]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dbuf.c
FreeBSD: Add zfs_link_create() error handling
[mirror_zfs.git] / module / zfs / dbuf.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2019, Klara Inc.
28 * Copyright (c) 2019, Allan Jude
29 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
30 */
31
32 #include <sys/zfs_context.h>
33 #include <sys/arc.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_send.h>
36 #include <sys/dmu_impl.h>
37 #include <sys/dbuf.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/spa.h>
43 #include <sys/zio.h>
44 #include <sys/dmu_zfetch.h>
45 #include <sys/sa.h>
46 #include <sys/sa_impl.h>
47 #include <sys/zfeature.h>
48 #include <sys/blkptr.h>
49 #include <sys/range_tree.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/callb.h>
52 #include <sys/abd.h>
53 #include <sys/brt.h>
54 #include <sys/vdev.h>
55 #include <cityhash.h>
56 #include <sys/spa_impl.h>
57 #include <sys/wmsum.h>
58 #include <sys/vdev_impl.h>
59
60 static kstat_t *dbuf_ksp;
61
62 typedef struct dbuf_stats {
63 /*
64 * Various statistics about the size of the dbuf cache.
65 */
66 kstat_named_t cache_count;
67 kstat_named_t cache_size_bytes;
68 kstat_named_t cache_size_bytes_max;
69 /*
70 * Statistics regarding the bounds on the dbuf cache size.
71 */
72 kstat_named_t cache_target_bytes;
73 kstat_named_t cache_lowater_bytes;
74 kstat_named_t cache_hiwater_bytes;
75 /*
76 * Total number of dbuf cache evictions that have occurred.
77 */
78 kstat_named_t cache_total_evicts;
79 /*
80 * The distribution of dbuf levels in the dbuf cache and
81 * the total size of all dbufs at each level.
82 */
83 kstat_named_t cache_levels[DN_MAX_LEVELS];
84 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
85 /*
86 * Statistics about the dbuf hash table.
87 */
88 kstat_named_t hash_hits;
89 kstat_named_t hash_misses;
90 kstat_named_t hash_collisions;
91 kstat_named_t hash_elements;
92 kstat_named_t hash_elements_max;
93 /*
94 * Number of sublists containing more than one dbuf in the dbuf
95 * hash table. Keep track of the longest hash chain.
96 */
97 kstat_named_t hash_chains;
98 kstat_named_t hash_chain_max;
99 /*
100 * Number of times a dbuf_create() discovers that a dbuf was
101 * already created and in the dbuf hash table.
102 */
103 kstat_named_t hash_insert_race;
104 /*
105 * Number of entries in the hash table dbuf and mutex arrays.
106 */
107 kstat_named_t hash_table_count;
108 kstat_named_t hash_mutex_count;
109 /*
110 * Statistics about the size of the metadata dbuf cache.
111 */
112 kstat_named_t metadata_cache_count;
113 kstat_named_t metadata_cache_size_bytes;
114 kstat_named_t metadata_cache_size_bytes_max;
115 /*
116 * For diagnostic purposes, this is incremented whenever we can't add
117 * something to the metadata cache because it's full, and instead put
118 * the data in the regular dbuf cache.
119 */
120 kstat_named_t metadata_cache_overflow;
121 } dbuf_stats_t;
122
123 dbuf_stats_t dbuf_stats = {
124 { "cache_count", KSTAT_DATA_UINT64 },
125 { "cache_size_bytes", KSTAT_DATA_UINT64 },
126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
127 { "cache_target_bytes", KSTAT_DATA_UINT64 },
128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
130 { "cache_total_evicts", KSTAT_DATA_UINT64 },
131 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
133 { "hash_hits", KSTAT_DATA_UINT64 },
134 { "hash_misses", KSTAT_DATA_UINT64 },
135 { "hash_collisions", KSTAT_DATA_UINT64 },
136 { "hash_elements", KSTAT_DATA_UINT64 },
137 { "hash_elements_max", KSTAT_DATA_UINT64 },
138 { "hash_chains", KSTAT_DATA_UINT64 },
139 { "hash_chain_max", KSTAT_DATA_UINT64 },
140 { "hash_insert_race", KSTAT_DATA_UINT64 },
141 { "hash_table_count", KSTAT_DATA_UINT64 },
142 { "hash_mutex_count", KSTAT_DATA_UINT64 },
143 { "metadata_cache_count", KSTAT_DATA_UINT64 },
144 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
145 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
146 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
147 };
148
149 struct {
150 wmsum_t cache_count;
151 wmsum_t cache_total_evicts;
152 wmsum_t cache_levels[DN_MAX_LEVELS];
153 wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
154 wmsum_t hash_hits;
155 wmsum_t hash_misses;
156 wmsum_t hash_collisions;
157 wmsum_t hash_chains;
158 wmsum_t hash_insert_race;
159 wmsum_t metadata_cache_count;
160 wmsum_t metadata_cache_overflow;
161 } dbuf_sums;
162
163 #define DBUF_STAT_INCR(stat, val) \
164 wmsum_add(&dbuf_sums.stat, val)
165 #define DBUF_STAT_DECR(stat, val) \
166 DBUF_STAT_INCR(stat, -(val))
167 #define DBUF_STAT_BUMP(stat) \
168 DBUF_STAT_INCR(stat, 1)
169 #define DBUF_STAT_BUMPDOWN(stat) \
170 DBUF_STAT_INCR(stat, -1)
171 #define DBUF_STAT_MAX(stat, v) { \
172 uint64_t _m; \
173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
175 continue; \
176 }
177
178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
180
181 /*
182 * Global data structures and functions for the dbuf cache.
183 */
184 static kmem_cache_t *dbuf_kmem_cache;
185 static taskq_t *dbu_evict_taskq;
186
187 static kthread_t *dbuf_cache_evict_thread;
188 static kmutex_t dbuf_evict_lock;
189 static kcondvar_t dbuf_evict_cv;
190 static boolean_t dbuf_evict_thread_exit;
191
192 /*
193 * There are two dbuf caches; each dbuf can only be in one of them at a time.
194 *
195 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
196 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
197 * that represent the metadata that describes filesystems/snapshots/
198 * bookmarks/properties/etc. We only evict from this cache when we export a
199 * pool, to short-circuit as much I/O as possible for all administrative
200 * commands that need the metadata. There is no eviction policy for this
201 * cache, because we try to only include types in it which would occupy a
202 * very small amount of space per object but create a large impact on the
203 * performance of these commands. Instead, after it reaches a maximum size
204 * (which should only happen on very small memory systems with a very large
205 * number of filesystem objects), we stop taking new dbufs into the
206 * metadata cache, instead putting them in the normal dbuf cache.
207 *
208 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
209 * are not currently held but have been recently released. These dbufs
210 * are not eligible for arc eviction until they are aged out of the cache.
211 * Dbufs that are aged out of the cache will be immediately destroyed and
212 * become eligible for arc eviction.
213 *
214 * Dbufs are added to these caches once the last hold is released. If a dbuf is
215 * later accessed and still exists in the dbuf cache, then it will be removed
216 * from the cache and later re-added to the head of the cache.
217 *
218 * If a given dbuf meets the requirements for the metadata cache, it will go
219 * there, otherwise it will be considered for the generic LRU dbuf cache. The
220 * caches and the refcounts tracking their sizes are stored in an array indexed
221 * by those caches' matching enum values (from dbuf_cached_state_t).
222 */
223 typedef struct dbuf_cache {
224 multilist_t cache;
225 zfs_refcount_t size ____cacheline_aligned;
226 } dbuf_cache_t;
227 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
228
229 /* Size limits for the caches */
230 static uint64_t dbuf_cache_max_bytes = UINT64_MAX;
231 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX;
232
233 /* Set the default sizes of the caches to log2 fraction of arc size */
234 static uint_t dbuf_cache_shift = 5;
235 static uint_t dbuf_metadata_cache_shift = 6;
236
237 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
238 static uint_t dbuf_mutex_cache_shift = 0;
239
240 static unsigned long dbuf_cache_target_bytes(void);
241 static unsigned long dbuf_metadata_cache_target_bytes(void);
242
243 /*
244 * The LRU dbuf cache uses a three-stage eviction policy:
245 * - A low water marker designates when the dbuf eviction thread
246 * should stop evicting from the dbuf cache.
247 * - When we reach the maximum size (aka mid water mark), we
248 * signal the eviction thread to run.
249 * - The high water mark indicates when the eviction thread
250 * is unable to keep up with the incoming load and eviction must
251 * happen in the context of the calling thread.
252 *
253 * The dbuf cache:
254 * (max size)
255 * low water mid water hi water
256 * +----------------------------------------+----------+----------+
257 * | | | |
258 * | | | |
259 * | | | |
260 * | | | |
261 * +----------------------------------------+----------+----------+
262 * stop signal evict
263 * evicting eviction directly
264 * thread
265 *
266 * The high and low water marks indicate the operating range for the eviction
267 * thread. The low water mark is, by default, 90% of the total size of the
268 * cache and the high water mark is at 110% (both of these percentages can be
269 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
270 * respectively). The eviction thread will try to ensure that the cache remains
271 * within this range by waking up every second and checking if the cache is
272 * above the low water mark. The thread can also be woken up by callers adding
273 * elements into the cache if the cache is larger than the mid water (i.e max
274 * cache size). Once the eviction thread is woken up and eviction is required,
275 * it will continue evicting buffers until it's able to reduce the cache size
276 * to the low water mark. If the cache size continues to grow and hits the high
277 * water mark, then callers adding elements to the cache will begin to evict
278 * directly from the cache until the cache is no longer above the high water
279 * mark.
280 */
281
282 /*
283 * The percentage above and below the maximum cache size.
284 */
285 static uint_t dbuf_cache_hiwater_pct = 10;
286 static uint_t dbuf_cache_lowater_pct = 10;
287
288 static int
289 dbuf_cons(void *vdb, void *unused, int kmflag)
290 {
291 (void) unused, (void) kmflag;
292 dmu_buf_impl_t *db = vdb;
293 memset(db, 0, sizeof (dmu_buf_impl_t));
294
295 mutex_init(&db->db_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
296 rw_init(&db->db_rwlock, NULL, RW_NOLOCKDEP, NULL);
297 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
298 multilist_link_init(&db->db_cache_link);
299 zfs_refcount_create(&db->db_holds);
300
301 return (0);
302 }
303
304 static void
305 dbuf_dest(void *vdb, void *unused)
306 {
307 (void) unused;
308 dmu_buf_impl_t *db = vdb;
309 mutex_destroy(&db->db_mtx);
310 rw_destroy(&db->db_rwlock);
311 cv_destroy(&db->db_changed);
312 ASSERT(!multilist_link_active(&db->db_cache_link));
313 zfs_refcount_destroy(&db->db_holds);
314 }
315
316 /*
317 * dbuf hash table routines
318 */
319 static dbuf_hash_table_t dbuf_hash_table;
320
321 /*
322 * We use Cityhash for this. It's fast, and has good hash properties without
323 * requiring any large static buffers.
324 */
325 static uint64_t
326 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
327 {
328 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
329 }
330
331 #define DTRACE_SET_STATE(db, why) \
332 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \
333 const char *, why)
334
335 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
336 ((dbuf)->db.db_object == (obj) && \
337 (dbuf)->db_objset == (os) && \
338 (dbuf)->db_level == (level) && \
339 (dbuf)->db_blkid == (blkid))
340
341 dmu_buf_impl_t *
342 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid,
343 uint64_t *hash_out)
344 {
345 dbuf_hash_table_t *h = &dbuf_hash_table;
346 uint64_t hv;
347 uint64_t idx;
348 dmu_buf_impl_t *db;
349
350 hv = dbuf_hash(os, obj, level, blkid);
351 idx = hv & h->hash_table_mask;
352
353 mutex_enter(DBUF_HASH_MUTEX(h, idx));
354 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
355 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
356 mutex_enter(&db->db_mtx);
357 if (db->db_state != DB_EVICTING) {
358 mutex_exit(DBUF_HASH_MUTEX(h, idx));
359 return (db);
360 }
361 mutex_exit(&db->db_mtx);
362 }
363 }
364 mutex_exit(DBUF_HASH_MUTEX(h, idx));
365 if (hash_out != NULL)
366 *hash_out = hv;
367 return (NULL);
368 }
369
370 static dmu_buf_impl_t *
371 dbuf_find_bonus(objset_t *os, uint64_t object)
372 {
373 dnode_t *dn;
374 dmu_buf_impl_t *db = NULL;
375
376 if (dnode_hold(os, object, FTAG, &dn) == 0) {
377 rw_enter(&dn->dn_struct_rwlock, RW_READER);
378 if (dn->dn_bonus != NULL) {
379 db = dn->dn_bonus;
380 mutex_enter(&db->db_mtx);
381 }
382 rw_exit(&dn->dn_struct_rwlock);
383 dnode_rele(dn, FTAG);
384 }
385 return (db);
386 }
387
388 /*
389 * Insert an entry into the hash table. If there is already an element
390 * equal to elem in the hash table, then the already existing element
391 * will be returned and the new element will not be inserted.
392 * Otherwise returns NULL.
393 */
394 static dmu_buf_impl_t *
395 dbuf_hash_insert(dmu_buf_impl_t *db)
396 {
397 dbuf_hash_table_t *h = &dbuf_hash_table;
398 objset_t *os = db->db_objset;
399 uint64_t obj = db->db.db_object;
400 int level = db->db_level;
401 uint64_t blkid, idx;
402 dmu_buf_impl_t *dbf;
403 uint32_t i;
404
405 blkid = db->db_blkid;
406 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash);
407 idx = db->db_hash & h->hash_table_mask;
408
409 mutex_enter(DBUF_HASH_MUTEX(h, idx));
410 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
411 dbf = dbf->db_hash_next, i++) {
412 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
413 mutex_enter(&dbf->db_mtx);
414 if (dbf->db_state != DB_EVICTING) {
415 mutex_exit(DBUF_HASH_MUTEX(h, idx));
416 return (dbf);
417 }
418 mutex_exit(&dbf->db_mtx);
419 }
420 }
421
422 if (i > 0) {
423 DBUF_STAT_BUMP(hash_collisions);
424 if (i == 1)
425 DBUF_STAT_BUMP(hash_chains);
426
427 DBUF_STAT_MAX(hash_chain_max, i);
428 }
429
430 mutex_enter(&db->db_mtx);
431 db->db_hash_next = h->hash_table[idx];
432 h->hash_table[idx] = db;
433 mutex_exit(DBUF_HASH_MUTEX(h, idx));
434 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64);
435 DBUF_STAT_MAX(hash_elements_max, he);
436
437 return (NULL);
438 }
439
440 /*
441 * This returns whether this dbuf should be stored in the metadata cache, which
442 * is based on whether it's from one of the dnode types that store data related
443 * to traversing dataset hierarchies.
444 */
445 static boolean_t
446 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
447 {
448 DB_DNODE_ENTER(db);
449 dmu_object_type_t type = DB_DNODE(db)->dn_type;
450 DB_DNODE_EXIT(db);
451
452 /* Check if this dbuf is one of the types we care about */
453 if (DMU_OT_IS_METADATA_CACHED(type)) {
454 /* If we hit this, then we set something up wrong in dmu_ot */
455 ASSERT(DMU_OT_IS_METADATA(type));
456
457 /*
458 * Sanity check for small-memory systems: don't allocate too
459 * much memory for this purpose.
460 */
461 if (zfs_refcount_count(
462 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
463 dbuf_metadata_cache_target_bytes()) {
464 DBUF_STAT_BUMP(metadata_cache_overflow);
465 return (B_FALSE);
466 }
467
468 return (B_TRUE);
469 }
470
471 return (B_FALSE);
472 }
473
474 /*
475 * Remove an entry from the hash table. It must be in the EVICTING state.
476 */
477 static void
478 dbuf_hash_remove(dmu_buf_impl_t *db)
479 {
480 dbuf_hash_table_t *h = &dbuf_hash_table;
481 uint64_t idx;
482 dmu_buf_impl_t *dbf, **dbp;
483
484 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level,
485 db->db_blkid), ==, db->db_hash);
486 idx = db->db_hash & h->hash_table_mask;
487
488 /*
489 * We mustn't hold db_mtx to maintain lock ordering:
490 * DBUF_HASH_MUTEX > db_mtx.
491 */
492 ASSERT(zfs_refcount_is_zero(&db->db_holds));
493 ASSERT(db->db_state == DB_EVICTING);
494 ASSERT(!MUTEX_HELD(&db->db_mtx));
495
496 mutex_enter(DBUF_HASH_MUTEX(h, idx));
497 dbp = &h->hash_table[idx];
498 while ((dbf = *dbp) != db) {
499 dbp = &dbf->db_hash_next;
500 ASSERT(dbf != NULL);
501 }
502 *dbp = db->db_hash_next;
503 db->db_hash_next = NULL;
504 if (h->hash_table[idx] &&
505 h->hash_table[idx]->db_hash_next == NULL)
506 DBUF_STAT_BUMPDOWN(hash_chains);
507 mutex_exit(DBUF_HASH_MUTEX(h, idx));
508 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64);
509 }
510
511 typedef enum {
512 DBVU_EVICTING,
513 DBVU_NOT_EVICTING
514 } dbvu_verify_type_t;
515
516 static void
517 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
518 {
519 #ifdef ZFS_DEBUG
520 int64_t holds;
521
522 if (db->db_user == NULL)
523 return;
524
525 /* Only data blocks support the attachment of user data. */
526 ASSERT(db->db_level == 0);
527
528 /* Clients must resolve a dbuf before attaching user data. */
529 ASSERT(db->db.db_data != NULL);
530 ASSERT3U(db->db_state, ==, DB_CACHED);
531
532 holds = zfs_refcount_count(&db->db_holds);
533 if (verify_type == DBVU_EVICTING) {
534 /*
535 * Immediate eviction occurs when holds == dirtycnt.
536 * For normal eviction buffers, holds is zero on
537 * eviction, except when dbuf_fix_old_data() calls
538 * dbuf_clear_data(). However, the hold count can grow
539 * during eviction even though db_mtx is held (see
540 * dmu_bonus_hold() for an example), so we can only
541 * test the generic invariant that holds >= dirtycnt.
542 */
543 ASSERT3U(holds, >=, db->db_dirtycnt);
544 } else {
545 if (db->db_user_immediate_evict == TRUE)
546 ASSERT3U(holds, >=, db->db_dirtycnt);
547 else
548 ASSERT3U(holds, >, 0);
549 }
550 #endif
551 }
552
553 static void
554 dbuf_evict_user(dmu_buf_impl_t *db)
555 {
556 dmu_buf_user_t *dbu = db->db_user;
557
558 ASSERT(MUTEX_HELD(&db->db_mtx));
559
560 if (dbu == NULL)
561 return;
562
563 dbuf_verify_user(db, DBVU_EVICTING);
564 db->db_user = NULL;
565
566 #ifdef ZFS_DEBUG
567 if (dbu->dbu_clear_on_evict_dbufp != NULL)
568 *dbu->dbu_clear_on_evict_dbufp = NULL;
569 #endif
570
571 if (db->db_caching_status != DB_NO_CACHE) {
572 /*
573 * This is a cached dbuf, so the size of the user data is
574 * included in its cached amount. We adjust it here because the
575 * user data has already been detached from the dbuf, and the
576 * sync functions are not supposed to touch it (the dbuf might
577 * not exist anymore by the time the sync functions run.
578 */
579 uint64_t size = dbu->dbu_size;
580 (void) zfs_refcount_remove_many(
581 &dbuf_caches[db->db_caching_status].size, size, dbu);
582 if (db->db_caching_status == DB_DBUF_CACHE)
583 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
584 }
585
586 /*
587 * There are two eviction callbacks - one that we call synchronously
588 * and one that we invoke via a taskq. The async one is useful for
589 * avoiding lock order reversals and limiting stack depth.
590 *
591 * Note that if we have a sync callback but no async callback,
592 * it's likely that the sync callback will free the structure
593 * containing the dbu. In that case we need to take care to not
594 * dereference dbu after calling the sync evict func.
595 */
596 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
597
598 if (dbu->dbu_evict_func_sync != NULL)
599 dbu->dbu_evict_func_sync(dbu);
600
601 if (has_async) {
602 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
603 dbu, 0, &dbu->dbu_tqent);
604 }
605 }
606
607 boolean_t
608 dbuf_is_metadata(dmu_buf_impl_t *db)
609 {
610 /*
611 * Consider indirect blocks and spill blocks to be meta data.
612 */
613 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
614 return (B_TRUE);
615 } else {
616 boolean_t is_metadata;
617
618 DB_DNODE_ENTER(db);
619 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
620 DB_DNODE_EXIT(db);
621
622 return (is_metadata);
623 }
624 }
625
626 /*
627 * We want to exclude buffers that are on a special allocation class from
628 * L2ARC.
629 */
630 boolean_t
631 dbuf_is_l2cacheable(dmu_buf_impl_t *db)
632 {
633 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL ||
634 (db->db_objset->os_secondary_cache ==
635 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) {
636 if (l2arc_exclude_special == 0)
637 return (B_TRUE);
638
639 blkptr_t *bp = db->db_blkptr;
640 if (bp == NULL || BP_IS_HOLE(bp))
641 return (B_FALSE);
642 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
643 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
644 vdev_t *vd = NULL;
645
646 if (vdev < rvd->vdev_children)
647 vd = rvd->vdev_child[vdev];
648
649 if (vd == NULL)
650 return (B_TRUE);
651
652 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
653 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
654 return (B_TRUE);
655 }
656 return (B_FALSE);
657 }
658
659 static inline boolean_t
660 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
661 {
662 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL ||
663 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA &&
664 (level > 0 ||
665 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) {
666 if (l2arc_exclude_special == 0)
667 return (B_TRUE);
668
669 if (bp == NULL || BP_IS_HOLE(bp))
670 return (B_FALSE);
671 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
672 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
673 vdev_t *vd = NULL;
674
675 if (vdev < rvd->vdev_children)
676 vd = rvd->vdev_child[vdev];
677
678 if (vd == NULL)
679 return (B_TRUE);
680
681 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
682 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
683 return (B_TRUE);
684 }
685 return (B_FALSE);
686 }
687
688
689 /*
690 * This function *must* return indices evenly distributed between all
691 * sublists of the multilist. This is needed due to how the dbuf eviction
692 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
693 * distributed between all sublists and uses this assumption when
694 * deciding which sublist to evict from and how much to evict from it.
695 */
696 static unsigned int
697 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
698 {
699 dmu_buf_impl_t *db = obj;
700
701 /*
702 * The assumption here, is the hash value for a given
703 * dmu_buf_impl_t will remain constant throughout it's lifetime
704 * (i.e. it's objset, object, level and blkid fields don't change).
705 * Thus, we don't need to store the dbuf's sublist index
706 * on insertion, as this index can be recalculated on removal.
707 *
708 * Also, the low order bits of the hash value are thought to be
709 * distributed evenly. Otherwise, in the case that the multilist
710 * has a power of two number of sublists, each sublists' usage
711 * would not be evenly distributed. In this context full 64bit
712 * division would be a waste of time, so limit it to 32 bits.
713 */
714 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
715 db->db_level, db->db_blkid) %
716 multilist_get_num_sublists(ml));
717 }
718
719 /*
720 * The target size of the dbuf cache can grow with the ARC target,
721 * unless limited by the tunable dbuf_cache_max_bytes.
722 */
723 static inline unsigned long
724 dbuf_cache_target_bytes(void)
725 {
726 return (MIN(dbuf_cache_max_bytes,
727 arc_target_bytes() >> dbuf_cache_shift));
728 }
729
730 /*
731 * The target size of the dbuf metadata cache can grow with the ARC target,
732 * unless limited by the tunable dbuf_metadata_cache_max_bytes.
733 */
734 static inline unsigned long
735 dbuf_metadata_cache_target_bytes(void)
736 {
737 return (MIN(dbuf_metadata_cache_max_bytes,
738 arc_target_bytes() >> dbuf_metadata_cache_shift));
739 }
740
741 static inline uint64_t
742 dbuf_cache_hiwater_bytes(void)
743 {
744 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
745 return (dbuf_cache_target +
746 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
747 }
748
749 static inline uint64_t
750 dbuf_cache_lowater_bytes(void)
751 {
752 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
753 return (dbuf_cache_target -
754 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
755 }
756
757 static inline boolean_t
758 dbuf_cache_above_lowater(void)
759 {
760 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
761 dbuf_cache_lowater_bytes());
762 }
763
764 /*
765 * Evict the oldest eligible dbuf from the dbuf cache.
766 */
767 static void
768 dbuf_evict_one(void)
769 {
770 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
771 multilist_sublist_t *mls = multilist_sublist_lock_idx(
772 &dbuf_caches[DB_DBUF_CACHE].cache, idx);
773
774 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
775
776 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
777 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
778 db = multilist_sublist_prev(mls, db);
779 }
780
781 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
782 multilist_sublist_t *, mls);
783
784 if (db != NULL) {
785 multilist_sublist_remove(mls, db);
786 multilist_sublist_unlock(mls);
787 uint64_t size = db->db.db_size;
788 uint64_t usize = dmu_buf_user_size(&db->db);
789 (void) zfs_refcount_remove_many(
790 &dbuf_caches[DB_DBUF_CACHE].size, size, db);
791 (void) zfs_refcount_remove_many(
792 &dbuf_caches[DB_DBUF_CACHE].size, usize, db->db_user);
793 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
794 DBUF_STAT_BUMPDOWN(cache_count);
795 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size + usize);
796 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
797 db->db_caching_status = DB_NO_CACHE;
798 dbuf_destroy(db);
799 DBUF_STAT_BUMP(cache_total_evicts);
800 } else {
801 multilist_sublist_unlock(mls);
802 }
803 }
804
805 /*
806 * The dbuf evict thread is responsible for aging out dbufs from the
807 * cache. Once the cache has reached it's maximum size, dbufs are removed
808 * and destroyed. The eviction thread will continue running until the size
809 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
810 * out of the cache it is destroyed and becomes eligible for arc eviction.
811 */
812 static __attribute__((noreturn)) void
813 dbuf_evict_thread(void *unused)
814 {
815 (void) unused;
816 callb_cpr_t cpr;
817
818 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
819
820 mutex_enter(&dbuf_evict_lock);
821 while (!dbuf_evict_thread_exit) {
822 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
823 CALLB_CPR_SAFE_BEGIN(&cpr);
824 (void) cv_timedwait_idle_hires(&dbuf_evict_cv,
825 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
826 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
827 }
828 mutex_exit(&dbuf_evict_lock);
829
830 /*
831 * Keep evicting as long as we're above the low water mark
832 * for the cache. We do this without holding the locks to
833 * minimize lock contention.
834 */
835 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
836 dbuf_evict_one();
837 }
838
839 mutex_enter(&dbuf_evict_lock);
840 }
841
842 dbuf_evict_thread_exit = B_FALSE;
843 cv_broadcast(&dbuf_evict_cv);
844 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
845 thread_exit();
846 }
847
848 /*
849 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
850 * If the dbuf cache is at its high water mark, then evict a dbuf from the
851 * dbuf cache using the caller's context.
852 */
853 static void
854 dbuf_evict_notify(uint64_t size)
855 {
856 /*
857 * We check if we should evict without holding the dbuf_evict_lock,
858 * because it's OK to occasionally make the wrong decision here,
859 * and grabbing the lock results in massive lock contention.
860 */
861 if (size > dbuf_cache_target_bytes()) {
862 if (size > dbuf_cache_hiwater_bytes())
863 dbuf_evict_one();
864 cv_signal(&dbuf_evict_cv);
865 }
866 }
867
868 static int
869 dbuf_kstat_update(kstat_t *ksp, int rw)
870 {
871 dbuf_stats_t *ds = ksp->ks_data;
872 dbuf_hash_table_t *h = &dbuf_hash_table;
873
874 if (rw == KSTAT_WRITE)
875 return (SET_ERROR(EACCES));
876
877 ds->cache_count.value.ui64 =
878 wmsum_value(&dbuf_sums.cache_count);
879 ds->cache_size_bytes.value.ui64 =
880 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
881 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
882 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
883 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
884 ds->cache_total_evicts.value.ui64 =
885 wmsum_value(&dbuf_sums.cache_total_evicts);
886 for (int i = 0; i < DN_MAX_LEVELS; i++) {
887 ds->cache_levels[i].value.ui64 =
888 wmsum_value(&dbuf_sums.cache_levels[i]);
889 ds->cache_levels_bytes[i].value.ui64 =
890 wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
891 }
892 ds->hash_hits.value.ui64 =
893 wmsum_value(&dbuf_sums.hash_hits);
894 ds->hash_misses.value.ui64 =
895 wmsum_value(&dbuf_sums.hash_misses);
896 ds->hash_collisions.value.ui64 =
897 wmsum_value(&dbuf_sums.hash_collisions);
898 ds->hash_chains.value.ui64 =
899 wmsum_value(&dbuf_sums.hash_chains);
900 ds->hash_insert_race.value.ui64 =
901 wmsum_value(&dbuf_sums.hash_insert_race);
902 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
903 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
904 ds->metadata_cache_count.value.ui64 =
905 wmsum_value(&dbuf_sums.metadata_cache_count);
906 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
907 &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
908 ds->metadata_cache_overflow.value.ui64 =
909 wmsum_value(&dbuf_sums.metadata_cache_overflow);
910 return (0);
911 }
912
913 void
914 dbuf_init(void)
915 {
916 uint64_t hmsize, hsize = 1ULL << 16;
917 dbuf_hash_table_t *h = &dbuf_hash_table;
918
919 /*
920 * The hash table is big enough to fill one eighth of physical memory
921 * with an average block size of zfs_arc_average_blocksize (default 8K).
922 * By default, the table will take up
923 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
924 */
925 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
926 hsize <<= 1;
927
928 h->hash_table = NULL;
929 while (h->hash_table == NULL) {
930 h->hash_table_mask = hsize - 1;
931
932 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
933 if (h->hash_table == NULL)
934 hsize >>= 1;
935
936 ASSERT3U(hsize, >=, 1ULL << 10);
937 }
938
939 /*
940 * The hash table buckets are protected by an array of mutexes where
941 * each mutex is reponsible for protecting 128 buckets. A minimum
942 * array size of 8192 is targeted to avoid contention.
943 */
944 if (dbuf_mutex_cache_shift == 0)
945 hmsize = MAX(hsize >> 7, 1ULL << 13);
946 else
947 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);
948
949 h->hash_mutexes = NULL;
950 while (h->hash_mutexes == NULL) {
951 h->hash_mutex_mask = hmsize - 1;
952
953 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
954 KM_SLEEP);
955 if (h->hash_mutexes == NULL)
956 hmsize >>= 1;
957 }
958
959 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
960 sizeof (dmu_buf_impl_t),
961 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
962
963 for (int i = 0; i < hmsize; i++)
964 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_NOLOCKDEP, NULL);
965
966 dbuf_stats_init(h);
967
968 /*
969 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
970 * configuration is not required.
971 */
972 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
973
974 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
975 multilist_create(&dbuf_caches[dcs].cache,
976 sizeof (dmu_buf_impl_t),
977 offsetof(dmu_buf_impl_t, db_cache_link),
978 dbuf_cache_multilist_index_func);
979 zfs_refcount_create(&dbuf_caches[dcs].size);
980 }
981
982 dbuf_evict_thread_exit = B_FALSE;
983 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
984 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
985 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
986 NULL, 0, &p0, TS_RUN, minclsyspri);
987
988 wmsum_init(&dbuf_sums.cache_count, 0);
989 wmsum_init(&dbuf_sums.cache_total_evicts, 0);
990 for (int i = 0; i < DN_MAX_LEVELS; i++) {
991 wmsum_init(&dbuf_sums.cache_levels[i], 0);
992 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
993 }
994 wmsum_init(&dbuf_sums.hash_hits, 0);
995 wmsum_init(&dbuf_sums.hash_misses, 0);
996 wmsum_init(&dbuf_sums.hash_collisions, 0);
997 wmsum_init(&dbuf_sums.hash_chains, 0);
998 wmsum_init(&dbuf_sums.hash_insert_race, 0);
999 wmsum_init(&dbuf_sums.metadata_cache_count, 0);
1000 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
1001
1002 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
1003 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
1004 KSTAT_FLAG_VIRTUAL);
1005 if (dbuf_ksp != NULL) {
1006 for (int i = 0; i < DN_MAX_LEVELS; i++) {
1007 snprintf(dbuf_stats.cache_levels[i].name,
1008 KSTAT_STRLEN, "cache_level_%d", i);
1009 dbuf_stats.cache_levels[i].data_type =
1010 KSTAT_DATA_UINT64;
1011 snprintf(dbuf_stats.cache_levels_bytes[i].name,
1012 KSTAT_STRLEN, "cache_level_%d_bytes", i);
1013 dbuf_stats.cache_levels_bytes[i].data_type =
1014 KSTAT_DATA_UINT64;
1015 }
1016 dbuf_ksp->ks_data = &dbuf_stats;
1017 dbuf_ksp->ks_update = dbuf_kstat_update;
1018 kstat_install(dbuf_ksp);
1019 }
1020 }
1021
1022 void
1023 dbuf_fini(void)
1024 {
1025 dbuf_hash_table_t *h = &dbuf_hash_table;
1026
1027 dbuf_stats_destroy();
1028
1029 for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
1030 mutex_destroy(&h->hash_mutexes[i]);
1031
1032 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
1033 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
1034 sizeof (kmutex_t));
1035
1036 kmem_cache_destroy(dbuf_kmem_cache);
1037 taskq_destroy(dbu_evict_taskq);
1038
1039 mutex_enter(&dbuf_evict_lock);
1040 dbuf_evict_thread_exit = B_TRUE;
1041 while (dbuf_evict_thread_exit) {
1042 cv_signal(&dbuf_evict_cv);
1043 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1044 }
1045 mutex_exit(&dbuf_evict_lock);
1046
1047 mutex_destroy(&dbuf_evict_lock);
1048 cv_destroy(&dbuf_evict_cv);
1049
1050 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1051 zfs_refcount_destroy(&dbuf_caches[dcs].size);
1052 multilist_destroy(&dbuf_caches[dcs].cache);
1053 }
1054
1055 if (dbuf_ksp != NULL) {
1056 kstat_delete(dbuf_ksp);
1057 dbuf_ksp = NULL;
1058 }
1059
1060 wmsum_fini(&dbuf_sums.cache_count);
1061 wmsum_fini(&dbuf_sums.cache_total_evicts);
1062 for (int i = 0; i < DN_MAX_LEVELS; i++) {
1063 wmsum_fini(&dbuf_sums.cache_levels[i]);
1064 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1065 }
1066 wmsum_fini(&dbuf_sums.hash_hits);
1067 wmsum_fini(&dbuf_sums.hash_misses);
1068 wmsum_fini(&dbuf_sums.hash_collisions);
1069 wmsum_fini(&dbuf_sums.hash_chains);
1070 wmsum_fini(&dbuf_sums.hash_insert_race);
1071 wmsum_fini(&dbuf_sums.metadata_cache_count);
1072 wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1073 }
1074
1075 /*
1076 * Other stuff.
1077 */
1078
1079 #ifdef ZFS_DEBUG
1080 static void
1081 dbuf_verify(dmu_buf_impl_t *db)
1082 {
1083 dnode_t *dn;
1084 dbuf_dirty_record_t *dr;
1085 uint32_t txg_prev;
1086
1087 ASSERT(MUTEX_HELD(&db->db_mtx));
1088
1089 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1090 return;
1091
1092 ASSERT(db->db_objset != NULL);
1093 DB_DNODE_ENTER(db);
1094 dn = DB_DNODE(db);
1095 if (dn == NULL) {
1096 ASSERT(db->db_parent == NULL);
1097 ASSERT(db->db_blkptr == NULL);
1098 } else {
1099 ASSERT3U(db->db.db_object, ==, dn->dn_object);
1100 ASSERT3P(db->db_objset, ==, dn->dn_objset);
1101 ASSERT3U(db->db_level, <, dn->dn_nlevels);
1102 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1103 db->db_blkid == DMU_SPILL_BLKID ||
1104 !avl_is_empty(&dn->dn_dbufs));
1105 }
1106 if (db->db_blkid == DMU_BONUS_BLKID) {
1107 ASSERT(dn != NULL);
1108 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1109 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1110 } else if (db->db_blkid == DMU_SPILL_BLKID) {
1111 ASSERT(dn != NULL);
1112 ASSERT0(db->db.db_offset);
1113 } else {
1114 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1115 }
1116
1117 if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1118 ASSERT(dr->dr_dbuf == db);
1119 txg_prev = dr->dr_txg;
1120 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1121 dr = list_next(&db->db_dirty_records, dr)) {
1122 ASSERT(dr->dr_dbuf == db);
1123 ASSERT(txg_prev > dr->dr_txg);
1124 txg_prev = dr->dr_txg;
1125 }
1126 }
1127
1128 /*
1129 * We can't assert that db_size matches dn_datablksz because it
1130 * can be momentarily different when another thread is doing
1131 * dnode_set_blksz().
1132 */
1133 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1134 dr = db->db_data_pending;
1135 /*
1136 * It should only be modified in syncing context, so
1137 * make sure we only have one copy of the data.
1138 */
1139 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1140 }
1141
1142 /* verify db->db_blkptr */
1143 if (db->db_blkptr) {
1144 if (db->db_parent == dn->dn_dbuf) {
1145 /* db is pointed to by the dnode */
1146 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1147 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1148 ASSERT(db->db_parent == NULL);
1149 else
1150 ASSERT(db->db_parent != NULL);
1151 if (db->db_blkid != DMU_SPILL_BLKID)
1152 ASSERT3P(db->db_blkptr, ==,
1153 &dn->dn_phys->dn_blkptr[db->db_blkid]);
1154 } else {
1155 /* db is pointed to by an indirect block */
1156 int epb __maybe_unused = db->db_parent->db.db_size >>
1157 SPA_BLKPTRSHIFT;
1158 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1159 ASSERT3U(db->db_parent->db.db_object, ==,
1160 db->db.db_object);
1161 /*
1162 * dnode_grow_indblksz() can make this fail if we don't
1163 * have the parent's rwlock. XXX indblksz no longer
1164 * grows. safe to do this now?
1165 */
1166 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
1167 ASSERT3P(db->db_blkptr, ==,
1168 ((blkptr_t *)db->db_parent->db.db_data +
1169 db->db_blkid % epb));
1170 }
1171 }
1172 }
1173 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1174 (db->db_buf == NULL || db->db_buf->b_data) &&
1175 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1176 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) {
1177 /*
1178 * If the blkptr isn't set but they have nonzero data,
1179 * it had better be dirty, otherwise we'll lose that
1180 * data when we evict this buffer.
1181 *
1182 * There is an exception to this rule for indirect blocks; in
1183 * this case, if the indirect block is a hole, we fill in a few
1184 * fields on each of the child blocks (importantly, birth time)
1185 * to prevent hole birth times from being lost when you
1186 * partially fill in a hole.
1187 */
1188 if (db->db_dirtycnt == 0) {
1189 if (db->db_level == 0) {
1190 uint64_t *buf = db->db.db_data;
1191 int i;
1192
1193 for (i = 0; i < db->db.db_size >> 3; i++) {
1194 ASSERT(buf[i] == 0);
1195 }
1196 } else {
1197 blkptr_t *bps = db->db.db_data;
1198 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1199 db->db.db_size);
1200 /*
1201 * We want to verify that all the blkptrs in the
1202 * indirect block are holes, but we may have
1203 * automatically set up a few fields for them.
1204 * We iterate through each blkptr and verify
1205 * they only have those fields set.
1206 */
1207 for (int i = 0;
1208 i < db->db.db_size / sizeof (blkptr_t);
1209 i++) {
1210 blkptr_t *bp = &bps[i];
1211 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1212 &bp->blk_cksum));
1213 ASSERT(
1214 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1215 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1216 DVA_IS_EMPTY(&bp->blk_dva[2]));
1217 ASSERT0(bp->blk_fill);
1218 ASSERT0(bp->blk_pad[0]);
1219 ASSERT0(bp->blk_pad[1]);
1220 ASSERT(!BP_IS_EMBEDDED(bp));
1221 ASSERT(BP_IS_HOLE(bp));
1222 ASSERT0(BP_GET_PHYSICAL_BIRTH(bp));
1223 }
1224 }
1225 }
1226 }
1227 DB_DNODE_EXIT(db);
1228 }
1229 #endif
1230
1231 static void
1232 dbuf_clear_data(dmu_buf_impl_t *db)
1233 {
1234 ASSERT(MUTEX_HELD(&db->db_mtx));
1235 dbuf_evict_user(db);
1236 ASSERT3P(db->db_buf, ==, NULL);
1237 db->db.db_data = NULL;
1238 if (db->db_state != DB_NOFILL) {
1239 db->db_state = DB_UNCACHED;
1240 DTRACE_SET_STATE(db, "clear data");
1241 }
1242 }
1243
1244 static void
1245 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1246 {
1247 ASSERT(MUTEX_HELD(&db->db_mtx));
1248 ASSERT(buf != NULL);
1249
1250 db->db_buf = buf;
1251 ASSERT(buf->b_data != NULL);
1252 db->db.db_data = buf->b_data;
1253 }
1254
1255 static arc_buf_t *
1256 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1257 {
1258 spa_t *spa = db->db_objset->os_spa;
1259
1260 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1261 }
1262
1263 /*
1264 * Loan out an arc_buf for read. Return the loaned arc_buf.
1265 */
1266 arc_buf_t *
1267 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1268 {
1269 arc_buf_t *abuf;
1270
1271 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1272 mutex_enter(&db->db_mtx);
1273 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1274 int blksz = db->db.db_size;
1275 spa_t *spa = db->db_objset->os_spa;
1276
1277 mutex_exit(&db->db_mtx);
1278 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1279 memcpy(abuf->b_data, db->db.db_data, blksz);
1280 } else {
1281 abuf = db->db_buf;
1282 arc_loan_inuse_buf(abuf, db);
1283 db->db_buf = NULL;
1284 dbuf_clear_data(db);
1285 mutex_exit(&db->db_mtx);
1286 }
1287 return (abuf);
1288 }
1289
1290 /*
1291 * Calculate which level n block references the data at the level 0 offset
1292 * provided.
1293 */
1294 uint64_t
1295 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1296 {
1297 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1298 /*
1299 * The level n blkid is equal to the level 0 blkid divided by
1300 * the number of level 0s in a level n block.
1301 *
1302 * The level 0 blkid is offset >> datablkshift =
1303 * offset / 2^datablkshift.
1304 *
1305 * The number of level 0s in a level n is the number of block
1306 * pointers in an indirect block, raised to the power of level.
1307 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1308 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1309 *
1310 * Thus, the level n blkid is: offset /
1311 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1312 * = offset / 2^(datablkshift + level *
1313 * (indblkshift - SPA_BLKPTRSHIFT))
1314 * = offset >> (datablkshift + level *
1315 * (indblkshift - SPA_BLKPTRSHIFT))
1316 */
1317
1318 const unsigned exp = dn->dn_datablkshift +
1319 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1320
1321 if (exp >= 8 * sizeof (offset)) {
1322 /* This only happens on the highest indirection level */
1323 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1324 return (0);
1325 }
1326
1327 ASSERT3U(exp, <, 8 * sizeof (offset));
1328
1329 return (offset >> exp);
1330 } else {
1331 ASSERT3U(offset, <, dn->dn_datablksz);
1332 return (0);
1333 }
1334 }
1335
1336 /*
1337 * This function is used to lock the parent of the provided dbuf. This should be
1338 * used when modifying or reading db_blkptr.
1339 */
1340 db_lock_type_t
1341 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
1342 {
1343 enum db_lock_type ret = DLT_NONE;
1344 if (db->db_parent != NULL) {
1345 rw_enter(&db->db_parent->db_rwlock, rw);
1346 ret = DLT_PARENT;
1347 } else if (dmu_objset_ds(db->db_objset) != NULL) {
1348 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1349 tag);
1350 ret = DLT_OBJSET;
1351 }
1352 /*
1353 * We only return a DLT_NONE lock when it's the top-most indirect block
1354 * of the meta-dnode of the MOS.
1355 */
1356 return (ret);
1357 }
1358
1359 /*
1360 * We need to pass the lock type in because it's possible that the block will
1361 * move from being the topmost indirect block in a dnode (and thus, have no
1362 * parent) to not the top-most via an indirection increase. This would cause a
1363 * panic if we didn't pass the lock type in.
1364 */
1365 void
1366 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
1367 {
1368 if (type == DLT_PARENT)
1369 rw_exit(&db->db_parent->db_rwlock);
1370 else if (type == DLT_OBJSET)
1371 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1372 }
1373
1374 static void
1375 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1376 arc_buf_t *buf, void *vdb)
1377 {
1378 (void) zb, (void) bp;
1379 dmu_buf_impl_t *db = vdb;
1380
1381 mutex_enter(&db->db_mtx);
1382 ASSERT3U(db->db_state, ==, DB_READ);
1383 /*
1384 * All reads are synchronous, so we must have a hold on the dbuf
1385 */
1386 ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1387 ASSERT(db->db_buf == NULL);
1388 ASSERT(db->db.db_data == NULL);
1389 if (buf == NULL) {
1390 /* i/o error */
1391 ASSERT(zio == NULL || zio->io_error != 0);
1392 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1393 ASSERT3P(db->db_buf, ==, NULL);
1394 db->db_state = DB_UNCACHED;
1395 DTRACE_SET_STATE(db, "i/o error");
1396 } else if (db->db_level == 0 && db->db_freed_in_flight) {
1397 /* freed in flight */
1398 ASSERT(zio == NULL || zio->io_error == 0);
1399 arc_release(buf, db);
1400 memset(buf->b_data, 0, db->db.db_size);
1401 arc_buf_freeze(buf);
1402 db->db_freed_in_flight = FALSE;
1403 dbuf_set_data(db, buf);
1404 db->db_state = DB_CACHED;
1405 DTRACE_SET_STATE(db, "freed in flight");
1406 } else {
1407 /* success */
1408 ASSERT(zio == NULL || zio->io_error == 0);
1409 dbuf_set_data(db, buf);
1410 db->db_state = DB_CACHED;
1411 DTRACE_SET_STATE(db, "successful read");
1412 }
1413 cv_broadcast(&db->db_changed);
1414 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1415 }
1416
1417 /*
1418 * Shortcut for performing reads on bonus dbufs. Returns
1419 * an error if we fail to verify the dnode associated with
1420 * a decrypted block. Otherwise success.
1421 */
1422 static int
1423 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn)
1424 {
1425 int bonuslen, max_bonuslen;
1426
1427 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1428 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1429 ASSERT(MUTEX_HELD(&db->db_mtx));
1430 ASSERT(DB_DNODE_HELD(db));
1431 ASSERT3U(bonuslen, <=, db->db.db_size);
1432 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1433 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1434 if (bonuslen < max_bonuslen)
1435 memset(db->db.db_data, 0, max_bonuslen);
1436 if (bonuslen)
1437 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen);
1438 db->db_state = DB_CACHED;
1439 DTRACE_SET_STATE(db, "bonus buffer filled");
1440 return (0);
1441 }
1442
1443 static void
1444 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp)
1445 {
1446 blkptr_t *bps = db->db.db_data;
1447 uint32_t indbs = 1ULL << dn->dn_indblkshift;
1448 int n_bps = indbs >> SPA_BLKPTRSHIFT;
1449
1450 for (int i = 0; i < n_bps; i++) {
1451 blkptr_t *bp = &bps[i];
1452
1453 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs);
1454 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ?
1455 dn->dn_datablksz : BP_GET_LSIZE(dbbp));
1456 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp));
1457 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1);
1458 BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0);
1459 }
1460 }
1461
1462 /*
1463 * Handle reads on dbufs that are holes, if necessary. This function
1464 * requires that the dbuf's mutex is held. Returns success (0) if action
1465 * was taken, ENOENT if no action was taken.
1466 */
1467 static int
1468 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp)
1469 {
1470 ASSERT(MUTEX_HELD(&db->db_mtx));
1471
1472 int is_hole = bp == NULL || BP_IS_HOLE(bp);
1473 /*
1474 * For level 0 blocks only, if the above check fails:
1475 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1476 * processes the delete record and clears the bp while we are waiting
1477 * for the dn_mtx (resulting in a "no" from block_freed).
1478 */
1479 if (!is_hole && db->db_level == 0)
1480 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp);
1481
1482 if (is_hole) {
1483 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1484 memset(db->db.db_data, 0, db->db.db_size);
1485
1486 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) &&
1487 BP_GET_LOGICAL_BIRTH(bp) != 0) {
1488 dbuf_handle_indirect_hole(db, dn, bp);
1489 }
1490 db->db_state = DB_CACHED;
1491 DTRACE_SET_STATE(db, "hole read satisfied");
1492 return (0);
1493 }
1494 return (ENOENT);
1495 }
1496
1497 /*
1498 * This function ensures that, when doing a decrypting read of a block,
1499 * we make sure we have decrypted the dnode associated with it. We must do
1500 * this so that we ensure we are fully authenticating the checksum-of-MACs
1501 * tree from the root of the objset down to this block. Indirect blocks are
1502 * always verified against their secure checksum-of-MACs assuming that the
1503 * dnode containing them is correct. Now that we are doing a decrypting read,
1504 * we can be sure that the key is loaded and verify that assumption. This is
1505 * especially important considering that we always read encrypted dnode
1506 * blocks as raw data (without verifying their MACs) to start, and
1507 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1508 */
1509 static int
1510 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
1511 {
1512 objset_t *os = db->db_objset;
1513 dmu_buf_impl_t *dndb;
1514 arc_buf_t *dnbuf;
1515 zbookmark_phys_t zb;
1516 int err;
1517
1518 if ((flags & DB_RF_NO_DECRYPT) != 0 ||
1519 !os->os_encrypted || os->os_raw_receive ||
1520 (dndb = dn->dn_dbuf) == NULL)
1521 return (0);
1522
1523 dnbuf = dndb->db_buf;
1524 if (!arc_is_encrypted(dnbuf))
1525 return (0);
1526
1527 mutex_enter(&dndb->db_mtx);
1528
1529 /*
1530 * Since dnode buffer is modified by sync process, there can be only
1531 * one copy of it. It means we can not modify (decrypt) it while it
1532 * is being written. I don't see how this may happen now, since
1533 * encrypted dnode writes by receive should be completed before any
1534 * plain-text reads due to txg wait, but better be safe than sorry.
1535 */
1536 while (1) {
1537 if (!arc_is_encrypted(dnbuf)) {
1538 mutex_exit(&dndb->db_mtx);
1539 return (0);
1540 }
1541 dbuf_dirty_record_t *dr = dndb->db_data_pending;
1542 if (dr == NULL || dr->dt.dl.dr_data != dnbuf)
1543 break;
1544 cv_wait(&dndb->db_changed, &dndb->db_mtx);
1545 };
1546
1547 SET_BOOKMARK(&zb, dmu_objset_id(os),
1548 DMU_META_DNODE_OBJECT, 0, dndb->db_blkid);
1549 err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE);
1550
1551 /*
1552 * An error code of EACCES tells us that the key is still not
1553 * available. This is ok if we are only reading authenticated
1554 * (and therefore non-encrypted) blocks.
1555 */
1556 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1557 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1558 (db->db_blkid == DMU_BONUS_BLKID &&
1559 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1560 err = 0;
1561
1562 mutex_exit(&dndb->db_mtx);
1563
1564 return (err);
1565 }
1566
1567 /*
1568 * Drops db_mtx and the parent lock specified by dblt and tag before
1569 * returning.
1570 */
1571 static int
1572 dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, uint32_t flags,
1573 db_lock_type_t dblt, const void *tag)
1574 {
1575 zbookmark_phys_t zb;
1576 uint32_t aflags = ARC_FLAG_NOWAIT;
1577 int err, zio_flags;
1578 blkptr_t bp, *bpp = NULL;
1579
1580 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1581 ASSERT(MUTEX_HELD(&db->db_mtx));
1582 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1583 ASSERT(db->db_buf == NULL);
1584 ASSERT(db->db_parent == NULL ||
1585 RW_LOCK_HELD(&db->db_parent->db_rwlock));
1586
1587 if (db->db_blkid == DMU_BONUS_BLKID) {
1588 err = dbuf_read_bonus(db, dn);
1589 goto early_unlock;
1590 }
1591
1592 /*
1593 * If we have a pending block clone, we don't want to read the
1594 * underlying block, but the content of the block being cloned,
1595 * pointed by the dirty record, so we have the most recent data.
1596 * If there is no dirty record, then we hit a race in a sync
1597 * process when the dirty record is already removed, while the
1598 * dbuf is not yet destroyed. Such case is equivalent to uncached.
1599 */
1600 if (db->db_state == DB_NOFILL) {
1601 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1602 if (dr != NULL) {
1603 if (!dr->dt.dl.dr_brtwrite) {
1604 err = EIO;
1605 goto early_unlock;
1606 }
1607 bp = dr->dt.dl.dr_overridden_by;
1608 bpp = &bp;
1609 }
1610 }
1611
1612 if (bpp == NULL && db->db_blkptr != NULL) {
1613 bp = *db->db_blkptr;
1614 bpp = &bp;
1615 }
1616
1617 err = dbuf_read_hole(db, dn, bpp);
1618 if (err == 0)
1619 goto early_unlock;
1620
1621 ASSERT(bpp != NULL);
1622
1623 /*
1624 * Any attempt to read a redacted block should result in an error. This
1625 * will never happen under normal conditions, but can be useful for
1626 * debugging purposes.
1627 */
1628 if (BP_IS_REDACTED(bpp)) {
1629 ASSERT(dsl_dataset_feature_is_active(
1630 db->db_objset->os_dsl_dataset,
1631 SPA_FEATURE_REDACTED_DATASETS));
1632 err = SET_ERROR(EIO);
1633 goto early_unlock;
1634 }
1635
1636 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1637 db->db.db_object, db->db_level, db->db_blkid);
1638
1639 /*
1640 * All bps of an encrypted os should have the encryption bit set.
1641 * If this is not true it indicates tampering and we report an error.
1642 */
1643 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bpp)) {
1644 spa_log_error(db->db_objset->os_spa, &zb,
1645 BP_GET_LOGICAL_BIRTH(bpp));
1646 err = SET_ERROR(EIO);
1647 goto early_unlock;
1648 }
1649
1650 db->db_state = DB_READ;
1651 DTRACE_SET_STATE(db, "read issued");
1652 mutex_exit(&db->db_mtx);
1653
1654 if (!DBUF_IS_CACHEABLE(db))
1655 aflags |= ARC_FLAG_UNCACHED;
1656 else if (dbuf_is_l2cacheable(db))
1657 aflags |= ARC_FLAG_L2CACHE;
1658
1659 dbuf_add_ref(db, NULL);
1660
1661 zio_flags = (flags & DB_RF_CANFAIL) ?
1662 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1663
1664 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1665 zio_flags |= ZIO_FLAG_RAW;
1666 /*
1667 * The zio layer will copy the provided blkptr later, but we have our
1668 * own copy so that we can release the parent's rwlock. We have to
1669 * do that so that if dbuf_read_done is called synchronously (on
1670 * an l1 cache hit) we don't acquire the db_mtx while holding the
1671 * parent's rwlock, which would be a lock ordering violation.
1672 */
1673 dmu_buf_unlock_parent(db, dblt, tag);
1674 return (arc_read(zio, db->db_objset->os_spa, bpp,
1675 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1676 &aflags, &zb));
1677
1678 early_unlock:
1679 mutex_exit(&db->db_mtx);
1680 dmu_buf_unlock_parent(db, dblt, tag);
1681 return (err);
1682 }
1683
1684 /*
1685 * This is our just-in-time copy function. It makes a copy of buffers that
1686 * have been modified in a previous transaction group before we access them in
1687 * the current active group.
1688 *
1689 * This function is used in three places: when we are dirtying a buffer for the
1690 * first time in a txg, when we are freeing a range in a dnode that includes
1691 * this buffer, and when we are accessing a buffer which was received compressed
1692 * and later referenced in a WRITE_BYREF record.
1693 *
1694 * Note that when we are called from dbuf_free_range() we do not put a hold on
1695 * the buffer, we just traverse the active dbuf list for the dnode.
1696 */
1697 static void
1698 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1699 {
1700 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1701
1702 ASSERT(MUTEX_HELD(&db->db_mtx));
1703 ASSERT(db->db.db_data != NULL);
1704 ASSERT(db->db_level == 0);
1705 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1706
1707 if (dr == NULL ||
1708 (dr->dt.dl.dr_data !=
1709 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1710 return;
1711
1712 /*
1713 * If the last dirty record for this dbuf has not yet synced
1714 * and its referencing the dbuf data, either:
1715 * reset the reference to point to a new copy,
1716 * or (if there a no active holders)
1717 * just null out the current db_data pointer.
1718 */
1719 ASSERT3U(dr->dr_txg, >=, txg - 2);
1720 if (db->db_blkid == DMU_BONUS_BLKID) {
1721 dnode_t *dn = DB_DNODE(db);
1722 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1723 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1724 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1725 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
1726 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1727 dnode_t *dn = DB_DNODE(db);
1728 int size = arc_buf_size(db->db_buf);
1729 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1730 spa_t *spa = db->db_objset->os_spa;
1731 enum zio_compress compress_type =
1732 arc_get_compression(db->db_buf);
1733 uint8_t complevel = arc_get_complevel(db->db_buf);
1734
1735 if (arc_is_encrypted(db->db_buf)) {
1736 boolean_t byteorder;
1737 uint8_t salt[ZIO_DATA_SALT_LEN];
1738 uint8_t iv[ZIO_DATA_IV_LEN];
1739 uint8_t mac[ZIO_DATA_MAC_LEN];
1740
1741 arc_get_raw_params(db->db_buf, &byteorder, salt,
1742 iv, mac);
1743 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1744 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1745 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1746 compress_type, complevel);
1747 } else if (compress_type != ZIO_COMPRESS_OFF) {
1748 ASSERT3U(type, ==, ARC_BUFC_DATA);
1749 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1750 size, arc_buf_lsize(db->db_buf), compress_type,
1751 complevel);
1752 } else {
1753 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1754 }
1755 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
1756 } else {
1757 db->db_buf = NULL;
1758 dbuf_clear_data(db);
1759 }
1760 }
1761
1762 int
1763 dbuf_read(dmu_buf_impl_t *db, zio_t *pio, uint32_t flags)
1764 {
1765 dnode_t *dn;
1766 boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch;
1767 int err;
1768
1769 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1770
1771 DB_DNODE_ENTER(db);
1772 dn = DB_DNODE(db);
1773
1774 /*
1775 * Ensure that this block's dnode has been decrypted if the caller
1776 * has requested decrypted data.
1777 */
1778 err = dbuf_read_verify_dnode_crypt(db, dn, flags);
1779 if (err != 0)
1780 goto done;
1781
1782 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1783 (flags & DB_RF_NOPREFETCH) == 0;
1784
1785 mutex_enter(&db->db_mtx);
1786 if (flags & DB_RF_PARTIAL_FIRST)
1787 db->db_partial_read = B_TRUE;
1788 else if (!(flags & DB_RF_PARTIAL_MORE))
1789 db->db_partial_read = B_FALSE;
1790 miss = (db->db_state != DB_CACHED);
1791
1792 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1793 /*
1794 * Another reader came in while the dbuf was in flight between
1795 * UNCACHED and CACHED. Either a writer will finish filling
1796 * the buffer, sending the dbuf to CACHED, or the first reader's
1797 * request will reach the read_done callback and send the dbuf
1798 * to CACHED. Otherwise, a failure occurred and the dbuf will
1799 * be sent to UNCACHED.
1800 */
1801 if (flags & DB_RF_NEVERWAIT) {
1802 mutex_exit(&db->db_mtx);
1803 DB_DNODE_EXIT(db);
1804 goto done;
1805 }
1806 do {
1807 ASSERT(db->db_state == DB_READ ||
1808 (flags & DB_RF_HAVESTRUCT) == 0);
1809 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db,
1810 zio_t *, pio);
1811 cv_wait(&db->db_changed, &db->db_mtx);
1812 } while (db->db_state == DB_READ || db->db_state == DB_FILL);
1813 if (db->db_state == DB_UNCACHED) {
1814 err = SET_ERROR(EIO);
1815 mutex_exit(&db->db_mtx);
1816 DB_DNODE_EXIT(db);
1817 goto done;
1818 }
1819 }
1820
1821 if (db->db_state == DB_CACHED) {
1822 /*
1823 * If the arc buf is compressed or encrypted and the caller
1824 * requested uncompressed data, we need to untransform it
1825 * before returning. We also call arc_untransform() on any
1826 * unauthenticated blocks, which will verify their MAC if
1827 * the key is now available.
1828 */
1829 if ((flags & DB_RF_NO_DECRYPT) == 0 && db->db_buf != NULL &&
1830 (arc_is_encrypted(db->db_buf) ||
1831 arc_is_unauthenticated(db->db_buf) ||
1832 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1833 spa_t *spa = dn->dn_objset->os_spa;
1834 zbookmark_phys_t zb;
1835
1836 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1837 db->db.db_object, db->db_level, db->db_blkid);
1838 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1839 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1840 dbuf_set_data(db, db->db_buf);
1841 }
1842 mutex_exit(&db->db_mtx);
1843 } else {
1844 ASSERT(db->db_state == DB_UNCACHED ||
1845 db->db_state == DB_NOFILL);
1846 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1847 if (pio == NULL && (db->db_state == DB_NOFILL ||
1848 (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)))) {
1849 spa_t *spa = dn->dn_objset->os_spa;
1850 pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1851 need_wait = B_TRUE;
1852 }
1853 err = dbuf_read_impl(db, dn, pio, flags, dblt, FTAG);
1854 /* dbuf_read_impl drops db_mtx and parent's rwlock. */
1855 miss = (db->db_state != DB_CACHED);
1856 }
1857
1858 if (err == 0 && prefetch) {
1859 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss,
1860 flags & DB_RF_HAVESTRUCT);
1861 }
1862 DB_DNODE_EXIT(db);
1863
1864 /*
1865 * If we created a zio we must execute it to avoid leaking it, even if
1866 * it isn't attached to any work due to an error in dbuf_read_impl().
1867 */
1868 if (need_wait) {
1869 if (err == 0)
1870 err = zio_wait(pio);
1871 else
1872 (void) zio_wait(pio);
1873 pio = NULL;
1874 }
1875
1876 done:
1877 if (miss)
1878 DBUF_STAT_BUMP(hash_misses);
1879 else
1880 DBUF_STAT_BUMP(hash_hits);
1881 if (pio && err != 0) {
1882 zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL,
1883 ZIO_FLAG_CANFAIL);
1884 zio->io_error = err;
1885 zio_nowait(zio);
1886 }
1887
1888 return (err);
1889 }
1890
1891 static void
1892 dbuf_noread(dmu_buf_impl_t *db)
1893 {
1894 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1895 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1896 mutex_enter(&db->db_mtx);
1897 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1898 cv_wait(&db->db_changed, &db->db_mtx);
1899 if (db->db_state == DB_UNCACHED) {
1900 ASSERT(db->db_buf == NULL);
1901 ASSERT(db->db.db_data == NULL);
1902 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1903 db->db_state = DB_FILL;
1904 DTRACE_SET_STATE(db, "assigning filled buffer");
1905 } else if (db->db_state == DB_NOFILL) {
1906 dbuf_clear_data(db);
1907 } else {
1908 ASSERT3U(db->db_state, ==, DB_CACHED);
1909 }
1910 mutex_exit(&db->db_mtx);
1911 }
1912
1913 void
1914 dbuf_unoverride(dbuf_dirty_record_t *dr)
1915 {
1916 dmu_buf_impl_t *db = dr->dr_dbuf;
1917 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1918 uint64_t txg = dr->dr_txg;
1919
1920 ASSERT(MUTEX_HELD(&db->db_mtx));
1921 /*
1922 * This assert is valid because dmu_sync() expects to be called by
1923 * a zilog's get_data while holding a range lock. This call only
1924 * comes from dbuf_dirty() callers who must also hold a range lock.
1925 */
1926 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1927 ASSERT(db->db_level == 0);
1928
1929 if (db->db_blkid == DMU_BONUS_BLKID ||
1930 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1931 return;
1932
1933 ASSERT(db->db_data_pending != dr);
1934
1935 /* free this block */
1936 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1937 zio_free(db->db_objset->os_spa, txg, bp);
1938
1939 if (dr->dt.dl.dr_brtwrite) {
1940 ASSERT0P(dr->dt.dl.dr_data);
1941 dr->dt.dl.dr_data = db->db_buf;
1942 }
1943 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1944 dr->dt.dl.dr_nopwrite = B_FALSE;
1945 dr->dt.dl.dr_brtwrite = B_FALSE;
1946 dr->dt.dl.dr_has_raw_params = B_FALSE;
1947
1948 /*
1949 * Release the already-written buffer, so we leave it in
1950 * a consistent dirty state. Note that all callers are
1951 * modifying the buffer, so they will immediately do
1952 * another (redundant) arc_release(). Therefore, leave
1953 * the buf thawed to save the effort of freezing &
1954 * immediately re-thawing it.
1955 */
1956 if (dr->dt.dl.dr_data)
1957 arc_release(dr->dt.dl.dr_data, db);
1958 }
1959
1960 /*
1961 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1962 * data blocks in the free range, so that any future readers will find
1963 * empty blocks.
1964 */
1965 void
1966 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1967 dmu_tx_t *tx)
1968 {
1969 dmu_buf_impl_t *db_search;
1970 dmu_buf_impl_t *db, *db_next;
1971 uint64_t txg = tx->tx_txg;
1972 avl_index_t where;
1973 dbuf_dirty_record_t *dr;
1974
1975 if (end_blkid > dn->dn_maxblkid &&
1976 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1977 end_blkid = dn->dn_maxblkid;
1978 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1979 (u_longlong_t)end_blkid);
1980
1981 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1982 db_search->db_level = 0;
1983 db_search->db_blkid = start_blkid;
1984 db_search->db_state = DB_SEARCH;
1985
1986 mutex_enter(&dn->dn_dbufs_mtx);
1987 db = avl_find(&dn->dn_dbufs, db_search, &where);
1988 ASSERT3P(db, ==, NULL);
1989
1990 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1991
1992 for (; db != NULL; db = db_next) {
1993 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1994 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1995
1996 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1997 break;
1998 }
1999 ASSERT3U(db->db_blkid, >=, start_blkid);
2000
2001 /* found a level 0 buffer in the range */
2002 mutex_enter(&db->db_mtx);
2003 if (dbuf_undirty(db, tx)) {
2004 /* mutex has been dropped and dbuf destroyed */
2005 continue;
2006 }
2007
2008 if (db->db_state == DB_UNCACHED ||
2009 db->db_state == DB_NOFILL ||
2010 db->db_state == DB_EVICTING) {
2011 ASSERT(db->db.db_data == NULL);
2012 mutex_exit(&db->db_mtx);
2013 continue;
2014 }
2015 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
2016 /* will be handled in dbuf_read_done or dbuf_rele */
2017 db->db_freed_in_flight = TRUE;
2018 mutex_exit(&db->db_mtx);
2019 continue;
2020 }
2021 if (zfs_refcount_count(&db->db_holds) == 0) {
2022 ASSERT(db->db_buf);
2023 dbuf_destroy(db);
2024 continue;
2025 }
2026 /* The dbuf is referenced */
2027
2028 dr = list_head(&db->db_dirty_records);
2029 if (dr != NULL) {
2030 if (dr->dr_txg == txg) {
2031 /*
2032 * This buffer is "in-use", re-adjust the file
2033 * size to reflect that this buffer may
2034 * contain new data when we sync.
2035 */
2036 if (db->db_blkid != DMU_SPILL_BLKID &&
2037 db->db_blkid > dn->dn_maxblkid)
2038 dn->dn_maxblkid = db->db_blkid;
2039 dbuf_unoverride(dr);
2040 } else {
2041 /*
2042 * This dbuf is not dirty in the open context.
2043 * Either uncache it (if its not referenced in
2044 * the open context) or reset its contents to
2045 * empty.
2046 */
2047 dbuf_fix_old_data(db, txg);
2048 }
2049 }
2050 /* clear the contents if its cached */
2051 if (db->db_state == DB_CACHED) {
2052 ASSERT(db->db.db_data != NULL);
2053 arc_release(db->db_buf, db);
2054 rw_enter(&db->db_rwlock, RW_WRITER);
2055 memset(db->db.db_data, 0, db->db.db_size);
2056 rw_exit(&db->db_rwlock);
2057 arc_buf_freeze(db->db_buf);
2058 }
2059
2060 mutex_exit(&db->db_mtx);
2061 }
2062
2063 mutex_exit(&dn->dn_dbufs_mtx);
2064 kmem_free(db_search, sizeof (dmu_buf_impl_t));
2065 }
2066
2067 void
2068 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2069 {
2070 arc_buf_t *buf, *old_buf;
2071 dbuf_dirty_record_t *dr;
2072 int osize = db->db.db_size;
2073 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2074 dnode_t *dn;
2075
2076 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2077
2078 DB_DNODE_ENTER(db);
2079 dn = DB_DNODE(db);
2080
2081 /*
2082 * XXX we should be doing a dbuf_read, checking the return
2083 * value and returning that up to our callers
2084 */
2085 dmu_buf_will_dirty(&db->db, tx);
2086
2087 /* create the data buffer for the new block */
2088 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2089
2090 /* copy old block data to the new block */
2091 old_buf = db->db_buf;
2092 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
2093 /* zero the remainder */
2094 if (size > osize)
2095 memset((uint8_t *)buf->b_data + osize, 0, size - osize);
2096
2097 mutex_enter(&db->db_mtx);
2098 dbuf_set_data(db, buf);
2099 arc_buf_destroy(old_buf, db);
2100 db->db.db_size = size;
2101
2102 dr = list_head(&db->db_dirty_records);
2103 /* dirty record added by dmu_buf_will_dirty() */
2104 VERIFY(dr != NULL);
2105 if (db->db_level == 0)
2106 dr->dt.dl.dr_data = buf;
2107 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2108 ASSERT3U(dr->dr_accounted, ==, osize);
2109 dr->dr_accounted = size;
2110 mutex_exit(&db->db_mtx);
2111
2112 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2113 DB_DNODE_EXIT(db);
2114 }
2115
2116 void
2117 dbuf_release_bp(dmu_buf_impl_t *db)
2118 {
2119 objset_t *os __maybe_unused = db->db_objset;
2120
2121 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2122 ASSERT(arc_released(os->os_phys_buf) ||
2123 list_link_active(&os->os_dsl_dataset->ds_synced_link));
2124 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2125
2126 (void) arc_release(db->db_buf, db);
2127 }
2128
2129 /*
2130 * We already have a dirty record for this TXG, and we are being
2131 * dirtied again.
2132 */
2133 static void
2134 dbuf_redirty(dbuf_dirty_record_t *dr)
2135 {
2136 dmu_buf_impl_t *db = dr->dr_dbuf;
2137
2138 ASSERT(MUTEX_HELD(&db->db_mtx));
2139
2140 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2141 /*
2142 * If this buffer has already been written out,
2143 * we now need to reset its state.
2144 */
2145 dbuf_unoverride(dr);
2146 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2147 db->db_state != DB_NOFILL) {
2148 /* Already released on initial dirty, so just thaw. */
2149 ASSERT(arc_released(db->db_buf));
2150 arc_buf_thaw(db->db_buf);
2151 }
2152 }
2153 }
2154
2155 dbuf_dirty_record_t *
2156 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2157 {
2158 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2159 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2160 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2161 ASSERT(dn->dn_maxblkid >= blkid);
2162
2163 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2164 list_link_init(&dr->dr_dirty_node);
2165 list_link_init(&dr->dr_dbuf_node);
2166 dr->dr_dnode = dn;
2167 dr->dr_txg = tx->tx_txg;
2168 dr->dt.dll.dr_blkid = blkid;
2169 dr->dr_accounted = dn->dn_datablksz;
2170
2171 /*
2172 * There should not be any dbuf for the block that we're dirtying.
2173 * Otherwise the buffer contents could be inconsistent between the
2174 * dbuf and the lightweight dirty record.
2175 */
2176 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid,
2177 NULL));
2178
2179 mutex_enter(&dn->dn_mtx);
2180 int txgoff = tx->tx_txg & TXG_MASK;
2181 if (dn->dn_free_ranges[txgoff] != NULL) {
2182 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2183 }
2184
2185 if (dn->dn_nlevels == 1) {
2186 ASSERT3U(blkid, <, dn->dn_nblkptr);
2187 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2188 mutex_exit(&dn->dn_mtx);
2189 rw_exit(&dn->dn_struct_rwlock);
2190 dnode_setdirty(dn, tx);
2191 } else {
2192 mutex_exit(&dn->dn_mtx);
2193
2194 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2195 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2196 1, blkid >> epbs, FTAG);
2197 rw_exit(&dn->dn_struct_rwlock);
2198 if (parent_db == NULL) {
2199 kmem_free(dr, sizeof (*dr));
2200 return (NULL);
2201 }
2202 int err = dbuf_read(parent_db, NULL,
2203 (DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2204 if (err != 0) {
2205 dbuf_rele(parent_db, FTAG);
2206 kmem_free(dr, sizeof (*dr));
2207 return (NULL);
2208 }
2209
2210 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2211 dbuf_rele(parent_db, FTAG);
2212 mutex_enter(&parent_dr->dt.di.dr_mtx);
2213 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2214 list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2215 mutex_exit(&parent_dr->dt.di.dr_mtx);
2216 dr->dr_parent = parent_dr;
2217 }
2218
2219 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2220
2221 return (dr);
2222 }
2223
2224 dbuf_dirty_record_t *
2225 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2226 {
2227 dnode_t *dn;
2228 objset_t *os;
2229 dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2230 int txgoff = tx->tx_txg & TXG_MASK;
2231 boolean_t drop_struct_rwlock = B_FALSE;
2232
2233 ASSERT(tx->tx_txg != 0);
2234 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2235 DMU_TX_DIRTY_BUF(tx, db);
2236
2237 DB_DNODE_ENTER(db);
2238 dn = DB_DNODE(db);
2239 /*
2240 * Shouldn't dirty a regular buffer in syncing context. Private
2241 * objects may be dirtied in syncing context, but only if they
2242 * were already pre-dirtied in open context.
2243 */
2244 #ifdef ZFS_DEBUG
2245 if (dn->dn_objset->os_dsl_dataset != NULL) {
2246 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2247 RW_READER, FTAG);
2248 }
2249 ASSERT(!dmu_tx_is_syncing(tx) ||
2250 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2251 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2252 dn->dn_objset->os_dsl_dataset == NULL);
2253 if (dn->dn_objset->os_dsl_dataset != NULL)
2254 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2255 #endif
2256 /*
2257 * We make this assert for private objects as well, but after we
2258 * check if we're already dirty. They are allowed to re-dirty
2259 * in syncing context.
2260 */
2261 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2262 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2263 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2264
2265 mutex_enter(&db->db_mtx);
2266 /*
2267 * XXX make this true for indirects too? The problem is that
2268 * transactions created with dmu_tx_create_assigned() from
2269 * syncing context don't bother holding ahead.
2270 */
2271 ASSERT(db->db_level != 0 ||
2272 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2273 db->db_state == DB_NOFILL);
2274
2275 mutex_enter(&dn->dn_mtx);
2276 dnode_set_dirtyctx(dn, tx, db);
2277 if (tx->tx_txg > dn->dn_dirty_txg)
2278 dn->dn_dirty_txg = tx->tx_txg;
2279 mutex_exit(&dn->dn_mtx);
2280
2281 if (db->db_blkid == DMU_SPILL_BLKID)
2282 dn->dn_have_spill = B_TRUE;
2283
2284 /*
2285 * If this buffer is already dirty, we're done.
2286 */
2287 dr_head = list_head(&db->db_dirty_records);
2288 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2289 db->db.db_object == DMU_META_DNODE_OBJECT);
2290 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2291 if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2292 DB_DNODE_EXIT(db);
2293
2294 dbuf_redirty(dr_next);
2295 mutex_exit(&db->db_mtx);
2296 return (dr_next);
2297 }
2298
2299 /*
2300 * Only valid if not already dirty.
2301 */
2302 ASSERT(dn->dn_object == 0 ||
2303 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2304 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2305
2306 ASSERT3U(dn->dn_nlevels, >, db->db_level);
2307
2308 /*
2309 * We should only be dirtying in syncing context if it's the
2310 * mos or we're initializing the os or it's a special object.
2311 * However, we are allowed to dirty in syncing context provided
2312 * we already dirtied it in open context. Hence we must make
2313 * this assertion only if we're not already dirty.
2314 */
2315 os = dn->dn_objset;
2316 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2317 #ifdef ZFS_DEBUG
2318 if (dn->dn_objset->os_dsl_dataset != NULL)
2319 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2320 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2321 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2322 if (dn->dn_objset->os_dsl_dataset != NULL)
2323 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2324 #endif
2325 ASSERT(db->db.db_size != 0);
2326
2327 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2328
2329 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2330 dmu_objset_willuse_space(os, db->db.db_size, tx);
2331 }
2332
2333 /*
2334 * If this buffer is dirty in an old transaction group we need
2335 * to make a copy of it so that the changes we make in this
2336 * transaction group won't leak out when we sync the older txg.
2337 */
2338 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2339 list_link_init(&dr->dr_dirty_node);
2340 list_link_init(&dr->dr_dbuf_node);
2341 dr->dr_dnode = dn;
2342 if (db->db_level == 0) {
2343 void *data_old = db->db_buf;
2344
2345 if (db->db_state != DB_NOFILL) {
2346 if (db->db_blkid == DMU_BONUS_BLKID) {
2347 dbuf_fix_old_data(db, tx->tx_txg);
2348 data_old = db->db.db_data;
2349 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2350 /*
2351 * Release the data buffer from the cache so
2352 * that we can modify it without impacting
2353 * possible other users of this cached data
2354 * block. Note that indirect blocks and
2355 * private objects are not released until the
2356 * syncing state (since they are only modified
2357 * then).
2358 */
2359 arc_release(db->db_buf, db);
2360 dbuf_fix_old_data(db, tx->tx_txg);
2361 data_old = db->db_buf;
2362 }
2363 ASSERT(data_old != NULL);
2364 }
2365 dr->dt.dl.dr_data = data_old;
2366 } else {
2367 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2368 list_create(&dr->dt.di.dr_children,
2369 sizeof (dbuf_dirty_record_t),
2370 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2371 }
2372 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2373 dr->dr_accounted = db->db.db_size;
2374 }
2375 dr->dr_dbuf = db;
2376 dr->dr_txg = tx->tx_txg;
2377 list_insert_before(&db->db_dirty_records, dr_next, dr);
2378
2379 /*
2380 * We could have been freed_in_flight between the dbuf_noread
2381 * and dbuf_dirty. We win, as though the dbuf_noread() had
2382 * happened after the free.
2383 */
2384 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2385 db->db_blkid != DMU_SPILL_BLKID) {
2386 mutex_enter(&dn->dn_mtx);
2387 if (dn->dn_free_ranges[txgoff] != NULL) {
2388 range_tree_clear(dn->dn_free_ranges[txgoff],
2389 db->db_blkid, 1);
2390 }
2391 mutex_exit(&dn->dn_mtx);
2392 db->db_freed_in_flight = FALSE;
2393 }
2394
2395 /*
2396 * This buffer is now part of this txg
2397 */
2398 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2399 db->db_dirtycnt += 1;
2400 ASSERT3U(db->db_dirtycnt, <=, 3);
2401
2402 mutex_exit(&db->db_mtx);
2403
2404 if (db->db_blkid == DMU_BONUS_BLKID ||
2405 db->db_blkid == DMU_SPILL_BLKID) {
2406 mutex_enter(&dn->dn_mtx);
2407 ASSERT(!list_link_active(&dr->dr_dirty_node));
2408 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2409 mutex_exit(&dn->dn_mtx);
2410 dnode_setdirty(dn, tx);
2411 DB_DNODE_EXIT(db);
2412 return (dr);
2413 }
2414
2415 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2416 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2417 drop_struct_rwlock = B_TRUE;
2418 }
2419
2420 /*
2421 * If we are overwriting a dedup BP, then unless it is snapshotted,
2422 * when we get to syncing context we will need to decrement its
2423 * refcount in the DDT. Prefetch the relevant DDT block so that
2424 * syncing context won't have to wait for the i/o.
2425 */
2426 if (db->db_blkptr != NULL) {
2427 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2428 ddt_prefetch(os->os_spa, db->db_blkptr);
2429 dmu_buf_unlock_parent(db, dblt, FTAG);
2430 }
2431
2432 /*
2433 * We need to hold the dn_struct_rwlock to make this assertion,
2434 * because it protects dn_phys / dn_next_nlevels from changing.
2435 */
2436 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2437 dn->dn_phys->dn_nlevels > db->db_level ||
2438 dn->dn_next_nlevels[txgoff] > db->db_level ||
2439 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2440 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2441
2442
2443 if (db->db_level == 0) {
2444 ASSERT(!db->db_objset->os_raw_receive ||
2445 dn->dn_maxblkid >= db->db_blkid);
2446 dnode_new_blkid(dn, db->db_blkid, tx,
2447 drop_struct_rwlock, B_FALSE);
2448 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2449 }
2450
2451 if (db->db_level+1 < dn->dn_nlevels) {
2452 dmu_buf_impl_t *parent = db->db_parent;
2453 dbuf_dirty_record_t *di;
2454 int parent_held = FALSE;
2455
2456 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2457 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2458 parent = dbuf_hold_level(dn, db->db_level + 1,
2459 db->db_blkid >> epbs, FTAG);
2460 ASSERT(parent != NULL);
2461 parent_held = TRUE;
2462 }
2463 if (drop_struct_rwlock)
2464 rw_exit(&dn->dn_struct_rwlock);
2465 ASSERT3U(db->db_level + 1, ==, parent->db_level);
2466 di = dbuf_dirty(parent, tx);
2467 if (parent_held)
2468 dbuf_rele(parent, FTAG);
2469
2470 mutex_enter(&db->db_mtx);
2471 /*
2472 * Since we've dropped the mutex, it's possible that
2473 * dbuf_undirty() might have changed this out from under us.
2474 */
2475 if (list_head(&db->db_dirty_records) == dr ||
2476 dn->dn_object == DMU_META_DNODE_OBJECT) {
2477 mutex_enter(&di->dt.di.dr_mtx);
2478 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2479 ASSERT(!list_link_active(&dr->dr_dirty_node));
2480 list_insert_tail(&di->dt.di.dr_children, dr);
2481 mutex_exit(&di->dt.di.dr_mtx);
2482 dr->dr_parent = di;
2483 }
2484 mutex_exit(&db->db_mtx);
2485 } else {
2486 ASSERT(db->db_level + 1 == dn->dn_nlevels);
2487 ASSERT(db->db_blkid < dn->dn_nblkptr);
2488 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2489 mutex_enter(&dn->dn_mtx);
2490 ASSERT(!list_link_active(&dr->dr_dirty_node));
2491 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2492 mutex_exit(&dn->dn_mtx);
2493 if (drop_struct_rwlock)
2494 rw_exit(&dn->dn_struct_rwlock);
2495 }
2496
2497 dnode_setdirty(dn, tx);
2498 DB_DNODE_EXIT(db);
2499 return (dr);
2500 }
2501
2502 static void
2503 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2504 {
2505 dmu_buf_impl_t *db = dr->dr_dbuf;
2506
2507 if (dr->dt.dl.dr_data != db->db.db_data) {
2508 struct dnode *dn = dr->dr_dnode;
2509 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2510
2511 kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2512 arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2513 }
2514 db->db_data_pending = NULL;
2515 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2516 list_remove(&db->db_dirty_records, dr);
2517 if (dr->dr_dbuf->db_level != 0) {
2518 mutex_destroy(&dr->dt.di.dr_mtx);
2519 list_destroy(&dr->dt.di.dr_children);
2520 }
2521 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2522 ASSERT3U(db->db_dirtycnt, >, 0);
2523 db->db_dirtycnt -= 1;
2524 }
2525
2526 /*
2527 * Undirty a buffer in the transaction group referenced by the given
2528 * transaction. Return whether this evicted the dbuf.
2529 */
2530 boolean_t
2531 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2532 {
2533 uint64_t txg = tx->tx_txg;
2534 boolean_t brtwrite;
2535
2536 ASSERT(txg != 0);
2537
2538 /*
2539 * Due to our use of dn_nlevels below, this can only be called
2540 * in open context, unless we are operating on the MOS.
2541 * From syncing context, dn_nlevels may be different from the
2542 * dn_nlevels used when dbuf was dirtied.
2543 */
2544 ASSERT(db->db_objset ==
2545 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2546 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2547 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2548 ASSERT0(db->db_level);
2549 ASSERT(MUTEX_HELD(&db->db_mtx));
2550
2551 /*
2552 * If this buffer is not dirty, we're done.
2553 */
2554 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2555 if (dr == NULL)
2556 return (B_FALSE);
2557 ASSERT(dr->dr_dbuf == db);
2558
2559 brtwrite = dr->dt.dl.dr_brtwrite;
2560 if (brtwrite) {
2561 /*
2562 * We are freeing a block that we cloned in the same
2563 * transaction group.
2564 */
2565 brt_pending_remove(dmu_objset_spa(db->db_objset),
2566 &dr->dt.dl.dr_overridden_by, tx);
2567 }
2568
2569 dnode_t *dn = dr->dr_dnode;
2570
2571 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2572
2573 ASSERT(db->db.db_size != 0);
2574
2575 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2576 dr->dr_accounted, txg);
2577
2578 list_remove(&db->db_dirty_records, dr);
2579
2580 /*
2581 * Note that there are three places in dbuf_dirty()
2582 * where this dirty record may be put on a list.
2583 * Make sure to do a list_remove corresponding to
2584 * every one of those list_insert calls.
2585 */
2586 if (dr->dr_parent) {
2587 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2588 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2589 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2590 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2591 db->db_level + 1 == dn->dn_nlevels) {
2592 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2593 mutex_enter(&dn->dn_mtx);
2594 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2595 mutex_exit(&dn->dn_mtx);
2596 }
2597
2598 if (db->db_state != DB_NOFILL && !brtwrite) {
2599 dbuf_unoverride(dr);
2600
2601 ASSERT(db->db_buf != NULL);
2602 ASSERT(dr->dt.dl.dr_data != NULL);
2603 if (dr->dt.dl.dr_data != db->db_buf)
2604 arc_buf_destroy(dr->dt.dl.dr_data, db);
2605 }
2606
2607 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2608
2609 ASSERT(db->db_dirtycnt > 0);
2610 db->db_dirtycnt -= 1;
2611
2612 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2613 ASSERT(db->db_state == DB_NOFILL || brtwrite ||
2614 arc_released(db->db_buf));
2615 dbuf_destroy(db);
2616 return (B_TRUE);
2617 }
2618
2619 return (B_FALSE);
2620 }
2621
2622 static void
2623 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2624 {
2625 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2626 boolean_t undirty = B_FALSE;
2627
2628 ASSERT(tx->tx_txg != 0);
2629 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2630
2631 /*
2632 * Quick check for dirtiness to improve performance for some workloads
2633 * (e.g. file deletion with indirect blocks cached).
2634 */
2635 mutex_enter(&db->db_mtx);
2636 if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) {
2637 /*
2638 * It's possible that the dbuf is already dirty but not cached,
2639 * because there are some calls to dbuf_dirty() that don't
2640 * go through dmu_buf_will_dirty().
2641 */
2642 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2643 if (dr != NULL) {
2644 if (db->db_level == 0 &&
2645 dr->dt.dl.dr_brtwrite) {
2646 /*
2647 * Block cloning: If we are dirtying a cloned
2648 * level 0 block, we cannot simply redirty it,
2649 * because this dr has no associated data.
2650 * We will go through a full undirtying below,
2651 * before dirtying it again.
2652 */
2653 undirty = B_TRUE;
2654 } else {
2655 /* This dbuf is already dirty and cached. */
2656 dbuf_redirty(dr);
2657 mutex_exit(&db->db_mtx);
2658 return;
2659 }
2660 }
2661 }
2662 mutex_exit(&db->db_mtx);
2663
2664 DB_DNODE_ENTER(db);
2665 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2666 flags |= DB_RF_HAVESTRUCT;
2667 DB_DNODE_EXIT(db);
2668
2669 /*
2670 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we
2671 * want to make sure dbuf_read() will read the pending cloned block and
2672 * not the uderlying block that is being replaced. dbuf_undirty() will
2673 * do dbuf_unoverride(), so we will end up with cloned block content,
2674 * without overridden BP.
2675 */
2676 (void) dbuf_read(db, NULL, flags);
2677 if (undirty) {
2678 mutex_enter(&db->db_mtx);
2679 VERIFY(!dbuf_undirty(db, tx));
2680 mutex_exit(&db->db_mtx);
2681 }
2682 (void) dbuf_dirty(db, tx);
2683 }
2684
2685 void
2686 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2687 {
2688 dmu_buf_will_dirty_impl(db_fake,
2689 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2690 }
2691
2692 boolean_t
2693 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2694 {
2695 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2696 dbuf_dirty_record_t *dr;
2697
2698 mutex_enter(&db->db_mtx);
2699 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2700 mutex_exit(&db->db_mtx);
2701 return (dr != NULL);
2702 }
2703
2704 void
2705 dmu_buf_will_clone(dmu_buf_t *db_fake, dmu_tx_t *tx)
2706 {
2707 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2708
2709 /*
2710 * Block cloning: We are going to clone into this block, so undirty
2711 * modifications done to this block so far in this txg. This includes
2712 * writes and clones into this block.
2713 */
2714 mutex_enter(&db->db_mtx);
2715 DBUF_VERIFY(db);
2716 VERIFY(!dbuf_undirty(db, tx));
2717 ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg));
2718 if (db->db_buf != NULL) {
2719 arc_buf_destroy(db->db_buf, db);
2720 db->db_buf = NULL;
2721 dbuf_clear_data(db);
2722 }
2723
2724 db->db_state = DB_NOFILL;
2725 DTRACE_SET_STATE(db, "allocating NOFILL buffer for clone");
2726
2727 DBUF_VERIFY(db);
2728 mutex_exit(&db->db_mtx);
2729
2730 dbuf_noread(db);
2731 (void) dbuf_dirty(db, tx);
2732 }
2733
2734 void
2735 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2736 {
2737 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2738
2739 mutex_enter(&db->db_mtx);
2740 db->db_state = DB_NOFILL;
2741 DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2742 mutex_exit(&db->db_mtx);
2743
2744 dbuf_noread(db);
2745 (void) dbuf_dirty(db, tx);
2746 }
2747
2748 void
2749 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail)
2750 {
2751 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2752
2753 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2754 ASSERT(tx->tx_txg != 0);
2755 ASSERT(db->db_level == 0);
2756 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2757
2758 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2759 dmu_tx_private_ok(tx));
2760
2761 mutex_enter(&db->db_mtx);
2762 if (db->db_state == DB_NOFILL) {
2763 /*
2764 * Block cloning: We will be completely overwriting a block
2765 * cloned in this transaction group, so let's undirty the
2766 * pending clone and mark the block as uncached. This will be
2767 * as if the clone was never done. But if the fill can fail
2768 * we should have a way to return back to the cloned data.
2769 */
2770 if (canfail && dbuf_find_dirty_eq(db, tx->tx_txg) != NULL) {
2771 mutex_exit(&db->db_mtx);
2772 dmu_buf_will_dirty(db_fake, tx);
2773 return;
2774 }
2775 VERIFY(!dbuf_undirty(db, tx));
2776 db->db_state = DB_UNCACHED;
2777 }
2778 mutex_exit(&db->db_mtx);
2779
2780 dbuf_noread(db);
2781 (void) dbuf_dirty(db, tx);
2782 }
2783
2784 /*
2785 * This function is effectively the same as dmu_buf_will_dirty(), but
2786 * indicates the caller expects raw encrypted data in the db, and provides
2787 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2788 * blkptr_t when this dbuf is written. This is only used for blocks of
2789 * dnodes, during raw receive.
2790 */
2791 void
2792 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2793 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2794 {
2795 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2796 dbuf_dirty_record_t *dr;
2797
2798 /*
2799 * dr_has_raw_params is only processed for blocks of dnodes
2800 * (see dbuf_sync_dnode_leaf_crypt()).
2801 */
2802 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2803 ASSERT3U(db->db_level, ==, 0);
2804 ASSERT(db->db_objset->os_raw_receive);
2805
2806 dmu_buf_will_dirty_impl(db_fake,
2807 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2808
2809 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2810
2811 ASSERT3P(dr, !=, NULL);
2812
2813 dr->dt.dl.dr_has_raw_params = B_TRUE;
2814 dr->dt.dl.dr_byteorder = byteorder;
2815 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2816 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2817 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
2818 }
2819
2820 static void
2821 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2822 {
2823 struct dirty_leaf *dl;
2824 dbuf_dirty_record_t *dr;
2825
2826 dr = list_head(&db->db_dirty_records);
2827 ASSERT3P(dr, !=, NULL);
2828 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2829 dl = &dr->dt.dl;
2830 dl->dr_overridden_by = *bp;
2831 dl->dr_override_state = DR_OVERRIDDEN;
2832 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
2833 }
2834
2835 boolean_t
2836 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed)
2837 {
2838 (void) tx;
2839 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2840 mutex_enter(&db->db_mtx);
2841 DBUF_VERIFY(db);
2842
2843 if (db->db_state == DB_FILL) {
2844 if (db->db_level == 0 && db->db_freed_in_flight) {
2845 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2846 /* we were freed while filling */
2847 /* XXX dbuf_undirty? */
2848 memset(db->db.db_data, 0, db->db.db_size);
2849 db->db_freed_in_flight = FALSE;
2850 db->db_state = DB_CACHED;
2851 DTRACE_SET_STATE(db,
2852 "fill done handling freed in flight");
2853 failed = B_FALSE;
2854 } else if (failed) {
2855 VERIFY(!dbuf_undirty(db, tx));
2856 db->db_buf = NULL;
2857 dbuf_clear_data(db);
2858 DTRACE_SET_STATE(db, "fill failed");
2859 } else {
2860 db->db_state = DB_CACHED;
2861 DTRACE_SET_STATE(db, "fill done");
2862 }
2863 cv_broadcast(&db->db_changed);
2864 } else {
2865 db->db_state = DB_CACHED;
2866 failed = B_FALSE;
2867 }
2868 mutex_exit(&db->db_mtx);
2869 return (failed);
2870 }
2871
2872 void
2873 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2874 bp_embedded_type_t etype, enum zio_compress comp,
2875 int uncompressed_size, int compressed_size, int byteorder,
2876 dmu_tx_t *tx)
2877 {
2878 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2879 struct dirty_leaf *dl;
2880 dmu_object_type_t type;
2881 dbuf_dirty_record_t *dr;
2882
2883 if (etype == BP_EMBEDDED_TYPE_DATA) {
2884 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2885 SPA_FEATURE_EMBEDDED_DATA));
2886 }
2887
2888 DB_DNODE_ENTER(db);
2889 type = DB_DNODE(db)->dn_type;
2890 DB_DNODE_EXIT(db);
2891
2892 ASSERT0(db->db_level);
2893 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2894
2895 dmu_buf_will_not_fill(dbuf, tx);
2896
2897 dr = list_head(&db->db_dirty_records);
2898 ASSERT3P(dr, !=, NULL);
2899 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2900 dl = &dr->dt.dl;
2901 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2902 data, comp, uncompressed_size, compressed_size);
2903 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2904 BP_SET_TYPE(&dl->dr_overridden_by, type);
2905 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2906 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2907
2908 dl->dr_override_state = DR_OVERRIDDEN;
2909 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
2910 }
2911
2912 void
2913 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
2914 {
2915 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2916 dmu_object_type_t type;
2917 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
2918 SPA_FEATURE_REDACTED_DATASETS));
2919
2920 DB_DNODE_ENTER(db);
2921 type = DB_DNODE(db)->dn_type;
2922 DB_DNODE_EXIT(db);
2923
2924 ASSERT0(db->db_level);
2925 dmu_buf_will_not_fill(dbuf, tx);
2926
2927 blkptr_t bp = { { { {0} } } };
2928 BP_SET_TYPE(&bp, type);
2929 BP_SET_LEVEL(&bp, 0);
2930 BP_SET_BIRTH(&bp, tx->tx_txg, 0);
2931 BP_SET_REDACTED(&bp);
2932 BPE_SET_LSIZE(&bp, dbuf->db_size);
2933
2934 dbuf_override_impl(db, &bp, tx);
2935 }
2936
2937 /*
2938 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2939 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2940 */
2941 void
2942 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2943 {
2944 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2945 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2946 ASSERT(db->db_level == 0);
2947 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2948 ASSERT(buf != NULL);
2949 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
2950 ASSERT(tx->tx_txg != 0);
2951
2952 arc_return_buf(buf, db);
2953 ASSERT(arc_released(buf));
2954
2955 mutex_enter(&db->db_mtx);
2956
2957 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2958 cv_wait(&db->db_changed, &db->db_mtx);
2959
2960 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED ||
2961 db->db_state == DB_NOFILL);
2962
2963 if (db->db_state == DB_CACHED &&
2964 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2965 /*
2966 * In practice, we will never have a case where we have an
2967 * encrypted arc buffer while additional holds exist on the
2968 * dbuf. We don't handle this here so we simply assert that
2969 * fact instead.
2970 */
2971 ASSERT(!arc_is_encrypted(buf));
2972 mutex_exit(&db->db_mtx);
2973 (void) dbuf_dirty(db, tx);
2974 memcpy(db->db.db_data, buf->b_data, db->db.db_size);
2975 arc_buf_destroy(buf, db);
2976 return;
2977 }
2978
2979 if (db->db_state == DB_CACHED) {
2980 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2981
2982 ASSERT(db->db_buf != NULL);
2983 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2984 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2985
2986 if (!arc_released(db->db_buf)) {
2987 ASSERT(dr->dt.dl.dr_override_state ==
2988 DR_OVERRIDDEN);
2989 arc_release(db->db_buf, db);
2990 }
2991 dr->dt.dl.dr_data = buf;
2992 arc_buf_destroy(db->db_buf, db);
2993 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2994 arc_release(db->db_buf, db);
2995 arc_buf_destroy(db->db_buf, db);
2996 }
2997 db->db_buf = NULL;
2998 } else if (db->db_state == DB_NOFILL) {
2999 /*
3000 * We will be completely replacing the cloned block. In case
3001 * it was cloned in this transaction group, let's undirty the
3002 * pending clone and mark the block as uncached. This will be
3003 * as if the clone was never done.
3004 */
3005 VERIFY(!dbuf_undirty(db, tx));
3006 db->db_state = DB_UNCACHED;
3007 }
3008 ASSERT(db->db_buf == NULL);
3009 dbuf_set_data(db, buf);
3010 db->db_state = DB_FILL;
3011 DTRACE_SET_STATE(db, "filling assigned arcbuf");
3012 mutex_exit(&db->db_mtx);
3013 (void) dbuf_dirty(db, tx);
3014 dmu_buf_fill_done(&db->db, tx, B_FALSE);
3015 }
3016
3017 void
3018 dbuf_destroy(dmu_buf_impl_t *db)
3019 {
3020 dnode_t *dn;
3021 dmu_buf_impl_t *parent = db->db_parent;
3022 dmu_buf_impl_t *dndb;
3023
3024 ASSERT(MUTEX_HELD(&db->db_mtx));
3025 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3026
3027 if (db->db_buf != NULL) {
3028 arc_buf_destroy(db->db_buf, db);
3029 db->db_buf = NULL;
3030 }
3031
3032 if (db->db_blkid == DMU_BONUS_BLKID) {
3033 int slots = DB_DNODE(db)->dn_num_slots;
3034 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3035 if (db->db.db_data != NULL) {
3036 kmem_free(db->db.db_data, bonuslen);
3037 arc_space_return(bonuslen, ARC_SPACE_BONUS);
3038 db->db_state = DB_UNCACHED;
3039 DTRACE_SET_STATE(db, "buffer cleared");
3040 }
3041 }
3042
3043 dbuf_clear_data(db);
3044
3045 if (multilist_link_active(&db->db_cache_link)) {
3046 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3047 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3048
3049 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3050
3051 ASSERT0(dmu_buf_user_size(&db->db));
3052 (void) zfs_refcount_remove_many(
3053 &dbuf_caches[db->db_caching_status].size,
3054 db->db.db_size, db);
3055
3056 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3057 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3058 } else {
3059 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3060 DBUF_STAT_BUMPDOWN(cache_count);
3061 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3062 db->db.db_size);
3063 }
3064 db->db_caching_status = DB_NO_CACHE;
3065 }
3066
3067 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
3068 ASSERT(db->db_data_pending == NULL);
3069 ASSERT(list_is_empty(&db->db_dirty_records));
3070
3071 db->db_state = DB_EVICTING;
3072 DTRACE_SET_STATE(db, "buffer eviction started");
3073 db->db_blkptr = NULL;
3074
3075 /*
3076 * Now that db_state is DB_EVICTING, nobody else can find this via
3077 * the hash table. We can now drop db_mtx, which allows us to
3078 * acquire the dn_dbufs_mtx.
3079 */
3080 mutex_exit(&db->db_mtx);
3081
3082 DB_DNODE_ENTER(db);
3083 dn = DB_DNODE(db);
3084 dndb = dn->dn_dbuf;
3085 if (db->db_blkid != DMU_BONUS_BLKID) {
3086 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
3087 if (needlock)
3088 mutex_enter_nested(&dn->dn_dbufs_mtx,
3089 NESTED_SINGLE);
3090 avl_remove(&dn->dn_dbufs, db);
3091 membar_producer();
3092 DB_DNODE_EXIT(db);
3093 if (needlock)
3094 mutex_exit(&dn->dn_dbufs_mtx);
3095 /*
3096 * Decrementing the dbuf count means that the hold corresponding
3097 * to the removed dbuf is no longer discounted in dnode_move(),
3098 * so the dnode cannot be moved until after we release the hold.
3099 * The membar_producer() ensures visibility of the decremented
3100 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
3101 * release any lock.
3102 */
3103 mutex_enter(&dn->dn_mtx);
3104 dnode_rele_and_unlock(dn, db, B_TRUE);
3105 db->db_dnode_handle = NULL;
3106
3107 dbuf_hash_remove(db);
3108 } else {
3109 DB_DNODE_EXIT(db);
3110 }
3111
3112 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3113
3114 db->db_parent = NULL;
3115
3116 ASSERT(db->db_buf == NULL);
3117 ASSERT(db->db.db_data == NULL);
3118 ASSERT(db->db_hash_next == NULL);
3119 ASSERT(db->db_blkptr == NULL);
3120 ASSERT(db->db_data_pending == NULL);
3121 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
3122 ASSERT(!multilist_link_active(&db->db_cache_link));
3123
3124 /*
3125 * If this dbuf is referenced from an indirect dbuf,
3126 * decrement the ref count on the indirect dbuf.
3127 */
3128 if (parent && parent != dndb) {
3129 mutex_enter(&parent->db_mtx);
3130 dbuf_rele_and_unlock(parent, db, B_TRUE);
3131 }
3132
3133 kmem_cache_free(dbuf_kmem_cache, db);
3134 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3135 }
3136
3137 /*
3138 * Note: While bpp will always be updated if the function returns success,
3139 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
3140 * this happens when the dnode is the meta-dnode, or {user|group|project}used
3141 * object.
3142 */
3143 __attribute__((always_inline))
3144 static inline int
3145 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
3146 dmu_buf_impl_t **parentp, blkptr_t **bpp)
3147 {
3148 *parentp = NULL;
3149 *bpp = NULL;
3150
3151 ASSERT(blkid != DMU_BONUS_BLKID);
3152
3153 if (blkid == DMU_SPILL_BLKID) {
3154 mutex_enter(&dn->dn_mtx);
3155 if (dn->dn_have_spill &&
3156 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
3157 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
3158 else
3159 *bpp = NULL;
3160 dbuf_add_ref(dn->dn_dbuf, NULL);
3161 *parentp = dn->dn_dbuf;
3162 mutex_exit(&dn->dn_mtx);
3163 return (0);
3164 }
3165
3166 int nlevels =
3167 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
3168 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
3169
3170 ASSERT3U(level * epbs, <, 64);
3171 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3172 /*
3173 * This assertion shouldn't trip as long as the max indirect block size
3174 * is less than 1M. The reason for this is that up to that point,
3175 * the number of levels required to address an entire object with blocks
3176 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
3177 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3178 * (i.e. we can address the entire object), objects will all use at most
3179 * N-1 levels and the assertion won't overflow. However, once epbs is
3180 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
3181 * enough to address an entire object, so objects will have 5 levels,
3182 * but then this assertion will overflow.
3183 *
3184 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3185 * need to redo this logic to handle overflows.
3186 */
3187 ASSERT(level >= nlevels ||
3188 ((nlevels - level - 1) * epbs) +
3189 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3190 if (level >= nlevels ||
3191 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3192 ((nlevels - level - 1) * epbs)) ||
3193 (fail_sparse &&
3194 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3195 /* the buffer has no parent yet */
3196 return (SET_ERROR(ENOENT));
3197 } else if (level < nlevels-1) {
3198 /* this block is referenced from an indirect block */
3199 int err;
3200
3201 err = dbuf_hold_impl(dn, level + 1,
3202 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3203
3204 if (err)
3205 return (err);
3206 err = dbuf_read(*parentp, NULL,
3207 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
3208 if (err) {
3209 dbuf_rele(*parentp, NULL);
3210 *parentp = NULL;
3211 return (err);
3212 }
3213 rw_enter(&(*parentp)->db_rwlock, RW_READER);
3214 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3215 (blkid & ((1ULL << epbs) - 1));
3216 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
3217 ASSERT(BP_IS_HOLE(*bpp));
3218 rw_exit(&(*parentp)->db_rwlock);
3219 return (0);
3220 } else {
3221 /* the block is referenced from the dnode */
3222 ASSERT3U(level, ==, nlevels-1);
3223 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3224 blkid < dn->dn_phys->dn_nblkptr);
3225 if (dn->dn_dbuf) {
3226 dbuf_add_ref(dn->dn_dbuf, NULL);
3227 *parentp = dn->dn_dbuf;
3228 }
3229 *bpp = &dn->dn_phys->dn_blkptr[blkid];
3230 return (0);
3231 }
3232 }
3233
3234 static dmu_buf_impl_t *
3235 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3236 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash)
3237 {
3238 objset_t *os = dn->dn_objset;
3239 dmu_buf_impl_t *db, *odb;
3240
3241 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3242 ASSERT(dn->dn_type != DMU_OT_NONE);
3243
3244 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3245
3246 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3247 offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3248
3249 db->db_objset = os;
3250 db->db.db_object = dn->dn_object;
3251 db->db_level = level;
3252 db->db_blkid = blkid;
3253 db->db_dirtycnt = 0;
3254 db->db_dnode_handle = dn->dn_handle;
3255 db->db_parent = parent;
3256 db->db_blkptr = blkptr;
3257 db->db_hash = hash;
3258
3259 db->db_user = NULL;
3260 db->db_user_immediate_evict = FALSE;
3261 db->db_freed_in_flight = FALSE;
3262 db->db_pending_evict = FALSE;
3263
3264 if (blkid == DMU_BONUS_BLKID) {
3265 ASSERT3P(parent, ==, dn->dn_dbuf);
3266 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3267 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3268 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3269 db->db.db_offset = DMU_BONUS_BLKID;
3270 db->db_state = DB_UNCACHED;
3271 DTRACE_SET_STATE(db, "bonus buffer created");
3272 db->db_caching_status = DB_NO_CACHE;
3273 /* the bonus dbuf is not placed in the hash table */
3274 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3275 return (db);
3276 } else if (blkid == DMU_SPILL_BLKID) {
3277 db->db.db_size = (blkptr != NULL) ?
3278 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3279 db->db.db_offset = 0;
3280 } else {
3281 int blocksize =
3282 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3283 db->db.db_size = blocksize;
3284 db->db.db_offset = db->db_blkid * blocksize;
3285 }
3286
3287 /*
3288 * Hold the dn_dbufs_mtx while we get the new dbuf
3289 * in the hash table *and* added to the dbufs list.
3290 * This prevents a possible deadlock with someone
3291 * trying to look up this dbuf before it's added to the
3292 * dn_dbufs list.
3293 */
3294 mutex_enter(&dn->dn_dbufs_mtx);
3295 db->db_state = DB_EVICTING; /* not worth logging this state change */
3296 if ((odb = dbuf_hash_insert(db)) != NULL) {
3297 /* someone else inserted it first */
3298 mutex_exit(&dn->dn_dbufs_mtx);
3299 kmem_cache_free(dbuf_kmem_cache, db);
3300 DBUF_STAT_BUMP(hash_insert_race);
3301 return (odb);
3302 }
3303 avl_add(&dn->dn_dbufs, db);
3304
3305 db->db_state = DB_UNCACHED;
3306 DTRACE_SET_STATE(db, "regular buffer created");
3307 db->db_caching_status = DB_NO_CACHE;
3308 mutex_exit(&dn->dn_dbufs_mtx);
3309 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3310
3311 if (parent && parent != dn->dn_dbuf)
3312 dbuf_add_ref(parent, db);
3313
3314 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3315 zfs_refcount_count(&dn->dn_holds) > 0);
3316 (void) zfs_refcount_add(&dn->dn_holds, db);
3317
3318 dprintf_dbuf(db, "db=%p\n", db);
3319
3320 return (db);
3321 }
3322
3323 /*
3324 * This function returns a block pointer and information about the object,
3325 * given a dnode and a block. This is a publicly accessible version of
3326 * dbuf_findbp that only returns some information, rather than the
3327 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
3328 * should be locked as (at least) a reader.
3329 */
3330 int
3331 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3332 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3333 {
3334 dmu_buf_impl_t *dbp = NULL;
3335 blkptr_t *bp2;
3336 int err = 0;
3337 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3338
3339 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3340 if (err == 0) {
3341 ASSERT3P(bp2, !=, NULL);
3342 *bp = *bp2;
3343 if (dbp != NULL)
3344 dbuf_rele(dbp, NULL);
3345 if (datablkszsec != NULL)
3346 *datablkszsec = dn->dn_phys->dn_datablkszsec;
3347 if (indblkshift != NULL)
3348 *indblkshift = dn->dn_phys->dn_indblkshift;
3349 }
3350
3351 return (err);
3352 }
3353
3354 typedef struct dbuf_prefetch_arg {
3355 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
3356 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3357 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3358 int dpa_curlevel; /* The current level that we're reading */
3359 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3360 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3361 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3362 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3363 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3364 void *dpa_arg; /* prefetch completion arg */
3365 } dbuf_prefetch_arg_t;
3366
3367 static void
3368 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3369 {
3370 if (dpa->dpa_cb != NULL) {
3371 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3372 dpa->dpa_zb.zb_blkid, io_done);
3373 }
3374 kmem_free(dpa, sizeof (*dpa));
3375 }
3376
3377 static void
3378 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3379 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3380 {
3381 (void) zio, (void) zb, (void) iobp;
3382 dbuf_prefetch_arg_t *dpa = private;
3383
3384 if (abuf != NULL)
3385 arc_buf_destroy(abuf, private);
3386
3387 dbuf_prefetch_fini(dpa, B_TRUE);
3388 }
3389
3390 /*
3391 * Actually issue the prefetch read for the block given.
3392 */
3393 static void
3394 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3395 {
3396 ASSERT(!BP_IS_REDACTED(bp) ||
3397 dsl_dataset_feature_is_active(
3398 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3399 SPA_FEATURE_REDACTED_DATASETS));
3400
3401 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
3402 return (dbuf_prefetch_fini(dpa, B_FALSE));
3403
3404 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3405 arc_flags_t aflags =
3406 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3407 ARC_FLAG_NO_BUF;
3408
3409 /* dnodes are always read as raw and then converted later */
3410 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3411 dpa->dpa_curlevel == 0)
3412 zio_flags |= ZIO_FLAG_RAW;
3413
3414 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3415 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3416 ASSERT(dpa->dpa_zio != NULL);
3417 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3418 dbuf_issue_final_prefetch_done, dpa,
3419 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3420 }
3421
3422 /*
3423 * Called when an indirect block above our prefetch target is read in. This
3424 * will either read in the next indirect block down the tree or issue the actual
3425 * prefetch if the next block down is our target.
3426 */
3427 static void
3428 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3429 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3430 {
3431 (void) zb, (void) iobp;
3432 dbuf_prefetch_arg_t *dpa = private;
3433
3434 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3435 ASSERT3S(dpa->dpa_curlevel, >, 0);
3436
3437 if (abuf == NULL) {
3438 ASSERT(zio == NULL || zio->io_error != 0);
3439 dbuf_prefetch_fini(dpa, B_TRUE);
3440 return;
3441 }
3442 ASSERT(zio == NULL || zio->io_error == 0);
3443
3444 /*
3445 * The dpa_dnode is only valid if we are called with a NULL
3446 * zio. This indicates that the arc_read() returned without
3447 * first calling zio_read() to issue a physical read. Once
3448 * a physical read is made the dpa_dnode must be invalidated
3449 * as the locks guarding it may have been dropped. If the
3450 * dpa_dnode is still valid, then we want to add it to the dbuf
3451 * cache. To do so, we must hold the dbuf associated with the block
3452 * we just prefetched, read its contents so that we associate it
3453 * with an arc_buf_t, and then release it.
3454 */
3455 if (zio != NULL) {
3456 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3457 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3458 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3459 } else {
3460 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3461 }
3462 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3463
3464 dpa->dpa_dnode = NULL;
3465 } else if (dpa->dpa_dnode != NULL) {
3466 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3467 (dpa->dpa_epbs * (dpa->dpa_curlevel -
3468 dpa->dpa_zb.zb_level));
3469 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3470 dpa->dpa_curlevel, curblkid, FTAG);
3471 if (db == NULL) {
3472 arc_buf_destroy(abuf, private);
3473 dbuf_prefetch_fini(dpa, B_TRUE);
3474 return;
3475 }
3476 (void) dbuf_read(db, NULL,
3477 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
3478 dbuf_rele(db, FTAG);
3479 }
3480
3481 dpa->dpa_curlevel--;
3482 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3483 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3484 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3485 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3486
3487 ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode &&
3488 dsl_dataset_feature_is_active(
3489 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3490 SPA_FEATURE_REDACTED_DATASETS)));
3491 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3492 arc_buf_destroy(abuf, private);
3493 dbuf_prefetch_fini(dpa, B_TRUE);
3494 return;
3495 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3496 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3497 dbuf_issue_final_prefetch(dpa, bp);
3498 } else {
3499 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3500 zbookmark_phys_t zb;
3501
3502 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3503 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3504 iter_aflags |= ARC_FLAG_L2CACHE;
3505
3506 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3507
3508 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3509 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3510
3511 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3512 bp, dbuf_prefetch_indirect_done, dpa,
3513 ZIO_PRIORITY_SYNC_READ,
3514 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3515 &iter_aflags, &zb);
3516 }
3517
3518 arc_buf_destroy(abuf, private);
3519 }
3520
3521 /*
3522 * Issue prefetch reads for the given block on the given level. If the indirect
3523 * blocks above that block are not in memory, we will read them in
3524 * asynchronously. As a result, this call never blocks waiting for a read to
3525 * complete. Note that the prefetch might fail if the dataset is encrypted and
3526 * the encryption key is unmapped before the IO completes.
3527 */
3528 int
3529 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3530 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3531 void *arg)
3532 {
3533 blkptr_t bp;
3534 int epbs, nlevels, curlevel;
3535 uint64_t curblkid;
3536
3537 ASSERT(blkid != DMU_BONUS_BLKID);
3538 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3539
3540 if (blkid > dn->dn_maxblkid)
3541 goto no_issue;
3542
3543 if (level == 0 && dnode_block_freed(dn, blkid))
3544 goto no_issue;
3545
3546 /*
3547 * This dnode hasn't been written to disk yet, so there's nothing to
3548 * prefetch.
3549 */
3550 nlevels = dn->dn_phys->dn_nlevels;
3551 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3552 goto no_issue;
3553
3554 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3555 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3556 goto no_issue;
3557
3558 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3559 level, blkid, NULL);
3560 if (db != NULL) {
3561 mutex_exit(&db->db_mtx);
3562 /*
3563 * This dbuf already exists. It is either CACHED, or
3564 * (we assume) about to be read or filled.
3565 */
3566 goto no_issue;
3567 }
3568
3569 /*
3570 * Find the closest ancestor (indirect block) of the target block
3571 * that is present in the cache. In this indirect block, we will
3572 * find the bp that is at curlevel, curblkid.
3573 */
3574 curlevel = level;
3575 curblkid = blkid;
3576 while (curlevel < nlevels - 1) {
3577 int parent_level = curlevel + 1;
3578 uint64_t parent_blkid = curblkid >> epbs;
3579 dmu_buf_impl_t *db;
3580
3581 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3582 FALSE, TRUE, FTAG, &db) == 0) {
3583 blkptr_t *bpp = db->db_buf->b_data;
3584 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3585 dbuf_rele(db, FTAG);
3586 break;
3587 }
3588
3589 curlevel = parent_level;
3590 curblkid = parent_blkid;
3591 }
3592
3593 if (curlevel == nlevels - 1) {
3594 /* No cached indirect blocks found. */
3595 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3596 bp = dn->dn_phys->dn_blkptr[curblkid];
3597 }
3598 ASSERT(!BP_IS_REDACTED(&bp) ||
3599 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3600 SPA_FEATURE_REDACTED_DATASETS));
3601 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3602 goto no_issue;
3603
3604 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3605
3606 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3607 ZIO_FLAG_CANFAIL);
3608
3609 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3610 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3611 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3612 dn->dn_object, level, blkid);
3613 dpa->dpa_curlevel = curlevel;
3614 dpa->dpa_prio = prio;
3615 dpa->dpa_aflags = aflags;
3616 dpa->dpa_spa = dn->dn_objset->os_spa;
3617 dpa->dpa_dnode = dn;
3618 dpa->dpa_epbs = epbs;
3619 dpa->dpa_zio = pio;
3620 dpa->dpa_cb = cb;
3621 dpa->dpa_arg = arg;
3622
3623 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level))
3624 dpa->dpa_aflags |= ARC_FLAG_UNCACHED;
3625 else if (dnode_level_is_l2cacheable(&bp, dn, level))
3626 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3627
3628 /*
3629 * If we have the indirect just above us, no need to do the asynchronous
3630 * prefetch chain; we'll just run the last step ourselves. If we're at
3631 * a higher level, though, we want to issue the prefetches for all the
3632 * indirect blocks asynchronously, so we can go on with whatever we were
3633 * doing.
3634 */
3635 if (curlevel == level) {
3636 ASSERT3U(curblkid, ==, blkid);
3637 dbuf_issue_final_prefetch(dpa, &bp);
3638 } else {
3639 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3640 zbookmark_phys_t zb;
3641
3642 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3643 if (dnode_level_is_l2cacheable(&bp, dn, level))
3644 iter_aflags |= ARC_FLAG_L2CACHE;
3645
3646 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3647 dn->dn_object, curlevel, curblkid);
3648 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3649 &bp, dbuf_prefetch_indirect_done, dpa,
3650 ZIO_PRIORITY_SYNC_READ,
3651 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3652 &iter_aflags, &zb);
3653 }
3654 /*
3655 * We use pio here instead of dpa_zio since it's possible that
3656 * dpa may have already been freed.
3657 */
3658 zio_nowait(pio);
3659 return (1);
3660 no_issue:
3661 if (cb != NULL)
3662 cb(arg, level, blkid, B_FALSE);
3663 return (0);
3664 }
3665
3666 int
3667 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3668 arc_flags_t aflags)
3669 {
3670
3671 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3672 }
3673
3674 /*
3675 * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3676 * the case of encrypted, compressed and uncompressed buffers by
3677 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3678 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3679 *
3680 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3681 */
3682 noinline static void
3683 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3684 {
3685 dbuf_dirty_record_t *dr = db->db_data_pending;
3686 arc_buf_t *data = dr->dt.dl.dr_data;
3687 enum zio_compress compress_type = arc_get_compression(data);
3688 uint8_t complevel = arc_get_complevel(data);
3689
3690 if (arc_is_encrypted(data)) {
3691 boolean_t byteorder;
3692 uint8_t salt[ZIO_DATA_SALT_LEN];
3693 uint8_t iv[ZIO_DATA_IV_LEN];
3694 uint8_t mac[ZIO_DATA_MAC_LEN];
3695
3696 arc_get_raw_params(data, &byteorder, salt, iv, mac);
3697 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3698 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3699 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3700 compress_type, complevel));
3701 } else if (compress_type != ZIO_COMPRESS_OFF) {
3702 dbuf_set_data(db, arc_alloc_compressed_buf(
3703 dn->dn_objset->os_spa, db, arc_buf_size(data),
3704 arc_buf_lsize(data), compress_type, complevel));
3705 } else {
3706 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3707 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3708 }
3709
3710 rw_enter(&db->db_rwlock, RW_WRITER);
3711 memcpy(db->db.db_data, data->b_data, arc_buf_size(data));
3712 rw_exit(&db->db_rwlock);
3713 }
3714
3715 /*
3716 * Returns with db_holds incremented, and db_mtx not held.
3717 * Note: dn_struct_rwlock must be held.
3718 */
3719 int
3720 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3721 boolean_t fail_sparse, boolean_t fail_uncached,
3722 const void *tag, dmu_buf_impl_t **dbp)
3723 {
3724 dmu_buf_impl_t *db, *parent = NULL;
3725 uint64_t hv;
3726
3727 /* If the pool has been created, verify the tx_sync_lock is not held */
3728 spa_t *spa = dn->dn_objset->os_spa;
3729 dsl_pool_t *dp = spa->spa_dsl_pool;
3730 if (dp != NULL) {
3731 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3732 }
3733
3734 ASSERT(blkid != DMU_BONUS_BLKID);
3735 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3736 ASSERT3U(dn->dn_nlevels, >, level);
3737
3738 *dbp = NULL;
3739
3740 /* dbuf_find() returns with db_mtx held */
3741 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv);
3742
3743 if (db == NULL) {
3744 blkptr_t *bp = NULL;
3745 int err;
3746
3747 if (fail_uncached)
3748 return (SET_ERROR(ENOENT));
3749
3750 ASSERT3P(parent, ==, NULL);
3751 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3752 if (fail_sparse) {
3753 if (err == 0 && bp && BP_IS_HOLE(bp))
3754 err = SET_ERROR(ENOENT);
3755 if (err) {
3756 if (parent)
3757 dbuf_rele(parent, NULL);
3758 return (err);
3759 }
3760 }
3761 if (err && err != ENOENT)
3762 return (err);
3763 db = dbuf_create(dn, level, blkid, parent, bp, hv);
3764 }
3765
3766 if (fail_uncached && db->db_state != DB_CACHED) {
3767 mutex_exit(&db->db_mtx);
3768 return (SET_ERROR(ENOENT));
3769 }
3770
3771 if (db->db_buf != NULL) {
3772 arc_buf_access(db->db_buf);
3773 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3774 }
3775
3776 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3777
3778 /*
3779 * If this buffer is currently syncing out, and we are
3780 * still referencing it from db_data, we need to make a copy
3781 * of it in case we decide we want to dirty it again in this txg.
3782 */
3783 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3784 dn->dn_object != DMU_META_DNODE_OBJECT &&
3785 db->db_state == DB_CACHED && db->db_data_pending) {
3786 dbuf_dirty_record_t *dr = db->db_data_pending;
3787 if (dr->dt.dl.dr_data == db->db_buf) {
3788 ASSERT3P(db->db_buf, !=, NULL);
3789 dbuf_hold_copy(dn, db);
3790 }
3791 }
3792
3793 if (multilist_link_active(&db->db_cache_link)) {
3794 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3795 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3796 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3797
3798 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3799
3800 uint64_t size = db->db.db_size;
3801 uint64_t usize = dmu_buf_user_size(&db->db);
3802 (void) zfs_refcount_remove_many(
3803 &dbuf_caches[db->db_caching_status].size, size, db);
3804 (void) zfs_refcount_remove_many(
3805 &dbuf_caches[db->db_caching_status].size, usize,
3806 db->db_user);
3807
3808 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3809 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3810 } else {
3811 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3812 DBUF_STAT_BUMPDOWN(cache_count);
3813 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3814 size + usize);
3815 }
3816 db->db_caching_status = DB_NO_CACHE;
3817 }
3818 (void) zfs_refcount_add(&db->db_holds, tag);
3819 DBUF_VERIFY(db);
3820 mutex_exit(&db->db_mtx);
3821
3822 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3823 if (parent)
3824 dbuf_rele(parent, NULL);
3825
3826 ASSERT3P(DB_DNODE(db), ==, dn);
3827 ASSERT3U(db->db_blkid, ==, blkid);
3828 ASSERT3U(db->db_level, ==, level);
3829 *dbp = db;
3830
3831 return (0);
3832 }
3833
3834 dmu_buf_impl_t *
3835 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
3836 {
3837 return (dbuf_hold_level(dn, 0, blkid, tag));
3838 }
3839
3840 dmu_buf_impl_t *
3841 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
3842 {
3843 dmu_buf_impl_t *db;
3844 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3845 return (err ? NULL : db);
3846 }
3847
3848 void
3849 dbuf_create_bonus(dnode_t *dn)
3850 {
3851 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3852
3853 ASSERT(dn->dn_bonus == NULL);
3854 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL,
3855 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID));
3856 }
3857
3858 int
3859 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3860 {
3861 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3862
3863 if (db->db_blkid != DMU_SPILL_BLKID)
3864 return (SET_ERROR(ENOTSUP));
3865 if (blksz == 0)
3866 blksz = SPA_MINBLOCKSIZE;
3867 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3868 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3869
3870 dbuf_new_size(db, blksz, tx);
3871
3872 return (0);
3873 }
3874
3875 void
3876 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3877 {
3878 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3879 }
3880
3881 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3882 void
3883 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
3884 {
3885 int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3886 VERIFY3S(holds, >, 1);
3887 }
3888
3889 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3890 boolean_t
3891 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3892 const void *tag)
3893 {
3894 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3895 dmu_buf_impl_t *found_db;
3896 boolean_t result = B_FALSE;
3897
3898 if (blkid == DMU_BONUS_BLKID)
3899 found_db = dbuf_find_bonus(os, obj);
3900 else
3901 found_db = dbuf_find(os, obj, 0, blkid, NULL);
3902
3903 if (found_db != NULL) {
3904 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3905 (void) zfs_refcount_add(&db->db_holds, tag);
3906 result = B_TRUE;
3907 }
3908 mutex_exit(&found_db->db_mtx);
3909 }
3910 return (result);
3911 }
3912
3913 /*
3914 * If you call dbuf_rele() you had better not be referencing the dnode handle
3915 * unless you have some other direct or indirect hold on the dnode. (An indirect
3916 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3917 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3918 * dnode's parent dbuf evicting its dnode handles.
3919 */
3920 void
3921 dbuf_rele(dmu_buf_impl_t *db, const void *tag)
3922 {
3923 mutex_enter(&db->db_mtx);
3924 dbuf_rele_and_unlock(db, tag, B_FALSE);
3925 }
3926
3927 void
3928 dmu_buf_rele(dmu_buf_t *db, const void *tag)
3929 {
3930 dbuf_rele((dmu_buf_impl_t *)db, tag);
3931 }
3932
3933 /*
3934 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3935 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3936 * argument should be set if we are already in the dbuf-evicting code
3937 * path, in which case we don't want to recursively evict. This allows us to
3938 * avoid deeply nested stacks that would have a call flow similar to this:
3939 *
3940 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3941 * ^ |
3942 * | |
3943 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3944 *
3945 */
3946 void
3947 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
3948 {
3949 int64_t holds;
3950 uint64_t size;
3951
3952 ASSERT(MUTEX_HELD(&db->db_mtx));
3953 DBUF_VERIFY(db);
3954
3955 /*
3956 * Remove the reference to the dbuf before removing its hold on the
3957 * dnode so we can guarantee in dnode_move() that a referenced bonus
3958 * buffer has a corresponding dnode hold.
3959 */
3960 holds = zfs_refcount_remove(&db->db_holds, tag);
3961 ASSERT(holds >= 0);
3962
3963 /*
3964 * We can't freeze indirects if there is a possibility that they
3965 * may be modified in the current syncing context.
3966 */
3967 if (db->db_buf != NULL &&
3968 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3969 arc_buf_freeze(db->db_buf);
3970 }
3971
3972 if (holds == db->db_dirtycnt &&
3973 db->db_level == 0 && db->db_user_immediate_evict)
3974 dbuf_evict_user(db);
3975
3976 if (holds == 0) {
3977 if (db->db_blkid == DMU_BONUS_BLKID) {
3978 dnode_t *dn;
3979 boolean_t evict_dbuf = db->db_pending_evict;
3980
3981 /*
3982 * If the dnode moves here, we cannot cross this
3983 * barrier until the move completes.
3984 */
3985 DB_DNODE_ENTER(db);
3986
3987 dn = DB_DNODE(db);
3988 atomic_dec_32(&dn->dn_dbufs_count);
3989
3990 /*
3991 * Decrementing the dbuf count means that the bonus
3992 * buffer's dnode hold is no longer discounted in
3993 * dnode_move(). The dnode cannot move until after
3994 * the dnode_rele() below.
3995 */
3996 DB_DNODE_EXIT(db);
3997
3998 /*
3999 * Do not reference db after its lock is dropped.
4000 * Another thread may evict it.
4001 */
4002 mutex_exit(&db->db_mtx);
4003
4004 if (evict_dbuf)
4005 dnode_evict_bonus(dn);
4006
4007 dnode_rele(dn, db);
4008 } else if (db->db_buf == NULL) {
4009 /*
4010 * This is a special case: we never associated this
4011 * dbuf with any data allocated from the ARC.
4012 */
4013 ASSERT(db->db_state == DB_UNCACHED ||
4014 db->db_state == DB_NOFILL);
4015 dbuf_destroy(db);
4016 } else if (arc_released(db->db_buf)) {
4017 /*
4018 * This dbuf has anonymous data associated with it.
4019 */
4020 dbuf_destroy(db);
4021 } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) ||
4022 db->db_pending_evict) {
4023 dbuf_destroy(db);
4024 } else if (!multilist_link_active(&db->db_cache_link)) {
4025 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4026
4027 dbuf_cached_state_t dcs =
4028 dbuf_include_in_metadata_cache(db) ?
4029 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
4030 db->db_caching_status = dcs;
4031
4032 multilist_insert(&dbuf_caches[dcs].cache, db);
4033 uint64_t db_size = db->db.db_size;
4034 uint64_t dbu_size = dmu_buf_user_size(&db->db);
4035 (void) zfs_refcount_add_many(
4036 &dbuf_caches[dcs].size, db_size, db);
4037 size = zfs_refcount_add_many(
4038 &dbuf_caches[dcs].size, dbu_size, db->db_user);
4039 uint8_t db_level = db->db_level;
4040 mutex_exit(&db->db_mtx);
4041
4042 if (dcs == DB_DBUF_METADATA_CACHE) {
4043 DBUF_STAT_BUMP(metadata_cache_count);
4044 DBUF_STAT_MAX(metadata_cache_size_bytes_max,
4045 size);
4046 } else {
4047 DBUF_STAT_BUMP(cache_count);
4048 DBUF_STAT_MAX(cache_size_bytes_max, size);
4049 DBUF_STAT_BUMP(cache_levels[db_level]);
4050 DBUF_STAT_INCR(cache_levels_bytes[db_level],
4051 db_size + dbu_size);
4052 }
4053
4054 if (dcs == DB_DBUF_CACHE && !evicting)
4055 dbuf_evict_notify(size);
4056 }
4057 } else {
4058 mutex_exit(&db->db_mtx);
4059 }
4060
4061 }
4062
4063 #pragma weak dmu_buf_refcount = dbuf_refcount
4064 uint64_t
4065 dbuf_refcount(dmu_buf_impl_t *db)
4066 {
4067 return (zfs_refcount_count(&db->db_holds));
4068 }
4069
4070 uint64_t
4071 dmu_buf_user_refcount(dmu_buf_t *db_fake)
4072 {
4073 uint64_t holds;
4074 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4075
4076 mutex_enter(&db->db_mtx);
4077 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
4078 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
4079 mutex_exit(&db->db_mtx);
4080
4081 return (holds);
4082 }
4083
4084 void *
4085 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
4086 dmu_buf_user_t *new_user)
4087 {
4088 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4089
4090 mutex_enter(&db->db_mtx);
4091 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4092 if (db->db_user == old_user)
4093 db->db_user = new_user;
4094 else
4095 old_user = db->db_user;
4096 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4097 mutex_exit(&db->db_mtx);
4098
4099 return (old_user);
4100 }
4101
4102 void *
4103 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4104 {
4105 return (dmu_buf_replace_user(db_fake, NULL, user));
4106 }
4107
4108 void *
4109 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4110 {
4111 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4112
4113 db->db_user_immediate_evict = TRUE;
4114 return (dmu_buf_set_user(db_fake, user));
4115 }
4116
4117 void *
4118 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4119 {
4120 return (dmu_buf_replace_user(db_fake, user, NULL));
4121 }
4122
4123 void *
4124 dmu_buf_get_user(dmu_buf_t *db_fake)
4125 {
4126 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4127
4128 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4129 return (db->db_user);
4130 }
4131
4132 uint64_t
4133 dmu_buf_user_size(dmu_buf_t *db_fake)
4134 {
4135 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4136 if (db->db_user == NULL)
4137 return (0);
4138 return (atomic_load_64(&db->db_user->dbu_size));
4139 }
4140
4141 void
4142 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd)
4143 {
4144 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4145 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4146 ASSERT3P(db->db_user, !=, NULL);
4147 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd);
4148 atomic_add_64(&db->db_user->dbu_size, nadd);
4149 }
4150
4151 void
4152 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub)
4153 {
4154 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4155 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4156 ASSERT3P(db->db_user, !=, NULL);
4157 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub);
4158 atomic_sub_64(&db->db_user->dbu_size, nsub);
4159 }
4160
4161 void
4162 dmu_buf_user_evict_wait(void)
4163 {
4164 taskq_wait(dbu_evict_taskq);
4165 }
4166
4167 blkptr_t *
4168 dmu_buf_get_blkptr(dmu_buf_t *db)
4169 {
4170 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4171 return (dbi->db_blkptr);
4172 }
4173
4174 objset_t *
4175 dmu_buf_get_objset(dmu_buf_t *db)
4176 {
4177 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4178 return (dbi->db_objset);
4179 }
4180
4181 static void
4182 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
4183 {
4184 /* ASSERT(dmu_tx_is_syncing(tx) */
4185 ASSERT(MUTEX_HELD(&db->db_mtx));
4186
4187 if (db->db_blkptr != NULL)
4188 return;
4189
4190 if (db->db_blkid == DMU_SPILL_BLKID) {
4191 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
4192 BP_ZERO(db->db_blkptr);
4193 return;
4194 }
4195 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4196 /*
4197 * This buffer was allocated at a time when there was
4198 * no available blkptrs from the dnode, or it was
4199 * inappropriate to hook it in (i.e., nlevels mismatch).
4200 */
4201 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4202 ASSERT(db->db_parent == NULL);
4203 db->db_parent = dn->dn_dbuf;
4204 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4205 DBUF_VERIFY(db);
4206 } else {
4207 dmu_buf_impl_t *parent = db->db_parent;
4208 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4209
4210 ASSERT(dn->dn_phys->dn_nlevels > 1);
4211 if (parent == NULL) {
4212 mutex_exit(&db->db_mtx);
4213 rw_enter(&dn->dn_struct_rwlock, RW_READER);
4214 parent = dbuf_hold_level(dn, db->db_level + 1,
4215 db->db_blkid >> epbs, db);
4216 rw_exit(&dn->dn_struct_rwlock);
4217 mutex_enter(&db->db_mtx);
4218 db->db_parent = parent;
4219 }
4220 db->db_blkptr = (blkptr_t *)parent->db.db_data +
4221 (db->db_blkid & ((1ULL << epbs) - 1));
4222 DBUF_VERIFY(db);
4223 }
4224 }
4225
4226 static void
4227 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4228 {
4229 dmu_buf_impl_t *db = dr->dr_dbuf;
4230 void *data = dr->dt.dl.dr_data;
4231
4232 ASSERT0(db->db_level);
4233 ASSERT(MUTEX_HELD(&db->db_mtx));
4234 ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4235 ASSERT(data != NULL);
4236
4237 dnode_t *dn = dr->dr_dnode;
4238 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4239 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4240 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
4241
4242 dbuf_sync_leaf_verify_bonus_dnode(dr);
4243
4244 dbuf_undirty_bonus(dr);
4245 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4246 }
4247
4248 /*
4249 * When syncing out a blocks of dnodes, adjust the block to deal with
4250 * encryption. Normally, we make sure the block is decrypted before writing
4251 * it. If we have crypt params, then we are writing a raw (encrypted) block,
4252 * from a raw receive. In this case, set the ARC buf's crypt params so
4253 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4254 */
4255 static void
4256 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4257 {
4258 int err;
4259 dmu_buf_impl_t *db = dr->dr_dbuf;
4260
4261 ASSERT(MUTEX_HELD(&db->db_mtx));
4262 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4263 ASSERT3U(db->db_level, ==, 0);
4264
4265 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4266 zbookmark_phys_t zb;
4267
4268 /*
4269 * Unfortunately, there is currently no mechanism for
4270 * syncing context to handle decryption errors. An error
4271 * here is only possible if an attacker maliciously
4272 * changed a dnode block and updated the associated
4273 * checksums going up the block tree.
4274 */
4275 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4276 db->db.db_object, db->db_level, db->db_blkid);
4277 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4278 &zb, B_TRUE);
4279 if (err)
4280 panic("Invalid dnode block MAC");
4281 } else if (dr->dt.dl.dr_has_raw_params) {
4282 (void) arc_release(dr->dt.dl.dr_data, db);
4283 arc_convert_to_raw(dr->dt.dl.dr_data,
4284 dmu_objset_id(db->db_objset),
4285 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4286 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4287 }
4288 }
4289
4290 /*
4291 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4292 * is critical the we not allow the compiler to inline this function in to
4293 * dbuf_sync_list() thereby drastically bloating the stack usage.
4294 */
4295 noinline static void
4296 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4297 {
4298 dmu_buf_impl_t *db = dr->dr_dbuf;
4299 dnode_t *dn = dr->dr_dnode;
4300
4301 ASSERT(dmu_tx_is_syncing(tx));
4302
4303 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4304
4305 mutex_enter(&db->db_mtx);
4306
4307 ASSERT(db->db_level > 0);
4308 DBUF_VERIFY(db);
4309
4310 /* Read the block if it hasn't been read yet. */
4311 if (db->db_buf == NULL) {
4312 mutex_exit(&db->db_mtx);
4313 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4314 mutex_enter(&db->db_mtx);
4315 }
4316 ASSERT3U(db->db_state, ==, DB_CACHED);
4317 ASSERT(db->db_buf != NULL);
4318
4319 /* Indirect block size must match what the dnode thinks it is. */
4320 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4321 dbuf_check_blkptr(dn, db);
4322
4323 /* Provide the pending dirty record to child dbufs */
4324 db->db_data_pending = dr;
4325
4326 mutex_exit(&db->db_mtx);
4327
4328 dbuf_write(dr, db->db_buf, tx);
4329
4330 zio_t *zio = dr->dr_zio;
4331 mutex_enter(&dr->dt.di.dr_mtx);
4332 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4333 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4334 mutex_exit(&dr->dt.di.dr_mtx);
4335 zio_nowait(zio);
4336 }
4337
4338 /*
4339 * Verify that the size of the data in our bonus buffer does not exceed
4340 * its recorded size.
4341 *
4342 * The purpose of this verification is to catch any cases in development
4343 * where the size of a phys structure (i.e space_map_phys_t) grows and,
4344 * due to incorrect feature management, older pools expect to read more
4345 * data even though they didn't actually write it to begin with.
4346 *
4347 * For a example, this would catch an error in the feature logic where we
4348 * open an older pool and we expect to write the space map histogram of
4349 * a space map with size SPACE_MAP_SIZE_V0.
4350 */
4351 static void
4352 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4353 {
4354 #ifdef ZFS_DEBUG
4355 dnode_t *dn = dr->dr_dnode;
4356
4357 /*
4358 * Encrypted bonus buffers can have data past their bonuslen.
4359 * Skip the verification of these blocks.
4360 */
4361 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4362 return;
4363
4364 uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4365 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4366 ASSERT3U(bonuslen, <=, maxbonuslen);
4367
4368 arc_buf_t *datap = dr->dt.dl.dr_data;
4369 char *datap_end = ((char *)datap) + bonuslen;
4370 char *datap_max = ((char *)datap) + maxbonuslen;
4371
4372 /* ensure that everything is zero after our data */
4373 for (; datap_end < datap_max; datap_end++)
4374 ASSERT(*datap_end == 0);
4375 #endif
4376 }
4377
4378 static blkptr_t *
4379 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4380 {
4381 /* This must be a lightweight dirty record. */
4382 ASSERT3P(dr->dr_dbuf, ==, NULL);
4383 dnode_t *dn = dr->dr_dnode;
4384
4385 if (dn->dn_phys->dn_nlevels == 1) {
4386 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4387 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4388 } else {
4389 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4390 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4391 VERIFY3U(parent_db->db_level, ==, 1);
4392 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn);
4393 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4394 blkptr_t *bp = parent_db->db.db_data;
4395 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4396 }
4397 }
4398
4399 static void
4400 dbuf_lightweight_ready(zio_t *zio)
4401 {
4402 dbuf_dirty_record_t *dr = zio->io_private;
4403 blkptr_t *bp = zio->io_bp;
4404
4405 if (zio->io_error != 0)
4406 return;
4407
4408 dnode_t *dn = dr->dr_dnode;
4409
4410 blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4411 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4412 int64_t delta = bp_get_dsize_sync(spa, bp) -
4413 bp_get_dsize_sync(spa, bp_orig);
4414 dnode_diduse_space(dn, delta);
4415
4416 uint64_t blkid = dr->dt.dll.dr_blkid;
4417 mutex_enter(&dn->dn_mtx);
4418 if (blkid > dn->dn_phys->dn_maxblkid) {
4419 ASSERT0(dn->dn_objset->os_raw_receive);
4420 dn->dn_phys->dn_maxblkid = blkid;
4421 }
4422 mutex_exit(&dn->dn_mtx);
4423
4424 if (!BP_IS_EMBEDDED(bp)) {
4425 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4426 BP_SET_FILL(bp, fill);
4427 }
4428
4429 dmu_buf_impl_t *parent_db;
4430 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4431 if (dr->dr_parent == NULL) {
4432 parent_db = dn->dn_dbuf;
4433 } else {
4434 parent_db = dr->dr_parent->dr_dbuf;
4435 }
4436 rw_enter(&parent_db->db_rwlock, RW_WRITER);
4437 *bp_orig = *bp;
4438 rw_exit(&parent_db->db_rwlock);
4439 }
4440
4441 static void
4442 dbuf_lightweight_done(zio_t *zio)
4443 {
4444 dbuf_dirty_record_t *dr = zio->io_private;
4445
4446 VERIFY0(zio->io_error);
4447
4448 objset_t *os = dr->dr_dnode->dn_objset;
4449 dmu_tx_t *tx = os->os_synctx;
4450
4451 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4452 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4453 } else {
4454 dsl_dataset_t *ds = os->os_dsl_dataset;
4455 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4456 dsl_dataset_block_born(ds, zio->io_bp, tx);
4457 }
4458
4459 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
4460 zio->io_txg);
4461
4462 abd_free(dr->dt.dll.dr_abd);
4463 kmem_free(dr, sizeof (*dr));
4464 }
4465
4466 noinline static void
4467 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4468 {
4469 dnode_t *dn = dr->dr_dnode;
4470 zio_t *pio;
4471 if (dn->dn_phys->dn_nlevels == 1) {
4472 pio = dn->dn_zio;
4473 } else {
4474 pio = dr->dr_parent->dr_zio;
4475 }
4476
4477 zbookmark_phys_t zb = {
4478 .zb_objset = dmu_objset_id(dn->dn_objset),
4479 .zb_object = dn->dn_object,
4480 .zb_level = 0,
4481 .zb_blkid = dr->dt.dll.dr_blkid,
4482 };
4483
4484 /*
4485 * See comment in dbuf_write(). This is so that zio->io_bp_orig
4486 * will have the old BP in dbuf_lightweight_done().
4487 */
4488 dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4489
4490 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4491 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4492 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4493 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4494 dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE,
4495 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4496
4497 zio_nowait(dr->dr_zio);
4498 }
4499
4500 /*
4501 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4502 * critical the we not allow the compiler to inline this function in to
4503 * dbuf_sync_list() thereby drastically bloating the stack usage.
4504 */
4505 noinline static void
4506 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4507 {
4508 arc_buf_t **datap = &dr->dt.dl.dr_data;
4509 dmu_buf_impl_t *db = dr->dr_dbuf;
4510 dnode_t *dn = dr->dr_dnode;
4511 objset_t *os;
4512 uint64_t txg = tx->tx_txg;
4513
4514 ASSERT(dmu_tx_is_syncing(tx));
4515
4516 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4517
4518 mutex_enter(&db->db_mtx);
4519 /*
4520 * To be synced, we must be dirtied. But we
4521 * might have been freed after the dirty.
4522 */
4523 if (db->db_state == DB_UNCACHED) {
4524 /* This buffer has been freed since it was dirtied */
4525 ASSERT(db->db.db_data == NULL);
4526 } else if (db->db_state == DB_FILL) {
4527 /* This buffer was freed and is now being re-filled */
4528 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4529 } else if (db->db_state == DB_READ) {
4530 /*
4531 * This buffer has a clone we need to write, and an in-flight
4532 * read on the BP we're about to clone. Its safe to issue the
4533 * write here because the read has already been issued and the
4534 * contents won't change.
4535 */
4536 ASSERT(dr->dt.dl.dr_brtwrite &&
4537 dr->dt.dl.dr_override_state == DR_OVERRIDDEN);
4538 } else {
4539 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4540 }
4541 DBUF_VERIFY(db);
4542
4543 if (db->db_blkid == DMU_SPILL_BLKID) {
4544 mutex_enter(&dn->dn_mtx);
4545 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4546 /*
4547 * In the previous transaction group, the bonus buffer
4548 * was entirely used to store the attributes for the
4549 * dnode which overrode the dn_spill field. However,
4550 * when adding more attributes to the file a spill
4551 * block was required to hold the extra attributes.
4552 *
4553 * Make sure to clear the garbage left in the dn_spill
4554 * field from the previous attributes in the bonus
4555 * buffer. Otherwise, after writing out the spill
4556 * block to the new allocated dva, it will free
4557 * the old block pointed to by the invalid dn_spill.
4558 */
4559 db->db_blkptr = NULL;
4560 }
4561 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4562 mutex_exit(&dn->dn_mtx);
4563 }
4564
4565 /*
4566 * If this is a bonus buffer, simply copy the bonus data into the
4567 * dnode. It will be written out when the dnode is synced (and it
4568 * will be synced, since it must have been dirty for dbuf_sync to
4569 * be called).
4570 */
4571 if (db->db_blkid == DMU_BONUS_BLKID) {
4572 ASSERT(dr->dr_dbuf == db);
4573 dbuf_sync_bonus(dr, tx);
4574 return;
4575 }
4576
4577 os = dn->dn_objset;
4578
4579 /*
4580 * This function may have dropped the db_mtx lock allowing a dmu_sync
4581 * operation to sneak in. As a result, we need to ensure that we
4582 * don't check the dr_override_state until we have returned from
4583 * dbuf_check_blkptr.
4584 */
4585 dbuf_check_blkptr(dn, db);
4586
4587 /*
4588 * If this buffer is in the middle of an immediate write,
4589 * wait for the synchronous IO to complete.
4590 */
4591 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4592 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4593 cv_wait(&db->db_changed, &db->db_mtx);
4594 }
4595
4596 /*
4597 * If this is a dnode block, ensure it is appropriately encrypted
4598 * or decrypted, depending on what we are writing to it this txg.
4599 */
4600 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4601 dbuf_prepare_encrypted_dnode_leaf(dr);
4602
4603 if (*datap != NULL && *datap == db->db_buf &&
4604 dn->dn_object != DMU_META_DNODE_OBJECT &&
4605 zfs_refcount_count(&db->db_holds) > 1 &&
4606 dr->dt.dl.dr_override_state != DR_OVERRIDDEN) {
4607 /*
4608 * If this buffer is currently "in use" (i.e., there
4609 * are active holds and db_data still references it),
4610 * then make a copy before we start the write so that
4611 * any modifications from the open txg will not leak
4612 * into this write.
4613 *
4614 * NOTE: this copy does not need to be made for
4615 * objects only modified in the syncing context (e.g.
4616 * DNONE_DNODE blocks).
4617 */
4618 int psize = arc_buf_size(*datap);
4619 int lsize = arc_buf_lsize(*datap);
4620 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4621 enum zio_compress compress_type = arc_get_compression(*datap);
4622 uint8_t complevel = arc_get_complevel(*datap);
4623
4624 if (arc_is_encrypted(*datap)) {
4625 boolean_t byteorder;
4626 uint8_t salt[ZIO_DATA_SALT_LEN];
4627 uint8_t iv[ZIO_DATA_IV_LEN];
4628 uint8_t mac[ZIO_DATA_MAC_LEN];
4629
4630 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4631 *datap = arc_alloc_raw_buf(os->os_spa, db,
4632 dmu_objset_id(os), byteorder, salt, iv, mac,
4633 dn->dn_type, psize, lsize, compress_type,
4634 complevel);
4635 } else if (compress_type != ZIO_COMPRESS_OFF) {
4636 ASSERT3U(type, ==, ARC_BUFC_DATA);
4637 *datap = arc_alloc_compressed_buf(os->os_spa, db,
4638 psize, lsize, compress_type, complevel);
4639 } else {
4640 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
4641 }
4642 memcpy((*datap)->b_data, db->db.db_data, psize);
4643 }
4644 db->db_data_pending = dr;
4645
4646 mutex_exit(&db->db_mtx);
4647
4648 dbuf_write(dr, *datap, tx);
4649
4650 ASSERT(!list_link_active(&dr->dr_dirty_node));
4651 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4652 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4653 } else {
4654 zio_nowait(dr->dr_zio);
4655 }
4656 }
4657
4658 /*
4659 * Syncs out a range of dirty records for indirect or leaf dbufs. May be
4660 * called recursively from dbuf_sync_indirect().
4661 */
4662 void
4663 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4664 {
4665 dbuf_dirty_record_t *dr;
4666
4667 while ((dr = list_head(list))) {
4668 if (dr->dr_zio != NULL) {
4669 /*
4670 * If we find an already initialized zio then we
4671 * are processing the meta-dnode, and we have finished.
4672 * The dbufs for all dnodes are put back on the list
4673 * during processing, so that we can zio_wait()
4674 * these IOs after initiating all child IOs.
4675 */
4676 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4677 DMU_META_DNODE_OBJECT);
4678 break;
4679 }
4680 list_remove(list, dr);
4681 if (dr->dr_dbuf == NULL) {
4682 dbuf_sync_lightweight(dr, tx);
4683 } else {
4684 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4685 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4686 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4687 }
4688 if (dr->dr_dbuf->db_level > 0)
4689 dbuf_sync_indirect(dr, tx);
4690 else
4691 dbuf_sync_leaf(dr, tx);
4692 }
4693 }
4694 }
4695
4696 static void
4697 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4698 {
4699 (void) buf;
4700 dmu_buf_impl_t *db = vdb;
4701 dnode_t *dn;
4702 blkptr_t *bp = zio->io_bp;
4703 blkptr_t *bp_orig = &zio->io_bp_orig;
4704 spa_t *spa = zio->io_spa;
4705 int64_t delta;
4706 uint64_t fill = 0;
4707 int i;
4708
4709 ASSERT3P(db->db_blkptr, !=, NULL);
4710 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4711
4712 DB_DNODE_ENTER(db);
4713 dn = DB_DNODE(db);
4714 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4715 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4716 zio->io_prev_space_delta = delta;
4717
4718 if (BP_GET_LOGICAL_BIRTH(bp) != 0) {
4719 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4720 BP_GET_TYPE(bp) == dn->dn_type) ||
4721 (db->db_blkid == DMU_SPILL_BLKID &&
4722 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4723 BP_IS_EMBEDDED(bp));
4724 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4725 }
4726
4727 mutex_enter(&db->db_mtx);
4728
4729 #ifdef ZFS_DEBUG
4730 if (db->db_blkid == DMU_SPILL_BLKID) {
4731 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4732 ASSERT(!(BP_IS_HOLE(bp)) &&
4733 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4734 }
4735 #endif
4736
4737 if (db->db_level == 0) {
4738 mutex_enter(&dn->dn_mtx);
4739 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4740 db->db_blkid != DMU_SPILL_BLKID) {
4741 ASSERT0(db->db_objset->os_raw_receive);
4742 dn->dn_phys->dn_maxblkid = db->db_blkid;
4743 }
4744 mutex_exit(&dn->dn_mtx);
4745
4746 if (dn->dn_type == DMU_OT_DNODE) {
4747 i = 0;
4748 while (i < db->db.db_size) {
4749 dnode_phys_t *dnp =
4750 (void *)(((char *)db->db.db_data) + i);
4751
4752 i += DNODE_MIN_SIZE;
4753 if (dnp->dn_type != DMU_OT_NONE) {
4754 fill++;
4755 for (int j = 0; j < dnp->dn_nblkptr;
4756 j++) {
4757 (void) zfs_blkptr_verify(spa,
4758 &dnp->dn_blkptr[j],
4759 BLK_CONFIG_SKIP,
4760 BLK_VERIFY_HALT);
4761 }
4762 if (dnp->dn_flags &
4763 DNODE_FLAG_SPILL_BLKPTR) {
4764 (void) zfs_blkptr_verify(spa,
4765 DN_SPILL_BLKPTR(dnp),
4766 BLK_CONFIG_SKIP,
4767 BLK_VERIFY_HALT);
4768 }
4769 i += dnp->dn_extra_slots *
4770 DNODE_MIN_SIZE;
4771 }
4772 }
4773 } else {
4774 if (BP_IS_HOLE(bp)) {
4775 fill = 0;
4776 } else {
4777 fill = 1;
4778 }
4779 }
4780 } else {
4781 blkptr_t *ibp = db->db.db_data;
4782 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4783 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4784 if (BP_IS_HOLE(ibp))
4785 continue;
4786 (void) zfs_blkptr_verify(spa, ibp,
4787 BLK_CONFIG_SKIP, BLK_VERIFY_HALT);
4788 fill += BP_GET_FILL(ibp);
4789 }
4790 }
4791 DB_DNODE_EXIT(db);
4792
4793 if (!BP_IS_EMBEDDED(bp))
4794 BP_SET_FILL(bp, fill);
4795
4796 mutex_exit(&db->db_mtx);
4797
4798 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
4799 *db->db_blkptr = *bp;
4800 dmu_buf_unlock_parent(db, dblt, FTAG);
4801 }
4802
4803 /*
4804 * This function gets called just prior to running through the compression
4805 * stage of the zio pipeline. If we're an indirect block comprised of only
4806 * holes, then we want this indirect to be compressed away to a hole. In
4807 * order to do that we must zero out any information about the holes that
4808 * this indirect points to prior to before we try to compress it.
4809 */
4810 static void
4811 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4812 {
4813 (void) zio, (void) buf;
4814 dmu_buf_impl_t *db = vdb;
4815 dnode_t *dn;
4816 blkptr_t *bp;
4817 unsigned int epbs, i;
4818
4819 ASSERT3U(db->db_level, >, 0);
4820 DB_DNODE_ENTER(db);
4821 dn = DB_DNODE(db);
4822 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4823 ASSERT3U(epbs, <, 31);
4824
4825 /* Determine if all our children are holes */
4826 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4827 if (!BP_IS_HOLE(bp))
4828 break;
4829 }
4830
4831 /*
4832 * If all the children are holes, then zero them all out so that
4833 * we may get compressed away.
4834 */
4835 if (i == 1ULL << epbs) {
4836 /*
4837 * We only found holes. Grab the rwlock to prevent
4838 * anybody from reading the blocks we're about to
4839 * zero out.
4840 */
4841 rw_enter(&db->db_rwlock, RW_WRITER);
4842 memset(db->db.db_data, 0, db->db.db_size);
4843 rw_exit(&db->db_rwlock);
4844 }
4845 DB_DNODE_EXIT(db);
4846 }
4847
4848 static void
4849 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4850 {
4851 (void) buf;
4852 dmu_buf_impl_t *db = vdb;
4853 blkptr_t *bp_orig = &zio->io_bp_orig;
4854 blkptr_t *bp = db->db_blkptr;
4855 objset_t *os = db->db_objset;
4856 dmu_tx_t *tx = os->os_synctx;
4857
4858 ASSERT0(zio->io_error);
4859 ASSERT(db->db_blkptr == bp);
4860
4861 /*
4862 * For nopwrites and rewrites we ensure that the bp matches our
4863 * original and bypass all the accounting.
4864 */
4865 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4866 ASSERT(BP_EQUAL(bp, bp_orig));
4867 } else {
4868 dsl_dataset_t *ds = os->os_dsl_dataset;
4869 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4870 dsl_dataset_block_born(ds, bp, tx);
4871 }
4872
4873 mutex_enter(&db->db_mtx);
4874
4875 DBUF_VERIFY(db);
4876
4877 dbuf_dirty_record_t *dr = db->db_data_pending;
4878 dnode_t *dn = dr->dr_dnode;
4879 ASSERT(!list_link_active(&dr->dr_dirty_node));
4880 ASSERT(dr->dr_dbuf == db);
4881 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
4882 list_remove(&db->db_dirty_records, dr);
4883
4884 #ifdef ZFS_DEBUG
4885 if (db->db_blkid == DMU_SPILL_BLKID) {
4886 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4887 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4888 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4889 }
4890 #endif
4891
4892 if (db->db_level == 0) {
4893 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4894 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4895 if (dr->dt.dl.dr_data != NULL &&
4896 dr->dt.dl.dr_data != db->db_buf) {
4897 arc_buf_destroy(dr->dt.dl.dr_data, db);
4898 }
4899 } else {
4900 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4901 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4902 if (!BP_IS_HOLE(db->db_blkptr)) {
4903 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
4904 SPA_BLKPTRSHIFT;
4905 ASSERT3U(db->db_blkid, <=,
4906 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4907 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4908 db->db.db_size);
4909 }
4910 mutex_destroy(&dr->dt.di.dr_mtx);
4911 list_destroy(&dr->dt.di.dr_children);
4912 }
4913
4914 cv_broadcast(&db->db_changed);
4915 ASSERT(db->db_dirtycnt > 0);
4916 db->db_dirtycnt -= 1;
4917 db->db_data_pending = NULL;
4918 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4919
4920 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
4921 zio->io_txg);
4922
4923 kmem_free(dr, sizeof (dbuf_dirty_record_t));
4924 }
4925
4926 static void
4927 dbuf_write_nofill_ready(zio_t *zio)
4928 {
4929 dbuf_write_ready(zio, NULL, zio->io_private);
4930 }
4931
4932 static void
4933 dbuf_write_nofill_done(zio_t *zio)
4934 {
4935 dbuf_write_done(zio, NULL, zio->io_private);
4936 }
4937
4938 static void
4939 dbuf_write_override_ready(zio_t *zio)
4940 {
4941 dbuf_dirty_record_t *dr = zio->io_private;
4942 dmu_buf_impl_t *db = dr->dr_dbuf;
4943
4944 dbuf_write_ready(zio, NULL, db);
4945 }
4946
4947 static void
4948 dbuf_write_override_done(zio_t *zio)
4949 {
4950 dbuf_dirty_record_t *dr = zio->io_private;
4951 dmu_buf_impl_t *db = dr->dr_dbuf;
4952 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4953
4954 mutex_enter(&db->db_mtx);
4955 if (!BP_EQUAL(zio->io_bp, obp)) {
4956 if (!BP_IS_HOLE(obp))
4957 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4958 arc_release(dr->dt.dl.dr_data, db);
4959 }
4960 mutex_exit(&db->db_mtx);
4961
4962 dbuf_write_done(zio, NULL, db);
4963
4964 if (zio->io_abd != NULL)
4965 abd_free(zio->io_abd);
4966 }
4967
4968 typedef struct dbuf_remap_impl_callback_arg {
4969 objset_t *drica_os;
4970 uint64_t drica_blk_birth;
4971 dmu_tx_t *drica_tx;
4972 } dbuf_remap_impl_callback_arg_t;
4973
4974 static void
4975 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4976 void *arg)
4977 {
4978 dbuf_remap_impl_callback_arg_t *drica = arg;
4979 objset_t *os = drica->drica_os;
4980 spa_t *spa = dmu_objset_spa(os);
4981 dmu_tx_t *tx = drica->drica_tx;
4982
4983 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4984
4985 if (os == spa_meta_objset(spa)) {
4986 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4987 } else {
4988 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4989 size, drica->drica_blk_birth, tx);
4990 }
4991 }
4992
4993 static void
4994 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
4995 {
4996 blkptr_t bp_copy = *bp;
4997 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4998 dbuf_remap_impl_callback_arg_t drica;
4999
5000 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5001
5002 drica.drica_os = dn->dn_objset;
5003 drica.drica_blk_birth = BP_GET_LOGICAL_BIRTH(bp);
5004 drica.drica_tx = tx;
5005 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
5006 &drica)) {
5007 /*
5008 * If the blkptr being remapped is tracked by a livelist,
5009 * then we need to make sure the livelist reflects the update.
5010 * First, cancel out the old blkptr by appending a 'FREE'
5011 * entry. Next, add an 'ALLOC' to track the new version. This
5012 * way we avoid trying to free an inaccurate blkptr at delete.
5013 * Note that embedded blkptrs are not tracked in livelists.
5014 */
5015 if (dn->dn_objset != spa_meta_objset(spa)) {
5016 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
5017 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
5018 BP_GET_LOGICAL_BIRTH(bp) >
5019 ds->ds_dir->dd_origin_txg) {
5020 ASSERT(!BP_IS_EMBEDDED(bp));
5021 ASSERT(dsl_dir_is_clone(ds->ds_dir));
5022 ASSERT(spa_feature_is_enabled(spa,
5023 SPA_FEATURE_LIVELIST));
5024 bplist_append(&ds->ds_dir->dd_pending_frees,
5025 bp);
5026 bplist_append(&ds->ds_dir->dd_pending_allocs,
5027 &bp_copy);
5028 }
5029 }
5030
5031 /*
5032 * The db_rwlock prevents dbuf_read_impl() from
5033 * dereferencing the BP while we are changing it. To
5034 * avoid lock contention, only grab it when we are actually
5035 * changing the BP.
5036 */
5037 if (rw != NULL)
5038 rw_enter(rw, RW_WRITER);
5039 *bp = bp_copy;
5040 if (rw != NULL)
5041 rw_exit(rw);
5042 }
5043 }
5044
5045 /*
5046 * Remap any existing BP's to concrete vdevs, if possible.
5047 */
5048 static void
5049 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
5050 {
5051 spa_t *spa = dmu_objset_spa(db->db_objset);
5052 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5053
5054 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
5055 return;
5056
5057 if (db->db_level > 0) {
5058 blkptr_t *bp = db->db.db_data;
5059 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
5060 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
5061 }
5062 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
5063 dnode_phys_t *dnp = db->db.db_data;
5064 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
5065 DMU_OT_DNODE);
5066 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
5067 i += dnp[i].dn_extra_slots + 1) {
5068 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
5069 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
5070 &dn->dn_dbuf->db_rwlock);
5071 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
5072 tx);
5073 }
5074 }
5075 }
5076 }
5077
5078
5079 /*
5080 * Populate dr->dr_zio with a zio to commit a dirty buffer to disk.
5081 * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio).
5082 */
5083 static void
5084 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
5085 {
5086 dmu_buf_impl_t *db = dr->dr_dbuf;
5087 dnode_t *dn = dr->dr_dnode;
5088 objset_t *os;
5089 dmu_buf_impl_t *parent = db->db_parent;
5090 uint64_t txg = tx->tx_txg;
5091 zbookmark_phys_t zb;
5092 zio_prop_t zp;
5093 zio_t *pio; /* parent I/O */
5094 int wp_flag = 0;
5095
5096 ASSERT(dmu_tx_is_syncing(tx));
5097
5098 os = dn->dn_objset;
5099
5100 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
5101 /*
5102 * Private object buffers are released here rather than in
5103 * dbuf_dirty() since they are only modified in the syncing
5104 * context and we don't want the overhead of making multiple
5105 * copies of the data.
5106 */
5107 if (BP_IS_HOLE(db->db_blkptr))
5108 arc_buf_thaw(data);
5109 else
5110 dbuf_release_bp(db);
5111 dbuf_remap(dn, db, tx);
5112 }
5113
5114 if (parent != dn->dn_dbuf) {
5115 /* Our parent is an indirect block. */
5116 /* We have a dirty parent that has been scheduled for write. */
5117 ASSERT(parent && parent->db_data_pending);
5118 /* Our parent's buffer is one level closer to the dnode. */
5119 ASSERT(db->db_level == parent->db_level-1);
5120 /*
5121 * We're about to modify our parent's db_data by modifying
5122 * our block pointer, so the parent must be released.
5123 */
5124 ASSERT(arc_released(parent->db_buf));
5125 pio = parent->db_data_pending->dr_zio;
5126 } else {
5127 /* Our parent is the dnode itself. */
5128 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
5129 db->db_blkid != DMU_SPILL_BLKID) ||
5130 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
5131 if (db->db_blkid != DMU_SPILL_BLKID)
5132 ASSERT3P(db->db_blkptr, ==,
5133 &dn->dn_phys->dn_blkptr[db->db_blkid]);
5134 pio = dn->dn_zio;
5135 }
5136
5137 ASSERT(db->db_level == 0 || data == db->db_buf);
5138 ASSERT3U(BP_GET_LOGICAL_BIRTH(db->db_blkptr), <=, txg);
5139 ASSERT(pio);
5140
5141 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
5142 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
5143 db->db.db_object, db->db_level, db->db_blkid);
5144
5145 if (db->db_blkid == DMU_SPILL_BLKID)
5146 wp_flag = WP_SPILL;
5147 wp_flag |= (data == NULL) ? WP_NOFILL : 0;
5148
5149 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5150
5151 /*
5152 * We copy the blkptr now (rather than when we instantiate the dirty
5153 * record), because its value can change between open context and
5154 * syncing context. We do not need to hold dn_struct_rwlock to read
5155 * db_blkptr because we are in syncing context.
5156 */
5157 dr->dr_bp_copy = *db->db_blkptr;
5158
5159 if (db->db_level == 0 &&
5160 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5161 /*
5162 * The BP for this block has been provided by open context
5163 * (by dmu_sync() or dmu_buf_write_embedded()).
5164 */
5165 abd_t *contents = (data != NULL) ?
5166 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5167
5168 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5169 contents, db->db.db_size, db->db.db_size, &zp,
5170 dbuf_write_override_ready, NULL,
5171 dbuf_write_override_done,
5172 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5173 mutex_enter(&db->db_mtx);
5174 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5175 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5176 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite,
5177 dr->dt.dl.dr_brtwrite);
5178 mutex_exit(&db->db_mtx);
5179 } else if (data == NULL) {
5180 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5181 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5182 dr->dr_zio = zio_write(pio, os->os_spa, txg,
5183 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5184 dbuf_write_nofill_ready, NULL,
5185 dbuf_write_nofill_done, db,
5186 ZIO_PRIORITY_ASYNC_WRITE,
5187 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5188 } else {
5189 ASSERT(arc_released(data));
5190
5191 /*
5192 * For indirect blocks, we want to setup the children
5193 * ready callback so that we can properly handle an indirect
5194 * block that only contains holes.
5195 */
5196 arc_write_done_func_t *children_ready_cb = NULL;
5197 if (db->db_level != 0)
5198 children_ready_cb = dbuf_write_children_ready;
5199
5200 dr->dr_zio = arc_write(pio, os->os_spa, txg,
5201 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db),
5202 dbuf_is_l2cacheable(db), &zp, dbuf_write_ready,
5203 children_ready_cb, dbuf_write_done, db,
5204 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5205 }
5206 }
5207
5208 EXPORT_SYMBOL(dbuf_find);
5209 EXPORT_SYMBOL(dbuf_is_metadata);
5210 EXPORT_SYMBOL(dbuf_destroy);
5211 EXPORT_SYMBOL(dbuf_loan_arcbuf);
5212 EXPORT_SYMBOL(dbuf_whichblock);
5213 EXPORT_SYMBOL(dbuf_read);
5214 EXPORT_SYMBOL(dbuf_unoverride);
5215 EXPORT_SYMBOL(dbuf_free_range);
5216 EXPORT_SYMBOL(dbuf_new_size);
5217 EXPORT_SYMBOL(dbuf_release_bp);
5218 EXPORT_SYMBOL(dbuf_dirty);
5219 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5220 EXPORT_SYMBOL(dmu_buf_will_dirty);
5221 EXPORT_SYMBOL(dmu_buf_is_dirty);
5222 EXPORT_SYMBOL(dmu_buf_will_clone);
5223 EXPORT_SYMBOL(dmu_buf_will_not_fill);
5224 EXPORT_SYMBOL(dmu_buf_will_fill);
5225 EXPORT_SYMBOL(dmu_buf_fill_done);
5226 EXPORT_SYMBOL(dmu_buf_rele);
5227 EXPORT_SYMBOL(dbuf_assign_arcbuf);
5228 EXPORT_SYMBOL(dbuf_prefetch);
5229 EXPORT_SYMBOL(dbuf_hold_impl);
5230 EXPORT_SYMBOL(dbuf_hold);
5231 EXPORT_SYMBOL(dbuf_hold_level);
5232 EXPORT_SYMBOL(dbuf_create_bonus);
5233 EXPORT_SYMBOL(dbuf_spill_set_blksz);
5234 EXPORT_SYMBOL(dbuf_rm_spill);
5235 EXPORT_SYMBOL(dbuf_add_ref);
5236 EXPORT_SYMBOL(dbuf_rele);
5237 EXPORT_SYMBOL(dbuf_rele_and_unlock);
5238 EXPORT_SYMBOL(dbuf_refcount);
5239 EXPORT_SYMBOL(dbuf_sync_list);
5240 EXPORT_SYMBOL(dmu_buf_set_user);
5241 EXPORT_SYMBOL(dmu_buf_set_user_ie);
5242 EXPORT_SYMBOL(dmu_buf_get_user);
5243 EXPORT_SYMBOL(dmu_buf_get_blkptr);
5244
5245 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW,
5246 "Maximum size in bytes of the dbuf cache.");
5247
5248 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5249 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5250
5251 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5252 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5253
5254 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW,
5255 "Maximum size in bytes of dbuf metadata cache.");
5256
5257 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
5258 "Set size of dbuf cache to log2 fraction of arc size.");
5259
5260 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
5261 "Set size of dbuf metadata cache to log2 fraction of arc size.");
5262
5263 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
5264 "Set size of dbuf cache mutex array as log2 shift.");