENTER(db);
1691 dn = DB_DNODE(db);
1692
1693 /* XXX does *this* func really need the lock? */
1694 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1695
1696 /*
1697 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1698 * is OK, because there can be no other references to the db
1699 * when we are changing its size, so no concurrent DB_FILL can
1700 * be happening.
1701 */
1702 /*
1703 * XXX we should be doing a dbuf_read, checking the return
1704 * value and returning that up to our callers
1705 */
1706 dmu_buf_will_dirty(&db->db, tx);
1707
1708 /* create the data buffer for the new block */
1709 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1710
1711 /* copy old block data to the new block */
1712 obuf = db->db_buf;
1713 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1714 /* zero the remainder */
1715 if (size > osize)
1716 bzero((uint8_t *)buf->b_data + osize, size - osize);
1717
1718 mutex_enter(&db->db_mtx);
1719 dbuf_set_data(db, buf);
1720 arc_buf_destroy(obuf, db);
1721 db->db.db_size = size;
1722
1723 if (db->db_level == 0) {
1724 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1725 db->db_last_dirty->dt.dl.dr_data = buf;
1726 }
1727 mutex_exit(&db->db_mtx);
1728
1729 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1730 DB_DNODE_EXIT(db);
1731 }
1732
1733 void
1734 dbuf_release_bp(dmu_buf_impl_t *db)
1735 {
1736 ASSERTV(objset_t *os = db->db_objset);
1737
1738 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1739 ASSERT(arc_released(os->os_phys_buf) ||
1740 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1741 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1742
1743 (void) arc_release(db->db_buf, db);
1744 }
1745
1746 /*
1747 * We already have a dirty record for this TXG, and we are being
1748 * dirtied again.
1749 */
1750 static void
1751 dbuf_redirty(dbuf_dirty_record_t *dr)
1752 {
1753 dmu_buf_impl_t *db = dr->dr_dbuf;
1754
1755 ASSERT(MUTEX_HELD(&db->db_mtx));
1756
1757 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1758 /*
1759 * If this buffer has already been written out,
1760 * we now need to reset its state.
1761 */
1762 dbuf_unoverride(dr);
1763 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1764 db->db_state != DB_NOFILL) {
1765 /* Already released on initial dirty, so just thaw. */
1766 ASSERT(arc_released(db->db_buf));
1767 arc_buf_thaw(db->db_buf);
1768 }
1769 }
1770 }
1771
1772 dbuf_dirty_record_t *
1773 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1774 {
1775 dnode_t *dn;
1776 objset_t *os;
1777 dbuf_dirty_record_t **drp, *dr;
1778 int drop_struct_lock = FALSE;
1779 int txgoff = tx->tx_txg & TXG_MASK;
1780
1781 ASSERT(tx->tx_txg != 0);
1782 ASSERT(!refcount_is_zero(&db->db_holds));
1783 DMU_TX_DIRTY_BUF(tx, db);
1784
1785 DB_DNODE_ENTER(db);
1786 dn = DB_DNODE(db);
1787 /*
1788 * Shouldn't dirty a regular buffer in syncing context. Private
1789 * objects may be dirtied in syncing context, but only if they
1790 * were already pre-dirtied in open context.
1791 */
1792 #ifdef DEBUG
1793 if (dn->dn_objset->os_dsl_dataset != NULL) {
1794 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1795 RW_READER, FTAG);
1796 }
1797 ASSERT(!dmu_tx_is_syncing(tx) ||
1798 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1799 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1800 dn->dn_objset->os_dsl_dataset == NULL);
1801 if (dn->dn_objset->os_dsl_dataset != NULL)
1802 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1803 #endif
1804 /*
1805 * We make this assert for private objects as well, but after we
1806 * check if we're already dirty. They are allowed to re-dirty
1807 * in syncing context.
1808 */
1809 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1810 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1811 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1812
1813 mutex_enter(&db->db_mtx);
1814 /*
1815 * XXX make this true for indirects too? The problem is that
1816 * transactions created with dmu_tx_create_assigned() from
1817 * syncing context don't bother holding ahead.
1818 */
1819 ASSERT(db->db_level != 0 ||
1820 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1821 db->db_state == DB_NOFILL);
1822
1823 mutex_enter(&dn->dn_mtx);
1824 /*
1825 * Don't set dirtyctx to SYNC if we're just modifying this as we
1826 * initialize the objset.
1827 */
1828 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1829 if (dn->dn_objset->os_dsl_dataset != NULL) {
1830 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1831 RW_READER, FTAG);
1832 }
1833 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1834 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1835 DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1836 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1837 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1838 }
1839 if (dn->dn_objset->os_dsl_dataset != NULL) {
1840 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1841 FTAG);
1842 }
1843 }
1844
1845 if (tx->tx_txg > dn->dn_dirty_txg)
1846 dn->dn_dirty_txg = tx->tx_txg;
1847 mutex_exit(&dn->dn_mtx);
1848
1849 if (db->db_blkid == DMU_SPILL_BLKID)
1850 dn->dn_have_spill = B_TRUE;
1851
1852 /*
1853 * If this buffer is already dirty, we're done.
1854 */
1855 drp = &db->db_last_dirty;
1856 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1857 db->db.db_object == DMU_META_DNODE_OBJECT);
1858 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1859 drp = &dr->dr_next;
1860 if (dr && dr->dr_txg == tx->tx_txg) {
1861 DB_DNODE_EXIT(db);
1862
1863 dbuf_redirty(dr);
1864 mutex_exit(&db->db_mtx);
1865 return (dr);
1866 }
1867
1868 /*
1869 * Only valid if not already dirty.
1870 */
1871 ASSERT(dn->dn_object == 0 ||
1872 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1873 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1874
1875 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1876
1877 /*
1878 * We should only be dirtying in syncing context if it's the
1879 * mos or we're initializing the os or it's a special object.
1880 * However, we are allowed to dirty in syncing context provided
1881 * we already dirtied it in open context. Hence we must make
1882 * this assertion only if we're not already dirty.
1883 */
1884 os = dn->dn_objset;
1885 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1886 #ifdef DEBUG
1887 if (dn->dn_objset->os_dsl_dataset != NULL)
1888 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1889 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1890 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1891 if (dn->dn_objset->os_dsl_dataset != NULL)
1892 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1893 #endif
1894 ASSERT(db->db.db_size != 0);
1895
1896 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1897
1898 if (db->db_blkid != DMU_BONUS_BLKID) {
1899 dmu_objset_willuse_space(os, db->db.db_size, tx);
1900 }
1901
1902 /*
1903 * If this buffer is dirty in an old transaction group we need
1904 * to make a copy of it so that the changes we make in this
1905 * transaction group won't leak out when we sync the older txg.
1906 */
1907 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1908 list_link_init(&dr->dr_dirty_node);
1909 if (db->db_level == 0) {
1910 void *data_old = db->db_buf;
1911
1912 if (db->db_state != DB_NOFILL) {
1913 if (db->db_blkid == DMU_BONUS_BLKID) {
1914 dbuf_fix_old_data(db, tx->tx_txg);
1915 data_old = db->db.db_data;
1916 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1917 /*
1918 * Release the data buffer from the cache so
1919 * that we can modify it without impacting
1920 * possible other users of this cached data
1921 * block. Note that indirect blocks and
1922 * private objects are not released until the
1923 * syncing state (since they are only modified
1924 * then).
1925 */
1926 arc_release(db->db_buf, db);
1927 dbuf_fix_old_data(db, tx->tx_txg);
1928 data_old = db->db_buf;
1929 }
1930 ASSERT(data_old != NULL);
1931 }
1932 dr->dt.dl.dr_data = data_old;
1933 } else {
1934 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
1935 list_create(&dr->dt.di.dr_children,
1936 sizeof (dbuf_dirty_record_t),
1937 offsetof(dbuf_dirty_record_t, dr_dirty_node));
1938 }
1939 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1940 dr->dr_accounted = db->db.db_size;
1941 dr->dr_dbuf = db;
1942 dr->dr_txg = tx->tx_txg;
1943 dr->dr_next = *drp;
1944 *drp = dr;
1945
1946 /*
1947 * We could have been freed_in_flight between the dbuf_noread
1948 * and dbuf_dirty. We win, as though the dbuf_noread() had
1949 * happened after the free.
1950 */
1951 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1952 db->db_blkid != DMU_SPILL_BLKID) {
1953 mutex_enter(&dn->dn_mtx);
1954 if (dn->dn_free_ranges[txgoff] != NULL) {
1955 range_tree_clear(dn->dn_free_ranges[txgoff],
1956 db->db_blkid, 1);
1957 }
1958 mutex_exit(&dn->dn_mtx);
1959 db->db_freed_in_flight = FALSE;
1960 }
1961
1962 /*
1963 * This buffer is now part of this txg
1964 */
1965 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1966 db->db_dirtycnt += 1;
1967 ASSERT3U(db->db_dirtycnt, <=, 3);
1968
1969 mutex_exit(&db->db_mtx);
1970
1971 if (db->db_blkid == DMU_BONUS_BLKID ||
1972 db->db_blkid == DMU_SPILL_BLKID) {
1973 mutex_enter(&dn->dn_mtx);
1974 ASSERT(!list_link_active(&dr->dr_dirty_node));
1975 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1976 mutex_exit(&dn->dn_mtx);
1977 dnode_setdirty(dn, tx);
1978 DB_DNODE_EXIT(db);
1979 return (dr);
1980 }
1981
1982 /*
1983 * The dn_struct_rwlock prevents db_blkptr from changing
1984 * due to a write from syncing context completing
1985 * while we are running, so we want to acquire it before
1986 * looking at db_blkptr.
1987 */
1988 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1989 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1990 drop_struct_lock = TRUE;
1991 }
1992
1993 /*
1994 * We need to hold the dn_struct_rwlock to make this assertion,
1995 * because it protects dn_phys / dn_next_nlevels from changing.
1996 */
1997 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1998 dn->dn_phys->dn_nlevels > db->db_level ||
1999 dn->dn_next_nlevels[txgoff] > db->db_level ||
2000 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2001 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2002
2003 /*
2004 * If we are overwriting a dedup BP, then unless it is snapshotted,
2005 * when we get to syncing context we will need to decrement its
2006 * refcount in the DDT. Prefetch the relevant DDT block so that
2007 * syncing context won't have to wait for the i/o.
2008 */
2009 ddt_prefetch(os->os_spa, db->db_blkptr);
2010
2011 if (db->db_level == 0) {
2012 ASSERT(!db->db_objset->os_raw_receive ||
2013 dn->dn_maxblkid >= db->db_blkid);
2014 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
2015 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2016 }
2017
2018 if (db->db_level+1 < dn->dn_nlevels) {
2019 dmu_buf_impl_t *parent = db->db_parent;
2020 dbuf_dirty_record_t *di;
2021 int parent_held = FALSE;
2022
2023 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2024 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2025
2026 parent = dbuf_hold_level(dn, db->db_level+1,
2027 db->db_blkid >> epbs, FTAG);
2028 ASSERT(parent != NULL);
2029 parent_held = TRUE;
2030 }
2031 if (drop_struct_lock)
2032 rw_exit(&dn->dn_struct_rwlock);
2033 ASSERT3U(db->db_level+1, ==, parent->db_level);
2034 di = dbuf_dirty(parent, tx);
2035 if (parent_held)
2036 dbuf_rele(parent, FTAG);
2037
2038 mutex_enter(&db->db_mtx);
2039 /*
2040 * Since we've dropped the mutex, it's possible that
2041 * dbuf_undirty() might have changed this out from under us.
2042 */
2043 if (db->db_last_dirty == dr ||
2044 dn->dn_object == DMU_META_DNODE_OBJECT) {
2045 mutex_enter(&di->dt.di.dr_mtx);
2046 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2047 ASSERT(!list_link_active(&dr->dr_dirty_node));
2048 list_insert_tail(&di->dt.di.dr_children, dr);
2049 mutex_exit(&di->dt.di.dr_mtx);
2050 dr->dr_parent = di;
2051 }
2052 mutex_exit(&db->db_mtx);
2053 } else {
2054 ASSERT(db->db_level+1 == dn->dn_nlevels);
2055 ASSERT(db->db_blkid < dn->dn_nblkptr);
2056 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2057 mutex_enter(&dn->dn_mtx);
2058 ASSERT(!list_link_active(&dr->dr_dirty_node));
2059 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2060 mutex_exit(&dn->dn_mtx);
2061 if (drop_struct_lock)
2062 rw_exit(&dn->dn_struct_rwlock);
2063 }
2064
2065 dnode_setdirty(dn, tx);
2066 DB_DNODE_EXIT(db);
2067 return (dr);
2068 }
2069
2070 /*
2071 * Undirty a buffer in the transaction group referenced by the given
2072 * transaction. Return whether this evicted the dbuf.
2073 */
2074 static boolean_t
2075 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2076 {
2077 dnode_t *dn;
2078 uint64_t txg = tx->tx_txg;
2079 dbuf_dirty_record_t *dr, **drp;
2080
2081 ASSERT(txg != 0);
2082
2083 /*
2084 * Due to our use of dn_nlevels below, this can only be called
2085 * in open context, unless we are operating on the MOS.
2086 * From syncing context, dn_nlevels may be different from the
2087 * dn_nlevels used when dbuf was dirtied.
2088 */
2089 ASSERT(db->db_objset ==
2090 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2091 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2092 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2093 ASSERT0(db->db_level);
2094 ASSERT(MUTEX_HELD(&db->db_mtx));
2095
2096 /*
2097 * If this buffer is not dirty, we're done.
2098 */
2099 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
2100 if (dr->dr_txg <= txg)
2101 break;
2102 if (dr == NULL || dr->dr_txg < txg)
2103 return (B_FALSE);
2104 ASSERT(dr->dr_txg == txg);
2105 ASSERT(dr->dr_dbuf == db);
2106
2107 DB_DNODE_ENTER(db);
2108 dn = DB_DNODE(db);
2109
2110 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2111
2112 ASSERT(db->db.db_size != 0);
2113
2114 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2115 dr->dr_accounted, txg);
2116
2117 *drp = dr->dr_next;
2118
2119 /*
2120 * Note that there are three places in dbuf_dirty()
2121 * where this dirty record may be put on a list.
2122 * Make sure to do a list_remove corresponding to
2123 * every one of those list_insert calls.
2124 */
2125 if (dr->dr_parent) {
2126 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2127 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2128 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2129 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2130 db->db_level + 1 == dn->dn_nlevels) {
2131 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2132 mutex_enter(&dn->dn_mtx);
2133 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2134 mutex_exit(&dn->dn_mtx);
2135 }
2136 DB_DNODE_EXIT(db);
2137
2138 if (db->db_state != DB_NOFILL) {
2139 dbuf_unoverride(dr);
2140
2141 ASSERT(db->db_buf != NULL);
2142 ASSERT(dr->dt.dl.dr_data != NULL);
2143 if (dr->dt.dl.dr_data != db->db_buf)
2144 arc_buf_destroy(dr->dt.dl.dr_data, db);
2145 }
2146
2147 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2148
2149 ASSERT(db->db_dirtycnt > 0);
2150 db->db_dirtycnt -= 1;
2151
2152 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2153 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2154 dbuf_destroy(db);
2155 return (B_TRUE);
2156 }
2157
2158 return (B_FALSE);
2159 }
2160
2161 static void
2162 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2163 {
2164 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2165
2166 ASSERT(tx->tx_txg != 0);
2167 ASSERT(!refcount_is_zero(&db->db_holds));
2168
2169 /*
2170 * Quick check for dirtyness. For already dirty blocks, this
2171 * reduces runtime of this function by >90%, and overall performance
2172 * by 50% for some workloads (e.g. file deletion with indirect blocks
2173 * cached).
2174 */
2175 mutex_enter(&db->db_mtx);
2176
2177 dbuf_dirty_record_t *dr;
2178 for (dr = db->db_last_dirty;
2179 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
2180 /*
2181 * It's possible that it is already dirty but not cached,
2182 * because there are some calls to dbuf_dirty() that don't
2183 * go through dmu_buf_will_dirty().
2184 */
2185 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
2186 /* This dbuf is already dirty and cached. */
2187 dbuf_redirty(dr);
2188 mutex_exit(&db->db_mtx);
2189 return;
2190 }
2191 }
2192 mutex_exit(&db->db_mtx);
2193
2194 DB_DNODE_ENTER(db);
2195 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2196 flags |= DB_RF_HAVESTRUCT;
2197 DB_DNODE_EXIT(db);
2198 (void) dbuf_read(db, NULL, flags);
2199 (void) dbuf_dirty(db, tx);
2200 }
2201
2202 void
2203 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2204 {
2205 dmu_buf_will_dirty_impl(db_fake,
2206 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2207 }
2208
2209 void
2210 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2211 {
2212 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2213
2214 db->db_state = DB_NOFILL;
2215
2216 dmu_buf_will_fill(db_fake, tx);
2217 }
2218
2219 void
2220 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2221 {
2222 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2223
2224 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2225 ASSERT(tx->tx_txg != 0);
2226 ASSERT(db->db_level == 0);
2227 ASSERT(!refcount_is_zero(&db->db_holds));
2228
2229 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2230 dmu_tx_private_ok(tx));
2231
2232 dbuf_noread(db);
2233 (void) dbuf_dirty(db, tx);
2234 }
2235
2236 /*
2237 * This function is effectively the same as dmu_buf_will_dirty(), but
2238 * indicates the caller expects raw encrypted data in the db, and provides
2239 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2240 * blkptr_t when this dbuf is written. This is only used for blocks of
2241 * dnodes, during raw receive.
2242 */
2243 void
2244 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2245 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2246 {
2247 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2248 dbuf_dirty_record_t *dr;
2249
2250 /*
2251 * dr_has_raw_params is only processed for blocks of dnodes
2252 * (see dbuf_sync_dnode_leaf_crypt()).
2253 */
2254 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2255 ASSERT3U(db->db_level, ==, 0);
2256 ASSERT(db->db_objset->os_raw_receive);
2257
2258 dmu_buf_will_dirty_impl(db_fake,
2259 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2260
2261 dr = db->db_last_dirty;
2262 while (dr != NULL && dr->dr_txg > tx->tx_txg)
2263 dr = dr->dr_next;
2264
2265 ASSERT3P(dr, !=, NULL);
2266 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2267
2268 dr->dt.dl.dr_has_raw_params = B_TRUE;
2269 dr->dt.dl.dr_byteorder = byteorder;
2270 bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN);
2271 bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN);
2272 bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN);
2273 }
2274
2275 #pragma weak dmu_buf_fill_done = dbuf_fill_done
2276 /* ARGSUSED */
2277 void
2278 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
2279 {
2280 mutex_enter(&db->db_mtx);
2281 DBUF_VERIFY(db);
2282
2283 if (db->db_state == DB_FILL) {
2284 if (db->db_level == 0 && db->db_freed_in_flight) {
2285 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2286 /* we were freed while filling */
2287 /* XXX dbuf_undirty? */
2288 bzero(db->db.db_data, db->db.db_size);
2289 db->db_freed_in_flight = FALSE;
2290 }
2291 db->db_state = DB_CACHED;
2292 cv_broadcast(&db->db_changed);
2293 }
2294 mutex_exit(&db->db_mtx);
2295 }
2296
2297 void
2298 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2299 bp_embedded_type_t etype, enum zio_compress comp,
2300 int uncompressed_size, int compressed_size, int byteorder,
2301 dmu_tx_t *tx)
2302 {
2303 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2304 struct dirty_leaf *dl;
2305 dmu_object_type_t type;
2306
2307 if (etype == BP_EMBEDDED_TYPE_DATA) {
2308 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2309 SPA_FEATURE_EMBEDDED_DATA));
2310 }
2311
2312 DB_DNODE_ENTER(db);
2313 type = DB_DNODE(db)->dn_type;
2314 DB_DNODE_EXIT(db);
2315
2316 ASSERT0(db->db_level);
2317 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2318
2319 dmu_buf_will_not_fill(dbuf, tx);
2320
2321 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2322 dl = &db->db_last_dirty->dt.dl;
2323 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2324 data, comp, uncompressed_size, compressed_size);
2325 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2326 BP_SET_TYPE(&dl->dr_overridden_by, type);
2327 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2328 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2329
2330 dl->dr_override_state = DR_OVERRIDDEN;
2331 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2332 }
2333
2334 /*
2335 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2336 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2337 */
2338 void
2339 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2340 {
2341 ASSERT(!refcount_is_zero(&db->db_holds));
2342 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2343 ASSERT(db->db_level == 0);
2344 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2345 ASSERT(buf != NULL);
2346 ASSERT(arc_buf_lsize(buf) == db->db.db_size);
2347 ASSERT(tx->tx_txg != 0);
2348
2349 arc_return_buf(buf, db);
2350 ASSERT(arc_released(buf));
2351
2352 mutex_enter(&db->db_mtx);
2353
2354 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2355 cv_wait(&db->db_changed, &db->db_mtx);
2356
2357 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2358
2359 if (db->db_state == DB_CACHED &&
2360 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2361 /*
2362 * In practice, we will never have a case where we have an
2363 * encrypted arc buffer while additional holds exist on the
2364 * dbuf. We don't handle this here so we simply assert that
2365 * fact instead.
2366 */
2367 ASSERT(!arc_is_encrypted(buf));
2368 mutex_exit(&db->db_mtx);
2369 (void) dbuf_dirty(db, tx);
2370 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2371 arc_buf_destroy(buf, db);
2372 xuio_stat_wbuf_copied();
2373 return;
2374 }
2375
2376 xuio_stat_wbuf_nocopy();
2377 if (db->db_state == DB_CACHED) {
2378 dbuf_dirty_record_t *dr = db->db_last_dirty;
2379
2380 ASSERT(db->db_buf != NULL);
2381 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2382 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2383
2384 if (!arc_released(db->db_buf)) {
2385 ASSERT(dr->dt.dl.dr_override_state ==
2386 DR_OVERRIDDEN);
2387 arc_release(db->db_buf, db);
2388 }
2389 dr->dt.dl.dr_data = buf;
2390 arc_buf_destroy(db->db_buf, db);
2391 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2392 arc_release(db->db_buf, db);
2393 arc_buf_destroy(db->db_buf, db);
2394 }
2395 db->db_buf = NULL;
2396 }
2397 ASSERT(db->db_buf == NULL);
2398 dbuf_set_data(db, buf);
2399 db->db_state = DB_FILL;
2400 mutex_exit(&db->db_mtx);
2401 (void) dbuf_dirty(db, tx);
2402 dmu_buf_fill_done(&db->db, tx);
2403 }
2404
2405 void
2406 dbuf_destroy(dmu_buf_impl_t *db)
2407 {
2408 dnode_t *dn;
2409 dmu_buf_impl_t *parent = db->db_parent;
2410 dmu_buf_impl_t *dndb;
2411
2412 ASSERT(MUTEX_HELD(&db->db_mtx));
2413 ASSERT(refcount_is_zero(&db->db_holds));
2414
2415 if (db->db_buf != NULL) {
2416 arc_buf_destroy(db->db_buf, db);
2417 db->db_buf = NULL;
2418 }
2419
2420 if (db->db_blkid == DMU_BONUS_BLKID) {
2421 int slots = DB_DNODE(db)->dn_num_slots;
2422 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2423 if (db->db.db_data != NULL) {
2424 kmem_free(db->db.db_data, bonuslen);
2425 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2426 db->db_state = DB_UNCACHED;
2427 }
2428 }
2429
2430 dbuf_clear_data(db);
2431
2432 if (multilist_link_active(&db->db_cache_link)) {
2433 multilist_remove(dbuf_cache, db);
2434 (void) refcount_remove_many(&dbuf_cache_size,
2435 db->db.db_size, db);
2436 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2437 DBUF_STAT_BUMPDOWN(cache_count);
2438 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2439 db->db.db_size);
2440 }
2441
2442 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2443 ASSERT(db->db_data_pending == NULL);
2444
2445 db->db_state = DB_EVICTING;
2446 db->db_blkptr = NULL;
2447
2448 /*
2449 * Now that db_state is DB_EVICTING, nobody else can find this via
2450 * the hash table. We can now drop db_mtx, which allows us to
2451 * acquire the dn_dbufs_mtx.
2452 */
2453 mutex_exit(&db->db_mtx);
2454
2455 DB_DNODE_ENTER(db);
2456 dn = DB_DNODE(db);
2457 dndb = dn->dn_dbuf;
2458 if (db->db_blkid != DMU_BONUS_BLKID) {
2459 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2460 if (needlock)
2461 mutex_enter(&dn->dn_dbufs_mtx);
2462 avl_remove(&dn->dn_dbufs, db);
2463 atomic_dec_32(&dn->dn_dbufs_count);
2464 membar_producer();
2465 DB_DNODE_EXIT(db);
2466 if (needlock)
2467 mutex_exit(&dn->dn_dbufs_mtx);
2468 /*
2469 * Decrementing the dbuf count means that the hold corresponding
2470 * to the removed dbuf is no longer discounted in dnode_move(),
2471 * so the dnode cannot be moved until after we release the hold.
2472 * The membar_producer() ensures visibility of the decremented
2473 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2474 * release any lock.
2475 */
2476 mutex_enter(&dn->dn_mtx);
2477 dnode_rele_and_unlock(dn, db, B_TRUE);
2478 db->db_dnode_handle = NULL;
2479
2480 dbuf_hash_remove(db);
2481 } else {
2482 DB_DNODE_EXIT(db);
2483 }
2484
2485 ASSERT(refcount_is_zero(&db->db_holds));
2486
2487 db->db_parent = NULL;
2488
2489 ASSERT(db->db_buf == NULL);
2490 ASSERT(db->db.db_data == NULL);
2491 ASSERT(db->db_hash_next == NULL);
2492 ASSERT(db->db_blkptr == NULL);
2493 ASSERT(db->db_data_pending == NULL);
2494 ASSERT(!multilist_link_active(&db->db_cache_link));
2495
2496 kmem_cache_free(dbuf_kmem_cache, db);
2497 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2498
2499 /*
2500 * If this dbuf is referenced from an indirect dbuf,
2501 * decrement the ref count on the indirect dbuf.
2502 */
2503 if (parent && parent != dndb) {
2504 mutex_enter(&parent->db_mtx);
2505 dbuf_rele_and_unlock(parent, db, B_TRUE);
2506 }
2507 }
2508
2509 /*
2510 * Note: While bpp will always be updated if the function returns success,
2511 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2512 * this happens when the dnode is the meta-dnode, or {user|group|project}used
2513 * object.
2514 */
2515 __attribute__((always_inline))
2516 static inline int
2517 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2518 dmu_buf_impl_t **parentp, blkptr_t **bpp, struct dbuf_hold_impl_data *dh)
2519 {
2520 *parentp = NULL;
2521 *bpp = NULL;
2522
2523 ASSERT(blkid != DMU_BONUS_BLKID);
2524
2525 if (blkid == DMU_SPILL_BLKID) {
2526 mutex_enter(&dn->dn_mtx);
2527 if (dn->dn_have_spill &&
2528 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2529 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2530 else
2531 *bpp = NULL;
2532 dbuf_add_ref(dn->dn_dbuf, NULL);
2533 *parentp = dn->dn_dbuf;
2534 mutex_exit(&dn->dn_mtx);
2535 return (0);
2536 }
2537
2538 int nlevels =
2539 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2540 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2541
2542 ASSERT3U(level * epbs, <, 64);
2543 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2544 /*
2545 * This assertion shouldn't trip as long as the max indirect block size
2546 * is less than 1M. The reason for this is that up to that point,
2547 * the number of levels required to address an entire object with blocks
2548 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2549 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2550 * (i.e. we can address the entire object), objects will all use at most
2551 * N-1 levels and the assertion won't overflow. However, once epbs is
2552 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2553 * enough to address an entire object, so objects will have 5 levels,
2554 * but then this assertion will overflow.
2555 *
2556 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2557 * need to redo this logic to handle overflows.
2558 */
2559 ASSERT(level >= nlevels ||
2560 ((nlevels - level - 1) * epbs) +
2561 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2562 if (level >= nlevels ||
2563 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2564 ((nlevels - level - 1) * epbs)) ||
2565 (fail_sparse &&
2566 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2567 /* the buffer has no parent yet */
2568 return (SET_ERROR(ENOENT));
2569 } else if (level < nlevels-1) {
2570 /* this block is referenced from an indirect block */
2571 int err;
2572 if (dh == NULL) {
2573 err = dbuf_hold_impl(dn, level+1,
2574 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2575 } else {
2576 __dbuf_hold_impl_init(dh + 1, dn, dh->dh_level + 1,
2577 blkid >> epbs, fail_sparse, FALSE, NULL,
2578 parentp, dh->dh_depth + 1);
2579 err = __dbuf_hold_impl(dh + 1);
2580 }
2581 if (err)
2582 return (err);
2583 err = dbuf_read(*parentp, NULL,
2584 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2585 if (err) {
2586 dbuf_rele(*parentp, NULL);
2587 *parentp = NULL;
2588 return (err);
2589 }
2590 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2591 (blkid & ((1ULL << epbs) - 1));
2592 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2593 ASSERT(BP_IS_HOLE(*bpp));
2594 return (0);
2595 } else {
2596 /* the block is referenced from the dnode */
2597 ASSERT3U(level, ==, nlevels-1);
2598 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2599 blkid < dn->dn_phys->dn_nblkptr);
2600 if (dn->dn_dbuf) {
2601 dbuf_add_ref(dn->dn_dbuf, NULL);
2602 *parentp = dn->dn_dbuf;
2603 }
2604 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2605 return (0);
2606 }
2607 }
2608
2609 static dmu_buf_impl_t *
2610 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2611 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2612 {
2613 objset_t *os = dn->dn_objset;
2614 dmu_buf_impl_t *db, *odb;
2615
2616 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2617 ASSERT(dn->dn_type != DMU_OT_NONE);
2618
2619 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2620
2621 db->db_objset = os;
2622 db->db.db_object = dn->dn_object;
2623 db->db_level = level;
2624 db->db_blkid = blkid;
2625 db->db_last_dirty = NULL;
2626 db->db_dirtycnt = 0;
2627 db->db_dnode_handle = dn->dn_handle;
2628 db->db_parent = parent;
2629 db->db_blkptr = blkptr;
2630
2631 db->db_user = NULL;
2632 db->db_user_immediate_evict = FALSE;
2633 db->db_freed_in_flight = FALSE;
2634 db->db_pending_evict = FALSE;
2635
2636 if (blkid == DMU_BONUS_BLKID) {
2637 ASSERT3P(parent, ==, dn->dn_dbuf);
2638 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
2639 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2640 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2641 db->db.db_offset = DMU_BONUS_BLKID;
2642 db->db_state = DB_UNCACHED;
2643 /* the bonus dbuf is not placed in the hash table */
2644 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2645 return (db);
2646 } else if (blkid == DMU_SPILL_BLKID) {
2647 db->db.db_size = (blkptr != NULL) ?
2648 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2649 db->db.db_offset = 0;
2650 } else {
2651 int blocksize =
2652 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2653 db->db.db_size = blocksize;
2654 db->db.db_offset = db->db_blkid * blocksize;
2655 }
2656
2657 /*
2658 * Hold the dn_dbufs_mtx while we get the new dbuf
2659 * in the hash table *and* added to the dbufs list.
2660 * This prevents a possible deadlock with someone
2661 * trying to look up this dbuf before its added to the
2662 * dn_dbufs list.
2663 */
2664 mutex_enter(&dn->dn_dbufs_mtx);
2665 db->db_state = DB_EVICTING;
2666 if ((odb = dbuf_hash_insert(db)) != NULL) {
2667 /* someone else inserted it first */
2668 kmem_cache_free(dbuf_kmem_cache, db);
2669 mutex_exit(&dn->dn_dbufs_mtx);
2670 DBUF_STAT_BUMP(hash_insert_race);
2671 return (odb);
2672 }
2673 avl_add(&dn->dn_dbufs, db);
2674
2675 db->db_state = DB_UNCACHED;
2676 mutex_exit(&dn->dn_dbufs_mtx);
2677 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2678
2679 if (parent && parent != dn->dn_dbuf)
2680 dbuf_add_ref(parent, db);
2681
2682 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2683 refcount_count(&dn->dn_holds) > 0);
2684 (void) refcount_add(&dn->dn_holds, db);
2685 atomic_inc_32(&dn->dn_dbufs_count);
2686
2687 dprintf_dbuf(db, "db=%p\n", db);
2688
2689 return (db);
2690 }
2691
2692 typedef struct dbuf_prefetch_arg {
2693 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2694 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2695 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2696 int dpa_curlevel; /* The current level that we're reading */
2697 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2698 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2699 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2700 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2701 } dbuf_prefetch_arg_t;
2702
2703 /*
2704 * Actually issue the prefetch read for the block given.
2705 */
2706 static void
2707 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2708 {
2709 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2710 return;
2711
2712 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2713 arc_flags_t aflags =
2714 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2715
2716 /* dnodes are always read as raw and then converted later */
2717 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
2718 dpa->dpa_curlevel == 0)
2719 zio_flags |= ZIO_FLAG_RAW;
2720
2721 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2722 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2723 ASSERT(dpa->dpa_zio != NULL);
2724 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2725 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
2726 }
2727
2728 /*
2729 * Called when an indirect block above our prefetch target is read in. This
2730 * will either read in the next indirect block down the tree or issue the actual
2731 * prefetch if the next block down is our target.
2732 */
2733 static void
2734 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
2735 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
2736 {
2737 dbuf_prefetch_arg_t *dpa = private;
2738
2739 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2740 ASSERT3S(dpa->dpa_curlevel, >, 0);
2741
2742 /*
2743 * The dpa_dnode is only valid if we are called with a NULL
2744 * zio. This indicates that the arc_read() returned without
2745 * first calling zio_read() to issue a physical read. Once
2746 * a physical read is made the dpa_dnode must be invalidated
2747 * as the locks guarding it may have been dropped. If the
2748 * dpa_dnode is still valid, then we want to add it to the dbuf
2749 * cache. To do so, we must hold the dbuf associated with the block
2750 * we just prefetched, read its contents so that we associate it
2751 * with an arc_buf_t, and then release it.
2752 */
2753 if (zio != NULL) {
2754 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2755 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
2756 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2757 } else {
2758 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2759 }
2760 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2761
2762 dpa->dpa_dnode = NULL;
2763 } else if (dpa->dpa_dnode != NULL) {
2764 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2765 (dpa->dpa_epbs * (dpa->dpa_curlevel -
2766 dpa->dpa_zb.zb_level));
2767 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2768 dpa->dpa_curlevel, curblkid, FTAG);
2769 (void) dbuf_read(db, NULL,
2770 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2771 dbuf_rele(db, FTAG);
2772 }
2773
2774 if (abuf == NULL) {
2775 kmem_free(dpa, sizeof (*dpa));
2776 return;
2777 }
2778
2779 dpa->dpa_curlevel--;
2780 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2781 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2782 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2783 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2784
2785 if (BP_IS_HOLE(bp)) {
2786 kmem_free(dpa, sizeof (*dpa));
2787 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2788 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2789 dbuf_issue_final_prefetch(dpa, bp);
2790 kmem_free(dpa, sizeof (*dpa));
2791 } else {
2792 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2793 zbookmark_phys_t zb;
2794
2795 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2796 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2797 iter_aflags |= ARC_FLAG_L2CACHE;
2798
2799 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2800
2801 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2802 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2803
2804 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2805 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2806 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2807 &iter_aflags, &zb);
2808 }
2809
2810 arc_buf_destroy(abuf, private);
2811 }
2812
2813 /*
2814 * Issue prefetch reads for the given block on the given level. If the indirect
2815 * blocks above that block are not in memory, we will read them in
2816 * asynchronously. As a result, this call never blocks waiting for a read to
2817 * complete. Note that the prefetch might fail if the dataset is encrypted and
2818 * the encryption key is unmapped before the IO completes.
2819 */
2820 void
2821 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2822 arc_flags_t aflags)
2823 {
2824 blkptr_t bp;
2825 int epbs, nlevels, curlevel;
2826 uint64_t curblkid;
2827
2828 ASSERT(blkid != DMU_BONUS_BLKID);
2829 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2830
2831 if (blkid > dn->dn_maxblkid)
2832 return;
2833
2834 if (dnode_block_freed(dn, blkid))
2835 return;
2836
2837 /*
2838 * This dnode hasn't been written to disk yet, so there's nothing to
2839 * prefetch.
2840 */
2841 nlevels = dn->dn_phys->dn_nlevels;
2842 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2843 return;
2844
2845 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2846 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2847 return;
2848
2849 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2850 level, blkid);
2851 if (db != NULL) {
2852 mutex_exit(&db->db_mtx);
2853 /*
2854 * This dbuf already exists. It is either CACHED, or
2855 * (we assume) about to be read or filled.
2856 */
2857 return;
2858 }
2859
2860 /*
2861 * Find the closest ancestor (indirect block) of the target block
2862 * that is present in the cache. In this indirect block, we will
2863 * find the bp that is at curlevel, curblkid.
2864 */
2865 curlevel = level;
2866 curblkid = blkid;
2867 while (curlevel < nlevels - 1) {
2868 int parent_level = curlevel + 1;
2869 uint64_t parent_blkid = curblkid >> epbs;
2870 dmu_buf_impl_t *db;
2871
2872 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2873 FALSE, TRUE, FTAG, &db) == 0) {
2874 blkptr_t *bpp = db->db_buf->b_data;
2875 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2876 dbuf_rele(db, FTAG);
2877 break;
2878 }
2879
2880 curlevel = parent_level;
2881 curblkid = parent_blkid;
2882 }
2883
2884 if (curlevel == nlevels - 1) {
2885 /* No cached indirect blocks found. */
2886 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2887 bp = dn->dn_phys->dn_blkptr[curblkid];
2888 }
2889 if (BP_IS_HOLE(&bp))
2890 return;
2891
2892 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2893
2894 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2895 ZIO_FLAG_CANFAIL);
2896
2897 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2898 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2899 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2900 dn->dn_object, level, blkid);
2901 dpa->dpa_curlevel = curlevel;
2902 dpa->dpa_prio = prio;
2903 dpa->dpa_aflags = aflags;
2904 dpa->dpa_spa = dn->dn_objset->os_spa;
2905 dpa->dpa_dnode = dn;
2906 dpa->dpa_epbs = epbs;
2907 dpa->dpa_zio = pio;
2908
2909 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2910 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2911 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
2912
2913 /*
2914 * If we have the indirect just above us, no need to do the asynchronous
2915 * prefetch chain; we'll just run the last step ourselves. If we're at
2916 * a higher level, though, we want to issue the prefetches for all the
2917 * indirect blocks asynchronously, so we can go on with whatever we were
2918 * doing.
2919 */
2920 if (curlevel == level) {
2921 ASSERT3U(curblkid, ==, blkid);
2922 dbuf_issue_final_prefetch(dpa, &bp);
2923 kmem_free(dpa, sizeof (*dpa));
2924 } else {
2925 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2926 zbookmark_phys_t zb;
2927
2928 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2929 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2930 iter_aflags |= ARC_FLAG_L2CACHE;
2931
2932 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2933 dn->dn_object, curlevel, curblkid);
2934 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2935 &bp, dbuf_prefetch_indirect_done, dpa, prio,
2936 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2937 &iter_aflags, &zb);
2938 }
2939 /*
2940 * We use pio here instead of dpa_zio since it's possible that
2941 * dpa may have already been freed.
2942 */
2943 zio_nowait(pio);
2944 }
2945
2946 #define DBUF_HOLD_IMPL_MAX_DEPTH 20
2947
2948 /*
2949 * Helper function for __dbuf_hold_impl() to copy a buffer. Handles
2950 * the case of encrypted, compressed and uncompressed buffers by
2951 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
2952 * arc_alloc_compressed_buf() or arc_alloc_buf().*
2953 *
2954 * NOTE: Declared noinline to avoid stack bloat in __dbuf_hold_impl().
2955 */
2956 noinline static void
2957 dbuf_hold_copy(struct dbuf_hold_impl_data *dh)
2958 {
2959 dnode_t *dn = dh->dh_dn;
2960 dmu_buf_impl_t *db = dh->dh_db;
2961 dbuf_dirty_record_t *dr = dh->dh_dr;
2962 arc_buf_t *data = dr->dt.dl.dr_data;
2963
2964 enum zio_compress compress_type = arc_get_compression(data);
2965
2966 if (arc_is_encrypted(data)) {
2967 boolean_t byteorder;
2968 uint8_t salt[ZIO_DATA_SALT_LEN];
2969 uint8_t iv[ZIO_DATA_IV_LEN];
2970 uint8_t mac[ZIO_DATA_MAC_LEN];
2971
2972 arc_get_raw_params(data, &byteorder, salt, iv, mac);
2973 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
2974 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
2975 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
2976 compress_type));
2977 } else if (compress_type != ZIO_COMPRESS_OFF) {
2978 dbuf_set_data(db, arc_alloc_compressed_buf(
2979 dn->dn_objset->os_spa, db, arc_buf_size(data),
2980 arc_buf_lsize(data), compress_type));
2981 } else {
2982 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
2983 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
2984 }
2985
2986 bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
2987 }
2988
2989 /*
2990 * Returns with db_holds incremented, and db_mtx not held.
2991 * Note: dn_struct_rwlock must be held.
2992 */
2993 static int
2994 __dbuf_hold_impl(struct dbuf_hold_impl_data *dh)
2995 {
2996 ASSERT3S(dh->dh_depth, <, DBUF_HOLD_IMPL_MAX_DEPTH);
2997 dh->dh_parent = NULL;
2998
2999 ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
3000 ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
3001 ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
3002
3003 *(dh->dh_dbp) = NULL;
3004
3005 /* dbuf_find() returns with db_mtx held */
3006 dh->dh_db = dbuf_find(dh->dh_dn->dn_objset, dh->dh_dn->dn_object,
3007 dh->dh_level, dh->dh_blkid);
3008
3009 if (dh->dh_db == NULL) {
3010 dh->dh_bp = NULL;
3011
3012 if (dh->dh_fail_uncached)
3013 return (SET_ERROR(ENOENT));
3014
3015 ASSERT3P(dh->dh_parent, ==, NULL);
3016 dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
3017 dh->dh_fail_sparse, &dh->dh_parent, &dh->dh_bp, dh);
3018 if (dh->dh_fail_sparse) {
3019 if (dh->dh_err == 0 &&
3020 dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
3021 dh->dh_err = SET_ERROR(ENOENT);
3022 if (dh->dh_err) {
3023 if (dh->dh_parent)
3024 dbuf_rele(dh->dh_parent, NULL);
3025 return (dh->dh_err);
3026 }
3027 }
3028 if (dh->dh_err && dh->dh_err != ENOENT)
3029 return (dh->dh_err);
3030 dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
3031 dh->dh_parent, dh->dh_bp);
3032 }
3033
3034 if (dh->dh_fail_uncached && dh->dh_db->db_state != DB_CACHED) {
3035 mutex_exit(&dh->dh_db->db_mtx);
3036 return (SET_ERROR(ENOENT));
3037 }
3038
3039 if (dh->dh_db->db_buf != NULL) {
3040 arc_buf_access(dh->dh_db->db_buf);
3041 ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
3042 }
3043
3044 ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
3045
3046 /*
3047 * If this buffer is currently syncing out, and we are are
3048 * still referencing it from db_data, we need to make a copy
3049 * of it in case we decide we want to dirty it again in this txg.
3050 */
3051 if (dh->dh_db->db_level == 0 &&
3052 dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
3053 dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
3054 dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
3055 dh->dh_dr = dh->dh_db->db_data_pending;
3056 if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf)
3057 dbuf_hold_copy(dh);
3058 }
3059
3060 if (multilist_link_active(&dh->dh_db->db_cache_link)) {
3061 ASSERT(refcount_is_zero(&dh->dh_db->db_holds));
3062 multilist_remove(dbuf_cache, dh->dh_db);
3063 (void) refcount_remove_many(&dbuf_cache_size,
3064 dh->dh_db->db.db_size, dh->dh_db);
3065 DBUF_STAT_BUMPDOWN(cache_levels[dh->dh_db->db_level]);
3066 DBUF_STAT_BUMPDOWN(cache_count);
3067 DBUF_STAT_DECR(cache_levels_bytes[dh->dh_db->db_level],
3068 dh->dh_db->db.db_size);
3069 }
3070 (void) refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
3071 DBUF_VERIFY(dh->dh_db);
3072 mutex_exit(&dh->dh_db->db_mtx);
3073
3074 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3075 if (dh->dh_parent)
3076 dbuf_rele(dh->dh_parent, NULL);
3077
3078 ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
3079 ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
3080 ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
3081 *(dh->dh_dbp) = dh->dh_db;
3082
3083 return (0);
3084 }
3085
3086 /*
3087 * The following code preserves the recursive function dbuf_hold_impl()
3088 * but moves the local variables AND function arguments to the heap to
3089 * minimize the stack frame size. Enough space is initially allocated
3090 * on the stack for 20 levels of recursion.
3091 */
3092 int
3093 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3094 boolean_t fail_sparse, boolean_t fail_uncached,
3095 void *tag, dmu_buf_impl_t **dbp)
3096 {
3097 struct dbuf_hold_impl_data *dh;
3098 int error;
3099
3100 dh = kmem_alloc(sizeof (struct dbuf_hold_impl_data) *
3101 DBUF_HOLD_IMPL_MAX_DEPTH, KM_SLEEP);
3102 __dbuf_hold_impl_init(dh, dn, level, blkid, fail_sparse,
3103 fail_uncached, tag, dbp, 0);
3104
3105 error = __dbuf_hold_impl(dh);
3106
3107 kmem_free(dh, sizeof (struct dbuf_hold_impl_data) *
3108 DBUF_HOLD_IMPL_MAX_DEPTH);
3109
3110 return (error);
3111 }
3112
3113 static void
3114 __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
3115 dnode_t *dn, uint8_t level, uint64_t blkid,
3116 boolean_t fail_sparse, boolean_t fail_uncached,
3117 void *tag, dmu_buf_impl_t **dbp, int depth)
3118 {
3119 dh->dh_dn = dn;
3120 dh->dh_level = level;
3121 dh->dh_blkid = blkid;
3122
3123 dh->dh_fail_sparse = fail_sparse;
3124 dh->dh_fail_uncached = fail_uncached;
3125
3126 dh->dh_tag = tag;
3127 dh->dh_dbp = dbp;
3128
3129 dh->dh_db = NULL;
3130 dh->dh_parent = NULL;
3131 dh->dh_bp = NULL;
3132 dh->dh_err = 0;
3133 dh->dh_dr = NULL;
3134
3135 dh->dh_depth = depth;
3136 }
3137
3138 dmu_buf_impl_t *
3139 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
3140 {
3141 return (dbuf_hold_level(dn, 0, blkid, tag));
3142 }
3143
3144 dmu_buf_impl_t *
3145 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
3146 {
3147 dmu_buf_impl_t *db;
3148 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3149 return (err ? NULL : db);
3150 }
3151
3152 void
3153 dbuf_create_bonus(dnode_t *dn)
3154 {
3155 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3156
3157 ASSERT(dn->dn_bonus == NULL);
3158 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3159 }
3160
3161 int
3162 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3163 {
3164 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3165 dnode_t *dn;
3166
3167 if (db->db_blkid != DMU_SPILL_BLKID)
3168 return (SET_ERROR(ENOTSUP));
3169 if (blksz == 0)
3170 blksz = SPA_MINBLOCKSIZE;
3171 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3172 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3173
3174 DB_DNODE_ENTER(db);
3175 dn = DB_DNODE(db);
3176 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3177 dbuf_new_size(db, blksz, tx);
3178 rw_exit(&dn->dn_struct_rwlock);
3179 DB_DNODE_EXIT(db);
3180
3181 return (0);
3182 }
3183
3184 void
3185 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3186 {
3187 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3188 }
3189
3190 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3191 void
3192 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
3193 {
3194 int64_t holds = refcount_add(&db->db_holds, tag);
3195 VERIFY3S(holds, >, 1);
3196 }
3197
3198 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3199 boolean_t
3200 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3201 void *tag)
3202 {
3203 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3204 dmu_buf_impl_t *found_db;
3205 boolean_t result = B_FALSE;
3206
3207 if (blkid == DMU_BONUS_BLKID)
3208 found_db = dbuf_find_bonus(os, obj);
3209 else
3210 found_db = dbuf_find(os, obj, 0, blkid);
3211
3212 if (found_db != NULL) {
3213 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3214 (void) refcount_add(&db->db_holds, tag);
3215 result = B_TRUE;
3216 }
3217 mutex_exit(&found_db->db_mtx);
3218 }
3219 return (result);
3220 }
3221
3222 /*
3223 * If you call dbuf_rele() you had better not be referencing the dnode handle
3224 * unless you have some other direct or indirect hold on the dnode. (An indirect
3225 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3226 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3227 * dnode's parent dbuf evicting its dnode handles.
3228 */
3229 void
3230 dbuf_rele(dmu_buf_impl_t *db, void *tag)
3231 {
3232 mutex_enter(&db->db_mtx);
3233 dbuf_rele_and_unlock(db, tag, B_FALSE);
3234 }
3235
3236 void
3237 dmu_buf_rele(dmu_buf_t *db, void *tag)
3238 {
3239 dbuf_rele((dmu_buf_impl_t *)db, tag);
3240 }
3241
3242 /*
3243 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3244 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3245 * argument should be set if we are already in the dbuf-evicting code
3246 * path, in which case we don't want to recursively evict. This allows us to
3247 * avoid deeply nested stacks that would have a call flow similar to this:
3248 *
3249 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3250 * ^ |
3251 * | |
3252 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3253 *
3254 */
3255 void
3256 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting)
3257 {
3258 int64_t holds;
3259
3260 ASSERT(MUTEX_HELD(&db->db_mtx));
3261 DBUF_VERIFY(db);
3262
3263 /*
3264 * Remove the reference to the dbuf before removing its hold on the
3265 * dnode so we can guarantee in dnode_move() that a referenced bonus
3266 * buffer has a corresponding dnode hold.
3267 */
3268 holds = refcount_remove(&db->db_holds, tag);
3269 ASSERT(holds >= 0);
3270
3271 /*
3272 * We can't freeze indirects if there is a possibility that they
3273 * may be modified in the current syncing context.
3274 */
3275 if (db->db_buf != NULL &&
3276 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3277 arc_buf_freeze(db->db_buf);
3278 }
3279
3280 if (holds == db->db_dirtycnt &&
3281 db->db_level == 0 && db->db_user_immediate_evict)
3282 dbuf_evict_user(db);
3283
3284 if (holds == 0) {
3285 if (db->db_blkid == DMU_BONUS_BLKID) {
3286 dnode_t *dn;
3287 boolean_t evict_dbuf = db->db_pending_evict;
3288
3289 /*
3290 * If the dnode moves here, we cannot cross this
3291 * barrier until the move completes.
3292 */
3293 DB_DNODE_ENTER(db);
3294
3295 dn = DB_DNODE(db);
3296 atomic_dec_32(&dn->dn_dbufs_count);
3297
3298 /*
3299 * Decrementing the dbuf count means that the bonus
3300 * buffer's dnode hold is no longer discounted in
3301 * dnode_move(). The dnode cannot move until after
3302 * the dnode_rele() below.
3303 */
3304 DB_DNODE_EXIT(db);
3305
3306 /*
3307 * Do not reference db after its lock is dropped.
3308 * Another thread may evict it.
3309 */
3310 mutex_exit(&db->db_mtx);
3311
3312 if (evict_dbuf)
3313 dnode_evict_bonus(dn);
3314
3315 dnode_rele(dn, db);
3316 } else if (db->db_buf == NULL) {
3317 /*
3318 * This is a special case: we never associated this
3319 * dbuf with any data allocated from the ARC.
3320 */
3321 ASSERT(db->db_state == DB_UNCACHED ||
3322 db->db_state == DB_NOFILL);
3323 dbuf_destroy(db);
3324 } else if (arc_released(db->db_buf)) {
3325 /*
3326 * This dbuf has anonymous data associated with it.
3327 */
3328 dbuf_destroy(db);
3329 } else {
3330 boolean_t do_arc_evict = B_FALSE;
3331 blkptr_t bp;
3332 spa_t *spa = dmu_objset_spa(db->db_objset);
3333
3334 if (!DBUF_IS_CACHEABLE(db) &&
3335 db->db_blkptr != NULL &&
3336 !BP_IS_HOLE(db->db_blkptr) &&
3337 !BP_IS_EMBEDDED(db->db_blkptr)) {
3338 do_arc_evict = B_TRUE;
3339 bp = *db->db_blkptr;
3340 }
3341
3342 if (!DBUF_IS_CACHEABLE(db) ||
3343 db->db_pending_evict) {
3344 dbuf_destroy(db);
3345 } else if (!multilist_link_active(&db->db_cache_link)) {
3346 multilist_insert(dbuf_cache, db);
3347 (void) refcount_add_many(&dbuf_cache_size,
3348 db->db.db_size, db);
3349 DBUF_STAT_BUMP(cache_levels[db->db_level]);
3350 DBUF_STAT_BUMP(cache_count);
3351 DBUF_STAT_INCR(cache_levels_bytes[db->db_level],
3352 db->db.db_size);
3353 DBUF_STAT_MAX(cache_size_bytes_max,
3354 refcount_count(&dbuf_cache_size));
3355 mutex_exit(&db->db_mtx);
3356
3357 if (!evicting)
3358 dbuf_evict_notify();
3359 }
3360
3361 if (do_arc_evict)
3362 arc_freed(spa, &bp);
3363 }
3364 } else {
3365 mutex_exit(&db->db_mtx);
3366 }
3367
3368 }
3369
3370 #pragma weak dmu_buf_refcount = dbuf_refcount
3371 uint64_t
3372 dbuf_refcount(dmu_buf_impl_t *db)
3373 {
3374 return (refcount_count(&db->db_holds));
3375 }
3376
3377 uint64_t
3378 dmu_buf_user_refcount(dmu_buf_t *db_fake)
3379 {
3380 uint64_t holds;
3381 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3382
3383 mutex_enter(&db->db_mtx);
3384 ASSERT3U(refcount_count(&db->db_holds), >=, db->db_dirtycnt);
3385 holds = refcount_count(&db->db_holds) - db->db_dirtycnt;
3386 mutex_exit(&db->db_mtx);
3387
3388 return (holds);
3389 }
3390
3391 void *
3392 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3393 dmu_buf_user_t *new_user)
3394 {
3395 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3396
3397 mutex_enter(&db->db_mtx);
3398 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3399 if (db->db_user == old_user)
3400 db->db_user = new_user;
3401 else
3402 old_user = db->db_user;
3403 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3404 mutex_exit(&db->db_mtx);
3405
3406 return (old_user);
3407 }
3408
3409 void *
3410 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3411 {
3412 return (dmu_buf_replace_user(db_fake, NULL, user));
3413 }
3414
3415 void *
3416 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3417 {
3418 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3419
3420 db->db_user_immediate_evict = TRUE;
3421 return (dmu_buf_set_user(db_fake, user));
3422 }
3423
3424 void *
3425 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3426 {
3427 return (dmu_buf_replace_user(db_fake, user, NULL));
3428 }
3429
3430 void *
3431 dmu_buf_get_user(dmu_buf_t *db_fake)
3432 {
3433 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3434
3435 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3436 return (db->db_user);
3437 }
3438
3439 void
3440 dmu_buf_user_evict_wait()
3441 {
3442 taskq_wait(dbu_evict_taskq);
3443 }
3444
3445 blkptr_t *
3446 dmu_buf_get_blkptr(dmu_buf_t *db)
3447 {
3448 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3449 return (dbi->db_blkptr);
3450 }
3451
3452 objset_t *
3453 dmu_buf_get_objset(dmu_buf_t *db)
3454 {
3455 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3456 return (dbi->db_objset);
3457 }
3458
3459 dnode_t *
3460 dmu_buf_dnode_enter(dmu_buf_t *db)
3461 {
3462 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3463 DB_DNODE_ENTER(dbi);
3464 return (DB_DNODE(dbi));
3465 }
3466
3467 void
3468 dmu_buf_dnode_exit(dmu_buf_t *db)
3469 {
3470 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3471 DB_DNODE_EXIT(dbi);
3472 }
3473
3474 static void
3475 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3476 {
3477 /* ASSERT(dmu_tx_is_syncing(tx) */
3478 ASSERT(MUTEX_HELD(&db->db_mtx));
3479
3480 if (db->db_blkptr != NULL)
3481 return;
3482
3483 if (db->db_blkid == DMU_SPILL_BLKID) {
3484 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3485 BP_ZERO(db->db_blkptr);
3486 return;
3487 }
3488 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3489 /*
3490 * This buffer was allocated at a time when there was
3491 * no available blkptrs from the dnode, or it was
3492 * inappropriate to hook it in (i.e., nlevels mis-match).
3493 */
3494 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3495 ASSERT(db->db_parent == NULL);
3496 db->db_parent = dn->dn_dbuf;
3497 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3498 DBUF_VERIFY(db);
3499 } else {
3500 dmu_buf_impl_t *parent = db->db_parent;
3501 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3502
3503 ASSERT(dn->dn_phys->dn_nlevels > 1);
3504 if (parent == NULL) {
3505 mutex_exit(&db->db_mtx);
3506 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3507 parent = dbuf_hold_level(dn, db->db_level + 1,
3508 db->db_blkid >> epbs, db);
3509 rw_exit(&dn->dn_struct_rwlock);
3510 mutex_enter(&db->db_mtx);
3511 db->db_parent = parent;
3512 }
3513 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3514 (db->db_blkid & ((1ULL << epbs) - 1));
3515 DBUF_VERIFY(db);
3516 }
3517 }
3518
3519 /*
3520 * When syncing out a blocks of dnodes, adjust the block to deal with
3521 * encryption. Normally, we make sure the block is decrypted before writing
3522 * it. If we have crypt params, then we are writing a raw (encrypted) block,
3523 * from a raw receive. In this case, set the ARC buf's crypt params so
3524 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
3525 */
3526 static void
3527 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
3528 {
3529 int err;
3530 dmu_buf_impl_t *db = dr->dr_dbuf;
3531
3532 ASSERT(MUTEX_HELD(&db->db_mtx));
3533 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
3534 ASSERT3U(db->db_level, ==, 0);
3535
3536 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
3537 zbookmark_phys_t zb;
3538
3539 /*
3540 * Unfortunately, there is currently no mechanism for
3541 * syncing context to handle decryption errors. An error
3542 * here is only possible if an attacker maliciously
3543 * changed a dnode block and updated the associated
3544 * checksums going up the block tree.
3545 */
3546 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
3547 db->db.db_object, db->db_level, db->db_blkid);
3548 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
3549 &zb, B_TRUE);
3550 if (err)
3551 panic("Invalid dnode block MAC");
3552 } else if (dr->dt.dl.dr_has_raw_params) {
3553 (void) arc_release(dr->dt.dl.dr_data, db);
3554 arc_convert_to_raw(dr->dt.dl.dr_data,
3555 dmu_objset_id(db->db_objset),
3556 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
3557 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
3558 }
3559 }
3560
3561 /*
3562 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
3563 * is critical the we not allow the compiler to inline this function in to
3564 * dbuf_sync_list() thereby drastically bloating the stack usage.
3565 */
3566 noinline static void
3567 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3568 {
3569 dmu_buf_impl_t *db = dr->dr_dbuf;
3570 dnode_t *dn;
3571 zio_t *zio;
3572
3573 ASSERT(dmu_tx_is_syncing(tx));
3574
3575 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3576
3577 mutex_enter(&db->db_mtx);
3578
3579 ASSERT(db->db_level > 0);
3580 DBUF_VERIFY(db);
3581
3582 /* Read the block if it hasn't been read yet. */
3583 if (db->db_buf == NULL) {
3584 mutex_exit(&db->db_mtx);
3585 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3586 mutex_enter(&db->db_mtx);
3587 }
3588 ASSERT3U(db->db_state, ==, DB_CACHED);
3589 ASSERT(db->db_buf != NULL);
3590
3591 DB_DNODE_ENTER(db);
3592 dn = DB_DNODE(db);
3593 /* Indirect block size must match what the dnode thinks it is. */
3594 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3595 dbuf_check_blkptr(dn, db);
3596 DB_DNODE_EXIT(db);
3597
3598 /* Provide the pending dirty record to child dbufs */
3599 db->db_data_pending = dr;
3600
3601 mutex_exit(&db->db_mtx);
3602
3603 dbuf_write(dr, db->db_buf, tx);
3604
3605 zio = dr->dr_zio;
3606 mutex_enter(&dr->dt.di.dr_mtx);
3607 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3608 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3609 mutex_exit(&dr->dt.di.dr_mtx);
3610 zio_nowait(zio);
3611 }
3612
3613 /*
3614 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
3615 * critical the we not allow the compiler to inline this function in to
3616 * dbuf_sync_list() thereby drastically bloating the stack usage.
3617 */
3618 noinline static void
3619 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3620 {
3621 arc_buf_t **datap = &dr->dt.dl.dr_data;
3622 dmu_buf_impl_t *db = dr->dr_dbuf;
3623 dnode_t *dn;
3624 objset_t *os;
3625 uint64_t txg = tx->tx_txg;
3626
3627 ASSERT(dmu_tx_is_syncing(tx));
3628
3629 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3630
3631 mutex_enter(&db->db_mtx);
3632 /*
3633 * To be synced, we must be dirtied. But we
3634 * might have been freed after the dirty.
3635 */
3636 if (db->db_state == DB_UNCACHED) {
3637 /* This buffer has been freed since it was dirtied */
3638 ASSERT(db->db.db_data == NULL);
3639 } else if (db->db_state == DB_FILL) {
3640 /* This buffer was freed and is now being re-filled */
3641 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3642 } else {
3643 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3644 }
3645 DBUF_VERIFY(db);
3646
3647 DB_DNODE_ENTER(db);
3648 dn = DB_DNODE(db);
3649
3650 if (db->db_blkid == DMU_SPILL_BLKID) {
3651 mutex_enter(&dn->dn_mtx);
3652 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
3653 /*
3654 * In the previous transaction group, the bonus buffer
3655 * was entirely used to store the attributes for the
3656 * dnode which overrode the dn_spill field. However,
3657 * when adding more attributes to the file a spill
3658 * block was required to hold the extra attributes.
3659 *
3660 * Make sure to clear the garbage left in the dn_spill
3661 * field from the previous attributes in the bonus
3662 * buffer. Otherwise, after writing out the spill
3663 * block to the new allocated dva, it will free
3664 * the old block pointed to by the invalid dn_spill.
3665 */
3666 db->db_blkptr = NULL;
3667 }
3668 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3669 mutex_exit(&dn->dn_mtx);
3670 }
3671
3672 /*
3673 * If this is a bonus buffer, simply copy the bonus data into the
3674 * dnode. It will be written out when the dnode is synced (and it
3675 * will be synced, since it must have been dirty for dbuf_sync to
3676 * be called).
3677 */
3678 if (db->db_blkid == DMU_BONUS_BLKID) {
3679 dbuf_dirty_record_t **drp;
3680
3681 ASSERT(*datap != NULL);
3682 ASSERT0(db->db_level);
3683 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
3684 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
3685 bcopy(*datap, DN_BONUS(dn->dn_phys),
3686 DN_MAX_BONUS_LEN(dn->dn_phys));
3687 DB_DNODE_EXIT(db);
3688
3689 if (*datap != db->db.db_data) {
3690 int slots = DB_DNODE(db)->dn_num_slots;
3691 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3692 kmem_free(*datap, bonuslen);
3693 arc_space_return(bonuslen, ARC_SPACE_BONUS);
3694 }
3695 db->db_data_pending = NULL;
3696 drp = &db->db_last_dirty;
3697 while (*drp != dr)
3698 drp = &(*drp)->dr_next;
3699 ASSERT(dr->dr_next == NULL);
3700 ASSERT(dr->dr_dbuf == db);
3701 *drp = dr->dr_next;
3702 if (dr->dr_dbuf->db_level != 0) {
3703 mutex_destroy(&dr->dt.di.dr_mtx);
3704 list_destroy(&dr->dt.di.dr_children);
3705 }
3706 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3707 ASSERT(db->db_dirtycnt > 0);
3708 db->db_dirtycnt -= 1;
3709 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
3710 return;
3711 }
3712
3713 os = dn->dn_objset;
3714
3715 /*
3716 * This function may have dropped the db_mtx lock allowing a dmu_sync
3717 * operation to sneak in. As a result, we need to ensure that we
3718 * don't check the dr_override_state until we have returned from
3719 * dbuf_check_blkptr.
3720 */
3721 dbuf_check_blkptr(dn, db);
3722
3723 /*
3724 * If this buffer is in the middle of an immediate write,
3725 * wait for the synchronous IO to complete.
3726 */
3727 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3728 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3729 cv_wait(&db->db_changed, &db->db_mtx);
3730 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3731 }
3732
3733 /*
3734 * If this is a dnode block, ensure it is appropriately encrypted
3735 * or decrypted, depending on what we are writing to it this txg.
3736 */
3737 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
3738 dbuf_prepare_encrypted_dnode_leaf(dr);
3739
3740 if (db->db_state != DB_NOFILL &&
3741 dn->dn_object != DMU_META_DNODE_OBJECT &&
3742 refcount_count(&db->db_holds) > 1 &&
3743 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3744 *datap == db->db_buf) {
3745 /*
3746 * If this buffer is currently "in use" (i.e., there
3747 * are active holds and db_data still references it),
3748 * then make a copy before we start the write so that
3749 * any modifications from the open txg will not leak
3750 * into this write.
3751 *
3752 * NOTE: this copy does not need to be made for
3753 * objects only modified in the syncing context (e.g.
3754 * DNONE_DNODE blocks).
3755 */
3756 int psize = arc_buf_size(*datap);
3757 int lsize = arc_buf_lsize(*datap);
3758 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3759 enum zio_compress compress_type = arc_get_compression(*datap);
3760
3761 if (arc_is_encrypted(*datap)) {
3762 boolean_t byteorder;
3763 uint8_t salt[ZIO_DATA_SALT_LEN];
3764 uint8_t iv[ZIO_DATA_IV_LEN];
3765 uint8_t mac[ZIO_DATA_MAC_LEN];
3766
3767 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
3768 *datap = arc_alloc_raw_buf(os->os_spa, db,
3769 dmu_objset_id(os), byteorder, salt, iv, mac,
3770 dn->dn_type, psize, lsize, compress_type);
3771 } else if (compress_type != ZIO_COMPRESS_OFF) {
3772 ASSERT3U(type, ==, ARC_BUFC_DATA);
3773 *datap = arc_alloc_compressed_buf(os->os_spa, db,
3774 psize, lsize, compress_type);
3775 } else {
3776 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3777 }
3778 bcopy(db->db.db_data, (*datap)->b_data, psize);
3779 }
3780 db->db_data_pending = dr;
3781
3782 mutex_exit(&db->db_mtx);
3783
3784 dbuf_write(dr, *datap, tx);
3785
3786 ASSERT(!list_link_active(&dr->dr_dirty_node));
3787 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3788 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3789 DB_DNODE_EXIT(db);
3790 } else {
3791 /*
3792 * Although zio_nowait() does not "wait for an IO", it does
3793 * initiate the IO. If this is an empty write it seems plausible
3794 * that the IO could actually be completed before the nowait
3795 * returns. We need to DB_DNODE_EXIT() first in case
3796 * zio_nowait() invalidates the dbuf.
3797 */
3798 DB_DNODE_EXIT(db);
3799 zio_nowait(dr->dr_zio);
3800 }
3801 }
3802
3803 void
3804 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3805 {
3806 dbuf_dirty_record_t *dr;
3807
3808 while ((dr = list_head(list))) {
3809 if (dr->dr_zio != NULL) {
3810 /*
3811 * If we find an already initialized zio then we
3812 * are processing the meta-dnode, and we have finished.
3813 * The dbufs for all dnodes are put back on the list
3814 * during processing, so that we can zio_wait()
3815 * these IOs after initiating all child IOs.
3816 */
3817 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3818 DMU_META_DNODE_OBJECT);
3819 break;
3820 }
3821 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3822 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3823 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3824 }
3825 list_remove(list, dr);
3826 if (dr->dr_dbuf->db_level > 0)
3827 dbuf_sync_indirect(dr, tx);
3828 else
3829 dbuf_sync_leaf(dr, tx);
3830 }
3831 }
3832
3833 /* ARGSUSED */
3834 static void
3835 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3836 {
3837 dmu_buf_impl_t *db = vdb;
3838 dnode_t *dn;
3839 blkptr_t *bp = zio->io_bp;
3840 blkptr_t *bp_orig = &zio->io_bp_orig;
3841 spa_t *spa = zio->io_spa;
3842 int64_t delta;
3843 uint64_t fill = 0;
3844 int i;
3845
3846 ASSERT3P(db->db_blkptr, !=, NULL);
3847 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3848
3849 DB_DNODE_ENTER(db);
3850 dn = DB_DNODE(db);
3851 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3852 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3853 zio->io_prev_space_delta = delta;
3854
3855 if (bp->blk_birth != 0) {
3856 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3857 BP_GET_TYPE(bp) == dn->dn_type) ||
3858 (db->db_blkid == DMU_SPILL_BLKID &&
3859 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3860 BP_IS_EMBEDDED(bp));
3861 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3862 }
3863
3864 mutex_enter(&db->db_mtx);
3865
3866 #ifdef ZFS_DEBUG
3867 if (db->db_blkid == DMU_SPILL_BLKID) {
3868 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3869 ASSERT(!(BP_IS_HOLE(bp)) &&
3870 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3871 }
3872 #endif
3873
3874 if (db->db_level == 0) {
3875 mutex_enter(&dn->dn_mtx);
3876 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3877 db->db_blkid != DMU_SPILL_BLKID) {
3878 ASSERT0(db->db_objset->os_raw_receive);
3879 dn->dn_phys->dn_maxblkid = db->db_blkid;
3880 }
3881 mutex_exit(&dn->dn_mtx);
3882
3883 if (dn->dn_type == DMU_OT_DNODE) {
3884 i = 0;
3885 while (i < db->db.db_size) {
3886 dnode_phys_t *dnp =
3887 (void *)(((char *)db->db.db_data) + i);
3888
3889 i += DNODE_MIN_SIZE;
3890 if (dnp->dn_type != DMU_OT_NONE) {
3891 fill++;
3892 i += dnp->dn_extra_slots *
3893 DNODE_MIN_SIZE;
3894 }
3895 }
3896 } else {
3897 if (BP_IS_HOLE(bp)) {
3898 fill = 0;
3899 } else {
3900 fill = 1;
3901 }
3902 }
3903 } else {
3904 blkptr_t *ibp = db->db.db_data;
3905 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3906 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3907 if (BP_IS_HOLE(ibp))
3908 continue;
3909 fill += BP_GET_FILL(ibp);
3910 }
3911 }
3912 DB_DNODE_EXIT(db);
3913
3914 if (!BP_IS_EMBEDDED(bp))
3915 BP_SET_FILL(bp, fill);
3916
3917 mutex_exit(&db->db_mtx);
3918
3919 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3920 *db->db_blkptr = *bp;
3921 rw_exit(&dn->dn_struct_rwlock);
3922 }
3923
3924 /* ARGSUSED */
3925 /*
3926 * This function gets called just prior to running through the compression
3927 * stage of the zio pipeline. If we're an indirect block comprised of only
3928 * holes, then we want this indirect to be compressed away to a hole. In
3929 * order to do that we must zero out any information about the holes that
3930 * this indirect points to prior to before we try to compress it.
3931 */
3932 static void
3933 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3934 {
3935 dmu_buf_impl_t *db = vdb;
3936 dnode_t *dn;
3937 blkptr_t *bp;
3938 unsigned int epbs, i;
3939
3940 ASSERT3U(db->db_level, >, 0);
3941 DB_DNODE_ENTER(db);
3942 dn = DB_DNODE(db);
3943 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3944 ASSERT3U(epbs, <, 31);
3945
3946 /* Determine if all our children are holes */
3947 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
3948 if (!BP_IS_HOLE(bp))
3949 break;
3950 }
3951
3952 /*
3953 * If all the children are holes, then zero them all out so that
3954 * we may get compressed away.
3955 */
3956 if (i == 1ULL << epbs) {
3957 /*
3958 * We only found holes. Grab the rwlock to prevent
3959 * anybody from reading the blocks we're about to
3960 * zero out.
3961 */
3962 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3963 bzero(db->db.db_data, db->db.db_size);
3964 rw_exit(&dn->dn_struct_rwlock);
3965 }
3966 DB_DNODE_EXIT(db);
3967 }
3968
3969 /*
3970 * The SPA will call this callback several times for each zio - once
3971 * for every physical child i/o (zio->io_phys_children times). This
3972 * allows the DMU to monitor the progress of each logical i/o. For example,
3973 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3974 * block. There may be a long delay before all copies/fragments are completed,
3975 * so this callback allows us to retire dirty space gradually, as the physical
3976 * i/os complete.
3977 */
3978 /* ARGSUSED */
3979 static void
3980 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3981 {
3982 dmu_buf_impl_t *db = arg;
3983 objset_t *os = db->db_objset;
3984 dsl_pool_t *dp = dmu_objset_pool(os);
3985 dbuf_dirty_record_t *dr;
3986 int delta = 0;
3987
3988 dr = db->db_data_pending;
3989 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3990
3991 /*
3992 * The callback will be called io_phys_children times. Retire one
3993 * portion of our dirty space each time we are called. Any rounding
3994 * error will be cleaned up by dsl_pool_sync()'s call to
3995 * dsl_pool_undirty_space().
3996 */
3997 delta = dr->dr_accounted / zio->io_phys_children;
3998 dsl_pool_undirty_space(dp, delta, zio->io_txg);
3999 }
4000
4001 /* ARGSUSED */
4002 static void
4003 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4004 {
4005 dmu_buf_impl_t *db = vdb;
4006 blkptr_t *bp_orig = &zio->io_bp_orig;
4007 blkptr_t *bp = db->db_blkptr;
4008 objset_t *os = db->db_objset;
4009 dmu_tx_t *tx = os->os_synctx;
4010 dbuf_dirty_record_t **drp, *dr;
4011
4012 ASSERT0(zio->io_error);
4013 ASSERT(db->db_blkptr == bp);
4014
4015 /*
4016 * For nopwrites and rewrites we ensure that the bp matches our
4017 * original and bypass all the accounting.
4018 */
4019 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4020 ASSERT(BP_EQUAL(bp, bp_orig));
4021 } else {
4022 dsl_dataset_t *ds = os->os_dsl_dataset;
4023 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4024 dsl_dataset_block_born(ds, bp, tx);
4025 }
4026
4027 mutex_enter(&db->db_mtx);
4028
4029 DBUF_VERIFY(db);
4030
4031 drp = &db->db_last_dirty;
4032 while ((dr = *drp) != db->db_data_pending)
4033 drp = &dr->dr_next;
4034 ASSERT(!list_link_active(&dr->dr_dirty_node));
4035 ASSERT(dr->dr_dbuf == db);
4036 ASSERT(dr->dr_next == NULL);
4037 *drp = dr->dr_next;
4038
4039 #ifdef ZFS_DEBUG
4040 if (db->db_blkid == DMU_SPILL_BLKID) {
4041 dnode_t *dn;
4042
4043 DB_DNODE_ENTER(db);
4044 dn = DB_DNODE(db);
4045 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4046 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4047 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4048 DB_DNODE_EXIT(db);
4049 }
4050 #endif
4051
4052 if (db->db_level == 0) {
4053 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4054 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4055 if (db->db_state != DB_NOFILL) {
4056 if (dr->dt.dl.dr_data != db->db_buf)
4057 arc_buf_destroy(dr->dt.dl.dr_data, db);
4058 }
4059 } else {
4060 dnode_t *dn;
4061
4062 DB_DNODE_ENTER(db);
4063 dn = DB_DNODE(db);
4064 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4065 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4066 if (!BP_IS_HOLE(db->db_blkptr)) {
4067 ASSERTV(int epbs = dn->dn_phys->dn_indblkshift -
4068 SPA_BLKPTRSHIFT);
4069 ASSERT3U(db->db_blkid, <=,
4070 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4071 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4072 db->db.db_size);
4073 }
4074 DB_DNODE_EXIT(db);
4075 mutex_destroy(&dr->dt.di.dr_mtx);
4076 list_destroy(&dr->dt.di.dr_children);
4077 }
4078 kmem_free(dr, sizeof (dbuf_dirty_record_t));
4079
4080 cv_broadcast(&db->db_changed);
4081 ASSERT(db->db_dirtycnt > 0);
4082 db->db_dirtycnt -= 1;
4083 db->db_data_pending = NULL;
4084 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4085 }
4086
4087 static void
4088 dbuf_write_nofill_ready(zio_t *zio)
4089 {
4090 dbuf_write_ready(zio, NULL, zio->io_private);
4091 }
4092
4093 static void
4094 dbuf_write_nofill_done(zio_t *zio)
4095 {
4096 dbuf_write_done(zio, NULL, zio->io_private);
4097 }
4098
4099 static void
4100 dbuf_write_override_ready(zio_t *zio)
4101 {
4102 dbuf_dirty_record_t *dr = zio->io_private;
4103 dmu_buf_impl_t *db = dr->dr_dbuf;
4104
4105 dbuf_write_ready(zio, NULL, db);
4106 }
4107
4108 static void
4109 dbuf_write_override_done(zio_t *zio)
4110 {
4111 dbuf_dirty_record_t *dr = zio->io_private;
4112 dmu_buf_impl_t *db = dr->dr_dbuf;
4113 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4114
4115 mutex_enter(&db->db_mtx);
4116 if (!BP_EQUAL(zio->io_bp, obp)) {
4117 if (!BP_IS_HOLE(obp))
4118 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4119 arc_release(dr->dt.dl.dr_data, db);
4120 }
4121 mutex_exit(&db->db_mtx);
4122
4123 dbuf_write_done(zio, NULL, db);
4124
4125 if (zio->io_abd != NULL)
4126 abd_put(zio->io_abd);
4127 }
4128
4129 typedef struct dbuf_remap_impl_callback_arg {
4130 objset_t *drica_os;
4131 uint64_t drica_blk_birth;
4132 dmu_tx_t *drica_tx;
4133 } dbuf_remap_impl_callback_arg_t;
4134
4135 static void
4136 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4137 void *arg)
4138 {
4139 dbuf_remap_impl_callback_arg_t *drica = arg;
4140 objset_t *os = drica->drica_os;
4141 spa_t *spa = dmu_objset_spa(os);
4142 dmu_tx_t *tx = drica->drica_tx;
4143
4144 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4145
4146 if (os == spa_meta_objset(spa)) {
4147 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4148 } else {
4149 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4150 size, drica->drica_blk_birth, tx);
4151 }
4152 }
4153
4154 static void
4155 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, dmu_tx_t *tx)
4156 {
4157 blkptr_t bp_copy = *bp;
4158 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4159 dbuf_remap_impl_callback_arg_t drica;
4160
4161 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4162
4163 drica.drica_os = dn->dn_objset;
4164 drica.drica_blk_birth = bp->blk_birth;
4165 drica.drica_tx = tx;
4166 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4167 &drica)) {
4168 /*
4169 * The struct_rwlock prevents dbuf_read_impl() from
4170 * dereferencing the BP while we are changing it. To
4171 * avoid lock contention, only grab it when we are actually
4172 * changing the BP.
4173 */
4174 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
4175 *bp = bp_copy;
4176 rw_exit(&dn->dn_struct_rwlock);
4177 }
4178 }
4179
4180 /*
4181 * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting
4182 * to remap a copy of every bp in the dbuf.
4183 */
4184 boolean_t
4185 dbuf_can_remap(const dmu_buf_impl_t *db)
4186 {
4187 spa_t *spa = dmu_objset_spa(db->db_objset);
4188 blkptr_t *bp = db->db.db_data;
4189 boolean_t ret = B_FALSE;
4190
4191 ASSERT3U(db->db_level, >, 0);
4192 ASSERT3S(db->db_state, ==, DB_CACHED);
4193
4194 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4195
4196 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4197 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4198 blkptr_t bp_copy = bp[i];
4199 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4200 ret = B_TRUE;
4201 break;
4202 }
4203 }
4204 spa_config_exit(spa, SCL_VDEV, FTAG);
4205
4206 return (ret);
4207 }
4208
4209 boolean_t
4210 dnode_needs_remap(const dnode_t *dn)
4211 {
4212 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4213 boolean_t ret = B_FALSE;
4214
4215 if (dn->dn_phys->dn_nlevels == 0) {
4216 return (B_FALSE);
4217 }
4218
4219 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4220
4221 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4222 for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) {
4223 blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j];
4224 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4225 ret = B_TRUE;
4226 break;
4227 }
4228 }
4229 spa_config_exit(spa, SCL_VDEV, FTAG);
4230
4231 return (ret);
4232 }
4233
4234 /*
4235 * Remap any existing BP's to concrete vdevs, if possible.
4236 */
4237 static void
4238 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4239 {
4240 spa_t *spa = dmu_objset_spa(db->db_objset);
4241 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4242
4243 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4244 return;
4245
4246 if (db->db_level > 0) {
4247 blkptr_t *bp = db->db.db_data;
4248 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4249 dbuf_remap_impl(dn, &bp[i], tx);
4250 }
4251 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4252 dnode_phys_t *dnp = db->db.db_data;
4253 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4254 DMU_OT_DNODE);
4255 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4256 i += dnp[i].dn_extra_slots + 1) {
4257 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4258 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], tx);
4259 }
4260 }
4261 }
4262 }
4263
4264
4265 /* Issue I/O to commit a dirty buffer to disk. */
4266 static void
4267 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4268 {
4269 dmu_buf_impl_t *db = dr->dr_dbuf;
4270 dnode_t *dn;
4271 objset_t *os;
4272 dmu_buf_impl_t *parent = db->db_parent;
4273 uint64_t txg = tx->tx_txg;
4274 zbookmark_phys_t zb;
4275 zio_prop_t zp;
4276 zio_t *zio;
4277 int wp_flag = 0;
4278
4279 ASSERT(dmu_tx_is_syncing(tx));
4280
4281 DB_DNODE_ENTER(db);
4282 dn = DB_DNODE(db);
4283 os = dn->dn_objset;
4284
4285 if (db->db_state != DB_NOFILL) {
4286 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4287 /*
4288 * Private object buffers are released here rather
4289 * than in dbuf_dirty() since they are only modified
4290 * in the syncing context and we don't want the
4291 * overhead of making multiple copies of the data.
4292 */
4293 if (BP_IS_HOLE(db->db_blkptr)) {
4294 arc_buf_thaw(data);
4295 } else {
4296 dbuf_release_bp(db);
4297 }
4298 dbuf_remap(dn, db, tx);
4299 }
4300 }
4301
4302 if (parent != dn->dn_dbuf) {
4303 /* Our parent is an indirect block. */
4304 /* We have a dirty parent that has been scheduled for write. */
4305 ASSERT(parent && parent->db_data_pending);
4306 /* Our parent's buffer is one level closer to the dnode. */
4307 ASSERT(db->db_level == parent->db_level-1);
4308 /*
4309 * We're about to modify our parent's db_data by modifying
4310 * our block pointer, so the parent must be released.
4311 */
4312 ASSERT(arc_released(parent->db_buf));
4313 zio = parent->db_data_pending->dr_zio;
4314 } else {
4315 /* Our parent is the dnode itself. */
4316 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4317 db->db_blkid != DMU_SPILL_BLKID) ||
4318 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4319 if (db->db_blkid != DMU_SPILL_BLKID)
4320 ASSERT3P(db->db_blkptr, ==,
4321 &dn->dn_phys->dn_blkptr[db->db_blkid]);
4322 zio = dn->dn_zio;
4323 }
4324
4325 ASSERT(db->db_level == 0 || data == db->db_buf);
4326 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
4327 ASSERT(zio);
4328
4329 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
4330 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
4331 db->db.db_object, db->db_level, db->db_blkid);
4332
4333 if (db->db_blkid == DMU_SPILL_BLKID)
4334 wp_flag = WP_SPILL;
4335 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
4336
4337 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
4338 DB_DNODE_EXIT(db);
4339
4340 /*
4341 * We copy the blkptr now (rather than when we instantiate the dirty
4342 * record), because its value can change between open context and
4343 * syncing context. We do not need to hold dn_struct_rwlock to read
4344 * db_blkptr because we are in syncing context.
4345 */
4346 dr->dr_bp_copy = *db->db_blkptr;
4347
4348 if (db->db_level == 0 &&
4349 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
4350 /*
4351 * The BP for this block has been provided by open context
4352 * (by dmu_sync() or dmu_buf_write_embedded()).
4353 */
4354 abd_t *contents = (data != NULL) ?
4355 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
4356
4357 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4358 &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size,
4359 &zp, dbuf_write_override_ready, NULL, NULL,
4360 dbuf_write_override_done,
4361 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
4362 mutex_enter(&db->db_mtx);
4363 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
4364 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
4365 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
4366 mutex_exit(&db->db_mtx);
4367 } else if (db->db_state == DB_NOFILL) {
4368 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
4369 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
4370 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4371 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
4372 dbuf_write_nofill_ready, NULL, NULL,
4373 dbuf_write_nofill_done, db,
4374 ZIO_PRIORITY_ASYNC_WRITE,
4375 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
4376 } else {
4377 ASSERT(arc_released(data));
4378
4379 /*
4380 * For indirect blocks, we want to setup the children
4381 * ready callback so that we can properly handle an indirect
4382 * block that only contains holes.
4383 */
4384 arc_write_done_func_t *children_ready_cb = NULL;
4385 if (db->db_level != 0)
4386 children_ready_cb = dbuf_write_children_ready;
4387
4388 dr->dr_zio = arc_write(zio, os->os_spa, txg,
4389 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
4390 &zp, dbuf_write_ready,
4391 children_ready_cb, dbuf_write_physdone,
4392 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
4393 ZIO_FLAG_MUSTSUCCEED, &zb);
4394 }
4395 }
4396
4397 #if defined(_KERNEL)
4398 EXPORT_SYMBOL(dbuf_find);
4399 EXPORT_SYMBOL(dbuf_is_metadata);
4400 EXPORT_SYMBOL(dbuf_destroy);
4401 EXPORT_SYMBOL(dbuf_loan_arcbuf);
4402 EXPORT_SYMBOL(dbuf_whichblock);
4403 EXPORT_SYMBOL(dbuf_read);
4404 EXPORT_SYMBOL(dbuf_unoverride);
4405 EXPORT_SYMBOL(dbuf_free_range);
4406 EXPORT_SYMBOL(dbuf_new_size);
4407 EXPORT_SYMBOL(dbuf_release_bp);
4408 EXPORT_SYMBOL(dbuf_dirty);
4409 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
4410 EXPORT_SYMBOL(dmu_buf_will_dirty);
4411 EXPORT_SYMBOL(dmu_buf_will_not_fill);
4412 EXPORT_SYMBOL(dmu_buf_will_fill);
4413 EXPORT_SYMBOL(dmu_buf_fill_done);
4414 EXPORT_SYMBOL(dmu_buf_rele);
4415 EXPORT_SYMBOL(dbuf_assign_arcbuf);
4416 EXPORT_SYMBOL(dbuf_prefetch);
4417 EXPORT_SYMBOL(dbuf_hold_impl);
4418 EXPORT_SYMBOL(dbuf_hold);
4419 EXPORT_SYMBOL(dbuf_hold_level);
4420 EXPORT_SYMBOL(dbuf_create_bonus);
4421 EXPORT_SYMBOL(dbuf_spill_set_blksz);
4422 EXPORT_SYMBOL(dbuf_rm_spill);
4423 EXPORT_SYMBOL(dbuf_add_ref);
4424 EXPORT_SYMBOL(dbuf_rele);
4425 EXPORT_SYMBOL(dbuf_rele_and_unlock);
4426 EXPORT_SYMBOL(dbuf_refcount);
4427 EXPORT_SYMBOL(dbuf_sync_list);
4428 EXPORT_SYMBOL(dmu_buf_set_user);
4429 EXPORT_SYMBOL(dmu_buf_set_user_ie);
4430 EXPORT_SYMBOL(dmu_buf_get_user);
4431 EXPORT_SYMBOL(dmu_buf_get_blkptr);
4432
4433 /* BEGIN CSTYLED */
4434 module_param(dbuf_cache_max_bytes, ulong, 0644);
4435 MODULE_PARM_DESC(dbuf_cache_max_bytes,
4436 "Maximum size in bytes of the dbuf cache.");
4437
4438 module_param(dbuf_cache_hiwater_pct, uint, 0644);
4439 MODULE_PARM_DESC(dbuf_cache_hiwater_pct,
4440 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
4441 "directly.");
4442
4443 module_param(dbuf_cache_lowater_pct, uint, 0644);
4444 MODULE_PARM_DESC(dbuf_cache_lowater_pct,
4445 "Percentage below dbuf_cache_max_bytes when the evict thread stops "
4446 "evicting dbufs.");
4447
4448 module_param(dbuf_cache_shift, int, 0644);
4449 MODULE_PARM_DESC(dbuf_cache_shift,
4450 "Set the size of the dbuf cache to a log2 fraction of arc size.");
4451 /* END CSTYLED */
4452 #endif