]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dbuf.c
Improve zfs receive performance with lightweight write
[mirror_zfs.git] / module / zfs / dbuf.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2019, Klara Inc.
28 * Copyright (c) 2019, Allan Jude
29 */
30
31 #include <sys/zfs_context.h>
32 #include <sys/arc.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_send.h>
35 #include <sys/dmu_impl.h>
36 #include <sys/dbuf.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/spa.h>
42 #include <sys/zio.h>
43 #include <sys/dmu_zfetch.h>
44 #include <sys/sa.h>
45 #include <sys/sa_impl.h>
46 #include <sys/zfeature.h>
47 #include <sys/blkptr.h>
48 #include <sys/range_tree.h>
49 #include <sys/trace_zfs.h>
50 #include <sys/callb.h>
51 #include <sys/abd.h>
52 #include <sys/vdev.h>
53 #include <cityhash.h>
54 #include <sys/spa_impl.h>
55
56 kstat_t *dbuf_ksp;
57
58 typedef struct dbuf_stats {
59 /*
60 * Various statistics about the size of the dbuf cache.
61 */
62 kstat_named_t cache_count;
63 kstat_named_t cache_size_bytes;
64 kstat_named_t cache_size_bytes_max;
65 /*
66 * Statistics regarding the bounds on the dbuf cache size.
67 */
68 kstat_named_t cache_target_bytes;
69 kstat_named_t cache_lowater_bytes;
70 kstat_named_t cache_hiwater_bytes;
71 /*
72 * Total number of dbuf cache evictions that have occurred.
73 */
74 kstat_named_t cache_total_evicts;
75 /*
76 * The distribution of dbuf levels in the dbuf cache and
77 * the total size of all dbufs at each level.
78 */
79 kstat_named_t cache_levels[DN_MAX_LEVELS];
80 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
81 /*
82 * Statistics about the dbuf hash table.
83 */
84 kstat_named_t hash_hits;
85 kstat_named_t hash_misses;
86 kstat_named_t hash_collisions;
87 kstat_named_t hash_elements;
88 kstat_named_t hash_elements_max;
89 /*
90 * Number of sublists containing more than one dbuf in the dbuf
91 * hash table. Keep track of the longest hash chain.
92 */
93 kstat_named_t hash_chains;
94 kstat_named_t hash_chain_max;
95 /*
96 * Number of times a dbuf_create() discovers that a dbuf was
97 * already created and in the dbuf hash table.
98 */
99 kstat_named_t hash_insert_race;
100 /*
101 * Statistics about the size of the metadata dbuf cache.
102 */
103 kstat_named_t metadata_cache_count;
104 kstat_named_t metadata_cache_size_bytes;
105 kstat_named_t metadata_cache_size_bytes_max;
106 /*
107 * For diagnostic purposes, this is incremented whenever we can't add
108 * something to the metadata cache because it's full, and instead put
109 * the data in the regular dbuf cache.
110 */
111 kstat_named_t metadata_cache_overflow;
112 } dbuf_stats_t;
113
114 dbuf_stats_t dbuf_stats = {
115 { "cache_count", KSTAT_DATA_UINT64 },
116 { "cache_size_bytes", KSTAT_DATA_UINT64 },
117 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
118 { "cache_target_bytes", KSTAT_DATA_UINT64 },
119 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
120 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
121 { "cache_total_evicts", KSTAT_DATA_UINT64 },
122 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
123 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
124 { "hash_hits", KSTAT_DATA_UINT64 },
125 { "hash_misses", KSTAT_DATA_UINT64 },
126 { "hash_collisions", KSTAT_DATA_UINT64 },
127 { "hash_elements", KSTAT_DATA_UINT64 },
128 { "hash_elements_max", KSTAT_DATA_UINT64 },
129 { "hash_chains", KSTAT_DATA_UINT64 },
130 { "hash_chain_max", KSTAT_DATA_UINT64 },
131 { "hash_insert_race", KSTAT_DATA_UINT64 },
132 { "metadata_cache_count", KSTAT_DATA_UINT64 },
133 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
134 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
135 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
136 };
137
138 #define DBUF_STAT_INCR(stat, val) \
139 atomic_add_64(&dbuf_stats.stat.value.ui64, (val));
140 #define DBUF_STAT_DECR(stat, val) \
141 DBUF_STAT_INCR(stat, -(val));
142 #define DBUF_STAT_BUMP(stat) \
143 DBUF_STAT_INCR(stat, 1);
144 #define DBUF_STAT_BUMPDOWN(stat) \
145 DBUF_STAT_INCR(stat, -1);
146 #define DBUF_STAT_MAX(stat, v) { \
147 uint64_t _m; \
148 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
149 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
150 continue; \
151 }
152
153 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
154 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
155 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
156 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags);
157
158 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
159 dmu_buf_evict_func_t *evict_func_sync,
160 dmu_buf_evict_func_t *evict_func_async,
161 dmu_buf_t **clear_on_evict_dbufp);
162
163 /*
164 * Global data structures and functions for the dbuf cache.
165 */
166 static kmem_cache_t *dbuf_kmem_cache;
167 static taskq_t *dbu_evict_taskq;
168
169 static kthread_t *dbuf_cache_evict_thread;
170 static kmutex_t dbuf_evict_lock;
171 static kcondvar_t dbuf_evict_cv;
172 static boolean_t dbuf_evict_thread_exit;
173
174 /*
175 * There are two dbuf caches; each dbuf can only be in one of them at a time.
176 *
177 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
178 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
179 * that represent the metadata that describes filesystems/snapshots/
180 * bookmarks/properties/etc. We only evict from this cache when we export a
181 * pool, to short-circuit as much I/O as possible for all administrative
182 * commands that need the metadata. There is no eviction policy for this
183 * cache, because we try to only include types in it which would occupy a
184 * very small amount of space per object but create a large impact on the
185 * performance of these commands. Instead, after it reaches a maximum size
186 * (which should only happen on very small memory systems with a very large
187 * number of filesystem objects), we stop taking new dbufs into the
188 * metadata cache, instead putting them in the normal dbuf cache.
189 *
190 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
191 * are not currently held but have been recently released. These dbufs
192 * are not eligible for arc eviction until they are aged out of the cache.
193 * Dbufs that are aged out of the cache will be immediately destroyed and
194 * become eligible for arc eviction.
195 *
196 * Dbufs are added to these caches once the last hold is released. If a dbuf is
197 * later accessed and still exists in the dbuf cache, then it will be removed
198 * from the cache and later re-added to the head of the cache.
199 *
200 * If a given dbuf meets the requirements for the metadata cache, it will go
201 * there, otherwise it will be considered for the generic LRU dbuf cache. The
202 * caches and the refcounts tracking their sizes are stored in an array indexed
203 * by those caches' matching enum values (from dbuf_cached_state_t).
204 */
205 typedef struct dbuf_cache {
206 multilist_t *cache;
207 zfs_refcount_t size;
208 } dbuf_cache_t;
209 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
210
211 /* Size limits for the caches */
212 unsigned long dbuf_cache_max_bytes = ULONG_MAX;
213 unsigned long dbuf_metadata_cache_max_bytes = ULONG_MAX;
214
215 /* Set the default sizes of the caches to log2 fraction of arc size */
216 int dbuf_cache_shift = 5;
217 int dbuf_metadata_cache_shift = 6;
218
219 static unsigned long dbuf_cache_target_bytes(void);
220 static unsigned long dbuf_metadata_cache_target_bytes(void);
221
222 /*
223 * The LRU dbuf cache uses a three-stage eviction policy:
224 * - A low water marker designates when the dbuf eviction thread
225 * should stop evicting from the dbuf cache.
226 * - When we reach the maximum size (aka mid water mark), we
227 * signal the eviction thread to run.
228 * - The high water mark indicates when the eviction thread
229 * is unable to keep up with the incoming load and eviction must
230 * happen in the context of the calling thread.
231 *
232 * The dbuf cache:
233 * (max size)
234 * low water mid water hi water
235 * +----------------------------------------+----------+----------+
236 * | | | |
237 * | | | |
238 * | | | |
239 * | | | |
240 * +----------------------------------------+----------+----------+
241 * stop signal evict
242 * evicting eviction directly
243 * thread
244 *
245 * The high and low water marks indicate the operating range for the eviction
246 * thread. The low water mark is, by default, 90% of the total size of the
247 * cache and the high water mark is at 110% (both of these percentages can be
248 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
249 * respectively). The eviction thread will try to ensure that the cache remains
250 * within this range by waking up every second and checking if the cache is
251 * above the low water mark. The thread can also be woken up by callers adding
252 * elements into the cache if the cache is larger than the mid water (i.e max
253 * cache size). Once the eviction thread is woken up and eviction is required,
254 * it will continue evicting buffers until it's able to reduce the cache size
255 * to the low water mark. If the cache size continues to grow and hits the high
256 * water mark, then callers adding elements to the cache will begin to evict
257 * directly from the cache until the cache is no longer above the high water
258 * mark.
259 */
260
261 /*
262 * The percentage above and below the maximum cache size.
263 */
264 uint_t dbuf_cache_hiwater_pct = 10;
265 uint_t dbuf_cache_lowater_pct = 10;
266
267 /* ARGSUSED */
268 static int
269 dbuf_cons(void *vdb, void *unused, int kmflag)
270 {
271 dmu_buf_impl_t *db = vdb;
272 bzero(db, sizeof (dmu_buf_impl_t));
273
274 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
275 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL);
276 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
277 multilist_link_init(&db->db_cache_link);
278 zfs_refcount_create(&db->db_holds);
279
280 return (0);
281 }
282
283 /* ARGSUSED */
284 static void
285 dbuf_dest(void *vdb, void *unused)
286 {
287 dmu_buf_impl_t *db = vdb;
288 mutex_destroy(&db->db_mtx);
289 rw_destroy(&db->db_rwlock);
290 cv_destroy(&db->db_changed);
291 ASSERT(!multilist_link_active(&db->db_cache_link));
292 zfs_refcount_destroy(&db->db_holds);
293 }
294
295 /*
296 * dbuf hash table routines
297 */
298 static dbuf_hash_table_t dbuf_hash_table;
299
300 static uint64_t dbuf_hash_count;
301
302 /*
303 * We use Cityhash for this. It's fast, and has good hash properties without
304 * requiring any large static buffers.
305 */
306 static uint64_t
307 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
308 {
309 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
310 }
311
312 #define DTRACE_SET_STATE(db, why) \
313 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \
314 const char *, why)
315
316 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
317 ((dbuf)->db.db_object == (obj) && \
318 (dbuf)->db_objset == (os) && \
319 (dbuf)->db_level == (level) && \
320 (dbuf)->db_blkid == (blkid))
321
322 dmu_buf_impl_t *
323 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
324 {
325 dbuf_hash_table_t *h = &dbuf_hash_table;
326 uint64_t hv;
327 uint64_t idx;
328 dmu_buf_impl_t *db;
329
330 hv = dbuf_hash(os, obj, level, blkid);
331 idx = hv & h->hash_table_mask;
332
333 mutex_enter(DBUF_HASH_MUTEX(h, idx));
334 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
335 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
336 mutex_enter(&db->db_mtx);
337 if (db->db_state != DB_EVICTING) {
338 mutex_exit(DBUF_HASH_MUTEX(h, idx));
339 return (db);
340 }
341 mutex_exit(&db->db_mtx);
342 }
343 }
344 mutex_exit(DBUF_HASH_MUTEX(h, idx));
345 return (NULL);
346 }
347
348 static dmu_buf_impl_t *
349 dbuf_find_bonus(objset_t *os, uint64_t object)
350 {
351 dnode_t *dn;
352 dmu_buf_impl_t *db = NULL;
353
354 if (dnode_hold(os, object, FTAG, &dn) == 0) {
355 rw_enter(&dn->dn_struct_rwlock, RW_READER);
356 if (dn->dn_bonus != NULL) {
357 db = dn->dn_bonus;
358 mutex_enter(&db->db_mtx);
359 }
360 rw_exit(&dn->dn_struct_rwlock);
361 dnode_rele(dn, FTAG);
362 }
363 return (db);
364 }
365
366 /*
367 * Insert an entry into the hash table. If there is already an element
368 * equal to elem in the hash table, then the already existing element
369 * will be returned and the new element will not be inserted.
370 * Otherwise returns NULL.
371 */
372 static dmu_buf_impl_t *
373 dbuf_hash_insert(dmu_buf_impl_t *db)
374 {
375 dbuf_hash_table_t *h = &dbuf_hash_table;
376 objset_t *os = db->db_objset;
377 uint64_t obj = db->db.db_object;
378 int level = db->db_level;
379 uint64_t blkid, hv, idx;
380 dmu_buf_impl_t *dbf;
381 uint32_t i;
382
383 blkid = db->db_blkid;
384 hv = dbuf_hash(os, obj, level, blkid);
385 idx = hv & h->hash_table_mask;
386
387 mutex_enter(DBUF_HASH_MUTEX(h, idx));
388 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
389 dbf = dbf->db_hash_next, i++) {
390 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
391 mutex_enter(&dbf->db_mtx);
392 if (dbf->db_state != DB_EVICTING) {
393 mutex_exit(DBUF_HASH_MUTEX(h, idx));
394 return (dbf);
395 }
396 mutex_exit(&dbf->db_mtx);
397 }
398 }
399
400 if (i > 0) {
401 DBUF_STAT_BUMP(hash_collisions);
402 if (i == 1)
403 DBUF_STAT_BUMP(hash_chains);
404
405 DBUF_STAT_MAX(hash_chain_max, i);
406 }
407
408 mutex_enter(&db->db_mtx);
409 db->db_hash_next = h->hash_table[idx];
410 h->hash_table[idx] = db;
411 mutex_exit(DBUF_HASH_MUTEX(h, idx));
412 atomic_inc_64(&dbuf_hash_count);
413 DBUF_STAT_MAX(hash_elements_max, dbuf_hash_count);
414
415 return (NULL);
416 }
417
418 /*
419 * This returns whether this dbuf should be stored in the metadata cache, which
420 * is based on whether it's from one of the dnode types that store data related
421 * to traversing dataset hierarchies.
422 */
423 static boolean_t
424 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
425 {
426 DB_DNODE_ENTER(db);
427 dmu_object_type_t type = DB_DNODE(db)->dn_type;
428 DB_DNODE_EXIT(db);
429
430 /* Check if this dbuf is one of the types we care about */
431 if (DMU_OT_IS_METADATA_CACHED(type)) {
432 /* If we hit this, then we set something up wrong in dmu_ot */
433 ASSERT(DMU_OT_IS_METADATA(type));
434
435 /*
436 * Sanity check for small-memory systems: don't allocate too
437 * much memory for this purpose.
438 */
439 if (zfs_refcount_count(
440 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
441 dbuf_metadata_cache_target_bytes()) {
442 DBUF_STAT_BUMP(metadata_cache_overflow);
443 return (B_FALSE);
444 }
445
446 return (B_TRUE);
447 }
448
449 return (B_FALSE);
450 }
451
452 /*
453 * Remove an entry from the hash table. It must be in the EVICTING state.
454 */
455 static void
456 dbuf_hash_remove(dmu_buf_impl_t *db)
457 {
458 dbuf_hash_table_t *h = &dbuf_hash_table;
459 uint64_t hv, idx;
460 dmu_buf_impl_t *dbf, **dbp;
461
462 hv = dbuf_hash(db->db_objset, db->db.db_object,
463 db->db_level, db->db_blkid);
464 idx = hv & h->hash_table_mask;
465
466 /*
467 * We mustn't hold db_mtx to maintain lock ordering:
468 * DBUF_HASH_MUTEX > db_mtx.
469 */
470 ASSERT(zfs_refcount_is_zero(&db->db_holds));
471 ASSERT(db->db_state == DB_EVICTING);
472 ASSERT(!MUTEX_HELD(&db->db_mtx));
473
474 mutex_enter(DBUF_HASH_MUTEX(h, idx));
475 dbp = &h->hash_table[idx];
476 while ((dbf = *dbp) != db) {
477 dbp = &dbf->db_hash_next;
478 ASSERT(dbf != NULL);
479 }
480 *dbp = db->db_hash_next;
481 db->db_hash_next = NULL;
482 if (h->hash_table[idx] &&
483 h->hash_table[idx]->db_hash_next == NULL)
484 DBUF_STAT_BUMPDOWN(hash_chains);
485 mutex_exit(DBUF_HASH_MUTEX(h, idx));
486 atomic_dec_64(&dbuf_hash_count);
487 }
488
489 typedef enum {
490 DBVU_EVICTING,
491 DBVU_NOT_EVICTING
492 } dbvu_verify_type_t;
493
494 static void
495 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
496 {
497 #ifdef ZFS_DEBUG
498 int64_t holds;
499
500 if (db->db_user == NULL)
501 return;
502
503 /* Only data blocks support the attachment of user data. */
504 ASSERT(db->db_level == 0);
505
506 /* Clients must resolve a dbuf before attaching user data. */
507 ASSERT(db->db.db_data != NULL);
508 ASSERT3U(db->db_state, ==, DB_CACHED);
509
510 holds = zfs_refcount_count(&db->db_holds);
511 if (verify_type == DBVU_EVICTING) {
512 /*
513 * Immediate eviction occurs when holds == dirtycnt.
514 * For normal eviction buffers, holds is zero on
515 * eviction, except when dbuf_fix_old_data() calls
516 * dbuf_clear_data(). However, the hold count can grow
517 * during eviction even though db_mtx is held (see
518 * dmu_bonus_hold() for an example), so we can only
519 * test the generic invariant that holds >= dirtycnt.
520 */
521 ASSERT3U(holds, >=, db->db_dirtycnt);
522 } else {
523 if (db->db_user_immediate_evict == TRUE)
524 ASSERT3U(holds, >=, db->db_dirtycnt);
525 else
526 ASSERT3U(holds, >, 0);
527 }
528 #endif
529 }
530
531 static void
532 dbuf_evict_user(dmu_buf_impl_t *db)
533 {
534 dmu_buf_user_t *dbu = db->db_user;
535
536 ASSERT(MUTEX_HELD(&db->db_mtx));
537
538 if (dbu == NULL)
539 return;
540
541 dbuf_verify_user(db, DBVU_EVICTING);
542 db->db_user = NULL;
543
544 #ifdef ZFS_DEBUG
545 if (dbu->dbu_clear_on_evict_dbufp != NULL)
546 *dbu->dbu_clear_on_evict_dbufp = NULL;
547 #endif
548
549 /*
550 * There are two eviction callbacks - one that we call synchronously
551 * and one that we invoke via a taskq. The async one is useful for
552 * avoiding lock order reversals and limiting stack depth.
553 *
554 * Note that if we have a sync callback but no async callback,
555 * it's likely that the sync callback will free the structure
556 * containing the dbu. In that case we need to take care to not
557 * dereference dbu after calling the sync evict func.
558 */
559 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
560
561 if (dbu->dbu_evict_func_sync != NULL)
562 dbu->dbu_evict_func_sync(dbu);
563
564 if (has_async) {
565 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
566 dbu, 0, &dbu->dbu_tqent);
567 }
568 }
569
570 boolean_t
571 dbuf_is_metadata(dmu_buf_impl_t *db)
572 {
573 /*
574 * Consider indirect blocks and spill blocks to be meta data.
575 */
576 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
577 return (B_TRUE);
578 } else {
579 boolean_t is_metadata;
580
581 DB_DNODE_ENTER(db);
582 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
583 DB_DNODE_EXIT(db);
584
585 return (is_metadata);
586 }
587 }
588
589
590 /*
591 * This function *must* return indices evenly distributed between all
592 * sublists of the multilist. This is needed due to how the dbuf eviction
593 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
594 * distributed between all sublists and uses this assumption when
595 * deciding which sublist to evict from and how much to evict from it.
596 */
597 static unsigned int
598 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
599 {
600 dmu_buf_impl_t *db = obj;
601
602 /*
603 * The assumption here, is the hash value for a given
604 * dmu_buf_impl_t will remain constant throughout it's lifetime
605 * (i.e. it's objset, object, level and blkid fields don't change).
606 * Thus, we don't need to store the dbuf's sublist index
607 * on insertion, as this index can be recalculated on removal.
608 *
609 * Also, the low order bits of the hash value are thought to be
610 * distributed evenly. Otherwise, in the case that the multilist
611 * has a power of two number of sublists, each sublists' usage
612 * would not be evenly distributed.
613 */
614 return (dbuf_hash(db->db_objset, db->db.db_object,
615 db->db_level, db->db_blkid) %
616 multilist_get_num_sublists(ml));
617 }
618
619 /*
620 * The target size of the dbuf cache can grow with the ARC target,
621 * unless limited by the tunable dbuf_cache_max_bytes.
622 */
623 static inline unsigned long
624 dbuf_cache_target_bytes(void)
625 {
626 return (MIN(dbuf_cache_max_bytes,
627 arc_target_bytes() >> dbuf_cache_shift));
628 }
629
630 /*
631 * The target size of the dbuf metadata cache can grow with the ARC target,
632 * unless limited by the tunable dbuf_metadata_cache_max_bytes.
633 */
634 static inline unsigned long
635 dbuf_metadata_cache_target_bytes(void)
636 {
637 return (MIN(dbuf_metadata_cache_max_bytes,
638 arc_target_bytes() >> dbuf_metadata_cache_shift));
639 }
640
641 static inline uint64_t
642 dbuf_cache_hiwater_bytes(void)
643 {
644 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
645 return (dbuf_cache_target +
646 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
647 }
648
649 static inline uint64_t
650 dbuf_cache_lowater_bytes(void)
651 {
652 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
653 return (dbuf_cache_target -
654 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
655 }
656
657 static inline boolean_t
658 dbuf_cache_above_lowater(void)
659 {
660 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
661 dbuf_cache_lowater_bytes());
662 }
663
664 /*
665 * Evict the oldest eligible dbuf from the dbuf cache.
666 */
667 static void
668 dbuf_evict_one(void)
669 {
670 int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache);
671 multilist_sublist_t *mls = multilist_sublist_lock(
672 dbuf_caches[DB_DBUF_CACHE].cache, idx);
673
674 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
675
676 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
677 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
678 db = multilist_sublist_prev(mls, db);
679 }
680
681 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
682 multilist_sublist_t *, mls);
683
684 if (db != NULL) {
685 multilist_sublist_remove(mls, db);
686 multilist_sublist_unlock(mls);
687 (void) zfs_refcount_remove_many(
688 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db);
689 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
690 DBUF_STAT_BUMPDOWN(cache_count);
691 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
692 db->db.db_size);
693 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
694 db->db_caching_status = DB_NO_CACHE;
695 dbuf_destroy(db);
696 DBUF_STAT_BUMP(cache_total_evicts);
697 } else {
698 multilist_sublist_unlock(mls);
699 }
700 }
701
702 /*
703 * The dbuf evict thread is responsible for aging out dbufs from the
704 * cache. Once the cache has reached it's maximum size, dbufs are removed
705 * and destroyed. The eviction thread will continue running until the size
706 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
707 * out of the cache it is destroyed and becomes eligible for arc eviction.
708 */
709 /* ARGSUSED */
710 static void
711 dbuf_evict_thread(void *unused)
712 {
713 callb_cpr_t cpr;
714
715 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
716
717 mutex_enter(&dbuf_evict_lock);
718 while (!dbuf_evict_thread_exit) {
719 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
720 CALLB_CPR_SAFE_BEGIN(&cpr);
721 (void) cv_timedwait_idle_hires(&dbuf_evict_cv,
722 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
723 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
724 }
725 mutex_exit(&dbuf_evict_lock);
726
727 /*
728 * Keep evicting as long as we're above the low water mark
729 * for the cache. We do this without holding the locks to
730 * minimize lock contention.
731 */
732 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
733 dbuf_evict_one();
734 }
735
736 mutex_enter(&dbuf_evict_lock);
737 }
738
739 dbuf_evict_thread_exit = B_FALSE;
740 cv_broadcast(&dbuf_evict_cv);
741 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
742 thread_exit();
743 }
744
745 /*
746 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
747 * If the dbuf cache is at its high water mark, then evict a dbuf from the
748 * dbuf cache using the callers context.
749 */
750 static void
751 dbuf_evict_notify(uint64_t size)
752 {
753 /*
754 * We check if we should evict without holding the dbuf_evict_lock,
755 * because it's OK to occasionally make the wrong decision here,
756 * and grabbing the lock results in massive lock contention.
757 */
758 if (size > dbuf_cache_target_bytes()) {
759 if (size > dbuf_cache_hiwater_bytes())
760 dbuf_evict_one();
761 cv_signal(&dbuf_evict_cv);
762 }
763 }
764
765 static int
766 dbuf_kstat_update(kstat_t *ksp, int rw)
767 {
768 dbuf_stats_t *ds = ksp->ks_data;
769
770 if (rw == KSTAT_WRITE) {
771 return (SET_ERROR(EACCES));
772 } else {
773 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
774 &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
775 ds->cache_size_bytes.value.ui64 =
776 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
777 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
778 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
779 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
780 ds->hash_elements.value.ui64 = dbuf_hash_count;
781 }
782
783 return (0);
784 }
785
786 void
787 dbuf_init(void)
788 {
789 uint64_t hsize = 1ULL << 16;
790 dbuf_hash_table_t *h = &dbuf_hash_table;
791 int i;
792
793 /*
794 * The hash table is big enough to fill all of physical memory
795 * with an average block size of zfs_arc_average_blocksize (default 8K).
796 * By default, the table will take up
797 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
798 */
799 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
800 hsize <<= 1;
801
802 retry:
803 h->hash_table_mask = hsize - 1;
804 #if defined(_KERNEL)
805 /*
806 * Large allocations which do not require contiguous pages
807 * should be using vmem_alloc() in the linux kernel
808 */
809 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
810 #else
811 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
812 #endif
813 if (h->hash_table == NULL) {
814 /* XXX - we should really return an error instead of assert */
815 ASSERT(hsize > (1ULL << 10));
816 hsize >>= 1;
817 goto retry;
818 }
819
820 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
821 sizeof (dmu_buf_impl_t),
822 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
823
824 for (i = 0; i < DBUF_MUTEXES; i++)
825 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
826
827 dbuf_stats_init(h);
828
829 /*
830 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
831 * configuration is not required.
832 */
833 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
834
835 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
836 dbuf_caches[dcs].cache =
837 multilist_create(sizeof (dmu_buf_impl_t),
838 offsetof(dmu_buf_impl_t, db_cache_link),
839 dbuf_cache_multilist_index_func);
840 zfs_refcount_create(&dbuf_caches[dcs].size);
841 }
842
843 dbuf_evict_thread_exit = B_FALSE;
844 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
845 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
846 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
847 NULL, 0, &p0, TS_RUN, minclsyspri);
848
849 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
850 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
851 KSTAT_FLAG_VIRTUAL);
852 if (dbuf_ksp != NULL) {
853 for (i = 0; i < DN_MAX_LEVELS; i++) {
854 snprintf(dbuf_stats.cache_levels[i].name,
855 KSTAT_STRLEN, "cache_level_%d", i);
856 dbuf_stats.cache_levels[i].data_type =
857 KSTAT_DATA_UINT64;
858 snprintf(dbuf_stats.cache_levels_bytes[i].name,
859 KSTAT_STRLEN, "cache_level_%d_bytes", i);
860 dbuf_stats.cache_levels_bytes[i].data_type =
861 KSTAT_DATA_UINT64;
862 }
863 dbuf_ksp->ks_data = &dbuf_stats;
864 dbuf_ksp->ks_update = dbuf_kstat_update;
865 kstat_install(dbuf_ksp);
866 }
867 }
868
869 void
870 dbuf_fini(void)
871 {
872 dbuf_hash_table_t *h = &dbuf_hash_table;
873 int i;
874
875 dbuf_stats_destroy();
876
877 for (i = 0; i < DBUF_MUTEXES; i++)
878 mutex_destroy(&h->hash_mutexes[i]);
879 #if defined(_KERNEL)
880 /*
881 * Large allocations which do not require contiguous pages
882 * should be using vmem_free() in the linux kernel
883 */
884 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
885 #else
886 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
887 #endif
888 kmem_cache_destroy(dbuf_kmem_cache);
889 taskq_destroy(dbu_evict_taskq);
890
891 mutex_enter(&dbuf_evict_lock);
892 dbuf_evict_thread_exit = B_TRUE;
893 while (dbuf_evict_thread_exit) {
894 cv_signal(&dbuf_evict_cv);
895 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
896 }
897 mutex_exit(&dbuf_evict_lock);
898
899 mutex_destroy(&dbuf_evict_lock);
900 cv_destroy(&dbuf_evict_cv);
901
902 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
903 zfs_refcount_destroy(&dbuf_caches[dcs].size);
904 multilist_destroy(dbuf_caches[dcs].cache);
905 }
906
907 if (dbuf_ksp != NULL) {
908 kstat_delete(dbuf_ksp);
909 dbuf_ksp = NULL;
910 }
911 }
912
913 /*
914 * Other stuff.
915 */
916
917 #ifdef ZFS_DEBUG
918 static void
919 dbuf_verify(dmu_buf_impl_t *db)
920 {
921 dnode_t *dn;
922 dbuf_dirty_record_t *dr;
923 uint32_t txg_prev;
924
925 ASSERT(MUTEX_HELD(&db->db_mtx));
926
927 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
928 return;
929
930 ASSERT(db->db_objset != NULL);
931 DB_DNODE_ENTER(db);
932 dn = DB_DNODE(db);
933 if (dn == NULL) {
934 ASSERT(db->db_parent == NULL);
935 ASSERT(db->db_blkptr == NULL);
936 } else {
937 ASSERT3U(db->db.db_object, ==, dn->dn_object);
938 ASSERT3P(db->db_objset, ==, dn->dn_objset);
939 ASSERT3U(db->db_level, <, dn->dn_nlevels);
940 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
941 db->db_blkid == DMU_SPILL_BLKID ||
942 !avl_is_empty(&dn->dn_dbufs));
943 }
944 if (db->db_blkid == DMU_BONUS_BLKID) {
945 ASSERT(dn != NULL);
946 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
947 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
948 } else if (db->db_blkid == DMU_SPILL_BLKID) {
949 ASSERT(dn != NULL);
950 ASSERT0(db->db.db_offset);
951 } else {
952 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
953 }
954
955 if ((dr = list_head(&db->db_dirty_records)) != NULL) {
956 ASSERT(dr->dr_dbuf == db);
957 txg_prev = dr->dr_txg;
958 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
959 dr = list_next(&db->db_dirty_records, dr)) {
960 ASSERT(dr->dr_dbuf == db);
961 ASSERT(txg_prev > dr->dr_txg);
962 txg_prev = dr->dr_txg;
963 }
964 }
965
966 /*
967 * We can't assert that db_size matches dn_datablksz because it
968 * can be momentarily different when another thread is doing
969 * dnode_set_blksz().
970 */
971 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
972 dr = db->db_data_pending;
973 /*
974 * It should only be modified in syncing context, so
975 * make sure we only have one copy of the data.
976 */
977 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
978 }
979
980 /* verify db->db_blkptr */
981 if (db->db_blkptr) {
982 if (db->db_parent == dn->dn_dbuf) {
983 /* db is pointed to by the dnode */
984 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
985 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
986 ASSERT(db->db_parent == NULL);
987 else
988 ASSERT(db->db_parent != NULL);
989 if (db->db_blkid != DMU_SPILL_BLKID)
990 ASSERT3P(db->db_blkptr, ==,
991 &dn->dn_phys->dn_blkptr[db->db_blkid]);
992 } else {
993 /* db is pointed to by an indirect block */
994 int epb __maybe_unused = db->db_parent->db.db_size >>
995 SPA_BLKPTRSHIFT;
996 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
997 ASSERT3U(db->db_parent->db.db_object, ==,
998 db->db.db_object);
999 /*
1000 * dnode_grow_indblksz() can make this fail if we don't
1001 * have the parent's rwlock. XXX indblksz no longer
1002 * grows. safe to do this now?
1003 */
1004 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
1005 ASSERT3P(db->db_blkptr, ==,
1006 ((blkptr_t *)db->db_parent->db.db_data +
1007 db->db_blkid % epb));
1008 }
1009 }
1010 }
1011 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1012 (db->db_buf == NULL || db->db_buf->b_data) &&
1013 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1014 db->db_state != DB_FILL && !dn->dn_free_txg) {
1015 /*
1016 * If the blkptr isn't set but they have nonzero data,
1017 * it had better be dirty, otherwise we'll lose that
1018 * data when we evict this buffer.
1019 *
1020 * There is an exception to this rule for indirect blocks; in
1021 * this case, if the indirect block is a hole, we fill in a few
1022 * fields on each of the child blocks (importantly, birth time)
1023 * to prevent hole birth times from being lost when you
1024 * partially fill in a hole.
1025 */
1026 if (db->db_dirtycnt == 0) {
1027 if (db->db_level == 0) {
1028 uint64_t *buf = db->db.db_data;
1029 int i;
1030
1031 for (i = 0; i < db->db.db_size >> 3; i++) {
1032 ASSERT(buf[i] == 0);
1033 }
1034 } else {
1035 blkptr_t *bps = db->db.db_data;
1036 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1037 db->db.db_size);
1038 /*
1039 * We want to verify that all the blkptrs in the
1040 * indirect block are holes, but we may have
1041 * automatically set up a few fields for them.
1042 * We iterate through each blkptr and verify
1043 * they only have those fields set.
1044 */
1045 for (int i = 0;
1046 i < db->db.db_size / sizeof (blkptr_t);
1047 i++) {
1048 blkptr_t *bp = &bps[i];
1049 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1050 &bp->blk_cksum));
1051 ASSERT(
1052 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1053 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1054 DVA_IS_EMPTY(&bp->blk_dva[2]));
1055 ASSERT0(bp->blk_fill);
1056 ASSERT0(bp->blk_pad[0]);
1057 ASSERT0(bp->blk_pad[1]);
1058 ASSERT(!BP_IS_EMBEDDED(bp));
1059 ASSERT(BP_IS_HOLE(bp));
1060 ASSERT0(bp->blk_phys_birth);
1061 }
1062 }
1063 }
1064 }
1065 DB_DNODE_EXIT(db);
1066 }
1067 #endif
1068
1069 static void
1070 dbuf_clear_data(dmu_buf_impl_t *db)
1071 {
1072 ASSERT(MUTEX_HELD(&db->db_mtx));
1073 dbuf_evict_user(db);
1074 ASSERT3P(db->db_buf, ==, NULL);
1075 db->db.db_data = NULL;
1076 if (db->db_state != DB_NOFILL) {
1077 db->db_state = DB_UNCACHED;
1078 DTRACE_SET_STATE(db, "clear data");
1079 }
1080 }
1081
1082 static void
1083 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1084 {
1085 ASSERT(MUTEX_HELD(&db->db_mtx));
1086 ASSERT(buf != NULL);
1087
1088 db->db_buf = buf;
1089 ASSERT(buf->b_data != NULL);
1090 db->db.db_data = buf->b_data;
1091 }
1092
1093 static arc_buf_t *
1094 dbuf_alloc_arcbuf_from_arcbuf(dmu_buf_impl_t *db, arc_buf_t *data)
1095 {
1096 objset_t *os = db->db_objset;
1097 spa_t *spa = os->os_spa;
1098 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1099 enum zio_compress compress_type;
1100 uint8_t complevel;
1101 int psize, lsize;
1102
1103 psize = arc_buf_size(data);
1104 lsize = arc_buf_lsize(data);
1105 compress_type = arc_get_compression(data);
1106 complevel = arc_get_complevel(data);
1107
1108 if (arc_is_encrypted(data)) {
1109 boolean_t byteorder;
1110 uint8_t salt[ZIO_DATA_SALT_LEN];
1111 uint8_t iv[ZIO_DATA_IV_LEN];
1112 uint8_t mac[ZIO_DATA_MAC_LEN];
1113 dnode_t *dn = DB_DNODE(db);
1114
1115 arc_get_raw_params(data, &byteorder, salt, iv, mac);
1116 data = arc_alloc_raw_buf(spa, db, dmu_objset_id(os),
1117 byteorder, salt, iv, mac, dn->dn_type, psize, lsize,
1118 compress_type, complevel);
1119 } else if (compress_type != ZIO_COMPRESS_OFF) {
1120 ASSERT3U(type, ==, ARC_BUFC_DATA);
1121 data = arc_alloc_compressed_buf(spa, db,
1122 psize, lsize, compress_type, complevel);
1123 } else {
1124 data = arc_alloc_buf(spa, db, type, psize);
1125 }
1126 return (data);
1127 }
1128
1129 static arc_buf_t *
1130 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1131 {
1132 spa_t *spa = db->db_objset->os_spa;
1133
1134 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1135 }
1136
1137 /*
1138 * Loan out an arc_buf for read. Return the loaned arc_buf.
1139 */
1140 arc_buf_t *
1141 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1142 {
1143 arc_buf_t *abuf;
1144
1145 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1146 mutex_enter(&db->db_mtx);
1147 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1148 int blksz = db->db.db_size;
1149 spa_t *spa = db->db_objset->os_spa;
1150
1151 mutex_exit(&db->db_mtx);
1152 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1153 bcopy(db->db.db_data, abuf->b_data, blksz);
1154 } else {
1155 abuf = db->db_buf;
1156 arc_loan_inuse_buf(abuf, db);
1157 db->db_buf = NULL;
1158 dbuf_clear_data(db);
1159 mutex_exit(&db->db_mtx);
1160 }
1161 return (abuf);
1162 }
1163
1164 /*
1165 * Calculate which level n block references the data at the level 0 offset
1166 * provided.
1167 */
1168 uint64_t
1169 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1170 {
1171 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1172 /*
1173 * The level n blkid is equal to the level 0 blkid divided by
1174 * the number of level 0s in a level n block.
1175 *
1176 * The level 0 blkid is offset >> datablkshift =
1177 * offset / 2^datablkshift.
1178 *
1179 * The number of level 0s in a level n is the number of block
1180 * pointers in an indirect block, raised to the power of level.
1181 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1182 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1183 *
1184 * Thus, the level n blkid is: offset /
1185 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1186 * = offset / 2^(datablkshift + level *
1187 * (indblkshift - SPA_BLKPTRSHIFT))
1188 * = offset >> (datablkshift + level *
1189 * (indblkshift - SPA_BLKPTRSHIFT))
1190 */
1191
1192 const unsigned exp = dn->dn_datablkshift +
1193 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1194
1195 if (exp >= 8 * sizeof (offset)) {
1196 /* This only happens on the highest indirection level */
1197 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1198 return (0);
1199 }
1200
1201 ASSERT3U(exp, <, 8 * sizeof (offset));
1202
1203 return (offset >> exp);
1204 } else {
1205 ASSERT3U(offset, <, dn->dn_datablksz);
1206 return (0);
1207 }
1208 }
1209
1210 /*
1211 * This function is used to lock the parent of the provided dbuf. This should be
1212 * used when modifying or reading db_blkptr.
1213 */
1214 db_lock_type_t
1215 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, void *tag)
1216 {
1217 enum db_lock_type ret = DLT_NONE;
1218 if (db->db_parent != NULL) {
1219 rw_enter(&db->db_parent->db_rwlock, rw);
1220 ret = DLT_PARENT;
1221 } else if (dmu_objset_ds(db->db_objset) != NULL) {
1222 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1223 tag);
1224 ret = DLT_OBJSET;
1225 }
1226 /*
1227 * We only return a DLT_NONE lock when it's the top-most indirect block
1228 * of the meta-dnode of the MOS.
1229 */
1230 return (ret);
1231 }
1232
1233 /*
1234 * We need to pass the lock type in because it's possible that the block will
1235 * move from being the topmost indirect block in a dnode (and thus, have no
1236 * parent) to not the top-most via an indirection increase. This would cause a
1237 * panic if we didn't pass the lock type in.
1238 */
1239 void
1240 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, void *tag)
1241 {
1242 if (type == DLT_PARENT)
1243 rw_exit(&db->db_parent->db_rwlock);
1244 else if (type == DLT_OBJSET)
1245 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1246 }
1247
1248 static void
1249 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1250 arc_buf_t *buf, void *vdb)
1251 {
1252 dmu_buf_impl_t *db = vdb;
1253
1254 mutex_enter(&db->db_mtx);
1255 ASSERT3U(db->db_state, ==, DB_READ);
1256 /*
1257 * All reads are synchronous, so we must have a hold on the dbuf
1258 */
1259 ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1260 ASSERT(db->db_buf == NULL);
1261 ASSERT(db->db.db_data == NULL);
1262 if (buf == NULL) {
1263 /* i/o error */
1264 ASSERT(zio == NULL || zio->io_error != 0);
1265 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1266 ASSERT3P(db->db_buf, ==, NULL);
1267 db->db_state = DB_UNCACHED;
1268 DTRACE_SET_STATE(db, "i/o error");
1269 } else if (db->db_level == 0 && db->db_freed_in_flight) {
1270 /* freed in flight */
1271 ASSERT(zio == NULL || zio->io_error == 0);
1272 arc_release(buf, db);
1273 bzero(buf->b_data, db->db.db_size);
1274 arc_buf_freeze(buf);
1275 db->db_freed_in_flight = FALSE;
1276 dbuf_set_data(db, buf);
1277 db->db_state = DB_CACHED;
1278 DTRACE_SET_STATE(db, "freed in flight");
1279 } else {
1280 /* success */
1281 ASSERT(zio == NULL || zio->io_error == 0);
1282 dbuf_set_data(db, buf);
1283 db->db_state = DB_CACHED;
1284 DTRACE_SET_STATE(db, "successful read");
1285 }
1286 cv_broadcast(&db->db_changed);
1287 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1288 }
1289
1290 /*
1291 * Shortcut for performing reads on bonus dbufs. Returns
1292 * an error if we fail to verify the dnode associated with
1293 * a decrypted block. Otherwise success.
1294 */
1295 static int
1296 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
1297 {
1298 int bonuslen, max_bonuslen, err;
1299
1300 err = dbuf_read_verify_dnode_crypt(db, flags);
1301 if (err)
1302 return (err);
1303
1304 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1305 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1306 ASSERT(MUTEX_HELD(&db->db_mtx));
1307 ASSERT(DB_DNODE_HELD(db));
1308 ASSERT3U(bonuslen, <=, db->db.db_size);
1309 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1310 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1311 if (bonuslen < max_bonuslen)
1312 bzero(db->db.db_data, max_bonuslen);
1313 if (bonuslen)
1314 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1315 db->db_state = DB_CACHED;
1316 DTRACE_SET_STATE(db, "bonus buffer filled");
1317 return (0);
1318 }
1319
1320 static void
1321 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn)
1322 {
1323 blkptr_t *bps = db->db.db_data;
1324 uint32_t indbs = 1ULL << dn->dn_indblkshift;
1325 int n_bps = indbs >> SPA_BLKPTRSHIFT;
1326
1327 for (int i = 0; i < n_bps; i++) {
1328 blkptr_t *bp = &bps[i];
1329
1330 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, indbs);
1331 BP_SET_LSIZE(bp, BP_GET_LEVEL(db->db_blkptr) == 1 ?
1332 dn->dn_datablksz : BP_GET_LSIZE(db->db_blkptr));
1333 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1334 BP_SET_LEVEL(bp, BP_GET_LEVEL(db->db_blkptr) - 1);
1335 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1336 }
1337 }
1338
1339 /*
1340 * Handle reads on dbufs that are holes, if necessary. This function
1341 * requires that the dbuf's mutex is held. Returns success (0) if action
1342 * was taken, ENOENT if no action was taken.
1343 */
1344 static int
1345 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
1346 {
1347 ASSERT(MUTEX_HELD(&db->db_mtx));
1348
1349 int is_hole = db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr);
1350 /*
1351 * For level 0 blocks only, if the above check fails:
1352 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1353 * processes the delete record and clears the bp while we are waiting
1354 * for the dn_mtx (resulting in a "no" from block_freed).
1355 */
1356 if (!is_hole && db->db_level == 0) {
1357 is_hole = dnode_block_freed(dn, db->db_blkid) ||
1358 BP_IS_HOLE(db->db_blkptr);
1359 }
1360
1361 if (is_hole) {
1362 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1363 bzero(db->db.db_data, db->db.db_size);
1364
1365 if (db->db_blkptr != NULL && db->db_level > 0 &&
1366 BP_IS_HOLE(db->db_blkptr) &&
1367 db->db_blkptr->blk_birth != 0) {
1368 dbuf_handle_indirect_hole(db, dn);
1369 }
1370 db->db_state = DB_CACHED;
1371 DTRACE_SET_STATE(db, "hole read satisfied");
1372 return (0);
1373 }
1374 return (ENOENT);
1375 }
1376
1377 /*
1378 * This function ensures that, when doing a decrypting read of a block,
1379 * we make sure we have decrypted the dnode associated with it. We must do
1380 * this so that we ensure we are fully authenticating the checksum-of-MACs
1381 * tree from the root of the objset down to this block. Indirect blocks are
1382 * always verified against their secure checksum-of-MACs assuming that the
1383 * dnode containing them is correct. Now that we are doing a decrypting read,
1384 * we can be sure that the key is loaded and verify that assumption. This is
1385 * especially important considering that we always read encrypted dnode
1386 * blocks as raw data (without verifying their MACs) to start, and
1387 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1388 */
1389 static int
1390 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1391 {
1392 int err = 0;
1393 objset_t *os = db->db_objset;
1394 arc_buf_t *dnode_abuf;
1395 dnode_t *dn;
1396 zbookmark_phys_t zb;
1397
1398 ASSERT(MUTEX_HELD(&db->db_mtx));
1399
1400 if (!os->os_encrypted || os->os_raw_receive ||
1401 (flags & DB_RF_NO_DECRYPT) != 0)
1402 return (0);
1403
1404 DB_DNODE_ENTER(db);
1405 dn = DB_DNODE(db);
1406 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1407
1408 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1409 DB_DNODE_EXIT(db);
1410 return (0);
1411 }
1412
1413 SET_BOOKMARK(&zb, dmu_objset_id(os),
1414 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1415 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1416
1417 /*
1418 * An error code of EACCES tells us that the key is still not
1419 * available. This is ok if we are only reading authenticated
1420 * (and therefore non-encrypted) blocks.
1421 */
1422 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1423 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1424 (db->db_blkid == DMU_BONUS_BLKID &&
1425 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1426 err = 0;
1427
1428 DB_DNODE_EXIT(db);
1429
1430 return (err);
1431 }
1432
1433 /*
1434 * Drops db_mtx and the parent lock specified by dblt and tag before
1435 * returning.
1436 */
1437 static int
1438 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags,
1439 db_lock_type_t dblt, void *tag)
1440 {
1441 dnode_t *dn;
1442 zbookmark_phys_t zb;
1443 uint32_t aflags = ARC_FLAG_NOWAIT;
1444 int err, zio_flags;
1445 boolean_t bonus_read;
1446
1447 err = zio_flags = 0;
1448 bonus_read = B_FALSE;
1449 DB_DNODE_ENTER(db);
1450 dn = DB_DNODE(db);
1451 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1452 ASSERT(MUTEX_HELD(&db->db_mtx));
1453 ASSERT(db->db_state == DB_UNCACHED);
1454 ASSERT(db->db_buf == NULL);
1455 ASSERT(db->db_parent == NULL ||
1456 RW_LOCK_HELD(&db->db_parent->db_rwlock));
1457
1458 if (db->db_blkid == DMU_BONUS_BLKID) {
1459 err = dbuf_read_bonus(db, dn, flags);
1460 goto early_unlock;
1461 }
1462
1463 err = dbuf_read_hole(db, dn, flags);
1464 if (err == 0)
1465 goto early_unlock;
1466
1467 /*
1468 * Any attempt to read a redacted block should result in an error. This
1469 * will never happen under normal conditions, but can be useful for
1470 * debugging purposes.
1471 */
1472 if (BP_IS_REDACTED(db->db_blkptr)) {
1473 ASSERT(dsl_dataset_feature_is_active(
1474 db->db_objset->os_dsl_dataset,
1475 SPA_FEATURE_REDACTED_DATASETS));
1476 err = SET_ERROR(EIO);
1477 goto early_unlock;
1478 }
1479
1480 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1481 db->db.db_object, db->db_level, db->db_blkid);
1482
1483 /*
1484 * All bps of an encrypted os should have the encryption bit set.
1485 * If this is not true it indicates tampering and we report an error.
1486 */
1487 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1488 spa_log_error(db->db_objset->os_spa, &zb);
1489 zfs_panic_recover("unencrypted block in encrypted "
1490 "object set %llu", dmu_objset_id(db->db_objset));
1491 err = SET_ERROR(EIO);
1492 goto early_unlock;
1493 }
1494
1495 err = dbuf_read_verify_dnode_crypt(db, flags);
1496 if (err != 0)
1497 goto early_unlock;
1498
1499 DB_DNODE_EXIT(db);
1500
1501 db->db_state = DB_READ;
1502 DTRACE_SET_STATE(db, "read issued");
1503 mutex_exit(&db->db_mtx);
1504
1505 if (DBUF_IS_L2CACHEABLE(db))
1506 aflags |= ARC_FLAG_L2CACHE;
1507
1508 dbuf_add_ref(db, NULL);
1509
1510 zio_flags = (flags & DB_RF_CANFAIL) ?
1511 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1512
1513 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1514 zio_flags |= ZIO_FLAG_RAW;
1515 /*
1516 * The zio layer will copy the provided blkptr later, but we need to
1517 * do this now so that we can release the parent's rwlock. We have to
1518 * do that now so that if dbuf_read_done is called synchronously (on
1519 * an l1 cache hit) we don't acquire the db_mtx while holding the
1520 * parent's rwlock, which would be a lock ordering violation.
1521 */
1522 blkptr_t bp = *db->db_blkptr;
1523 dmu_buf_unlock_parent(db, dblt, tag);
1524 (void) arc_read(zio, db->db_objset->os_spa, &bp,
1525 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1526 &aflags, &zb);
1527 return (err);
1528 early_unlock:
1529 DB_DNODE_EXIT(db);
1530 mutex_exit(&db->db_mtx);
1531 dmu_buf_unlock_parent(db, dblt, tag);
1532 return (err);
1533 }
1534
1535 /*
1536 * This is our just-in-time copy function. It makes a copy of buffers that
1537 * have been modified in a previous transaction group before we access them in
1538 * the current active group.
1539 *
1540 * This function is used in three places: when we are dirtying a buffer for the
1541 * first time in a txg, when we are freeing a range in a dnode that includes
1542 * this buffer, and when we are accessing a buffer which was received compressed
1543 * and later referenced in a WRITE_BYREF record.
1544 *
1545 * Note that when we are called from dbuf_free_range() we do not put a hold on
1546 * the buffer, we just traverse the active dbuf list for the dnode.
1547 */
1548 static void
1549 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1550 {
1551 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1552
1553 ASSERT(MUTEX_HELD(&db->db_mtx));
1554 ASSERT(db->db.db_data != NULL);
1555 ASSERT(db->db_level == 0);
1556 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1557
1558 if (dr == NULL ||
1559 (dr->dt.dl.dr_data !=
1560 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1561 return;
1562
1563 /*
1564 * If the last dirty record for this dbuf has not yet synced
1565 * and its referencing the dbuf data, either:
1566 * reset the reference to point to a new copy,
1567 * or (if there a no active holders)
1568 * just null out the current db_data pointer.
1569 */
1570 ASSERT3U(dr->dr_txg, >=, txg - 2);
1571 if (db->db_blkid == DMU_BONUS_BLKID) {
1572 dnode_t *dn = DB_DNODE(db);
1573 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1574 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1575 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1576 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1577 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1578 arc_buf_t *buf = dbuf_alloc_arcbuf_from_arcbuf(db, db->db_buf);
1579 dr->dt.dl.dr_data = buf;
1580 bcopy(db->db.db_data, buf->b_data, arc_buf_size(buf));
1581 } else {
1582 db->db_buf = NULL;
1583 dbuf_clear_data(db);
1584 }
1585 }
1586
1587 int
1588 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1589 {
1590 int err = 0;
1591 boolean_t prefetch;
1592 dnode_t *dn;
1593
1594 /*
1595 * We don't have to hold the mutex to check db_state because it
1596 * can't be freed while we have a hold on the buffer.
1597 */
1598 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1599
1600 if (db->db_state == DB_NOFILL)
1601 return (SET_ERROR(EIO));
1602
1603 DB_DNODE_ENTER(db);
1604 dn = DB_DNODE(db);
1605
1606 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1607 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1608 DBUF_IS_CACHEABLE(db);
1609
1610 mutex_enter(&db->db_mtx);
1611 if (db->db_state == DB_CACHED) {
1612 spa_t *spa = dn->dn_objset->os_spa;
1613
1614 /*
1615 * Ensure that this block's dnode has been decrypted if
1616 * the caller has requested decrypted data.
1617 */
1618 err = dbuf_read_verify_dnode_crypt(db, flags);
1619
1620 /*
1621 * If the arc buf is compressed or encrypted and the caller
1622 * requested uncompressed data, we need to untransform it
1623 * before returning. We also call arc_untransform() on any
1624 * unauthenticated blocks, which will verify their MAC if
1625 * the key is now available.
1626 */
1627 if (err == 0 && db->db_buf != NULL &&
1628 (flags & DB_RF_NO_DECRYPT) == 0 &&
1629 (arc_is_encrypted(db->db_buf) ||
1630 arc_is_unauthenticated(db->db_buf) ||
1631 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1632 zbookmark_phys_t zb;
1633
1634 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1635 db->db.db_object, db->db_level, db->db_blkid);
1636 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1637 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1638 dbuf_set_data(db, db->db_buf);
1639 }
1640 mutex_exit(&db->db_mtx);
1641 if (err == 0 && prefetch) {
1642 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1643 flags & DB_RF_HAVESTRUCT);
1644 }
1645 DB_DNODE_EXIT(db);
1646 DBUF_STAT_BUMP(hash_hits);
1647 } else if (db->db_state == DB_UNCACHED) {
1648 spa_t *spa = dn->dn_objset->os_spa;
1649 boolean_t need_wait = B_FALSE;
1650
1651 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1652
1653 if (zio == NULL &&
1654 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1655 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1656 need_wait = B_TRUE;
1657 }
1658 err = dbuf_read_impl(db, zio, flags, dblt, FTAG);
1659 /*
1660 * dbuf_read_impl has dropped db_mtx and our parent's rwlock
1661 * for us
1662 */
1663 if (!err && prefetch) {
1664 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1665 flags & DB_RF_HAVESTRUCT);
1666 }
1667
1668 DB_DNODE_EXIT(db);
1669 DBUF_STAT_BUMP(hash_misses);
1670
1671 /*
1672 * If we created a zio_root we must execute it to avoid
1673 * leaking it, even if it isn't attached to any work due
1674 * to an error in dbuf_read_impl().
1675 */
1676 if (need_wait) {
1677 if (err == 0)
1678 err = zio_wait(zio);
1679 else
1680 VERIFY0(zio_wait(zio));
1681 }
1682 } else {
1683 /*
1684 * Another reader came in while the dbuf was in flight
1685 * between UNCACHED and CACHED. Either a writer will finish
1686 * writing the buffer (sending the dbuf to CACHED) or the
1687 * first reader's request will reach the read_done callback
1688 * and send the dbuf to CACHED. Otherwise, a failure
1689 * occurred and the dbuf went to UNCACHED.
1690 */
1691 mutex_exit(&db->db_mtx);
1692 if (prefetch) {
1693 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1694 flags & DB_RF_HAVESTRUCT);
1695 }
1696 DB_DNODE_EXIT(db);
1697 DBUF_STAT_BUMP(hash_misses);
1698
1699 /* Skip the wait per the caller's request. */
1700 if ((flags & DB_RF_NEVERWAIT) == 0) {
1701 mutex_enter(&db->db_mtx);
1702 while (db->db_state == DB_READ ||
1703 db->db_state == DB_FILL) {
1704 ASSERT(db->db_state == DB_READ ||
1705 (flags & DB_RF_HAVESTRUCT) == 0);
1706 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1707 db, zio_t *, zio);
1708 cv_wait(&db->db_changed, &db->db_mtx);
1709 }
1710 if (db->db_state == DB_UNCACHED)
1711 err = SET_ERROR(EIO);
1712 mutex_exit(&db->db_mtx);
1713 }
1714 }
1715
1716 return (err);
1717 }
1718
1719 static void
1720 dbuf_noread(dmu_buf_impl_t *db)
1721 {
1722 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1723 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1724 mutex_enter(&db->db_mtx);
1725 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1726 cv_wait(&db->db_changed, &db->db_mtx);
1727 if (db->db_state == DB_UNCACHED) {
1728 ASSERT(db->db_buf == NULL);
1729 ASSERT(db->db.db_data == NULL);
1730 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1731 db->db_state = DB_FILL;
1732 DTRACE_SET_STATE(db, "assigning filled buffer");
1733 } else if (db->db_state == DB_NOFILL) {
1734 dbuf_clear_data(db);
1735 } else {
1736 ASSERT3U(db->db_state, ==, DB_CACHED);
1737 }
1738 mutex_exit(&db->db_mtx);
1739 }
1740
1741 void
1742 dbuf_unoverride(dbuf_dirty_record_t *dr)
1743 {
1744 dmu_buf_impl_t *db = dr->dr_dbuf;
1745 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1746 uint64_t txg = dr->dr_txg;
1747
1748 ASSERT(MUTEX_HELD(&db->db_mtx));
1749 /*
1750 * This assert is valid because dmu_sync() expects to be called by
1751 * a zilog's get_data while holding a range lock. This call only
1752 * comes from dbuf_dirty() callers who must also hold a range lock.
1753 */
1754 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1755 ASSERT(db->db_level == 0);
1756
1757 if (db->db_blkid == DMU_BONUS_BLKID ||
1758 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1759 return;
1760
1761 ASSERT(db->db_data_pending != dr);
1762
1763 /* free this block */
1764 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1765 zio_free(db->db_objset->os_spa, txg, bp);
1766
1767 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1768 dr->dt.dl.dr_nopwrite = B_FALSE;
1769 dr->dt.dl.dr_has_raw_params = B_FALSE;
1770
1771 /*
1772 * Release the already-written buffer, so we leave it in
1773 * a consistent dirty state. Note that all callers are
1774 * modifying the buffer, so they will immediately do
1775 * another (redundant) arc_release(). Therefore, leave
1776 * the buf thawed to save the effort of freezing &
1777 * immediately re-thawing it.
1778 */
1779 arc_release(dr->dt.dl.dr_data, db);
1780 }
1781
1782 /*
1783 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1784 * data blocks in the free range, so that any future readers will find
1785 * empty blocks.
1786 */
1787 void
1788 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1789 dmu_tx_t *tx)
1790 {
1791 dmu_buf_impl_t *db_search;
1792 dmu_buf_impl_t *db, *db_next;
1793 uint64_t txg = tx->tx_txg;
1794 avl_index_t where;
1795 dbuf_dirty_record_t *dr;
1796
1797 if (end_blkid > dn->dn_maxblkid &&
1798 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1799 end_blkid = dn->dn_maxblkid;
1800 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1801
1802 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1803 db_search->db_level = 0;
1804 db_search->db_blkid = start_blkid;
1805 db_search->db_state = DB_SEARCH;
1806
1807 mutex_enter(&dn->dn_dbufs_mtx);
1808 db = avl_find(&dn->dn_dbufs, db_search, &where);
1809 ASSERT3P(db, ==, NULL);
1810
1811 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1812
1813 for (; db != NULL; db = db_next) {
1814 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1815 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1816
1817 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1818 break;
1819 }
1820 ASSERT3U(db->db_blkid, >=, start_blkid);
1821
1822 /* found a level 0 buffer in the range */
1823 mutex_enter(&db->db_mtx);
1824 if (dbuf_undirty(db, tx)) {
1825 /* mutex has been dropped and dbuf destroyed */
1826 continue;
1827 }
1828
1829 if (db->db_state == DB_UNCACHED ||
1830 db->db_state == DB_NOFILL ||
1831 db->db_state == DB_EVICTING) {
1832 ASSERT(db->db.db_data == NULL);
1833 mutex_exit(&db->db_mtx);
1834 continue;
1835 }
1836 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1837 /* will be handled in dbuf_read_done or dbuf_rele */
1838 db->db_freed_in_flight = TRUE;
1839 mutex_exit(&db->db_mtx);
1840 continue;
1841 }
1842 if (zfs_refcount_count(&db->db_holds) == 0) {
1843 ASSERT(db->db_buf);
1844 dbuf_destroy(db);
1845 continue;
1846 }
1847 /* The dbuf is referenced */
1848
1849 dr = list_head(&db->db_dirty_records);
1850 if (dr != NULL) {
1851 if (dr->dr_txg == txg) {
1852 /*
1853 * This buffer is "in-use", re-adjust the file
1854 * size to reflect that this buffer may
1855 * contain new data when we sync.
1856 */
1857 if (db->db_blkid != DMU_SPILL_BLKID &&
1858 db->db_blkid > dn->dn_maxblkid)
1859 dn->dn_maxblkid = db->db_blkid;
1860 dbuf_unoverride(dr);
1861 } else {
1862 /*
1863 * This dbuf is not dirty in the open context.
1864 * Either uncache it (if its not referenced in
1865 * the open context) or reset its contents to
1866 * empty.
1867 */
1868 dbuf_fix_old_data(db, txg);
1869 }
1870 }
1871 /* clear the contents if its cached */
1872 if (db->db_state == DB_CACHED) {
1873 ASSERT(db->db.db_data != NULL);
1874 arc_release(db->db_buf, db);
1875 rw_enter(&db->db_rwlock, RW_WRITER);
1876 bzero(db->db.db_data, db->db.db_size);
1877 rw_exit(&db->db_rwlock);
1878 arc_buf_freeze(db->db_buf);
1879 }
1880
1881 mutex_exit(&db->db_mtx);
1882 }
1883
1884 kmem_free(db_search, sizeof (dmu_buf_impl_t));
1885 mutex_exit(&dn->dn_dbufs_mtx);
1886 }
1887
1888 void
1889 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1890 {
1891 arc_buf_t *buf, *old_buf;
1892 dbuf_dirty_record_t *dr;
1893 int osize = db->db.db_size;
1894 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1895 dnode_t *dn;
1896
1897 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1898
1899 DB_DNODE_ENTER(db);
1900 dn = DB_DNODE(db);
1901
1902 /*
1903 * XXX we should be doing a dbuf_read, checking the return
1904 * value and returning that up to our callers
1905 */
1906 dmu_buf_will_dirty(&db->db, tx);
1907
1908 /* create the data buffer for the new block */
1909 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1910
1911 /* copy old block data to the new block */
1912 old_buf = db->db_buf;
1913 bcopy(old_buf->b_data, buf->b_data, MIN(osize, size));
1914 /* zero the remainder */
1915 if (size > osize)
1916 bzero((uint8_t *)buf->b_data + osize, size - osize);
1917
1918 mutex_enter(&db->db_mtx);
1919 dbuf_set_data(db, buf);
1920 arc_buf_destroy(old_buf, db);
1921 db->db.db_size = size;
1922
1923 dr = list_head(&db->db_dirty_records);
1924 /* dirty record added by dmu_buf_will_dirty() */
1925 VERIFY(dr != NULL);
1926 if (db->db_level == 0)
1927 dr->dt.dl.dr_data = buf;
1928 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
1929 ASSERT3U(dr->dr_accounted, ==, osize);
1930 dr->dr_accounted = size;
1931 mutex_exit(&db->db_mtx);
1932
1933 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1934 DB_DNODE_EXIT(db);
1935 }
1936
1937 void
1938 dbuf_release_bp(dmu_buf_impl_t *db)
1939 {
1940 objset_t *os __maybe_unused = db->db_objset;
1941
1942 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1943 ASSERT(arc_released(os->os_phys_buf) ||
1944 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1945 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1946
1947 (void) arc_release(db->db_buf, db);
1948 }
1949
1950 /*
1951 * We already have a dirty record for this TXG, and we are being
1952 * dirtied again.
1953 */
1954 static void
1955 dbuf_redirty(dbuf_dirty_record_t *dr)
1956 {
1957 dmu_buf_impl_t *db = dr->dr_dbuf;
1958
1959 ASSERT(MUTEX_HELD(&db->db_mtx));
1960
1961 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1962 /*
1963 * If this buffer has already been written out,
1964 * we now need to reset its state.
1965 */
1966 dbuf_unoverride(dr);
1967 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1968 db->db_state != DB_NOFILL) {
1969 /* Already released on initial dirty, so just thaw. */
1970 ASSERT(arc_released(db->db_buf));
1971 arc_buf_thaw(db->db_buf);
1972 }
1973 }
1974 }
1975
1976 dbuf_dirty_record_t *
1977 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
1978 {
1979 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1980 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
1981 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
1982 ASSERT(dn->dn_maxblkid >= blkid);
1983
1984 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
1985 list_link_init(&dr->dr_dirty_node);
1986 list_link_init(&dr->dr_dbuf_node);
1987 dr->dr_dnode = dn;
1988 dr->dr_txg = tx->tx_txg;
1989 dr->dt.dll.dr_blkid = blkid;
1990 dr->dr_accounted = dn->dn_datablksz;
1991
1992 /*
1993 * There should not be any dbuf for the block that we're dirtying.
1994 * Otherwise the buffer contents could be inconsistent between the
1995 * dbuf and the lightweight dirty record.
1996 */
1997 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid));
1998
1999 mutex_enter(&dn->dn_mtx);
2000 int txgoff = tx->tx_txg & TXG_MASK;
2001 if (dn->dn_free_ranges[txgoff] != NULL) {
2002 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2003 }
2004
2005 if (dn->dn_nlevels == 1) {
2006 ASSERT3U(blkid, <, dn->dn_nblkptr);
2007 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2008 mutex_exit(&dn->dn_mtx);
2009 rw_exit(&dn->dn_struct_rwlock);
2010 dnode_setdirty(dn, tx);
2011 } else {
2012 mutex_exit(&dn->dn_mtx);
2013
2014 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2015 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2016 1, blkid >> epbs, FTAG);
2017 rw_exit(&dn->dn_struct_rwlock);
2018 if (parent_db == NULL) {
2019 kmem_free(dr, sizeof (*dr));
2020 return (NULL);
2021 }
2022 int err = dbuf_read(parent_db, NULL,
2023 (DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2024 if (err != 0) {
2025 dbuf_rele(parent_db, FTAG);
2026 kmem_free(dr, sizeof (*dr));
2027 return (NULL);
2028 }
2029
2030 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2031 dbuf_rele(parent_db, FTAG);
2032 mutex_enter(&parent_dr->dt.di.dr_mtx);
2033 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2034 list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2035 mutex_exit(&parent_dr->dt.di.dr_mtx);
2036 dr->dr_parent = parent_dr;
2037 }
2038
2039 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2040
2041 return (dr);
2042 }
2043
2044 dbuf_dirty_record_t *
2045 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2046 {
2047 dnode_t *dn;
2048 objset_t *os;
2049 dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2050 int txgoff = tx->tx_txg & TXG_MASK;
2051 boolean_t drop_struct_rwlock = B_FALSE;
2052
2053 ASSERT(tx->tx_txg != 0);
2054 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2055 DMU_TX_DIRTY_BUF(tx, db);
2056
2057 DB_DNODE_ENTER(db);
2058 dn = DB_DNODE(db);
2059 /*
2060 * Shouldn't dirty a regular buffer in syncing context. Private
2061 * objects may be dirtied in syncing context, but only if they
2062 * were already pre-dirtied in open context.
2063 */
2064 #ifdef ZFS_DEBUG
2065 if (dn->dn_objset->os_dsl_dataset != NULL) {
2066 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2067 RW_READER, FTAG);
2068 }
2069 ASSERT(!dmu_tx_is_syncing(tx) ||
2070 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2071 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2072 dn->dn_objset->os_dsl_dataset == NULL);
2073 if (dn->dn_objset->os_dsl_dataset != NULL)
2074 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2075 #endif
2076 /*
2077 * We make this assert for private objects as well, but after we
2078 * check if we're already dirty. They are allowed to re-dirty
2079 * in syncing context.
2080 */
2081 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2082 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2083 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2084
2085 mutex_enter(&db->db_mtx);
2086 /*
2087 * XXX make this true for indirects too? The problem is that
2088 * transactions created with dmu_tx_create_assigned() from
2089 * syncing context don't bother holding ahead.
2090 */
2091 ASSERT(db->db_level != 0 ||
2092 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2093 db->db_state == DB_NOFILL);
2094
2095 mutex_enter(&dn->dn_mtx);
2096 dnode_set_dirtyctx(dn, tx, db);
2097 if (tx->tx_txg > dn->dn_dirty_txg)
2098 dn->dn_dirty_txg = tx->tx_txg;
2099 mutex_exit(&dn->dn_mtx);
2100
2101 if (db->db_blkid == DMU_SPILL_BLKID)
2102 dn->dn_have_spill = B_TRUE;
2103
2104 /*
2105 * If this buffer is already dirty, we're done.
2106 */
2107 dr_head = list_head(&db->db_dirty_records);
2108 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2109 db->db.db_object == DMU_META_DNODE_OBJECT);
2110 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2111 if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2112 DB_DNODE_EXIT(db);
2113
2114 dbuf_redirty(dr_next);
2115 mutex_exit(&db->db_mtx);
2116 return (dr_next);
2117 }
2118
2119 /*
2120 * Only valid if not already dirty.
2121 */
2122 ASSERT(dn->dn_object == 0 ||
2123 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2124 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2125
2126 ASSERT3U(dn->dn_nlevels, >, db->db_level);
2127
2128 /*
2129 * We should only be dirtying in syncing context if it's the
2130 * mos or we're initializing the os or it's a special object.
2131 * However, we are allowed to dirty in syncing context provided
2132 * we already dirtied it in open context. Hence we must make
2133 * this assertion only if we're not already dirty.
2134 */
2135 os = dn->dn_objset;
2136 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2137 #ifdef ZFS_DEBUG
2138 if (dn->dn_objset->os_dsl_dataset != NULL)
2139 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2140 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2141 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2142 if (dn->dn_objset->os_dsl_dataset != NULL)
2143 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2144 #endif
2145 ASSERT(db->db.db_size != 0);
2146
2147 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2148
2149 if (db->db_blkid != DMU_BONUS_BLKID) {
2150 dmu_objset_willuse_space(os, db->db.db_size, tx);
2151 }
2152
2153 /*
2154 * If this buffer is dirty in an old transaction group we need
2155 * to make a copy of it so that the changes we make in this
2156 * transaction group won't leak out when we sync the older txg.
2157 */
2158 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2159 list_link_init(&dr->dr_dirty_node);
2160 list_link_init(&dr->dr_dbuf_node);
2161 dr->dr_dnode = dn;
2162 if (db->db_level == 0) {
2163 void *data_old = db->db_buf;
2164
2165 if (db->db_state != DB_NOFILL) {
2166 if (db->db_blkid == DMU_BONUS_BLKID) {
2167 dbuf_fix_old_data(db, tx->tx_txg);
2168 data_old = db->db.db_data;
2169 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2170 /*
2171 * Release the data buffer from the cache so
2172 * that we can modify it without impacting
2173 * possible other users of this cached data
2174 * block. Note that indirect blocks and
2175 * private objects are not released until the
2176 * syncing state (since they are only modified
2177 * then).
2178 */
2179 arc_release(db->db_buf, db);
2180 dbuf_fix_old_data(db, tx->tx_txg);
2181 data_old = db->db_buf;
2182 }
2183 ASSERT(data_old != NULL);
2184 }
2185 dr->dt.dl.dr_data = data_old;
2186 } else {
2187 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2188 list_create(&dr->dt.di.dr_children,
2189 sizeof (dbuf_dirty_record_t),
2190 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2191 }
2192 if (db->db_blkid != DMU_BONUS_BLKID)
2193 dr->dr_accounted = db->db.db_size;
2194 dr->dr_dbuf = db;
2195 dr->dr_txg = tx->tx_txg;
2196 list_insert_before(&db->db_dirty_records, dr_next, dr);
2197
2198 /*
2199 * We could have been freed_in_flight between the dbuf_noread
2200 * and dbuf_dirty. We win, as though the dbuf_noread() had
2201 * happened after the free.
2202 */
2203 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2204 db->db_blkid != DMU_SPILL_BLKID) {
2205 mutex_enter(&dn->dn_mtx);
2206 if (dn->dn_free_ranges[txgoff] != NULL) {
2207 range_tree_clear(dn->dn_free_ranges[txgoff],
2208 db->db_blkid, 1);
2209 }
2210 mutex_exit(&dn->dn_mtx);
2211 db->db_freed_in_flight = FALSE;
2212 }
2213
2214 /*
2215 * This buffer is now part of this txg
2216 */
2217 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2218 db->db_dirtycnt += 1;
2219 ASSERT3U(db->db_dirtycnt, <=, 3);
2220
2221 mutex_exit(&db->db_mtx);
2222
2223 if (db->db_blkid == DMU_BONUS_BLKID ||
2224 db->db_blkid == DMU_SPILL_BLKID) {
2225 mutex_enter(&dn->dn_mtx);
2226 ASSERT(!list_link_active(&dr->dr_dirty_node));
2227 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2228 mutex_exit(&dn->dn_mtx);
2229 dnode_setdirty(dn, tx);
2230 DB_DNODE_EXIT(db);
2231 return (dr);
2232 }
2233
2234 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2235 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2236 drop_struct_rwlock = B_TRUE;
2237 }
2238
2239 /*
2240 * If we are overwriting a dedup BP, then unless it is snapshotted,
2241 * when we get to syncing context we will need to decrement its
2242 * refcount in the DDT. Prefetch the relevant DDT block so that
2243 * syncing context won't have to wait for the i/o.
2244 */
2245 if (db->db_blkptr != NULL) {
2246 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2247 ddt_prefetch(os->os_spa, db->db_blkptr);
2248 dmu_buf_unlock_parent(db, dblt, FTAG);
2249 }
2250
2251 /*
2252 * We need to hold the dn_struct_rwlock to make this assertion,
2253 * because it protects dn_phys / dn_next_nlevels from changing.
2254 */
2255 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2256 dn->dn_phys->dn_nlevels > db->db_level ||
2257 dn->dn_next_nlevels[txgoff] > db->db_level ||
2258 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2259 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2260
2261
2262 if (db->db_level == 0) {
2263 ASSERT(!db->db_objset->os_raw_receive ||
2264 dn->dn_maxblkid >= db->db_blkid);
2265 dnode_new_blkid(dn, db->db_blkid, tx,
2266 drop_struct_rwlock, B_FALSE);
2267 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2268 }
2269
2270 if (db->db_level+1 < dn->dn_nlevels) {
2271 dmu_buf_impl_t *parent = db->db_parent;
2272 dbuf_dirty_record_t *di;
2273 int parent_held = FALSE;
2274
2275 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2276 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2277 parent = dbuf_hold_level(dn, db->db_level + 1,
2278 db->db_blkid >> epbs, FTAG);
2279 ASSERT(parent != NULL);
2280 parent_held = TRUE;
2281 }
2282 if (drop_struct_rwlock)
2283 rw_exit(&dn->dn_struct_rwlock);
2284 ASSERT3U(db->db_level + 1, ==, parent->db_level);
2285 di = dbuf_dirty(parent, tx);
2286 if (parent_held)
2287 dbuf_rele(parent, FTAG);
2288
2289 mutex_enter(&db->db_mtx);
2290 /*
2291 * Since we've dropped the mutex, it's possible that
2292 * dbuf_undirty() might have changed this out from under us.
2293 */
2294 if (list_head(&db->db_dirty_records) == dr ||
2295 dn->dn_object == DMU_META_DNODE_OBJECT) {
2296 mutex_enter(&di->dt.di.dr_mtx);
2297 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2298 ASSERT(!list_link_active(&dr->dr_dirty_node));
2299 list_insert_tail(&di->dt.di.dr_children, dr);
2300 mutex_exit(&di->dt.di.dr_mtx);
2301 dr->dr_parent = di;
2302 }
2303 mutex_exit(&db->db_mtx);
2304 } else {
2305 ASSERT(db->db_level + 1 == dn->dn_nlevels);
2306 ASSERT(db->db_blkid < dn->dn_nblkptr);
2307 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2308 mutex_enter(&dn->dn_mtx);
2309 ASSERT(!list_link_active(&dr->dr_dirty_node));
2310 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2311 mutex_exit(&dn->dn_mtx);
2312 if (drop_struct_rwlock)
2313 rw_exit(&dn->dn_struct_rwlock);
2314 }
2315
2316 dnode_setdirty(dn, tx);
2317 DB_DNODE_EXIT(db);
2318 return (dr);
2319 }
2320
2321 static void
2322 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2323 {
2324 dmu_buf_impl_t *db = dr->dr_dbuf;
2325
2326 if (dr->dt.dl.dr_data != db->db.db_data) {
2327 struct dnode *dn = dr->dr_dnode;
2328 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2329
2330 kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2331 arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2332 }
2333 db->db_data_pending = NULL;
2334 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2335 list_remove(&db->db_dirty_records, dr);
2336 if (dr->dr_dbuf->db_level != 0) {
2337 mutex_destroy(&dr->dt.di.dr_mtx);
2338 list_destroy(&dr->dt.di.dr_children);
2339 }
2340 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2341 ASSERT3U(db->db_dirtycnt, >, 0);
2342 db->db_dirtycnt -= 1;
2343 }
2344
2345 /*
2346 * Undirty a buffer in the transaction group referenced by the given
2347 * transaction. Return whether this evicted the dbuf.
2348 */
2349 static boolean_t
2350 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2351 {
2352 uint64_t txg = tx->tx_txg;
2353
2354 ASSERT(txg != 0);
2355
2356 /*
2357 * Due to our use of dn_nlevels below, this can only be called
2358 * in open context, unless we are operating on the MOS.
2359 * From syncing context, dn_nlevels may be different from the
2360 * dn_nlevels used when dbuf was dirtied.
2361 */
2362 ASSERT(db->db_objset ==
2363 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2364 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2365 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2366 ASSERT0(db->db_level);
2367 ASSERT(MUTEX_HELD(&db->db_mtx));
2368
2369 /*
2370 * If this buffer is not dirty, we're done.
2371 */
2372 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2373 if (dr == NULL)
2374 return (B_FALSE);
2375 ASSERT(dr->dr_dbuf == db);
2376
2377 dnode_t *dn = dr->dr_dnode;
2378
2379 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2380
2381 ASSERT(db->db.db_size != 0);
2382
2383 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2384 dr->dr_accounted, txg);
2385
2386 list_remove(&db->db_dirty_records, dr);
2387
2388 /*
2389 * Note that there are three places in dbuf_dirty()
2390 * where this dirty record may be put on a list.
2391 * Make sure to do a list_remove corresponding to
2392 * every one of those list_insert calls.
2393 */
2394 if (dr->dr_parent) {
2395 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2396 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2397 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2398 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2399 db->db_level + 1 == dn->dn_nlevels) {
2400 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2401 mutex_enter(&dn->dn_mtx);
2402 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2403 mutex_exit(&dn->dn_mtx);
2404 }
2405
2406 if (db->db_state != DB_NOFILL) {
2407 dbuf_unoverride(dr);
2408
2409 ASSERT(db->db_buf != NULL);
2410 ASSERT(dr->dt.dl.dr_data != NULL);
2411 if (dr->dt.dl.dr_data != db->db_buf)
2412 arc_buf_destroy(dr->dt.dl.dr_data, db);
2413 }
2414
2415 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2416
2417 ASSERT(db->db_dirtycnt > 0);
2418 db->db_dirtycnt -= 1;
2419
2420 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2421 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2422 dbuf_destroy(db);
2423 return (B_TRUE);
2424 }
2425
2426 return (B_FALSE);
2427 }
2428
2429 static void
2430 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2431 {
2432 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2433
2434 ASSERT(tx->tx_txg != 0);
2435 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2436
2437 /*
2438 * Quick check for dirtiness. For already dirty blocks, this
2439 * reduces runtime of this function by >90%, and overall performance
2440 * by 50% for some workloads (e.g. file deletion with indirect blocks
2441 * cached).
2442 */
2443 mutex_enter(&db->db_mtx);
2444
2445 if (db->db_state == DB_CACHED) {
2446 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2447 /*
2448 * It's possible that it is already dirty but not cached,
2449 * because there are some calls to dbuf_dirty() that don't
2450 * go through dmu_buf_will_dirty().
2451 */
2452 if (dr != NULL) {
2453 /* This dbuf is already dirty and cached. */
2454 dbuf_redirty(dr);
2455 mutex_exit(&db->db_mtx);
2456 return;
2457 }
2458 }
2459 mutex_exit(&db->db_mtx);
2460
2461 DB_DNODE_ENTER(db);
2462 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2463 flags |= DB_RF_HAVESTRUCT;
2464 DB_DNODE_EXIT(db);
2465 (void) dbuf_read(db, NULL, flags);
2466 (void) dbuf_dirty(db, tx);
2467 }
2468
2469 void
2470 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2471 {
2472 dmu_buf_will_dirty_impl(db_fake,
2473 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2474 }
2475
2476 boolean_t
2477 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2478 {
2479 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2480 dbuf_dirty_record_t *dr;
2481
2482 mutex_enter(&db->db_mtx);
2483 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2484 mutex_exit(&db->db_mtx);
2485 return (dr != NULL);
2486 }
2487
2488 void
2489 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2490 {
2491 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2492
2493 db->db_state = DB_NOFILL;
2494 DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2495 dmu_buf_will_fill(db_fake, tx);
2496 }
2497
2498 void
2499 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2500 {
2501 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2502
2503 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2504 ASSERT(tx->tx_txg != 0);
2505 ASSERT(db->db_level == 0);
2506 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2507
2508 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2509 dmu_tx_private_ok(tx));
2510
2511 dbuf_noread(db);
2512 (void) dbuf_dirty(db, tx);
2513 }
2514
2515 /*
2516 * This function is effectively the same as dmu_buf_will_dirty(), but
2517 * indicates the caller expects raw encrypted data in the db, and provides
2518 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2519 * blkptr_t when this dbuf is written. This is only used for blocks of
2520 * dnodes, during raw receive.
2521 */
2522 void
2523 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2524 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2525 {
2526 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2527 dbuf_dirty_record_t *dr;
2528
2529 /*
2530 * dr_has_raw_params is only processed for blocks of dnodes
2531 * (see dbuf_sync_dnode_leaf_crypt()).
2532 */
2533 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2534 ASSERT3U(db->db_level, ==, 0);
2535 ASSERT(db->db_objset->os_raw_receive);
2536
2537 dmu_buf_will_dirty_impl(db_fake,
2538 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2539
2540 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2541
2542 ASSERT3P(dr, !=, NULL);
2543
2544 dr->dt.dl.dr_has_raw_params = B_TRUE;
2545 dr->dt.dl.dr_byteorder = byteorder;
2546 bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN);
2547 bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN);
2548 bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN);
2549 }
2550
2551 static void
2552 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2553 {
2554 struct dirty_leaf *dl;
2555 dbuf_dirty_record_t *dr;
2556
2557 dr = list_head(&db->db_dirty_records);
2558 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2559 dl = &dr->dt.dl;
2560 dl->dr_overridden_by = *bp;
2561 dl->dr_override_state = DR_OVERRIDDEN;
2562 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2563 }
2564
2565 /* ARGSUSED */
2566 void
2567 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx)
2568 {
2569 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2570 dbuf_states_t old_state;
2571 mutex_enter(&db->db_mtx);
2572 DBUF_VERIFY(db);
2573
2574 old_state = db->db_state;
2575 db->db_state = DB_CACHED;
2576 if (old_state == DB_FILL) {
2577 if (db->db_level == 0 && db->db_freed_in_flight) {
2578 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2579 /* we were freed while filling */
2580 /* XXX dbuf_undirty? */
2581 bzero(db->db.db_data, db->db.db_size);
2582 db->db_freed_in_flight = FALSE;
2583 DTRACE_SET_STATE(db,
2584 "fill done handling freed in flight");
2585 } else {
2586 DTRACE_SET_STATE(db, "fill done");
2587 }
2588 cv_broadcast(&db->db_changed);
2589 }
2590 mutex_exit(&db->db_mtx);
2591 }
2592
2593 void
2594 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2595 bp_embedded_type_t etype, enum zio_compress comp,
2596 int uncompressed_size, int compressed_size, int byteorder,
2597 dmu_tx_t *tx)
2598 {
2599 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2600 struct dirty_leaf *dl;
2601 dmu_object_type_t type;
2602 dbuf_dirty_record_t *dr;
2603
2604 if (etype == BP_EMBEDDED_TYPE_DATA) {
2605 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2606 SPA_FEATURE_EMBEDDED_DATA));
2607 }
2608
2609 DB_DNODE_ENTER(db);
2610 type = DB_DNODE(db)->dn_type;
2611 DB_DNODE_EXIT(db);
2612
2613 ASSERT0(db->db_level);
2614 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2615
2616 dmu_buf_will_not_fill(dbuf, tx);
2617
2618 dr = list_head(&db->db_dirty_records);
2619 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2620 dl = &dr->dt.dl;
2621 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2622 data, comp, uncompressed_size, compressed_size);
2623 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2624 BP_SET_TYPE(&dl->dr_overridden_by, type);
2625 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2626 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2627
2628 dl->dr_override_state = DR_OVERRIDDEN;
2629 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2630 }
2631
2632 void
2633 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
2634 {
2635 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2636 dmu_object_type_t type;
2637 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
2638 SPA_FEATURE_REDACTED_DATASETS));
2639
2640 DB_DNODE_ENTER(db);
2641 type = DB_DNODE(db)->dn_type;
2642 DB_DNODE_EXIT(db);
2643
2644 ASSERT0(db->db_level);
2645 dmu_buf_will_not_fill(dbuf, tx);
2646
2647 blkptr_t bp = { { { {0} } } };
2648 BP_SET_TYPE(&bp, type);
2649 BP_SET_LEVEL(&bp, 0);
2650 BP_SET_BIRTH(&bp, tx->tx_txg, 0);
2651 BP_SET_REDACTED(&bp);
2652 BPE_SET_LSIZE(&bp, dbuf->db_size);
2653
2654 dbuf_override_impl(db, &bp, tx);
2655 }
2656
2657 /*
2658 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2659 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2660 */
2661 void
2662 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2663 {
2664 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2665 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2666 ASSERT(db->db_level == 0);
2667 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2668 ASSERT(buf != NULL);
2669 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
2670 ASSERT(tx->tx_txg != 0);
2671
2672 arc_return_buf(buf, db);
2673 ASSERT(arc_released(buf));
2674
2675 mutex_enter(&db->db_mtx);
2676
2677 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2678 cv_wait(&db->db_changed, &db->db_mtx);
2679
2680 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2681
2682 if (db->db_state == DB_CACHED &&
2683 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2684 /*
2685 * In practice, we will never have a case where we have an
2686 * encrypted arc buffer while additional holds exist on the
2687 * dbuf. We don't handle this here so we simply assert that
2688 * fact instead.
2689 */
2690 ASSERT(!arc_is_encrypted(buf));
2691 mutex_exit(&db->db_mtx);
2692 (void) dbuf_dirty(db, tx);
2693 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2694 arc_buf_destroy(buf, db);
2695 return;
2696 }
2697
2698 if (db->db_state == DB_CACHED) {
2699 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2700
2701 ASSERT(db->db_buf != NULL);
2702 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2703 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2704
2705 if (!arc_released(db->db_buf)) {
2706 ASSERT(dr->dt.dl.dr_override_state ==
2707 DR_OVERRIDDEN);
2708 arc_release(db->db_buf, db);
2709 }
2710 dr->dt.dl.dr_data = buf;
2711 arc_buf_destroy(db->db_buf, db);
2712 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2713 arc_release(db->db_buf, db);
2714 arc_buf_destroy(db->db_buf, db);
2715 }
2716 db->db_buf = NULL;
2717 }
2718 ASSERT(db->db_buf == NULL);
2719 dbuf_set_data(db, buf);
2720 db->db_state = DB_FILL;
2721 DTRACE_SET_STATE(db, "filling assigned arcbuf");
2722 mutex_exit(&db->db_mtx);
2723 (void) dbuf_dirty(db, tx);
2724 dmu_buf_fill_done(&db->db, tx);
2725 }
2726
2727 void
2728 dbuf_destroy(dmu_buf_impl_t *db)
2729 {
2730 dnode_t *dn;
2731 dmu_buf_impl_t *parent = db->db_parent;
2732 dmu_buf_impl_t *dndb;
2733
2734 ASSERT(MUTEX_HELD(&db->db_mtx));
2735 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2736
2737 if (db->db_buf != NULL) {
2738 arc_buf_destroy(db->db_buf, db);
2739 db->db_buf = NULL;
2740 }
2741
2742 if (db->db_blkid == DMU_BONUS_BLKID) {
2743 int slots = DB_DNODE(db)->dn_num_slots;
2744 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2745 if (db->db.db_data != NULL) {
2746 kmem_free(db->db.db_data, bonuslen);
2747 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2748 db->db_state = DB_UNCACHED;
2749 DTRACE_SET_STATE(db, "buffer cleared");
2750 }
2751 }
2752
2753 dbuf_clear_data(db);
2754
2755 if (multilist_link_active(&db->db_cache_link)) {
2756 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2757 db->db_caching_status == DB_DBUF_METADATA_CACHE);
2758
2759 multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
2760 (void) zfs_refcount_remove_many(
2761 &dbuf_caches[db->db_caching_status].size,
2762 db->db.db_size, db);
2763
2764 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
2765 DBUF_STAT_BUMPDOWN(metadata_cache_count);
2766 } else {
2767 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2768 DBUF_STAT_BUMPDOWN(cache_count);
2769 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2770 db->db.db_size);
2771 }
2772 db->db_caching_status = DB_NO_CACHE;
2773 }
2774
2775 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2776 ASSERT(db->db_data_pending == NULL);
2777 ASSERT(list_is_empty(&db->db_dirty_records));
2778
2779 db->db_state = DB_EVICTING;
2780 DTRACE_SET_STATE(db, "buffer eviction started");
2781 db->db_blkptr = NULL;
2782
2783 /*
2784 * Now that db_state is DB_EVICTING, nobody else can find this via
2785 * the hash table. We can now drop db_mtx, which allows us to
2786 * acquire the dn_dbufs_mtx.
2787 */
2788 mutex_exit(&db->db_mtx);
2789
2790 DB_DNODE_ENTER(db);
2791 dn = DB_DNODE(db);
2792 dndb = dn->dn_dbuf;
2793 if (db->db_blkid != DMU_BONUS_BLKID) {
2794 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2795 if (needlock)
2796 mutex_enter_nested(&dn->dn_dbufs_mtx,
2797 NESTED_SINGLE);
2798 avl_remove(&dn->dn_dbufs, db);
2799 membar_producer();
2800 DB_DNODE_EXIT(db);
2801 if (needlock)
2802 mutex_exit(&dn->dn_dbufs_mtx);
2803 /*
2804 * Decrementing the dbuf count means that the hold corresponding
2805 * to the removed dbuf is no longer discounted in dnode_move(),
2806 * so the dnode cannot be moved until after we release the hold.
2807 * The membar_producer() ensures visibility of the decremented
2808 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2809 * release any lock.
2810 */
2811 mutex_enter(&dn->dn_mtx);
2812 dnode_rele_and_unlock(dn, db, B_TRUE);
2813 db->db_dnode_handle = NULL;
2814
2815 dbuf_hash_remove(db);
2816 } else {
2817 DB_DNODE_EXIT(db);
2818 }
2819
2820 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2821
2822 db->db_parent = NULL;
2823
2824 ASSERT(db->db_buf == NULL);
2825 ASSERT(db->db.db_data == NULL);
2826 ASSERT(db->db_hash_next == NULL);
2827 ASSERT(db->db_blkptr == NULL);
2828 ASSERT(db->db_data_pending == NULL);
2829 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
2830 ASSERT(!multilist_link_active(&db->db_cache_link));
2831
2832 kmem_cache_free(dbuf_kmem_cache, db);
2833 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2834
2835 /*
2836 * If this dbuf is referenced from an indirect dbuf,
2837 * decrement the ref count on the indirect dbuf.
2838 */
2839 if (parent && parent != dndb) {
2840 mutex_enter(&parent->db_mtx);
2841 dbuf_rele_and_unlock(parent, db, B_TRUE);
2842 }
2843 }
2844
2845 /*
2846 * Note: While bpp will always be updated if the function returns success,
2847 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2848 * this happens when the dnode is the meta-dnode, or {user|group|project}used
2849 * object.
2850 */
2851 __attribute__((always_inline))
2852 static inline int
2853 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2854 dmu_buf_impl_t **parentp, blkptr_t **bpp)
2855 {
2856 *parentp = NULL;
2857 *bpp = NULL;
2858
2859 ASSERT(blkid != DMU_BONUS_BLKID);
2860
2861 if (blkid == DMU_SPILL_BLKID) {
2862 mutex_enter(&dn->dn_mtx);
2863 if (dn->dn_have_spill &&
2864 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2865 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2866 else
2867 *bpp = NULL;
2868 dbuf_add_ref(dn->dn_dbuf, NULL);
2869 *parentp = dn->dn_dbuf;
2870 mutex_exit(&dn->dn_mtx);
2871 return (0);
2872 }
2873
2874 int nlevels =
2875 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2876 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2877
2878 ASSERT3U(level * epbs, <, 64);
2879 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2880 /*
2881 * This assertion shouldn't trip as long as the max indirect block size
2882 * is less than 1M. The reason for this is that up to that point,
2883 * the number of levels required to address an entire object with blocks
2884 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2885 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2886 * (i.e. we can address the entire object), objects will all use at most
2887 * N-1 levels and the assertion won't overflow. However, once epbs is
2888 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2889 * enough to address an entire object, so objects will have 5 levels,
2890 * but then this assertion will overflow.
2891 *
2892 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2893 * need to redo this logic to handle overflows.
2894 */
2895 ASSERT(level >= nlevels ||
2896 ((nlevels - level - 1) * epbs) +
2897 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2898 if (level >= nlevels ||
2899 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2900 ((nlevels - level - 1) * epbs)) ||
2901 (fail_sparse &&
2902 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2903 /* the buffer has no parent yet */
2904 return (SET_ERROR(ENOENT));
2905 } else if (level < nlevels-1) {
2906 /* this block is referenced from an indirect block */
2907 int err;
2908
2909 err = dbuf_hold_impl(dn, level + 1,
2910 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2911
2912 if (err)
2913 return (err);
2914 err = dbuf_read(*parentp, NULL,
2915 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2916 if (err) {
2917 dbuf_rele(*parentp, NULL);
2918 *parentp = NULL;
2919 return (err);
2920 }
2921 rw_enter(&(*parentp)->db_rwlock, RW_READER);
2922 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2923 (blkid & ((1ULL << epbs) - 1));
2924 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2925 ASSERT(BP_IS_HOLE(*bpp));
2926 rw_exit(&(*parentp)->db_rwlock);
2927 return (0);
2928 } else {
2929 /* the block is referenced from the dnode */
2930 ASSERT3U(level, ==, nlevels-1);
2931 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2932 blkid < dn->dn_phys->dn_nblkptr);
2933 if (dn->dn_dbuf) {
2934 dbuf_add_ref(dn->dn_dbuf, NULL);
2935 *parentp = dn->dn_dbuf;
2936 }
2937 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2938 return (0);
2939 }
2940 }
2941
2942 static dmu_buf_impl_t *
2943 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2944 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2945 {
2946 objset_t *os = dn->dn_objset;
2947 dmu_buf_impl_t *db, *odb;
2948
2949 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2950 ASSERT(dn->dn_type != DMU_OT_NONE);
2951
2952 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2953
2954 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
2955 offsetof(dbuf_dirty_record_t, dr_dbuf_node));
2956
2957 db->db_objset = os;
2958 db->db.db_object = dn->dn_object;
2959 db->db_level = level;
2960 db->db_blkid = blkid;
2961 db->db_dirtycnt = 0;
2962 db->db_dnode_handle = dn->dn_handle;
2963 db->db_parent = parent;
2964 db->db_blkptr = blkptr;
2965
2966 db->db_user = NULL;
2967 db->db_user_immediate_evict = FALSE;
2968 db->db_freed_in_flight = FALSE;
2969 db->db_pending_evict = FALSE;
2970
2971 if (blkid == DMU_BONUS_BLKID) {
2972 ASSERT3P(parent, ==, dn->dn_dbuf);
2973 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
2974 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2975 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2976 db->db.db_offset = DMU_BONUS_BLKID;
2977 db->db_state = DB_UNCACHED;
2978 DTRACE_SET_STATE(db, "bonus buffer created");
2979 db->db_caching_status = DB_NO_CACHE;
2980 /* the bonus dbuf is not placed in the hash table */
2981 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2982 return (db);
2983 } else if (blkid == DMU_SPILL_BLKID) {
2984 db->db.db_size = (blkptr != NULL) ?
2985 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2986 db->db.db_offset = 0;
2987 } else {
2988 int blocksize =
2989 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2990 db->db.db_size = blocksize;
2991 db->db.db_offset = db->db_blkid * blocksize;
2992 }
2993
2994 /*
2995 * Hold the dn_dbufs_mtx while we get the new dbuf
2996 * in the hash table *and* added to the dbufs list.
2997 * This prevents a possible deadlock with someone
2998 * trying to look up this dbuf before it's added to the
2999 * dn_dbufs list.
3000 */
3001 mutex_enter(&dn->dn_dbufs_mtx);
3002 db->db_state = DB_EVICTING; /* not worth logging this state change */
3003 if ((odb = dbuf_hash_insert(db)) != NULL) {
3004 /* someone else inserted it first */
3005 kmem_cache_free(dbuf_kmem_cache, db);
3006 mutex_exit(&dn->dn_dbufs_mtx);
3007 DBUF_STAT_BUMP(hash_insert_race);
3008 return (odb);
3009 }
3010 avl_add(&dn->dn_dbufs, db);
3011
3012 db->db_state = DB_UNCACHED;
3013 DTRACE_SET_STATE(db, "regular buffer created");
3014 db->db_caching_status = DB_NO_CACHE;
3015 mutex_exit(&dn->dn_dbufs_mtx);
3016 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3017
3018 if (parent && parent != dn->dn_dbuf)
3019 dbuf_add_ref(parent, db);
3020
3021 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3022 zfs_refcount_count(&dn->dn_holds) > 0);
3023 (void) zfs_refcount_add(&dn->dn_holds, db);
3024
3025 dprintf_dbuf(db, "db=%p\n", db);
3026
3027 return (db);
3028 }
3029
3030 /*
3031 * This function returns a block pointer and information about the object,
3032 * given a dnode and a block. This is a publicly accessible version of
3033 * dbuf_findbp that only returns some information, rather than the
3034 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
3035 * should be locked as (at least) a reader.
3036 */
3037 int
3038 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3039 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3040 {
3041 dmu_buf_impl_t *dbp = NULL;
3042 blkptr_t *bp2;
3043 int err = 0;
3044 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3045
3046 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3047 if (err == 0) {
3048 *bp = *bp2;
3049 if (dbp != NULL)
3050 dbuf_rele(dbp, NULL);
3051 if (datablkszsec != NULL)
3052 *datablkszsec = dn->dn_phys->dn_datablkszsec;
3053 if (indblkshift != NULL)
3054 *indblkshift = dn->dn_phys->dn_indblkshift;
3055 }
3056
3057 return (err);
3058 }
3059
3060 typedef struct dbuf_prefetch_arg {
3061 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
3062 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3063 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3064 int dpa_curlevel; /* The current level that we're reading */
3065 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3066 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3067 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3068 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3069 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3070 void *dpa_arg; /* prefetch completion arg */
3071 } dbuf_prefetch_arg_t;
3072
3073 static void
3074 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3075 {
3076 if (dpa->dpa_cb != NULL)
3077 dpa->dpa_cb(dpa->dpa_arg, io_done);
3078 kmem_free(dpa, sizeof (*dpa));
3079 }
3080
3081 static void
3082 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3083 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3084 {
3085 dbuf_prefetch_arg_t *dpa = private;
3086
3087 dbuf_prefetch_fini(dpa, B_TRUE);
3088 if (abuf != NULL)
3089 arc_buf_destroy(abuf, private);
3090 }
3091
3092 /*
3093 * Actually issue the prefetch read for the block given.
3094 */
3095 static void
3096 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3097 {
3098 ASSERT(!BP_IS_REDACTED(bp) ||
3099 dsl_dataset_feature_is_active(
3100 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3101 SPA_FEATURE_REDACTED_DATASETS));
3102
3103 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
3104 return (dbuf_prefetch_fini(dpa, B_FALSE));
3105
3106 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3107 arc_flags_t aflags =
3108 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3109 ARC_FLAG_NO_BUF;
3110
3111 /* dnodes are always read as raw and then converted later */
3112 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3113 dpa->dpa_curlevel == 0)
3114 zio_flags |= ZIO_FLAG_RAW;
3115
3116 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3117 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3118 ASSERT(dpa->dpa_zio != NULL);
3119 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3120 dbuf_issue_final_prefetch_done, dpa,
3121 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3122 }
3123
3124 /*
3125 * Called when an indirect block above our prefetch target is read in. This
3126 * will either read in the next indirect block down the tree or issue the actual
3127 * prefetch if the next block down is our target.
3128 */
3129 static void
3130 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3131 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3132 {
3133 dbuf_prefetch_arg_t *dpa = private;
3134
3135 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3136 ASSERT3S(dpa->dpa_curlevel, >, 0);
3137
3138 if (abuf == NULL) {
3139 ASSERT(zio == NULL || zio->io_error != 0);
3140 return (dbuf_prefetch_fini(dpa, B_TRUE));
3141 }
3142 ASSERT(zio == NULL || zio->io_error == 0);
3143
3144 /*
3145 * The dpa_dnode is only valid if we are called with a NULL
3146 * zio. This indicates that the arc_read() returned without
3147 * first calling zio_read() to issue a physical read. Once
3148 * a physical read is made the dpa_dnode must be invalidated
3149 * as the locks guarding it may have been dropped. If the
3150 * dpa_dnode is still valid, then we want to add it to the dbuf
3151 * cache. To do so, we must hold the dbuf associated with the block
3152 * we just prefetched, read its contents so that we associate it
3153 * with an arc_buf_t, and then release it.
3154 */
3155 if (zio != NULL) {
3156 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3157 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3158 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3159 } else {
3160 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3161 }
3162 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3163
3164 dpa->dpa_dnode = NULL;
3165 } else if (dpa->dpa_dnode != NULL) {
3166 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3167 (dpa->dpa_epbs * (dpa->dpa_curlevel -
3168 dpa->dpa_zb.zb_level));
3169 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3170 dpa->dpa_curlevel, curblkid, FTAG);
3171 if (db == NULL) {
3172 arc_buf_destroy(abuf, private);
3173 return (dbuf_prefetch_fini(dpa, B_TRUE));
3174 }
3175 (void) dbuf_read(db, NULL,
3176 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
3177 dbuf_rele(db, FTAG);
3178 }
3179
3180 dpa->dpa_curlevel--;
3181 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3182 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3183 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3184 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3185
3186 ASSERT(!BP_IS_REDACTED(bp) ||
3187 dsl_dataset_feature_is_active(
3188 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3189 SPA_FEATURE_REDACTED_DATASETS));
3190 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3191 dbuf_prefetch_fini(dpa, B_TRUE);
3192 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3193 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3194 dbuf_issue_final_prefetch(dpa, bp);
3195 } else {
3196 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3197 zbookmark_phys_t zb;
3198
3199 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3200 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3201 iter_aflags |= ARC_FLAG_L2CACHE;
3202
3203 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3204
3205 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3206 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3207
3208 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3209 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
3210 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3211 &iter_aflags, &zb);
3212 }
3213
3214 arc_buf_destroy(abuf, private);
3215 }
3216
3217 /*
3218 * Issue prefetch reads for the given block on the given level. If the indirect
3219 * blocks above that block are not in memory, we will read them in
3220 * asynchronously. As a result, this call never blocks waiting for a read to
3221 * complete. Note that the prefetch might fail if the dataset is encrypted and
3222 * the encryption key is unmapped before the IO completes.
3223 */
3224 int
3225 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3226 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3227 void *arg)
3228 {
3229 blkptr_t bp;
3230 int epbs, nlevels, curlevel;
3231 uint64_t curblkid;
3232
3233 ASSERT(blkid != DMU_BONUS_BLKID);
3234 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3235
3236 if (blkid > dn->dn_maxblkid)
3237 goto no_issue;
3238
3239 if (level == 0 && dnode_block_freed(dn, blkid))
3240 goto no_issue;
3241
3242 /*
3243 * This dnode hasn't been written to disk yet, so there's nothing to
3244 * prefetch.
3245 */
3246 nlevels = dn->dn_phys->dn_nlevels;
3247 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3248 goto no_issue;
3249
3250 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3251 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3252 goto no_issue;
3253
3254 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3255 level, blkid);
3256 if (db != NULL) {
3257 mutex_exit(&db->db_mtx);
3258 /*
3259 * This dbuf already exists. It is either CACHED, or
3260 * (we assume) about to be read or filled.
3261 */
3262 goto no_issue;
3263 }
3264
3265 /*
3266 * Find the closest ancestor (indirect block) of the target block
3267 * that is present in the cache. In this indirect block, we will
3268 * find the bp that is at curlevel, curblkid.
3269 */
3270 curlevel = level;
3271 curblkid = blkid;
3272 while (curlevel < nlevels - 1) {
3273 int parent_level = curlevel + 1;
3274 uint64_t parent_blkid = curblkid >> epbs;
3275 dmu_buf_impl_t *db;
3276
3277 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3278 FALSE, TRUE, FTAG, &db) == 0) {
3279 blkptr_t *bpp = db->db_buf->b_data;
3280 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3281 dbuf_rele(db, FTAG);
3282 break;
3283 }
3284
3285 curlevel = parent_level;
3286 curblkid = parent_blkid;
3287 }
3288
3289 if (curlevel == nlevels - 1) {
3290 /* No cached indirect blocks found. */
3291 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3292 bp = dn->dn_phys->dn_blkptr[curblkid];
3293 }
3294 ASSERT(!BP_IS_REDACTED(&bp) ||
3295 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3296 SPA_FEATURE_REDACTED_DATASETS));
3297 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3298 goto no_issue;
3299
3300 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3301
3302 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3303 ZIO_FLAG_CANFAIL);
3304
3305 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3306 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3307 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3308 dn->dn_object, level, blkid);
3309 dpa->dpa_curlevel = curlevel;
3310 dpa->dpa_prio = prio;
3311 dpa->dpa_aflags = aflags;
3312 dpa->dpa_spa = dn->dn_objset->os_spa;
3313 dpa->dpa_dnode = dn;
3314 dpa->dpa_epbs = epbs;
3315 dpa->dpa_zio = pio;
3316 dpa->dpa_cb = cb;
3317 dpa->dpa_arg = arg;
3318
3319 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3320 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
3321 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3322
3323 /*
3324 * If we have the indirect just above us, no need to do the asynchronous
3325 * prefetch chain; we'll just run the last step ourselves. If we're at
3326 * a higher level, though, we want to issue the prefetches for all the
3327 * indirect blocks asynchronously, so we can go on with whatever we were
3328 * doing.
3329 */
3330 if (curlevel == level) {
3331 ASSERT3U(curblkid, ==, blkid);
3332 dbuf_issue_final_prefetch(dpa, &bp);
3333 } else {
3334 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3335 zbookmark_phys_t zb;
3336
3337 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3338 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
3339 iter_aflags |= ARC_FLAG_L2CACHE;
3340
3341 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3342 dn->dn_object, curlevel, curblkid);
3343 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3344 &bp, dbuf_prefetch_indirect_done, dpa, prio,
3345 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3346 &iter_aflags, &zb);
3347 }
3348 /*
3349 * We use pio here instead of dpa_zio since it's possible that
3350 * dpa may have already been freed.
3351 */
3352 zio_nowait(pio);
3353 return (1);
3354 no_issue:
3355 if (cb != NULL)
3356 cb(arg, B_FALSE);
3357 return (0);
3358 }
3359
3360 int
3361 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3362 arc_flags_t aflags)
3363 {
3364
3365 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3366 }
3367
3368 /*
3369 * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3370 * the case of encrypted, compressed and uncompressed buffers by
3371 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3372 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3373 *
3374 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3375 */
3376 noinline static void
3377 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3378 {
3379 dbuf_dirty_record_t *dr = db->db_data_pending;
3380 arc_buf_t *newdata, *data = dr->dt.dl.dr_data;
3381
3382 newdata = dbuf_alloc_arcbuf_from_arcbuf(db, data);
3383 dbuf_set_data(db, newdata);
3384 rw_enter(&db->db_rwlock, RW_WRITER);
3385 bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
3386 rw_exit(&db->db_rwlock);
3387 }
3388
3389 /*
3390 * Returns with db_holds incremented, and db_mtx not held.
3391 * Note: dn_struct_rwlock must be held.
3392 */
3393 int
3394 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3395 boolean_t fail_sparse, boolean_t fail_uncached,
3396 void *tag, dmu_buf_impl_t **dbp)
3397 {
3398 dmu_buf_impl_t *db, *parent = NULL;
3399
3400 /* If the pool has been created, verify the tx_sync_lock is not held */
3401 spa_t *spa = dn->dn_objset->os_spa;
3402 dsl_pool_t *dp = spa->spa_dsl_pool;
3403 if (dp != NULL) {
3404 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3405 }
3406
3407 ASSERT(blkid != DMU_BONUS_BLKID);
3408 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3409 ASSERT3U(dn->dn_nlevels, >, level);
3410
3411 *dbp = NULL;
3412
3413 /* dbuf_find() returns with db_mtx held */
3414 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
3415
3416 if (db == NULL) {
3417 blkptr_t *bp = NULL;
3418 int err;
3419
3420 if (fail_uncached)
3421 return (SET_ERROR(ENOENT));
3422
3423 ASSERT3P(parent, ==, NULL);
3424 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3425 if (fail_sparse) {
3426 if (err == 0 && bp && BP_IS_HOLE(bp))
3427 err = SET_ERROR(ENOENT);
3428 if (err) {
3429 if (parent)
3430 dbuf_rele(parent, NULL);
3431 return (err);
3432 }
3433 }
3434 if (err && err != ENOENT)
3435 return (err);
3436 db = dbuf_create(dn, level, blkid, parent, bp);
3437 }
3438
3439 if (fail_uncached && db->db_state != DB_CACHED) {
3440 mutex_exit(&db->db_mtx);
3441 return (SET_ERROR(ENOENT));
3442 }
3443
3444 if (db->db_buf != NULL) {
3445 arc_buf_access(db->db_buf);
3446 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3447 }
3448
3449 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3450
3451 /*
3452 * If this buffer is currently syncing out, and we are
3453 * still referencing it from db_data, we need to make a copy
3454 * of it in case we decide we want to dirty it again in this txg.
3455 */
3456 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3457 dn->dn_object != DMU_META_DNODE_OBJECT &&
3458 db->db_state == DB_CACHED && db->db_data_pending) {
3459 dbuf_dirty_record_t *dr = db->db_data_pending;
3460 if (dr->dt.dl.dr_data == db->db_buf)
3461 dbuf_hold_copy(dn, db);
3462 }
3463
3464 if (multilist_link_active(&db->db_cache_link)) {
3465 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3466 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3467 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3468
3469 multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
3470 (void) zfs_refcount_remove_many(
3471 &dbuf_caches[db->db_caching_status].size,
3472 db->db.db_size, db);
3473
3474 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3475 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3476 } else {
3477 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3478 DBUF_STAT_BUMPDOWN(cache_count);
3479 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3480 db->db.db_size);
3481 }
3482 db->db_caching_status = DB_NO_CACHE;
3483 }
3484 (void) zfs_refcount_add(&db->db_holds, tag);
3485 DBUF_VERIFY(db);
3486 mutex_exit(&db->db_mtx);
3487
3488 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3489 if (parent)
3490 dbuf_rele(parent, NULL);
3491
3492 ASSERT3P(DB_DNODE(db), ==, dn);
3493 ASSERT3U(db->db_blkid, ==, blkid);
3494 ASSERT3U(db->db_level, ==, level);
3495 *dbp = db;
3496
3497 return (0);
3498 }
3499
3500 dmu_buf_impl_t *
3501 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
3502 {
3503 return (dbuf_hold_level(dn, 0, blkid, tag));
3504 }
3505
3506 dmu_buf_impl_t *
3507 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
3508 {
3509 dmu_buf_impl_t *db;
3510 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3511 return (err ? NULL : db);
3512 }
3513
3514 void
3515 dbuf_create_bonus(dnode_t *dn)
3516 {
3517 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3518
3519 ASSERT(dn->dn_bonus == NULL);
3520 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3521 }
3522
3523 int
3524 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3525 {
3526 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3527
3528 if (db->db_blkid != DMU_SPILL_BLKID)
3529 return (SET_ERROR(ENOTSUP));
3530 if (blksz == 0)
3531 blksz = SPA_MINBLOCKSIZE;
3532 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3533 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3534
3535 dbuf_new_size(db, blksz, tx);
3536
3537 return (0);
3538 }
3539
3540 void
3541 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3542 {
3543 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3544 }
3545
3546 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3547 void
3548 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
3549 {
3550 int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3551 VERIFY3S(holds, >, 1);
3552 }
3553
3554 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3555 boolean_t
3556 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3557 void *tag)
3558 {
3559 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3560 dmu_buf_impl_t *found_db;
3561 boolean_t result = B_FALSE;
3562
3563 if (blkid == DMU_BONUS_BLKID)
3564 found_db = dbuf_find_bonus(os, obj);
3565 else
3566 found_db = dbuf_find(os, obj, 0, blkid);
3567
3568 if (found_db != NULL) {
3569 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3570 (void) zfs_refcount_add(&db->db_holds, tag);
3571 result = B_TRUE;
3572 }
3573 mutex_exit(&found_db->db_mtx);
3574 }
3575 return (result);
3576 }
3577
3578 /*
3579 * If you call dbuf_rele() you had better not be referencing the dnode handle
3580 * unless you have some other direct or indirect hold on the dnode. (An indirect
3581 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3582 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3583 * dnode's parent dbuf evicting its dnode handles.
3584 */
3585 void
3586 dbuf_rele(dmu_buf_impl_t *db, void *tag)
3587 {
3588 mutex_enter(&db->db_mtx);
3589 dbuf_rele_and_unlock(db, tag, B_FALSE);
3590 }
3591
3592 void
3593 dmu_buf_rele(dmu_buf_t *db, void *tag)
3594 {
3595 dbuf_rele((dmu_buf_impl_t *)db, tag);
3596 }
3597
3598 /*
3599 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3600 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3601 * argument should be set if we are already in the dbuf-evicting code
3602 * path, in which case we don't want to recursively evict. This allows us to
3603 * avoid deeply nested stacks that would have a call flow similar to this:
3604 *
3605 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3606 * ^ |
3607 * | |
3608 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3609 *
3610 */
3611 void
3612 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting)
3613 {
3614 int64_t holds;
3615 uint64_t size;
3616
3617 ASSERT(MUTEX_HELD(&db->db_mtx));
3618 DBUF_VERIFY(db);
3619
3620 /*
3621 * Remove the reference to the dbuf before removing its hold on the
3622 * dnode so we can guarantee in dnode_move() that a referenced bonus
3623 * buffer has a corresponding dnode hold.
3624 */
3625 holds = zfs_refcount_remove(&db->db_holds, tag);
3626 ASSERT(holds >= 0);
3627
3628 /*
3629 * We can't freeze indirects if there is a possibility that they
3630 * may be modified in the current syncing context.
3631 */
3632 if (db->db_buf != NULL &&
3633 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3634 arc_buf_freeze(db->db_buf);
3635 }
3636
3637 if (holds == db->db_dirtycnt &&
3638 db->db_level == 0 && db->db_user_immediate_evict)
3639 dbuf_evict_user(db);
3640
3641 if (holds == 0) {
3642 if (db->db_blkid == DMU_BONUS_BLKID) {
3643 dnode_t *dn;
3644 boolean_t evict_dbuf = db->db_pending_evict;
3645
3646 /*
3647 * If the dnode moves here, we cannot cross this
3648 * barrier until the move completes.
3649 */
3650 DB_DNODE_ENTER(db);
3651
3652 dn = DB_DNODE(db);
3653 atomic_dec_32(&dn->dn_dbufs_count);
3654
3655 /*
3656 * Decrementing the dbuf count means that the bonus
3657 * buffer's dnode hold is no longer discounted in
3658 * dnode_move(). The dnode cannot move until after
3659 * the dnode_rele() below.
3660 */
3661 DB_DNODE_EXIT(db);
3662
3663 /*
3664 * Do not reference db after its lock is dropped.
3665 * Another thread may evict it.
3666 */
3667 mutex_exit(&db->db_mtx);
3668
3669 if (evict_dbuf)
3670 dnode_evict_bonus(dn);
3671
3672 dnode_rele(dn, db);
3673 } else if (db->db_buf == NULL) {
3674 /*
3675 * This is a special case: we never associated this
3676 * dbuf with any data allocated from the ARC.
3677 */
3678 ASSERT(db->db_state == DB_UNCACHED ||
3679 db->db_state == DB_NOFILL);
3680 dbuf_destroy(db);
3681 } else if (arc_released(db->db_buf)) {
3682 /*
3683 * This dbuf has anonymous data associated with it.
3684 */
3685 dbuf_destroy(db);
3686 } else {
3687 boolean_t do_arc_evict = B_FALSE;
3688 blkptr_t bp;
3689 spa_t *spa = dmu_objset_spa(db->db_objset);
3690
3691 if (!DBUF_IS_CACHEABLE(db) &&
3692 db->db_blkptr != NULL &&
3693 !BP_IS_HOLE(db->db_blkptr) &&
3694 !BP_IS_EMBEDDED(db->db_blkptr)) {
3695 do_arc_evict = B_TRUE;
3696 bp = *db->db_blkptr;
3697 }
3698
3699 if (!DBUF_IS_CACHEABLE(db) ||
3700 db->db_pending_evict) {
3701 dbuf_destroy(db);
3702 } else if (!multilist_link_active(&db->db_cache_link)) {
3703 ASSERT3U(db->db_caching_status, ==,
3704 DB_NO_CACHE);
3705
3706 dbuf_cached_state_t dcs =
3707 dbuf_include_in_metadata_cache(db) ?
3708 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
3709 db->db_caching_status = dcs;
3710
3711 multilist_insert(dbuf_caches[dcs].cache, db);
3712 size = zfs_refcount_add_many(
3713 &dbuf_caches[dcs].size,
3714 db->db.db_size, db);
3715
3716 if (dcs == DB_DBUF_METADATA_CACHE) {
3717 DBUF_STAT_BUMP(metadata_cache_count);
3718 DBUF_STAT_MAX(
3719 metadata_cache_size_bytes_max,
3720 size);
3721 } else {
3722 DBUF_STAT_BUMP(
3723 cache_levels[db->db_level]);
3724 DBUF_STAT_BUMP(cache_count);
3725 DBUF_STAT_INCR(
3726 cache_levels_bytes[db->db_level],
3727 db->db.db_size);
3728 DBUF_STAT_MAX(cache_size_bytes_max,
3729 size);
3730 }
3731 mutex_exit(&db->db_mtx);
3732
3733 if (dcs == DB_DBUF_CACHE && !evicting)
3734 dbuf_evict_notify(size);
3735 }
3736
3737 if (do_arc_evict)
3738 arc_freed(spa, &bp);
3739 }
3740 } else {
3741 mutex_exit(&db->db_mtx);
3742 }
3743
3744 }
3745
3746 #pragma weak dmu_buf_refcount = dbuf_refcount
3747 uint64_t
3748 dbuf_refcount(dmu_buf_impl_t *db)
3749 {
3750 return (zfs_refcount_count(&db->db_holds));
3751 }
3752
3753 uint64_t
3754 dmu_buf_user_refcount(dmu_buf_t *db_fake)
3755 {
3756 uint64_t holds;
3757 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3758
3759 mutex_enter(&db->db_mtx);
3760 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
3761 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
3762 mutex_exit(&db->db_mtx);
3763
3764 return (holds);
3765 }
3766
3767 void *
3768 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3769 dmu_buf_user_t *new_user)
3770 {
3771 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3772
3773 mutex_enter(&db->db_mtx);
3774 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3775 if (db->db_user == old_user)
3776 db->db_user = new_user;
3777 else
3778 old_user = db->db_user;
3779 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3780 mutex_exit(&db->db_mtx);
3781
3782 return (old_user);
3783 }
3784
3785 void *
3786 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3787 {
3788 return (dmu_buf_replace_user(db_fake, NULL, user));
3789 }
3790
3791 void *
3792 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3793 {
3794 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3795
3796 db->db_user_immediate_evict = TRUE;
3797 return (dmu_buf_set_user(db_fake, user));
3798 }
3799
3800 void *
3801 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3802 {
3803 return (dmu_buf_replace_user(db_fake, user, NULL));
3804 }
3805
3806 void *
3807 dmu_buf_get_user(dmu_buf_t *db_fake)
3808 {
3809 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3810
3811 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3812 return (db->db_user);
3813 }
3814
3815 void
3816 dmu_buf_user_evict_wait()
3817 {
3818 taskq_wait(dbu_evict_taskq);
3819 }
3820
3821 blkptr_t *
3822 dmu_buf_get_blkptr(dmu_buf_t *db)
3823 {
3824 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3825 return (dbi->db_blkptr);
3826 }
3827
3828 objset_t *
3829 dmu_buf_get_objset(dmu_buf_t *db)
3830 {
3831 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3832 return (dbi->db_objset);
3833 }
3834
3835 dnode_t *
3836 dmu_buf_dnode_enter(dmu_buf_t *db)
3837 {
3838 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3839 DB_DNODE_ENTER(dbi);
3840 return (DB_DNODE(dbi));
3841 }
3842
3843 void
3844 dmu_buf_dnode_exit(dmu_buf_t *db)
3845 {
3846 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3847 DB_DNODE_EXIT(dbi);
3848 }
3849
3850 static void
3851 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3852 {
3853 /* ASSERT(dmu_tx_is_syncing(tx) */
3854 ASSERT(MUTEX_HELD(&db->db_mtx));
3855
3856 if (db->db_blkptr != NULL)
3857 return;
3858
3859 if (db->db_blkid == DMU_SPILL_BLKID) {
3860 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3861 BP_ZERO(db->db_blkptr);
3862 return;
3863 }
3864 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3865 /*
3866 * This buffer was allocated at a time when there was
3867 * no available blkptrs from the dnode, or it was
3868 * inappropriate to hook it in (i.e., nlevels mismatch).
3869 */
3870 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3871 ASSERT(db->db_parent == NULL);
3872 db->db_parent = dn->dn_dbuf;
3873 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3874 DBUF_VERIFY(db);
3875 } else {
3876 dmu_buf_impl_t *parent = db->db_parent;
3877 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3878
3879 ASSERT(dn->dn_phys->dn_nlevels > 1);
3880 if (parent == NULL) {
3881 mutex_exit(&db->db_mtx);
3882 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3883 parent = dbuf_hold_level(dn, db->db_level + 1,
3884 db->db_blkid >> epbs, db);
3885 rw_exit(&dn->dn_struct_rwlock);
3886 mutex_enter(&db->db_mtx);
3887 db->db_parent = parent;
3888 }
3889 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3890 (db->db_blkid & ((1ULL << epbs) - 1));
3891 DBUF_VERIFY(db);
3892 }
3893 }
3894
3895 static void
3896 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3897 {
3898 dmu_buf_impl_t *db = dr->dr_dbuf;
3899 void *data = dr->dt.dl.dr_data;
3900
3901 ASSERT0(db->db_level);
3902 ASSERT(MUTEX_HELD(&db->db_mtx));
3903 ASSERT(db->db_blkid == DMU_BONUS_BLKID);
3904 ASSERT(data != NULL);
3905
3906 dnode_t *dn = dr->dr_dnode;
3907 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
3908 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
3909 bcopy(data, DN_BONUS(dn->dn_phys), DN_MAX_BONUS_LEN(dn->dn_phys));
3910
3911 dbuf_sync_leaf_verify_bonus_dnode(dr);
3912
3913 dbuf_undirty_bonus(dr);
3914 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
3915 }
3916
3917 /*
3918 * When syncing out a blocks of dnodes, adjust the block to deal with
3919 * encryption. Normally, we make sure the block is decrypted before writing
3920 * it. If we have crypt params, then we are writing a raw (encrypted) block,
3921 * from a raw receive. In this case, set the ARC buf's crypt params so
3922 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
3923 */
3924 static void
3925 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
3926 {
3927 int err;
3928 dmu_buf_impl_t *db = dr->dr_dbuf;
3929
3930 ASSERT(MUTEX_HELD(&db->db_mtx));
3931 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
3932 ASSERT3U(db->db_level, ==, 0);
3933
3934 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
3935 zbookmark_phys_t zb;
3936
3937 /*
3938 * Unfortunately, there is currently no mechanism for
3939 * syncing context to handle decryption errors. An error
3940 * here is only possible if an attacker maliciously
3941 * changed a dnode block and updated the associated
3942 * checksums going up the block tree.
3943 */
3944 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
3945 db->db.db_object, db->db_level, db->db_blkid);
3946 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
3947 &zb, B_TRUE);
3948 if (err)
3949 panic("Invalid dnode block MAC");
3950 } else if (dr->dt.dl.dr_has_raw_params) {
3951 (void) arc_release(dr->dt.dl.dr_data, db);
3952 arc_convert_to_raw(dr->dt.dl.dr_data,
3953 dmu_objset_id(db->db_objset),
3954 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
3955 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
3956 }
3957 }
3958
3959 /*
3960 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
3961 * is critical the we not allow the compiler to inline this function in to
3962 * dbuf_sync_list() thereby drastically bloating the stack usage.
3963 */
3964 noinline static void
3965 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3966 {
3967 dmu_buf_impl_t *db = dr->dr_dbuf;
3968 dnode_t *dn = dr->dr_dnode;
3969
3970 ASSERT(dmu_tx_is_syncing(tx));
3971
3972 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3973
3974 mutex_enter(&db->db_mtx);
3975
3976 ASSERT(db->db_level > 0);
3977 DBUF_VERIFY(db);
3978
3979 /* Read the block if it hasn't been read yet. */
3980 if (db->db_buf == NULL) {
3981 mutex_exit(&db->db_mtx);
3982 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3983 mutex_enter(&db->db_mtx);
3984 }
3985 ASSERT3U(db->db_state, ==, DB_CACHED);
3986 ASSERT(db->db_buf != NULL);
3987
3988 /* Indirect block size must match what the dnode thinks it is. */
3989 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3990 dbuf_check_blkptr(dn, db);
3991
3992 /* Provide the pending dirty record to child dbufs */
3993 db->db_data_pending = dr;
3994
3995 mutex_exit(&db->db_mtx);
3996
3997 dbuf_write(dr, db->db_buf, tx);
3998
3999 zio_t *zio = dr->dr_zio;
4000 mutex_enter(&dr->dt.di.dr_mtx);
4001 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4002 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4003 mutex_exit(&dr->dt.di.dr_mtx);
4004 zio_nowait(zio);
4005 }
4006
4007 /*
4008 * Verify that the size of the data in our bonus buffer does not exceed
4009 * its recorded size.
4010 *
4011 * The purpose of this verification is to catch any cases in development
4012 * where the size of a phys structure (i.e space_map_phys_t) grows and,
4013 * due to incorrect feature management, older pools expect to read more
4014 * data even though they didn't actually write it to begin with.
4015 *
4016 * For a example, this would catch an error in the feature logic where we
4017 * open an older pool and we expect to write the space map histogram of
4018 * a space map with size SPACE_MAP_SIZE_V0.
4019 */
4020 static void
4021 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4022 {
4023 #ifdef ZFS_DEBUG
4024 dnode_t *dn = dr->dr_dnode;
4025
4026 /*
4027 * Encrypted bonus buffers can have data past their bonuslen.
4028 * Skip the verification of these blocks.
4029 */
4030 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4031 return;
4032
4033 uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4034 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4035 ASSERT3U(bonuslen, <=, maxbonuslen);
4036
4037 arc_buf_t *datap = dr->dt.dl.dr_data;
4038 char *datap_end = ((char *)datap) + bonuslen;
4039 char *datap_max = ((char *)datap) + maxbonuslen;
4040
4041 /* ensure that everything is zero after our data */
4042 for (; datap_end < datap_max; datap_end++)
4043 ASSERT(*datap_end == 0);
4044 #endif
4045 }
4046
4047 static blkptr_t *
4048 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4049 {
4050 /* This must be a lightweight dirty record. */
4051 ASSERT3P(dr->dr_dbuf, ==, NULL);
4052 dnode_t *dn = dr->dr_dnode;
4053
4054 if (dn->dn_phys->dn_nlevels == 1) {
4055 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4056 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4057 } else {
4058 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4059 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4060 VERIFY3U(parent_db->db_level, ==, 1);
4061 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn);
4062 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4063 blkptr_t *bp = parent_db->db.db_data;
4064 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4065 }
4066 }
4067
4068 static void
4069 dbuf_lightweight_ready(zio_t *zio)
4070 {
4071 dbuf_dirty_record_t *dr = zio->io_private;
4072 blkptr_t *bp = zio->io_bp;
4073
4074 if (zio->io_error != 0)
4075 return;
4076
4077 dnode_t *dn = dr->dr_dnode;
4078
4079 blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4080 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4081 int64_t delta = bp_get_dsize_sync(spa, bp) -
4082 bp_get_dsize_sync(spa, bp_orig);
4083 dnode_diduse_space(dn, delta);
4084
4085 uint64_t blkid = dr->dt.dll.dr_blkid;
4086 mutex_enter(&dn->dn_mtx);
4087 if (blkid > dn->dn_phys->dn_maxblkid) {
4088 ASSERT0(dn->dn_objset->os_raw_receive);
4089 dn->dn_phys->dn_maxblkid = blkid;
4090 }
4091 mutex_exit(&dn->dn_mtx);
4092
4093 if (!BP_IS_EMBEDDED(bp)) {
4094 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4095 BP_SET_FILL(bp, fill);
4096 }
4097
4098 dmu_buf_impl_t *parent_db;
4099 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4100 if (dr->dr_parent == NULL) {
4101 parent_db = dn->dn_dbuf;
4102 } else {
4103 parent_db = dr->dr_parent->dr_dbuf;
4104 }
4105 rw_enter(&parent_db->db_rwlock, RW_WRITER);
4106 *bp_orig = *bp;
4107 rw_exit(&parent_db->db_rwlock);
4108 }
4109
4110 static void
4111 dbuf_lightweight_physdone(zio_t *zio)
4112 {
4113 dbuf_dirty_record_t *dr = zio->io_private;
4114 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
4115 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4116
4117 /*
4118 * The callback will be called io_phys_children times. Retire one
4119 * portion of our dirty space each time we are called. Any rounding
4120 * error will be cleaned up by dbuf_lightweight_done().
4121 */
4122 int delta = dr->dr_accounted / zio->io_phys_children;
4123 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4124 }
4125
4126 static void
4127 dbuf_lightweight_done(zio_t *zio)
4128 {
4129 dbuf_dirty_record_t *dr = zio->io_private;
4130
4131 VERIFY0(zio->io_error);
4132
4133 objset_t *os = dr->dr_dnode->dn_objset;
4134 dmu_tx_t *tx = os->os_synctx;
4135
4136 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4137 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4138 } else {
4139 dsl_dataset_t *ds = os->os_dsl_dataset;
4140 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4141 dsl_dataset_block_born(ds, zio->io_bp, tx);
4142 }
4143
4144 /*
4145 * See comment in dbuf_write_done().
4146 */
4147 if (zio->io_phys_children == 0) {
4148 dsl_pool_undirty_space(dmu_objset_pool(os),
4149 dr->dr_accounted, zio->io_txg);
4150 } else {
4151 dsl_pool_undirty_space(dmu_objset_pool(os),
4152 dr->dr_accounted % zio->io_phys_children, zio->io_txg);
4153 }
4154
4155 abd_free(dr->dt.dll.dr_abd);
4156 kmem_free(dr, sizeof (*dr));
4157 }
4158
4159 noinline static void
4160 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4161 {
4162 dnode_t *dn = dr->dr_dnode;
4163 zio_t *pio;
4164 if (dn->dn_phys->dn_nlevels == 1) {
4165 pio = dn->dn_zio;
4166 } else {
4167 pio = dr->dr_parent->dr_zio;
4168 }
4169
4170 zbookmark_phys_t zb = {
4171 .zb_objset = dmu_objset_id(dn->dn_objset),
4172 .zb_object = dn->dn_object,
4173 .zb_level = 0,
4174 .zb_blkid = dr->dt.dll.dr_blkid,
4175 };
4176
4177 /*
4178 * See comment in dbuf_write(). This is so that zio->io_bp_orig
4179 * will have the old BP in dbuf_lightweight_done().
4180 */
4181 dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4182
4183 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4184 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4185 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4186 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4187 dbuf_lightweight_physdone, dbuf_lightweight_done, dr,
4188 ZIO_PRIORITY_ASYNC_WRITE,
4189 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4190
4191 zio_nowait(dr->dr_zio);
4192 }
4193
4194 /*
4195 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4196 * critical the we not allow the compiler to inline this function in to
4197 * dbuf_sync_list() thereby drastically bloating the stack usage.
4198 */
4199 noinline static void
4200 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4201 {
4202 arc_buf_t **datap = &dr->dt.dl.dr_data;
4203 dmu_buf_impl_t *db = dr->dr_dbuf;
4204 dnode_t *dn = dr->dr_dnode;
4205 objset_t *os;
4206 uint64_t txg = tx->tx_txg;
4207
4208 ASSERT(dmu_tx_is_syncing(tx));
4209
4210 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4211
4212 mutex_enter(&db->db_mtx);
4213 /*
4214 * To be synced, we must be dirtied. But we
4215 * might have been freed after the dirty.
4216 */
4217 if (db->db_state == DB_UNCACHED) {
4218 /* This buffer has been freed since it was dirtied */
4219 ASSERT(db->db.db_data == NULL);
4220 } else if (db->db_state == DB_FILL) {
4221 /* This buffer was freed and is now being re-filled */
4222 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4223 } else {
4224 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4225 }
4226 DBUF_VERIFY(db);
4227
4228 if (db->db_blkid == DMU_SPILL_BLKID) {
4229 mutex_enter(&dn->dn_mtx);
4230 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4231 /*
4232 * In the previous transaction group, the bonus buffer
4233 * was entirely used to store the attributes for the
4234 * dnode which overrode the dn_spill field. However,
4235 * when adding more attributes to the file a spill
4236 * block was required to hold the extra attributes.
4237 *
4238 * Make sure to clear the garbage left in the dn_spill
4239 * field from the previous attributes in the bonus
4240 * buffer. Otherwise, after writing out the spill
4241 * block to the new allocated dva, it will free
4242 * the old block pointed to by the invalid dn_spill.
4243 */
4244 db->db_blkptr = NULL;
4245 }
4246 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4247 mutex_exit(&dn->dn_mtx);
4248 }
4249
4250 /*
4251 * If this is a bonus buffer, simply copy the bonus data into the
4252 * dnode. It will be written out when the dnode is synced (and it
4253 * will be synced, since it must have been dirty for dbuf_sync to
4254 * be called).
4255 */
4256 if (db->db_blkid == DMU_BONUS_BLKID) {
4257 ASSERT(dr->dr_dbuf == db);
4258 dbuf_sync_bonus(dr, tx);
4259 return;
4260 }
4261
4262 os = dn->dn_objset;
4263
4264 /*
4265 * This function may have dropped the db_mtx lock allowing a dmu_sync
4266 * operation to sneak in. As a result, we need to ensure that we
4267 * don't check the dr_override_state until we have returned from
4268 * dbuf_check_blkptr.
4269 */
4270 dbuf_check_blkptr(dn, db);
4271
4272 /*
4273 * If this buffer is in the middle of an immediate write,
4274 * wait for the synchronous IO to complete.
4275 */
4276 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4277 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4278 cv_wait(&db->db_changed, &db->db_mtx);
4279 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
4280 }
4281
4282 /*
4283 * If this is a dnode block, ensure it is appropriately encrypted
4284 * or decrypted, depending on what we are writing to it this txg.
4285 */
4286 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4287 dbuf_prepare_encrypted_dnode_leaf(dr);
4288
4289 if (db->db_state != DB_NOFILL &&
4290 dn->dn_object != DMU_META_DNODE_OBJECT &&
4291 zfs_refcount_count(&db->db_holds) > 1 &&
4292 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
4293 *datap == db->db_buf) {
4294 /*
4295 * If this buffer is currently "in use" (i.e., there
4296 * are active holds and db_data still references it),
4297 * then make a copy before we start the write so that
4298 * any modifications from the open txg will not leak
4299 * into this write.
4300 *
4301 * NOTE: this copy does not need to be made for
4302 * objects only modified in the syncing context (e.g.
4303 * DNONE_DNODE blocks).
4304 */
4305 *datap = dbuf_alloc_arcbuf_from_arcbuf(db, db->db_buf);
4306 bcopy(db->db.db_data, (*datap)->b_data, arc_buf_size(*datap));
4307 }
4308 db->db_data_pending = dr;
4309
4310 mutex_exit(&db->db_mtx);
4311
4312 dbuf_write(dr, *datap, tx);
4313
4314 ASSERT(!list_link_active(&dr->dr_dirty_node));
4315 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4316 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4317 } else {
4318 zio_nowait(dr->dr_zio);
4319 }
4320 }
4321
4322 void
4323 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4324 {
4325 dbuf_dirty_record_t *dr;
4326
4327 while ((dr = list_head(list))) {
4328 if (dr->dr_zio != NULL) {
4329 /*
4330 * If we find an already initialized zio then we
4331 * are processing the meta-dnode, and we have finished.
4332 * The dbufs for all dnodes are put back on the list
4333 * during processing, so that we can zio_wait()
4334 * these IOs after initiating all child IOs.
4335 */
4336 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4337 DMU_META_DNODE_OBJECT);
4338 break;
4339 }
4340 list_remove(list, dr);
4341 if (dr->dr_dbuf == NULL) {
4342 dbuf_sync_lightweight(dr, tx);
4343 } else {
4344 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4345 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4346 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4347 }
4348 if (dr->dr_dbuf->db_level > 0)
4349 dbuf_sync_indirect(dr, tx);
4350 else
4351 dbuf_sync_leaf(dr, tx);
4352 }
4353 }
4354 }
4355
4356 /* ARGSUSED */
4357 static void
4358 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4359 {
4360 dmu_buf_impl_t *db = vdb;
4361 dnode_t *dn;
4362 blkptr_t *bp = zio->io_bp;
4363 blkptr_t *bp_orig = &zio->io_bp_orig;
4364 spa_t *spa = zio->io_spa;
4365 int64_t delta;
4366 uint64_t fill = 0;
4367 int i;
4368
4369 ASSERT3P(db->db_blkptr, !=, NULL);
4370 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4371
4372 DB_DNODE_ENTER(db);
4373 dn = DB_DNODE(db);
4374 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4375 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4376 zio->io_prev_space_delta = delta;
4377
4378 if (bp->blk_birth != 0) {
4379 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4380 BP_GET_TYPE(bp) == dn->dn_type) ||
4381 (db->db_blkid == DMU_SPILL_BLKID &&
4382 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4383 BP_IS_EMBEDDED(bp));
4384 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4385 }
4386
4387 mutex_enter(&db->db_mtx);
4388
4389 #ifdef ZFS_DEBUG
4390 if (db->db_blkid == DMU_SPILL_BLKID) {
4391 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4392 ASSERT(!(BP_IS_HOLE(bp)) &&
4393 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4394 }
4395 #endif
4396
4397 if (db->db_level == 0) {
4398 mutex_enter(&dn->dn_mtx);
4399 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4400 db->db_blkid != DMU_SPILL_BLKID) {
4401 ASSERT0(db->db_objset->os_raw_receive);
4402 dn->dn_phys->dn_maxblkid = db->db_blkid;
4403 }
4404 mutex_exit(&dn->dn_mtx);
4405
4406 if (dn->dn_type == DMU_OT_DNODE) {
4407 i = 0;
4408 while (i < db->db.db_size) {
4409 dnode_phys_t *dnp =
4410 (void *)(((char *)db->db.db_data) + i);
4411
4412 i += DNODE_MIN_SIZE;
4413 if (dnp->dn_type != DMU_OT_NONE) {
4414 fill++;
4415 i += dnp->dn_extra_slots *
4416 DNODE_MIN_SIZE;
4417 }
4418 }
4419 } else {
4420 if (BP_IS_HOLE(bp)) {
4421 fill = 0;
4422 } else {
4423 fill = 1;
4424 }
4425 }
4426 } else {
4427 blkptr_t *ibp = db->db.db_data;
4428 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4429 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4430 if (BP_IS_HOLE(ibp))
4431 continue;
4432 fill += BP_GET_FILL(ibp);
4433 }
4434 }
4435 DB_DNODE_EXIT(db);
4436
4437 if (!BP_IS_EMBEDDED(bp))
4438 BP_SET_FILL(bp, fill);
4439
4440 mutex_exit(&db->db_mtx);
4441
4442 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
4443 *db->db_blkptr = *bp;
4444 dmu_buf_unlock_parent(db, dblt, FTAG);
4445 }
4446
4447 /* ARGSUSED */
4448 /*
4449 * This function gets called just prior to running through the compression
4450 * stage of the zio pipeline. If we're an indirect block comprised of only
4451 * holes, then we want this indirect to be compressed away to a hole. In
4452 * order to do that we must zero out any information about the holes that
4453 * this indirect points to prior to before we try to compress it.
4454 */
4455 static void
4456 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4457 {
4458 dmu_buf_impl_t *db = vdb;
4459 dnode_t *dn;
4460 blkptr_t *bp;
4461 unsigned int epbs, i;
4462
4463 ASSERT3U(db->db_level, >, 0);
4464 DB_DNODE_ENTER(db);
4465 dn = DB_DNODE(db);
4466 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4467 ASSERT3U(epbs, <, 31);
4468
4469 /* Determine if all our children are holes */
4470 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4471 if (!BP_IS_HOLE(bp))
4472 break;
4473 }
4474
4475 /*
4476 * If all the children are holes, then zero them all out so that
4477 * we may get compressed away.
4478 */
4479 if (i == 1ULL << epbs) {
4480 /*
4481 * We only found holes. Grab the rwlock to prevent
4482 * anybody from reading the blocks we're about to
4483 * zero out.
4484 */
4485 rw_enter(&db->db_rwlock, RW_WRITER);
4486 bzero(db->db.db_data, db->db.db_size);
4487 rw_exit(&db->db_rwlock);
4488 }
4489 DB_DNODE_EXIT(db);
4490 }
4491
4492 /*
4493 * The SPA will call this callback several times for each zio - once
4494 * for every physical child i/o (zio->io_phys_children times). This
4495 * allows the DMU to monitor the progress of each logical i/o. For example,
4496 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
4497 * block. There may be a long delay before all copies/fragments are completed,
4498 * so this callback allows us to retire dirty space gradually, as the physical
4499 * i/os complete.
4500 */
4501 /* ARGSUSED */
4502 static void
4503 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
4504 {
4505 dmu_buf_impl_t *db = arg;
4506 objset_t *os = db->db_objset;
4507 dsl_pool_t *dp = dmu_objset_pool(os);
4508 dbuf_dirty_record_t *dr;
4509 int delta = 0;
4510
4511 dr = db->db_data_pending;
4512 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4513
4514 /*
4515 * The callback will be called io_phys_children times. Retire one
4516 * portion of our dirty space each time we are called. Any rounding
4517 * error will be cleaned up by dbuf_write_done().
4518 */
4519 delta = dr->dr_accounted / zio->io_phys_children;
4520 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4521 }
4522
4523 /* ARGSUSED */
4524 static void
4525 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4526 {
4527 dmu_buf_impl_t *db = vdb;
4528 blkptr_t *bp_orig = &zio->io_bp_orig;
4529 blkptr_t *bp = db->db_blkptr;
4530 objset_t *os = db->db_objset;
4531 dmu_tx_t *tx = os->os_synctx;
4532
4533 ASSERT0(zio->io_error);
4534 ASSERT(db->db_blkptr == bp);
4535
4536 /*
4537 * For nopwrites and rewrites we ensure that the bp matches our
4538 * original and bypass all the accounting.
4539 */
4540 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4541 ASSERT(BP_EQUAL(bp, bp_orig));
4542 } else {
4543 dsl_dataset_t *ds = os->os_dsl_dataset;
4544 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4545 dsl_dataset_block_born(ds, bp, tx);
4546 }
4547
4548 mutex_enter(&db->db_mtx);
4549
4550 DBUF_VERIFY(db);
4551
4552 dbuf_dirty_record_t *dr = db->db_data_pending;
4553 dnode_t *dn = dr->dr_dnode;
4554 ASSERT(!list_link_active(&dr->dr_dirty_node));
4555 ASSERT(dr->dr_dbuf == db);
4556 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
4557 list_remove(&db->db_dirty_records, dr);
4558
4559 #ifdef ZFS_DEBUG
4560 if (db->db_blkid == DMU_SPILL_BLKID) {
4561 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4562 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4563 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4564 }
4565 #endif
4566
4567 if (db->db_level == 0) {
4568 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4569 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4570 if (db->db_state != DB_NOFILL) {
4571 if (dr->dt.dl.dr_data != db->db_buf)
4572 arc_buf_destroy(dr->dt.dl.dr_data, db);
4573 }
4574 } else {
4575 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4576 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4577 if (!BP_IS_HOLE(db->db_blkptr)) {
4578 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
4579 SPA_BLKPTRSHIFT;
4580 ASSERT3U(db->db_blkid, <=,
4581 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4582 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4583 db->db.db_size);
4584 }
4585 mutex_destroy(&dr->dt.di.dr_mtx);
4586 list_destroy(&dr->dt.di.dr_children);
4587 }
4588
4589 cv_broadcast(&db->db_changed);
4590 ASSERT(db->db_dirtycnt > 0);
4591 db->db_dirtycnt -= 1;
4592 db->db_data_pending = NULL;
4593 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4594
4595 /*
4596 * If we didn't do a physical write in this ZIO and we
4597 * still ended up here, it means that the space of the
4598 * dbuf that we just released (and undirtied) above hasn't
4599 * been marked as undirtied in the pool's accounting.
4600 *
4601 * Thus, we undirty that space in the pool's view of the
4602 * world here. For physical writes this type of update
4603 * happens in dbuf_write_physdone().
4604 *
4605 * If we did a physical write, cleanup any rounding errors
4606 * that came up due to writing multiple copies of a block
4607 * on disk [see dbuf_write_physdone()].
4608 */
4609 if (zio->io_phys_children == 0) {
4610 dsl_pool_undirty_space(dmu_objset_pool(os),
4611 dr->dr_accounted, zio->io_txg);
4612 } else {
4613 dsl_pool_undirty_space(dmu_objset_pool(os),
4614 dr->dr_accounted % zio->io_phys_children, zio->io_txg);
4615 }
4616
4617 kmem_free(dr, sizeof (dbuf_dirty_record_t));
4618 }
4619
4620 static void
4621 dbuf_write_nofill_ready(zio_t *zio)
4622 {
4623 dbuf_write_ready(zio, NULL, zio->io_private);
4624 }
4625
4626 static void
4627 dbuf_write_nofill_done(zio_t *zio)
4628 {
4629 dbuf_write_done(zio, NULL, zio->io_private);
4630 }
4631
4632 static void
4633 dbuf_write_override_ready(zio_t *zio)
4634 {
4635 dbuf_dirty_record_t *dr = zio->io_private;
4636 dmu_buf_impl_t *db = dr->dr_dbuf;
4637
4638 dbuf_write_ready(zio, NULL, db);
4639 }
4640
4641 static void
4642 dbuf_write_override_done(zio_t *zio)
4643 {
4644 dbuf_dirty_record_t *dr = zio->io_private;
4645 dmu_buf_impl_t *db = dr->dr_dbuf;
4646 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4647
4648 mutex_enter(&db->db_mtx);
4649 if (!BP_EQUAL(zio->io_bp, obp)) {
4650 if (!BP_IS_HOLE(obp))
4651 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4652 arc_release(dr->dt.dl.dr_data, db);
4653 }
4654 mutex_exit(&db->db_mtx);
4655
4656 dbuf_write_done(zio, NULL, db);
4657
4658 if (zio->io_abd != NULL)
4659 abd_put(zio->io_abd);
4660 }
4661
4662 typedef struct dbuf_remap_impl_callback_arg {
4663 objset_t *drica_os;
4664 uint64_t drica_blk_birth;
4665 dmu_tx_t *drica_tx;
4666 } dbuf_remap_impl_callback_arg_t;
4667
4668 static void
4669 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4670 void *arg)
4671 {
4672 dbuf_remap_impl_callback_arg_t *drica = arg;
4673 objset_t *os = drica->drica_os;
4674 spa_t *spa = dmu_objset_spa(os);
4675 dmu_tx_t *tx = drica->drica_tx;
4676
4677 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4678
4679 if (os == spa_meta_objset(spa)) {
4680 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4681 } else {
4682 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4683 size, drica->drica_blk_birth, tx);
4684 }
4685 }
4686
4687 static void
4688 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
4689 {
4690 blkptr_t bp_copy = *bp;
4691 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4692 dbuf_remap_impl_callback_arg_t drica;
4693
4694 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4695
4696 drica.drica_os = dn->dn_objset;
4697 drica.drica_blk_birth = bp->blk_birth;
4698 drica.drica_tx = tx;
4699 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4700 &drica)) {
4701 /*
4702 * If the blkptr being remapped is tracked by a livelist,
4703 * then we need to make sure the livelist reflects the update.
4704 * First, cancel out the old blkptr by appending a 'FREE'
4705 * entry. Next, add an 'ALLOC' to track the new version. This
4706 * way we avoid trying to free an inaccurate blkptr at delete.
4707 * Note that embedded blkptrs are not tracked in livelists.
4708 */
4709 if (dn->dn_objset != spa_meta_objset(spa)) {
4710 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
4711 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4712 bp->blk_birth > ds->ds_dir->dd_origin_txg) {
4713 ASSERT(!BP_IS_EMBEDDED(bp));
4714 ASSERT(dsl_dir_is_clone(ds->ds_dir));
4715 ASSERT(spa_feature_is_enabled(spa,
4716 SPA_FEATURE_LIVELIST));
4717 bplist_append(&ds->ds_dir->dd_pending_frees,
4718 bp);
4719 bplist_append(&ds->ds_dir->dd_pending_allocs,
4720 &bp_copy);
4721 }
4722 }
4723
4724 /*
4725 * The db_rwlock prevents dbuf_read_impl() from
4726 * dereferencing the BP while we are changing it. To
4727 * avoid lock contention, only grab it when we are actually
4728 * changing the BP.
4729 */
4730 if (rw != NULL)
4731 rw_enter(rw, RW_WRITER);
4732 *bp = bp_copy;
4733 if (rw != NULL)
4734 rw_exit(rw);
4735 }
4736 }
4737
4738 /*
4739 * Remap any existing BP's to concrete vdevs, if possible.
4740 */
4741 static void
4742 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4743 {
4744 spa_t *spa = dmu_objset_spa(db->db_objset);
4745 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4746
4747 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4748 return;
4749
4750 if (db->db_level > 0) {
4751 blkptr_t *bp = db->db.db_data;
4752 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4753 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
4754 }
4755 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4756 dnode_phys_t *dnp = db->db.db_data;
4757 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4758 DMU_OT_DNODE);
4759 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4760 i += dnp[i].dn_extra_slots + 1) {
4761 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4762 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
4763 &dn->dn_dbuf->db_rwlock);
4764 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
4765 tx);
4766 }
4767 }
4768 }
4769 }
4770
4771
4772 /* Issue I/O to commit a dirty buffer to disk. */
4773 static void
4774 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4775 {
4776 dmu_buf_impl_t *db = dr->dr_dbuf;
4777 dnode_t *dn = dr->dr_dnode;
4778 objset_t *os;
4779 dmu_buf_impl_t *parent = db->db_parent;
4780 uint64_t txg = tx->tx_txg;
4781 zbookmark_phys_t zb;
4782 zio_prop_t zp;
4783 zio_t *pio; /* parent I/O */
4784 int wp_flag = 0;
4785
4786 ASSERT(dmu_tx_is_syncing(tx));
4787
4788 os = dn->dn_objset;
4789
4790 if (db->db_state != DB_NOFILL) {
4791 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4792 /*
4793 * Private object buffers are released here rather
4794 * than in dbuf_dirty() since they are only modified
4795 * in the syncing context and we don't want the
4796 * overhead of making multiple copies of the data.
4797 */
4798 if (BP_IS_HOLE(db->db_blkptr)) {
4799 arc_buf_thaw(data);
4800 } else {
4801 dbuf_release_bp(db);
4802 }
4803 dbuf_remap(dn, db, tx);
4804 }
4805 }
4806
4807 if (parent != dn->dn_dbuf) {
4808 /* Our parent is an indirect block. */
4809 /* We have a dirty parent that has been scheduled for write. */
4810 ASSERT(parent && parent->db_data_pending);
4811 /* Our parent's buffer is one level closer to the dnode. */
4812 ASSERT(db->db_level == parent->db_level-1);
4813 /*
4814 * We're about to modify our parent's db_data by modifying
4815 * our block pointer, so the parent must be released.
4816 */
4817 ASSERT(arc_released(parent->db_buf));
4818 pio = parent->db_data_pending->dr_zio;
4819 } else {
4820 /* Our parent is the dnode itself. */
4821 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4822 db->db_blkid != DMU_SPILL_BLKID) ||
4823 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4824 if (db->db_blkid != DMU_SPILL_BLKID)
4825 ASSERT3P(db->db_blkptr, ==,
4826 &dn->dn_phys->dn_blkptr[db->db_blkid]);
4827 pio = dn->dn_zio;
4828 }
4829
4830 ASSERT(db->db_level == 0 || data == db->db_buf);
4831 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
4832 ASSERT(pio);
4833
4834 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
4835 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
4836 db->db.db_object, db->db_level, db->db_blkid);
4837
4838 if (db->db_blkid == DMU_SPILL_BLKID)
4839 wp_flag = WP_SPILL;
4840 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
4841
4842 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
4843
4844 /*
4845 * We copy the blkptr now (rather than when we instantiate the dirty
4846 * record), because its value can change between open context and
4847 * syncing context. We do not need to hold dn_struct_rwlock to read
4848 * db_blkptr because we are in syncing context.
4849 */
4850 dr->dr_bp_copy = *db->db_blkptr;
4851
4852 if (db->db_level == 0 &&
4853 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
4854 /*
4855 * The BP for this block has been provided by open context
4856 * (by dmu_sync() or dmu_buf_write_embedded()).
4857 */
4858 abd_t *contents = (data != NULL) ?
4859 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
4860
4861 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
4862 contents, db->db.db_size, db->db.db_size, &zp,
4863 dbuf_write_override_ready, NULL, NULL,
4864 dbuf_write_override_done,
4865 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
4866 mutex_enter(&db->db_mtx);
4867 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
4868 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
4869 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
4870 mutex_exit(&db->db_mtx);
4871 } else if (db->db_state == DB_NOFILL) {
4872 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
4873 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
4874 dr->dr_zio = zio_write(pio, os->os_spa, txg,
4875 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
4876 dbuf_write_nofill_ready, NULL, NULL,
4877 dbuf_write_nofill_done, db,
4878 ZIO_PRIORITY_ASYNC_WRITE,
4879 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
4880 } else {
4881 ASSERT(arc_released(data));
4882
4883 /*
4884 * For indirect blocks, we want to setup the children
4885 * ready callback so that we can properly handle an indirect
4886 * block that only contains holes.
4887 */
4888 arc_write_done_func_t *children_ready_cb = NULL;
4889 if (db->db_level != 0)
4890 children_ready_cb = dbuf_write_children_ready;
4891
4892 dr->dr_zio = arc_write(pio, os->os_spa, txg,
4893 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
4894 &zp, dbuf_write_ready,
4895 children_ready_cb, dbuf_write_physdone,
4896 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
4897 ZIO_FLAG_MUSTSUCCEED, &zb);
4898 }
4899 }
4900
4901 EXPORT_SYMBOL(dbuf_find);
4902 EXPORT_SYMBOL(dbuf_is_metadata);
4903 EXPORT_SYMBOL(dbuf_destroy);
4904 EXPORT_SYMBOL(dbuf_loan_arcbuf);
4905 EXPORT_SYMBOL(dbuf_whichblock);
4906 EXPORT_SYMBOL(dbuf_read);
4907 EXPORT_SYMBOL(dbuf_unoverride);
4908 EXPORT_SYMBOL(dbuf_free_range);
4909 EXPORT_SYMBOL(dbuf_new_size);
4910 EXPORT_SYMBOL(dbuf_release_bp);
4911 EXPORT_SYMBOL(dbuf_dirty);
4912 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
4913 EXPORT_SYMBOL(dmu_buf_will_dirty);
4914 EXPORT_SYMBOL(dmu_buf_is_dirty);
4915 EXPORT_SYMBOL(dmu_buf_will_not_fill);
4916 EXPORT_SYMBOL(dmu_buf_will_fill);
4917 EXPORT_SYMBOL(dmu_buf_fill_done);
4918 EXPORT_SYMBOL(dmu_buf_rele);
4919 EXPORT_SYMBOL(dbuf_assign_arcbuf);
4920 EXPORT_SYMBOL(dbuf_prefetch);
4921 EXPORT_SYMBOL(dbuf_hold_impl);
4922 EXPORT_SYMBOL(dbuf_hold);
4923 EXPORT_SYMBOL(dbuf_hold_level);
4924 EXPORT_SYMBOL(dbuf_create_bonus);
4925 EXPORT_SYMBOL(dbuf_spill_set_blksz);
4926 EXPORT_SYMBOL(dbuf_rm_spill);
4927 EXPORT_SYMBOL(dbuf_add_ref);
4928 EXPORT_SYMBOL(dbuf_rele);
4929 EXPORT_SYMBOL(dbuf_rele_and_unlock);
4930 EXPORT_SYMBOL(dbuf_refcount);
4931 EXPORT_SYMBOL(dbuf_sync_list);
4932 EXPORT_SYMBOL(dmu_buf_set_user);
4933 EXPORT_SYMBOL(dmu_buf_set_user_ie);
4934 EXPORT_SYMBOL(dmu_buf_get_user);
4935 EXPORT_SYMBOL(dmu_buf_get_blkptr);
4936
4937 /* BEGIN CSTYLED */
4938 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, ULONG, ZMOD_RW,
4939 "Maximum size in bytes of the dbuf cache.");
4940
4941 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
4942 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
4943 "directly.");
4944
4945 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
4946 "Percentage below dbuf_cache_max_bytes when the evict thread stops "
4947 "evicting dbufs.");
4948
4949 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, ULONG, ZMOD_RW,
4950 "Maximum size in bytes of the dbuf metadata cache.");
4951
4952 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, INT, ZMOD_RW,
4953 "Set the size of the dbuf cache to a log2 fraction of arc size.");
4954
4955 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, INT, ZMOD_RW,
4956 "Set the size of the dbuf metadata cache to a log2 fraction of arc "
4957 "size.");
4958 /* END CSTYLED */