]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dbuf.c
dbuf: Set dr_data when unoverriding after clone
[mirror_zfs.git] / module / zfs / dbuf.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2019, Klara Inc.
28 * Copyright (c) 2019, Allan Jude
29 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
30 */
31
32 #include <sys/zfs_context.h>
33 #include <sys/arc.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_send.h>
36 #include <sys/dmu_impl.h>
37 #include <sys/dbuf.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/spa.h>
43 #include <sys/zio.h>
44 #include <sys/dmu_zfetch.h>
45 #include <sys/sa.h>
46 #include <sys/sa_impl.h>
47 #include <sys/zfeature.h>
48 #include <sys/blkptr.h>
49 #include <sys/range_tree.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/callb.h>
52 #include <sys/abd.h>
53 #include <sys/brt.h>
54 #include <sys/vdev.h>
55 #include <cityhash.h>
56 #include <sys/spa_impl.h>
57 #include <sys/wmsum.h>
58 #include <sys/vdev_impl.h>
59
60 static kstat_t *dbuf_ksp;
61
62 typedef struct dbuf_stats {
63 /*
64 * Various statistics about the size of the dbuf cache.
65 */
66 kstat_named_t cache_count;
67 kstat_named_t cache_size_bytes;
68 kstat_named_t cache_size_bytes_max;
69 /*
70 * Statistics regarding the bounds on the dbuf cache size.
71 */
72 kstat_named_t cache_target_bytes;
73 kstat_named_t cache_lowater_bytes;
74 kstat_named_t cache_hiwater_bytes;
75 /*
76 * Total number of dbuf cache evictions that have occurred.
77 */
78 kstat_named_t cache_total_evicts;
79 /*
80 * The distribution of dbuf levels in the dbuf cache and
81 * the total size of all dbufs at each level.
82 */
83 kstat_named_t cache_levels[DN_MAX_LEVELS];
84 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
85 /*
86 * Statistics about the dbuf hash table.
87 */
88 kstat_named_t hash_hits;
89 kstat_named_t hash_misses;
90 kstat_named_t hash_collisions;
91 kstat_named_t hash_elements;
92 kstat_named_t hash_elements_max;
93 /*
94 * Number of sublists containing more than one dbuf in the dbuf
95 * hash table. Keep track of the longest hash chain.
96 */
97 kstat_named_t hash_chains;
98 kstat_named_t hash_chain_max;
99 /*
100 * Number of times a dbuf_create() discovers that a dbuf was
101 * already created and in the dbuf hash table.
102 */
103 kstat_named_t hash_insert_race;
104 /*
105 * Number of entries in the hash table dbuf and mutex arrays.
106 */
107 kstat_named_t hash_table_count;
108 kstat_named_t hash_mutex_count;
109 /*
110 * Statistics about the size of the metadata dbuf cache.
111 */
112 kstat_named_t metadata_cache_count;
113 kstat_named_t metadata_cache_size_bytes;
114 kstat_named_t metadata_cache_size_bytes_max;
115 /*
116 * For diagnostic purposes, this is incremented whenever we can't add
117 * something to the metadata cache because it's full, and instead put
118 * the data in the regular dbuf cache.
119 */
120 kstat_named_t metadata_cache_overflow;
121 } dbuf_stats_t;
122
123 dbuf_stats_t dbuf_stats = {
124 { "cache_count", KSTAT_DATA_UINT64 },
125 { "cache_size_bytes", KSTAT_DATA_UINT64 },
126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
127 { "cache_target_bytes", KSTAT_DATA_UINT64 },
128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
130 { "cache_total_evicts", KSTAT_DATA_UINT64 },
131 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
133 { "hash_hits", KSTAT_DATA_UINT64 },
134 { "hash_misses", KSTAT_DATA_UINT64 },
135 { "hash_collisions", KSTAT_DATA_UINT64 },
136 { "hash_elements", KSTAT_DATA_UINT64 },
137 { "hash_elements_max", KSTAT_DATA_UINT64 },
138 { "hash_chains", KSTAT_DATA_UINT64 },
139 { "hash_chain_max", KSTAT_DATA_UINT64 },
140 { "hash_insert_race", KSTAT_DATA_UINT64 },
141 { "hash_table_count", KSTAT_DATA_UINT64 },
142 { "hash_mutex_count", KSTAT_DATA_UINT64 },
143 { "metadata_cache_count", KSTAT_DATA_UINT64 },
144 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
145 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
146 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
147 };
148
149 struct {
150 wmsum_t cache_count;
151 wmsum_t cache_total_evicts;
152 wmsum_t cache_levels[DN_MAX_LEVELS];
153 wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
154 wmsum_t hash_hits;
155 wmsum_t hash_misses;
156 wmsum_t hash_collisions;
157 wmsum_t hash_chains;
158 wmsum_t hash_insert_race;
159 wmsum_t metadata_cache_count;
160 wmsum_t metadata_cache_overflow;
161 } dbuf_sums;
162
163 #define DBUF_STAT_INCR(stat, val) \
164 wmsum_add(&dbuf_sums.stat, val);
165 #define DBUF_STAT_DECR(stat, val) \
166 DBUF_STAT_INCR(stat, -(val));
167 #define DBUF_STAT_BUMP(stat) \
168 DBUF_STAT_INCR(stat, 1);
169 #define DBUF_STAT_BUMPDOWN(stat) \
170 DBUF_STAT_INCR(stat, -1);
171 #define DBUF_STAT_MAX(stat, v) { \
172 uint64_t _m; \
173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
175 continue; \
176 }
177
178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
180 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags);
181
182 /*
183 * Global data structures and functions for the dbuf cache.
184 */
185 static kmem_cache_t *dbuf_kmem_cache;
186 static taskq_t *dbu_evict_taskq;
187
188 static kthread_t *dbuf_cache_evict_thread;
189 static kmutex_t dbuf_evict_lock;
190 static kcondvar_t dbuf_evict_cv;
191 static boolean_t dbuf_evict_thread_exit;
192
193 /*
194 * There are two dbuf caches; each dbuf can only be in one of them at a time.
195 *
196 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
197 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
198 * that represent the metadata that describes filesystems/snapshots/
199 * bookmarks/properties/etc. We only evict from this cache when we export a
200 * pool, to short-circuit as much I/O as possible for all administrative
201 * commands that need the metadata. There is no eviction policy for this
202 * cache, because we try to only include types in it which would occupy a
203 * very small amount of space per object but create a large impact on the
204 * performance of these commands. Instead, after it reaches a maximum size
205 * (which should only happen on very small memory systems with a very large
206 * number of filesystem objects), we stop taking new dbufs into the
207 * metadata cache, instead putting them in the normal dbuf cache.
208 *
209 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
210 * are not currently held but have been recently released. These dbufs
211 * are not eligible for arc eviction until they are aged out of the cache.
212 * Dbufs that are aged out of the cache will be immediately destroyed and
213 * become eligible for arc eviction.
214 *
215 * Dbufs are added to these caches once the last hold is released. If a dbuf is
216 * later accessed and still exists in the dbuf cache, then it will be removed
217 * from the cache and later re-added to the head of the cache.
218 *
219 * If a given dbuf meets the requirements for the metadata cache, it will go
220 * there, otherwise it will be considered for the generic LRU dbuf cache. The
221 * caches and the refcounts tracking their sizes are stored in an array indexed
222 * by those caches' matching enum values (from dbuf_cached_state_t).
223 */
224 typedef struct dbuf_cache {
225 multilist_t cache;
226 zfs_refcount_t size ____cacheline_aligned;
227 } dbuf_cache_t;
228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
229
230 /* Size limits for the caches */
231 static uint64_t dbuf_cache_max_bytes = UINT64_MAX;
232 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX;
233
234 /* Set the default sizes of the caches to log2 fraction of arc size */
235 static uint_t dbuf_cache_shift = 5;
236 static uint_t dbuf_metadata_cache_shift = 6;
237
238 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
239 static uint_t dbuf_mutex_cache_shift = 0;
240
241 static unsigned long dbuf_cache_target_bytes(void);
242 static unsigned long dbuf_metadata_cache_target_bytes(void);
243
244 /*
245 * The LRU dbuf cache uses a three-stage eviction policy:
246 * - A low water marker designates when the dbuf eviction thread
247 * should stop evicting from the dbuf cache.
248 * - When we reach the maximum size (aka mid water mark), we
249 * signal the eviction thread to run.
250 * - The high water mark indicates when the eviction thread
251 * is unable to keep up with the incoming load and eviction must
252 * happen in the context of the calling thread.
253 *
254 * The dbuf cache:
255 * (max size)
256 * low water mid water hi water
257 * +----------------------------------------+----------+----------+
258 * | | | |
259 * | | | |
260 * | | | |
261 * | | | |
262 * +----------------------------------------+----------+----------+
263 * stop signal evict
264 * evicting eviction directly
265 * thread
266 *
267 * The high and low water marks indicate the operating range for the eviction
268 * thread. The low water mark is, by default, 90% of the total size of the
269 * cache and the high water mark is at 110% (both of these percentages can be
270 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
271 * respectively). The eviction thread will try to ensure that the cache remains
272 * within this range by waking up every second and checking if the cache is
273 * above the low water mark. The thread can also be woken up by callers adding
274 * elements into the cache if the cache is larger than the mid water (i.e max
275 * cache size). Once the eviction thread is woken up and eviction is required,
276 * it will continue evicting buffers until it's able to reduce the cache size
277 * to the low water mark. If the cache size continues to grow and hits the high
278 * water mark, then callers adding elements to the cache will begin to evict
279 * directly from the cache until the cache is no longer above the high water
280 * mark.
281 */
282
283 /*
284 * The percentage above and below the maximum cache size.
285 */
286 static uint_t dbuf_cache_hiwater_pct = 10;
287 static uint_t dbuf_cache_lowater_pct = 10;
288
289 static int
290 dbuf_cons(void *vdb, void *unused, int kmflag)
291 {
292 (void) unused, (void) kmflag;
293 dmu_buf_impl_t *db = vdb;
294 memset(db, 0, sizeof (dmu_buf_impl_t));
295
296 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
297 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL);
298 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
299 multilist_link_init(&db->db_cache_link);
300 zfs_refcount_create(&db->db_holds);
301
302 return (0);
303 }
304
305 static void
306 dbuf_dest(void *vdb, void *unused)
307 {
308 (void) unused;
309 dmu_buf_impl_t *db = vdb;
310 mutex_destroy(&db->db_mtx);
311 rw_destroy(&db->db_rwlock);
312 cv_destroy(&db->db_changed);
313 ASSERT(!multilist_link_active(&db->db_cache_link));
314 zfs_refcount_destroy(&db->db_holds);
315 }
316
317 /*
318 * dbuf hash table routines
319 */
320 static dbuf_hash_table_t dbuf_hash_table;
321
322 /*
323 * We use Cityhash for this. It's fast, and has good hash properties without
324 * requiring any large static buffers.
325 */
326 static uint64_t
327 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
328 {
329 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
330 }
331
332 #define DTRACE_SET_STATE(db, why) \
333 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \
334 const char *, why)
335
336 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
337 ((dbuf)->db.db_object == (obj) && \
338 (dbuf)->db_objset == (os) && \
339 (dbuf)->db_level == (level) && \
340 (dbuf)->db_blkid == (blkid))
341
342 dmu_buf_impl_t *
343 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid,
344 uint64_t *hash_out)
345 {
346 dbuf_hash_table_t *h = &dbuf_hash_table;
347 uint64_t hv;
348 uint64_t idx;
349 dmu_buf_impl_t *db;
350
351 hv = dbuf_hash(os, obj, level, blkid);
352 idx = hv & h->hash_table_mask;
353
354 mutex_enter(DBUF_HASH_MUTEX(h, idx));
355 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
356 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
357 mutex_enter(&db->db_mtx);
358 if (db->db_state != DB_EVICTING) {
359 mutex_exit(DBUF_HASH_MUTEX(h, idx));
360 return (db);
361 }
362 mutex_exit(&db->db_mtx);
363 }
364 }
365 mutex_exit(DBUF_HASH_MUTEX(h, idx));
366 if (hash_out != NULL)
367 *hash_out = hv;
368 return (NULL);
369 }
370
371 static dmu_buf_impl_t *
372 dbuf_find_bonus(objset_t *os, uint64_t object)
373 {
374 dnode_t *dn;
375 dmu_buf_impl_t *db = NULL;
376
377 if (dnode_hold(os, object, FTAG, &dn) == 0) {
378 rw_enter(&dn->dn_struct_rwlock, RW_READER);
379 if (dn->dn_bonus != NULL) {
380 db = dn->dn_bonus;
381 mutex_enter(&db->db_mtx);
382 }
383 rw_exit(&dn->dn_struct_rwlock);
384 dnode_rele(dn, FTAG);
385 }
386 return (db);
387 }
388
389 /*
390 * Insert an entry into the hash table. If there is already an element
391 * equal to elem in the hash table, then the already existing element
392 * will be returned and the new element will not be inserted.
393 * Otherwise returns NULL.
394 */
395 static dmu_buf_impl_t *
396 dbuf_hash_insert(dmu_buf_impl_t *db)
397 {
398 dbuf_hash_table_t *h = &dbuf_hash_table;
399 objset_t *os = db->db_objset;
400 uint64_t obj = db->db.db_object;
401 int level = db->db_level;
402 uint64_t blkid, idx;
403 dmu_buf_impl_t *dbf;
404 uint32_t i;
405
406 blkid = db->db_blkid;
407 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash);
408 idx = db->db_hash & h->hash_table_mask;
409
410 mutex_enter(DBUF_HASH_MUTEX(h, idx));
411 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
412 dbf = dbf->db_hash_next, i++) {
413 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
414 mutex_enter(&dbf->db_mtx);
415 if (dbf->db_state != DB_EVICTING) {
416 mutex_exit(DBUF_HASH_MUTEX(h, idx));
417 return (dbf);
418 }
419 mutex_exit(&dbf->db_mtx);
420 }
421 }
422
423 if (i > 0) {
424 DBUF_STAT_BUMP(hash_collisions);
425 if (i == 1)
426 DBUF_STAT_BUMP(hash_chains);
427
428 DBUF_STAT_MAX(hash_chain_max, i);
429 }
430
431 mutex_enter(&db->db_mtx);
432 db->db_hash_next = h->hash_table[idx];
433 h->hash_table[idx] = db;
434 mutex_exit(DBUF_HASH_MUTEX(h, idx));
435 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64);
436 DBUF_STAT_MAX(hash_elements_max, he);
437
438 return (NULL);
439 }
440
441 /*
442 * This returns whether this dbuf should be stored in the metadata cache, which
443 * is based on whether it's from one of the dnode types that store data related
444 * to traversing dataset hierarchies.
445 */
446 static boolean_t
447 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
448 {
449 DB_DNODE_ENTER(db);
450 dmu_object_type_t type = DB_DNODE(db)->dn_type;
451 DB_DNODE_EXIT(db);
452
453 /* Check if this dbuf is one of the types we care about */
454 if (DMU_OT_IS_METADATA_CACHED(type)) {
455 /* If we hit this, then we set something up wrong in dmu_ot */
456 ASSERT(DMU_OT_IS_METADATA(type));
457
458 /*
459 * Sanity check for small-memory systems: don't allocate too
460 * much memory for this purpose.
461 */
462 if (zfs_refcount_count(
463 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
464 dbuf_metadata_cache_target_bytes()) {
465 DBUF_STAT_BUMP(metadata_cache_overflow);
466 return (B_FALSE);
467 }
468
469 return (B_TRUE);
470 }
471
472 return (B_FALSE);
473 }
474
475 /*
476 * Remove an entry from the hash table. It must be in the EVICTING state.
477 */
478 static void
479 dbuf_hash_remove(dmu_buf_impl_t *db)
480 {
481 dbuf_hash_table_t *h = &dbuf_hash_table;
482 uint64_t idx;
483 dmu_buf_impl_t *dbf, **dbp;
484
485 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level,
486 db->db_blkid), ==, db->db_hash);
487 idx = db->db_hash & h->hash_table_mask;
488
489 /*
490 * We mustn't hold db_mtx to maintain lock ordering:
491 * DBUF_HASH_MUTEX > db_mtx.
492 */
493 ASSERT(zfs_refcount_is_zero(&db->db_holds));
494 ASSERT(db->db_state == DB_EVICTING);
495 ASSERT(!MUTEX_HELD(&db->db_mtx));
496
497 mutex_enter(DBUF_HASH_MUTEX(h, idx));
498 dbp = &h->hash_table[idx];
499 while ((dbf = *dbp) != db) {
500 dbp = &dbf->db_hash_next;
501 ASSERT(dbf != NULL);
502 }
503 *dbp = db->db_hash_next;
504 db->db_hash_next = NULL;
505 if (h->hash_table[idx] &&
506 h->hash_table[idx]->db_hash_next == NULL)
507 DBUF_STAT_BUMPDOWN(hash_chains);
508 mutex_exit(DBUF_HASH_MUTEX(h, idx));
509 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64);
510 }
511
512 typedef enum {
513 DBVU_EVICTING,
514 DBVU_NOT_EVICTING
515 } dbvu_verify_type_t;
516
517 static void
518 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
519 {
520 #ifdef ZFS_DEBUG
521 int64_t holds;
522
523 if (db->db_user == NULL)
524 return;
525
526 /* Only data blocks support the attachment of user data. */
527 ASSERT(db->db_level == 0);
528
529 /* Clients must resolve a dbuf before attaching user data. */
530 ASSERT(db->db.db_data != NULL);
531 ASSERT3U(db->db_state, ==, DB_CACHED);
532
533 holds = zfs_refcount_count(&db->db_holds);
534 if (verify_type == DBVU_EVICTING) {
535 /*
536 * Immediate eviction occurs when holds == dirtycnt.
537 * For normal eviction buffers, holds is zero on
538 * eviction, except when dbuf_fix_old_data() calls
539 * dbuf_clear_data(). However, the hold count can grow
540 * during eviction even though db_mtx is held (see
541 * dmu_bonus_hold() for an example), so we can only
542 * test the generic invariant that holds >= dirtycnt.
543 */
544 ASSERT3U(holds, >=, db->db_dirtycnt);
545 } else {
546 if (db->db_user_immediate_evict == TRUE)
547 ASSERT3U(holds, >=, db->db_dirtycnt);
548 else
549 ASSERT3U(holds, >, 0);
550 }
551 #endif
552 }
553
554 static void
555 dbuf_evict_user(dmu_buf_impl_t *db)
556 {
557 dmu_buf_user_t *dbu = db->db_user;
558
559 ASSERT(MUTEX_HELD(&db->db_mtx));
560
561 if (dbu == NULL)
562 return;
563
564 dbuf_verify_user(db, DBVU_EVICTING);
565 db->db_user = NULL;
566
567 #ifdef ZFS_DEBUG
568 if (dbu->dbu_clear_on_evict_dbufp != NULL)
569 *dbu->dbu_clear_on_evict_dbufp = NULL;
570 #endif
571
572 if (db->db_caching_status != DB_NO_CACHE) {
573 /*
574 * This is a cached dbuf, so the size of the user data is
575 * included in its cached amount. We adjust it here because the
576 * user data has already been detached from the dbuf, and the
577 * sync functions are not supposed to touch it (the dbuf might
578 * not exist anymore by the time the sync functions run.
579 */
580 uint64_t size = dbu->dbu_size;
581 (void) zfs_refcount_remove_many(
582 &dbuf_caches[db->db_caching_status].size, size, db);
583 if (db->db_caching_status == DB_DBUF_CACHE)
584 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
585 }
586
587 /*
588 * There are two eviction callbacks - one that we call synchronously
589 * and one that we invoke via a taskq. The async one is useful for
590 * avoiding lock order reversals and limiting stack depth.
591 *
592 * Note that if we have a sync callback but no async callback,
593 * it's likely that the sync callback will free the structure
594 * containing the dbu. In that case we need to take care to not
595 * dereference dbu after calling the sync evict func.
596 */
597 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
598
599 if (dbu->dbu_evict_func_sync != NULL)
600 dbu->dbu_evict_func_sync(dbu);
601
602 if (has_async) {
603 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
604 dbu, 0, &dbu->dbu_tqent);
605 }
606 }
607
608 boolean_t
609 dbuf_is_metadata(dmu_buf_impl_t *db)
610 {
611 /*
612 * Consider indirect blocks and spill blocks to be meta data.
613 */
614 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
615 return (B_TRUE);
616 } else {
617 boolean_t is_metadata;
618
619 DB_DNODE_ENTER(db);
620 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
621 DB_DNODE_EXIT(db);
622
623 return (is_metadata);
624 }
625 }
626
627 /*
628 * We want to exclude buffers that are on a special allocation class from
629 * L2ARC.
630 */
631 boolean_t
632 dbuf_is_l2cacheable(dmu_buf_impl_t *db)
633 {
634 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL ||
635 (db->db_objset->os_secondary_cache ==
636 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) {
637 if (l2arc_exclude_special == 0)
638 return (B_TRUE);
639
640 blkptr_t *bp = db->db_blkptr;
641 if (bp == NULL || BP_IS_HOLE(bp))
642 return (B_FALSE);
643 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
644 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
645 vdev_t *vd = NULL;
646
647 if (vdev < rvd->vdev_children)
648 vd = rvd->vdev_child[vdev];
649
650 if (vd == NULL)
651 return (B_TRUE);
652
653 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
654 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
655 return (B_TRUE);
656 }
657 return (B_FALSE);
658 }
659
660 static inline boolean_t
661 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
662 {
663 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL ||
664 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA &&
665 (level > 0 ||
666 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) {
667 if (l2arc_exclude_special == 0)
668 return (B_TRUE);
669
670 if (bp == NULL || BP_IS_HOLE(bp))
671 return (B_FALSE);
672 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
673 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
674 vdev_t *vd = NULL;
675
676 if (vdev < rvd->vdev_children)
677 vd = rvd->vdev_child[vdev];
678
679 if (vd == NULL)
680 return (B_TRUE);
681
682 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
683 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
684 return (B_TRUE);
685 }
686 return (B_FALSE);
687 }
688
689
690 /*
691 * This function *must* return indices evenly distributed between all
692 * sublists of the multilist. This is needed due to how the dbuf eviction
693 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
694 * distributed between all sublists and uses this assumption when
695 * deciding which sublist to evict from and how much to evict from it.
696 */
697 static unsigned int
698 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
699 {
700 dmu_buf_impl_t *db = obj;
701
702 /*
703 * The assumption here, is the hash value for a given
704 * dmu_buf_impl_t will remain constant throughout it's lifetime
705 * (i.e. it's objset, object, level and blkid fields don't change).
706 * Thus, we don't need to store the dbuf's sublist index
707 * on insertion, as this index can be recalculated on removal.
708 *
709 * Also, the low order bits of the hash value are thought to be
710 * distributed evenly. Otherwise, in the case that the multilist
711 * has a power of two number of sublists, each sublists' usage
712 * would not be evenly distributed. In this context full 64bit
713 * division would be a waste of time, so limit it to 32 bits.
714 */
715 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
716 db->db_level, db->db_blkid) %
717 multilist_get_num_sublists(ml));
718 }
719
720 /*
721 * The target size of the dbuf cache can grow with the ARC target,
722 * unless limited by the tunable dbuf_cache_max_bytes.
723 */
724 static inline unsigned long
725 dbuf_cache_target_bytes(void)
726 {
727 return (MIN(dbuf_cache_max_bytes,
728 arc_target_bytes() >> dbuf_cache_shift));
729 }
730
731 /*
732 * The target size of the dbuf metadata cache can grow with the ARC target,
733 * unless limited by the tunable dbuf_metadata_cache_max_bytes.
734 */
735 static inline unsigned long
736 dbuf_metadata_cache_target_bytes(void)
737 {
738 return (MIN(dbuf_metadata_cache_max_bytes,
739 arc_target_bytes() >> dbuf_metadata_cache_shift));
740 }
741
742 static inline uint64_t
743 dbuf_cache_hiwater_bytes(void)
744 {
745 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
746 return (dbuf_cache_target +
747 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
748 }
749
750 static inline uint64_t
751 dbuf_cache_lowater_bytes(void)
752 {
753 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
754 return (dbuf_cache_target -
755 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
756 }
757
758 static inline boolean_t
759 dbuf_cache_above_lowater(void)
760 {
761 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
762 dbuf_cache_lowater_bytes());
763 }
764
765 /*
766 * Evict the oldest eligible dbuf from the dbuf cache.
767 */
768 static void
769 dbuf_evict_one(void)
770 {
771 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
772 multilist_sublist_t *mls = multilist_sublist_lock(
773 &dbuf_caches[DB_DBUF_CACHE].cache, idx);
774
775 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
776
777 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
778 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
779 db = multilist_sublist_prev(mls, db);
780 }
781
782 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
783 multilist_sublist_t *, mls);
784
785 if (db != NULL) {
786 multilist_sublist_remove(mls, db);
787 multilist_sublist_unlock(mls);
788 uint64_t size = db->db.db_size + dmu_buf_user_size(&db->db);
789 (void) zfs_refcount_remove_many(
790 &dbuf_caches[DB_DBUF_CACHE].size, size, db);
791 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
792 DBUF_STAT_BUMPDOWN(cache_count);
793 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
794 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
795 db->db_caching_status = DB_NO_CACHE;
796 dbuf_destroy(db);
797 DBUF_STAT_BUMP(cache_total_evicts);
798 } else {
799 multilist_sublist_unlock(mls);
800 }
801 }
802
803 /*
804 * The dbuf evict thread is responsible for aging out dbufs from the
805 * cache. Once the cache has reached it's maximum size, dbufs are removed
806 * and destroyed. The eviction thread will continue running until the size
807 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
808 * out of the cache it is destroyed and becomes eligible for arc eviction.
809 */
810 static __attribute__((noreturn)) void
811 dbuf_evict_thread(void *unused)
812 {
813 (void) unused;
814 callb_cpr_t cpr;
815
816 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
817
818 mutex_enter(&dbuf_evict_lock);
819 while (!dbuf_evict_thread_exit) {
820 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
821 CALLB_CPR_SAFE_BEGIN(&cpr);
822 (void) cv_timedwait_idle_hires(&dbuf_evict_cv,
823 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
824 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
825 }
826 mutex_exit(&dbuf_evict_lock);
827
828 /*
829 * Keep evicting as long as we're above the low water mark
830 * for the cache. We do this without holding the locks to
831 * minimize lock contention.
832 */
833 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
834 dbuf_evict_one();
835 }
836
837 mutex_enter(&dbuf_evict_lock);
838 }
839
840 dbuf_evict_thread_exit = B_FALSE;
841 cv_broadcast(&dbuf_evict_cv);
842 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
843 thread_exit();
844 }
845
846 /*
847 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
848 * If the dbuf cache is at its high water mark, then evict a dbuf from the
849 * dbuf cache using the caller's context.
850 */
851 static void
852 dbuf_evict_notify(uint64_t size)
853 {
854 /*
855 * We check if we should evict without holding the dbuf_evict_lock,
856 * because it's OK to occasionally make the wrong decision here,
857 * and grabbing the lock results in massive lock contention.
858 */
859 if (size > dbuf_cache_target_bytes()) {
860 if (size > dbuf_cache_hiwater_bytes())
861 dbuf_evict_one();
862 cv_signal(&dbuf_evict_cv);
863 }
864 }
865
866 static int
867 dbuf_kstat_update(kstat_t *ksp, int rw)
868 {
869 dbuf_stats_t *ds = ksp->ks_data;
870 dbuf_hash_table_t *h = &dbuf_hash_table;
871
872 if (rw == KSTAT_WRITE)
873 return (SET_ERROR(EACCES));
874
875 ds->cache_count.value.ui64 =
876 wmsum_value(&dbuf_sums.cache_count);
877 ds->cache_size_bytes.value.ui64 =
878 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
879 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
880 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
881 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
882 ds->cache_total_evicts.value.ui64 =
883 wmsum_value(&dbuf_sums.cache_total_evicts);
884 for (int i = 0; i < DN_MAX_LEVELS; i++) {
885 ds->cache_levels[i].value.ui64 =
886 wmsum_value(&dbuf_sums.cache_levels[i]);
887 ds->cache_levels_bytes[i].value.ui64 =
888 wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
889 }
890 ds->hash_hits.value.ui64 =
891 wmsum_value(&dbuf_sums.hash_hits);
892 ds->hash_misses.value.ui64 =
893 wmsum_value(&dbuf_sums.hash_misses);
894 ds->hash_collisions.value.ui64 =
895 wmsum_value(&dbuf_sums.hash_collisions);
896 ds->hash_chains.value.ui64 =
897 wmsum_value(&dbuf_sums.hash_chains);
898 ds->hash_insert_race.value.ui64 =
899 wmsum_value(&dbuf_sums.hash_insert_race);
900 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
901 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
902 ds->metadata_cache_count.value.ui64 =
903 wmsum_value(&dbuf_sums.metadata_cache_count);
904 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
905 &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
906 ds->metadata_cache_overflow.value.ui64 =
907 wmsum_value(&dbuf_sums.metadata_cache_overflow);
908 return (0);
909 }
910
911 void
912 dbuf_init(void)
913 {
914 uint64_t hmsize, hsize = 1ULL << 16;
915 dbuf_hash_table_t *h = &dbuf_hash_table;
916
917 /*
918 * The hash table is big enough to fill one eighth of physical memory
919 * with an average block size of zfs_arc_average_blocksize (default 8K).
920 * By default, the table will take up
921 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
922 */
923 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
924 hsize <<= 1;
925
926 h->hash_table = NULL;
927 while (h->hash_table == NULL) {
928 h->hash_table_mask = hsize - 1;
929
930 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
931 if (h->hash_table == NULL)
932 hsize >>= 1;
933
934 ASSERT3U(hsize, >=, 1ULL << 10);
935 }
936
937 /*
938 * The hash table buckets are protected by an array of mutexes where
939 * each mutex is reponsible for protecting 128 buckets. A minimum
940 * array size of 8192 is targeted to avoid contention.
941 */
942 if (dbuf_mutex_cache_shift == 0)
943 hmsize = MAX(hsize >> 7, 1ULL << 13);
944 else
945 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);
946
947 h->hash_mutexes = NULL;
948 while (h->hash_mutexes == NULL) {
949 h->hash_mutex_mask = hmsize - 1;
950
951 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
952 KM_SLEEP);
953 if (h->hash_mutexes == NULL)
954 hmsize >>= 1;
955 }
956
957 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
958 sizeof (dmu_buf_impl_t),
959 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
960
961 for (int i = 0; i < hmsize; i++)
962 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
963
964 dbuf_stats_init(h);
965
966 /*
967 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
968 * configuration is not required.
969 */
970 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
971
972 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
973 multilist_create(&dbuf_caches[dcs].cache,
974 sizeof (dmu_buf_impl_t),
975 offsetof(dmu_buf_impl_t, db_cache_link),
976 dbuf_cache_multilist_index_func);
977 zfs_refcount_create(&dbuf_caches[dcs].size);
978 }
979
980 dbuf_evict_thread_exit = B_FALSE;
981 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
982 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
983 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
984 NULL, 0, &p0, TS_RUN, minclsyspri);
985
986 wmsum_init(&dbuf_sums.cache_count, 0);
987 wmsum_init(&dbuf_sums.cache_total_evicts, 0);
988 for (int i = 0; i < DN_MAX_LEVELS; i++) {
989 wmsum_init(&dbuf_sums.cache_levels[i], 0);
990 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
991 }
992 wmsum_init(&dbuf_sums.hash_hits, 0);
993 wmsum_init(&dbuf_sums.hash_misses, 0);
994 wmsum_init(&dbuf_sums.hash_collisions, 0);
995 wmsum_init(&dbuf_sums.hash_chains, 0);
996 wmsum_init(&dbuf_sums.hash_insert_race, 0);
997 wmsum_init(&dbuf_sums.metadata_cache_count, 0);
998 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
999
1000 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
1001 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
1002 KSTAT_FLAG_VIRTUAL);
1003 if (dbuf_ksp != NULL) {
1004 for (int i = 0; i < DN_MAX_LEVELS; i++) {
1005 snprintf(dbuf_stats.cache_levels[i].name,
1006 KSTAT_STRLEN, "cache_level_%d", i);
1007 dbuf_stats.cache_levels[i].data_type =
1008 KSTAT_DATA_UINT64;
1009 snprintf(dbuf_stats.cache_levels_bytes[i].name,
1010 KSTAT_STRLEN, "cache_level_%d_bytes", i);
1011 dbuf_stats.cache_levels_bytes[i].data_type =
1012 KSTAT_DATA_UINT64;
1013 }
1014 dbuf_ksp->ks_data = &dbuf_stats;
1015 dbuf_ksp->ks_update = dbuf_kstat_update;
1016 kstat_install(dbuf_ksp);
1017 }
1018 }
1019
1020 void
1021 dbuf_fini(void)
1022 {
1023 dbuf_hash_table_t *h = &dbuf_hash_table;
1024
1025 dbuf_stats_destroy();
1026
1027 for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
1028 mutex_destroy(&h->hash_mutexes[i]);
1029
1030 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
1031 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
1032 sizeof (kmutex_t));
1033
1034 kmem_cache_destroy(dbuf_kmem_cache);
1035 taskq_destroy(dbu_evict_taskq);
1036
1037 mutex_enter(&dbuf_evict_lock);
1038 dbuf_evict_thread_exit = B_TRUE;
1039 while (dbuf_evict_thread_exit) {
1040 cv_signal(&dbuf_evict_cv);
1041 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1042 }
1043 mutex_exit(&dbuf_evict_lock);
1044
1045 mutex_destroy(&dbuf_evict_lock);
1046 cv_destroy(&dbuf_evict_cv);
1047
1048 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1049 zfs_refcount_destroy(&dbuf_caches[dcs].size);
1050 multilist_destroy(&dbuf_caches[dcs].cache);
1051 }
1052
1053 if (dbuf_ksp != NULL) {
1054 kstat_delete(dbuf_ksp);
1055 dbuf_ksp = NULL;
1056 }
1057
1058 wmsum_fini(&dbuf_sums.cache_count);
1059 wmsum_fini(&dbuf_sums.cache_total_evicts);
1060 for (int i = 0; i < DN_MAX_LEVELS; i++) {
1061 wmsum_fini(&dbuf_sums.cache_levels[i]);
1062 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1063 }
1064 wmsum_fini(&dbuf_sums.hash_hits);
1065 wmsum_fini(&dbuf_sums.hash_misses);
1066 wmsum_fini(&dbuf_sums.hash_collisions);
1067 wmsum_fini(&dbuf_sums.hash_chains);
1068 wmsum_fini(&dbuf_sums.hash_insert_race);
1069 wmsum_fini(&dbuf_sums.metadata_cache_count);
1070 wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1071 }
1072
1073 /*
1074 * Other stuff.
1075 */
1076
1077 #ifdef ZFS_DEBUG
1078 static void
1079 dbuf_verify(dmu_buf_impl_t *db)
1080 {
1081 dnode_t *dn;
1082 dbuf_dirty_record_t *dr;
1083 uint32_t txg_prev;
1084
1085 ASSERT(MUTEX_HELD(&db->db_mtx));
1086
1087 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1088 return;
1089
1090 ASSERT(db->db_objset != NULL);
1091 DB_DNODE_ENTER(db);
1092 dn = DB_DNODE(db);
1093 if (dn == NULL) {
1094 ASSERT(db->db_parent == NULL);
1095 ASSERT(db->db_blkptr == NULL);
1096 } else {
1097 ASSERT3U(db->db.db_object, ==, dn->dn_object);
1098 ASSERT3P(db->db_objset, ==, dn->dn_objset);
1099 ASSERT3U(db->db_level, <, dn->dn_nlevels);
1100 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1101 db->db_blkid == DMU_SPILL_BLKID ||
1102 !avl_is_empty(&dn->dn_dbufs));
1103 }
1104 if (db->db_blkid == DMU_BONUS_BLKID) {
1105 ASSERT(dn != NULL);
1106 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1107 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1108 } else if (db->db_blkid == DMU_SPILL_BLKID) {
1109 ASSERT(dn != NULL);
1110 ASSERT0(db->db.db_offset);
1111 } else {
1112 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1113 }
1114
1115 if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1116 ASSERT(dr->dr_dbuf == db);
1117 txg_prev = dr->dr_txg;
1118 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1119 dr = list_next(&db->db_dirty_records, dr)) {
1120 ASSERT(dr->dr_dbuf == db);
1121 ASSERT(txg_prev > dr->dr_txg);
1122 txg_prev = dr->dr_txg;
1123 }
1124 }
1125
1126 /*
1127 * We can't assert that db_size matches dn_datablksz because it
1128 * can be momentarily different when another thread is doing
1129 * dnode_set_blksz().
1130 */
1131 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1132 dr = db->db_data_pending;
1133 /*
1134 * It should only be modified in syncing context, so
1135 * make sure we only have one copy of the data.
1136 */
1137 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1138 }
1139
1140 /* verify db->db_blkptr */
1141 if (db->db_blkptr) {
1142 if (db->db_parent == dn->dn_dbuf) {
1143 /* db is pointed to by the dnode */
1144 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1145 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1146 ASSERT(db->db_parent == NULL);
1147 else
1148 ASSERT(db->db_parent != NULL);
1149 if (db->db_blkid != DMU_SPILL_BLKID)
1150 ASSERT3P(db->db_blkptr, ==,
1151 &dn->dn_phys->dn_blkptr[db->db_blkid]);
1152 } else {
1153 /* db is pointed to by an indirect block */
1154 int epb __maybe_unused = db->db_parent->db.db_size >>
1155 SPA_BLKPTRSHIFT;
1156 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1157 ASSERT3U(db->db_parent->db.db_object, ==,
1158 db->db.db_object);
1159 /*
1160 * dnode_grow_indblksz() can make this fail if we don't
1161 * have the parent's rwlock. XXX indblksz no longer
1162 * grows. safe to do this now?
1163 */
1164 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
1165 ASSERT3P(db->db_blkptr, ==,
1166 ((blkptr_t *)db->db_parent->db.db_data +
1167 db->db_blkid % epb));
1168 }
1169 }
1170 }
1171 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1172 (db->db_buf == NULL || db->db_buf->b_data) &&
1173 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1174 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) {
1175 /*
1176 * If the blkptr isn't set but they have nonzero data,
1177 * it had better be dirty, otherwise we'll lose that
1178 * data when we evict this buffer.
1179 *
1180 * There is an exception to this rule for indirect blocks; in
1181 * this case, if the indirect block is a hole, we fill in a few
1182 * fields on each of the child blocks (importantly, birth time)
1183 * to prevent hole birth times from being lost when you
1184 * partially fill in a hole.
1185 */
1186 if (db->db_dirtycnt == 0) {
1187 if (db->db_level == 0) {
1188 uint64_t *buf = db->db.db_data;
1189 int i;
1190
1191 for (i = 0; i < db->db.db_size >> 3; i++) {
1192 ASSERT(buf[i] == 0);
1193 }
1194 } else {
1195 blkptr_t *bps = db->db.db_data;
1196 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1197 db->db.db_size);
1198 /*
1199 * We want to verify that all the blkptrs in the
1200 * indirect block are holes, but we may have
1201 * automatically set up a few fields for them.
1202 * We iterate through each blkptr and verify
1203 * they only have those fields set.
1204 */
1205 for (int i = 0;
1206 i < db->db.db_size / sizeof (blkptr_t);
1207 i++) {
1208 blkptr_t *bp = &bps[i];
1209 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1210 &bp->blk_cksum));
1211 ASSERT(
1212 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1213 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1214 DVA_IS_EMPTY(&bp->blk_dva[2]));
1215 ASSERT0(bp->blk_fill);
1216 ASSERT0(bp->blk_pad[0]);
1217 ASSERT0(bp->blk_pad[1]);
1218 ASSERT(!BP_IS_EMBEDDED(bp));
1219 ASSERT(BP_IS_HOLE(bp));
1220 ASSERT0(bp->blk_phys_birth);
1221 }
1222 }
1223 }
1224 }
1225 DB_DNODE_EXIT(db);
1226 }
1227 #endif
1228
1229 static void
1230 dbuf_clear_data(dmu_buf_impl_t *db)
1231 {
1232 ASSERT(MUTEX_HELD(&db->db_mtx));
1233 dbuf_evict_user(db);
1234 ASSERT3P(db->db_buf, ==, NULL);
1235 db->db.db_data = NULL;
1236 if (db->db_state != DB_NOFILL) {
1237 db->db_state = DB_UNCACHED;
1238 DTRACE_SET_STATE(db, "clear data");
1239 }
1240 }
1241
1242 static void
1243 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1244 {
1245 ASSERT(MUTEX_HELD(&db->db_mtx));
1246 ASSERT(buf != NULL);
1247
1248 db->db_buf = buf;
1249 ASSERT(buf->b_data != NULL);
1250 db->db.db_data = buf->b_data;
1251 }
1252
1253 static arc_buf_t *
1254 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1255 {
1256 spa_t *spa = db->db_objset->os_spa;
1257
1258 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1259 }
1260
1261 /*
1262 * Loan out an arc_buf for read. Return the loaned arc_buf.
1263 */
1264 arc_buf_t *
1265 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1266 {
1267 arc_buf_t *abuf;
1268
1269 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1270 mutex_enter(&db->db_mtx);
1271 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1272 int blksz = db->db.db_size;
1273 spa_t *spa = db->db_objset->os_spa;
1274
1275 mutex_exit(&db->db_mtx);
1276 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1277 memcpy(abuf->b_data, db->db.db_data, blksz);
1278 } else {
1279 abuf = db->db_buf;
1280 arc_loan_inuse_buf(abuf, db);
1281 db->db_buf = NULL;
1282 dbuf_clear_data(db);
1283 mutex_exit(&db->db_mtx);
1284 }
1285 return (abuf);
1286 }
1287
1288 /*
1289 * Calculate which level n block references the data at the level 0 offset
1290 * provided.
1291 */
1292 uint64_t
1293 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1294 {
1295 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1296 /*
1297 * The level n blkid is equal to the level 0 blkid divided by
1298 * the number of level 0s in a level n block.
1299 *
1300 * The level 0 blkid is offset >> datablkshift =
1301 * offset / 2^datablkshift.
1302 *
1303 * The number of level 0s in a level n is the number of block
1304 * pointers in an indirect block, raised to the power of level.
1305 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1306 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1307 *
1308 * Thus, the level n blkid is: offset /
1309 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1310 * = offset / 2^(datablkshift + level *
1311 * (indblkshift - SPA_BLKPTRSHIFT))
1312 * = offset >> (datablkshift + level *
1313 * (indblkshift - SPA_BLKPTRSHIFT))
1314 */
1315
1316 const unsigned exp = dn->dn_datablkshift +
1317 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1318
1319 if (exp >= 8 * sizeof (offset)) {
1320 /* This only happens on the highest indirection level */
1321 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1322 return (0);
1323 }
1324
1325 ASSERT3U(exp, <, 8 * sizeof (offset));
1326
1327 return (offset >> exp);
1328 } else {
1329 ASSERT3U(offset, <, dn->dn_datablksz);
1330 return (0);
1331 }
1332 }
1333
1334 /*
1335 * This function is used to lock the parent of the provided dbuf. This should be
1336 * used when modifying or reading db_blkptr.
1337 */
1338 db_lock_type_t
1339 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
1340 {
1341 enum db_lock_type ret = DLT_NONE;
1342 if (db->db_parent != NULL) {
1343 rw_enter(&db->db_parent->db_rwlock, rw);
1344 ret = DLT_PARENT;
1345 } else if (dmu_objset_ds(db->db_objset) != NULL) {
1346 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1347 tag);
1348 ret = DLT_OBJSET;
1349 }
1350 /*
1351 * We only return a DLT_NONE lock when it's the top-most indirect block
1352 * of the meta-dnode of the MOS.
1353 */
1354 return (ret);
1355 }
1356
1357 /*
1358 * We need to pass the lock type in because it's possible that the block will
1359 * move from being the topmost indirect block in a dnode (and thus, have no
1360 * parent) to not the top-most via an indirection increase. This would cause a
1361 * panic if we didn't pass the lock type in.
1362 */
1363 void
1364 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
1365 {
1366 if (type == DLT_PARENT)
1367 rw_exit(&db->db_parent->db_rwlock);
1368 else if (type == DLT_OBJSET)
1369 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1370 }
1371
1372 static void
1373 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1374 arc_buf_t *buf, void *vdb)
1375 {
1376 (void) zb, (void) bp;
1377 dmu_buf_impl_t *db = vdb;
1378
1379 mutex_enter(&db->db_mtx);
1380 ASSERT3U(db->db_state, ==, DB_READ);
1381 /*
1382 * All reads are synchronous, so we must have a hold on the dbuf
1383 */
1384 ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1385 ASSERT(db->db_buf == NULL);
1386 ASSERT(db->db.db_data == NULL);
1387 if (buf == NULL) {
1388 /* i/o error */
1389 ASSERT(zio == NULL || zio->io_error != 0);
1390 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1391 ASSERT3P(db->db_buf, ==, NULL);
1392 db->db_state = DB_UNCACHED;
1393 DTRACE_SET_STATE(db, "i/o error");
1394 } else if (db->db_level == 0 && db->db_freed_in_flight) {
1395 /* freed in flight */
1396 ASSERT(zio == NULL || zio->io_error == 0);
1397 arc_release(buf, db);
1398 memset(buf->b_data, 0, db->db.db_size);
1399 arc_buf_freeze(buf);
1400 db->db_freed_in_flight = FALSE;
1401 dbuf_set_data(db, buf);
1402 db->db_state = DB_CACHED;
1403 DTRACE_SET_STATE(db, "freed in flight");
1404 } else {
1405 /* success */
1406 ASSERT(zio == NULL || zio->io_error == 0);
1407 dbuf_set_data(db, buf);
1408 db->db_state = DB_CACHED;
1409 DTRACE_SET_STATE(db, "successful read");
1410 }
1411 cv_broadcast(&db->db_changed);
1412 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1413 }
1414
1415 /*
1416 * Shortcut for performing reads on bonus dbufs. Returns
1417 * an error if we fail to verify the dnode associated with
1418 * a decrypted block. Otherwise success.
1419 */
1420 static int
1421 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
1422 {
1423 int bonuslen, max_bonuslen, err;
1424
1425 err = dbuf_read_verify_dnode_crypt(db, flags);
1426 if (err)
1427 return (err);
1428
1429 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1430 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1431 ASSERT(MUTEX_HELD(&db->db_mtx));
1432 ASSERT(DB_DNODE_HELD(db));
1433 ASSERT3U(bonuslen, <=, db->db.db_size);
1434 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1435 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1436 if (bonuslen < max_bonuslen)
1437 memset(db->db.db_data, 0, max_bonuslen);
1438 if (bonuslen)
1439 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen);
1440 db->db_state = DB_CACHED;
1441 DTRACE_SET_STATE(db, "bonus buffer filled");
1442 return (0);
1443 }
1444
1445 static void
1446 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp)
1447 {
1448 blkptr_t *bps = db->db.db_data;
1449 uint32_t indbs = 1ULL << dn->dn_indblkshift;
1450 int n_bps = indbs >> SPA_BLKPTRSHIFT;
1451
1452 for (int i = 0; i < n_bps; i++) {
1453 blkptr_t *bp = &bps[i];
1454
1455 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs);
1456 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ?
1457 dn->dn_datablksz : BP_GET_LSIZE(dbbp));
1458 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp));
1459 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1);
1460 BP_SET_BIRTH(bp, dbbp->blk_birth, 0);
1461 }
1462 }
1463
1464 /*
1465 * Handle reads on dbufs that are holes, if necessary. This function
1466 * requires that the dbuf's mutex is held. Returns success (0) if action
1467 * was taken, ENOENT if no action was taken.
1468 */
1469 static int
1470 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp)
1471 {
1472 ASSERT(MUTEX_HELD(&db->db_mtx));
1473
1474 int is_hole = bp == NULL || BP_IS_HOLE(bp);
1475 /*
1476 * For level 0 blocks only, if the above check fails:
1477 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1478 * processes the delete record and clears the bp while we are waiting
1479 * for the dn_mtx (resulting in a "no" from block_freed).
1480 */
1481 if (!is_hole && db->db_level == 0)
1482 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp);
1483
1484 if (is_hole) {
1485 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1486 memset(db->db.db_data, 0, db->db.db_size);
1487
1488 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) &&
1489 bp->blk_birth != 0) {
1490 dbuf_handle_indirect_hole(db, dn, bp);
1491 }
1492 db->db_state = DB_CACHED;
1493 DTRACE_SET_STATE(db, "hole read satisfied");
1494 return (0);
1495 }
1496 return (ENOENT);
1497 }
1498
1499 /*
1500 * This function ensures that, when doing a decrypting read of a block,
1501 * we make sure we have decrypted the dnode associated with it. We must do
1502 * this so that we ensure we are fully authenticating the checksum-of-MACs
1503 * tree from the root of the objset down to this block. Indirect blocks are
1504 * always verified against their secure checksum-of-MACs assuming that the
1505 * dnode containing them is correct. Now that we are doing a decrypting read,
1506 * we can be sure that the key is loaded and verify that assumption. This is
1507 * especially important considering that we always read encrypted dnode
1508 * blocks as raw data (without verifying their MACs) to start, and
1509 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1510 */
1511 static int
1512 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1513 {
1514 int err = 0;
1515 objset_t *os = db->db_objset;
1516 arc_buf_t *dnode_abuf;
1517 dnode_t *dn;
1518 zbookmark_phys_t zb;
1519
1520 ASSERT(MUTEX_HELD(&db->db_mtx));
1521
1522 if ((flags & DB_RF_NO_DECRYPT) != 0 ||
1523 !os->os_encrypted || os->os_raw_receive)
1524 return (0);
1525
1526 DB_DNODE_ENTER(db);
1527 dn = DB_DNODE(db);
1528 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1529
1530 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1531 DB_DNODE_EXIT(db);
1532 return (0);
1533 }
1534
1535 SET_BOOKMARK(&zb, dmu_objset_id(os),
1536 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1537 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1538
1539 /*
1540 * An error code of EACCES tells us that the key is still not
1541 * available. This is ok if we are only reading authenticated
1542 * (and therefore non-encrypted) blocks.
1543 */
1544 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1545 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1546 (db->db_blkid == DMU_BONUS_BLKID &&
1547 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1548 err = 0;
1549
1550 DB_DNODE_EXIT(db);
1551
1552 return (err);
1553 }
1554
1555 /*
1556 * Drops db_mtx and the parent lock specified by dblt and tag before
1557 * returning.
1558 */
1559 static int
1560 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags,
1561 db_lock_type_t dblt, const void *tag)
1562 {
1563 dnode_t *dn;
1564 zbookmark_phys_t zb;
1565 uint32_t aflags = ARC_FLAG_NOWAIT;
1566 int err, zio_flags;
1567 blkptr_t bp, *bpp;
1568
1569 DB_DNODE_ENTER(db);
1570 dn = DB_DNODE(db);
1571 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1572 ASSERT(MUTEX_HELD(&db->db_mtx));
1573 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1574 ASSERT(db->db_buf == NULL);
1575 ASSERT(db->db_parent == NULL ||
1576 RW_LOCK_HELD(&db->db_parent->db_rwlock));
1577
1578 if (db->db_blkid == DMU_BONUS_BLKID) {
1579 err = dbuf_read_bonus(db, dn, flags);
1580 goto early_unlock;
1581 }
1582
1583 if (db->db_state == DB_UNCACHED) {
1584 if (db->db_blkptr == NULL) {
1585 bpp = NULL;
1586 } else {
1587 bp = *db->db_blkptr;
1588 bpp = &bp;
1589 }
1590 } else {
1591 dbuf_dirty_record_t *dr;
1592
1593 ASSERT3S(db->db_state, ==, DB_NOFILL);
1594
1595 /*
1596 * Block cloning: If we have a pending block clone,
1597 * we don't want to read the underlying block, but the content
1598 * of the block being cloned, so we have the most recent data.
1599 */
1600 dr = list_head(&db->db_dirty_records);
1601 if (dr == NULL || !dr->dt.dl.dr_brtwrite) {
1602 err = EIO;
1603 goto early_unlock;
1604 }
1605 bp = dr->dt.dl.dr_overridden_by;
1606 bpp = &bp;
1607 }
1608
1609 err = dbuf_read_hole(db, dn, bpp);
1610 if (err == 0)
1611 goto early_unlock;
1612
1613 ASSERT(bpp != NULL);
1614
1615 /*
1616 * Any attempt to read a redacted block should result in an error. This
1617 * will never happen under normal conditions, but can be useful for
1618 * debugging purposes.
1619 */
1620 if (BP_IS_REDACTED(bpp)) {
1621 ASSERT(dsl_dataset_feature_is_active(
1622 db->db_objset->os_dsl_dataset,
1623 SPA_FEATURE_REDACTED_DATASETS));
1624 err = SET_ERROR(EIO);
1625 goto early_unlock;
1626 }
1627
1628 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1629 db->db.db_object, db->db_level, db->db_blkid);
1630
1631 /*
1632 * All bps of an encrypted os should have the encryption bit set.
1633 * If this is not true it indicates tampering and we report an error.
1634 */
1635 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bpp)) {
1636 spa_log_error(db->db_objset->os_spa, &zb, &bpp->blk_birth);
1637 zfs_panic_recover("unencrypted block in encrypted "
1638 "object set %llu", dmu_objset_id(db->db_objset));
1639 err = SET_ERROR(EIO);
1640 goto early_unlock;
1641 }
1642
1643 err = dbuf_read_verify_dnode_crypt(db, flags);
1644 if (err != 0)
1645 goto early_unlock;
1646
1647 DB_DNODE_EXIT(db);
1648
1649 db->db_state = DB_READ;
1650 DTRACE_SET_STATE(db, "read issued");
1651 mutex_exit(&db->db_mtx);
1652
1653 if (!DBUF_IS_CACHEABLE(db))
1654 aflags |= ARC_FLAG_UNCACHED;
1655 else if (dbuf_is_l2cacheable(db))
1656 aflags |= ARC_FLAG_L2CACHE;
1657
1658 dbuf_add_ref(db, NULL);
1659
1660 zio_flags = (flags & DB_RF_CANFAIL) ?
1661 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1662
1663 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1664 zio_flags |= ZIO_FLAG_RAW;
1665 /*
1666 * The zio layer will copy the provided blkptr later, but we have our
1667 * own copy so that we can release the parent's rwlock. We have to
1668 * do that so that if dbuf_read_done is called synchronously (on
1669 * an l1 cache hit) we don't acquire the db_mtx while holding the
1670 * parent's rwlock, which would be a lock ordering violation.
1671 */
1672 dmu_buf_unlock_parent(db, dblt, tag);
1673 (void) arc_read(zio, db->db_objset->os_spa, bpp,
1674 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1675 &aflags, &zb);
1676 return (err);
1677 early_unlock:
1678 DB_DNODE_EXIT(db);
1679 mutex_exit(&db->db_mtx);
1680 dmu_buf_unlock_parent(db, dblt, tag);
1681 return (err);
1682 }
1683
1684 /*
1685 * This is our just-in-time copy function. It makes a copy of buffers that
1686 * have been modified in a previous transaction group before we access them in
1687 * the current active group.
1688 *
1689 * This function is used in three places: when we are dirtying a buffer for the
1690 * first time in a txg, when we are freeing a range in a dnode that includes
1691 * this buffer, and when we are accessing a buffer which was received compressed
1692 * and later referenced in a WRITE_BYREF record.
1693 *
1694 * Note that when we are called from dbuf_free_range() we do not put a hold on
1695 * the buffer, we just traverse the active dbuf list for the dnode.
1696 */
1697 static void
1698 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1699 {
1700 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1701
1702 ASSERT(MUTEX_HELD(&db->db_mtx));
1703 ASSERT(db->db.db_data != NULL);
1704 ASSERT(db->db_level == 0);
1705 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1706
1707 if (dr == NULL ||
1708 (dr->dt.dl.dr_data !=
1709 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1710 return;
1711
1712 /*
1713 * If the last dirty record for this dbuf has not yet synced
1714 * and its referencing the dbuf data, either:
1715 * reset the reference to point to a new copy,
1716 * or (if there a no active holders)
1717 * just null out the current db_data pointer.
1718 */
1719 ASSERT3U(dr->dr_txg, >=, txg - 2);
1720 if (db->db_blkid == DMU_BONUS_BLKID) {
1721 dnode_t *dn = DB_DNODE(db);
1722 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1723 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1724 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1725 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
1726 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1727 dnode_t *dn = DB_DNODE(db);
1728 int size = arc_buf_size(db->db_buf);
1729 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1730 spa_t *spa = db->db_objset->os_spa;
1731 enum zio_compress compress_type =
1732 arc_get_compression(db->db_buf);
1733 uint8_t complevel = arc_get_complevel(db->db_buf);
1734
1735 if (arc_is_encrypted(db->db_buf)) {
1736 boolean_t byteorder;
1737 uint8_t salt[ZIO_DATA_SALT_LEN];
1738 uint8_t iv[ZIO_DATA_IV_LEN];
1739 uint8_t mac[ZIO_DATA_MAC_LEN];
1740
1741 arc_get_raw_params(db->db_buf, &byteorder, salt,
1742 iv, mac);
1743 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1744 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1745 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1746 compress_type, complevel);
1747 } else if (compress_type != ZIO_COMPRESS_OFF) {
1748 ASSERT3U(type, ==, ARC_BUFC_DATA);
1749 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1750 size, arc_buf_lsize(db->db_buf), compress_type,
1751 complevel);
1752 } else {
1753 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1754 }
1755 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
1756 } else {
1757 db->db_buf = NULL;
1758 dbuf_clear_data(db);
1759 }
1760 }
1761
1762 int
1763 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1764 {
1765 int err = 0;
1766 boolean_t prefetch;
1767 dnode_t *dn;
1768
1769 /*
1770 * We don't have to hold the mutex to check db_state because it
1771 * can't be freed while we have a hold on the buffer.
1772 */
1773 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1774
1775 DB_DNODE_ENTER(db);
1776 dn = DB_DNODE(db);
1777
1778 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1779 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL;
1780
1781 mutex_enter(&db->db_mtx);
1782 if (flags & DB_RF_PARTIAL_FIRST)
1783 db->db_partial_read = B_TRUE;
1784 else if (!(flags & DB_RF_PARTIAL_MORE))
1785 db->db_partial_read = B_FALSE;
1786 if (db->db_state == DB_CACHED) {
1787 /*
1788 * Ensure that this block's dnode has been decrypted if
1789 * the caller has requested decrypted data.
1790 */
1791 err = dbuf_read_verify_dnode_crypt(db, flags);
1792
1793 /*
1794 * If the arc buf is compressed or encrypted and the caller
1795 * requested uncompressed data, we need to untransform it
1796 * before returning. We also call arc_untransform() on any
1797 * unauthenticated blocks, which will verify their MAC if
1798 * the key is now available.
1799 */
1800 if (err == 0 && db->db_buf != NULL &&
1801 (flags & DB_RF_NO_DECRYPT) == 0 &&
1802 (arc_is_encrypted(db->db_buf) ||
1803 arc_is_unauthenticated(db->db_buf) ||
1804 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1805 spa_t *spa = dn->dn_objset->os_spa;
1806 zbookmark_phys_t zb;
1807
1808 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1809 db->db.db_object, db->db_level, db->db_blkid);
1810 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1811 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1812 dbuf_set_data(db, db->db_buf);
1813 }
1814 mutex_exit(&db->db_mtx);
1815 if (err == 0 && prefetch) {
1816 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1817 B_FALSE, flags & DB_RF_HAVESTRUCT);
1818 }
1819 DB_DNODE_EXIT(db);
1820 DBUF_STAT_BUMP(hash_hits);
1821 } else if (db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL) {
1822 boolean_t need_wait = B_FALSE;
1823
1824 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1825
1826 if (zio == NULL && (db->db_state == DB_NOFILL ||
1827 (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)))) {
1828 spa_t *spa = dn->dn_objset->os_spa;
1829 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1830 need_wait = B_TRUE;
1831 }
1832 err = dbuf_read_impl(db, zio, flags, dblt, FTAG);
1833 /*
1834 * dbuf_read_impl has dropped db_mtx and our parent's rwlock
1835 * for us
1836 */
1837 if (!err && prefetch) {
1838 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1839 db->db_state != DB_CACHED,
1840 flags & DB_RF_HAVESTRUCT);
1841 }
1842
1843 DB_DNODE_EXIT(db);
1844 DBUF_STAT_BUMP(hash_misses);
1845
1846 /*
1847 * If we created a zio_root we must execute it to avoid
1848 * leaking it, even if it isn't attached to any work due
1849 * to an error in dbuf_read_impl().
1850 */
1851 if (need_wait) {
1852 if (err == 0)
1853 err = zio_wait(zio);
1854 else
1855 VERIFY0(zio_wait(zio));
1856 }
1857 } else {
1858 /*
1859 * Another reader came in while the dbuf was in flight
1860 * between UNCACHED and CACHED. Either a writer will finish
1861 * writing the buffer (sending the dbuf to CACHED) or the
1862 * first reader's request will reach the read_done callback
1863 * and send the dbuf to CACHED. Otherwise, a failure
1864 * occurred and the dbuf went to UNCACHED.
1865 */
1866 mutex_exit(&db->db_mtx);
1867 if (prefetch) {
1868 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1869 B_TRUE, flags & DB_RF_HAVESTRUCT);
1870 }
1871 DB_DNODE_EXIT(db);
1872 DBUF_STAT_BUMP(hash_misses);
1873
1874 /* Skip the wait per the caller's request. */
1875 if ((flags & DB_RF_NEVERWAIT) == 0) {
1876 mutex_enter(&db->db_mtx);
1877 while (db->db_state == DB_READ ||
1878 db->db_state == DB_FILL) {
1879 ASSERT(db->db_state == DB_READ ||
1880 (flags & DB_RF_HAVESTRUCT) == 0);
1881 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1882 db, zio_t *, zio);
1883 cv_wait(&db->db_changed, &db->db_mtx);
1884 }
1885 if (db->db_state == DB_UNCACHED)
1886 err = SET_ERROR(EIO);
1887 mutex_exit(&db->db_mtx);
1888 }
1889 }
1890
1891 return (err);
1892 }
1893
1894 static void
1895 dbuf_noread(dmu_buf_impl_t *db)
1896 {
1897 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1898 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1899 mutex_enter(&db->db_mtx);
1900 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1901 cv_wait(&db->db_changed, &db->db_mtx);
1902 if (db->db_state == DB_UNCACHED) {
1903 ASSERT(db->db_buf == NULL);
1904 ASSERT(db->db.db_data == NULL);
1905 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1906 db->db_state = DB_FILL;
1907 DTRACE_SET_STATE(db, "assigning filled buffer");
1908 } else if (db->db_state == DB_NOFILL) {
1909 dbuf_clear_data(db);
1910 } else {
1911 ASSERT3U(db->db_state, ==, DB_CACHED);
1912 }
1913 mutex_exit(&db->db_mtx);
1914 }
1915
1916 void
1917 dbuf_unoverride(dbuf_dirty_record_t *dr)
1918 {
1919 dmu_buf_impl_t *db = dr->dr_dbuf;
1920 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1921 uint64_t txg = dr->dr_txg;
1922
1923 ASSERT(MUTEX_HELD(&db->db_mtx));
1924 /*
1925 * This assert is valid because dmu_sync() expects to be called by
1926 * a zilog's get_data while holding a range lock. This call only
1927 * comes from dbuf_dirty() callers who must also hold a range lock.
1928 */
1929 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1930 ASSERT(db->db_level == 0);
1931
1932 if (db->db_blkid == DMU_BONUS_BLKID ||
1933 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1934 return;
1935
1936 ASSERT(db->db_data_pending != dr);
1937
1938 /* free this block */
1939 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1940 zio_free(db->db_objset->os_spa, txg, bp);
1941
1942 if (dr->dt.dl.dr_brtwrite) {
1943 ASSERT0P(dr->dt.dl.dr_data);
1944 dr->dt.dl.dr_data = db->db_buf;
1945 }
1946 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1947 dr->dt.dl.dr_nopwrite = B_FALSE;
1948 dr->dt.dl.dr_brtwrite = B_FALSE;
1949 dr->dt.dl.dr_has_raw_params = B_FALSE;
1950
1951 /*
1952 * Release the already-written buffer, so we leave it in
1953 * a consistent dirty state. Note that all callers are
1954 * modifying the buffer, so they will immediately do
1955 * another (redundant) arc_release(). Therefore, leave
1956 * the buf thawed to save the effort of freezing &
1957 * immediately re-thawing it.
1958 */
1959 if (dr->dt.dl.dr_data)
1960 arc_release(dr->dt.dl.dr_data, db);
1961 }
1962
1963 /*
1964 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1965 * data blocks in the free range, so that any future readers will find
1966 * empty blocks.
1967 */
1968 void
1969 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1970 dmu_tx_t *tx)
1971 {
1972 dmu_buf_impl_t *db_search;
1973 dmu_buf_impl_t *db, *db_next;
1974 uint64_t txg = tx->tx_txg;
1975 avl_index_t where;
1976 dbuf_dirty_record_t *dr;
1977
1978 if (end_blkid > dn->dn_maxblkid &&
1979 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1980 end_blkid = dn->dn_maxblkid;
1981 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1982 (u_longlong_t)end_blkid);
1983
1984 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1985 db_search->db_level = 0;
1986 db_search->db_blkid = start_blkid;
1987 db_search->db_state = DB_SEARCH;
1988
1989 mutex_enter(&dn->dn_dbufs_mtx);
1990 db = avl_find(&dn->dn_dbufs, db_search, &where);
1991 ASSERT3P(db, ==, NULL);
1992
1993 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1994
1995 for (; db != NULL; db = db_next) {
1996 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1997 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1998
1999 if (db->db_level != 0 || db->db_blkid > end_blkid) {
2000 break;
2001 }
2002 ASSERT3U(db->db_blkid, >=, start_blkid);
2003
2004 /* found a level 0 buffer in the range */
2005 mutex_enter(&db->db_mtx);
2006 if (dbuf_undirty(db, tx)) {
2007 /* mutex has been dropped and dbuf destroyed */
2008 continue;
2009 }
2010
2011 if (db->db_state == DB_UNCACHED ||
2012 db->db_state == DB_NOFILL ||
2013 db->db_state == DB_EVICTING) {
2014 ASSERT(db->db.db_data == NULL);
2015 mutex_exit(&db->db_mtx);
2016 continue;
2017 }
2018 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
2019 /* will be handled in dbuf_read_done or dbuf_rele */
2020 db->db_freed_in_flight = TRUE;
2021 mutex_exit(&db->db_mtx);
2022 continue;
2023 }
2024 if (zfs_refcount_count(&db->db_holds) == 0) {
2025 ASSERT(db->db_buf);
2026 dbuf_destroy(db);
2027 continue;
2028 }
2029 /* The dbuf is referenced */
2030
2031 dr = list_head(&db->db_dirty_records);
2032 if (dr != NULL) {
2033 if (dr->dr_txg == txg) {
2034 /*
2035 * This buffer is "in-use", re-adjust the file
2036 * size to reflect that this buffer may
2037 * contain new data when we sync.
2038 */
2039 if (db->db_blkid != DMU_SPILL_BLKID &&
2040 db->db_blkid > dn->dn_maxblkid)
2041 dn->dn_maxblkid = db->db_blkid;
2042 dbuf_unoverride(dr);
2043 } else {
2044 /*
2045 * This dbuf is not dirty in the open context.
2046 * Either uncache it (if its not referenced in
2047 * the open context) or reset its contents to
2048 * empty.
2049 */
2050 dbuf_fix_old_data(db, txg);
2051 }
2052 }
2053 /* clear the contents if its cached */
2054 if (db->db_state == DB_CACHED) {
2055 ASSERT(db->db.db_data != NULL);
2056 arc_release(db->db_buf, db);
2057 rw_enter(&db->db_rwlock, RW_WRITER);
2058 memset(db->db.db_data, 0, db->db.db_size);
2059 rw_exit(&db->db_rwlock);
2060 arc_buf_freeze(db->db_buf);
2061 }
2062
2063 mutex_exit(&db->db_mtx);
2064 }
2065
2066 mutex_exit(&dn->dn_dbufs_mtx);
2067 kmem_free(db_search, sizeof (dmu_buf_impl_t));
2068 }
2069
2070 void
2071 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2072 {
2073 arc_buf_t *buf, *old_buf;
2074 dbuf_dirty_record_t *dr;
2075 int osize = db->db.db_size;
2076 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2077 dnode_t *dn;
2078
2079 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2080
2081 DB_DNODE_ENTER(db);
2082 dn = DB_DNODE(db);
2083
2084 /*
2085 * XXX we should be doing a dbuf_read, checking the return
2086 * value and returning that up to our callers
2087 */
2088 dmu_buf_will_dirty(&db->db, tx);
2089
2090 /* create the data buffer for the new block */
2091 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2092
2093 /* copy old block data to the new block */
2094 old_buf = db->db_buf;
2095 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
2096 /* zero the remainder */
2097 if (size > osize)
2098 memset((uint8_t *)buf->b_data + osize, 0, size - osize);
2099
2100 mutex_enter(&db->db_mtx);
2101 dbuf_set_data(db, buf);
2102 arc_buf_destroy(old_buf, db);
2103 db->db.db_size = size;
2104
2105 dr = list_head(&db->db_dirty_records);
2106 /* dirty record added by dmu_buf_will_dirty() */
2107 VERIFY(dr != NULL);
2108 if (db->db_level == 0)
2109 dr->dt.dl.dr_data = buf;
2110 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2111 ASSERT3U(dr->dr_accounted, ==, osize);
2112 dr->dr_accounted = size;
2113 mutex_exit(&db->db_mtx);
2114
2115 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2116 DB_DNODE_EXIT(db);
2117 }
2118
2119 void
2120 dbuf_release_bp(dmu_buf_impl_t *db)
2121 {
2122 objset_t *os __maybe_unused = db->db_objset;
2123
2124 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2125 ASSERT(arc_released(os->os_phys_buf) ||
2126 list_link_active(&os->os_dsl_dataset->ds_synced_link));
2127 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2128
2129 (void) arc_release(db->db_buf, db);
2130 }
2131
2132 /*
2133 * We already have a dirty record for this TXG, and we are being
2134 * dirtied again.
2135 */
2136 static void
2137 dbuf_redirty(dbuf_dirty_record_t *dr)
2138 {
2139 dmu_buf_impl_t *db = dr->dr_dbuf;
2140
2141 ASSERT(MUTEX_HELD(&db->db_mtx));
2142
2143 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2144 /*
2145 * If this buffer has already been written out,
2146 * we now need to reset its state.
2147 */
2148 dbuf_unoverride(dr);
2149 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2150 db->db_state != DB_NOFILL) {
2151 /* Already released on initial dirty, so just thaw. */
2152 ASSERT(arc_released(db->db_buf));
2153 arc_buf_thaw(db->db_buf);
2154 }
2155 }
2156 }
2157
2158 dbuf_dirty_record_t *
2159 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2160 {
2161 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2162 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2163 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2164 ASSERT(dn->dn_maxblkid >= blkid);
2165
2166 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2167 list_link_init(&dr->dr_dirty_node);
2168 list_link_init(&dr->dr_dbuf_node);
2169 dr->dr_dnode = dn;
2170 dr->dr_txg = tx->tx_txg;
2171 dr->dt.dll.dr_blkid = blkid;
2172 dr->dr_accounted = dn->dn_datablksz;
2173
2174 /*
2175 * There should not be any dbuf for the block that we're dirtying.
2176 * Otherwise the buffer contents could be inconsistent between the
2177 * dbuf and the lightweight dirty record.
2178 */
2179 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid,
2180 NULL));
2181
2182 mutex_enter(&dn->dn_mtx);
2183 int txgoff = tx->tx_txg & TXG_MASK;
2184 if (dn->dn_free_ranges[txgoff] != NULL) {
2185 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2186 }
2187
2188 if (dn->dn_nlevels == 1) {
2189 ASSERT3U(blkid, <, dn->dn_nblkptr);
2190 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2191 mutex_exit(&dn->dn_mtx);
2192 rw_exit(&dn->dn_struct_rwlock);
2193 dnode_setdirty(dn, tx);
2194 } else {
2195 mutex_exit(&dn->dn_mtx);
2196
2197 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2198 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2199 1, blkid >> epbs, FTAG);
2200 rw_exit(&dn->dn_struct_rwlock);
2201 if (parent_db == NULL) {
2202 kmem_free(dr, sizeof (*dr));
2203 return (NULL);
2204 }
2205 int err = dbuf_read(parent_db, NULL,
2206 (DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2207 if (err != 0) {
2208 dbuf_rele(parent_db, FTAG);
2209 kmem_free(dr, sizeof (*dr));
2210 return (NULL);
2211 }
2212
2213 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2214 dbuf_rele(parent_db, FTAG);
2215 mutex_enter(&parent_dr->dt.di.dr_mtx);
2216 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2217 list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2218 mutex_exit(&parent_dr->dt.di.dr_mtx);
2219 dr->dr_parent = parent_dr;
2220 }
2221
2222 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2223
2224 return (dr);
2225 }
2226
2227 dbuf_dirty_record_t *
2228 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2229 {
2230 dnode_t *dn;
2231 objset_t *os;
2232 dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2233 int txgoff = tx->tx_txg & TXG_MASK;
2234 boolean_t drop_struct_rwlock = B_FALSE;
2235
2236 ASSERT(tx->tx_txg != 0);
2237 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2238 DMU_TX_DIRTY_BUF(tx, db);
2239
2240 DB_DNODE_ENTER(db);
2241 dn = DB_DNODE(db);
2242 /*
2243 * Shouldn't dirty a regular buffer in syncing context. Private
2244 * objects may be dirtied in syncing context, but only if they
2245 * were already pre-dirtied in open context.
2246 */
2247 #ifdef ZFS_DEBUG
2248 if (dn->dn_objset->os_dsl_dataset != NULL) {
2249 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2250 RW_READER, FTAG);
2251 }
2252 ASSERT(!dmu_tx_is_syncing(tx) ||
2253 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2254 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2255 dn->dn_objset->os_dsl_dataset == NULL);
2256 if (dn->dn_objset->os_dsl_dataset != NULL)
2257 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2258 #endif
2259 /*
2260 * We make this assert for private objects as well, but after we
2261 * check if we're already dirty. They are allowed to re-dirty
2262 * in syncing context.
2263 */
2264 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2265 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2266 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2267
2268 mutex_enter(&db->db_mtx);
2269 /*
2270 * XXX make this true for indirects too? The problem is that
2271 * transactions created with dmu_tx_create_assigned() from
2272 * syncing context don't bother holding ahead.
2273 */
2274 ASSERT(db->db_level != 0 ||
2275 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2276 db->db_state == DB_NOFILL);
2277
2278 mutex_enter(&dn->dn_mtx);
2279 dnode_set_dirtyctx(dn, tx, db);
2280 if (tx->tx_txg > dn->dn_dirty_txg)
2281 dn->dn_dirty_txg = tx->tx_txg;
2282 mutex_exit(&dn->dn_mtx);
2283
2284 if (db->db_blkid == DMU_SPILL_BLKID)
2285 dn->dn_have_spill = B_TRUE;
2286
2287 /*
2288 * If this buffer is already dirty, we're done.
2289 */
2290 dr_head = list_head(&db->db_dirty_records);
2291 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2292 db->db.db_object == DMU_META_DNODE_OBJECT);
2293 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2294 if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2295 DB_DNODE_EXIT(db);
2296
2297 dbuf_redirty(dr_next);
2298 mutex_exit(&db->db_mtx);
2299 return (dr_next);
2300 }
2301
2302 /*
2303 * Only valid if not already dirty.
2304 */
2305 ASSERT(dn->dn_object == 0 ||
2306 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2307 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2308
2309 ASSERT3U(dn->dn_nlevels, >, db->db_level);
2310
2311 /*
2312 * We should only be dirtying in syncing context if it's the
2313 * mos or we're initializing the os or it's a special object.
2314 * However, we are allowed to dirty in syncing context provided
2315 * we already dirtied it in open context. Hence we must make
2316 * this assertion only if we're not already dirty.
2317 */
2318 os = dn->dn_objset;
2319 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2320 #ifdef ZFS_DEBUG
2321 if (dn->dn_objset->os_dsl_dataset != NULL)
2322 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2323 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2324 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2325 if (dn->dn_objset->os_dsl_dataset != NULL)
2326 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2327 #endif
2328 ASSERT(db->db.db_size != 0);
2329
2330 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2331
2332 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2333 dmu_objset_willuse_space(os, db->db.db_size, tx);
2334 }
2335
2336 /*
2337 * If this buffer is dirty in an old transaction group we need
2338 * to make a copy of it so that the changes we make in this
2339 * transaction group won't leak out when we sync the older txg.
2340 */
2341 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2342 list_link_init(&dr->dr_dirty_node);
2343 list_link_init(&dr->dr_dbuf_node);
2344 dr->dr_dnode = dn;
2345 if (db->db_level == 0) {
2346 void *data_old = db->db_buf;
2347
2348 if (db->db_state != DB_NOFILL) {
2349 if (db->db_blkid == DMU_BONUS_BLKID) {
2350 dbuf_fix_old_data(db, tx->tx_txg);
2351 data_old = db->db.db_data;
2352 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2353 /*
2354 * Release the data buffer from the cache so
2355 * that we can modify it without impacting
2356 * possible other users of this cached data
2357 * block. Note that indirect blocks and
2358 * private objects are not released until the
2359 * syncing state (since they are only modified
2360 * then).
2361 */
2362 arc_release(db->db_buf, db);
2363 dbuf_fix_old_data(db, tx->tx_txg);
2364 data_old = db->db_buf;
2365 }
2366 ASSERT(data_old != NULL);
2367 }
2368 dr->dt.dl.dr_data = data_old;
2369 } else {
2370 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2371 list_create(&dr->dt.di.dr_children,
2372 sizeof (dbuf_dirty_record_t),
2373 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2374 }
2375 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2376 dr->dr_accounted = db->db.db_size;
2377 }
2378 dr->dr_dbuf = db;
2379 dr->dr_txg = tx->tx_txg;
2380 list_insert_before(&db->db_dirty_records, dr_next, dr);
2381
2382 /*
2383 * We could have been freed_in_flight between the dbuf_noread
2384 * and dbuf_dirty. We win, as though the dbuf_noread() had
2385 * happened after the free.
2386 */
2387 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2388 db->db_blkid != DMU_SPILL_BLKID) {
2389 mutex_enter(&dn->dn_mtx);
2390 if (dn->dn_free_ranges[txgoff] != NULL) {
2391 range_tree_clear(dn->dn_free_ranges[txgoff],
2392 db->db_blkid, 1);
2393 }
2394 mutex_exit(&dn->dn_mtx);
2395 db->db_freed_in_flight = FALSE;
2396 }
2397
2398 /*
2399 * This buffer is now part of this txg
2400 */
2401 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2402 db->db_dirtycnt += 1;
2403 ASSERT3U(db->db_dirtycnt, <=, 3);
2404
2405 mutex_exit(&db->db_mtx);
2406
2407 if (db->db_blkid == DMU_BONUS_BLKID ||
2408 db->db_blkid == DMU_SPILL_BLKID) {
2409 mutex_enter(&dn->dn_mtx);
2410 ASSERT(!list_link_active(&dr->dr_dirty_node));
2411 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2412 mutex_exit(&dn->dn_mtx);
2413 dnode_setdirty(dn, tx);
2414 DB_DNODE_EXIT(db);
2415 return (dr);
2416 }
2417
2418 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2419 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2420 drop_struct_rwlock = B_TRUE;
2421 }
2422
2423 /*
2424 * If we are overwriting a dedup BP, then unless it is snapshotted,
2425 * when we get to syncing context we will need to decrement its
2426 * refcount in the DDT. Prefetch the relevant DDT block so that
2427 * syncing context won't have to wait for the i/o.
2428 */
2429 if (db->db_blkptr != NULL) {
2430 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2431 ddt_prefetch(os->os_spa, db->db_blkptr);
2432 dmu_buf_unlock_parent(db, dblt, FTAG);
2433 }
2434
2435 /*
2436 * We need to hold the dn_struct_rwlock to make this assertion,
2437 * because it protects dn_phys / dn_next_nlevels from changing.
2438 */
2439 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2440 dn->dn_phys->dn_nlevels > db->db_level ||
2441 dn->dn_next_nlevels[txgoff] > db->db_level ||
2442 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2443 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2444
2445
2446 if (db->db_level == 0) {
2447 ASSERT(!db->db_objset->os_raw_receive ||
2448 dn->dn_maxblkid >= db->db_blkid);
2449 dnode_new_blkid(dn, db->db_blkid, tx,
2450 drop_struct_rwlock, B_FALSE);
2451 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2452 }
2453
2454 if (db->db_level+1 < dn->dn_nlevels) {
2455 dmu_buf_impl_t *parent = db->db_parent;
2456 dbuf_dirty_record_t *di;
2457 int parent_held = FALSE;
2458
2459 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2460 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2461 parent = dbuf_hold_level(dn, db->db_level + 1,
2462 db->db_blkid >> epbs, FTAG);
2463 ASSERT(parent != NULL);
2464 parent_held = TRUE;
2465 }
2466 if (drop_struct_rwlock)
2467 rw_exit(&dn->dn_struct_rwlock);
2468 ASSERT3U(db->db_level + 1, ==, parent->db_level);
2469 di = dbuf_dirty(parent, tx);
2470 if (parent_held)
2471 dbuf_rele(parent, FTAG);
2472
2473 mutex_enter(&db->db_mtx);
2474 /*
2475 * Since we've dropped the mutex, it's possible that
2476 * dbuf_undirty() might have changed this out from under us.
2477 */
2478 if (list_head(&db->db_dirty_records) == dr ||
2479 dn->dn_object == DMU_META_DNODE_OBJECT) {
2480 mutex_enter(&di->dt.di.dr_mtx);
2481 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2482 ASSERT(!list_link_active(&dr->dr_dirty_node));
2483 list_insert_tail(&di->dt.di.dr_children, dr);
2484 mutex_exit(&di->dt.di.dr_mtx);
2485 dr->dr_parent = di;
2486 }
2487 mutex_exit(&db->db_mtx);
2488 } else {
2489 ASSERT(db->db_level + 1 == dn->dn_nlevels);
2490 ASSERT(db->db_blkid < dn->dn_nblkptr);
2491 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2492 mutex_enter(&dn->dn_mtx);
2493 ASSERT(!list_link_active(&dr->dr_dirty_node));
2494 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2495 mutex_exit(&dn->dn_mtx);
2496 if (drop_struct_rwlock)
2497 rw_exit(&dn->dn_struct_rwlock);
2498 }
2499
2500 dnode_setdirty(dn, tx);
2501 DB_DNODE_EXIT(db);
2502 return (dr);
2503 }
2504
2505 static void
2506 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2507 {
2508 dmu_buf_impl_t *db = dr->dr_dbuf;
2509
2510 if (dr->dt.dl.dr_data != db->db.db_data) {
2511 struct dnode *dn = dr->dr_dnode;
2512 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2513
2514 kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2515 arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2516 }
2517 db->db_data_pending = NULL;
2518 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2519 list_remove(&db->db_dirty_records, dr);
2520 if (dr->dr_dbuf->db_level != 0) {
2521 mutex_destroy(&dr->dt.di.dr_mtx);
2522 list_destroy(&dr->dt.di.dr_children);
2523 }
2524 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2525 ASSERT3U(db->db_dirtycnt, >, 0);
2526 db->db_dirtycnt -= 1;
2527 }
2528
2529 /*
2530 * Undirty a buffer in the transaction group referenced by the given
2531 * transaction. Return whether this evicted the dbuf.
2532 */
2533 boolean_t
2534 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2535 {
2536 uint64_t txg = tx->tx_txg;
2537 boolean_t brtwrite;
2538
2539 ASSERT(txg != 0);
2540
2541 /*
2542 * Due to our use of dn_nlevels below, this can only be called
2543 * in open context, unless we are operating on the MOS.
2544 * From syncing context, dn_nlevels may be different from the
2545 * dn_nlevels used when dbuf was dirtied.
2546 */
2547 ASSERT(db->db_objset ==
2548 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2549 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2550 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2551 ASSERT0(db->db_level);
2552 ASSERT(MUTEX_HELD(&db->db_mtx));
2553
2554 /*
2555 * If this buffer is not dirty, we're done.
2556 */
2557 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2558 if (dr == NULL)
2559 return (B_FALSE);
2560 ASSERT(dr->dr_dbuf == db);
2561
2562 brtwrite = dr->dt.dl.dr_brtwrite;
2563 if (brtwrite) {
2564 /*
2565 * We are freeing a block that we cloned in the same
2566 * transaction group.
2567 */
2568 brt_pending_remove(dmu_objset_spa(db->db_objset),
2569 &dr->dt.dl.dr_overridden_by, tx);
2570 }
2571
2572 dnode_t *dn = dr->dr_dnode;
2573
2574 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2575
2576 ASSERT(db->db.db_size != 0);
2577
2578 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2579 dr->dr_accounted, txg);
2580
2581 list_remove(&db->db_dirty_records, dr);
2582
2583 /*
2584 * Note that there are three places in dbuf_dirty()
2585 * where this dirty record may be put on a list.
2586 * Make sure to do a list_remove corresponding to
2587 * every one of those list_insert calls.
2588 */
2589 if (dr->dr_parent) {
2590 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2591 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2592 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2593 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2594 db->db_level + 1 == dn->dn_nlevels) {
2595 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2596 mutex_enter(&dn->dn_mtx);
2597 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2598 mutex_exit(&dn->dn_mtx);
2599 }
2600
2601 if (db->db_state != DB_NOFILL && !brtwrite) {
2602 dbuf_unoverride(dr);
2603
2604 ASSERT(db->db_buf != NULL);
2605 ASSERT(dr->dt.dl.dr_data != NULL);
2606 if (dr->dt.dl.dr_data != db->db_buf)
2607 arc_buf_destroy(dr->dt.dl.dr_data, db);
2608 }
2609
2610 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2611
2612 ASSERT(db->db_dirtycnt > 0);
2613 db->db_dirtycnt -= 1;
2614
2615 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2616 ASSERT(db->db_state == DB_NOFILL || brtwrite ||
2617 arc_released(db->db_buf));
2618 dbuf_destroy(db);
2619 return (B_TRUE);
2620 }
2621
2622 return (B_FALSE);
2623 }
2624
2625 static void
2626 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2627 {
2628 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2629 boolean_t undirty = B_FALSE;
2630
2631 ASSERT(tx->tx_txg != 0);
2632 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2633
2634 /*
2635 * Quick check for dirtiness. For already dirty blocks, this
2636 * reduces runtime of this function by >90%, and overall performance
2637 * by 50% for some workloads (e.g. file deletion with indirect blocks
2638 * cached).
2639 */
2640 mutex_enter(&db->db_mtx);
2641
2642 if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) {
2643 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2644 /*
2645 * It's possible that it is already dirty but not cached,
2646 * because there are some calls to dbuf_dirty() that don't
2647 * go through dmu_buf_will_dirty().
2648 */
2649 if (dr != NULL) {
2650 if (dr->dt.dl.dr_brtwrite) {
2651 /*
2652 * Block cloning: If we are dirtying a cloned
2653 * block, we cannot simply redirty it, because
2654 * this dr has no data associated with it.
2655 * We will go through a full undirtying below,
2656 * before dirtying it again.
2657 */
2658 undirty = B_TRUE;
2659 } else {
2660 /* This dbuf is already dirty and cached. */
2661 dbuf_redirty(dr);
2662 mutex_exit(&db->db_mtx);
2663 return;
2664 }
2665 }
2666 }
2667 mutex_exit(&db->db_mtx);
2668
2669 DB_DNODE_ENTER(db);
2670 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2671 flags |= DB_RF_HAVESTRUCT;
2672 DB_DNODE_EXIT(db);
2673
2674 /*
2675 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we
2676 * want to make sure dbuf_read() will read the pending cloned block and
2677 * not the uderlying block that is being replaced. dbuf_undirty() will
2678 * do dbuf_unoverride(), so we will end up with cloned block content,
2679 * without overridden BP.
2680 */
2681 (void) dbuf_read(db, NULL, flags);
2682 if (undirty) {
2683 mutex_enter(&db->db_mtx);
2684 VERIFY(!dbuf_undirty(db, tx));
2685 mutex_exit(&db->db_mtx);
2686 }
2687 (void) dbuf_dirty(db, tx);
2688 }
2689
2690 void
2691 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2692 {
2693 dmu_buf_will_dirty_impl(db_fake,
2694 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2695 }
2696
2697 boolean_t
2698 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2699 {
2700 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2701 dbuf_dirty_record_t *dr;
2702
2703 mutex_enter(&db->db_mtx);
2704 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2705 mutex_exit(&db->db_mtx);
2706 return (dr != NULL);
2707 }
2708
2709 void
2710 dmu_buf_will_clone(dmu_buf_t *db_fake, dmu_tx_t *tx)
2711 {
2712 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2713
2714 /*
2715 * Block cloning: We are going to clone into this block, so undirty
2716 * modifications done to this block so far in this txg. This includes
2717 * writes and clones into this block.
2718 */
2719 mutex_enter(&db->db_mtx);
2720 DBUF_VERIFY(db);
2721 VERIFY(!dbuf_undirty(db, tx));
2722 ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg));
2723 if (db->db_buf != NULL) {
2724 arc_buf_destroy(db->db_buf, db);
2725 db->db_buf = NULL;
2726 dbuf_clear_data(db);
2727 }
2728
2729 db->db_state = DB_NOFILL;
2730 DTRACE_SET_STATE(db, "allocating NOFILL buffer for clone");
2731
2732 DBUF_VERIFY(db);
2733 mutex_exit(&db->db_mtx);
2734
2735 dbuf_noread(db);
2736 (void) dbuf_dirty(db, tx);
2737 }
2738
2739 void
2740 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2741 {
2742 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2743
2744 mutex_enter(&db->db_mtx);
2745 db->db_state = DB_NOFILL;
2746 DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2747 mutex_exit(&db->db_mtx);
2748
2749 dbuf_noread(db);
2750 (void) dbuf_dirty(db, tx);
2751 }
2752
2753 void
2754 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2755 {
2756 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2757
2758 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2759 ASSERT(tx->tx_txg != 0);
2760 ASSERT(db->db_level == 0);
2761 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2762
2763 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2764 dmu_tx_private_ok(tx));
2765
2766 mutex_enter(&db->db_mtx);
2767 if (db->db_state == DB_NOFILL) {
2768 /*
2769 * Block cloning: We will be completely overwriting a block
2770 * cloned in this transaction group, so let's undirty the
2771 * pending clone and mark the block as uncached. This will be
2772 * as if the clone was never done.
2773 */
2774 VERIFY(!dbuf_undirty(db, tx));
2775 db->db_state = DB_UNCACHED;
2776 }
2777 mutex_exit(&db->db_mtx);
2778
2779 dbuf_noread(db);
2780 (void) dbuf_dirty(db, tx);
2781 }
2782
2783 /*
2784 * This function is effectively the same as dmu_buf_will_dirty(), but
2785 * indicates the caller expects raw encrypted data in the db, and provides
2786 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2787 * blkptr_t when this dbuf is written. This is only used for blocks of
2788 * dnodes, during raw receive.
2789 */
2790 void
2791 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2792 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2793 {
2794 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2795 dbuf_dirty_record_t *dr;
2796
2797 /*
2798 * dr_has_raw_params is only processed for blocks of dnodes
2799 * (see dbuf_sync_dnode_leaf_crypt()).
2800 */
2801 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2802 ASSERT3U(db->db_level, ==, 0);
2803 ASSERT(db->db_objset->os_raw_receive);
2804
2805 dmu_buf_will_dirty_impl(db_fake,
2806 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2807
2808 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2809
2810 ASSERT3P(dr, !=, NULL);
2811
2812 dr->dt.dl.dr_has_raw_params = B_TRUE;
2813 dr->dt.dl.dr_byteorder = byteorder;
2814 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2815 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2816 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
2817 }
2818
2819 static void
2820 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2821 {
2822 struct dirty_leaf *dl;
2823 dbuf_dirty_record_t *dr;
2824
2825 dr = list_head(&db->db_dirty_records);
2826 ASSERT3P(dr, !=, NULL);
2827 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2828 dl = &dr->dt.dl;
2829 dl->dr_overridden_by = *bp;
2830 dl->dr_override_state = DR_OVERRIDDEN;
2831 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2832 }
2833
2834 void
2835 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx)
2836 {
2837 (void) tx;
2838 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2839 dbuf_states_t old_state;
2840 mutex_enter(&db->db_mtx);
2841 DBUF_VERIFY(db);
2842
2843 old_state = db->db_state;
2844 db->db_state = DB_CACHED;
2845 if (old_state == DB_FILL) {
2846 if (db->db_level == 0 && db->db_freed_in_flight) {
2847 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2848 /* we were freed while filling */
2849 /* XXX dbuf_undirty? */
2850 memset(db->db.db_data, 0, db->db.db_size);
2851 db->db_freed_in_flight = FALSE;
2852 DTRACE_SET_STATE(db,
2853 "fill done handling freed in flight");
2854 } else {
2855 DTRACE_SET_STATE(db, "fill done");
2856 }
2857 cv_broadcast(&db->db_changed);
2858 }
2859 mutex_exit(&db->db_mtx);
2860 }
2861
2862 void
2863 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2864 bp_embedded_type_t etype, enum zio_compress comp,
2865 int uncompressed_size, int compressed_size, int byteorder,
2866 dmu_tx_t *tx)
2867 {
2868 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2869 struct dirty_leaf *dl;
2870 dmu_object_type_t type;
2871 dbuf_dirty_record_t *dr;
2872
2873 if (etype == BP_EMBEDDED_TYPE_DATA) {
2874 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2875 SPA_FEATURE_EMBEDDED_DATA));
2876 }
2877
2878 DB_DNODE_ENTER(db);
2879 type = DB_DNODE(db)->dn_type;
2880 DB_DNODE_EXIT(db);
2881
2882 ASSERT0(db->db_level);
2883 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2884
2885 dmu_buf_will_not_fill(dbuf, tx);
2886
2887 dr = list_head(&db->db_dirty_records);
2888 ASSERT3P(dr, !=, NULL);
2889 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2890 dl = &dr->dt.dl;
2891 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2892 data, comp, uncompressed_size, compressed_size);
2893 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2894 BP_SET_TYPE(&dl->dr_overridden_by, type);
2895 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2896 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2897
2898 dl->dr_override_state = DR_OVERRIDDEN;
2899 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2900 }
2901
2902 void
2903 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
2904 {
2905 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2906 dmu_object_type_t type;
2907 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
2908 SPA_FEATURE_REDACTED_DATASETS));
2909
2910 DB_DNODE_ENTER(db);
2911 type = DB_DNODE(db)->dn_type;
2912 DB_DNODE_EXIT(db);
2913
2914 ASSERT0(db->db_level);
2915 dmu_buf_will_not_fill(dbuf, tx);
2916
2917 blkptr_t bp = { { { {0} } } };
2918 BP_SET_TYPE(&bp, type);
2919 BP_SET_LEVEL(&bp, 0);
2920 BP_SET_BIRTH(&bp, tx->tx_txg, 0);
2921 BP_SET_REDACTED(&bp);
2922 BPE_SET_LSIZE(&bp, dbuf->db_size);
2923
2924 dbuf_override_impl(db, &bp, tx);
2925 }
2926
2927 /*
2928 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2929 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2930 */
2931 void
2932 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2933 {
2934 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2935 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2936 ASSERT(db->db_level == 0);
2937 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2938 ASSERT(buf != NULL);
2939 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
2940 ASSERT(tx->tx_txg != 0);
2941
2942 arc_return_buf(buf, db);
2943 ASSERT(arc_released(buf));
2944
2945 mutex_enter(&db->db_mtx);
2946
2947 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2948 cv_wait(&db->db_changed, &db->db_mtx);
2949
2950 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED ||
2951 db->db_state == DB_NOFILL);
2952
2953 if (db->db_state == DB_CACHED &&
2954 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2955 /*
2956 * In practice, we will never have a case where we have an
2957 * encrypted arc buffer while additional holds exist on the
2958 * dbuf. We don't handle this here so we simply assert that
2959 * fact instead.
2960 */
2961 ASSERT(!arc_is_encrypted(buf));
2962 mutex_exit(&db->db_mtx);
2963 (void) dbuf_dirty(db, tx);
2964 memcpy(db->db.db_data, buf->b_data, db->db.db_size);
2965 arc_buf_destroy(buf, db);
2966 return;
2967 }
2968
2969 if (db->db_state == DB_CACHED) {
2970 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2971
2972 ASSERT(db->db_buf != NULL);
2973 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2974 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2975
2976 if (!arc_released(db->db_buf)) {
2977 ASSERT(dr->dt.dl.dr_override_state ==
2978 DR_OVERRIDDEN);
2979 arc_release(db->db_buf, db);
2980 }
2981 dr->dt.dl.dr_data = buf;
2982 arc_buf_destroy(db->db_buf, db);
2983 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2984 arc_release(db->db_buf, db);
2985 arc_buf_destroy(db->db_buf, db);
2986 }
2987 db->db_buf = NULL;
2988 } else if (db->db_state == DB_NOFILL) {
2989 /*
2990 * We will be completely replacing the cloned block. In case
2991 * it was cloned in this transaction group, let's undirty the
2992 * pending clone and mark the block as uncached. This will be
2993 * as if the clone was never done.
2994 */
2995 VERIFY(!dbuf_undirty(db, tx));
2996 db->db_state = DB_UNCACHED;
2997 }
2998 ASSERT(db->db_buf == NULL);
2999 dbuf_set_data(db, buf);
3000 db->db_state = DB_FILL;
3001 DTRACE_SET_STATE(db, "filling assigned arcbuf");
3002 mutex_exit(&db->db_mtx);
3003 (void) dbuf_dirty(db, tx);
3004 dmu_buf_fill_done(&db->db, tx);
3005 }
3006
3007 void
3008 dbuf_destroy(dmu_buf_impl_t *db)
3009 {
3010 dnode_t *dn;
3011 dmu_buf_impl_t *parent = db->db_parent;
3012 dmu_buf_impl_t *dndb;
3013
3014 ASSERT(MUTEX_HELD(&db->db_mtx));
3015 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3016
3017 if (db->db_buf != NULL) {
3018 arc_buf_destroy(db->db_buf, db);
3019 db->db_buf = NULL;
3020 }
3021
3022 if (db->db_blkid == DMU_BONUS_BLKID) {
3023 int slots = DB_DNODE(db)->dn_num_slots;
3024 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3025 if (db->db.db_data != NULL) {
3026 kmem_free(db->db.db_data, bonuslen);
3027 arc_space_return(bonuslen, ARC_SPACE_BONUS);
3028 db->db_state = DB_UNCACHED;
3029 DTRACE_SET_STATE(db, "buffer cleared");
3030 }
3031 }
3032
3033 dbuf_clear_data(db);
3034
3035 if (multilist_link_active(&db->db_cache_link)) {
3036 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3037 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3038
3039 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3040
3041 ASSERT0(dmu_buf_user_size(&db->db));
3042 (void) zfs_refcount_remove_many(
3043 &dbuf_caches[db->db_caching_status].size,
3044 db->db.db_size, db);
3045
3046 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3047 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3048 } else {
3049 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3050 DBUF_STAT_BUMPDOWN(cache_count);
3051 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3052 db->db.db_size);
3053 }
3054 db->db_caching_status = DB_NO_CACHE;
3055 }
3056
3057 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
3058 ASSERT(db->db_data_pending == NULL);
3059 ASSERT(list_is_empty(&db->db_dirty_records));
3060
3061 db->db_state = DB_EVICTING;
3062 DTRACE_SET_STATE(db, "buffer eviction started");
3063 db->db_blkptr = NULL;
3064
3065 /*
3066 * Now that db_state is DB_EVICTING, nobody else can find this via
3067 * the hash table. We can now drop db_mtx, which allows us to
3068 * acquire the dn_dbufs_mtx.
3069 */
3070 mutex_exit(&db->db_mtx);
3071
3072 DB_DNODE_ENTER(db);
3073 dn = DB_DNODE(db);
3074 dndb = dn->dn_dbuf;
3075 if (db->db_blkid != DMU_BONUS_BLKID) {
3076 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
3077 if (needlock)
3078 mutex_enter_nested(&dn->dn_dbufs_mtx,
3079 NESTED_SINGLE);
3080 avl_remove(&dn->dn_dbufs, db);
3081 membar_producer();
3082 DB_DNODE_EXIT(db);
3083 if (needlock)
3084 mutex_exit(&dn->dn_dbufs_mtx);
3085 /*
3086 * Decrementing the dbuf count means that the hold corresponding
3087 * to the removed dbuf is no longer discounted in dnode_move(),
3088 * so the dnode cannot be moved until after we release the hold.
3089 * The membar_producer() ensures visibility of the decremented
3090 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
3091 * release any lock.
3092 */
3093 mutex_enter(&dn->dn_mtx);
3094 dnode_rele_and_unlock(dn, db, B_TRUE);
3095 db->db_dnode_handle = NULL;
3096
3097 dbuf_hash_remove(db);
3098 } else {
3099 DB_DNODE_EXIT(db);
3100 }
3101
3102 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3103
3104 db->db_parent = NULL;
3105
3106 ASSERT(db->db_buf == NULL);
3107 ASSERT(db->db.db_data == NULL);
3108 ASSERT(db->db_hash_next == NULL);
3109 ASSERT(db->db_blkptr == NULL);
3110 ASSERT(db->db_data_pending == NULL);
3111 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
3112 ASSERT(!multilist_link_active(&db->db_cache_link));
3113
3114 /*
3115 * If this dbuf is referenced from an indirect dbuf,
3116 * decrement the ref count on the indirect dbuf.
3117 */
3118 if (parent && parent != dndb) {
3119 mutex_enter(&parent->db_mtx);
3120 dbuf_rele_and_unlock(parent, db, B_TRUE);
3121 }
3122
3123 kmem_cache_free(dbuf_kmem_cache, db);
3124 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3125 }
3126
3127 /*
3128 * Note: While bpp will always be updated if the function returns success,
3129 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
3130 * this happens when the dnode is the meta-dnode, or {user|group|project}used
3131 * object.
3132 */
3133 __attribute__((always_inline))
3134 static inline int
3135 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
3136 dmu_buf_impl_t **parentp, blkptr_t **bpp)
3137 {
3138 *parentp = NULL;
3139 *bpp = NULL;
3140
3141 ASSERT(blkid != DMU_BONUS_BLKID);
3142
3143 if (blkid == DMU_SPILL_BLKID) {
3144 mutex_enter(&dn->dn_mtx);
3145 if (dn->dn_have_spill &&
3146 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
3147 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
3148 else
3149 *bpp = NULL;
3150 dbuf_add_ref(dn->dn_dbuf, NULL);
3151 *parentp = dn->dn_dbuf;
3152 mutex_exit(&dn->dn_mtx);
3153 return (0);
3154 }
3155
3156 int nlevels =
3157 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
3158 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
3159
3160 ASSERT3U(level * epbs, <, 64);
3161 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3162 /*
3163 * This assertion shouldn't trip as long as the max indirect block size
3164 * is less than 1M. The reason for this is that up to that point,
3165 * the number of levels required to address an entire object with blocks
3166 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
3167 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3168 * (i.e. we can address the entire object), objects will all use at most
3169 * N-1 levels and the assertion won't overflow. However, once epbs is
3170 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
3171 * enough to address an entire object, so objects will have 5 levels,
3172 * but then this assertion will overflow.
3173 *
3174 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3175 * need to redo this logic to handle overflows.
3176 */
3177 ASSERT(level >= nlevels ||
3178 ((nlevels - level - 1) * epbs) +
3179 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3180 if (level >= nlevels ||
3181 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3182 ((nlevels - level - 1) * epbs)) ||
3183 (fail_sparse &&
3184 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3185 /* the buffer has no parent yet */
3186 return (SET_ERROR(ENOENT));
3187 } else if (level < nlevels-1) {
3188 /* this block is referenced from an indirect block */
3189 int err;
3190
3191 err = dbuf_hold_impl(dn, level + 1,
3192 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3193
3194 if (err)
3195 return (err);
3196 err = dbuf_read(*parentp, NULL,
3197 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
3198 if (err) {
3199 dbuf_rele(*parentp, NULL);
3200 *parentp = NULL;
3201 return (err);
3202 }
3203 rw_enter(&(*parentp)->db_rwlock, RW_READER);
3204 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3205 (blkid & ((1ULL << epbs) - 1));
3206 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
3207 ASSERT(BP_IS_HOLE(*bpp));
3208 rw_exit(&(*parentp)->db_rwlock);
3209 return (0);
3210 } else {
3211 /* the block is referenced from the dnode */
3212 ASSERT3U(level, ==, nlevels-1);
3213 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3214 blkid < dn->dn_phys->dn_nblkptr);
3215 if (dn->dn_dbuf) {
3216 dbuf_add_ref(dn->dn_dbuf, NULL);
3217 *parentp = dn->dn_dbuf;
3218 }
3219 *bpp = &dn->dn_phys->dn_blkptr[blkid];
3220 return (0);
3221 }
3222 }
3223
3224 static dmu_buf_impl_t *
3225 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3226 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash)
3227 {
3228 objset_t *os = dn->dn_objset;
3229 dmu_buf_impl_t *db, *odb;
3230
3231 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3232 ASSERT(dn->dn_type != DMU_OT_NONE);
3233
3234 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3235
3236 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3237 offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3238
3239 db->db_objset = os;
3240 db->db.db_object = dn->dn_object;
3241 db->db_level = level;
3242 db->db_blkid = blkid;
3243 db->db_dirtycnt = 0;
3244 db->db_dnode_handle = dn->dn_handle;
3245 db->db_parent = parent;
3246 db->db_blkptr = blkptr;
3247 db->db_hash = hash;
3248
3249 db->db_user = NULL;
3250 db->db_user_immediate_evict = FALSE;
3251 db->db_freed_in_flight = FALSE;
3252 db->db_pending_evict = FALSE;
3253
3254 if (blkid == DMU_BONUS_BLKID) {
3255 ASSERT3P(parent, ==, dn->dn_dbuf);
3256 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3257 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3258 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3259 db->db.db_offset = DMU_BONUS_BLKID;
3260 db->db_state = DB_UNCACHED;
3261 DTRACE_SET_STATE(db, "bonus buffer created");
3262 db->db_caching_status = DB_NO_CACHE;
3263 /* the bonus dbuf is not placed in the hash table */
3264 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3265 return (db);
3266 } else if (blkid == DMU_SPILL_BLKID) {
3267 db->db.db_size = (blkptr != NULL) ?
3268 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3269 db->db.db_offset = 0;
3270 } else {
3271 int blocksize =
3272 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3273 db->db.db_size = blocksize;
3274 db->db.db_offset = db->db_blkid * blocksize;
3275 }
3276
3277 /*
3278 * Hold the dn_dbufs_mtx while we get the new dbuf
3279 * in the hash table *and* added to the dbufs list.
3280 * This prevents a possible deadlock with someone
3281 * trying to look up this dbuf before it's added to the
3282 * dn_dbufs list.
3283 */
3284 mutex_enter(&dn->dn_dbufs_mtx);
3285 db->db_state = DB_EVICTING; /* not worth logging this state change */
3286 if ((odb = dbuf_hash_insert(db)) != NULL) {
3287 /* someone else inserted it first */
3288 mutex_exit(&dn->dn_dbufs_mtx);
3289 kmem_cache_free(dbuf_kmem_cache, db);
3290 DBUF_STAT_BUMP(hash_insert_race);
3291 return (odb);
3292 }
3293 avl_add(&dn->dn_dbufs, db);
3294
3295 db->db_state = DB_UNCACHED;
3296 DTRACE_SET_STATE(db, "regular buffer created");
3297 db->db_caching_status = DB_NO_CACHE;
3298 mutex_exit(&dn->dn_dbufs_mtx);
3299 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3300
3301 if (parent && parent != dn->dn_dbuf)
3302 dbuf_add_ref(parent, db);
3303
3304 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3305 zfs_refcount_count(&dn->dn_holds) > 0);
3306 (void) zfs_refcount_add(&dn->dn_holds, db);
3307
3308 dprintf_dbuf(db, "db=%p\n", db);
3309
3310 return (db);
3311 }
3312
3313 /*
3314 * This function returns a block pointer and information about the object,
3315 * given a dnode and a block. This is a publicly accessible version of
3316 * dbuf_findbp that only returns some information, rather than the
3317 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
3318 * should be locked as (at least) a reader.
3319 */
3320 int
3321 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3322 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3323 {
3324 dmu_buf_impl_t *dbp = NULL;
3325 blkptr_t *bp2;
3326 int err = 0;
3327 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3328
3329 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3330 if (err == 0) {
3331 ASSERT3P(bp2, !=, NULL);
3332 *bp = *bp2;
3333 if (dbp != NULL)
3334 dbuf_rele(dbp, NULL);
3335 if (datablkszsec != NULL)
3336 *datablkszsec = dn->dn_phys->dn_datablkszsec;
3337 if (indblkshift != NULL)
3338 *indblkshift = dn->dn_phys->dn_indblkshift;
3339 }
3340
3341 return (err);
3342 }
3343
3344 typedef struct dbuf_prefetch_arg {
3345 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
3346 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3347 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3348 int dpa_curlevel; /* The current level that we're reading */
3349 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3350 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3351 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3352 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3353 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3354 void *dpa_arg; /* prefetch completion arg */
3355 } dbuf_prefetch_arg_t;
3356
3357 static void
3358 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3359 {
3360 if (dpa->dpa_cb != NULL) {
3361 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3362 dpa->dpa_zb.zb_blkid, io_done);
3363 }
3364 kmem_free(dpa, sizeof (*dpa));
3365 }
3366
3367 static void
3368 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3369 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3370 {
3371 (void) zio, (void) zb, (void) iobp;
3372 dbuf_prefetch_arg_t *dpa = private;
3373
3374 if (abuf != NULL)
3375 arc_buf_destroy(abuf, private);
3376
3377 dbuf_prefetch_fini(dpa, B_TRUE);
3378 }
3379
3380 /*
3381 * Actually issue the prefetch read for the block given.
3382 */
3383 static void
3384 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3385 {
3386 ASSERT(!BP_IS_REDACTED(bp) ||
3387 dsl_dataset_feature_is_active(
3388 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3389 SPA_FEATURE_REDACTED_DATASETS));
3390
3391 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
3392 return (dbuf_prefetch_fini(dpa, B_FALSE));
3393
3394 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3395 arc_flags_t aflags =
3396 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3397 ARC_FLAG_NO_BUF;
3398
3399 /* dnodes are always read as raw and then converted later */
3400 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3401 dpa->dpa_curlevel == 0)
3402 zio_flags |= ZIO_FLAG_RAW;
3403
3404 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3405 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3406 ASSERT(dpa->dpa_zio != NULL);
3407 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3408 dbuf_issue_final_prefetch_done, dpa,
3409 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3410 }
3411
3412 /*
3413 * Called when an indirect block above our prefetch target is read in. This
3414 * will either read in the next indirect block down the tree or issue the actual
3415 * prefetch if the next block down is our target.
3416 */
3417 static void
3418 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3419 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3420 {
3421 (void) zb, (void) iobp;
3422 dbuf_prefetch_arg_t *dpa = private;
3423
3424 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3425 ASSERT3S(dpa->dpa_curlevel, >, 0);
3426
3427 if (abuf == NULL) {
3428 ASSERT(zio == NULL || zio->io_error != 0);
3429 dbuf_prefetch_fini(dpa, B_TRUE);
3430 return;
3431 }
3432 ASSERT(zio == NULL || zio->io_error == 0);
3433
3434 /*
3435 * The dpa_dnode is only valid if we are called with a NULL
3436 * zio. This indicates that the arc_read() returned without
3437 * first calling zio_read() to issue a physical read. Once
3438 * a physical read is made the dpa_dnode must be invalidated
3439 * as the locks guarding it may have been dropped. If the
3440 * dpa_dnode is still valid, then we want to add it to the dbuf
3441 * cache. To do so, we must hold the dbuf associated with the block
3442 * we just prefetched, read its contents so that we associate it
3443 * with an arc_buf_t, and then release it.
3444 */
3445 if (zio != NULL) {
3446 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3447 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3448 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3449 } else {
3450 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3451 }
3452 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3453
3454 dpa->dpa_dnode = NULL;
3455 } else if (dpa->dpa_dnode != NULL) {
3456 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3457 (dpa->dpa_epbs * (dpa->dpa_curlevel -
3458 dpa->dpa_zb.zb_level));
3459 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3460 dpa->dpa_curlevel, curblkid, FTAG);
3461 if (db == NULL) {
3462 arc_buf_destroy(abuf, private);
3463 dbuf_prefetch_fini(dpa, B_TRUE);
3464 return;
3465 }
3466 (void) dbuf_read(db, NULL,
3467 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
3468 dbuf_rele(db, FTAG);
3469 }
3470
3471 dpa->dpa_curlevel--;
3472 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3473 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3474 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3475 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3476
3477 ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode &&
3478 dsl_dataset_feature_is_active(
3479 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3480 SPA_FEATURE_REDACTED_DATASETS)));
3481 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3482 arc_buf_destroy(abuf, private);
3483 dbuf_prefetch_fini(dpa, B_TRUE);
3484 return;
3485 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3486 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3487 dbuf_issue_final_prefetch(dpa, bp);
3488 } else {
3489 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3490 zbookmark_phys_t zb;
3491
3492 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3493 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3494 iter_aflags |= ARC_FLAG_L2CACHE;
3495
3496 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3497
3498 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3499 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3500
3501 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3502 bp, dbuf_prefetch_indirect_done, dpa,
3503 ZIO_PRIORITY_SYNC_READ,
3504 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3505 &iter_aflags, &zb);
3506 }
3507
3508 arc_buf_destroy(abuf, private);
3509 }
3510
3511 /*
3512 * Issue prefetch reads for the given block on the given level. If the indirect
3513 * blocks above that block are not in memory, we will read them in
3514 * asynchronously. As a result, this call never blocks waiting for a read to
3515 * complete. Note that the prefetch might fail if the dataset is encrypted and
3516 * the encryption key is unmapped before the IO completes.
3517 */
3518 int
3519 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3520 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3521 void *arg)
3522 {
3523 blkptr_t bp;
3524 int epbs, nlevels, curlevel;
3525 uint64_t curblkid;
3526
3527 ASSERT(blkid != DMU_BONUS_BLKID);
3528 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3529
3530 if (blkid > dn->dn_maxblkid)
3531 goto no_issue;
3532
3533 if (level == 0 && dnode_block_freed(dn, blkid))
3534 goto no_issue;
3535
3536 /*
3537 * This dnode hasn't been written to disk yet, so there's nothing to
3538 * prefetch.
3539 */
3540 nlevels = dn->dn_phys->dn_nlevels;
3541 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3542 goto no_issue;
3543
3544 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3545 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3546 goto no_issue;
3547
3548 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3549 level, blkid, NULL);
3550 if (db != NULL) {
3551 mutex_exit(&db->db_mtx);
3552 /*
3553 * This dbuf already exists. It is either CACHED, or
3554 * (we assume) about to be read or filled.
3555 */
3556 goto no_issue;
3557 }
3558
3559 /*
3560 * Find the closest ancestor (indirect block) of the target block
3561 * that is present in the cache. In this indirect block, we will
3562 * find the bp that is at curlevel, curblkid.
3563 */
3564 curlevel = level;
3565 curblkid = blkid;
3566 while (curlevel < nlevels - 1) {
3567 int parent_level = curlevel + 1;
3568 uint64_t parent_blkid = curblkid >> epbs;
3569 dmu_buf_impl_t *db;
3570
3571 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3572 FALSE, TRUE, FTAG, &db) == 0) {
3573 blkptr_t *bpp = db->db_buf->b_data;
3574 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3575 dbuf_rele(db, FTAG);
3576 break;
3577 }
3578
3579 curlevel = parent_level;
3580 curblkid = parent_blkid;
3581 }
3582
3583 if (curlevel == nlevels - 1) {
3584 /* No cached indirect blocks found. */
3585 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3586 bp = dn->dn_phys->dn_blkptr[curblkid];
3587 }
3588 ASSERT(!BP_IS_REDACTED(&bp) ||
3589 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3590 SPA_FEATURE_REDACTED_DATASETS));
3591 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3592 goto no_issue;
3593
3594 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3595
3596 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3597 ZIO_FLAG_CANFAIL);
3598
3599 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3600 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3601 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3602 dn->dn_object, level, blkid);
3603 dpa->dpa_curlevel = curlevel;
3604 dpa->dpa_prio = prio;
3605 dpa->dpa_aflags = aflags;
3606 dpa->dpa_spa = dn->dn_objset->os_spa;
3607 dpa->dpa_dnode = dn;
3608 dpa->dpa_epbs = epbs;
3609 dpa->dpa_zio = pio;
3610 dpa->dpa_cb = cb;
3611 dpa->dpa_arg = arg;
3612
3613 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level))
3614 dpa->dpa_aflags |= ARC_FLAG_UNCACHED;
3615 else if (dnode_level_is_l2cacheable(&bp, dn, level))
3616 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3617
3618 /*
3619 * If we have the indirect just above us, no need to do the asynchronous
3620 * prefetch chain; we'll just run the last step ourselves. If we're at
3621 * a higher level, though, we want to issue the prefetches for all the
3622 * indirect blocks asynchronously, so we can go on with whatever we were
3623 * doing.
3624 */
3625 if (curlevel == level) {
3626 ASSERT3U(curblkid, ==, blkid);
3627 dbuf_issue_final_prefetch(dpa, &bp);
3628 } else {
3629 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3630 zbookmark_phys_t zb;
3631
3632 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3633 if (dnode_level_is_l2cacheable(&bp, dn, level))
3634 iter_aflags |= ARC_FLAG_L2CACHE;
3635
3636 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3637 dn->dn_object, curlevel, curblkid);
3638 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3639 &bp, dbuf_prefetch_indirect_done, dpa,
3640 ZIO_PRIORITY_SYNC_READ,
3641 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3642 &iter_aflags, &zb);
3643 }
3644 /*
3645 * We use pio here instead of dpa_zio since it's possible that
3646 * dpa may have already been freed.
3647 */
3648 zio_nowait(pio);
3649 return (1);
3650 no_issue:
3651 if (cb != NULL)
3652 cb(arg, level, blkid, B_FALSE);
3653 return (0);
3654 }
3655
3656 int
3657 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3658 arc_flags_t aflags)
3659 {
3660
3661 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3662 }
3663
3664 /*
3665 * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3666 * the case of encrypted, compressed and uncompressed buffers by
3667 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3668 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3669 *
3670 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3671 */
3672 noinline static void
3673 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3674 {
3675 dbuf_dirty_record_t *dr = db->db_data_pending;
3676 arc_buf_t *data = dr->dt.dl.dr_data;
3677 enum zio_compress compress_type = arc_get_compression(data);
3678 uint8_t complevel = arc_get_complevel(data);
3679
3680 if (arc_is_encrypted(data)) {
3681 boolean_t byteorder;
3682 uint8_t salt[ZIO_DATA_SALT_LEN];
3683 uint8_t iv[ZIO_DATA_IV_LEN];
3684 uint8_t mac[ZIO_DATA_MAC_LEN];
3685
3686 arc_get_raw_params(data, &byteorder, salt, iv, mac);
3687 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3688 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3689 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3690 compress_type, complevel));
3691 } else if (compress_type != ZIO_COMPRESS_OFF) {
3692 dbuf_set_data(db, arc_alloc_compressed_buf(
3693 dn->dn_objset->os_spa, db, arc_buf_size(data),
3694 arc_buf_lsize(data), compress_type, complevel));
3695 } else {
3696 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3697 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3698 }
3699
3700 rw_enter(&db->db_rwlock, RW_WRITER);
3701 memcpy(db->db.db_data, data->b_data, arc_buf_size(data));
3702 rw_exit(&db->db_rwlock);
3703 }
3704
3705 /*
3706 * Returns with db_holds incremented, and db_mtx not held.
3707 * Note: dn_struct_rwlock must be held.
3708 */
3709 int
3710 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3711 boolean_t fail_sparse, boolean_t fail_uncached,
3712 const void *tag, dmu_buf_impl_t **dbp)
3713 {
3714 dmu_buf_impl_t *db, *parent = NULL;
3715 uint64_t hv;
3716
3717 /* If the pool has been created, verify the tx_sync_lock is not held */
3718 spa_t *spa = dn->dn_objset->os_spa;
3719 dsl_pool_t *dp = spa->spa_dsl_pool;
3720 if (dp != NULL) {
3721 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3722 }
3723
3724 ASSERT(blkid != DMU_BONUS_BLKID);
3725 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3726 ASSERT3U(dn->dn_nlevels, >, level);
3727
3728 *dbp = NULL;
3729
3730 /* dbuf_find() returns with db_mtx held */
3731 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv);
3732
3733 if (db == NULL) {
3734 blkptr_t *bp = NULL;
3735 int err;
3736
3737 if (fail_uncached)
3738 return (SET_ERROR(ENOENT));
3739
3740 ASSERT3P(parent, ==, NULL);
3741 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3742 if (fail_sparse) {
3743 if (err == 0 && bp && BP_IS_HOLE(bp))
3744 err = SET_ERROR(ENOENT);
3745 if (err) {
3746 if (parent)
3747 dbuf_rele(parent, NULL);
3748 return (err);
3749 }
3750 }
3751 if (err && err != ENOENT)
3752 return (err);
3753 db = dbuf_create(dn, level, blkid, parent, bp, hv);
3754 }
3755
3756 if (fail_uncached && db->db_state != DB_CACHED) {
3757 mutex_exit(&db->db_mtx);
3758 return (SET_ERROR(ENOENT));
3759 }
3760
3761 if (db->db_buf != NULL) {
3762 arc_buf_access(db->db_buf);
3763 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3764 }
3765
3766 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3767
3768 /*
3769 * If this buffer is currently syncing out, and we are
3770 * still referencing it from db_data, we need to make a copy
3771 * of it in case we decide we want to dirty it again in this txg.
3772 */
3773 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3774 dn->dn_object != DMU_META_DNODE_OBJECT &&
3775 db->db_state == DB_CACHED && db->db_data_pending) {
3776 dbuf_dirty_record_t *dr = db->db_data_pending;
3777 if (dr->dt.dl.dr_data == db->db_buf) {
3778 ASSERT3P(db->db_buf, !=, NULL);
3779 dbuf_hold_copy(dn, db);
3780 }
3781 }
3782
3783 if (multilist_link_active(&db->db_cache_link)) {
3784 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3785 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3786 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3787
3788 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3789
3790 uint64_t size = db->db.db_size + dmu_buf_user_size(&db->db);
3791 (void) zfs_refcount_remove_many(
3792 &dbuf_caches[db->db_caching_status].size, size, db);
3793
3794 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3795 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3796 } else {
3797 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3798 DBUF_STAT_BUMPDOWN(cache_count);
3799 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
3800 }
3801 db->db_caching_status = DB_NO_CACHE;
3802 }
3803 (void) zfs_refcount_add(&db->db_holds, tag);
3804 DBUF_VERIFY(db);
3805 mutex_exit(&db->db_mtx);
3806
3807 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3808 if (parent)
3809 dbuf_rele(parent, NULL);
3810
3811 ASSERT3P(DB_DNODE(db), ==, dn);
3812 ASSERT3U(db->db_blkid, ==, blkid);
3813 ASSERT3U(db->db_level, ==, level);
3814 *dbp = db;
3815
3816 return (0);
3817 }
3818
3819 dmu_buf_impl_t *
3820 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
3821 {
3822 return (dbuf_hold_level(dn, 0, blkid, tag));
3823 }
3824
3825 dmu_buf_impl_t *
3826 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
3827 {
3828 dmu_buf_impl_t *db;
3829 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3830 return (err ? NULL : db);
3831 }
3832
3833 void
3834 dbuf_create_bonus(dnode_t *dn)
3835 {
3836 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3837
3838 ASSERT(dn->dn_bonus == NULL);
3839 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL,
3840 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID));
3841 }
3842
3843 int
3844 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3845 {
3846 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3847
3848 if (db->db_blkid != DMU_SPILL_BLKID)
3849 return (SET_ERROR(ENOTSUP));
3850 if (blksz == 0)
3851 blksz = SPA_MINBLOCKSIZE;
3852 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3853 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3854
3855 dbuf_new_size(db, blksz, tx);
3856
3857 return (0);
3858 }
3859
3860 void
3861 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3862 {
3863 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3864 }
3865
3866 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3867 void
3868 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
3869 {
3870 int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3871 VERIFY3S(holds, >, 1);
3872 }
3873
3874 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3875 boolean_t
3876 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3877 const void *tag)
3878 {
3879 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3880 dmu_buf_impl_t *found_db;
3881 boolean_t result = B_FALSE;
3882
3883 if (blkid == DMU_BONUS_BLKID)
3884 found_db = dbuf_find_bonus(os, obj);
3885 else
3886 found_db = dbuf_find(os, obj, 0, blkid, NULL);
3887
3888 if (found_db != NULL) {
3889 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3890 (void) zfs_refcount_add(&db->db_holds, tag);
3891 result = B_TRUE;
3892 }
3893 mutex_exit(&found_db->db_mtx);
3894 }
3895 return (result);
3896 }
3897
3898 /*
3899 * If you call dbuf_rele() you had better not be referencing the dnode handle
3900 * unless you have some other direct or indirect hold on the dnode. (An indirect
3901 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3902 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3903 * dnode's parent dbuf evicting its dnode handles.
3904 */
3905 void
3906 dbuf_rele(dmu_buf_impl_t *db, const void *tag)
3907 {
3908 mutex_enter(&db->db_mtx);
3909 dbuf_rele_and_unlock(db, tag, B_FALSE);
3910 }
3911
3912 void
3913 dmu_buf_rele(dmu_buf_t *db, const void *tag)
3914 {
3915 dbuf_rele((dmu_buf_impl_t *)db, tag);
3916 }
3917
3918 /*
3919 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3920 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3921 * argument should be set if we are already in the dbuf-evicting code
3922 * path, in which case we don't want to recursively evict. This allows us to
3923 * avoid deeply nested stacks that would have a call flow similar to this:
3924 *
3925 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3926 * ^ |
3927 * | |
3928 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3929 *
3930 */
3931 void
3932 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
3933 {
3934 int64_t holds;
3935 uint64_t size;
3936
3937 ASSERT(MUTEX_HELD(&db->db_mtx));
3938 DBUF_VERIFY(db);
3939
3940 /*
3941 * Remove the reference to the dbuf before removing its hold on the
3942 * dnode so we can guarantee in dnode_move() that a referenced bonus
3943 * buffer has a corresponding dnode hold.
3944 */
3945 holds = zfs_refcount_remove(&db->db_holds, tag);
3946 ASSERT(holds >= 0);
3947
3948 /*
3949 * We can't freeze indirects if there is a possibility that they
3950 * may be modified in the current syncing context.
3951 */
3952 if (db->db_buf != NULL &&
3953 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3954 arc_buf_freeze(db->db_buf);
3955 }
3956
3957 if (holds == db->db_dirtycnt &&
3958 db->db_level == 0 && db->db_user_immediate_evict)
3959 dbuf_evict_user(db);
3960
3961 if (holds == 0) {
3962 if (db->db_blkid == DMU_BONUS_BLKID) {
3963 dnode_t *dn;
3964 boolean_t evict_dbuf = db->db_pending_evict;
3965
3966 /*
3967 * If the dnode moves here, we cannot cross this
3968 * barrier until the move completes.
3969 */
3970 DB_DNODE_ENTER(db);
3971
3972 dn = DB_DNODE(db);
3973 atomic_dec_32(&dn->dn_dbufs_count);
3974
3975 /*
3976 * Decrementing the dbuf count means that the bonus
3977 * buffer's dnode hold is no longer discounted in
3978 * dnode_move(). The dnode cannot move until after
3979 * the dnode_rele() below.
3980 */
3981 DB_DNODE_EXIT(db);
3982
3983 /*
3984 * Do not reference db after its lock is dropped.
3985 * Another thread may evict it.
3986 */
3987 mutex_exit(&db->db_mtx);
3988
3989 if (evict_dbuf)
3990 dnode_evict_bonus(dn);
3991
3992 dnode_rele(dn, db);
3993 } else if (db->db_buf == NULL) {
3994 /*
3995 * This is a special case: we never associated this
3996 * dbuf with any data allocated from the ARC.
3997 */
3998 ASSERT(db->db_state == DB_UNCACHED ||
3999 db->db_state == DB_NOFILL);
4000 dbuf_destroy(db);
4001 } else if (arc_released(db->db_buf)) {
4002 /*
4003 * This dbuf has anonymous data associated with it.
4004 */
4005 dbuf_destroy(db);
4006 } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) ||
4007 db->db_pending_evict) {
4008 dbuf_destroy(db);
4009 } else if (!multilist_link_active(&db->db_cache_link)) {
4010 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4011
4012 dbuf_cached_state_t dcs =
4013 dbuf_include_in_metadata_cache(db) ?
4014 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
4015 db->db_caching_status = dcs;
4016
4017 multilist_insert(&dbuf_caches[dcs].cache, db);
4018 uint64_t db_size = db->db.db_size +
4019 dmu_buf_user_size(&db->db);
4020 size = zfs_refcount_add_many(
4021 &dbuf_caches[dcs].size, db_size, db);
4022 uint8_t db_level = db->db_level;
4023 mutex_exit(&db->db_mtx);
4024
4025 if (dcs == DB_DBUF_METADATA_CACHE) {
4026 DBUF_STAT_BUMP(metadata_cache_count);
4027 DBUF_STAT_MAX(metadata_cache_size_bytes_max,
4028 size);
4029 } else {
4030 DBUF_STAT_BUMP(cache_count);
4031 DBUF_STAT_MAX(cache_size_bytes_max, size);
4032 DBUF_STAT_BUMP(cache_levels[db_level]);
4033 DBUF_STAT_INCR(cache_levels_bytes[db_level],
4034 db_size);
4035 }
4036
4037 if (dcs == DB_DBUF_CACHE && !evicting)
4038 dbuf_evict_notify(size);
4039 }
4040 } else {
4041 mutex_exit(&db->db_mtx);
4042 }
4043
4044 }
4045
4046 #pragma weak dmu_buf_refcount = dbuf_refcount
4047 uint64_t
4048 dbuf_refcount(dmu_buf_impl_t *db)
4049 {
4050 return (zfs_refcount_count(&db->db_holds));
4051 }
4052
4053 uint64_t
4054 dmu_buf_user_refcount(dmu_buf_t *db_fake)
4055 {
4056 uint64_t holds;
4057 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4058
4059 mutex_enter(&db->db_mtx);
4060 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
4061 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
4062 mutex_exit(&db->db_mtx);
4063
4064 return (holds);
4065 }
4066
4067 void *
4068 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
4069 dmu_buf_user_t *new_user)
4070 {
4071 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4072
4073 mutex_enter(&db->db_mtx);
4074 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4075 if (db->db_user == old_user)
4076 db->db_user = new_user;
4077 else
4078 old_user = db->db_user;
4079 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4080 mutex_exit(&db->db_mtx);
4081
4082 return (old_user);
4083 }
4084
4085 void *
4086 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4087 {
4088 return (dmu_buf_replace_user(db_fake, NULL, user));
4089 }
4090
4091 void *
4092 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4093 {
4094 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4095
4096 db->db_user_immediate_evict = TRUE;
4097 return (dmu_buf_set_user(db_fake, user));
4098 }
4099
4100 void *
4101 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4102 {
4103 return (dmu_buf_replace_user(db_fake, user, NULL));
4104 }
4105
4106 void *
4107 dmu_buf_get_user(dmu_buf_t *db_fake)
4108 {
4109 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4110
4111 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4112 return (db->db_user);
4113 }
4114
4115 uint64_t
4116 dmu_buf_user_size(dmu_buf_t *db_fake)
4117 {
4118 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4119 if (db->db_user == NULL)
4120 return (0);
4121 return (atomic_load_64(&db->db_user->dbu_size));
4122 }
4123
4124 void
4125 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd)
4126 {
4127 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4128 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4129 ASSERT3P(db->db_user, !=, NULL);
4130 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd);
4131 atomic_add_64(&db->db_user->dbu_size, nadd);
4132 }
4133
4134 void
4135 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub)
4136 {
4137 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4138 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4139 ASSERT3P(db->db_user, !=, NULL);
4140 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub);
4141 atomic_sub_64(&db->db_user->dbu_size, nsub);
4142 }
4143
4144 void
4145 dmu_buf_user_evict_wait(void)
4146 {
4147 taskq_wait(dbu_evict_taskq);
4148 }
4149
4150 blkptr_t *
4151 dmu_buf_get_blkptr(dmu_buf_t *db)
4152 {
4153 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4154 return (dbi->db_blkptr);
4155 }
4156
4157 objset_t *
4158 dmu_buf_get_objset(dmu_buf_t *db)
4159 {
4160 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4161 return (dbi->db_objset);
4162 }
4163
4164 dnode_t *
4165 dmu_buf_dnode_enter(dmu_buf_t *db)
4166 {
4167 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4168 DB_DNODE_ENTER(dbi);
4169 return (DB_DNODE(dbi));
4170 }
4171
4172 void
4173 dmu_buf_dnode_exit(dmu_buf_t *db)
4174 {
4175 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4176 DB_DNODE_EXIT(dbi);
4177 }
4178
4179 static void
4180 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
4181 {
4182 /* ASSERT(dmu_tx_is_syncing(tx) */
4183 ASSERT(MUTEX_HELD(&db->db_mtx));
4184
4185 if (db->db_blkptr != NULL)
4186 return;
4187
4188 if (db->db_blkid == DMU_SPILL_BLKID) {
4189 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
4190 BP_ZERO(db->db_blkptr);
4191 return;
4192 }
4193 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4194 /*
4195 * This buffer was allocated at a time when there was
4196 * no available blkptrs from the dnode, or it was
4197 * inappropriate to hook it in (i.e., nlevels mismatch).
4198 */
4199 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4200 ASSERT(db->db_parent == NULL);
4201 db->db_parent = dn->dn_dbuf;
4202 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4203 DBUF_VERIFY(db);
4204 } else {
4205 dmu_buf_impl_t *parent = db->db_parent;
4206 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4207
4208 ASSERT(dn->dn_phys->dn_nlevels > 1);
4209 if (parent == NULL) {
4210 mutex_exit(&db->db_mtx);
4211 rw_enter(&dn->dn_struct_rwlock, RW_READER);
4212 parent = dbuf_hold_level(dn, db->db_level + 1,
4213 db->db_blkid >> epbs, db);
4214 rw_exit(&dn->dn_struct_rwlock);
4215 mutex_enter(&db->db_mtx);
4216 db->db_parent = parent;
4217 }
4218 db->db_blkptr = (blkptr_t *)parent->db.db_data +
4219 (db->db_blkid & ((1ULL << epbs) - 1));
4220 DBUF_VERIFY(db);
4221 }
4222 }
4223
4224 static void
4225 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4226 {
4227 dmu_buf_impl_t *db = dr->dr_dbuf;
4228 void *data = dr->dt.dl.dr_data;
4229
4230 ASSERT0(db->db_level);
4231 ASSERT(MUTEX_HELD(&db->db_mtx));
4232 ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4233 ASSERT(data != NULL);
4234
4235 dnode_t *dn = dr->dr_dnode;
4236 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4237 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4238 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
4239
4240 dbuf_sync_leaf_verify_bonus_dnode(dr);
4241
4242 dbuf_undirty_bonus(dr);
4243 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4244 }
4245
4246 /*
4247 * When syncing out a blocks of dnodes, adjust the block to deal with
4248 * encryption. Normally, we make sure the block is decrypted before writing
4249 * it. If we have crypt params, then we are writing a raw (encrypted) block,
4250 * from a raw receive. In this case, set the ARC buf's crypt params so
4251 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4252 */
4253 static void
4254 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4255 {
4256 int err;
4257 dmu_buf_impl_t *db = dr->dr_dbuf;
4258
4259 ASSERT(MUTEX_HELD(&db->db_mtx));
4260 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4261 ASSERT3U(db->db_level, ==, 0);
4262
4263 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4264 zbookmark_phys_t zb;
4265
4266 /*
4267 * Unfortunately, there is currently no mechanism for
4268 * syncing context to handle decryption errors. An error
4269 * here is only possible if an attacker maliciously
4270 * changed a dnode block and updated the associated
4271 * checksums going up the block tree.
4272 */
4273 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4274 db->db.db_object, db->db_level, db->db_blkid);
4275 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4276 &zb, B_TRUE);
4277 if (err)
4278 panic("Invalid dnode block MAC");
4279 } else if (dr->dt.dl.dr_has_raw_params) {
4280 (void) arc_release(dr->dt.dl.dr_data, db);
4281 arc_convert_to_raw(dr->dt.dl.dr_data,
4282 dmu_objset_id(db->db_objset),
4283 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4284 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4285 }
4286 }
4287
4288 /*
4289 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4290 * is critical the we not allow the compiler to inline this function in to
4291 * dbuf_sync_list() thereby drastically bloating the stack usage.
4292 */
4293 noinline static void
4294 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4295 {
4296 dmu_buf_impl_t *db = dr->dr_dbuf;
4297 dnode_t *dn = dr->dr_dnode;
4298
4299 ASSERT(dmu_tx_is_syncing(tx));
4300
4301 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4302
4303 mutex_enter(&db->db_mtx);
4304
4305 ASSERT(db->db_level > 0);
4306 DBUF_VERIFY(db);
4307
4308 /* Read the block if it hasn't been read yet. */
4309 if (db->db_buf == NULL) {
4310 mutex_exit(&db->db_mtx);
4311 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4312 mutex_enter(&db->db_mtx);
4313 }
4314 ASSERT3U(db->db_state, ==, DB_CACHED);
4315 ASSERT(db->db_buf != NULL);
4316
4317 /* Indirect block size must match what the dnode thinks it is. */
4318 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4319 dbuf_check_blkptr(dn, db);
4320
4321 /* Provide the pending dirty record to child dbufs */
4322 db->db_data_pending = dr;
4323
4324 mutex_exit(&db->db_mtx);
4325
4326 dbuf_write(dr, db->db_buf, tx);
4327
4328 zio_t *zio = dr->dr_zio;
4329 mutex_enter(&dr->dt.di.dr_mtx);
4330 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4331 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4332 mutex_exit(&dr->dt.di.dr_mtx);
4333 zio_nowait(zio);
4334 }
4335
4336 /*
4337 * Verify that the size of the data in our bonus buffer does not exceed
4338 * its recorded size.
4339 *
4340 * The purpose of this verification is to catch any cases in development
4341 * where the size of a phys structure (i.e space_map_phys_t) grows and,
4342 * due to incorrect feature management, older pools expect to read more
4343 * data even though they didn't actually write it to begin with.
4344 *
4345 * For a example, this would catch an error in the feature logic where we
4346 * open an older pool and we expect to write the space map histogram of
4347 * a space map with size SPACE_MAP_SIZE_V0.
4348 */
4349 static void
4350 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4351 {
4352 #ifdef ZFS_DEBUG
4353 dnode_t *dn = dr->dr_dnode;
4354
4355 /*
4356 * Encrypted bonus buffers can have data past their bonuslen.
4357 * Skip the verification of these blocks.
4358 */
4359 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4360 return;
4361
4362 uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4363 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4364 ASSERT3U(bonuslen, <=, maxbonuslen);
4365
4366 arc_buf_t *datap = dr->dt.dl.dr_data;
4367 char *datap_end = ((char *)datap) + bonuslen;
4368 char *datap_max = ((char *)datap) + maxbonuslen;
4369
4370 /* ensure that everything is zero after our data */
4371 for (; datap_end < datap_max; datap_end++)
4372 ASSERT(*datap_end == 0);
4373 #endif
4374 }
4375
4376 static blkptr_t *
4377 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4378 {
4379 /* This must be a lightweight dirty record. */
4380 ASSERT3P(dr->dr_dbuf, ==, NULL);
4381 dnode_t *dn = dr->dr_dnode;
4382
4383 if (dn->dn_phys->dn_nlevels == 1) {
4384 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4385 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4386 } else {
4387 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4388 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4389 VERIFY3U(parent_db->db_level, ==, 1);
4390 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn);
4391 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4392 blkptr_t *bp = parent_db->db.db_data;
4393 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4394 }
4395 }
4396
4397 static void
4398 dbuf_lightweight_ready(zio_t *zio)
4399 {
4400 dbuf_dirty_record_t *dr = zio->io_private;
4401 blkptr_t *bp = zio->io_bp;
4402
4403 if (zio->io_error != 0)
4404 return;
4405
4406 dnode_t *dn = dr->dr_dnode;
4407
4408 blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4409 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4410 int64_t delta = bp_get_dsize_sync(spa, bp) -
4411 bp_get_dsize_sync(spa, bp_orig);
4412 dnode_diduse_space(dn, delta);
4413
4414 uint64_t blkid = dr->dt.dll.dr_blkid;
4415 mutex_enter(&dn->dn_mtx);
4416 if (blkid > dn->dn_phys->dn_maxblkid) {
4417 ASSERT0(dn->dn_objset->os_raw_receive);
4418 dn->dn_phys->dn_maxblkid = blkid;
4419 }
4420 mutex_exit(&dn->dn_mtx);
4421
4422 if (!BP_IS_EMBEDDED(bp)) {
4423 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4424 BP_SET_FILL(bp, fill);
4425 }
4426
4427 dmu_buf_impl_t *parent_db;
4428 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4429 if (dr->dr_parent == NULL) {
4430 parent_db = dn->dn_dbuf;
4431 } else {
4432 parent_db = dr->dr_parent->dr_dbuf;
4433 }
4434 rw_enter(&parent_db->db_rwlock, RW_WRITER);
4435 *bp_orig = *bp;
4436 rw_exit(&parent_db->db_rwlock);
4437 }
4438
4439 static void
4440 dbuf_lightweight_done(zio_t *zio)
4441 {
4442 dbuf_dirty_record_t *dr = zio->io_private;
4443
4444 VERIFY0(zio->io_error);
4445
4446 objset_t *os = dr->dr_dnode->dn_objset;
4447 dmu_tx_t *tx = os->os_synctx;
4448
4449 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4450 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4451 } else {
4452 dsl_dataset_t *ds = os->os_dsl_dataset;
4453 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4454 dsl_dataset_block_born(ds, zio->io_bp, tx);
4455 }
4456
4457 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
4458 zio->io_txg);
4459
4460 abd_free(dr->dt.dll.dr_abd);
4461 kmem_free(dr, sizeof (*dr));
4462 }
4463
4464 noinline static void
4465 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4466 {
4467 dnode_t *dn = dr->dr_dnode;
4468 zio_t *pio;
4469 if (dn->dn_phys->dn_nlevels == 1) {
4470 pio = dn->dn_zio;
4471 } else {
4472 pio = dr->dr_parent->dr_zio;
4473 }
4474
4475 zbookmark_phys_t zb = {
4476 .zb_objset = dmu_objset_id(dn->dn_objset),
4477 .zb_object = dn->dn_object,
4478 .zb_level = 0,
4479 .zb_blkid = dr->dt.dll.dr_blkid,
4480 };
4481
4482 /*
4483 * See comment in dbuf_write(). This is so that zio->io_bp_orig
4484 * will have the old BP in dbuf_lightweight_done().
4485 */
4486 dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4487
4488 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4489 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4490 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4491 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4492 dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE,
4493 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4494
4495 zio_nowait(dr->dr_zio);
4496 }
4497
4498 /*
4499 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4500 * critical the we not allow the compiler to inline this function in to
4501 * dbuf_sync_list() thereby drastically bloating the stack usage.
4502 */
4503 noinline static void
4504 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4505 {
4506 arc_buf_t **datap = &dr->dt.dl.dr_data;
4507 dmu_buf_impl_t *db = dr->dr_dbuf;
4508 dnode_t *dn = dr->dr_dnode;
4509 objset_t *os;
4510 uint64_t txg = tx->tx_txg;
4511
4512 ASSERT(dmu_tx_is_syncing(tx));
4513
4514 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4515
4516 mutex_enter(&db->db_mtx);
4517 /*
4518 * To be synced, we must be dirtied. But we
4519 * might have been freed after the dirty.
4520 */
4521 if (db->db_state == DB_UNCACHED) {
4522 /* This buffer has been freed since it was dirtied */
4523 ASSERT(db->db.db_data == NULL);
4524 } else if (db->db_state == DB_FILL) {
4525 /* This buffer was freed and is now being re-filled */
4526 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4527 } else if (db->db_state == DB_READ) {
4528 /*
4529 * This buffer has a clone we need to write, and an in-flight
4530 * read on the BP we're about to clone. Its safe to issue the
4531 * write here because the read has already been issued and the
4532 * contents won't change.
4533 */
4534 ASSERT(dr->dt.dl.dr_brtwrite &&
4535 dr->dt.dl.dr_override_state == DR_OVERRIDDEN);
4536 } else {
4537 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4538 }
4539 DBUF_VERIFY(db);
4540
4541 if (db->db_blkid == DMU_SPILL_BLKID) {
4542 mutex_enter(&dn->dn_mtx);
4543 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4544 /*
4545 * In the previous transaction group, the bonus buffer
4546 * was entirely used to store the attributes for the
4547 * dnode which overrode the dn_spill field. However,
4548 * when adding more attributes to the file a spill
4549 * block was required to hold the extra attributes.
4550 *
4551 * Make sure to clear the garbage left in the dn_spill
4552 * field from the previous attributes in the bonus
4553 * buffer. Otherwise, after writing out the spill
4554 * block to the new allocated dva, it will free
4555 * the old block pointed to by the invalid dn_spill.
4556 */
4557 db->db_blkptr = NULL;
4558 }
4559 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4560 mutex_exit(&dn->dn_mtx);
4561 }
4562
4563 /*
4564 * If this is a bonus buffer, simply copy the bonus data into the
4565 * dnode. It will be written out when the dnode is synced (and it
4566 * will be synced, since it must have been dirty for dbuf_sync to
4567 * be called).
4568 */
4569 if (db->db_blkid == DMU_BONUS_BLKID) {
4570 ASSERT(dr->dr_dbuf == db);
4571 dbuf_sync_bonus(dr, tx);
4572 return;
4573 }
4574
4575 os = dn->dn_objset;
4576
4577 /*
4578 * This function may have dropped the db_mtx lock allowing a dmu_sync
4579 * operation to sneak in. As a result, we need to ensure that we
4580 * don't check the dr_override_state until we have returned from
4581 * dbuf_check_blkptr.
4582 */
4583 dbuf_check_blkptr(dn, db);
4584
4585 /*
4586 * If this buffer is in the middle of an immediate write,
4587 * wait for the synchronous IO to complete.
4588 */
4589 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4590 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4591 cv_wait(&db->db_changed, &db->db_mtx);
4592 }
4593
4594 /*
4595 * If this is a dnode block, ensure it is appropriately encrypted
4596 * or decrypted, depending on what we are writing to it this txg.
4597 */
4598 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4599 dbuf_prepare_encrypted_dnode_leaf(dr);
4600
4601 if (db->db_state != DB_NOFILL &&
4602 dn->dn_object != DMU_META_DNODE_OBJECT &&
4603 zfs_refcount_count(&db->db_holds) > 1 &&
4604 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
4605 *datap == db->db_buf) {
4606 /*
4607 * If this buffer is currently "in use" (i.e., there
4608 * are active holds and db_data still references it),
4609 * then make a copy before we start the write so that
4610 * any modifications from the open txg will not leak
4611 * into this write.
4612 *
4613 * NOTE: this copy does not need to be made for
4614 * objects only modified in the syncing context (e.g.
4615 * DNONE_DNODE blocks).
4616 */
4617 int psize = arc_buf_size(*datap);
4618 int lsize = arc_buf_lsize(*datap);
4619 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4620 enum zio_compress compress_type = arc_get_compression(*datap);
4621 uint8_t complevel = arc_get_complevel(*datap);
4622
4623 if (arc_is_encrypted(*datap)) {
4624 boolean_t byteorder;
4625 uint8_t salt[ZIO_DATA_SALT_LEN];
4626 uint8_t iv[ZIO_DATA_IV_LEN];
4627 uint8_t mac[ZIO_DATA_MAC_LEN];
4628
4629 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4630 *datap = arc_alloc_raw_buf(os->os_spa, db,
4631 dmu_objset_id(os), byteorder, salt, iv, mac,
4632 dn->dn_type, psize, lsize, compress_type,
4633 complevel);
4634 } else if (compress_type != ZIO_COMPRESS_OFF) {
4635 ASSERT3U(type, ==, ARC_BUFC_DATA);
4636 *datap = arc_alloc_compressed_buf(os->os_spa, db,
4637 psize, lsize, compress_type, complevel);
4638 } else {
4639 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
4640 }
4641 memcpy((*datap)->b_data, db->db.db_data, psize);
4642 }
4643 db->db_data_pending = dr;
4644
4645 mutex_exit(&db->db_mtx);
4646
4647 dbuf_write(dr, *datap, tx);
4648
4649 ASSERT(!list_link_active(&dr->dr_dirty_node));
4650 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4651 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4652 } else {
4653 zio_nowait(dr->dr_zio);
4654 }
4655 }
4656
4657 /*
4658 * Syncs out a range of dirty records for indirect or leaf dbufs. May be
4659 * called recursively from dbuf_sync_indirect().
4660 */
4661 void
4662 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4663 {
4664 dbuf_dirty_record_t *dr;
4665
4666 while ((dr = list_head(list))) {
4667 if (dr->dr_zio != NULL) {
4668 /*
4669 * If we find an already initialized zio then we
4670 * are processing the meta-dnode, and we have finished.
4671 * The dbufs for all dnodes are put back on the list
4672 * during processing, so that we can zio_wait()
4673 * these IOs after initiating all child IOs.
4674 */
4675 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4676 DMU_META_DNODE_OBJECT);
4677 break;
4678 }
4679 list_remove(list, dr);
4680 if (dr->dr_dbuf == NULL) {
4681 dbuf_sync_lightweight(dr, tx);
4682 } else {
4683 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4684 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4685 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4686 }
4687 if (dr->dr_dbuf->db_level > 0)
4688 dbuf_sync_indirect(dr, tx);
4689 else
4690 dbuf_sync_leaf(dr, tx);
4691 }
4692 }
4693 }
4694
4695 static void
4696 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4697 {
4698 (void) buf;
4699 dmu_buf_impl_t *db = vdb;
4700 dnode_t *dn;
4701 blkptr_t *bp = zio->io_bp;
4702 blkptr_t *bp_orig = &zio->io_bp_orig;
4703 spa_t *spa = zio->io_spa;
4704 int64_t delta;
4705 uint64_t fill = 0;
4706 int i;
4707
4708 ASSERT3P(db->db_blkptr, !=, NULL);
4709 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4710
4711 DB_DNODE_ENTER(db);
4712 dn = DB_DNODE(db);
4713 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4714 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4715 zio->io_prev_space_delta = delta;
4716
4717 if (bp->blk_birth != 0) {
4718 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4719 BP_GET_TYPE(bp) == dn->dn_type) ||
4720 (db->db_blkid == DMU_SPILL_BLKID &&
4721 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4722 BP_IS_EMBEDDED(bp));
4723 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4724 }
4725
4726 mutex_enter(&db->db_mtx);
4727
4728 #ifdef ZFS_DEBUG
4729 if (db->db_blkid == DMU_SPILL_BLKID) {
4730 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4731 ASSERT(!(BP_IS_HOLE(bp)) &&
4732 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4733 }
4734 #endif
4735
4736 if (db->db_level == 0) {
4737 mutex_enter(&dn->dn_mtx);
4738 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4739 db->db_blkid != DMU_SPILL_BLKID) {
4740 ASSERT0(db->db_objset->os_raw_receive);
4741 dn->dn_phys->dn_maxblkid = db->db_blkid;
4742 }
4743 mutex_exit(&dn->dn_mtx);
4744
4745 if (dn->dn_type == DMU_OT_DNODE) {
4746 i = 0;
4747 while (i < db->db.db_size) {
4748 dnode_phys_t *dnp =
4749 (void *)(((char *)db->db.db_data) + i);
4750
4751 i += DNODE_MIN_SIZE;
4752 if (dnp->dn_type != DMU_OT_NONE) {
4753 fill++;
4754 for (int j = 0; j < dnp->dn_nblkptr;
4755 j++) {
4756 (void) zfs_blkptr_verify(spa,
4757 &dnp->dn_blkptr[j],
4758 BLK_CONFIG_SKIP,
4759 BLK_VERIFY_HALT);
4760 }
4761 if (dnp->dn_flags &
4762 DNODE_FLAG_SPILL_BLKPTR) {
4763 (void) zfs_blkptr_verify(spa,
4764 DN_SPILL_BLKPTR(dnp),
4765 BLK_CONFIG_SKIP,
4766 BLK_VERIFY_HALT);
4767 }
4768 i += dnp->dn_extra_slots *
4769 DNODE_MIN_SIZE;
4770 }
4771 }
4772 } else {
4773 if (BP_IS_HOLE(bp)) {
4774 fill = 0;
4775 } else {
4776 fill = 1;
4777 }
4778 }
4779 } else {
4780 blkptr_t *ibp = db->db.db_data;
4781 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4782 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4783 if (BP_IS_HOLE(ibp))
4784 continue;
4785 (void) zfs_blkptr_verify(spa, ibp,
4786 BLK_CONFIG_SKIP, BLK_VERIFY_HALT);
4787 fill += BP_GET_FILL(ibp);
4788 }
4789 }
4790 DB_DNODE_EXIT(db);
4791
4792 if (!BP_IS_EMBEDDED(bp))
4793 BP_SET_FILL(bp, fill);
4794
4795 mutex_exit(&db->db_mtx);
4796
4797 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
4798 *db->db_blkptr = *bp;
4799 dmu_buf_unlock_parent(db, dblt, FTAG);
4800 }
4801
4802 /*
4803 * This function gets called just prior to running through the compression
4804 * stage of the zio pipeline. If we're an indirect block comprised of only
4805 * holes, then we want this indirect to be compressed away to a hole. In
4806 * order to do that we must zero out any information about the holes that
4807 * this indirect points to prior to before we try to compress it.
4808 */
4809 static void
4810 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4811 {
4812 (void) zio, (void) buf;
4813 dmu_buf_impl_t *db = vdb;
4814 dnode_t *dn;
4815 blkptr_t *bp;
4816 unsigned int epbs, i;
4817
4818 ASSERT3U(db->db_level, >, 0);
4819 DB_DNODE_ENTER(db);
4820 dn = DB_DNODE(db);
4821 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4822 ASSERT3U(epbs, <, 31);
4823
4824 /* Determine if all our children are holes */
4825 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4826 if (!BP_IS_HOLE(bp))
4827 break;
4828 }
4829
4830 /*
4831 * If all the children are holes, then zero them all out so that
4832 * we may get compressed away.
4833 */
4834 if (i == 1ULL << epbs) {
4835 /*
4836 * We only found holes. Grab the rwlock to prevent
4837 * anybody from reading the blocks we're about to
4838 * zero out.
4839 */
4840 rw_enter(&db->db_rwlock, RW_WRITER);
4841 memset(db->db.db_data, 0, db->db.db_size);
4842 rw_exit(&db->db_rwlock);
4843 }
4844 DB_DNODE_EXIT(db);
4845 }
4846
4847 static void
4848 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4849 {
4850 (void) buf;
4851 dmu_buf_impl_t *db = vdb;
4852 blkptr_t *bp_orig = &zio->io_bp_orig;
4853 blkptr_t *bp = db->db_blkptr;
4854 objset_t *os = db->db_objset;
4855 dmu_tx_t *tx = os->os_synctx;
4856
4857 ASSERT0(zio->io_error);
4858 ASSERT(db->db_blkptr == bp);
4859
4860 /*
4861 * For nopwrites and rewrites we ensure that the bp matches our
4862 * original and bypass all the accounting.
4863 */
4864 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4865 ASSERT(BP_EQUAL(bp, bp_orig));
4866 } else {
4867 dsl_dataset_t *ds = os->os_dsl_dataset;
4868 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4869 dsl_dataset_block_born(ds, bp, tx);
4870 }
4871
4872 mutex_enter(&db->db_mtx);
4873
4874 DBUF_VERIFY(db);
4875
4876 dbuf_dirty_record_t *dr = db->db_data_pending;
4877 dnode_t *dn = dr->dr_dnode;
4878 ASSERT(!list_link_active(&dr->dr_dirty_node));
4879 ASSERT(dr->dr_dbuf == db);
4880 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
4881 list_remove(&db->db_dirty_records, dr);
4882
4883 #ifdef ZFS_DEBUG
4884 if (db->db_blkid == DMU_SPILL_BLKID) {
4885 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4886 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4887 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4888 }
4889 #endif
4890
4891 if (db->db_level == 0) {
4892 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4893 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4894 if (db->db_state != DB_NOFILL) {
4895 if (dr->dt.dl.dr_data != NULL &&
4896 dr->dt.dl.dr_data != db->db_buf) {
4897 arc_buf_destroy(dr->dt.dl.dr_data, db);
4898 }
4899 }
4900 } else {
4901 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4902 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4903 if (!BP_IS_HOLE(db->db_blkptr)) {
4904 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
4905 SPA_BLKPTRSHIFT;
4906 ASSERT3U(db->db_blkid, <=,
4907 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4908 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4909 db->db.db_size);
4910 }
4911 mutex_destroy(&dr->dt.di.dr_mtx);
4912 list_destroy(&dr->dt.di.dr_children);
4913 }
4914
4915 cv_broadcast(&db->db_changed);
4916 ASSERT(db->db_dirtycnt > 0);
4917 db->db_dirtycnt -= 1;
4918 db->db_data_pending = NULL;
4919 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4920
4921 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
4922 zio->io_txg);
4923
4924 kmem_free(dr, sizeof (dbuf_dirty_record_t));
4925 }
4926
4927 static void
4928 dbuf_write_nofill_ready(zio_t *zio)
4929 {
4930 dbuf_write_ready(zio, NULL, zio->io_private);
4931 }
4932
4933 static void
4934 dbuf_write_nofill_done(zio_t *zio)
4935 {
4936 dbuf_write_done(zio, NULL, zio->io_private);
4937 }
4938
4939 static void
4940 dbuf_write_override_ready(zio_t *zio)
4941 {
4942 dbuf_dirty_record_t *dr = zio->io_private;
4943 dmu_buf_impl_t *db = dr->dr_dbuf;
4944
4945 dbuf_write_ready(zio, NULL, db);
4946 }
4947
4948 static void
4949 dbuf_write_override_done(zio_t *zio)
4950 {
4951 dbuf_dirty_record_t *dr = zio->io_private;
4952 dmu_buf_impl_t *db = dr->dr_dbuf;
4953 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4954
4955 mutex_enter(&db->db_mtx);
4956 if (!BP_EQUAL(zio->io_bp, obp)) {
4957 if (!BP_IS_HOLE(obp))
4958 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4959 arc_release(dr->dt.dl.dr_data, db);
4960 }
4961 mutex_exit(&db->db_mtx);
4962
4963 dbuf_write_done(zio, NULL, db);
4964
4965 if (zio->io_abd != NULL)
4966 abd_free(zio->io_abd);
4967 }
4968
4969 typedef struct dbuf_remap_impl_callback_arg {
4970 objset_t *drica_os;
4971 uint64_t drica_blk_birth;
4972 dmu_tx_t *drica_tx;
4973 } dbuf_remap_impl_callback_arg_t;
4974
4975 static void
4976 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4977 void *arg)
4978 {
4979 dbuf_remap_impl_callback_arg_t *drica = arg;
4980 objset_t *os = drica->drica_os;
4981 spa_t *spa = dmu_objset_spa(os);
4982 dmu_tx_t *tx = drica->drica_tx;
4983
4984 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4985
4986 if (os == spa_meta_objset(spa)) {
4987 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4988 } else {
4989 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4990 size, drica->drica_blk_birth, tx);
4991 }
4992 }
4993
4994 static void
4995 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
4996 {
4997 blkptr_t bp_copy = *bp;
4998 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4999 dbuf_remap_impl_callback_arg_t drica;
5000
5001 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5002
5003 drica.drica_os = dn->dn_objset;
5004 drica.drica_blk_birth = bp->blk_birth;
5005 drica.drica_tx = tx;
5006 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
5007 &drica)) {
5008 /*
5009 * If the blkptr being remapped is tracked by a livelist,
5010 * then we need to make sure the livelist reflects the update.
5011 * First, cancel out the old blkptr by appending a 'FREE'
5012 * entry. Next, add an 'ALLOC' to track the new version. This
5013 * way we avoid trying to free an inaccurate blkptr at delete.
5014 * Note that embedded blkptrs are not tracked in livelists.
5015 */
5016 if (dn->dn_objset != spa_meta_objset(spa)) {
5017 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
5018 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
5019 bp->blk_birth > ds->ds_dir->dd_origin_txg) {
5020 ASSERT(!BP_IS_EMBEDDED(bp));
5021 ASSERT(dsl_dir_is_clone(ds->ds_dir));
5022 ASSERT(spa_feature_is_enabled(spa,
5023 SPA_FEATURE_LIVELIST));
5024 bplist_append(&ds->ds_dir->dd_pending_frees,
5025 bp);
5026 bplist_append(&ds->ds_dir->dd_pending_allocs,
5027 &bp_copy);
5028 }
5029 }
5030
5031 /*
5032 * The db_rwlock prevents dbuf_read_impl() from
5033 * dereferencing the BP while we are changing it. To
5034 * avoid lock contention, only grab it when we are actually
5035 * changing the BP.
5036 */
5037 if (rw != NULL)
5038 rw_enter(rw, RW_WRITER);
5039 *bp = bp_copy;
5040 if (rw != NULL)
5041 rw_exit(rw);
5042 }
5043 }
5044
5045 /*
5046 * Remap any existing BP's to concrete vdevs, if possible.
5047 */
5048 static void
5049 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
5050 {
5051 spa_t *spa = dmu_objset_spa(db->db_objset);
5052 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5053
5054 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
5055 return;
5056
5057 if (db->db_level > 0) {
5058 blkptr_t *bp = db->db.db_data;
5059 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
5060 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
5061 }
5062 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
5063 dnode_phys_t *dnp = db->db.db_data;
5064 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
5065 DMU_OT_DNODE);
5066 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
5067 i += dnp[i].dn_extra_slots + 1) {
5068 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
5069 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
5070 &dn->dn_dbuf->db_rwlock);
5071 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
5072 tx);
5073 }
5074 }
5075 }
5076 }
5077
5078
5079 /*
5080 * Populate dr->dr_zio with a zio to commit a dirty buffer to disk.
5081 * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio).
5082 */
5083 static void
5084 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
5085 {
5086 dmu_buf_impl_t *db = dr->dr_dbuf;
5087 dnode_t *dn = dr->dr_dnode;
5088 objset_t *os;
5089 dmu_buf_impl_t *parent = db->db_parent;
5090 uint64_t txg = tx->tx_txg;
5091 zbookmark_phys_t zb;
5092 zio_prop_t zp;
5093 zio_t *pio; /* parent I/O */
5094 int wp_flag = 0;
5095
5096 ASSERT(dmu_tx_is_syncing(tx));
5097
5098 os = dn->dn_objset;
5099
5100 if (db->db_state != DB_NOFILL) {
5101 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
5102 /*
5103 * Private object buffers are released here rather
5104 * than in dbuf_dirty() since they are only modified
5105 * in the syncing context and we don't want the
5106 * overhead of making multiple copies of the data.
5107 */
5108 if (BP_IS_HOLE(db->db_blkptr)) {
5109 arc_buf_thaw(data);
5110 } else {
5111 dbuf_release_bp(db);
5112 }
5113 dbuf_remap(dn, db, tx);
5114 }
5115 }
5116
5117 if (parent != dn->dn_dbuf) {
5118 /* Our parent is an indirect block. */
5119 /* We have a dirty parent that has been scheduled for write. */
5120 ASSERT(parent && parent->db_data_pending);
5121 /* Our parent's buffer is one level closer to the dnode. */
5122 ASSERT(db->db_level == parent->db_level-1);
5123 /*
5124 * We're about to modify our parent's db_data by modifying
5125 * our block pointer, so the parent must be released.
5126 */
5127 ASSERT(arc_released(parent->db_buf));
5128 pio = parent->db_data_pending->dr_zio;
5129 } else {
5130 /* Our parent is the dnode itself. */
5131 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
5132 db->db_blkid != DMU_SPILL_BLKID) ||
5133 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
5134 if (db->db_blkid != DMU_SPILL_BLKID)
5135 ASSERT3P(db->db_blkptr, ==,
5136 &dn->dn_phys->dn_blkptr[db->db_blkid]);
5137 pio = dn->dn_zio;
5138 }
5139
5140 ASSERT(db->db_level == 0 || data == db->db_buf);
5141 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
5142 ASSERT(pio);
5143
5144 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
5145 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
5146 db->db.db_object, db->db_level, db->db_blkid);
5147
5148 if (db->db_blkid == DMU_SPILL_BLKID)
5149 wp_flag = WP_SPILL;
5150 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
5151
5152 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5153
5154 /*
5155 * We copy the blkptr now (rather than when we instantiate the dirty
5156 * record), because its value can change between open context and
5157 * syncing context. We do not need to hold dn_struct_rwlock to read
5158 * db_blkptr because we are in syncing context.
5159 */
5160 dr->dr_bp_copy = *db->db_blkptr;
5161
5162 if (db->db_level == 0 &&
5163 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5164 /*
5165 * The BP for this block has been provided by open context
5166 * (by dmu_sync() or dmu_buf_write_embedded()).
5167 */
5168 abd_t *contents = (data != NULL) ?
5169 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5170
5171 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5172 contents, db->db.db_size, db->db.db_size, &zp,
5173 dbuf_write_override_ready, NULL,
5174 dbuf_write_override_done,
5175 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5176 mutex_enter(&db->db_mtx);
5177 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5178 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5179 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite,
5180 dr->dt.dl.dr_brtwrite);
5181 mutex_exit(&db->db_mtx);
5182 } else if (db->db_state == DB_NOFILL) {
5183 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5184 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5185 dr->dr_zio = zio_write(pio, os->os_spa, txg,
5186 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5187 dbuf_write_nofill_ready, NULL,
5188 dbuf_write_nofill_done, db,
5189 ZIO_PRIORITY_ASYNC_WRITE,
5190 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5191 } else {
5192 ASSERT(arc_released(data));
5193
5194 /*
5195 * For indirect blocks, we want to setup the children
5196 * ready callback so that we can properly handle an indirect
5197 * block that only contains holes.
5198 */
5199 arc_write_done_func_t *children_ready_cb = NULL;
5200 if (db->db_level != 0)
5201 children_ready_cb = dbuf_write_children_ready;
5202
5203 dr->dr_zio = arc_write(pio, os->os_spa, txg,
5204 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db),
5205 dbuf_is_l2cacheable(db), &zp, dbuf_write_ready,
5206 children_ready_cb, dbuf_write_done, db,
5207 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5208 }
5209 }
5210
5211 EXPORT_SYMBOL(dbuf_find);
5212 EXPORT_SYMBOL(dbuf_is_metadata);
5213 EXPORT_SYMBOL(dbuf_destroy);
5214 EXPORT_SYMBOL(dbuf_loan_arcbuf);
5215 EXPORT_SYMBOL(dbuf_whichblock);
5216 EXPORT_SYMBOL(dbuf_read);
5217 EXPORT_SYMBOL(dbuf_unoverride);
5218 EXPORT_SYMBOL(dbuf_free_range);
5219 EXPORT_SYMBOL(dbuf_new_size);
5220 EXPORT_SYMBOL(dbuf_release_bp);
5221 EXPORT_SYMBOL(dbuf_dirty);
5222 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5223 EXPORT_SYMBOL(dmu_buf_will_dirty);
5224 EXPORT_SYMBOL(dmu_buf_is_dirty);
5225 EXPORT_SYMBOL(dmu_buf_will_clone);
5226 EXPORT_SYMBOL(dmu_buf_will_not_fill);
5227 EXPORT_SYMBOL(dmu_buf_will_fill);
5228 EXPORT_SYMBOL(dmu_buf_fill_done);
5229 EXPORT_SYMBOL(dmu_buf_rele);
5230 EXPORT_SYMBOL(dbuf_assign_arcbuf);
5231 EXPORT_SYMBOL(dbuf_prefetch);
5232 EXPORT_SYMBOL(dbuf_hold_impl);
5233 EXPORT_SYMBOL(dbuf_hold);
5234 EXPORT_SYMBOL(dbuf_hold_level);
5235 EXPORT_SYMBOL(dbuf_create_bonus);
5236 EXPORT_SYMBOL(dbuf_spill_set_blksz);
5237 EXPORT_SYMBOL(dbuf_rm_spill);
5238 EXPORT_SYMBOL(dbuf_add_ref);
5239 EXPORT_SYMBOL(dbuf_rele);
5240 EXPORT_SYMBOL(dbuf_rele_and_unlock);
5241 EXPORT_SYMBOL(dbuf_refcount);
5242 EXPORT_SYMBOL(dbuf_sync_list);
5243 EXPORT_SYMBOL(dmu_buf_set_user);
5244 EXPORT_SYMBOL(dmu_buf_set_user_ie);
5245 EXPORT_SYMBOL(dmu_buf_get_user);
5246 EXPORT_SYMBOL(dmu_buf_get_blkptr);
5247
5248 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW,
5249 "Maximum size in bytes of the dbuf cache.");
5250
5251 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5252 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5253
5254 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5255 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5256
5257 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW,
5258 "Maximum size in bytes of dbuf metadata cache.");
5259
5260 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
5261 "Set size of dbuf cache to log2 fraction of arc size.");
5262
5263 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
5264 "Set size of dbuf metadata cache to log2 fraction of arc size.");
5265
5266 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
5267 "Set size of dbuf cache mutex array as log2 shift.");