]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dbuf.c
OpenZFS 7614, 9064 - zfs device evacuation/removal
[mirror_zfs.git] / module / zfs / dbuf.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/arc.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_send.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dbuf.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/spa.h>
40 #include <sys/zio.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/sa.h>
43 #include <sys/sa_impl.h>
44 #include <sys/zfeature.h>
45 #include <sys/blkptr.h>
46 #include <sys/range_tree.h>
47 #include <sys/trace_dbuf.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50 #include <sys/vdev.h>
51
52 kstat_t *dbuf_ksp;
53
54 typedef struct dbuf_stats {
55 /*
56 * Various statistics about the size of the dbuf cache.
57 */
58 kstat_named_t cache_count;
59 kstat_named_t cache_size_bytes;
60 kstat_named_t cache_size_bytes_max;
61 /*
62 * Statistics regarding the bounds on the dbuf cache size.
63 */
64 kstat_named_t cache_target_bytes;
65 kstat_named_t cache_lowater_bytes;
66 kstat_named_t cache_hiwater_bytes;
67 /*
68 * Total number of dbuf cache evictions that have occurred.
69 */
70 kstat_named_t cache_total_evicts;
71 /*
72 * The distribution of dbuf levels in the dbuf cache and
73 * the total size of all dbufs at each level.
74 */
75 kstat_named_t cache_levels[DN_MAX_LEVELS];
76 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
77 /*
78 * Statistics about the dbuf hash table.
79 */
80 kstat_named_t hash_hits;
81 kstat_named_t hash_misses;
82 kstat_named_t hash_collisions;
83 kstat_named_t hash_elements;
84 kstat_named_t hash_elements_max;
85 /*
86 * Number of sublists containing more than one dbuf in the dbuf
87 * hash table. Keep track of the longest hash chain.
88 */
89 kstat_named_t hash_chains;
90 kstat_named_t hash_chain_max;
91 /*
92 * Number of times a dbuf_create() discovers that a dbuf was
93 * already created and in the dbuf hash table.
94 */
95 kstat_named_t hash_insert_race;
96 } dbuf_stats_t;
97
98 dbuf_stats_t dbuf_stats = {
99 { "cache_count", KSTAT_DATA_UINT64 },
100 { "cache_size_bytes", KSTAT_DATA_UINT64 },
101 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
102 { "cache_target_bytes", KSTAT_DATA_UINT64 },
103 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
104 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
105 { "cache_total_evicts", KSTAT_DATA_UINT64 },
106 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
107 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
108 { "hash_hits", KSTAT_DATA_UINT64 },
109 { "hash_misses", KSTAT_DATA_UINT64 },
110 { "hash_collisions", KSTAT_DATA_UINT64 },
111 { "hash_elements", KSTAT_DATA_UINT64 },
112 { "hash_elements_max", KSTAT_DATA_UINT64 },
113 { "hash_chains", KSTAT_DATA_UINT64 },
114 { "hash_chain_max", KSTAT_DATA_UINT64 },
115 { "hash_insert_race", KSTAT_DATA_UINT64 }
116 };
117
118 #define DBUF_STAT_INCR(stat, val) \
119 atomic_add_64(&dbuf_stats.stat.value.ui64, (val));
120 #define DBUF_STAT_DECR(stat, val) \
121 DBUF_STAT_INCR(stat, -(val));
122 #define DBUF_STAT_BUMP(stat) \
123 DBUF_STAT_INCR(stat, 1);
124 #define DBUF_STAT_BUMPDOWN(stat) \
125 DBUF_STAT_INCR(stat, -1);
126 #define DBUF_STAT_MAX(stat, v) { \
127 uint64_t _m; \
128 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
129 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
130 continue; \
131 }
132
133 struct dbuf_hold_impl_data {
134 /* Function arguments */
135 dnode_t *dh_dn;
136 uint8_t dh_level;
137 uint64_t dh_blkid;
138 boolean_t dh_fail_sparse;
139 boolean_t dh_fail_uncached;
140 void *dh_tag;
141 dmu_buf_impl_t **dh_dbp;
142 /* Local variables */
143 dmu_buf_impl_t *dh_db;
144 dmu_buf_impl_t *dh_parent;
145 blkptr_t *dh_bp;
146 int dh_err;
147 dbuf_dirty_record_t *dh_dr;
148 int dh_depth;
149 };
150
151 static void __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
152 dnode_t *dn, uint8_t level, uint64_t blkid, boolean_t fail_sparse,
153 boolean_t fail_uncached,
154 void *tag, dmu_buf_impl_t **dbp, int depth);
155 static int __dbuf_hold_impl(struct dbuf_hold_impl_data *dh);
156
157 uint_t zfs_dbuf_evict_key;
158
159 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
160 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
161
162 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
163 dmu_buf_evict_func_t *evict_func_sync,
164 dmu_buf_evict_func_t *evict_func_async,
165 dmu_buf_t **clear_on_evict_dbufp);
166
167 /*
168 * Global data structures and functions for the dbuf cache.
169 */
170 static kmem_cache_t *dbuf_kmem_cache;
171 static taskq_t *dbu_evict_taskq;
172
173 static kthread_t *dbuf_cache_evict_thread;
174 static kmutex_t dbuf_evict_lock;
175 static kcondvar_t dbuf_evict_cv;
176 static boolean_t dbuf_evict_thread_exit;
177
178 /*
179 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
180 * are not currently held but have been recently released. These dbufs
181 * are not eligible for arc eviction until they are aged out of the cache.
182 * Dbufs are added to the dbuf cache once the last hold is released. If a
183 * dbuf is later accessed and still exists in the dbuf cache, then it will
184 * be removed from the cache and later re-added to the head of the cache.
185 * Dbufs that are aged out of the cache will be immediately destroyed and
186 * become eligible for arc eviction.
187 */
188 static multilist_t *dbuf_cache;
189 static refcount_t dbuf_cache_size;
190 unsigned long dbuf_cache_max_bytes = 0;
191
192 /* Set the default size of the dbuf cache to log2 fraction of arc size. */
193 int dbuf_cache_shift = 5;
194
195 /*
196 * The dbuf cache uses a three-stage eviction policy:
197 * - A low water marker designates when the dbuf eviction thread
198 * should stop evicting from the dbuf cache.
199 * - When we reach the maximum size (aka mid water mark), we
200 * signal the eviction thread to run.
201 * - The high water mark indicates when the eviction thread
202 * is unable to keep up with the incoming load and eviction must
203 * happen in the context of the calling thread.
204 *
205 * The dbuf cache:
206 * (max size)
207 * low water mid water hi water
208 * +----------------------------------------+----------+----------+
209 * | | | |
210 * | | | |
211 * | | | |
212 * | | | |
213 * +----------------------------------------+----------+----------+
214 * stop signal evict
215 * evicting eviction directly
216 * thread
217 *
218 * The high and low water marks indicate the operating range for the eviction
219 * thread. The low water mark is, by default, 90% of the total size of the
220 * cache and the high water mark is at 110% (both of these percentages can be
221 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
222 * respectively). The eviction thread will try to ensure that the cache remains
223 * within this range by waking up every second and checking if the cache is
224 * above the low water mark. The thread can also be woken up by callers adding
225 * elements into the cache if the cache is larger than the mid water (i.e max
226 * cache size). Once the eviction thread is woken up and eviction is required,
227 * it will continue evicting buffers until it's able to reduce the cache size
228 * to the low water mark. If the cache size continues to grow and hits the high
229 * water mark, then callers adding elements to the cache will begin to evict
230 * directly from the cache until the cache is no longer above the high water
231 * mark.
232 */
233
234 /*
235 * The percentage above and below the maximum cache size.
236 */
237 uint_t dbuf_cache_hiwater_pct = 10;
238 uint_t dbuf_cache_lowater_pct = 10;
239
240 /* ARGSUSED */
241 static int
242 dbuf_cons(void *vdb, void *unused, int kmflag)
243 {
244 dmu_buf_impl_t *db = vdb;
245 bzero(db, sizeof (dmu_buf_impl_t));
246
247 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
248 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
249 multilist_link_init(&db->db_cache_link);
250 refcount_create(&db->db_holds);
251
252 return (0);
253 }
254
255 /* ARGSUSED */
256 static void
257 dbuf_dest(void *vdb, void *unused)
258 {
259 dmu_buf_impl_t *db = vdb;
260 mutex_destroy(&db->db_mtx);
261 cv_destroy(&db->db_changed);
262 ASSERT(!multilist_link_active(&db->db_cache_link));
263 refcount_destroy(&db->db_holds);
264 }
265
266 /*
267 * dbuf hash table routines
268 */
269 static dbuf_hash_table_t dbuf_hash_table;
270
271 static uint64_t dbuf_hash_count;
272
273 static uint64_t
274 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
275 {
276 uintptr_t osv = (uintptr_t)os;
277 uint64_t crc = -1ULL;
278
279 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
280 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
281 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
282 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
283 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
284 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
285 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
286
287 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
288
289 return (crc);
290 }
291
292 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
293 ((dbuf)->db.db_object == (obj) && \
294 (dbuf)->db_objset == (os) && \
295 (dbuf)->db_level == (level) && \
296 (dbuf)->db_blkid == (blkid))
297
298 dmu_buf_impl_t *
299 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
300 {
301 dbuf_hash_table_t *h = &dbuf_hash_table;
302 uint64_t hv;
303 uint64_t idx;
304 dmu_buf_impl_t *db;
305
306 hv = dbuf_hash(os, obj, level, blkid);
307 idx = hv & h->hash_table_mask;
308
309 mutex_enter(DBUF_HASH_MUTEX(h, idx));
310 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
311 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
312 mutex_enter(&db->db_mtx);
313 if (db->db_state != DB_EVICTING) {
314 mutex_exit(DBUF_HASH_MUTEX(h, idx));
315 return (db);
316 }
317 mutex_exit(&db->db_mtx);
318 }
319 }
320 mutex_exit(DBUF_HASH_MUTEX(h, idx));
321 return (NULL);
322 }
323
324 static dmu_buf_impl_t *
325 dbuf_find_bonus(objset_t *os, uint64_t object)
326 {
327 dnode_t *dn;
328 dmu_buf_impl_t *db = NULL;
329
330 if (dnode_hold(os, object, FTAG, &dn) == 0) {
331 rw_enter(&dn->dn_struct_rwlock, RW_READER);
332 if (dn->dn_bonus != NULL) {
333 db = dn->dn_bonus;
334 mutex_enter(&db->db_mtx);
335 }
336 rw_exit(&dn->dn_struct_rwlock);
337 dnode_rele(dn, FTAG);
338 }
339 return (db);
340 }
341
342 /*
343 * Insert an entry into the hash table. If there is already an element
344 * equal to elem in the hash table, then the already existing element
345 * will be returned and the new element will not be inserted.
346 * Otherwise returns NULL.
347 */
348 static dmu_buf_impl_t *
349 dbuf_hash_insert(dmu_buf_impl_t *db)
350 {
351 dbuf_hash_table_t *h = &dbuf_hash_table;
352 objset_t *os = db->db_objset;
353 uint64_t obj = db->db.db_object;
354 int level = db->db_level;
355 uint64_t blkid, hv, idx;
356 dmu_buf_impl_t *dbf;
357 uint32_t i;
358
359 blkid = db->db_blkid;
360 hv = dbuf_hash(os, obj, level, blkid);
361 idx = hv & h->hash_table_mask;
362
363 mutex_enter(DBUF_HASH_MUTEX(h, idx));
364 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
365 dbf = dbf->db_hash_next, i++) {
366 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
367 mutex_enter(&dbf->db_mtx);
368 if (dbf->db_state != DB_EVICTING) {
369 mutex_exit(DBUF_HASH_MUTEX(h, idx));
370 return (dbf);
371 }
372 mutex_exit(&dbf->db_mtx);
373 }
374 }
375
376 if (i > 0) {
377 DBUF_STAT_BUMP(hash_collisions);
378 if (i == 1)
379 DBUF_STAT_BUMP(hash_chains);
380
381 DBUF_STAT_MAX(hash_chain_max, i);
382 }
383
384 mutex_enter(&db->db_mtx);
385 db->db_hash_next = h->hash_table[idx];
386 h->hash_table[idx] = db;
387 mutex_exit(DBUF_HASH_MUTEX(h, idx));
388 atomic_inc_64(&dbuf_hash_count);
389 DBUF_STAT_MAX(hash_elements_max, dbuf_hash_count);
390
391 return (NULL);
392 }
393
394 /*
395 * Remove an entry from the hash table. It must be in the EVICTING state.
396 */
397 static void
398 dbuf_hash_remove(dmu_buf_impl_t *db)
399 {
400 dbuf_hash_table_t *h = &dbuf_hash_table;
401 uint64_t hv, idx;
402 dmu_buf_impl_t *dbf, **dbp;
403
404 hv = dbuf_hash(db->db_objset, db->db.db_object,
405 db->db_level, db->db_blkid);
406 idx = hv & h->hash_table_mask;
407
408 /*
409 * We mustn't hold db_mtx to maintain lock ordering:
410 * DBUF_HASH_MUTEX > db_mtx.
411 */
412 ASSERT(refcount_is_zero(&db->db_holds));
413 ASSERT(db->db_state == DB_EVICTING);
414 ASSERT(!MUTEX_HELD(&db->db_mtx));
415
416 mutex_enter(DBUF_HASH_MUTEX(h, idx));
417 dbp = &h->hash_table[idx];
418 while ((dbf = *dbp) != db) {
419 dbp = &dbf->db_hash_next;
420 ASSERT(dbf != NULL);
421 }
422 *dbp = db->db_hash_next;
423 db->db_hash_next = NULL;
424 if (h->hash_table[idx] &&
425 h->hash_table[idx]->db_hash_next == NULL)
426 DBUF_STAT_BUMPDOWN(hash_chains);
427 mutex_exit(DBUF_HASH_MUTEX(h, idx));
428 atomic_dec_64(&dbuf_hash_count);
429 }
430
431 typedef enum {
432 DBVU_EVICTING,
433 DBVU_NOT_EVICTING
434 } dbvu_verify_type_t;
435
436 static void
437 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
438 {
439 #ifdef ZFS_DEBUG
440 int64_t holds;
441
442 if (db->db_user == NULL)
443 return;
444
445 /* Only data blocks support the attachment of user data. */
446 ASSERT(db->db_level == 0);
447
448 /* Clients must resolve a dbuf before attaching user data. */
449 ASSERT(db->db.db_data != NULL);
450 ASSERT3U(db->db_state, ==, DB_CACHED);
451
452 holds = refcount_count(&db->db_holds);
453 if (verify_type == DBVU_EVICTING) {
454 /*
455 * Immediate eviction occurs when holds == dirtycnt.
456 * For normal eviction buffers, holds is zero on
457 * eviction, except when dbuf_fix_old_data() calls
458 * dbuf_clear_data(). However, the hold count can grow
459 * during eviction even though db_mtx is held (see
460 * dmu_bonus_hold() for an example), so we can only
461 * test the generic invariant that holds >= dirtycnt.
462 */
463 ASSERT3U(holds, >=, db->db_dirtycnt);
464 } else {
465 if (db->db_user_immediate_evict == TRUE)
466 ASSERT3U(holds, >=, db->db_dirtycnt);
467 else
468 ASSERT3U(holds, >, 0);
469 }
470 #endif
471 }
472
473 static void
474 dbuf_evict_user(dmu_buf_impl_t *db)
475 {
476 dmu_buf_user_t *dbu = db->db_user;
477
478 ASSERT(MUTEX_HELD(&db->db_mtx));
479
480 if (dbu == NULL)
481 return;
482
483 dbuf_verify_user(db, DBVU_EVICTING);
484 db->db_user = NULL;
485
486 #ifdef ZFS_DEBUG
487 if (dbu->dbu_clear_on_evict_dbufp != NULL)
488 *dbu->dbu_clear_on_evict_dbufp = NULL;
489 #endif
490
491 /*
492 * There are two eviction callbacks - one that we call synchronously
493 * and one that we invoke via a taskq. The async one is useful for
494 * avoiding lock order reversals and limiting stack depth.
495 *
496 * Note that if we have a sync callback but no async callback,
497 * it's likely that the sync callback will free the structure
498 * containing the dbu. In that case we need to take care to not
499 * dereference dbu after calling the sync evict func.
500 */
501 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
502
503 if (dbu->dbu_evict_func_sync != NULL)
504 dbu->dbu_evict_func_sync(dbu);
505
506 if (has_async) {
507 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
508 dbu, 0, &dbu->dbu_tqent);
509 }
510 }
511
512 boolean_t
513 dbuf_is_metadata(dmu_buf_impl_t *db)
514 {
515 /*
516 * Consider indirect blocks and spill blocks to be meta data.
517 */
518 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
519 return (B_TRUE);
520 } else {
521 boolean_t is_metadata;
522
523 DB_DNODE_ENTER(db);
524 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
525 DB_DNODE_EXIT(db);
526
527 return (is_metadata);
528 }
529 }
530
531
532 /*
533 * This function *must* return indices evenly distributed between all
534 * sublists of the multilist. This is needed due to how the dbuf eviction
535 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
536 * distributed between all sublists and uses this assumption when
537 * deciding which sublist to evict from and how much to evict from it.
538 */
539 unsigned int
540 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
541 {
542 dmu_buf_impl_t *db = obj;
543
544 /*
545 * The assumption here, is the hash value for a given
546 * dmu_buf_impl_t will remain constant throughout it's lifetime
547 * (i.e. it's objset, object, level and blkid fields don't change).
548 * Thus, we don't need to store the dbuf's sublist index
549 * on insertion, as this index can be recalculated on removal.
550 *
551 * Also, the low order bits of the hash value are thought to be
552 * distributed evenly. Otherwise, in the case that the multilist
553 * has a power of two number of sublists, each sublists' usage
554 * would not be evenly distributed.
555 */
556 return (dbuf_hash(db->db_objset, db->db.db_object,
557 db->db_level, db->db_blkid) %
558 multilist_get_num_sublists(ml));
559 }
560
561 static inline unsigned long
562 dbuf_cache_target_bytes(void)
563 {
564 return MIN(dbuf_cache_max_bytes,
565 arc_target_bytes() >> dbuf_cache_shift);
566 }
567
568 static inline uint64_t
569 dbuf_cache_hiwater_bytes(void)
570 {
571 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
572 return (dbuf_cache_target +
573 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
574 }
575
576 static inline uint64_t
577 dbuf_cache_lowater_bytes(void)
578 {
579 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
580 return (dbuf_cache_target -
581 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
582 }
583
584 static inline boolean_t
585 dbuf_cache_above_hiwater(void)
586 {
587 return (refcount_count(&dbuf_cache_size) > dbuf_cache_hiwater_bytes());
588 }
589
590 static inline boolean_t
591 dbuf_cache_above_lowater(void)
592 {
593 return (refcount_count(&dbuf_cache_size) > dbuf_cache_lowater_bytes());
594 }
595
596 /*
597 * Evict the oldest eligible dbuf from the dbuf cache.
598 */
599 static void
600 dbuf_evict_one(void)
601 {
602 int idx = multilist_get_random_index(dbuf_cache);
603 multilist_sublist_t *mls = multilist_sublist_lock(dbuf_cache, idx);
604
605 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
606
607 /*
608 * Set the thread's tsd to indicate that it's processing evictions.
609 * Once a thread stops evicting from the dbuf cache it will
610 * reset its tsd to NULL.
611 */
612 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
613 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
614
615 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
616 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
617 db = multilist_sublist_prev(mls, db);
618 }
619
620 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
621 multilist_sublist_t *, mls);
622
623 if (db != NULL) {
624 multilist_sublist_remove(mls, db);
625 multilist_sublist_unlock(mls);
626 (void) refcount_remove_many(&dbuf_cache_size,
627 db->db.db_size, db);
628 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
629 DBUF_STAT_BUMPDOWN(cache_count);
630 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
631 db->db.db_size);
632 dbuf_destroy(db);
633 DBUF_STAT_MAX(cache_size_bytes_max,
634 refcount_count(&dbuf_cache_size));
635 DBUF_STAT_BUMP(cache_total_evicts);
636 } else {
637 multilist_sublist_unlock(mls);
638 }
639 (void) tsd_set(zfs_dbuf_evict_key, NULL);
640 }
641
642 /*
643 * The dbuf evict thread is responsible for aging out dbufs from the
644 * cache. Once the cache has reached it's maximum size, dbufs are removed
645 * and destroyed. The eviction thread will continue running until the size
646 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
647 * out of the cache it is destroyed and becomes eligible for arc eviction.
648 */
649 /* ARGSUSED */
650 static void
651 dbuf_evict_thread(void *unused)
652 {
653 callb_cpr_t cpr;
654
655 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
656
657 mutex_enter(&dbuf_evict_lock);
658 while (!dbuf_evict_thread_exit) {
659 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
660 CALLB_CPR_SAFE_BEGIN(&cpr);
661 (void) cv_timedwait_sig_hires(&dbuf_evict_cv,
662 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
663 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
664 }
665 mutex_exit(&dbuf_evict_lock);
666
667 /*
668 * Keep evicting as long as we're above the low water mark
669 * for the cache. We do this without holding the locks to
670 * minimize lock contention.
671 */
672 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
673 dbuf_evict_one();
674 }
675
676 mutex_enter(&dbuf_evict_lock);
677 }
678
679 dbuf_evict_thread_exit = B_FALSE;
680 cv_broadcast(&dbuf_evict_cv);
681 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
682 thread_exit();
683 }
684
685 /*
686 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
687 * If the dbuf cache is at its high water mark, then evict a dbuf from the
688 * dbuf cache using the callers context.
689 */
690 static void
691 dbuf_evict_notify(void)
692 {
693
694 /*
695 * We use thread specific data to track when a thread has
696 * started processing evictions. This allows us to avoid deeply
697 * nested stacks that would have a call flow similar to this:
698 *
699 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
700 * ^ |
701 * | |
702 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
703 *
704 * The dbuf_eviction_thread will always have its tsd set until
705 * that thread exits. All other threads will only set their tsd
706 * if they are participating in the eviction process. This only
707 * happens if the eviction thread is unable to process evictions
708 * fast enough. To keep the dbuf cache size in check, other threads
709 * can evict from the dbuf cache directly. Those threads will set
710 * their tsd values so that we ensure that they only evict one dbuf
711 * from the dbuf cache.
712 */
713 if (tsd_get(zfs_dbuf_evict_key) != NULL)
714 return;
715
716 /*
717 * We check if we should evict without holding the dbuf_evict_lock,
718 * because it's OK to occasionally make the wrong decision here,
719 * and grabbing the lock results in massive lock contention.
720 */
721 if (refcount_count(&dbuf_cache_size) > dbuf_cache_target_bytes()) {
722 if (dbuf_cache_above_hiwater())
723 dbuf_evict_one();
724 cv_signal(&dbuf_evict_cv);
725 }
726 }
727
728 static int
729 dbuf_kstat_update(kstat_t *ksp, int rw)
730 {
731 dbuf_stats_t *ds = ksp->ks_data;
732
733 if (rw == KSTAT_WRITE) {
734 return (SET_ERROR(EACCES));
735 } else {
736 ds->cache_size_bytes.value.ui64 =
737 refcount_count(&dbuf_cache_size);
738 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
739 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
740 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
741 ds->hash_elements.value.ui64 = dbuf_hash_count;
742 }
743
744 return (0);
745 }
746
747 void
748 dbuf_init(void)
749 {
750 uint64_t hsize = 1ULL << 16;
751 dbuf_hash_table_t *h = &dbuf_hash_table;
752 int i;
753
754 /*
755 * The hash table is big enough to fill all of physical memory
756 * with an average block size of zfs_arc_average_blocksize (default 8K).
757 * By default, the table will take up
758 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
759 */
760 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
761 hsize <<= 1;
762
763 retry:
764 h->hash_table_mask = hsize - 1;
765 #if defined(_KERNEL) && defined(HAVE_SPL)
766 /*
767 * Large allocations which do not require contiguous pages
768 * should be using vmem_alloc() in the linux kernel
769 */
770 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
771 #else
772 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
773 #endif
774 if (h->hash_table == NULL) {
775 /* XXX - we should really return an error instead of assert */
776 ASSERT(hsize > (1ULL << 10));
777 hsize >>= 1;
778 goto retry;
779 }
780
781 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
782 sizeof (dmu_buf_impl_t),
783 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
784
785 for (i = 0; i < DBUF_MUTEXES; i++)
786 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
787
788 dbuf_stats_init(h);
789
790 /*
791 * Setup the parameters for the dbuf cache. We set the size of the
792 * dbuf cache to 1/32nd (default) of the target size of the ARC. If
793 * the value has been specified as a module option and it's not
794 * greater than the target size of the ARC, then we honor that value.
795 */
796 if (dbuf_cache_max_bytes == 0 ||
797 dbuf_cache_max_bytes >= arc_target_bytes()) {
798 dbuf_cache_max_bytes = arc_target_bytes() >> dbuf_cache_shift;
799 }
800
801 /*
802 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
803 * configuration is not required.
804 */
805 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
806
807 dbuf_cache = multilist_create(sizeof (dmu_buf_impl_t),
808 offsetof(dmu_buf_impl_t, db_cache_link),
809 dbuf_cache_multilist_index_func);
810 refcount_create(&dbuf_cache_size);
811
812 tsd_create(&zfs_dbuf_evict_key, NULL);
813 dbuf_evict_thread_exit = B_FALSE;
814 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
815 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
816 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
817 NULL, 0, &p0, TS_RUN, minclsyspri);
818
819 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
820 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
821 KSTAT_FLAG_VIRTUAL);
822 if (dbuf_ksp != NULL) {
823 dbuf_ksp->ks_data = &dbuf_stats;
824 dbuf_ksp->ks_update = dbuf_kstat_update;
825 kstat_install(dbuf_ksp);
826
827 for (i = 0; i < DN_MAX_LEVELS; i++) {
828 snprintf(dbuf_stats.cache_levels[i].name,
829 KSTAT_STRLEN, "cache_level_%d", i);
830 dbuf_stats.cache_levels[i].data_type =
831 KSTAT_DATA_UINT64;
832 snprintf(dbuf_stats.cache_levels_bytes[i].name,
833 KSTAT_STRLEN, "cache_level_%d_bytes", i);
834 dbuf_stats.cache_levels_bytes[i].data_type =
835 KSTAT_DATA_UINT64;
836 }
837 }
838 }
839
840 void
841 dbuf_fini(void)
842 {
843 dbuf_hash_table_t *h = &dbuf_hash_table;
844 int i;
845
846 dbuf_stats_destroy();
847
848 for (i = 0; i < DBUF_MUTEXES; i++)
849 mutex_destroy(&h->hash_mutexes[i]);
850 #if defined(_KERNEL) && defined(HAVE_SPL)
851 /*
852 * Large allocations which do not require contiguous pages
853 * should be using vmem_free() in the linux kernel
854 */
855 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
856 #else
857 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
858 #endif
859 kmem_cache_destroy(dbuf_kmem_cache);
860 taskq_destroy(dbu_evict_taskq);
861
862 mutex_enter(&dbuf_evict_lock);
863 dbuf_evict_thread_exit = B_TRUE;
864 while (dbuf_evict_thread_exit) {
865 cv_signal(&dbuf_evict_cv);
866 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
867 }
868 mutex_exit(&dbuf_evict_lock);
869 tsd_destroy(&zfs_dbuf_evict_key);
870
871 mutex_destroy(&dbuf_evict_lock);
872 cv_destroy(&dbuf_evict_cv);
873
874 refcount_destroy(&dbuf_cache_size);
875 multilist_destroy(dbuf_cache);
876
877 if (dbuf_ksp != NULL) {
878 kstat_delete(dbuf_ksp);
879 dbuf_ksp = NULL;
880 }
881 }
882
883 /*
884 * Other stuff.
885 */
886
887 #ifdef ZFS_DEBUG
888 static void
889 dbuf_verify(dmu_buf_impl_t *db)
890 {
891 dnode_t *dn;
892 dbuf_dirty_record_t *dr;
893
894 ASSERT(MUTEX_HELD(&db->db_mtx));
895
896 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
897 return;
898
899 ASSERT(db->db_objset != NULL);
900 DB_DNODE_ENTER(db);
901 dn = DB_DNODE(db);
902 if (dn == NULL) {
903 ASSERT(db->db_parent == NULL);
904 ASSERT(db->db_blkptr == NULL);
905 } else {
906 ASSERT3U(db->db.db_object, ==, dn->dn_object);
907 ASSERT3P(db->db_objset, ==, dn->dn_objset);
908 ASSERT3U(db->db_level, <, dn->dn_nlevels);
909 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
910 db->db_blkid == DMU_SPILL_BLKID ||
911 !avl_is_empty(&dn->dn_dbufs));
912 }
913 if (db->db_blkid == DMU_BONUS_BLKID) {
914 ASSERT(dn != NULL);
915 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
916 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
917 } else if (db->db_blkid == DMU_SPILL_BLKID) {
918 ASSERT(dn != NULL);
919 ASSERT0(db->db.db_offset);
920 } else {
921 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
922 }
923
924 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
925 ASSERT(dr->dr_dbuf == db);
926
927 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
928 ASSERT(dr->dr_dbuf == db);
929
930 /*
931 * We can't assert that db_size matches dn_datablksz because it
932 * can be momentarily different when another thread is doing
933 * dnode_set_blksz().
934 */
935 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
936 dr = db->db_data_pending;
937 /*
938 * It should only be modified in syncing context, so
939 * make sure we only have one copy of the data.
940 */
941 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
942 }
943
944 /* verify db->db_blkptr */
945 if (db->db_blkptr) {
946 if (db->db_parent == dn->dn_dbuf) {
947 /* db is pointed to by the dnode */
948 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
949 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
950 ASSERT(db->db_parent == NULL);
951 else
952 ASSERT(db->db_parent != NULL);
953 if (db->db_blkid != DMU_SPILL_BLKID)
954 ASSERT3P(db->db_blkptr, ==,
955 &dn->dn_phys->dn_blkptr[db->db_blkid]);
956 } else {
957 /* db is pointed to by an indirect block */
958 ASSERTV(int epb = db->db_parent->db.db_size >>
959 SPA_BLKPTRSHIFT);
960 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
961 ASSERT3U(db->db_parent->db.db_object, ==,
962 db->db.db_object);
963 /*
964 * dnode_grow_indblksz() can make this fail if we don't
965 * have the struct_rwlock. XXX indblksz no longer
966 * grows. safe to do this now?
967 */
968 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
969 ASSERT3P(db->db_blkptr, ==,
970 ((blkptr_t *)db->db_parent->db.db_data +
971 db->db_blkid % epb));
972 }
973 }
974 }
975 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
976 (db->db_buf == NULL || db->db_buf->b_data) &&
977 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
978 db->db_state != DB_FILL && !dn->dn_free_txg) {
979 /*
980 * If the blkptr isn't set but they have nonzero data,
981 * it had better be dirty, otherwise we'll lose that
982 * data when we evict this buffer.
983 *
984 * There is an exception to this rule for indirect blocks; in
985 * this case, if the indirect block is a hole, we fill in a few
986 * fields on each of the child blocks (importantly, birth time)
987 * to prevent hole birth times from being lost when you
988 * partially fill in a hole.
989 */
990 if (db->db_dirtycnt == 0) {
991 if (db->db_level == 0) {
992 uint64_t *buf = db->db.db_data;
993 int i;
994
995 for (i = 0; i < db->db.db_size >> 3; i++) {
996 ASSERT(buf[i] == 0);
997 }
998 } else {
999 blkptr_t *bps = db->db.db_data;
1000 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1001 db->db.db_size);
1002 /*
1003 * We want to verify that all the blkptrs in the
1004 * indirect block are holes, but we may have
1005 * automatically set up a few fields for them.
1006 * We iterate through each blkptr and verify
1007 * they only have those fields set.
1008 */
1009 for (int i = 0;
1010 i < db->db.db_size / sizeof (blkptr_t);
1011 i++) {
1012 blkptr_t *bp = &bps[i];
1013 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1014 &bp->blk_cksum));
1015 ASSERT(
1016 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1017 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1018 DVA_IS_EMPTY(&bp->blk_dva[2]));
1019 ASSERT0(bp->blk_fill);
1020 ASSERT0(bp->blk_pad[0]);
1021 ASSERT0(bp->blk_pad[1]);
1022 ASSERT(!BP_IS_EMBEDDED(bp));
1023 ASSERT(BP_IS_HOLE(bp));
1024 ASSERT0(bp->blk_phys_birth);
1025 }
1026 }
1027 }
1028 }
1029 DB_DNODE_EXIT(db);
1030 }
1031 #endif
1032
1033 static void
1034 dbuf_clear_data(dmu_buf_impl_t *db)
1035 {
1036 ASSERT(MUTEX_HELD(&db->db_mtx));
1037 dbuf_evict_user(db);
1038 ASSERT3P(db->db_buf, ==, NULL);
1039 db->db.db_data = NULL;
1040 if (db->db_state != DB_NOFILL)
1041 db->db_state = DB_UNCACHED;
1042 }
1043
1044 static void
1045 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1046 {
1047 ASSERT(MUTEX_HELD(&db->db_mtx));
1048 ASSERT(buf != NULL);
1049
1050 db->db_buf = buf;
1051 ASSERT(buf->b_data != NULL);
1052 db->db.db_data = buf->b_data;
1053 }
1054
1055 /*
1056 * Loan out an arc_buf for read. Return the loaned arc_buf.
1057 */
1058 arc_buf_t *
1059 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1060 {
1061 arc_buf_t *abuf;
1062
1063 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1064 mutex_enter(&db->db_mtx);
1065 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
1066 int blksz = db->db.db_size;
1067 spa_t *spa = db->db_objset->os_spa;
1068
1069 mutex_exit(&db->db_mtx);
1070 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1071 bcopy(db->db.db_data, abuf->b_data, blksz);
1072 } else {
1073 abuf = db->db_buf;
1074 arc_loan_inuse_buf(abuf, db);
1075 db->db_buf = NULL;
1076 dbuf_clear_data(db);
1077 mutex_exit(&db->db_mtx);
1078 }
1079 return (abuf);
1080 }
1081
1082 /*
1083 * Calculate which level n block references the data at the level 0 offset
1084 * provided.
1085 */
1086 uint64_t
1087 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1088 {
1089 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1090 /*
1091 * The level n blkid is equal to the level 0 blkid divided by
1092 * the number of level 0s in a level n block.
1093 *
1094 * The level 0 blkid is offset >> datablkshift =
1095 * offset / 2^datablkshift.
1096 *
1097 * The number of level 0s in a level n is the number of block
1098 * pointers in an indirect block, raised to the power of level.
1099 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1100 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1101 *
1102 * Thus, the level n blkid is: offset /
1103 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
1104 * = offset / 2^(datablkshift + level *
1105 * (indblkshift - SPA_BLKPTRSHIFT))
1106 * = offset >> (datablkshift + level *
1107 * (indblkshift - SPA_BLKPTRSHIFT))
1108 */
1109
1110 const unsigned exp = dn->dn_datablkshift +
1111 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1112
1113 if (exp >= 8 * sizeof (offset)) {
1114 /* This only happens on the highest indirection level */
1115 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1116 return (0);
1117 }
1118
1119 ASSERT3U(exp, <, 8 * sizeof (offset));
1120
1121 return (offset >> exp);
1122 } else {
1123 ASSERT3U(offset, <, dn->dn_datablksz);
1124 return (0);
1125 }
1126 }
1127
1128 static void
1129 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1130 arc_buf_t *buf, void *vdb)
1131 {
1132 dmu_buf_impl_t *db = vdb;
1133
1134 mutex_enter(&db->db_mtx);
1135 ASSERT3U(db->db_state, ==, DB_READ);
1136 /*
1137 * All reads are synchronous, so we must have a hold on the dbuf
1138 */
1139 ASSERT(refcount_count(&db->db_holds) > 0);
1140 ASSERT(db->db_buf == NULL);
1141 ASSERT(db->db.db_data == NULL);
1142 if (db->db_level == 0 && db->db_freed_in_flight) {
1143 /* we were freed in flight; disregard any error */
1144 if (buf == NULL) {
1145 buf = arc_alloc_buf(db->db_objset->os_spa,
1146 db, DBUF_GET_BUFC_TYPE(db), db->db.db_size);
1147 }
1148 arc_release(buf, db);
1149 bzero(buf->b_data, db->db.db_size);
1150 arc_buf_freeze(buf);
1151 db->db_freed_in_flight = FALSE;
1152 dbuf_set_data(db, buf);
1153 db->db_state = DB_CACHED;
1154 } else if (buf != NULL) {
1155 dbuf_set_data(db, buf);
1156 db->db_state = DB_CACHED;
1157 } else {
1158 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1159 ASSERT3P(db->db_buf, ==, NULL);
1160 db->db_state = DB_UNCACHED;
1161 }
1162 cv_broadcast(&db->db_changed);
1163 dbuf_rele_and_unlock(db, NULL);
1164 }
1165
1166 static int
1167 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1168 {
1169 dnode_t *dn;
1170 zbookmark_phys_t zb;
1171 uint32_t aflags = ARC_FLAG_NOWAIT;
1172 int err, zio_flags = 0;
1173
1174 DB_DNODE_ENTER(db);
1175 dn = DB_DNODE(db);
1176 ASSERT(!refcount_is_zero(&db->db_holds));
1177 /* We need the struct_rwlock to prevent db_blkptr from changing. */
1178 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1179 ASSERT(MUTEX_HELD(&db->db_mtx));
1180 ASSERT(db->db_state == DB_UNCACHED);
1181 ASSERT(db->db_buf == NULL);
1182
1183 if (db->db_blkid == DMU_BONUS_BLKID) {
1184 /*
1185 * The bonus length stored in the dnode may be less than
1186 * the maximum available space in the bonus buffer.
1187 */
1188 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1189 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1190 arc_buf_t *dn_buf = (dn->dn_dbuf != NULL) ?
1191 dn->dn_dbuf->db_buf : NULL;
1192
1193 /* if the underlying dnode block is encrypted, decrypt it */
1194 if (dn_buf != NULL && dn->dn_objset->os_encrypted &&
1195 DMU_OT_IS_ENCRYPTED(dn->dn_bonustype) &&
1196 (flags & DB_RF_NO_DECRYPT) == 0 &&
1197 arc_is_encrypted(dn_buf)) {
1198 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1199 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1200 err = arc_untransform(dn_buf, dn->dn_objset->os_spa,
1201 &zb, B_TRUE);
1202 if (err != 0) {
1203 DB_DNODE_EXIT(db);
1204 mutex_exit(&db->db_mtx);
1205 return (err);
1206 }
1207 }
1208
1209 ASSERT3U(bonuslen, <=, db->db.db_size);
1210 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1211 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1212 if (bonuslen < max_bonuslen)
1213 bzero(db->db.db_data, max_bonuslen);
1214 if (bonuslen)
1215 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1216 DB_DNODE_EXIT(db);
1217 db->db_state = DB_CACHED;
1218 mutex_exit(&db->db_mtx);
1219 return (0);
1220 }
1221
1222 /*
1223 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1224 * processes the delete record and clears the bp while we are waiting
1225 * for the dn_mtx (resulting in a "no" from block_freed).
1226 */
1227 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1228 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1229 BP_IS_HOLE(db->db_blkptr)))) {
1230 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1231
1232 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1233 db->db.db_size));
1234 bzero(db->db.db_data, db->db.db_size);
1235
1236 if (db->db_blkptr != NULL && db->db_level > 0 &&
1237 BP_IS_HOLE(db->db_blkptr) &&
1238 db->db_blkptr->blk_birth != 0) {
1239 blkptr_t *bps = db->db.db_data;
1240 for (int i = 0; i < ((1 <<
1241 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1242 i++) {
1243 blkptr_t *bp = &bps[i];
1244 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1245 1 << dn->dn_indblkshift);
1246 BP_SET_LSIZE(bp,
1247 BP_GET_LEVEL(db->db_blkptr) == 1 ?
1248 dn->dn_datablksz :
1249 BP_GET_LSIZE(db->db_blkptr));
1250 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1251 BP_SET_LEVEL(bp,
1252 BP_GET_LEVEL(db->db_blkptr) - 1);
1253 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1254 }
1255 }
1256 DB_DNODE_EXIT(db);
1257 db->db_state = DB_CACHED;
1258 mutex_exit(&db->db_mtx);
1259 return (0);
1260 }
1261
1262 DB_DNODE_EXIT(db);
1263
1264 db->db_state = DB_READ;
1265 mutex_exit(&db->db_mtx);
1266
1267 if (DBUF_IS_L2CACHEABLE(db))
1268 aflags |= ARC_FLAG_L2CACHE;
1269
1270 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1271 db->db.db_object, db->db_level, db->db_blkid);
1272
1273 /*
1274 * All bps of an encrypted os should have the encryption bit set.
1275 * If this is not true it indicates tampering and we report an error.
1276 */
1277 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1278 spa_log_error(db->db_objset->os_spa, &zb);
1279 zfs_panic_recover("unencrypted block in encrypted "
1280 "object set %llu", dmu_objset_id(db->db_objset));
1281 return (SET_ERROR(EIO));
1282 }
1283
1284 dbuf_add_ref(db, NULL);
1285
1286 zio_flags = (flags & DB_RF_CANFAIL) ?
1287 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1288
1289 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1290 zio_flags |= ZIO_FLAG_RAW;
1291
1292 err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1293 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1294 &aflags, &zb);
1295
1296 return (err);
1297 }
1298
1299 /*
1300 * This is our just-in-time copy function. It makes a copy of buffers that
1301 * have been modified in a previous transaction group before we access them in
1302 * the current active group.
1303 *
1304 * This function is used in three places: when we are dirtying a buffer for the
1305 * first time in a txg, when we are freeing a range in a dnode that includes
1306 * this buffer, and when we are accessing a buffer which was received compressed
1307 * and later referenced in a WRITE_BYREF record.
1308 *
1309 * Note that when we are called from dbuf_free_range() we do not put a hold on
1310 * the buffer, we just traverse the active dbuf list for the dnode.
1311 */
1312 static void
1313 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1314 {
1315 dbuf_dirty_record_t *dr = db->db_last_dirty;
1316
1317 ASSERT(MUTEX_HELD(&db->db_mtx));
1318 ASSERT(db->db.db_data != NULL);
1319 ASSERT(db->db_level == 0);
1320 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1321
1322 if (dr == NULL ||
1323 (dr->dt.dl.dr_data !=
1324 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1325 return;
1326
1327 /*
1328 * If the last dirty record for this dbuf has not yet synced
1329 * and its referencing the dbuf data, either:
1330 * reset the reference to point to a new copy,
1331 * or (if there a no active holders)
1332 * just null out the current db_data pointer.
1333 */
1334 ASSERT3U(dr->dr_txg, >=, txg - 2);
1335 if (db->db_blkid == DMU_BONUS_BLKID) {
1336 dnode_t *dn = DB_DNODE(db);
1337 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1338 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1339 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1340 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1341 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1342 dnode_t *dn = DB_DNODE(db);
1343 int size = arc_buf_size(db->db_buf);
1344 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1345 spa_t *spa = db->db_objset->os_spa;
1346 enum zio_compress compress_type =
1347 arc_get_compression(db->db_buf);
1348
1349 if (arc_is_encrypted(db->db_buf)) {
1350 boolean_t byteorder;
1351 uint8_t salt[ZIO_DATA_SALT_LEN];
1352 uint8_t iv[ZIO_DATA_IV_LEN];
1353 uint8_t mac[ZIO_DATA_MAC_LEN];
1354
1355 arc_get_raw_params(db->db_buf, &byteorder, salt,
1356 iv, mac);
1357 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1358 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1359 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1360 compress_type);
1361 } else if (compress_type != ZIO_COMPRESS_OFF) {
1362 ASSERT3U(type, ==, ARC_BUFC_DATA);
1363 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1364 size, arc_buf_lsize(db->db_buf), compress_type);
1365 } else {
1366 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1367 }
1368 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1369 } else {
1370 db->db_buf = NULL;
1371 dbuf_clear_data(db);
1372 }
1373 }
1374
1375 int
1376 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1377 {
1378 int err = 0;
1379 boolean_t prefetch;
1380 dnode_t *dn;
1381
1382 /*
1383 * We don't have to hold the mutex to check db_state because it
1384 * can't be freed while we have a hold on the buffer.
1385 */
1386 ASSERT(!refcount_is_zero(&db->db_holds));
1387
1388 if (db->db_state == DB_NOFILL)
1389 return (SET_ERROR(EIO));
1390
1391 DB_DNODE_ENTER(db);
1392 dn = DB_DNODE(db);
1393 if ((flags & DB_RF_HAVESTRUCT) == 0)
1394 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1395
1396 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1397 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1398 DBUF_IS_CACHEABLE(db);
1399
1400 mutex_enter(&db->db_mtx);
1401 if (db->db_state == DB_CACHED) {
1402 spa_t *spa = dn->dn_objset->os_spa;
1403
1404 /*
1405 * If the arc buf is compressed or encrypted, we need to
1406 * untransform it to read the data. This could happen during
1407 * the "zfs receive" of a stream which is deduplicated and
1408 * either raw or compressed. We do not need to do this if the
1409 * caller wants raw encrypted data.
1410 */
1411 if (db->db_buf != NULL && (flags & DB_RF_NO_DECRYPT) == 0 &&
1412 (arc_is_encrypted(db->db_buf) ||
1413 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1414 zbookmark_phys_t zb;
1415
1416 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1417 db->db.db_object, db->db_level, db->db_blkid);
1418 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1419 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1420 dbuf_set_data(db, db->db_buf);
1421 }
1422 mutex_exit(&db->db_mtx);
1423 if (prefetch)
1424 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1425 if ((flags & DB_RF_HAVESTRUCT) == 0)
1426 rw_exit(&dn->dn_struct_rwlock);
1427 DB_DNODE_EXIT(db);
1428 DBUF_STAT_BUMP(hash_hits);
1429 } else if (db->db_state == DB_UNCACHED) {
1430 spa_t *spa = dn->dn_objset->os_spa;
1431 boolean_t need_wait = B_FALSE;
1432
1433 if (zio == NULL &&
1434 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1435 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1436 need_wait = B_TRUE;
1437 }
1438 err = dbuf_read_impl(db, zio, flags);
1439
1440 /* dbuf_read_impl has dropped db_mtx for us */
1441
1442 if (!err && prefetch)
1443 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1444
1445 if ((flags & DB_RF_HAVESTRUCT) == 0)
1446 rw_exit(&dn->dn_struct_rwlock);
1447 DB_DNODE_EXIT(db);
1448 DBUF_STAT_BUMP(hash_misses);
1449
1450 if (!err && need_wait)
1451 err = zio_wait(zio);
1452 } else {
1453 /*
1454 * Another reader came in while the dbuf was in flight
1455 * between UNCACHED and CACHED. Either a writer will finish
1456 * writing the buffer (sending the dbuf to CACHED) or the
1457 * first reader's request will reach the read_done callback
1458 * and send the dbuf to CACHED. Otherwise, a failure
1459 * occurred and the dbuf went to UNCACHED.
1460 */
1461 mutex_exit(&db->db_mtx);
1462 if (prefetch)
1463 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1464 if ((flags & DB_RF_HAVESTRUCT) == 0)
1465 rw_exit(&dn->dn_struct_rwlock);
1466 DB_DNODE_EXIT(db);
1467 DBUF_STAT_BUMP(hash_misses);
1468
1469 /* Skip the wait per the caller's request. */
1470 mutex_enter(&db->db_mtx);
1471 if ((flags & DB_RF_NEVERWAIT) == 0) {
1472 while (db->db_state == DB_READ ||
1473 db->db_state == DB_FILL) {
1474 ASSERT(db->db_state == DB_READ ||
1475 (flags & DB_RF_HAVESTRUCT) == 0);
1476 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1477 db, zio_t *, zio);
1478 cv_wait(&db->db_changed, &db->db_mtx);
1479 }
1480 if (db->db_state == DB_UNCACHED)
1481 err = SET_ERROR(EIO);
1482 }
1483 mutex_exit(&db->db_mtx);
1484 }
1485
1486 return (err);
1487 }
1488
1489 static void
1490 dbuf_noread(dmu_buf_impl_t *db)
1491 {
1492 ASSERT(!refcount_is_zero(&db->db_holds));
1493 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1494 mutex_enter(&db->db_mtx);
1495 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1496 cv_wait(&db->db_changed, &db->db_mtx);
1497 if (db->db_state == DB_UNCACHED) {
1498 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1499 spa_t *spa = db->db_objset->os_spa;
1500
1501 ASSERT(db->db_buf == NULL);
1502 ASSERT(db->db.db_data == NULL);
1503 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1504 db->db_state = DB_FILL;
1505 } else if (db->db_state == DB_NOFILL) {
1506 dbuf_clear_data(db);
1507 } else {
1508 ASSERT3U(db->db_state, ==, DB_CACHED);
1509 }
1510 mutex_exit(&db->db_mtx);
1511 }
1512
1513 void
1514 dbuf_unoverride(dbuf_dirty_record_t *dr)
1515 {
1516 dmu_buf_impl_t *db = dr->dr_dbuf;
1517 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1518 uint64_t txg = dr->dr_txg;
1519
1520 ASSERT(MUTEX_HELD(&db->db_mtx));
1521 /*
1522 * This assert is valid because dmu_sync() expects to be called by
1523 * a zilog's get_data while holding a range lock. This call only
1524 * comes from dbuf_dirty() callers who must also hold a range lock.
1525 */
1526 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1527 ASSERT(db->db_level == 0);
1528
1529 if (db->db_blkid == DMU_BONUS_BLKID ||
1530 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1531 return;
1532
1533 ASSERT(db->db_data_pending != dr);
1534
1535 /* free this block */
1536 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1537 zio_free(db->db_objset->os_spa, txg, bp);
1538
1539 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1540 dr->dt.dl.dr_nopwrite = B_FALSE;
1541 dr->dt.dl.dr_raw = B_FALSE;
1542
1543 /*
1544 * Release the already-written buffer, so we leave it in
1545 * a consistent dirty state. Note that all callers are
1546 * modifying the buffer, so they will immediately do
1547 * another (redundant) arc_release(). Therefore, leave
1548 * the buf thawed to save the effort of freezing &
1549 * immediately re-thawing it.
1550 */
1551 arc_release(dr->dt.dl.dr_data, db);
1552 }
1553
1554 /*
1555 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1556 * data blocks in the free range, so that any future readers will find
1557 * empty blocks.
1558 */
1559 void
1560 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1561 dmu_tx_t *tx)
1562 {
1563 dmu_buf_impl_t *db_search;
1564 dmu_buf_impl_t *db, *db_next;
1565 uint64_t txg = tx->tx_txg;
1566 avl_index_t where;
1567
1568 if (end_blkid > dn->dn_maxblkid &&
1569 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1570 end_blkid = dn->dn_maxblkid;
1571 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1572
1573 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1574 db_search->db_level = 0;
1575 db_search->db_blkid = start_blkid;
1576 db_search->db_state = DB_SEARCH;
1577
1578 mutex_enter(&dn->dn_dbufs_mtx);
1579 db = avl_find(&dn->dn_dbufs, db_search, &where);
1580 ASSERT3P(db, ==, NULL);
1581
1582 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1583
1584 for (; db != NULL; db = db_next) {
1585 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1586 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1587
1588 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1589 break;
1590 }
1591 ASSERT3U(db->db_blkid, >=, start_blkid);
1592
1593 /* found a level 0 buffer in the range */
1594 mutex_enter(&db->db_mtx);
1595 if (dbuf_undirty(db, tx)) {
1596 /* mutex has been dropped and dbuf destroyed */
1597 continue;
1598 }
1599
1600 if (db->db_state == DB_UNCACHED ||
1601 db->db_state == DB_NOFILL ||
1602 db->db_state == DB_EVICTING) {
1603 ASSERT(db->db.db_data == NULL);
1604 mutex_exit(&db->db_mtx);
1605 continue;
1606 }
1607 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1608 /* will be handled in dbuf_read_done or dbuf_rele */
1609 db->db_freed_in_flight = TRUE;
1610 mutex_exit(&db->db_mtx);
1611 continue;
1612 }
1613 if (refcount_count(&db->db_holds) == 0) {
1614 ASSERT(db->db_buf);
1615 dbuf_destroy(db);
1616 continue;
1617 }
1618 /* The dbuf is referenced */
1619
1620 if (db->db_last_dirty != NULL) {
1621 dbuf_dirty_record_t *dr = db->db_last_dirty;
1622
1623 if (dr->dr_txg == txg) {
1624 /*
1625 * This buffer is "in-use", re-adjust the file
1626 * size to reflect that this buffer may
1627 * contain new data when we sync.
1628 */
1629 if (db->db_blkid != DMU_SPILL_BLKID &&
1630 db->db_blkid > dn->dn_maxblkid)
1631 dn->dn_maxblkid = db->db_blkid;
1632 dbuf_unoverride(dr);
1633 } else {
1634 /*
1635 * This dbuf is not dirty in the open context.
1636 * Either uncache it (if its not referenced in
1637 * the open context) or reset its contents to
1638 * empty.
1639 */
1640 dbuf_fix_old_data(db, txg);
1641 }
1642 }
1643 /* clear the contents if its cached */
1644 if (db->db_state == DB_CACHED) {
1645 ASSERT(db->db.db_data != NULL);
1646 arc_release(db->db_buf, db);
1647 bzero(db->db.db_data, db->db.db_size);
1648 arc_buf_freeze(db->db_buf);
1649 }
1650
1651 mutex_exit(&db->db_mtx);
1652 }
1653
1654 kmem_free(db_search, sizeof (dmu_buf_impl_t));
1655 mutex_exit(&dn->dn_dbufs_mtx);
1656 }
1657
1658 void
1659 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1660 {
1661 arc_buf_t *buf, *obuf;
1662 int osize = db->db.db_size;
1663 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1664 dnode_t *dn;
1665
1666 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1667
1668 DB_DNODE_ENTER(db);
1669 dn = DB_DNODE(db);
1670
1671 /* XXX does *this* func really need the lock? */
1672 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1673
1674 /*
1675 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1676 * is OK, because there can be no other references to the db
1677 * when we are changing its size, so no concurrent DB_FILL can
1678 * be happening.
1679 */
1680 /*
1681 * XXX we should be doing a dbuf_read, checking the return
1682 * value and returning that up to our callers
1683 */
1684 dmu_buf_will_dirty(&db->db, tx);
1685
1686 /* create the data buffer for the new block */
1687 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1688
1689 /* copy old block data to the new block */
1690 obuf = db->db_buf;
1691 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1692 /* zero the remainder */
1693 if (size > osize)
1694 bzero((uint8_t *)buf->b_data + osize, size - osize);
1695
1696 mutex_enter(&db->db_mtx);
1697 dbuf_set_data(db, buf);
1698 arc_buf_destroy(obuf, db);
1699 db->db.db_size = size;
1700
1701 if (db->db_level == 0) {
1702 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1703 db->db_last_dirty->dt.dl.dr_data = buf;
1704 }
1705 mutex_exit(&db->db_mtx);
1706
1707 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1708 DB_DNODE_EXIT(db);
1709 }
1710
1711 void
1712 dbuf_release_bp(dmu_buf_impl_t *db)
1713 {
1714 ASSERTV(objset_t *os = db->db_objset);
1715
1716 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1717 ASSERT(arc_released(os->os_phys_buf) ||
1718 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1719 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1720
1721 (void) arc_release(db->db_buf, db);
1722 }
1723
1724 /*
1725 * We already have a dirty record for this TXG, and we are being
1726 * dirtied again.
1727 */
1728 static void
1729 dbuf_redirty(dbuf_dirty_record_t *dr)
1730 {
1731 dmu_buf_impl_t *db = dr->dr_dbuf;
1732
1733 ASSERT(MUTEX_HELD(&db->db_mtx));
1734
1735 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1736 /*
1737 * If this buffer has already been written out,
1738 * we now need to reset its state.
1739 */
1740 dbuf_unoverride(dr);
1741 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1742 db->db_state != DB_NOFILL) {
1743 /* Already released on initial dirty, so just thaw. */
1744 ASSERT(arc_released(db->db_buf));
1745 arc_buf_thaw(db->db_buf);
1746 }
1747 }
1748 }
1749
1750 dbuf_dirty_record_t *
1751 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1752 {
1753 dnode_t *dn;
1754 objset_t *os;
1755 dbuf_dirty_record_t **drp, *dr;
1756 int drop_struct_lock = FALSE;
1757 int txgoff = tx->tx_txg & TXG_MASK;
1758
1759 ASSERT(tx->tx_txg != 0);
1760 ASSERT(!refcount_is_zero(&db->db_holds));
1761 DMU_TX_DIRTY_BUF(tx, db);
1762
1763 DB_DNODE_ENTER(db);
1764 dn = DB_DNODE(db);
1765 /*
1766 * Shouldn't dirty a regular buffer in syncing context. Private
1767 * objects may be dirtied in syncing context, but only if they
1768 * were already pre-dirtied in open context.
1769 */
1770 #ifdef DEBUG
1771 if (dn->dn_objset->os_dsl_dataset != NULL) {
1772 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1773 RW_READER, FTAG);
1774 }
1775 ASSERT(!dmu_tx_is_syncing(tx) ||
1776 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1777 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1778 dn->dn_objset->os_dsl_dataset == NULL);
1779 if (dn->dn_objset->os_dsl_dataset != NULL)
1780 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1781 #endif
1782 /*
1783 * We make this assert for private objects as well, but after we
1784 * check if we're already dirty. They are allowed to re-dirty
1785 * in syncing context.
1786 */
1787 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1788 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1789 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1790
1791 mutex_enter(&db->db_mtx);
1792 /*
1793 * XXX make this true for indirects too? The problem is that
1794 * transactions created with dmu_tx_create_assigned() from
1795 * syncing context don't bother holding ahead.
1796 */
1797 ASSERT(db->db_level != 0 ||
1798 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1799 db->db_state == DB_NOFILL);
1800
1801 mutex_enter(&dn->dn_mtx);
1802 /*
1803 * Don't set dirtyctx to SYNC if we're just modifying this as we
1804 * initialize the objset.
1805 */
1806 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1807 if (dn->dn_objset->os_dsl_dataset != NULL) {
1808 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1809 RW_READER, FTAG);
1810 }
1811 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1812 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1813 DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1814 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1815 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1816 }
1817 if (dn->dn_objset->os_dsl_dataset != NULL) {
1818 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1819 FTAG);
1820 }
1821 }
1822
1823 if (tx->tx_txg > dn->dn_dirty_txg)
1824 dn->dn_dirty_txg = tx->tx_txg;
1825 mutex_exit(&dn->dn_mtx);
1826
1827 if (db->db_blkid == DMU_SPILL_BLKID)
1828 dn->dn_have_spill = B_TRUE;
1829
1830 /*
1831 * If this buffer is already dirty, we're done.
1832 */
1833 drp = &db->db_last_dirty;
1834 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1835 db->db.db_object == DMU_META_DNODE_OBJECT);
1836 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1837 drp = &dr->dr_next;
1838 if (dr && dr->dr_txg == tx->tx_txg) {
1839 DB_DNODE_EXIT(db);
1840
1841 dbuf_redirty(dr);
1842 mutex_exit(&db->db_mtx);
1843 return (dr);
1844 }
1845
1846 /*
1847 * Only valid if not already dirty.
1848 */
1849 ASSERT(dn->dn_object == 0 ||
1850 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1851 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1852
1853 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1854
1855 /*
1856 * We should only be dirtying in syncing context if it's the
1857 * mos or we're initializing the os or it's a special object.
1858 * However, we are allowed to dirty in syncing context provided
1859 * we already dirtied it in open context. Hence we must make
1860 * this assertion only if we're not already dirty.
1861 */
1862 os = dn->dn_objset;
1863 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1864 #ifdef DEBUG
1865 if (dn->dn_objset->os_dsl_dataset != NULL)
1866 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1867 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1868 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1869 if (dn->dn_objset->os_dsl_dataset != NULL)
1870 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1871 #endif
1872 ASSERT(db->db.db_size != 0);
1873
1874 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1875
1876 if (db->db_blkid != DMU_BONUS_BLKID) {
1877 dmu_objset_willuse_space(os, db->db.db_size, tx);
1878 }
1879
1880 /*
1881 * If this buffer is dirty in an old transaction group we need
1882 * to make a copy of it so that the changes we make in this
1883 * transaction group won't leak out when we sync the older txg.
1884 */
1885 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1886 list_link_init(&dr->dr_dirty_node);
1887 if (db->db_level == 0) {
1888 void *data_old = db->db_buf;
1889
1890 if (db->db_state != DB_NOFILL) {
1891 if (db->db_blkid == DMU_BONUS_BLKID) {
1892 dbuf_fix_old_data(db, tx->tx_txg);
1893 data_old = db->db.db_data;
1894 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1895 /*
1896 * Release the data buffer from the cache so
1897 * that we can modify it without impacting
1898 * possible other users of this cached data
1899 * block. Note that indirect blocks and
1900 * private objects are not released until the
1901 * syncing state (since they are only modified
1902 * then).
1903 */
1904 arc_release(db->db_buf, db);
1905 dbuf_fix_old_data(db, tx->tx_txg);
1906 data_old = db->db_buf;
1907 }
1908 ASSERT(data_old != NULL);
1909 }
1910 dr->dt.dl.dr_data = data_old;
1911 } else {
1912 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
1913 list_create(&dr->dt.di.dr_children,
1914 sizeof (dbuf_dirty_record_t),
1915 offsetof(dbuf_dirty_record_t, dr_dirty_node));
1916 }
1917 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1918 dr->dr_accounted = db->db.db_size;
1919 dr->dr_dbuf = db;
1920 dr->dr_txg = tx->tx_txg;
1921 dr->dr_next = *drp;
1922 *drp = dr;
1923
1924 /*
1925 * We could have been freed_in_flight between the dbuf_noread
1926 * and dbuf_dirty. We win, as though the dbuf_noread() had
1927 * happened after the free.
1928 */
1929 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1930 db->db_blkid != DMU_SPILL_BLKID) {
1931 mutex_enter(&dn->dn_mtx);
1932 if (dn->dn_free_ranges[txgoff] != NULL) {
1933 range_tree_clear(dn->dn_free_ranges[txgoff],
1934 db->db_blkid, 1);
1935 }
1936 mutex_exit(&dn->dn_mtx);
1937 db->db_freed_in_flight = FALSE;
1938 }
1939
1940 /*
1941 * This buffer is now part of this txg
1942 */
1943 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1944 db->db_dirtycnt += 1;
1945 ASSERT3U(db->db_dirtycnt, <=, 3);
1946
1947 mutex_exit(&db->db_mtx);
1948
1949 if (db->db_blkid == DMU_BONUS_BLKID ||
1950 db->db_blkid == DMU_SPILL_BLKID) {
1951 mutex_enter(&dn->dn_mtx);
1952 ASSERT(!list_link_active(&dr->dr_dirty_node));
1953 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1954 mutex_exit(&dn->dn_mtx);
1955 dnode_setdirty(dn, tx);
1956 DB_DNODE_EXIT(db);
1957 return (dr);
1958 }
1959
1960 /*
1961 * The dn_struct_rwlock prevents db_blkptr from changing
1962 * due to a write from syncing context completing
1963 * while we are running, so we want to acquire it before
1964 * looking at db_blkptr.
1965 */
1966 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1967 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1968 drop_struct_lock = TRUE;
1969 }
1970
1971 /*
1972 * We need to hold the dn_struct_rwlock to make this assertion,
1973 * because it protects dn_phys / dn_next_nlevels from changing.
1974 */
1975 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1976 dn->dn_phys->dn_nlevels > db->db_level ||
1977 dn->dn_next_nlevels[txgoff] > db->db_level ||
1978 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1979 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1980
1981 /*
1982 * If we are overwriting a dedup BP, then unless it is snapshotted,
1983 * when we get to syncing context we will need to decrement its
1984 * refcount in the DDT. Prefetch the relevant DDT block so that
1985 * syncing context won't have to wait for the i/o.
1986 */
1987 ddt_prefetch(os->os_spa, db->db_blkptr);
1988
1989 if (db->db_level == 0) {
1990 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1991 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1992 }
1993
1994 if (db->db_level+1 < dn->dn_nlevels) {
1995 dmu_buf_impl_t *parent = db->db_parent;
1996 dbuf_dirty_record_t *di;
1997 int parent_held = FALSE;
1998
1999 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2000 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2001
2002 parent = dbuf_hold_level(dn, db->db_level+1,
2003 db->db_blkid >> epbs, FTAG);
2004 ASSERT(parent != NULL);
2005 parent_held = TRUE;
2006 }
2007 if (drop_struct_lock)
2008 rw_exit(&dn->dn_struct_rwlock);
2009 ASSERT3U(db->db_level+1, ==, parent->db_level);
2010 di = dbuf_dirty(parent, tx);
2011 if (parent_held)
2012 dbuf_rele(parent, FTAG);
2013
2014 mutex_enter(&db->db_mtx);
2015 /*
2016 * Since we've dropped the mutex, it's possible that
2017 * dbuf_undirty() might have changed this out from under us.
2018 */
2019 if (db->db_last_dirty == dr ||
2020 dn->dn_object == DMU_META_DNODE_OBJECT) {
2021 mutex_enter(&di->dt.di.dr_mtx);
2022 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2023 ASSERT(!list_link_active(&dr->dr_dirty_node));
2024 list_insert_tail(&di->dt.di.dr_children, dr);
2025 mutex_exit(&di->dt.di.dr_mtx);
2026 dr->dr_parent = di;
2027 }
2028 mutex_exit(&db->db_mtx);
2029 } else {
2030 ASSERT(db->db_level+1 == dn->dn_nlevels);
2031 ASSERT(db->db_blkid < dn->dn_nblkptr);
2032 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2033 mutex_enter(&dn->dn_mtx);
2034 ASSERT(!list_link_active(&dr->dr_dirty_node));
2035 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2036 mutex_exit(&dn->dn_mtx);
2037 if (drop_struct_lock)
2038 rw_exit(&dn->dn_struct_rwlock);
2039 }
2040
2041 dnode_setdirty(dn, tx);
2042 DB_DNODE_EXIT(db);
2043 return (dr);
2044 }
2045
2046 /*
2047 * Undirty a buffer in the transaction group referenced by the given
2048 * transaction. Return whether this evicted the dbuf.
2049 */
2050 static boolean_t
2051 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2052 {
2053 dnode_t *dn;
2054 uint64_t txg = tx->tx_txg;
2055 dbuf_dirty_record_t *dr, **drp;
2056
2057 ASSERT(txg != 0);
2058
2059 /*
2060 * Due to our use of dn_nlevels below, this can only be called
2061 * in open context, unless we are operating on the MOS.
2062 * From syncing context, dn_nlevels may be different from the
2063 * dn_nlevels used when dbuf was dirtied.
2064 */
2065 ASSERT(db->db_objset ==
2066 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2067 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2068 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2069 ASSERT0(db->db_level);
2070 ASSERT(MUTEX_HELD(&db->db_mtx));
2071
2072 /*
2073 * If this buffer is not dirty, we're done.
2074 */
2075 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
2076 if (dr->dr_txg <= txg)
2077 break;
2078 if (dr == NULL || dr->dr_txg < txg)
2079 return (B_FALSE);
2080 ASSERT(dr->dr_txg == txg);
2081 ASSERT(dr->dr_dbuf == db);
2082
2083 DB_DNODE_ENTER(db);
2084 dn = DB_DNODE(db);
2085
2086 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2087
2088 ASSERT(db->db.db_size != 0);
2089
2090 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2091 dr->dr_accounted, txg);
2092
2093 *drp = dr->dr_next;
2094
2095 /*
2096 * Note that there are three places in dbuf_dirty()
2097 * where this dirty record may be put on a list.
2098 * Make sure to do a list_remove corresponding to
2099 * every one of those list_insert calls.
2100 */
2101 if (dr->dr_parent) {
2102 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2103 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2104 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2105 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2106 db->db_level + 1 == dn->dn_nlevels) {
2107 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2108 mutex_enter(&dn->dn_mtx);
2109 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2110 mutex_exit(&dn->dn_mtx);
2111 }
2112 DB_DNODE_EXIT(db);
2113
2114 if (db->db_state != DB_NOFILL) {
2115 dbuf_unoverride(dr);
2116
2117 ASSERT(db->db_buf != NULL);
2118 ASSERT(dr->dt.dl.dr_data != NULL);
2119 if (dr->dt.dl.dr_data != db->db_buf)
2120 arc_buf_destroy(dr->dt.dl.dr_data, db);
2121 }
2122
2123 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2124
2125 ASSERT(db->db_dirtycnt > 0);
2126 db->db_dirtycnt -= 1;
2127
2128 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2129 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2130 dbuf_destroy(db);
2131 return (B_TRUE);
2132 }
2133
2134 return (B_FALSE);
2135 }
2136
2137 static void
2138 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2139 {
2140 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2141
2142 ASSERT(tx->tx_txg != 0);
2143 ASSERT(!refcount_is_zero(&db->db_holds));
2144
2145 /*
2146 * Quick check for dirtyness. For already dirty blocks, this
2147 * reduces runtime of this function by >90%, and overall performance
2148 * by 50% for some workloads (e.g. file deletion with indirect blocks
2149 * cached).
2150 */
2151 mutex_enter(&db->db_mtx);
2152
2153 dbuf_dirty_record_t *dr;
2154 for (dr = db->db_last_dirty;
2155 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
2156 /*
2157 * It's possible that it is already dirty but not cached,
2158 * because there are some calls to dbuf_dirty() that don't
2159 * go through dmu_buf_will_dirty().
2160 */
2161 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
2162 /* This dbuf is already dirty and cached. */
2163 dbuf_redirty(dr);
2164 mutex_exit(&db->db_mtx);
2165 return;
2166 }
2167 }
2168 mutex_exit(&db->db_mtx);
2169
2170 DB_DNODE_ENTER(db);
2171 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2172 flags |= DB_RF_HAVESTRUCT;
2173 DB_DNODE_EXIT(db);
2174 (void) dbuf_read(db, NULL, flags);
2175 (void) dbuf_dirty(db, tx);
2176 }
2177
2178 void
2179 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2180 {
2181 dmu_buf_will_dirty_impl(db_fake,
2182 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2183 }
2184
2185 void
2186 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2187 {
2188 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2189
2190 db->db_state = DB_NOFILL;
2191
2192 dmu_buf_will_fill(db_fake, tx);
2193 }
2194
2195 void
2196 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2197 {
2198 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2199
2200 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2201 ASSERT(tx->tx_txg != 0);
2202 ASSERT(db->db_level == 0);
2203 ASSERT(!refcount_is_zero(&db->db_holds));
2204
2205 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2206 dmu_tx_private_ok(tx));
2207
2208 dbuf_noread(db);
2209 (void) dbuf_dirty(db, tx);
2210 }
2211
2212 /*
2213 * This function is effectively the same as dmu_buf_will_dirty(), but
2214 * indicates the caller expects raw encrypted data in the db. It will
2215 * also set the raw flag on the created dirty record.
2216 */
2217 void
2218 dmu_buf_will_change_crypt_params(dmu_buf_t *db_fake, dmu_tx_t *tx)
2219 {
2220 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2221 dbuf_dirty_record_t *dr;
2222
2223 dmu_buf_will_dirty_impl(db_fake,
2224 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2225
2226 dr = db->db_last_dirty;
2227 while (dr != NULL && dr->dr_txg > tx->tx_txg)
2228 dr = dr->dr_next;
2229
2230 ASSERT3P(dr, !=, NULL);
2231 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2232 dr->dt.dl.dr_raw = B_TRUE;
2233 db->db_objset->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
2234 }
2235
2236 #pragma weak dmu_buf_fill_done = dbuf_fill_done
2237 /* ARGSUSED */
2238 void
2239 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
2240 {
2241 mutex_enter(&db->db_mtx);
2242 DBUF_VERIFY(db);
2243
2244 if (db->db_state == DB_FILL) {
2245 if (db->db_level == 0 && db->db_freed_in_flight) {
2246 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2247 /* we were freed while filling */
2248 /* XXX dbuf_undirty? */
2249 bzero(db->db.db_data, db->db.db_size);
2250 db->db_freed_in_flight = FALSE;
2251 }
2252 db->db_state = DB_CACHED;
2253 cv_broadcast(&db->db_changed);
2254 }
2255 mutex_exit(&db->db_mtx);
2256 }
2257
2258 void
2259 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2260 bp_embedded_type_t etype, enum zio_compress comp,
2261 int uncompressed_size, int compressed_size, int byteorder,
2262 dmu_tx_t *tx)
2263 {
2264 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2265 struct dirty_leaf *dl;
2266 dmu_object_type_t type;
2267
2268 if (etype == BP_EMBEDDED_TYPE_DATA) {
2269 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2270 SPA_FEATURE_EMBEDDED_DATA));
2271 }
2272
2273 DB_DNODE_ENTER(db);
2274 type = DB_DNODE(db)->dn_type;
2275 DB_DNODE_EXIT(db);
2276
2277 ASSERT0(db->db_level);
2278 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2279
2280 dmu_buf_will_not_fill(dbuf, tx);
2281
2282 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2283 dl = &db->db_last_dirty->dt.dl;
2284 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2285 data, comp, uncompressed_size, compressed_size);
2286 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2287 BP_SET_TYPE(&dl->dr_overridden_by, type);
2288 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2289 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2290
2291 dl->dr_override_state = DR_OVERRIDDEN;
2292 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2293 }
2294
2295 /*
2296 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2297 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2298 */
2299 void
2300 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2301 {
2302 ASSERT(!refcount_is_zero(&db->db_holds));
2303 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2304 ASSERT(db->db_level == 0);
2305 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2306 ASSERT(buf != NULL);
2307 ASSERT(arc_buf_lsize(buf) == db->db.db_size);
2308 ASSERT(tx->tx_txg != 0);
2309
2310 arc_return_buf(buf, db);
2311 ASSERT(arc_released(buf));
2312
2313 mutex_enter(&db->db_mtx);
2314
2315 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2316 cv_wait(&db->db_changed, &db->db_mtx);
2317
2318 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2319
2320 if (db->db_state == DB_CACHED &&
2321 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2322 /*
2323 * In practice, we will never have a case where we have an
2324 * encrypted arc buffer while additional holds exist on the
2325 * dbuf. We don't handle this here so we simply assert that
2326 * fact instead.
2327 */
2328 ASSERT(!arc_is_encrypted(buf));
2329 mutex_exit(&db->db_mtx);
2330 (void) dbuf_dirty(db, tx);
2331 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2332 arc_buf_destroy(buf, db);
2333 xuio_stat_wbuf_copied();
2334 return;
2335 }
2336
2337 xuio_stat_wbuf_nocopy();
2338 if (db->db_state == DB_CACHED) {
2339 dbuf_dirty_record_t *dr = db->db_last_dirty;
2340
2341 ASSERT(db->db_buf != NULL);
2342 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2343 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2344 IMPLY(arc_is_encrypted(buf), dr->dt.dl.dr_raw);
2345
2346 if (!arc_released(db->db_buf)) {
2347 ASSERT(dr->dt.dl.dr_override_state ==
2348 DR_OVERRIDDEN);
2349 arc_release(db->db_buf, db);
2350 }
2351 dr->dt.dl.dr_data = buf;
2352 arc_buf_destroy(db->db_buf, db);
2353 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2354 arc_release(db->db_buf, db);
2355 arc_buf_destroy(db->db_buf, db);
2356 }
2357 db->db_buf = NULL;
2358 }
2359 ASSERT(db->db_buf == NULL);
2360 dbuf_set_data(db, buf);
2361 db->db_state = DB_FILL;
2362 mutex_exit(&db->db_mtx);
2363 (void) dbuf_dirty(db, tx);
2364 dmu_buf_fill_done(&db->db, tx);
2365 }
2366
2367 void
2368 dbuf_destroy(dmu_buf_impl_t *db)
2369 {
2370 dnode_t *dn;
2371 dmu_buf_impl_t *parent = db->db_parent;
2372 dmu_buf_impl_t *dndb;
2373
2374 ASSERT(MUTEX_HELD(&db->db_mtx));
2375 ASSERT(refcount_is_zero(&db->db_holds));
2376
2377 if (db->db_buf != NULL) {
2378 arc_buf_destroy(db->db_buf, db);
2379 db->db_buf = NULL;
2380 }
2381
2382 if (db->db_blkid == DMU_BONUS_BLKID) {
2383 int slots = DB_DNODE(db)->dn_num_slots;
2384 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2385 if (db->db.db_data != NULL) {
2386 kmem_free(db->db.db_data, bonuslen);
2387 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2388 db->db_state = DB_UNCACHED;
2389 }
2390 }
2391
2392 dbuf_clear_data(db);
2393
2394 if (multilist_link_active(&db->db_cache_link)) {
2395 multilist_remove(dbuf_cache, db);
2396 (void) refcount_remove_many(&dbuf_cache_size,
2397 db->db.db_size, db);
2398 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2399 DBUF_STAT_BUMPDOWN(cache_count);
2400 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2401 db->db.db_size);
2402 }
2403
2404 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2405 ASSERT(db->db_data_pending == NULL);
2406
2407 db->db_state = DB_EVICTING;
2408 db->db_blkptr = NULL;
2409
2410 /*
2411 * Now that db_state is DB_EVICTING, nobody else can find this via
2412 * the hash table. We can now drop db_mtx, which allows us to
2413 * acquire the dn_dbufs_mtx.
2414 */
2415 mutex_exit(&db->db_mtx);
2416
2417 DB_DNODE_ENTER(db);
2418 dn = DB_DNODE(db);
2419 dndb = dn->dn_dbuf;
2420 if (db->db_blkid != DMU_BONUS_BLKID) {
2421 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2422 if (needlock)
2423 mutex_enter(&dn->dn_dbufs_mtx);
2424 avl_remove(&dn->dn_dbufs, db);
2425 atomic_dec_32(&dn->dn_dbufs_count);
2426 membar_producer();
2427 DB_DNODE_EXIT(db);
2428 if (needlock)
2429 mutex_exit(&dn->dn_dbufs_mtx);
2430 /*
2431 * Decrementing the dbuf count means that the hold corresponding
2432 * to the removed dbuf is no longer discounted in dnode_move(),
2433 * so the dnode cannot be moved until after we release the hold.
2434 * The membar_producer() ensures visibility of the decremented
2435 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2436 * release any lock.
2437 */
2438 dnode_rele(dn, db);
2439 db->db_dnode_handle = NULL;
2440
2441 dbuf_hash_remove(db);
2442 } else {
2443 DB_DNODE_EXIT(db);
2444 }
2445
2446 ASSERT(refcount_is_zero(&db->db_holds));
2447
2448 db->db_parent = NULL;
2449
2450 ASSERT(db->db_buf == NULL);
2451 ASSERT(db->db.db_data == NULL);
2452 ASSERT(db->db_hash_next == NULL);
2453 ASSERT(db->db_blkptr == NULL);
2454 ASSERT(db->db_data_pending == NULL);
2455 ASSERT(!multilist_link_active(&db->db_cache_link));
2456
2457 kmem_cache_free(dbuf_kmem_cache, db);
2458 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2459
2460 /*
2461 * If this dbuf is referenced from an indirect dbuf,
2462 * decrement the ref count on the indirect dbuf.
2463 */
2464 if (parent && parent != dndb)
2465 dbuf_rele(parent, db);
2466 }
2467
2468 /*
2469 * Note: While bpp will always be updated if the function returns success,
2470 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2471 * this happens when the dnode is the meta-dnode, or {user|group|project}used
2472 * object.
2473 */
2474 __attribute__((always_inline))
2475 static inline int
2476 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2477 dmu_buf_impl_t **parentp, blkptr_t **bpp, struct dbuf_hold_impl_data *dh)
2478 {
2479 *parentp = NULL;
2480 *bpp = NULL;
2481
2482 ASSERT(blkid != DMU_BONUS_BLKID);
2483
2484 if (blkid == DMU_SPILL_BLKID) {
2485 mutex_enter(&dn->dn_mtx);
2486 if (dn->dn_have_spill &&
2487 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2488 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2489 else
2490 *bpp = NULL;
2491 dbuf_add_ref(dn->dn_dbuf, NULL);
2492 *parentp = dn->dn_dbuf;
2493 mutex_exit(&dn->dn_mtx);
2494 return (0);
2495 }
2496
2497 int nlevels =
2498 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2499 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2500
2501 ASSERT3U(level * epbs, <, 64);
2502 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2503 /*
2504 * This assertion shouldn't trip as long as the max indirect block size
2505 * is less than 1M. The reason for this is that up to that point,
2506 * the number of levels required to address an entire object with blocks
2507 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2508 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2509 * (i.e. we can address the entire object), objects will all use at most
2510 * N-1 levels and the assertion won't overflow. However, once epbs is
2511 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2512 * enough to address an entire object, so objects will have 5 levels,
2513 * but then this assertion will overflow.
2514 *
2515 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2516 * need to redo this logic to handle overflows.
2517 */
2518 ASSERT(level >= nlevels ||
2519 ((nlevels - level - 1) * epbs) +
2520 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2521 if (level >= nlevels ||
2522 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2523 ((nlevels - level - 1) * epbs)) ||
2524 (fail_sparse &&
2525 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2526 /* the buffer has no parent yet */
2527 return (SET_ERROR(ENOENT));
2528 } else if (level < nlevels-1) {
2529 /* this block is referenced from an indirect block */
2530 int err;
2531 if (dh == NULL) {
2532 err = dbuf_hold_impl(dn, level+1,
2533 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2534 } else {
2535 __dbuf_hold_impl_init(dh + 1, dn, dh->dh_level + 1,
2536 blkid >> epbs, fail_sparse, FALSE, NULL,
2537 parentp, dh->dh_depth + 1);
2538 err = __dbuf_hold_impl(dh + 1);
2539 }
2540 if (err)
2541 return (err);
2542 err = dbuf_read(*parentp, NULL,
2543 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2544 if (err) {
2545 dbuf_rele(*parentp, NULL);
2546 *parentp = NULL;
2547 return (err);
2548 }
2549 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2550 (blkid & ((1ULL << epbs) - 1));
2551 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2552 ASSERT(BP_IS_HOLE(*bpp));
2553 return (0);
2554 } else {
2555 /* the block is referenced from the dnode */
2556 ASSERT3U(level, ==, nlevels-1);
2557 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2558 blkid < dn->dn_phys->dn_nblkptr);
2559 if (dn->dn_dbuf) {
2560 dbuf_add_ref(dn->dn_dbuf, NULL);
2561 *parentp = dn->dn_dbuf;
2562 }
2563 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2564 return (0);
2565 }
2566 }
2567
2568 static dmu_buf_impl_t *
2569 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2570 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2571 {
2572 objset_t *os = dn->dn_objset;
2573 dmu_buf_impl_t *db, *odb;
2574
2575 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2576 ASSERT(dn->dn_type != DMU_OT_NONE);
2577
2578 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2579
2580 db->db_objset = os;
2581 db->db.db_object = dn->dn_object;
2582 db->db_level = level;
2583 db->db_blkid = blkid;
2584 db->db_last_dirty = NULL;
2585 db->db_dirtycnt = 0;
2586 db->db_dnode_handle = dn->dn_handle;
2587 db->db_parent = parent;
2588 db->db_blkptr = blkptr;
2589
2590 db->db_user = NULL;
2591 db->db_user_immediate_evict = FALSE;
2592 db->db_freed_in_flight = FALSE;
2593 db->db_pending_evict = FALSE;
2594
2595 if (blkid == DMU_BONUS_BLKID) {
2596 ASSERT3P(parent, ==, dn->dn_dbuf);
2597 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
2598 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2599 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2600 db->db.db_offset = DMU_BONUS_BLKID;
2601 db->db_state = DB_UNCACHED;
2602 /* the bonus dbuf is not placed in the hash table */
2603 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2604 return (db);
2605 } else if (blkid == DMU_SPILL_BLKID) {
2606 db->db.db_size = (blkptr != NULL) ?
2607 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2608 db->db.db_offset = 0;
2609 } else {
2610 int blocksize =
2611 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2612 db->db.db_size = blocksize;
2613 db->db.db_offset = db->db_blkid * blocksize;
2614 }
2615
2616 /*
2617 * Hold the dn_dbufs_mtx while we get the new dbuf
2618 * in the hash table *and* added to the dbufs list.
2619 * This prevents a possible deadlock with someone
2620 * trying to look up this dbuf before its added to the
2621 * dn_dbufs list.
2622 */
2623 mutex_enter(&dn->dn_dbufs_mtx);
2624 db->db_state = DB_EVICTING;
2625 if ((odb = dbuf_hash_insert(db)) != NULL) {
2626 /* someone else inserted it first */
2627 kmem_cache_free(dbuf_kmem_cache, db);
2628 mutex_exit(&dn->dn_dbufs_mtx);
2629 DBUF_STAT_BUMP(hash_insert_race);
2630 return (odb);
2631 }
2632 avl_add(&dn->dn_dbufs, db);
2633
2634 db->db_state = DB_UNCACHED;
2635 mutex_exit(&dn->dn_dbufs_mtx);
2636 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2637
2638 if (parent && parent != dn->dn_dbuf)
2639 dbuf_add_ref(parent, db);
2640
2641 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2642 refcount_count(&dn->dn_holds) > 0);
2643 (void) refcount_add(&dn->dn_holds, db);
2644 atomic_inc_32(&dn->dn_dbufs_count);
2645
2646 dprintf_dbuf(db, "db=%p\n", db);
2647
2648 return (db);
2649 }
2650
2651 typedef struct dbuf_prefetch_arg {
2652 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2653 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2654 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2655 int dpa_curlevel; /* The current level that we're reading */
2656 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2657 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2658 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2659 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2660 } dbuf_prefetch_arg_t;
2661
2662 /*
2663 * Actually issue the prefetch read for the block given.
2664 */
2665 static void
2666 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2667 {
2668 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2669 return;
2670
2671 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2672 arc_flags_t aflags =
2673 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2674
2675 /* dnodes are always read as raw and then converted later */
2676 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
2677 dpa->dpa_curlevel == 0)
2678 zio_flags |= ZIO_FLAG_RAW;
2679
2680 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2681 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2682 ASSERT(dpa->dpa_zio != NULL);
2683 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2684 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
2685 }
2686
2687 /*
2688 * Called when an indirect block above our prefetch target is read in. This
2689 * will either read in the next indirect block down the tree or issue the actual
2690 * prefetch if the next block down is our target.
2691 */
2692 static void
2693 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
2694 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
2695 {
2696 dbuf_prefetch_arg_t *dpa = private;
2697
2698 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2699 ASSERT3S(dpa->dpa_curlevel, >, 0);
2700
2701 /*
2702 * The dpa_dnode is only valid if we are called with a NULL
2703 * zio. This indicates that the arc_read() returned without
2704 * first calling zio_read() to issue a physical read. Once
2705 * a physical read is made the dpa_dnode must be invalidated
2706 * as the locks guarding it may have been dropped. If the
2707 * dpa_dnode is still valid, then we want to add it to the dbuf
2708 * cache. To do so, we must hold the dbuf associated with the block
2709 * we just prefetched, read its contents so that we associate it
2710 * with an arc_buf_t, and then release it.
2711 */
2712 if (zio != NULL) {
2713 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2714 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
2715 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2716 } else {
2717 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2718 }
2719 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2720
2721 dpa->dpa_dnode = NULL;
2722 } else if (dpa->dpa_dnode != NULL) {
2723 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2724 (dpa->dpa_epbs * (dpa->dpa_curlevel -
2725 dpa->dpa_zb.zb_level));
2726 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2727 dpa->dpa_curlevel, curblkid, FTAG);
2728 (void) dbuf_read(db, NULL,
2729 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2730 dbuf_rele(db, FTAG);
2731 }
2732
2733 if (abuf == NULL) {
2734 kmem_free(dpa, sizeof (*dpa));
2735 return;
2736 }
2737
2738 dpa->dpa_curlevel--;
2739 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2740 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2741 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2742 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2743
2744 if (BP_IS_HOLE(bp)) {
2745 kmem_free(dpa, sizeof (*dpa));
2746 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2747 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2748 dbuf_issue_final_prefetch(dpa, bp);
2749 kmem_free(dpa, sizeof (*dpa));
2750 } else {
2751 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2752 zbookmark_phys_t zb;
2753
2754 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2755 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2756 iter_aflags |= ARC_FLAG_L2CACHE;
2757
2758 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2759
2760 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2761 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2762
2763 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2764 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2765 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2766 &iter_aflags, &zb);
2767 }
2768
2769 arc_buf_destroy(abuf, private);
2770 }
2771
2772 /*
2773 * Issue prefetch reads for the given block on the given level. If the indirect
2774 * blocks above that block are not in memory, we will read them in
2775 * asynchronously. As a result, this call never blocks waiting for a read to
2776 * complete. Note that the prefetch might fail if the dataset is encrypted and
2777 * the encryption key is unmapped before the IO completes.
2778 */
2779 void
2780 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2781 arc_flags_t aflags)
2782 {
2783 blkptr_t bp;
2784 int epbs, nlevels, curlevel;
2785 uint64_t curblkid;
2786
2787 ASSERT(blkid != DMU_BONUS_BLKID);
2788 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2789
2790 if (blkid > dn->dn_maxblkid)
2791 return;
2792
2793 if (dnode_block_freed(dn, blkid))
2794 return;
2795
2796 /*
2797 * This dnode hasn't been written to disk yet, so there's nothing to
2798 * prefetch.
2799 */
2800 nlevels = dn->dn_phys->dn_nlevels;
2801 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2802 return;
2803
2804 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2805 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2806 return;
2807
2808 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2809 level, blkid);
2810 if (db != NULL) {
2811 mutex_exit(&db->db_mtx);
2812 /*
2813 * This dbuf already exists. It is either CACHED, or
2814 * (we assume) about to be read or filled.
2815 */
2816 return;
2817 }
2818
2819 /*
2820 * Find the closest ancestor (indirect block) of the target block
2821 * that is present in the cache. In this indirect block, we will
2822 * find the bp that is at curlevel, curblkid.
2823 */
2824 curlevel = level;
2825 curblkid = blkid;
2826 while (curlevel < nlevels - 1) {
2827 int parent_level = curlevel + 1;
2828 uint64_t parent_blkid = curblkid >> epbs;
2829 dmu_buf_impl_t *db;
2830
2831 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2832 FALSE, TRUE, FTAG, &db) == 0) {
2833 blkptr_t *bpp = db->db_buf->b_data;
2834 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2835 dbuf_rele(db, FTAG);
2836 break;
2837 }
2838
2839 curlevel = parent_level;
2840 curblkid = parent_blkid;
2841 }
2842
2843 if (curlevel == nlevels - 1) {
2844 /* No cached indirect blocks found. */
2845 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2846 bp = dn->dn_phys->dn_blkptr[curblkid];
2847 }
2848 if (BP_IS_HOLE(&bp))
2849 return;
2850
2851 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2852
2853 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2854 ZIO_FLAG_CANFAIL);
2855
2856 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2857 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2858 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2859 dn->dn_object, level, blkid);
2860 dpa->dpa_curlevel = curlevel;
2861 dpa->dpa_prio = prio;
2862 dpa->dpa_aflags = aflags;
2863 dpa->dpa_spa = dn->dn_objset->os_spa;
2864 dpa->dpa_dnode = dn;
2865 dpa->dpa_epbs = epbs;
2866 dpa->dpa_zio = pio;
2867
2868 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2869 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2870 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
2871
2872 /*
2873 * If we have the indirect just above us, no need to do the asynchronous
2874 * prefetch chain; we'll just run the last step ourselves. If we're at
2875 * a higher level, though, we want to issue the prefetches for all the
2876 * indirect blocks asynchronously, so we can go on with whatever we were
2877 * doing.
2878 */
2879 if (curlevel == level) {
2880 ASSERT3U(curblkid, ==, blkid);
2881 dbuf_issue_final_prefetch(dpa, &bp);
2882 kmem_free(dpa, sizeof (*dpa));
2883 } else {
2884 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2885 zbookmark_phys_t zb;
2886
2887 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2888 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2889 iter_aflags |= ARC_FLAG_L2CACHE;
2890
2891 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2892 dn->dn_object, curlevel, curblkid);
2893 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2894 &bp, dbuf_prefetch_indirect_done, dpa, prio,
2895 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2896 &iter_aflags, &zb);
2897 }
2898 /*
2899 * We use pio here instead of dpa_zio since it's possible that
2900 * dpa may have already been freed.
2901 */
2902 zio_nowait(pio);
2903 }
2904
2905 #define DBUF_HOLD_IMPL_MAX_DEPTH 20
2906
2907 /*
2908 * Helper function for __dbuf_hold_impl() to copy a buffer. Handles
2909 * the case of encrypted, compressed and uncompressed buffers by
2910 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
2911 * arc_alloc_compressed_buf() or arc_alloc_buf().*
2912 *
2913 * NOTE: Declared noinline to avoid stack bloat in __dbuf_hold_impl().
2914 */
2915 noinline static void
2916 dbuf_hold_copy(struct dbuf_hold_impl_data *dh)
2917 {
2918 dnode_t *dn = dh->dh_dn;
2919 dmu_buf_impl_t *db = dh->dh_db;
2920 dbuf_dirty_record_t *dr = dh->dh_dr;
2921 arc_buf_t *data = dr->dt.dl.dr_data;
2922
2923 enum zio_compress compress_type = arc_get_compression(data);
2924
2925 if (arc_is_encrypted(data)) {
2926 boolean_t byteorder;
2927 uint8_t salt[ZIO_DATA_SALT_LEN];
2928 uint8_t iv[ZIO_DATA_IV_LEN];
2929 uint8_t mac[ZIO_DATA_MAC_LEN];
2930
2931 arc_get_raw_params(data, &byteorder, salt, iv, mac);
2932 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
2933 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
2934 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
2935 compress_type));
2936 } else if (compress_type != ZIO_COMPRESS_OFF) {
2937 dbuf_set_data(db, arc_alloc_compressed_buf(
2938 dn->dn_objset->os_spa, db, arc_buf_size(data),
2939 arc_buf_lsize(data), compress_type));
2940 } else {
2941 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
2942 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
2943 }
2944
2945 bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
2946 }
2947
2948 /*
2949 * Returns with db_holds incremented, and db_mtx not held.
2950 * Note: dn_struct_rwlock must be held.
2951 */
2952 static int
2953 __dbuf_hold_impl(struct dbuf_hold_impl_data *dh)
2954 {
2955 ASSERT3S(dh->dh_depth, <, DBUF_HOLD_IMPL_MAX_DEPTH);
2956 dh->dh_parent = NULL;
2957
2958 ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
2959 ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
2960 ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
2961
2962 *(dh->dh_dbp) = NULL;
2963
2964 /* dbuf_find() returns with db_mtx held */
2965 dh->dh_db = dbuf_find(dh->dh_dn->dn_objset, dh->dh_dn->dn_object,
2966 dh->dh_level, dh->dh_blkid);
2967
2968 if (dh->dh_db == NULL) {
2969 dh->dh_bp = NULL;
2970
2971 if (dh->dh_fail_uncached)
2972 return (SET_ERROR(ENOENT));
2973
2974 ASSERT3P(dh->dh_parent, ==, NULL);
2975 dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2976 dh->dh_fail_sparse, &dh->dh_parent, &dh->dh_bp, dh);
2977 if (dh->dh_fail_sparse) {
2978 if (dh->dh_err == 0 &&
2979 dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
2980 dh->dh_err = SET_ERROR(ENOENT);
2981 if (dh->dh_err) {
2982 if (dh->dh_parent)
2983 dbuf_rele(dh->dh_parent, NULL);
2984 return (dh->dh_err);
2985 }
2986 }
2987 if (dh->dh_err && dh->dh_err != ENOENT)
2988 return (dh->dh_err);
2989 dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2990 dh->dh_parent, dh->dh_bp);
2991 }
2992
2993 if (dh->dh_fail_uncached && dh->dh_db->db_state != DB_CACHED) {
2994 mutex_exit(&dh->dh_db->db_mtx);
2995 return (SET_ERROR(ENOENT));
2996 }
2997
2998 if (dh->dh_db->db_buf != NULL) {
2999 arc_buf_access(dh->dh_db->db_buf);
3000 ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
3001 }
3002
3003 ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
3004
3005 /*
3006 * If this buffer is currently syncing out, and we are are
3007 * still referencing it from db_data, we need to make a copy
3008 * of it in case we decide we want to dirty it again in this txg.
3009 */
3010 if (dh->dh_db->db_level == 0 &&
3011 dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
3012 dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
3013 dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
3014 dh->dh_dr = dh->dh_db->db_data_pending;
3015 if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf)
3016 dbuf_hold_copy(dh);
3017 }
3018
3019 if (multilist_link_active(&dh->dh_db->db_cache_link)) {
3020 ASSERT(refcount_is_zero(&dh->dh_db->db_holds));
3021 multilist_remove(dbuf_cache, dh->dh_db);
3022 (void) refcount_remove_many(&dbuf_cache_size,
3023 dh->dh_db->db.db_size, dh->dh_db);
3024 DBUF_STAT_BUMPDOWN(cache_levels[dh->dh_db->db_level]);
3025 DBUF_STAT_BUMPDOWN(cache_count);
3026 DBUF_STAT_DECR(cache_levels_bytes[dh->dh_db->db_level],
3027 dh->dh_db->db.db_size);
3028 }
3029 (void) refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
3030 DBUF_VERIFY(dh->dh_db);
3031 mutex_exit(&dh->dh_db->db_mtx);
3032
3033 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3034 if (dh->dh_parent)
3035 dbuf_rele(dh->dh_parent, NULL);
3036
3037 ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
3038 ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
3039 ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
3040 *(dh->dh_dbp) = dh->dh_db;
3041
3042 return (0);
3043 }
3044
3045 /*
3046 * The following code preserves the recursive function dbuf_hold_impl()
3047 * but moves the local variables AND function arguments to the heap to
3048 * minimize the stack frame size. Enough space is initially allocated
3049 * on the stack for 20 levels of recursion.
3050 */
3051 int
3052 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3053 boolean_t fail_sparse, boolean_t fail_uncached,
3054 void *tag, dmu_buf_impl_t **dbp)
3055 {
3056 struct dbuf_hold_impl_data *dh;
3057 int error;
3058
3059 dh = kmem_alloc(sizeof (struct dbuf_hold_impl_data) *
3060 DBUF_HOLD_IMPL_MAX_DEPTH, KM_SLEEP);
3061 __dbuf_hold_impl_init(dh, dn, level, blkid, fail_sparse,
3062 fail_uncached, tag, dbp, 0);
3063
3064 error = __dbuf_hold_impl(dh);
3065
3066 kmem_free(dh, sizeof (struct dbuf_hold_impl_data) *
3067 DBUF_HOLD_IMPL_MAX_DEPTH);
3068
3069 return (error);
3070 }
3071
3072 static void
3073 __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
3074 dnode_t *dn, uint8_t level, uint64_t blkid,
3075 boolean_t fail_sparse, boolean_t fail_uncached,
3076 void *tag, dmu_buf_impl_t **dbp, int depth)
3077 {
3078 dh->dh_dn = dn;
3079 dh->dh_level = level;
3080 dh->dh_blkid = blkid;
3081
3082 dh->dh_fail_sparse = fail_sparse;
3083 dh->dh_fail_uncached = fail_uncached;
3084
3085 dh->dh_tag = tag;
3086 dh->dh_dbp = dbp;
3087
3088 dh->dh_db = NULL;
3089 dh->dh_parent = NULL;
3090 dh->dh_bp = NULL;
3091 dh->dh_err = 0;
3092 dh->dh_dr = NULL;
3093
3094 dh->dh_depth = depth;
3095 }
3096
3097 dmu_buf_impl_t *
3098 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
3099 {
3100 return (dbuf_hold_level(dn, 0, blkid, tag));
3101 }
3102
3103 dmu_buf_impl_t *
3104 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
3105 {
3106 dmu_buf_impl_t *db;
3107 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3108 return (err ? NULL : db);
3109 }
3110
3111 void
3112 dbuf_create_bonus(dnode_t *dn)
3113 {
3114 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3115
3116 ASSERT(dn->dn_bonus == NULL);
3117 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3118 }
3119
3120 int
3121 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3122 {
3123 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3124 dnode_t *dn;
3125
3126 if (db->db_blkid != DMU_SPILL_BLKID)
3127 return (SET_ERROR(ENOTSUP));
3128 if (blksz == 0)
3129 blksz = SPA_MINBLOCKSIZE;
3130 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3131 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3132
3133 DB_DNODE_ENTER(db);
3134 dn = DB_DNODE(db);
3135 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3136 dbuf_new_size(db, blksz, tx);
3137 rw_exit(&dn->dn_struct_rwlock);
3138 DB_DNODE_EXIT(db);
3139
3140 return (0);
3141 }
3142
3143 void
3144 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3145 {
3146 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3147 }
3148
3149 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3150 void
3151 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
3152 {
3153 int64_t holds = refcount_add(&db->db_holds, tag);
3154 VERIFY3S(holds, >, 1);
3155 }
3156
3157 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3158 boolean_t
3159 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3160 void *tag)
3161 {
3162 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3163 dmu_buf_impl_t *found_db;
3164 boolean_t result = B_FALSE;
3165
3166 if (blkid == DMU_BONUS_BLKID)
3167 found_db = dbuf_find_bonus(os, obj);
3168 else
3169 found_db = dbuf_find(os, obj, 0, blkid);
3170
3171 if (found_db != NULL) {
3172 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3173 (void) refcount_add(&db->db_holds, tag);
3174 result = B_TRUE;
3175 }
3176 mutex_exit(&found_db->db_mtx);
3177 }
3178 return (result);
3179 }
3180
3181 /*
3182 * If you call dbuf_rele() you had better not be referencing the dnode handle
3183 * unless you have some other direct or indirect hold on the dnode. (An indirect
3184 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3185 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3186 * dnode's parent dbuf evicting its dnode handles.
3187 */
3188 void
3189 dbuf_rele(dmu_buf_impl_t *db, void *tag)
3190 {
3191 mutex_enter(&db->db_mtx);
3192 dbuf_rele_and_unlock(db, tag);
3193 }
3194
3195 void
3196 dmu_buf_rele(dmu_buf_t *db, void *tag)
3197 {
3198 dbuf_rele((dmu_buf_impl_t *)db, tag);
3199 }
3200
3201 /*
3202 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3203 * db_dirtycnt and db_holds to be updated atomically.
3204 */
3205 void
3206 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
3207 {
3208 int64_t holds;
3209
3210 ASSERT(MUTEX_HELD(&db->db_mtx));
3211 DBUF_VERIFY(db);
3212
3213 /*
3214 * Remove the reference to the dbuf before removing its hold on the
3215 * dnode so we can guarantee in dnode_move() that a referenced bonus
3216 * buffer has a corresponding dnode hold.
3217 */
3218 holds = refcount_remove(&db->db_holds, tag);
3219 ASSERT(holds >= 0);
3220
3221 /*
3222 * We can't freeze indirects if there is a possibility that they
3223 * may be modified in the current syncing context.
3224 */
3225 if (db->db_buf != NULL &&
3226 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3227 arc_buf_freeze(db->db_buf);
3228 }
3229
3230 if (holds == db->db_dirtycnt &&
3231 db->db_level == 0 && db->db_user_immediate_evict)
3232 dbuf_evict_user(db);
3233
3234 if (holds == 0) {
3235 if (db->db_blkid == DMU_BONUS_BLKID) {
3236 dnode_t *dn;
3237 boolean_t evict_dbuf = db->db_pending_evict;
3238
3239 /*
3240 * If the dnode moves here, we cannot cross this
3241 * barrier until the move completes.
3242 */
3243 DB_DNODE_ENTER(db);
3244
3245 dn = DB_DNODE(db);
3246 atomic_dec_32(&dn->dn_dbufs_count);
3247
3248 /*
3249 * Decrementing the dbuf count means that the bonus
3250 * buffer's dnode hold is no longer discounted in
3251 * dnode_move(). The dnode cannot move until after
3252 * the dnode_rele() below.
3253 */
3254 DB_DNODE_EXIT(db);
3255
3256 /*
3257 * Do not reference db after its lock is dropped.
3258 * Another thread may evict it.
3259 */
3260 mutex_exit(&db->db_mtx);
3261
3262 if (evict_dbuf)
3263 dnode_evict_bonus(dn);
3264
3265 dnode_rele(dn, db);
3266 } else if (db->db_buf == NULL) {
3267 /*
3268 * This is a special case: we never associated this
3269 * dbuf with any data allocated from the ARC.
3270 */
3271 ASSERT(db->db_state == DB_UNCACHED ||
3272 db->db_state == DB_NOFILL);
3273 dbuf_destroy(db);
3274 } else if (arc_released(db->db_buf)) {
3275 /*
3276 * This dbuf has anonymous data associated with it.
3277 */
3278 dbuf_destroy(db);
3279 } else {
3280 boolean_t do_arc_evict = B_FALSE;
3281 blkptr_t bp;
3282 spa_t *spa = dmu_objset_spa(db->db_objset);
3283
3284 if (!DBUF_IS_CACHEABLE(db) &&
3285 db->db_blkptr != NULL &&
3286 !BP_IS_HOLE(db->db_blkptr) &&
3287 !BP_IS_EMBEDDED(db->db_blkptr)) {
3288 do_arc_evict = B_TRUE;
3289 bp = *db->db_blkptr;
3290 }
3291
3292 if (!DBUF_IS_CACHEABLE(db) ||
3293 db->db_pending_evict) {
3294 dbuf_destroy(db);
3295 } else if (!multilist_link_active(&db->db_cache_link)) {
3296 multilist_insert(dbuf_cache, db);
3297 (void) refcount_add_many(&dbuf_cache_size,
3298 db->db.db_size, db);
3299 DBUF_STAT_BUMP(cache_levels[db->db_level]);
3300 DBUF_STAT_BUMP(cache_count);
3301 DBUF_STAT_INCR(cache_levels_bytes[db->db_level],
3302 db->db.db_size);
3303 DBUF_STAT_MAX(cache_size_bytes_max,
3304 refcount_count(&dbuf_cache_size));
3305 mutex_exit(&db->db_mtx);
3306
3307 dbuf_evict_notify();
3308 }
3309
3310 if (do_arc_evict)
3311 arc_freed(spa, &bp);
3312 }
3313 } else {
3314 mutex_exit(&db->db_mtx);
3315 }
3316
3317 }
3318
3319 #pragma weak dmu_buf_refcount = dbuf_refcount
3320 uint64_t
3321 dbuf_refcount(dmu_buf_impl_t *db)
3322 {
3323 return (refcount_count(&db->db_holds));
3324 }
3325
3326 void *
3327 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3328 dmu_buf_user_t *new_user)
3329 {
3330 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3331
3332 mutex_enter(&db->db_mtx);
3333 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3334 if (db->db_user == old_user)
3335 db->db_user = new_user;
3336 else
3337 old_user = db->db_user;
3338 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3339 mutex_exit(&db->db_mtx);
3340
3341 return (old_user);
3342 }
3343
3344 void *
3345 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3346 {
3347 return (dmu_buf_replace_user(db_fake, NULL, user));
3348 }
3349
3350 void *
3351 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3352 {
3353 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3354
3355 db->db_user_immediate_evict = TRUE;
3356 return (dmu_buf_set_user(db_fake, user));
3357 }
3358
3359 void *
3360 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3361 {
3362 return (dmu_buf_replace_user(db_fake, user, NULL));
3363 }
3364
3365 void *
3366 dmu_buf_get_user(dmu_buf_t *db_fake)
3367 {
3368 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3369
3370 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3371 return (db->db_user);
3372 }
3373
3374 void
3375 dmu_buf_user_evict_wait()
3376 {
3377 taskq_wait(dbu_evict_taskq);
3378 }
3379
3380 blkptr_t *
3381 dmu_buf_get_blkptr(dmu_buf_t *db)
3382 {
3383 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3384 return (dbi->db_blkptr);
3385 }
3386
3387 objset_t *
3388 dmu_buf_get_objset(dmu_buf_t *db)
3389 {
3390 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3391 return (dbi->db_objset);
3392 }
3393
3394 dnode_t *
3395 dmu_buf_dnode_enter(dmu_buf_t *db)
3396 {
3397 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3398 DB_DNODE_ENTER(dbi);
3399 return (DB_DNODE(dbi));
3400 }
3401
3402 void
3403 dmu_buf_dnode_exit(dmu_buf_t *db)
3404 {
3405 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3406 DB_DNODE_EXIT(dbi);
3407 }
3408
3409 static void
3410 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3411 {
3412 /* ASSERT(dmu_tx_is_syncing(tx) */
3413 ASSERT(MUTEX_HELD(&db->db_mtx));
3414
3415 if (db->db_blkptr != NULL)
3416 return;
3417
3418 if (db->db_blkid == DMU_SPILL_BLKID) {
3419 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3420 BP_ZERO(db->db_blkptr);
3421 return;
3422 }
3423 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3424 /*
3425 * This buffer was allocated at a time when there was
3426 * no available blkptrs from the dnode, or it was
3427 * inappropriate to hook it in (i.e., nlevels mis-match).
3428 */
3429 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3430 ASSERT(db->db_parent == NULL);
3431 db->db_parent = dn->dn_dbuf;
3432 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3433 DBUF_VERIFY(db);
3434 } else {
3435 dmu_buf_impl_t *parent = db->db_parent;
3436 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3437
3438 ASSERT(dn->dn_phys->dn_nlevels > 1);
3439 if (parent == NULL) {
3440 mutex_exit(&db->db_mtx);
3441 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3442 parent = dbuf_hold_level(dn, db->db_level + 1,
3443 db->db_blkid >> epbs, db);
3444 rw_exit(&dn->dn_struct_rwlock);
3445 mutex_enter(&db->db_mtx);
3446 db->db_parent = parent;
3447 }
3448 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3449 (db->db_blkid & ((1ULL << epbs) - 1));
3450 DBUF_VERIFY(db);
3451 }
3452 }
3453
3454 /*
3455 * Ensure the dbuf's data is untransformed if the associated dirty
3456 * record requires it. This is used by dbuf_sync_leaf() to ensure
3457 * that a dnode block is decrypted before we write new data to it.
3458 * For raw writes we assert that the buffer is already encrypted.
3459 */
3460 static void
3461 dbuf_check_crypt(dbuf_dirty_record_t *dr)
3462 {
3463 int err;
3464 dmu_buf_impl_t *db = dr->dr_dbuf;
3465
3466 ASSERT(MUTEX_HELD(&db->db_mtx));
3467
3468 if (!dr->dt.dl.dr_raw && arc_is_encrypted(db->db_buf)) {
3469 zbookmark_phys_t zb;
3470
3471 /*
3472 * Unfortunately, there is currently no mechanism for
3473 * syncing context to handle decryption errors. An error
3474 * here is only possible if an attacker maliciously
3475 * changed a dnode block and updated the associated
3476 * checksums going up the block tree.
3477 */
3478 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
3479 db->db.db_object, db->db_level, db->db_blkid);
3480 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
3481 &zb, B_TRUE);
3482 if (err)
3483 panic("Invalid dnode block MAC");
3484 } else if (dr->dt.dl.dr_raw) {
3485 /*
3486 * Writing raw encrypted data requires the db's arc buffer
3487 * to be converted to raw by the caller.
3488 */
3489 ASSERT(arc_is_encrypted(db->db_buf));
3490 }
3491 }
3492
3493 /*
3494 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
3495 * is critical the we not allow the compiler to inline this function in to
3496 * dbuf_sync_list() thereby drastically bloating the stack usage.
3497 */
3498 noinline static void
3499 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3500 {
3501 dmu_buf_impl_t *db = dr->dr_dbuf;
3502 dnode_t *dn;
3503 zio_t *zio;
3504
3505 ASSERT(dmu_tx_is_syncing(tx));
3506
3507 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3508
3509 mutex_enter(&db->db_mtx);
3510
3511 ASSERT(db->db_level > 0);
3512 DBUF_VERIFY(db);
3513
3514 /* Read the block if it hasn't been read yet. */
3515 if (db->db_buf == NULL) {
3516 mutex_exit(&db->db_mtx);
3517 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3518 mutex_enter(&db->db_mtx);
3519 }
3520 ASSERT3U(db->db_state, ==, DB_CACHED);
3521 ASSERT(db->db_buf != NULL);
3522
3523 DB_DNODE_ENTER(db);
3524 dn = DB_DNODE(db);
3525 /* Indirect block size must match what the dnode thinks it is. */
3526 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3527 dbuf_check_blkptr(dn, db);
3528 DB_DNODE_EXIT(db);
3529
3530 /* Provide the pending dirty record to child dbufs */
3531 db->db_data_pending = dr;
3532
3533 mutex_exit(&db->db_mtx);
3534
3535 dbuf_write(dr, db->db_buf, tx);
3536
3537 zio = dr->dr_zio;
3538 mutex_enter(&dr->dt.di.dr_mtx);
3539 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3540 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3541 mutex_exit(&dr->dt.di.dr_mtx);
3542 zio_nowait(zio);
3543 }
3544
3545 /*
3546 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
3547 * critical the we not allow the compiler to inline this function in to
3548 * dbuf_sync_list() thereby drastically bloating the stack usage.
3549 */
3550 noinline static void
3551 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3552 {
3553 arc_buf_t **datap = &dr->dt.dl.dr_data;
3554 dmu_buf_impl_t *db = dr->dr_dbuf;
3555 dnode_t *dn;
3556 objset_t *os;
3557 uint64_t txg = tx->tx_txg;
3558
3559 ASSERT(dmu_tx_is_syncing(tx));
3560
3561 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3562
3563 mutex_enter(&db->db_mtx);
3564 /*
3565 * To be synced, we must be dirtied. But we
3566 * might have been freed after the dirty.
3567 */
3568 if (db->db_state == DB_UNCACHED) {
3569 /* This buffer has been freed since it was dirtied */
3570 ASSERT(db->db.db_data == NULL);
3571 } else if (db->db_state == DB_FILL) {
3572 /* This buffer was freed and is now being re-filled */
3573 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3574 } else {
3575 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3576 }
3577 DBUF_VERIFY(db);
3578
3579 DB_DNODE_ENTER(db);
3580 dn = DB_DNODE(db);
3581
3582 if (db->db_blkid == DMU_SPILL_BLKID) {
3583 mutex_enter(&dn->dn_mtx);
3584 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
3585 /*
3586 * In the previous transaction group, the bonus buffer
3587 * was entirely used to store the attributes for the
3588 * dnode which overrode the dn_spill field. However,
3589 * when adding more attributes to the file a spill
3590 * block was required to hold the extra attributes.
3591 *
3592 * Make sure to clear the garbage left in the dn_spill
3593 * field from the previous attributes in the bonus
3594 * buffer. Otherwise, after writing out the spill
3595 * block to the new allocated dva, it will free
3596 * the old block pointed to by the invalid dn_spill.
3597 */
3598 db->db_blkptr = NULL;
3599 }
3600 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3601 mutex_exit(&dn->dn_mtx);
3602 }
3603
3604 /*
3605 * If this is a bonus buffer, simply copy the bonus data into the
3606 * dnode. It will be written out when the dnode is synced (and it
3607 * will be synced, since it must have been dirty for dbuf_sync to
3608 * be called).
3609 */
3610 if (db->db_blkid == DMU_BONUS_BLKID) {
3611 dbuf_dirty_record_t **drp;
3612
3613 ASSERT(*datap != NULL);
3614 ASSERT0(db->db_level);
3615 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
3616 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
3617 bcopy(*datap, DN_BONUS(dn->dn_phys),
3618 DN_MAX_BONUS_LEN(dn->dn_phys));
3619 DB_DNODE_EXIT(db);
3620
3621 if (*datap != db->db.db_data) {
3622 int slots = DB_DNODE(db)->dn_num_slots;
3623 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3624 kmem_free(*datap, bonuslen);
3625 arc_space_return(bonuslen, ARC_SPACE_BONUS);
3626 }
3627 db->db_data_pending = NULL;
3628 drp = &db->db_last_dirty;
3629 while (*drp != dr)
3630 drp = &(*drp)->dr_next;
3631 ASSERT(dr->dr_next == NULL);
3632 ASSERT(dr->dr_dbuf == db);
3633 *drp = dr->dr_next;
3634 if (dr->dr_dbuf->db_level != 0) {
3635 mutex_destroy(&dr->dt.di.dr_mtx);
3636 list_destroy(&dr->dt.di.dr_children);
3637 }
3638 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3639 ASSERT(db->db_dirtycnt > 0);
3640 db->db_dirtycnt -= 1;
3641 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3642 return;
3643 }
3644
3645 os = dn->dn_objset;
3646
3647 /*
3648 * This function may have dropped the db_mtx lock allowing a dmu_sync
3649 * operation to sneak in. As a result, we need to ensure that we
3650 * don't check the dr_override_state until we have returned from
3651 * dbuf_check_blkptr.
3652 */
3653 dbuf_check_blkptr(dn, db);
3654
3655 /*
3656 * If this buffer is in the middle of an immediate write,
3657 * wait for the synchronous IO to complete.
3658 */
3659 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3660 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3661 cv_wait(&db->db_changed, &db->db_mtx);
3662 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3663 }
3664
3665 /*
3666 * If this is a dnode block, ensure it is appropriately encrypted
3667 * or decrypted, depending on what we are writing to it this txg.
3668 */
3669 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
3670 dbuf_check_crypt(dr);
3671
3672 if (db->db_state != DB_NOFILL &&
3673 dn->dn_object != DMU_META_DNODE_OBJECT &&
3674 refcount_count(&db->db_holds) > 1 &&
3675 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3676 *datap == db->db_buf) {
3677 /*
3678 * If this buffer is currently "in use" (i.e., there
3679 * are active holds and db_data still references it),
3680 * then make a copy before we start the write so that
3681 * any modifications from the open txg will not leak
3682 * into this write.
3683 *
3684 * NOTE: this copy does not need to be made for
3685 * objects only modified in the syncing context (e.g.
3686 * DNONE_DNODE blocks).
3687 */
3688 int psize = arc_buf_size(*datap);
3689 int lsize = arc_buf_lsize(*datap);
3690 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3691 enum zio_compress compress_type = arc_get_compression(*datap);
3692
3693 if (arc_is_encrypted(*datap)) {
3694 boolean_t byteorder;
3695 uint8_t salt[ZIO_DATA_SALT_LEN];
3696 uint8_t iv[ZIO_DATA_IV_LEN];
3697 uint8_t mac[ZIO_DATA_MAC_LEN];
3698
3699 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
3700 *datap = arc_alloc_raw_buf(os->os_spa, db,
3701 dmu_objset_id(os), byteorder, salt, iv, mac,
3702 dn->dn_type, psize, lsize, compress_type);
3703 } else if (compress_type != ZIO_COMPRESS_OFF) {
3704 ASSERT3U(type, ==, ARC_BUFC_DATA);
3705 *datap = arc_alloc_compressed_buf(os->os_spa, db,
3706 psize, lsize, compress_type);
3707 } else {
3708 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3709 }
3710 bcopy(db->db.db_data, (*datap)->b_data, psize);
3711 }
3712 db->db_data_pending = dr;
3713
3714 mutex_exit(&db->db_mtx);
3715
3716 dbuf_write(dr, *datap, tx);
3717
3718 ASSERT(!list_link_active(&dr->dr_dirty_node));
3719 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3720 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3721 DB_DNODE_EXIT(db);
3722 } else {
3723 /*
3724 * Although zio_nowait() does not "wait for an IO", it does
3725 * initiate the IO. If this is an empty write it seems plausible
3726 * that the IO could actually be completed before the nowait
3727 * returns. We need to DB_DNODE_EXIT() first in case
3728 * zio_nowait() invalidates the dbuf.
3729 */
3730 DB_DNODE_EXIT(db);
3731 zio_nowait(dr->dr_zio);
3732 }
3733 }
3734
3735 void
3736 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3737 {
3738 dbuf_dirty_record_t *dr;
3739
3740 while ((dr = list_head(list))) {
3741 if (dr->dr_zio != NULL) {
3742 /*
3743 * If we find an already initialized zio then we
3744 * are processing the meta-dnode, and we have finished.
3745 * The dbufs for all dnodes are put back on the list
3746 * during processing, so that we can zio_wait()
3747 * these IOs after initiating all child IOs.
3748 */
3749 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3750 DMU_META_DNODE_OBJECT);
3751 break;
3752 }
3753 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3754 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3755 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3756 }
3757 list_remove(list, dr);
3758 if (dr->dr_dbuf->db_level > 0)
3759 dbuf_sync_indirect(dr, tx);
3760 else
3761 dbuf_sync_leaf(dr, tx);
3762 }
3763 }
3764
3765 /* ARGSUSED */
3766 static void
3767 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3768 {
3769 dmu_buf_impl_t *db = vdb;
3770 dnode_t *dn;
3771 blkptr_t *bp = zio->io_bp;
3772 blkptr_t *bp_orig = &zio->io_bp_orig;
3773 spa_t *spa = zio->io_spa;
3774 int64_t delta;
3775 uint64_t fill = 0;
3776 int i;
3777
3778 ASSERT3P(db->db_blkptr, !=, NULL);
3779 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3780
3781 DB_DNODE_ENTER(db);
3782 dn = DB_DNODE(db);
3783 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3784 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3785 zio->io_prev_space_delta = delta;
3786
3787 if (bp->blk_birth != 0) {
3788 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3789 BP_GET_TYPE(bp) == dn->dn_type) ||
3790 (db->db_blkid == DMU_SPILL_BLKID &&
3791 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3792 BP_IS_EMBEDDED(bp));
3793 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3794 }
3795
3796 mutex_enter(&db->db_mtx);
3797
3798 #ifdef ZFS_DEBUG
3799 if (db->db_blkid == DMU_SPILL_BLKID) {
3800 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3801 ASSERT(!(BP_IS_HOLE(bp)) &&
3802 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3803 }
3804 #endif
3805
3806 if (db->db_level == 0) {
3807 mutex_enter(&dn->dn_mtx);
3808 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3809 db->db_blkid != DMU_SPILL_BLKID)
3810 dn->dn_phys->dn_maxblkid = db->db_blkid;
3811 mutex_exit(&dn->dn_mtx);
3812
3813 if (dn->dn_type == DMU_OT_DNODE) {
3814 i = 0;
3815 while (i < db->db.db_size) {
3816 dnode_phys_t *dnp =
3817 (void *)(((char *)db->db.db_data) + i);
3818
3819 i += DNODE_MIN_SIZE;
3820 if (dnp->dn_type != DMU_OT_NONE) {
3821 fill++;
3822 i += dnp->dn_extra_slots *
3823 DNODE_MIN_SIZE;
3824 }
3825 }
3826 } else {
3827 if (BP_IS_HOLE(bp)) {
3828 fill = 0;
3829 } else {
3830 fill = 1;
3831 }
3832 }
3833 } else {
3834 blkptr_t *ibp = db->db.db_data;
3835 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3836 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3837 if (BP_IS_HOLE(ibp))
3838 continue;
3839 fill += BP_GET_FILL(ibp);
3840 }
3841 }
3842 DB_DNODE_EXIT(db);
3843
3844 if (!BP_IS_EMBEDDED(bp))
3845 BP_SET_FILL(bp, fill);
3846
3847 mutex_exit(&db->db_mtx);
3848
3849 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3850 *db->db_blkptr = *bp;
3851 rw_exit(&dn->dn_struct_rwlock);
3852 }
3853
3854 /* ARGSUSED */
3855 /*
3856 * This function gets called just prior to running through the compression
3857 * stage of the zio pipeline. If we're an indirect block comprised of only
3858 * holes, then we want this indirect to be compressed away to a hole. In
3859 * order to do that we must zero out any information about the holes that
3860 * this indirect points to prior to before we try to compress it.
3861 */
3862 static void
3863 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3864 {
3865 dmu_buf_impl_t *db = vdb;
3866 dnode_t *dn;
3867 blkptr_t *bp;
3868 unsigned int epbs, i;
3869
3870 ASSERT3U(db->db_level, >, 0);
3871 DB_DNODE_ENTER(db);
3872 dn = DB_DNODE(db);
3873 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3874 ASSERT3U(epbs, <, 31);
3875
3876 /* Determine if all our children are holes */
3877 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
3878 if (!BP_IS_HOLE(bp))
3879 break;
3880 }
3881
3882 /*
3883 * If all the children are holes, then zero them all out so that
3884 * we may get compressed away.
3885 */
3886 if (i == 1ULL << epbs) {
3887 /*
3888 * We only found holes. Grab the rwlock to prevent
3889 * anybody from reading the blocks we're about to
3890 * zero out.
3891 */
3892 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3893 bzero(db->db.db_data, db->db.db_size);
3894 rw_exit(&dn->dn_struct_rwlock);
3895 }
3896 DB_DNODE_EXIT(db);
3897 }
3898
3899 /*
3900 * The SPA will call this callback several times for each zio - once
3901 * for every physical child i/o (zio->io_phys_children times). This
3902 * allows the DMU to monitor the progress of each logical i/o. For example,
3903 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3904 * block. There may be a long delay before all copies/fragments are completed,
3905 * so this callback allows us to retire dirty space gradually, as the physical
3906 * i/os complete.
3907 */
3908 /* ARGSUSED */
3909 static void
3910 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3911 {
3912 dmu_buf_impl_t *db = arg;
3913 objset_t *os = db->db_objset;
3914 dsl_pool_t *dp = dmu_objset_pool(os);
3915 dbuf_dirty_record_t *dr;
3916 int delta = 0;
3917
3918 dr = db->db_data_pending;
3919 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3920
3921 /*
3922 * The callback will be called io_phys_children times. Retire one
3923 * portion of our dirty space each time we are called. Any rounding
3924 * error will be cleaned up by dsl_pool_sync()'s call to
3925 * dsl_pool_undirty_space().
3926 */
3927 delta = dr->dr_accounted / zio->io_phys_children;
3928 dsl_pool_undirty_space(dp, delta, zio->io_txg);
3929 }
3930
3931 /* ARGSUSED */
3932 static void
3933 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3934 {
3935 dmu_buf_impl_t *db = vdb;
3936 blkptr_t *bp_orig = &zio->io_bp_orig;
3937 blkptr_t *bp = db->db_blkptr;
3938 objset_t *os = db->db_objset;
3939 dmu_tx_t *tx = os->os_synctx;
3940 dbuf_dirty_record_t **drp, *dr;
3941
3942 ASSERT0(zio->io_error);
3943 ASSERT(db->db_blkptr == bp);
3944
3945 /*
3946 * For nopwrites and rewrites we ensure that the bp matches our
3947 * original and bypass all the accounting.
3948 */
3949 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3950 ASSERT(BP_EQUAL(bp, bp_orig));
3951 } else {
3952 dsl_dataset_t *ds = os->os_dsl_dataset;
3953 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3954 dsl_dataset_block_born(ds, bp, tx);
3955 }
3956
3957 mutex_enter(&db->db_mtx);
3958
3959 DBUF_VERIFY(db);
3960
3961 drp = &db->db_last_dirty;
3962 while ((dr = *drp) != db->db_data_pending)
3963 drp = &dr->dr_next;
3964 ASSERT(!list_link_active(&dr->dr_dirty_node));
3965 ASSERT(dr->dr_dbuf == db);
3966 ASSERT(dr->dr_next == NULL);
3967 *drp = dr->dr_next;
3968
3969 #ifdef ZFS_DEBUG
3970 if (db->db_blkid == DMU_SPILL_BLKID) {
3971 dnode_t *dn;
3972
3973 DB_DNODE_ENTER(db);
3974 dn = DB_DNODE(db);
3975 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3976 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3977 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3978 DB_DNODE_EXIT(db);
3979 }
3980 #endif
3981
3982 if (db->db_level == 0) {
3983 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3984 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3985 if (db->db_state != DB_NOFILL) {
3986 if (dr->dt.dl.dr_data != db->db_buf)
3987 arc_buf_destroy(dr->dt.dl.dr_data, db);
3988 }
3989 } else {
3990 dnode_t *dn;
3991
3992 DB_DNODE_ENTER(db);
3993 dn = DB_DNODE(db);
3994 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3995 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3996 if (!BP_IS_HOLE(db->db_blkptr)) {
3997 ASSERTV(int epbs = dn->dn_phys->dn_indblkshift -
3998 SPA_BLKPTRSHIFT);
3999 ASSERT3U(db->db_blkid, <=,
4000 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4001 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4002 db->db.db_size);
4003 }
4004 DB_DNODE_EXIT(db);
4005 mutex_destroy(&dr->dt.di.dr_mtx);
4006 list_destroy(&dr->dt.di.dr_children);
4007 }
4008 kmem_free(dr, sizeof (dbuf_dirty_record_t));
4009
4010 cv_broadcast(&db->db_changed);
4011 ASSERT(db->db_dirtycnt > 0);
4012 db->db_dirtycnt -= 1;
4013 db->db_data_pending = NULL;
4014 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
4015 }
4016
4017 static void
4018 dbuf_write_nofill_ready(zio_t *zio)
4019 {
4020 dbuf_write_ready(zio, NULL, zio->io_private);
4021 }
4022
4023 static void
4024 dbuf_write_nofill_done(zio_t *zio)
4025 {
4026 dbuf_write_done(zio, NULL, zio->io_private);
4027 }
4028
4029 static void
4030 dbuf_write_override_ready(zio_t *zio)
4031 {
4032 dbuf_dirty_record_t *dr = zio->io_private;
4033 dmu_buf_impl_t *db = dr->dr_dbuf;
4034
4035 dbuf_write_ready(zio, NULL, db);
4036 }
4037
4038 static void
4039 dbuf_write_override_done(zio_t *zio)
4040 {
4041 dbuf_dirty_record_t *dr = zio->io_private;
4042 dmu_buf_impl_t *db = dr->dr_dbuf;
4043 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4044
4045 mutex_enter(&db->db_mtx);
4046 if (!BP_EQUAL(zio->io_bp, obp)) {
4047 if (!BP_IS_HOLE(obp))
4048 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4049 arc_release(dr->dt.dl.dr_data, db);
4050 }
4051 mutex_exit(&db->db_mtx);
4052
4053 dbuf_write_done(zio, NULL, db);
4054
4055 if (zio->io_abd != NULL)
4056 abd_put(zio->io_abd);
4057 }
4058
4059 typedef struct dbuf_remap_impl_callback_arg {
4060 objset_t *drica_os;
4061 uint64_t drica_blk_birth;
4062 dmu_tx_t *drica_tx;
4063 } dbuf_remap_impl_callback_arg_t;
4064
4065 static void
4066 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4067 void *arg)
4068 {
4069 dbuf_remap_impl_callback_arg_t *drica = arg;
4070 objset_t *os = drica->drica_os;
4071 spa_t *spa = dmu_objset_spa(os);
4072 dmu_tx_t *tx = drica->drica_tx;
4073
4074 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4075
4076 if (os == spa_meta_objset(spa)) {
4077 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4078 } else {
4079 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4080 size, drica->drica_blk_birth, tx);
4081 }
4082 }
4083
4084 static void
4085 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, dmu_tx_t *tx)
4086 {
4087 blkptr_t bp_copy = *bp;
4088 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4089 dbuf_remap_impl_callback_arg_t drica;
4090
4091 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4092
4093 drica.drica_os = dn->dn_objset;
4094 drica.drica_blk_birth = bp->blk_birth;
4095 drica.drica_tx = tx;
4096 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4097 &drica)) {
4098 /*
4099 * The struct_rwlock prevents dbuf_read_impl() from
4100 * dereferencing the BP while we are changing it. To
4101 * avoid lock contention, only grab it when we are actually
4102 * changing the BP.
4103 */
4104 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
4105 *bp = bp_copy;
4106 rw_exit(&dn->dn_struct_rwlock);
4107 }
4108 }
4109
4110 /*
4111 * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting
4112 * to remap a copy of every bp in the dbuf.
4113 */
4114 boolean_t
4115 dbuf_can_remap(const dmu_buf_impl_t *db)
4116 {
4117 spa_t *spa = dmu_objset_spa(db->db_objset);
4118 blkptr_t *bp = db->db.db_data;
4119 boolean_t ret = B_FALSE;
4120
4121 ASSERT3U(db->db_level, >, 0);
4122 ASSERT3S(db->db_state, ==, DB_CACHED);
4123
4124 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4125
4126 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4127 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4128 blkptr_t bp_copy = bp[i];
4129 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4130 ret = B_TRUE;
4131 break;
4132 }
4133 }
4134 spa_config_exit(spa, SCL_VDEV, FTAG);
4135
4136 return (ret);
4137 }
4138
4139 boolean_t
4140 dnode_needs_remap(const dnode_t *dn)
4141 {
4142 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4143 boolean_t ret = B_FALSE;
4144
4145 if (dn->dn_phys->dn_nlevels == 0) {
4146 return (B_FALSE);
4147 }
4148
4149 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4150
4151 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4152 for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) {
4153 blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j];
4154 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4155 ret = B_TRUE;
4156 break;
4157 }
4158 }
4159 spa_config_exit(spa, SCL_VDEV, FTAG);
4160
4161 return (ret);
4162 }
4163
4164 /*
4165 * Remap any existing BP's to concrete vdevs, if possible.
4166 */
4167 static void
4168 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4169 {
4170 spa_t *spa = dmu_objset_spa(db->db_objset);
4171 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4172
4173 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4174 return;
4175
4176 if (db->db_level > 0) {
4177 blkptr_t *bp = db->db.db_data;
4178 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4179 dbuf_remap_impl(dn, &bp[i], tx);
4180 }
4181 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4182 dnode_phys_t *dnp = db->db.db_data;
4183 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4184 DMU_OT_DNODE);
4185 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4186 i += dnp[i].dn_extra_slots + 1) {
4187 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4188 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], tx);
4189 }
4190 }
4191 }
4192 }
4193
4194
4195 /* Issue I/O to commit a dirty buffer to disk. */
4196 static void
4197 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4198 {
4199 dmu_buf_impl_t *db = dr->dr_dbuf;
4200 dnode_t *dn;
4201 objset_t *os;
4202 dmu_buf_impl_t *parent = db->db_parent;
4203 uint64_t txg = tx->tx_txg;
4204 zbookmark_phys_t zb;
4205 zio_prop_t zp;
4206 zio_t *zio;
4207 int wp_flag = 0;
4208
4209 ASSERT(dmu_tx_is_syncing(tx));
4210
4211 DB_DNODE_ENTER(db);
4212 dn = DB_DNODE(db);
4213 os = dn->dn_objset;
4214
4215 if (db->db_state != DB_NOFILL) {
4216 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4217 /*
4218 * Private object buffers are released here rather
4219 * than in dbuf_dirty() since they are only modified
4220 * in the syncing context and we don't want the
4221 * overhead of making multiple copies of the data.
4222 */
4223 if (BP_IS_HOLE(db->db_blkptr)) {
4224 arc_buf_thaw(data);
4225 } else {
4226 dbuf_release_bp(db);
4227 }
4228 dbuf_remap(dn, db, tx);
4229 }
4230 }
4231
4232 if (parent != dn->dn_dbuf) {
4233 /* Our parent is an indirect block. */
4234 /* We have a dirty parent that has been scheduled for write. */
4235 ASSERT(parent && parent->db_data_pending);
4236 /* Our parent's buffer is one level closer to the dnode. */
4237 ASSERT(db->db_level == parent->db_level-1);
4238 /*
4239 * We're about to modify our parent's db_data by modifying
4240 * our block pointer, so the parent must be released.
4241 */
4242 ASSERT(arc_released(parent->db_buf));
4243 zio = parent->db_data_pending->dr_zio;
4244 } else {
4245 /* Our parent is the dnode itself. */
4246 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4247 db->db_blkid != DMU_SPILL_BLKID) ||
4248 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4249 if (db->db_blkid != DMU_SPILL_BLKID)
4250 ASSERT3P(db->db_blkptr, ==,
4251 &dn->dn_phys->dn_blkptr[db->db_blkid]);
4252 zio = dn->dn_zio;
4253 }
4254
4255 ASSERT(db->db_level == 0 || data == db->db_buf);
4256 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
4257 ASSERT(zio);
4258
4259 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
4260 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
4261 db->db.db_object, db->db_level, db->db_blkid);
4262
4263 if (db->db_blkid == DMU_SPILL_BLKID)
4264 wp_flag = WP_SPILL;
4265 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
4266
4267 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
4268 DB_DNODE_EXIT(db);
4269
4270 /*
4271 * We copy the blkptr now (rather than when we instantiate the dirty
4272 * record), because its value can change between open context and
4273 * syncing context. We do not need to hold dn_struct_rwlock to read
4274 * db_blkptr because we are in syncing context.
4275 */
4276 dr->dr_bp_copy = *db->db_blkptr;
4277
4278 if (db->db_level == 0 &&
4279 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
4280 /*
4281 * The BP for this block has been provided by open context
4282 * (by dmu_sync() or dmu_buf_write_embedded()).
4283 */
4284 abd_t *contents = (data != NULL) ?
4285 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
4286
4287 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4288 &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size,
4289 &zp, dbuf_write_override_ready, NULL, NULL,
4290 dbuf_write_override_done,
4291 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
4292 mutex_enter(&db->db_mtx);
4293 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
4294 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
4295 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
4296 mutex_exit(&db->db_mtx);
4297 } else if (db->db_state == DB_NOFILL) {
4298 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
4299 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
4300 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4301 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
4302 dbuf_write_nofill_ready, NULL, NULL,
4303 dbuf_write_nofill_done, db,
4304 ZIO_PRIORITY_ASYNC_WRITE,
4305 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
4306 } else {
4307 ASSERT(arc_released(data));
4308
4309 /*
4310 * For indirect blocks, we want to setup the children
4311 * ready callback so that we can properly handle an indirect
4312 * block that only contains holes.
4313 */
4314 arc_write_done_func_t *children_ready_cb = NULL;
4315 if (db->db_level != 0)
4316 children_ready_cb = dbuf_write_children_ready;
4317
4318 dr->dr_zio = arc_write(zio, os->os_spa, txg,
4319 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
4320 &zp, dbuf_write_ready,
4321 children_ready_cb, dbuf_write_physdone,
4322 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
4323 ZIO_FLAG_MUSTSUCCEED, &zb);
4324 }
4325 }
4326
4327 #if defined(_KERNEL) && defined(HAVE_SPL)
4328 EXPORT_SYMBOL(dbuf_find);
4329 EXPORT_SYMBOL(dbuf_is_metadata);
4330 EXPORT_SYMBOL(dbuf_destroy);
4331 EXPORT_SYMBOL(dbuf_loan_arcbuf);
4332 EXPORT_SYMBOL(dbuf_whichblock);
4333 EXPORT_SYMBOL(dbuf_read);
4334 EXPORT_SYMBOL(dbuf_unoverride);
4335 EXPORT_SYMBOL(dbuf_free_range);
4336 EXPORT_SYMBOL(dbuf_new_size);
4337 EXPORT_SYMBOL(dbuf_release_bp);
4338 EXPORT_SYMBOL(dbuf_dirty);
4339 EXPORT_SYMBOL(dmu_buf_will_change_crypt_params);
4340 EXPORT_SYMBOL(dmu_buf_will_dirty);
4341 EXPORT_SYMBOL(dmu_buf_will_not_fill);
4342 EXPORT_SYMBOL(dmu_buf_will_fill);
4343 EXPORT_SYMBOL(dmu_buf_fill_done);
4344 EXPORT_SYMBOL(dmu_buf_rele);
4345 EXPORT_SYMBOL(dbuf_assign_arcbuf);
4346 EXPORT_SYMBOL(dbuf_prefetch);
4347 EXPORT_SYMBOL(dbuf_hold_impl);
4348 EXPORT_SYMBOL(dbuf_hold);
4349 EXPORT_SYMBOL(dbuf_hold_level);
4350 EXPORT_SYMBOL(dbuf_create_bonus);
4351 EXPORT_SYMBOL(dbuf_spill_set_blksz);
4352 EXPORT_SYMBOL(dbuf_rm_spill);
4353 EXPORT_SYMBOL(dbuf_add_ref);
4354 EXPORT_SYMBOL(dbuf_rele);
4355 EXPORT_SYMBOL(dbuf_rele_and_unlock);
4356 EXPORT_SYMBOL(dbuf_refcount);
4357 EXPORT_SYMBOL(dbuf_sync_list);
4358 EXPORT_SYMBOL(dmu_buf_set_user);
4359 EXPORT_SYMBOL(dmu_buf_set_user_ie);
4360 EXPORT_SYMBOL(dmu_buf_get_user);
4361 EXPORT_SYMBOL(dmu_buf_get_blkptr);
4362
4363 /* BEGIN CSTYLED */
4364 module_param(dbuf_cache_max_bytes, ulong, 0644);
4365 MODULE_PARM_DESC(dbuf_cache_max_bytes,
4366 "Maximum size in bytes of the dbuf cache.");
4367
4368 module_param(dbuf_cache_hiwater_pct, uint, 0644);
4369 MODULE_PARM_DESC(dbuf_cache_hiwater_pct,
4370 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
4371 "directly.");
4372
4373 module_param(dbuf_cache_lowater_pct, uint, 0644);
4374 MODULE_PARM_DESC(dbuf_cache_lowater_pct,
4375 "Percentage below dbuf_cache_max_bytes when the evict thread stops "
4376 "evicting dbufs.");
4377
4378 module_param(dbuf_cache_shift, int, 0644);
4379 MODULE_PARM_DESC(dbuf_cache_shift,
4380 "Set the size of the dbuf cache to a log2 fraction of arc size.");
4381 /* END CSTYLED */
4382 #endif