]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dbuf.c
Introduce a tunable to exclude special class buffers from L2ARC
[mirror_zfs.git] / module / zfs / dbuf.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2019, Klara Inc.
28 * Copyright (c) 2019, Allan Jude
29 */
30
31 #include <sys/zfs_context.h>
32 #include <sys/arc.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_send.h>
35 #include <sys/dmu_impl.h>
36 #include <sys/dbuf.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/spa.h>
42 #include <sys/zio.h>
43 #include <sys/dmu_zfetch.h>
44 #include <sys/sa.h>
45 #include <sys/sa_impl.h>
46 #include <sys/zfeature.h>
47 #include <sys/blkptr.h>
48 #include <sys/range_tree.h>
49 #include <sys/trace_zfs.h>
50 #include <sys/callb.h>
51 #include <sys/abd.h>
52 #include <sys/vdev.h>
53 #include <cityhash.h>
54 #include <sys/spa_impl.h>
55 #include <sys/wmsum.h>
56 #include <sys/vdev_impl.h>
57
58 kstat_t *dbuf_ksp;
59
60 typedef struct dbuf_stats {
61 /*
62 * Various statistics about the size of the dbuf cache.
63 */
64 kstat_named_t cache_count;
65 kstat_named_t cache_size_bytes;
66 kstat_named_t cache_size_bytes_max;
67 /*
68 * Statistics regarding the bounds on the dbuf cache size.
69 */
70 kstat_named_t cache_target_bytes;
71 kstat_named_t cache_lowater_bytes;
72 kstat_named_t cache_hiwater_bytes;
73 /*
74 * Total number of dbuf cache evictions that have occurred.
75 */
76 kstat_named_t cache_total_evicts;
77 /*
78 * The distribution of dbuf levels in the dbuf cache and
79 * the total size of all dbufs at each level.
80 */
81 kstat_named_t cache_levels[DN_MAX_LEVELS];
82 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
83 /*
84 * Statistics about the dbuf hash table.
85 */
86 kstat_named_t hash_hits;
87 kstat_named_t hash_misses;
88 kstat_named_t hash_collisions;
89 kstat_named_t hash_elements;
90 kstat_named_t hash_elements_max;
91 /*
92 * Number of sublists containing more than one dbuf in the dbuf
93 * hash table. Keep track of the longest hash chain.
94 */
95 kstat_named_t hash_chains;
96 kstat_named_t hash_chain_max;
97 /*
98 * Number of times a dbuf_create() discovers that a dbuf was
99 * already created and in the dbuf hash table.
100 */
101 kstat_named_t hash_insert_race;
102 /*
103 * Statistics about the size of the metadata dbuf cache.
104 */
105 kstat_named_t metadata_cache_count;
106 kstat_named_t metadata_cache_size_bytes;
107 kstat_named_t metadata_cache_size_bytes_max;
108 /*
109 * For diagnostic purposes, this is incremented whenever we can't add
110 * something to the metadata cache because it's full, and instead put
111 * the data in the regular dbuf cache.
112 */
113 kstat_named_t metadata_cache_overflow;
114 } dbuf_stats_t;
115
116 dbuf_stats_t dbuf_stats = {
117 { "cache_count", KSTAT_DATA_UINT64 },
118 { "cache_size_bytes", KSTAT_DATA_UINT64 },
119 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
120 { "cache_target_bytes", KSTAT_DATA_UINT64 },
121 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
122 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
123 { "cache_total_evicts", KSTAT_DATA_UINT64 },
124 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
125 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
126 { "hash_hits", KSTAT_DATA_UINT64 },
127 { "hash_misses", KSTAT_DATA_UINT64 },
128 { "hash_collisions", KSTAT_DATA_UINT64 },
129 { "hash_elements", KSTAT_DATA_UINT64 },
130 { "hash_elements_max", KSTAT_DATA_UINT64 },
131 { "hash_chains", KSTAT_DATA_UINT64 },
132 { "hash_chain_max", KSTAT_DATA_UINT64 },
133 { "hash_insert_race", KSTAT_DATA_UINT64 },
134 { "metadata_cache_count", KSTAT_DATA_UINT64 },
135 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
136 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
137 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
138 };
139
140 struct {
141 wmsum_t cache_count;
142 wmsum_t cache_total_evicts;
143 wmsum_t cache_levels[DN_MAX_LEVELS];
144 wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
145 wmsum_t hash_hits;
146 wmsum_t hash_misses;
147 wmsum_t hash_collisions;
148 wmsum_t hash_chains;
149 wmsum_t hash_insert_race;
150 wmsum_t metadata_cache_count;
151 wmsum_t metadata_cache_overflow;
152 } dbuf_sums;
153
154 #define DBUF_STAT_INCR(stat, val) \
155 wmsum_add(&dbuf_sums.stat, val);
156 #define DBUF_STAT_DECR(stat, val) \
157 DBUF_STAT_INCR(stat, -(val));
158 #define DBUF_STAT_BUMP(stat) \
159 DBUF_STAT_INCR(stat, 1);
160 #define DBUF_STAT_BUMPDOWN(stat) \
161 DBUF_STAT_INCR(stat, -1);
162 #define DBUF_STAT_MAX(stat, v) { \
163 uint64_t _m; \
164 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
165 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
166 continue; \
167 }
168
169 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
170 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
171 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
172 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags);
173
174 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
175 dmu_buf_evict_func_t *evict_func_sync,
176 dmu_buf_evict_func_t *evict_func_async,
177 dmu_buf_t **clear_on_evict_dbufp);
178
179 /*
180 * Global data structures and functions for the dbuf cache.
181 */
182 static kmem_cache_t *dbuf_kmem_cache;
183 static taskq_t *dbu_evict_taskq;
184
185 static kthread_t *dbuf_cache_evict_thread;
186 static kmutex_t dbuf_evict_lock;
187 static kcondvar_t dbuf_evict_cv;
188 static boolean_t dbuf_evict_thread_exit;
189
190 /*
191 * There are two dbuf caches; each dbuf can only be in one of them at a time.
192 *
193 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
194 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
195 * that represent the metadata that describes filesystems/snapshots/
196 * bookmarks/properties/etc. We only evict from this cache when we export a
197 * pool, to short-circuit as much I/O as possible for all administrative
198 * commands that need the metadata. There is no eviction policy for this
199 * cache, because we try to only include types in it which would occupy a
200 * very small amount of space per object but create a large impact on the
201 * performance of these commands. Instead, after it reaches a maximum size
202 * (which should only happen on very small memory systems with a very large
203 * number of filesystem objects), we stop taking new dbufs into the
204 * metadata cache, instead putting them in the normal dbuf cache.
205 *
206 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
207 * are not currently held but have been recently released. These dbufs
208 * are not eligible for arc eviction until they are aged out of the cache.
209 * Dbufs that are aged out of the cache will be immediately destroyed and
210 * become eligible for arc eviction.
211 *
212 * Dbufs are added to these caches once the last hold is released. If a dbuf is
213 * later accessed and still exists in the dbuf cache, then it will be removed
214 * from the cache and later re-added to the head of the cache.
215 *
216 * If a given dbuf meets the requirements for the metadata cache, it will go
217 * there, otherwise it will be considered for the generic LRU dbuf cache. The
218 * caches and the refcounts tracking their sizes are stored in an array indexed
219 * by those caches' matching enum values (from dbuf_cached_state_t).
220 */
221 typedef struct dbuf_cache {
222 multilist_t cache;
223 zfs_refcount_t size ____cacheline_aligned;
224 } dbuf_cache_t;
225 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
226
227 /* Size limits for the caches */
228 unsigned long dbuf_cache_max_bytes = ULONG_MAX;
229 unsigned long dbuf_metadata_cache_max_bytes = ULONG_MAX;
230
231 /* Set the default sizes of the caches to log2 fraction of arc size */
232 int dbuf_cache_shift = 5;
233 int dbuf_metadata_cache_shift = 6;
234
235 static unsigned long dbuf_cache_target_bytes(void);
236 static unsigned long dbuf_metadata_cache_target_bytes(void);
237
238 /*
239 * The LRU dbuf cache uses a three-stage eviction policy:
240 * - A low water marker designates when the dbuf eviction thread
241 * should stop evicting from the dbuf cache.
242 * - When we reach the maximum size (aka mid water mark), we
243 * signal the eviction thread to run.
244 * - The high water mark indicates when the eviction thread
245 * is unable to keep up with the incoming load and eviction must
246 * happen in the context of the calling thread.
247 *
248 * The dbuf cache:
249 * (max size)
250 * low water mid water hi water
251 * +----------------------------------------+----------+----------+
252 * | | | |
253 * | | | |
254 * | | | |
255 * | | | |
256 * +----------------------------------------+----------+----------+
257 * stop signal evict
258 * evicting eviction directly
259 * thread
260 *
261 * The high and low water marks indicate the operating range for the eviction
262 * thread. The low water mark is, by default, 90% of the total size of the
263 * cache and the high water mark is at 110% (both of these percentages can be
264 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
265 * respectively). The eviction thread will try to ensure that the cache remains
266 * within this range by waking up every second and checking if the cache is
267 * above the low water mark. The thread can also be woken up by callers adding
268 * elements into the cache if the cache is larger than the mid water (i.e max
269 * cache size). Once the eviction thread is woken up and eviction is required,
270 * it will continue evicting buffers until it's able to reduce the cache size
271 * to the low water mark. If the cache size continues to grow and hits the high
272 * water mark, then callers adding elements to the cache will begin to evict
273 * directly from the cache until the cache is no longer above the high water
274 * mark.
275 */
276
277 /*
278 * The percentage above and below the maximum cache size.
279 */
280 uint_t dbuf_cache_hiwater_pct = 10;
281 uint_t dbuf_cache_lowater_pct = 10;
282
283 /* ARGSUSED */
284 static int
285 dbuf_cons(void *vdb, void *unused, int kmflag)
286 {
287 dmu_buf_impl_t *db = vdb;
288 bzero(db, sizeof (dmu_buf_impl_t));
289
290 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
291 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL);
292 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
293 multilist_link_init(&db->db_cache_link);
294 zfs_refcount_create(&db->db_holds);
295
296 return (0);
297 }
298
299 /* ARGSUSED */
300 static void
301 dbuf_dest(void *vdb, void *unused)
302 {
303 dmu_buf_impl_t *db = vdb;
304 mutex_destroy(&db->db_mtx);
305 rw_destroy(&db->db_rwlock);
306 cv_destroy(&db->db_changed);
307 ASSERT(!multilist_link_active(&db->db_cache_link));
308 zfs_refcount_destroy(&db->db_holds);
309 }
310
311 /*
312 * dbuf hash table routines
313 */
314 static dbuf_hash_table_t dbuf_hash_table;
315
316 /*
317 * We use Cityhash for this. It's fast, and has good hash properties without
318 * requiring any large static buffers.
319 */
320 static uint64_t
321 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
322 {
323 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
324 }
325
326 #define DTRACE_SET_STATE(db, why) \
327 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \
328 const char *, why)
329
330 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
331 ((dbuf)->db.db_object == (obj) && \
332 (dbuf)->db_objset == (os) && \
333 (dbuf)->db_level == (level) && \
334 (dbuf)->db_blkid == (blkid))
335
336 dmu_buf_impl_t *
337 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
338 {
339 dbuf_hash_table_t *h = &dbuf_hash_table;
340 uint64_t hv;
341 uint64_t idx;
342 dmu_buf_impl_t *db;
343
344 hv = dbuf_hash(os, obj, level, blkid);
345 idx = hv & h->hash_table_mask;
346
347 mutex_enter(DBUF_HASH_MUTEX(h, idx));
348 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
349 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
350 mutex_enter(&db->db_mtx);
351 if (db->db_state != DB_EVICTING) {
352 mutex_exit(DBUF_HASH_MUTEX(h, idx));
353 return (db);
354 }
355 mutex_exit(&db->db_mtx);
356 }
357 }
358 mutex_exit(DBUF_HASH_MUTEX(h, idx));
359 return (NULL);
360 }
361
362 static dmu_buf_impl_t *
363 dbuf_find_bonus(objset_t *os, uint64_t object)
364 {
365 dnode_t *dn;
366 dmu_buf_impl_t *db = NULL;
367
368 if (dnode_hold(os, object, FTAG, &dn) == 0) {
369 rw_enter(&dn->dn_struct_rwlock, RW_READER);
370 if (dn->dn_bonus != NULL) {
371 db = dn->dn_bonus;
372 mutex_enter(&db->db_mtx);
373 }
374 rw_exit(&dn->dn_struct_rwlock);
375 dnode_rele(dn, FTAG);
376 }
377 return (db);
378 }
379
380 /*
381 * Insert an entry into the hash table. If there is already an element
382 * equal to elem in the hash table, then the already existing element
383 * will be returned and the new element will not be inserted.
384 * Otherwise returns NULL.
385 */
386 static dmu_buf_impl_t *
387 dbuf_hash_insert(dmu_buf_impl_t *db)
388 {
389 dbuf_hash_table_t *h = &dbuf_hash_table;
390 objset_t *os = db->db_objset;
391 uint64_t obj = db->db.db_object;
392 int level = db->db_level;
393 uint64_t blkid, hv, idx;
394 dmu_buf_impl_t *dbf;
395 uint32_t i;
396
397 blkid = db->db_blkid;
398 hv = dbuf_hash(os, obj, level, blkid);
399 idx = hv & h->hash_table_mask;
400
401 mutex_enter(DBUF_HASH_MUTEX(h, idx));
402 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
403 dbf = dbf->db_hash_next, i++) {
404 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
405 mutex_enter(&dbf->db_mtx);
406 if (dbf->db_state != DB_EVICTING) {
407 mutex_exit(DBUF_HASH_MUTEX(h, idx));
408 return (dbf);
409 }
410 mutex_exit(&dbf->db_mtx);
411 }
412 }
413
414 if (i > 0) {
415 DBUF_STAT_BUMP(hash_collisions);
416 if (i == 1)
417 DBUF_STAT_BUMP(hash_chains);
418
419 DBUF_STAT_MAX(hash_chain_max, i);
420 }
421
422 mutex_enter(&db->db_mtx);
423 db->db_hash_next = h->hash_table[idx];
424 h->hash_table[idx] = db;
425 mutex_exit(DBUF_HASH_MUTEX(h, idx));
426 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64);
427 DBUF_STAT_MAX(hash_elements_max, he);
428
429 return (NULL);
430 }
431
432 /*
433 * This returns whether this dbuf should be stored in the metadata cache, which
434 * is based on whether it's from one of the dnode types that store data related
435 * to traversing dataset hierarchies.
436 */
437 static boolean_t
438 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
439 {
440 DB_DNODE_ENTER(db);
441 dmu_object_type_t type = DB_DNODE(db)->dn_type;
442 DB_DNODE_EXIT(db);
443
444 /* Check if this dbuf is one of the types we care about */
445 if (DMU_OT_IS_METADATA_CACHED(type)) {
446 /* If we hit this, then we set something up wrong in dmu_ot */
447 ASSERT(DMU_OT_IS_METADATA(type));
448
449 /*
450 * Sanity check for small-memory systems: don't allocate too
451 * much memory for this purpose.
452 */
453 if (zfs_refcount_count(
454 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
455 dbuf_metadata_cache_target_bytes()) {
456 DBUF_STAT_BUMP(metadata_cache_overflow);
457 return (B_FALSE);
458 }
459
460 return (B_TRUE);
461 }
462
463 return (B_FALSE);
464 }
465
466 /*
467 * Remove an entry from the hash table. It must be in the EVICTING state.
468 */
469 static void
470 dbuf_hash_remove(dmu_buf_impl_t *db)
471 {
472 dbuf_hash_table_t *h = &dbuf_hash_table;
473 uint64_t hv, idx;
474 dmu_buf_impl_t *dbf, **dbp;
475
476 hv = dbuf_hash(db->db_objset, db->db.db_object,
477 db->db_level, db->db_blkid);
478 idx = hv & h->hash_table_mask;
479
480 /*
481 * We mustn't hold db_mtx to maintain lock ordering:
482 * DBUF_HASH_MUTEX > db_mtx.
483 */
484 ASSERT(zfs_refcount_is_zero(&db->db_holds));
485 ASSERT(db->db_state == DB_EVICTING);
486 ASSERT(!MUTEX_HELD(&db->db_mtx));
487
488 mutex_enter(DBUF_HASH_MUTEX(h, idx));
489 dbp = &h->hash_table[idx];
490 while ((dbf = *dbp) != db) {
491 dbp = &dbf->db_hash_next;
492 ASSERT(dbf != NULL);
493 }
494 *dbp = db->db_hash_next;
495 db->db_hash_next = NULL;
496 if (h->hash_table[idx] &&
497 h->hash_table[idx]->db_hash_next == NULL)
498 DBUF_STAT_BUMPDOWN(hash_chains);
499 mutex_exit(DBUF_HASH_MUTEX(h, idx));
500 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64);
501 }
502
503 typedef enum {
504 DBVU_EVICTING,
505 DBVU_NOT_EVICTING
506 } dbvu_verify_type_t;
507
508 static void
509 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
510 {
511 #ifdef ZFS_DEBUG
512 int64_t holds;
513
514 if (db->db_user == NULL)
515 return;
516
517 /* Only data blocks support the attachment of user data. */
518 ASSERT(db->db_level == 0);
519
520 /* Clients must resolve a dbuf before attaching user data. */
521 ASSERT(db->db.db_data != NULL);
522 ASSERT3U(db->db_state, ==, DB_CACHED);
523
524 holds = zfs_refcount_count(&db->db_holds);
525 if (verify_type == DBVU_EVICTING) {
526 /*
527 * Immediate eviction occurs when holds == dirtycnt.
528 * For normal eviction buffers, holds is zero on
529 * eviction, except when dbuf_fix_old_data() calls
530 * dbuf_clear_data(). However, the hold count can grow
531 * during eviction even though db_mtx is held (see
532 * dmu_bonus_hold() for an example), so we can only
533 * test the generic invariant that holds >= dirtycnt.
534 */
535 ASSERT3U(holds, >=, db->db_dirtycnt);
536 } else {
537 if (db->db_user_immediate_evict == TRUE)
538 ASSERT3U(holds, >=, db->db_dirtycnt);
539 else
540 ASSERT3U(holds, >, 0);
541 }
542 #endif
543 }
544
545 static void
546 dbuf_evict_user(dmu_buf_impl_t *db)
547 {
548 dmu_buf_user_t *dbu = db->db_user;
549
550 ASSERT(MUTEX_HELD(&db->db_mtx));
551
552 if (dbu == NULL)
553 return;
554
555 dbuf_verify_user(db, DBVU_EVICTING);
556 db->db_user = NULL;
557
558 #ifdef ZFS_DEBUG
559 if (dbu->dbu_clear_on_evict_dbufp != NULL)
560 *dbu->dbu_clear_on_evict_dbufp = NULL;
561 #endif
562
563 /*
564 * There are two eviction callbacks - one that we call synchronously
565 * and one that we invoke via a taskq. The async one is useful for
566 * avoiding lock order reversals and limiting stack depth.
567 *
568 * Note that if we have a sync callback but no async callback,
569 * it's likely that the sync callback will free the structure
570 * containing the dbu. In that case we need to take care to not
571 * dereference dbu after calling the sync evict func.
572 */
573 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
574
575 if (dbu->dbu_evict_func_sync != NULL)
576 dbu->dbu_evict_func_sync(dbu);
577
578 if (has_async) {
579 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
580 dbu, 0, &dbu->dbu_tqent);
581 }
582 }
583
584 boolean_t
585 dbuf_is_metadata(dmu_buf_impl_t *db)
586 {
587 /*
588 * Consider indirect blocks and spill blocks to be meta data.
589 */
590 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
591 return (B_TRUE);
592 } else {
593 boolean_t is_metadata;
594
595 DB_DNODE_ENTER(db);
596 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
597 DB_DNODE_EXIT(db);
598
599 return (is_metadata);
600 }
601 }
602
603 /*
604 * We want to exclude buffers that are on a special allocation class from
605 * L2ARC.
606 */
607 boolean_t
608 dbuf_is_l2cacheable(dmu_buf_impl_t *db)
609 {
610 vdev_t *vd = NULL;
611 zfs_cache_type_t cache = db->db_objset->os_secondary_cache;
612 blkptr_t *bp = db->db_blkptr;
613
614 if (bp != NULL && !BP_IS_HOLE(bp)) {
615 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
616 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
617
618 if (vdev < rvd->vdev_children)
619 vd = rvd->vdev_child[vdev];
620
621 if (cache == ZFS_CACHE_ALL ||
622 (dbuf_is_metadata(db) && cache == ZFS_CACHE_METADATA)) {
623 if (vd == NULL)
624 return (B_TRUE);
625
626 if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
627 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) ||
628 l2arc_exclude_special == 0)
629 return (B_TRUE);
630 }
631 }
632
633 return (B_FALSE);
634 }
635
636 static inline boolean_t
637 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
638 {
639 vdev_t *vd = NULL;
640 zfs_cache_type_t cache = dn->dn_objset->os_secondary_cache;
641
642 if (bp != NULL && !BP_IS_HOLE(bp)) {
643 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
644 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
645
646 if (vdev < rvd->vdev_children)
647 vd = rvd->vdev_child[vdev];
648
649 if (cache == ZFS_CACHE_ALL || ((level > 0 ||
650 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)) &&
651 cache == ZFS_CACHE_METADATA)) {
652 if (vd == NULL)
653 return (B_TRUE);
654
655 if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
656 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) ||
657 l2arc_exclude_special == 0)
658 return (B_TRUE);
659 }
660 }
661
662 return (B_FALSE);
663 }
664
665
666 /*
667 * This function *must* return indices evenly distributed between all
668 * sublists of the multilist. This is needed due to how the dbuf eviction
669 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
670 * distributed between all sublists and uses this assumption when
671 * deciding which sublist to evict from and how much to evict from it.
672 */
673 static unsigned int
674 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
675 {
676 dmu_buf_impl_t *db = obj;
677
678 /*
679 * The assumption here, is the hash value for a given
680 * dmu_buf_impl_t will remain constant throughout it's lifetime
681 * (i.e. it's objset, object, level and blkid fields don't change).
682 * Thus, we don't need to store the dbuf's sublist index
683 * on insertion, as this index can be recalculated on removal.
684 *
685 * Also, the low order bits of the hash value are thought to be
686 * distributed evenly. Otherwise, in the case that the multilist
687 * has a power of two number of sublists, each sublists' usage
688 * would not be evenly distributed. In this context full 64bit
689 * division would be a waste of time, so limit it to 32 bits.
690 */
691 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
692 db->db_level, db->db_blkid) %
693 multilist_get_num_sublists(ml));
694 }
695
696 /*
697 * The target size of the dbuf cache can grow with the ARC target,
698 * unless limited by the tunable dbuf_cache_max_bytes.
699 */
700 static inline unsigned long
701 dbuf_cache_target_bytes(void)
702 {
703 return (MIN(dbuf_cache_max_bytes,
704 arc_target_bytes() >> dbuf_cache_shift));
705 }
706
707 /*
708 * The target size of the dbuf metadata cache can grow with the ARC target,
709 * unless limited by the tunable dbuf_metadata_cache_max_bytes.
710 */
711 static inline unsigned long
712 dbuf_metadata_cache_target_bytes(void)
713 {
714 return (MIN(dbuf_metadata_cache_max_bytes,
715 arc_target_bytes() >> dbuf_metadata_cache_shift));
716 }
717
718 static inline uint64_t
719 dbuf_cache_hiwater_bytes(void)
720 {
721 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
722 return (dbuf_cache_target +
723 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
724 }
725
726 static inline uint64_t
727 dbuf_cache_lowater_bytes(void)
728 {
729 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
730 return (dbuf_cache_target -
731 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
732 }
733
734 static inline boolean_t
735 dbuf_cache_above_lowater(void)
736 {
737 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
738 dbuf_cache_lowater_bytes());
739 }
740
741 /*
742 * Evict the oldest eligible dbuf from the dbuf cache.
743 */
744 static void
745 dbuf_evict_one(void)
746 {
747 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
748 multilist_sublist_t *mls = multilist_sublist_lock(
749 &dbuf_caches[DB_DBUF_CACHE].cache, idx);
750
751 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
752
753 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
754 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
755 db = multilist_sublist_prev(mls, db);
756 }
757
758 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
759 multilist_sublist_t *, mls);
760
761 if (db != NULL) {
762 multilist_sublist_remove(mls, db);
763 multilist_sublist_unlock(mls);
764 (void) zfs_refcount_remove_many(
765 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db);
766 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
767 DBUF_STAT_BUMPDOWN(cache_count);
768 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
769 db->db.db_size);
770 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
771 db->db_caching_status = DB_NO_CACHE;
772 dbuf_destroy(db);
773 DBUF_STAT_BUMP(cache_total_evicts);
774 } else {
775 multilist_sublist_unlock(mls);
776 }
777 }
778
779 /*
780 * The dbuf evict thread is responsible for aging out dbufs from the
781 * cache. Once the cache has reached it's maximum size, dbufs are removed
782 * and destroyed. The eviction thread will continue running until the size
783 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
784 * out of the cache it is destroyed and becomes eligible for arc eviction.
785 */
786 /* ARGSUSED */
787 static void
788 dbuf_evict_thread(void *unused)
789 {
790 callb_cpr_t cpr;
791
792 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
793
794 mutex_enter(&dbuf_evict_lock);
795 while (!dbuf_evict_thread_exit) {
796 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
797 CALLB_CPR_SAFE_BEGIN(&cpr);
798 (void) cv_timedwait_idle_hires(&dbuf_evict_cv,
799 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
800 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
801 }
802 mutex_exit(&dbuf_evict_lock);
803
804 /*
805 * Keep evicting as long as we're above the low water mark
806 * for the cache. We do this without holding the locks to
807 * minimize lock contention.
808 */
809 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
810 dbuf_evict_one();
811 }
812
813 mutex_enter(&dbuf_evict_lock);
814 }
815
816 dbuf_evict_thread_exit = B_FALSE;
817 cv_broadcast(&dbuf_evict_cv);
818 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
819 thread_exit();
820 }
821
822 /*
823 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
824 * If the dbuf cache is at its high water mark, then evict a dbuf from the
825 * dbuf cache using the callers context.
826 */
827 static void
828 dbuf_evict_notify(uint64_t size)
829 {
830 /*
831 * We check if we should evict without holding the dbuf_evict_lock,
832 * because it's OK to occasionally make the wrong decision here,
833 * and grabbing the lock results in massive lock contention.
834 */
835 if (size > dbuf_cache_target_bytes()) {
836 if (size > dbuf_cache_hiwater_bytes())
837 dbuf_evict_one();
838 cv_signal(&dbuf_evict_cv);
839 }
840 }
841
842 static int
843 dbuf_kstat_update(kstat_t *ksp, int rw)
844 {
845 dbuf_stats_t *ds = ksp->ks_data;
846
847 if (rw == KSTAT_WRITE)
848 return (SET_ERROR(EACCES));
849
850 ds->cache_count.value.ui64 =
851 wmsum_value(&dbuf_sums.cache_count);
852 ds->cache_size_bytes.value.ui64 =
853 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
854 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
855 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
856 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
857 ds->cache_total_evicts.value.ui64 =
858 wmsum_value(&dbuf_sums.cache_total_evicts);
859 for (int i = 0; i < DN_MAX_LEVELS; i++) {
860 ds->cache_levels[i].value.ui64 =
861 wmsum_value(&dbuf_sums.cache_levels[i]);
862 ds->cache_levels_bytes[i].value.ui64 =
863 wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
864 }
865 ds->hash_hits.value.ui64 =
866 wmsum_value(&dbuf_sums.hash_hits);
867 ds->hash_misses.value.ui64 =
868 wmsum_value(&dbuf_sums.hash_misses);
869 ds->hash_collisions.value.ui64 =
870 wmsum_value(&dbuf_sums.hash_collisions);
871 ds->hash_chains.value.ui64 =
872 wmsum_value(&dbuf_sums.hash_chains);
873 ds->hash_insert_race.value.ui64 =
874 wmsum_value(&dbuf_sums.hash_insert_race);
875 ds->metadata_cache_count.value.ui64 =
876 wmsum_value(&dbuf_sums.metadata_cache_count);
877 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
878 &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
879 ds->metadata_cache_overflow.value.ui64 =
880 wmsum_value(&dbuf_sums.metadata_cache_overflow);
881 return (0);
882 }
883
884 void
885 dbuf_init(void)
886 {
887 uint64_t hsize = 1ULL << 16;
888 dbuf_hash_table_t *h = &dbuf_hash_table;
889 int i;
890
891 /*
892 * The hash table is big enough to fill one eighth of physical memory
893 * with an average block size of zfs_arc_average_blocksize (default 8K).
894 * By default, the table will take up
895 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
896 */
897 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
898 hsize <<= 1;
899
900 retry:
901 h->hash_table_mask = hsize - 1;
902 #if defined(_KERNEL)
903 /*
904 * Large allocations which do not require contiguous pages
905 * should be using vmem_alloc() in the linux kernel
906 */
907 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
908 #else
909 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
910 #endif
911 if (h->hash_table == NULL) {
912 /* XXX - we should really return an error instead of assert */
913 ASSERT(hsize > (1ULL << 10));
914 hsize >>= 1;
915 goto retry;
916 }
917
918 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
919 sizeof (dmu_buf_impl_t),
920 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
921
922 for (i = 0; i < DBUF_MUTEXES; i++)
923 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
924
925 dbuf_stats_init(h);
926
927 /*
928 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
929 * configuration is not required.
930 */
931 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
932
933 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
934 multilist_create(&dbuf_caches[dcs].cache,
935 sizeof (dmu_buf_impl_t),
936 offsetof(dmu_buf_impl_t, db_cache_link),
937 dbuf_cache_multilist_index_func);
938 zfs_refcount_create(&dbuf_caches[dcs].size);
939 }
940
941 dbuf_evict_thread_exit = B_FALSE;
942 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
943 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
944 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
945 NULL, 0, &p0, TS_RUN, minclsyspri);
946
947 wmsum_init(&dbuf_sums.cache_count, 0);
948 wmsum_init(&dbuf_sums.cache_total_evicts, 0);
949 for (i = 0; i < DN_MAX_LEVELS; i++) {
950 wmsum_init(&dbuf_sums.cache_levels[i], 0);
951 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
952 }
953 wmsum_init(&dbuf_sums.hash_hits, 0);
954 wmsum_init(&dbuf_sums.hash_misses, 0);
955 wmsum_init(&dbuf_sums.hash_collisions, 0);
956 wmsum_init(&dbuf_sums.hash_chains, 0);
957 wmsum_init(&dbuf_sums.hash_insert_race, 0);
958 wmsum_init(&dbuf_sums.metadata_cache_count, 0);
959 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
960
961 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
962 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
963 KSTAT_FLAG_VIRTUAL);
964 if (dbuf_ksp != NULL) {
965 for (i = 0; i < DN_MAX_LEVELS; i++) {
966 snprintf(dbuf_stats.cache_levels[i].name,
967 KSTAT_STRLEN, "cache_level_%d", i);
968 dbuf_stats.cache_levels[i].data_type =
969 KSTAT_DATA_UINT64;
970 snprintf(dbuf_stats.cache_levels_bytes[i].name,
971 KSTAT_STRLEN, "cache_level_%d_bytes", i);
972 dbuf_stats.cache_levels_bytes[i].data_type =
973 KSTAT_DATA_UINT64;
974 }
975 dbuf_ksp->ks_data = &dbuf_stats;
976 dbuf_ksp->ks_update = dbuf_kstat_update;
977 kstat_install(dbuf_ksp);
978 }
979 }
980
981 void
982 dbuf_fini(void)
983 {
984 dbuf_hash_table_t *h = &dbuf_hash_table;
985 int i;
986
987 dbuf_stats_destroy();
988
989 for (i = 0; i < DBUF_MUTEXES; i++)
990 mutex_destroy(&h->hash_mutexes[i]);
991 #if defined(_KERNEL)
992 /*
993 * Large allocations which do not require contiguous pages
994 * should be using vmem_free() in the linux kernel
995 */
996 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
997 #else
998 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
999 #endif
1000 kmem_cache_destroy(dbuf_kmem_cache);
1001 taskq_destroy(dbu_evict_taskq);
1002
1003 mutex_enter(&dbuf_evict_lock);
1004 dbuf_evict_thread_exit = B_TRUE;
1005 while (dbuf_evict_thread_exit) {
1006 cv_signal(&dbuf_evict_cv);
1007 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1008 }
1009 mutex_exit(&dbuf_evict_lock);
1010
1011 mutex_destroy(&dbuf_evict_lock);
1012 cv_destroy(&dbuf_evict_cv);
1013
1014 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1015 zfs_refcount_destroy(&dbuf_caches[dcs].size);
1016 multilist_destroy(&dbuf_caches[dcs].cache);
1017 }
1018
1019 if (dbuf_ksp != NULL) {
1020 kstat_delete(dbuf_ksp);
1021 dbuf_ksp = NULL;
1022 }
1023
1024 wmsum_fini(&dbuf_sums.cache_count);
1025 wmsum_fini(&dbuf_sums.cache_total_evicts);
1026 for (i = 0; i < DN_MAX_LEVELS; i++) {
1027 wmsum_fini(&dbuf_sums.cache_levels[i]);
1028 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1029 }
1030 wmsum_fini(&dbuf_sums.hash_hits);
1031 wmsum_fini(&dbuf_sums.hash_misses);
1032 wmsum_fini(&dbuf_sums.hash_collisions);
1033 wmsum_fini(&dbuf_sums.hash_chains);
1034 wmsum_fini(&dbuf_sums.hash_insert_race);
1035 wmsum_fini(&dbuf_sums.metadata_cache_count);
1036 wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1037 }
1038
1039 /*
1040 * Other stuff.
1041 */
1042
1043 #ifdef ZFS_DEBUG
1044 static void
1045 dbuf_verify(dmu_buf_impl_t *db)
1046 {
1047 dnode_t *dn;
1048 dbuf_dirty_record_t *dr;
1049 uint32_t txg_prev;
1050
1051 ASSERT(MUTEX_HELD(&db->db_mtx));
1052
1053 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1054 return;
1055
1056 ASSERT(db->db_objset != NULL);
1057 DB_DNODE_ENTER(db);
1058 dn = DB_DNODE(db);
1059 if (dn == NULL) {
1060 ASSERT(db->db_parent == NULL);
1061 ASSERT(db->db_blkptr == NULL);
1062 } else {
1063 ASSERT3U(db->db.db_object, ==, dn->dn_object);
1064 ASSERT3P(db->db_objset, ==, dn->dn_objset);
1065 ASSERT3U(db->db_level, <, dn->dn_nlevels);
1066 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1067 db->db_blkid == DMU_SPILL_BLKID ||
1068 !avl_is_empty(&dn->dn_dbufs));
1069 }
1070 if (db->db_blkid == DMU_BONUS_BLKID) {
1071 ASSERT(dn != NULL);
1072 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1073 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1074 } else if (db->db_blkid == DMU_SPILL_BLKID) {
1075 ASSERT(dn != NULL);
1076 ASSERT0(db->db.db_offset);
1077 } else {
1078 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1079 }
1080
1081 if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1082 ASSERT(dr->dr_dbuf == db);
1083 txg_prev = dr->dr_txg;
1084 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1085 dr = list_next(&db->db_dirty_records, dr)) {
1086 ASSERT(dr->dr_dbuf == db);
1087 ASSERT(txg_prev > dr->dr_txg);
1088 txg_prev = dr->dr_txg;
1089 }
1090 }
1091
1092 /*
1093 * We can't assert that db_size matches dn_datablksz because it
1094 * can be momentarily different when another thread is doing
1095 * dnode_set_blksz().
1096 */
1097 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1098 dr = db->db_data_pending;
1099 /*
1100 * It should only be modified in syncing context, so
1101 * make sure we only have one copy of the data.
1102 */
1103 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1104 }
1105
1106 /* verify db->db_blkptr */
1107 if (db->db_blkptr) {
1108 if (db->db_parent == dn->dn_dbuf) {
1109 /* db is pointed to by the dnode */
1110 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1111 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1112 ASSERT(db->db_parent == NULL);
1113 else
1114 ASSERT(db->db_parent != NULL);
1115 if (db->db_blkid != DMU_SPILL_BLKID)
1116 ASSERT3P(db->db_blkptr, ==,
1117 &dn->dn_phys->dn_blkptr[db->db_blkid]);
1118 } else {
1119 /* db is pointed to by an indirect block */
1120 int epb __maybe_unused = db->db_parent->db.db_size >>
1121 SPA_BLKPTRSHIFT;
1122 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1123 ASSERT3U(db->db_parent->db.db_object, ==,
1124 db->db.db_object);
1125 /*
1126 * dnode_grow_indblksz() can make this fail if we don't
1127 * have the parent's rwlock. XXX indblksz no longer
1128 * grows. safe to do this now?
1129 */
1130 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
1131 ASSERT3P(db->db_blkptr, ==,
1132 ((blkptr_t *)db->db_parent->db.db_data +
1133 db->db_blkid % epb));
1134 }
1135 }
1136 }
1137 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1138 (db->db_buf == NULL || db->db_buf->b_data) &&
1139 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1140 db->db_state != DB_FILL && !dn->dn_free_txg) {
1141 /*
1142 * If the blkptr isn't set but they have nonzero data,
1143 * it had better be dirty, otherwise we'll lose that
1144 * data when we evict this buffer.
1145 *
1146 * There is an exception to this rule for indirect blocks; in
1147 * this case, if the indirect block is a hole, we fill in a few
1148 * fields on each of the child blocks (importantly, birth time)
1149 * to prevent hole birth times from being lost when you
1150 * partially fill in a hole.
1151 */
1152 if (db->db_dirtycnt == 0) {
1153 if (db->db_level == 0) {
1154 uint64_t *buf = db->db.db_data;
1155 int i;
1156
1157 for (i = 0; i < db->db.db_size >> 3; i++) {
1158 ASSERT(buf[i] == 0);
1159 }
1160 } else {
1161 blkptr_t *bps = db->db.db_data;
1162 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1163 db->db.db_size);
1164 /*
1165 * We want to verify that all the blkptrs in the
1166 * indirect block are holes, but we may have
1167 * automatically set up a few fields for them.
1168 * We iterate through each blkptr and verify
1169 * they only have those fields set.
1170 */
1171 for (int i = 0;
1172 i < db->db.db_size / sizeof (blkptr_t);
1173 i++) {
1174 blkptr_t *bp = &bps[i];
1175 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1176 &bp->blk_cksum));
1177 ASSERT(
1178 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1179 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1180 DVA_IS_EMPTY(&bp->blk_dva[2]));
1181 ASSERT0(bp->blk_fill);
1182 ASSERT0(bp->blk_pad[0]);
1183 ASSERT0(bp->blk_pad[1]);
1184 ASSERT(!BP_IS_EMBEDDED(bp));
1185 ASSERT(BP_IS_HOLE(bp));
1186 ASSERT0(bp->blk_phys_birth);
1187 }
1188 }
1189 }
1190 }
1191 DB_DNODE_EXIT(db);
1192 }
1193 #endif
1194
1195 static void
1196 dbuf_clear_data(dmu_buf_impl_t *db)
1197 {
1198 ASSERT(MUTEX_HELD(&db->db_mtx));
1199 dbuf_evict_user(db);
1200 ASSERT3P(db->db_buf, ==, NULL);
1201 db->db.db_data = NULL;
1202 if (db->db_state != DB_NOFILL) {
1203 db->db_state = DB_UNCACHED;
1204 DTRACE_SET_STATE(db, "clear data");
1205 }
1206 }
1207
1208 static void
1209 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1210 {
1211 ASSERT(MUTEX_HELD(&db->db_mtx));
1212 ASSERT(buf != NULL);
1213
1214 db->db_buf = buf;
1215 ASSERT(buf->b_data != NULL);
1216 db->db.db_data = buf->b_data;
1217 }
1218
1219 static arc_buf_t *
1220 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1221 {
1222 spa_t *spa = db->db_objset->os_spa;
1223
1224 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1225 }
1226
1227 /*
1228 * Loan out an arc_buf for read. Return the loaned arc_buf.
1229 */
1230 arc_buf_t *
1231 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1232 {
1233 arc_buf_t *abuf;
1234
1235 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1236 mutex_enter(&db->db_mtx);
1237 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1238 int blksz = db->db.db_size;
1239 spa_t *spa = db->db_objset->os_spa;
1240
1241 mutex_exit(&db->db_mtx);
1242 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1243 bcopy(db->db.db_data, abuf->b_data, blksz);
1244 } else {
1245 abuf = db->db_buf;
1246 arc_loan_inuse_buf(abuf, db);
1247 db->db_buf = NULL;
1248 dbuf_clear_data(db);
1249 mutex_exit(&db->db_mtx);
1250 }
1251 return (abuf);
1252 }
1253
1254 /*
1255 * Calculate which level n block references the data at the level 0 offset
1256 * provided.
1257 */
1258 uint64_t
1259 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1260 {
1261 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1262 /*
1263 * The level n blkid is equal to the level 0 blkid divided by
1264 * the number of level 0s in a level n block.
1265 *
1266 * The level 0 blkid is offset >> datablkshift =
1267 * offset / 2^datablkshift.
1268 *
1269 * The number of level 0s in a level n is the number of block
1270 * pointers in an indirect block, raised to the power of level.
1271 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1272 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1273 *
1274 * Thus, the level n blkid is: offset /
1275 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1276 * = offset / 2^(datablkshift + level *
1277 * (indblkshift - SPA_BLKPTRSHIFT))
1278 * = offset >> (datablkshift + level *
1279 * (indblkshift - SPA_BLKPTRSHIFT))
1280 */
1281
1282 const unsigned exp = dn->dn_datablkshift +
1283 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1284
1285 if (exp >= 8 * sizeof (offset)) {
1286 /* This only happens on the highest indirection level */
1287 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1288 return (0);
1289 }
1290
1291 ASSERT3U(exp, <, 8 * sizeof (offset));
1292
1293 return (offset >> exp);
1294 } else {
1295 ASSERT3U(offset, <, dn->dn_datablksz);
1296 return (0);
1297 }
1298 }
1299
1300 /*
1301 * This function is used to lock the parent of the provided dbuf. This should be
1302 * used when modifying or reading db_blkptr.
1303 */
1304 db_lock_type_t
1305 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, void *tag)
1306 {
1307 enum db_lock_type ret = DLT_NONE;
1308 if (db->db_parent != NULL) {
1309 rw_enter(&db->db_parent->db_rwlock, rw);
1310 ret = DLT_PARENT;
1311 } else if (dmu_objset_ds(db->db_objset) != NULL) {
1312 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1313 tag);
1314 ret = DLT_OBJSET;
1315 }
1316 /*
1317 * We only return a DLT_NONE lock when it's the top-most indirect block
1318 * of the meta-dnode of the MOS.
1319 */
1320 return (ret);
1321 }
1322
1323 /*
1324 * We need to pass the lock type in because it's possible that the block will
1325 * move from being the topmost indirect block in a dnode (and thus, have no
1326 * parent) to not the top-most via an indirection increase. This would cause a
1327 * panic if we didn't pass the lock type in.
1328 */
1329 void
1330 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, void *tag)
1331 {
1332 if (type == DLT_PARENT)
1333 rw_exit(&db->db_parent->db_rwlock);
1334 else if (type == DLT_OBJSET)
1335 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1336 }
1337
1338 static void
1339 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1340 arc_buf_t *buf, void *vdb)
1341 {
1342 dmu_buf_impl_t *db = vdb;
1343
1344 mutex_enter(&db->db_mtx);
1345 ASSERT3U(db->db_state, ==, DB_READ);
1346 /*
1347 * All reads are synchronous, so we must have a hold on the dbuf
1348 */
1349 ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1350 ASSERT(db->db_buf == NULL);
1351 ASSERT(db->db.db_data == NULL);
1352 if (buf == NULL) {
1353 /* i/o error */
1354 ASSERT(zio == NULL || zio->io_error != 0);
1355 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1356 ASSERT3P(db->db_buf, ==, NULL);
1357 db->db_state = DB_UNCACHED;
1358 DTRACE_SET_STATE(db, "i/o error");
1359 } else if (db->db_level == 0 && db->db_freed_in_flight) {
1360 /* freed in flight */
1361 ASSERT(zio == NULL || zio->io_error == 0);
1362 arc_release(buf, db);
1363 bzero(buf->b_data, db->db.db_size);
1364 arc_buf_freeze(buf);
1365 db->db_freed_in_flight = FALSE;
1366 dbuf_set_data(db, buf);
1367 db->db_state = DB_CACHED;
1368 DTRACE_SET_STATE(db, "freed in flight");
1369 } else {
1370 /* success */
1371 ASSERT(zio == NULL || zio->io_error == 0);
1372 dbuf_set_data(db, buf);
1373 db->db_state = DB_CACHED;
1374 DTRACE_SET_STATE(db, "successful read");
1375 }
1376 cv_broadcast(&db->db_changed);
1377 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1378 }
1379
1380 /*
1381 * Shortcut for performing reads on bonus dbufs. Returns
1382 * an error if we fail to verify the dnode associated with
1383 * a decrypted block. Otherwise success.
1384 */
1385 static int
1386 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
1387 {
1388 int bonuslen, max_bonuslen, err;
1389
1390 err = dbuf_read_verify_dnode_crypt(db, flags);
1391 if (err)
1392 return (err);
1393
1394 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1395 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1396 ASSERT(MUTEX_HELD(&db->db_mtx));
1397 ASSERT(DB_DNODE_HELD(db));
1398 ASSERT3U(bonuslen, <=, db->db.db_size);
1399 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1400 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1401 if (bonuslen < max_bonuslen)
1402 bzero(db->db.db_data, max_bonuslen);
1403 if (bonuslen)
1404 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1405 db->db_state = DB_CACHED;
1406 DTRACE_SET_STATE(db, "bonus buffer filled");
1407 return (0);
1408 }
1409
1410 static void
1411 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn)
1412 {
1413 blkptr_t *bps = db->db.db_data;
1414 uint32_t indbs = 1ULL << dn->dn_indblkshift;
1415 int n_bps = indbs >> SPA_BLKPTRSHIFT;
1416
1417 for (int i = 0; i < n_bps; i++) {
1418 blkptr_t *bp = &bps[i];
1419
1420 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, indbs);
1421 BP_SET_LSIZE(bp, BP_GET_LEVEL(db->db_blkptr) == 1 ?
1422 dn->dn_datablksz : BP_GET_LSIZE(db->db_blkptr));
1423 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1424 BP_SET_LEVEL(bp, BP_GET_LEVEL(db->db_blkptr) - 1);
1425 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1426 }
1427 }
1428
1429 /*
1430 * Handle reads on dbufs that are holes, if necessary. This function
1431 * requires that the dbuf's mutex is held. Returns success (0) if action
1432 * was taken, ENOENT if no action was taken.
1433 */
1434 static int
1435 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
1436 {
1437 ASSERT(MUTEX_HELD(&db->db_mtx));
1438
1439 int is_hole = db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr);
1440 /*
1441 * For level 0 blocks only, if the above check fails:
1442 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1443 * processes the delete record and clears the bp while we are waiting
1444 * for the dn_mtx (resulting in a "no" from block_freed).
1445 */
1446 if (!is_hole && db->db_level == 0) {
1447 is_hole = dnode_block_freed(dn, db->db_blkid) ||
1448 BP_IS_HOLE(db->db_blkptr);
1449 }
1450
1451 if (is_hole) {
1452 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1453 bzero(db->db.db_data, db->db.db_size);
1454
1455 if (db->db_blkptr != NULL && db->db_level > 0 &&
1456 BP_IS_HOLE(db->db_blkptr) &&
1457 db->db_blkptr->blk_birth != 0) {
1458 dbuf_handle_indirect_hole(db, dn);
1459 }
1460 db->db_state = DB_CACHED;
1461 DTRACE_SET_STATE(db, "hole read satisfied");
1462 return (0);
1463 }
1464 return (ENOENT);
1465 }
1466
1467 /*
1468 * This function ensures that, when doing a decrypting read of a block,
1469 * we make sure we have decrypted the dnode associated with it. We must do
1470 * this so that we ensure we are fully authenticating the checksum-of-MACs
1471 * tree from the root of the objset down to this block. Indirect blocks are
1472 * always verified against their secure checksum-of-MACs assuming that the
1473 * dnode containing them is correct. Now that we are doing a decrypting read,
1474 * we can be sure that the key is loaded and verify that assumption. This is
1475 * especially important considering that we always read encrypted dnode
1476 * blocks as raw data (without verifying their MACs) to start, and
1477 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1478 */
1479 static int
1480 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1481 {
1482 int err = 0;
1483 objset_t *os = db->db_objset;
1484 arc_buf_t *dnode_abuf;
1485 dnode_t *dn;
1486 zbookmark_phys_t zb;
1487
1488 ASSERT(MUTEX_HELD(&db->db_mtx));
1489
1490 if (!os->os_encrypted || os->os_raw_receive ||
1491 (flags & DB_RF_NO_DECRYPT) != 0)
1492 return (0);
1493
1494 DB_DNODE_ENTER(db);
1495 dn = DB_DNODE(db);
1496 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1497
1498 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1499 DB_DNODE_EXIT(db);
1500 return (0);
1501 }
1502
1503 SET_BOOKMARK(&zb, dmu_objset_id(os),
1504 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1505 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1506
1507 /*
1508 * An error code of EACCES tells us that the key is still not
1509 * available. This is ok if we are only reading authenticated
1510 * (and therefore non-encrypted) blocks.
1511 */
1512 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1513 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1514 (db->db_blkid == DMU_BONUS_BLKID &&
1515 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1516 err = 0;
1517
1518 DB_DNODE_EXIT(db);
1519
1520 return (err);
1521 }
1522
1523 /*
1524 * Drops db_mtx and the parent lock specified by dblt and tag before
1525 * returning.
1526 */
1527 static int
1528 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags,
1529 db_lock_type_t dblt, void *tag)
1530 {
1531 dnode_t *dn;
1532 zbookmark_phys_t zb;
1533 uint32_t aflags = ARC_FLAG_NOWAIT;
1534 int err, zio_flags;
1535
1536 err = zio_flags = 0;
1537 DB_DNODE_ENTER(db);
1538 dn = DB_DNODE(db);
1539 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1540 ASSERT(MUTEX_HELD(&db->db_mtx));
1541 ASSERT(db->db_state == DB_UNCACHED);
1542 ASSERT(db->db_buf == NULL);
1543 ASSERT(db->db_parent == NULL ||
1544 RW_LOCK_HELD(&db->db_parent->db_rwlock));
1545
1546 if (db->db_blkid == DMU_BONUS_BLKID) {
1547 err = dbuf_read_bonus(db, dn, flags);
1548 goto early_unlock;
1549 }
1550
1551 err = dbuf_read_hole(db, dn, flags);
1552 if (err == 0)
1553 goto early_unlock;
1554
1555 /*
1556 * Any attempt to read a redacted block should result in an error. This
1557 * will never happen under normal conditions, but can be useful for
1558 * debugging purposes.
1559 */
1560 if (BP_IS_REDACTED(db->db_blkptr)) {
1561 ASSERT(dsl_dataset_feature_is_active(
1562 db->db_objset->os_dsl_dataset,
1563 SPA_FEATURE_REDACTED_DATASETS));
1564 err = SET_ERROR(EIO);
1565 goto early_unlock;
1566 }
1567
1568 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1569 db->db.db_object, db->db_level, db->db_blkid);
1570
1571 /*
1572 * All bps of an encrypted os should have the encryption bit set.
1573 * If this is not true it indicates tampering and we report an error.
1574 */
1575 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1576 spa_log_error(db->db_objset->os_spa, &zb);
1577 zfs_panic_recover("unencrypted block in encrypted "
1578 "object set %llu", dmu_objset_id(db->db_objset));
1579 err = SET_ERROR(EIO);
1580 goto early_unlock;
1581 }
1582
1583 err = dbuf_read_verify_dnode_crypt(db, flags);
1584 if (err != 0)
1585 goto early_unlock;
1586
1587 DB_DNODE_EXIT(db);
1588
1589 db->db_state = DB_READ;
1590 DTRACE_SET_STATE(db, "read issued");
1591 mutex_exit(&db->db_mtx);
1592
1593 if (dbuf_is_l2cacheable(db))
1594 aflags |= ARC_FLAG_L2CACHE;
1595
1596 dbuf_add_ref(db, NULL);
1597
1598 zio_flags = (flags & DB_RF_CANFAIL) ?
1599 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1600
1601 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1602 zio_flags |= ZIO_FLAG_RAW;
1603 /*
1604 * The zio layer will copy the provided blkptr later, but we need to
1605 * do this now so that we can release the parent's rwlock. We have to
1606 * do that now so that if dbuf_read_done is called synchronously (on
1607 * an l1 cache hit) we don't acquire the db_mtx while holding the
1608 * parent's rwlock, which would be a lock ordering violation.
1609 */
1610 blkptr_t bp = *db->db_blkptr;
1611 dmu_buf_unlock_parent(db, dblt, tag);
1612 (void) arc_read(zio, db->db_objset->os_spa, &bp,
1613 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1614 &aflags, &zb);
1615 return (err);
1616 early_unlock:
1617 DB_DNODE_EXIT(db);
1618 mutex_exit(&db->db_mtx);
1619 dmu_buf_unlock_parent(db, dblt, tag);
1620 return (err);
1621 }
1622
1623 /*
1624 * This is our just-in-time copy function. It makes a copy of buffers that
1625 * have been modified in a previous transaction group before we access them in
1626 * the current active group.
1627 *
1628 * This function is used in three places: when we are dirtying a buffer for the
1629 * first time in a txg, when we are freeing a range in a dnode that includes
1630 * this buffer, and when we are accessing a buffer which was received compressed
1631 * and later referenced in a WRITE_BYREF record.
1632 *
1633 * Note that when we are called from dbuf_free_range() we do not put a hold on
1634 * the buffer, we just traverse the active dbuf list for the dnode.
1635 */
1636 static void
1637 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1638 {
1639 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1640
1641 ASSERT(MUTEX_HELD(&db->db_mtx));
1642 ASSERT(db->db.db_data != NULL);
1643 ASSERT(db->db_level == 0);
1644 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1645
1646 if (dr == NULL ||
1647 (dr->dt.dl.dr_data !=
1648 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1649 return;
1650
1651 /*
1652 * If the last dirty record for this dbuf has not yet synced
1653 * and its referencing the dbuf data, either:
1654 * reset the reference to point to a new copy,
1655 * or (if there a no active holders)
1656 * just null out the current db_data pointer.
1657 */
1658 ASSERT3U(dr->dr_txg, >=, txg - 2);
1659 if (db->db_blkid == DMU_BONUS_BLKID) {
1660 dnode_t *dn = DB_DNODE(db);
1661 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1662 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1663 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1664 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1665 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1666 dnode_t *dn = DB_DNODE(db);
1667 int size = arc_buf_size(db->db_buf);
1668 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1669 spa_t *spa = db->db_objset->os_spa;
1670 enum zio_compress compress_type =
1671 arc_get_compression(db->db_buf);
1672 uint8_t complevel = arc_get_complevel(db->db_buf);
1673
1674 if (arc_is_encrypted(db->db_buf)) {
1675 boolean_t byteorder;
1676 uint8_t salt[ZIO_DATA_SALT_LEN];
1677 uint8_t iv[ZIO_DATA_IV_LEN];
1678 uint8_t mac[ZIO_DATA_MAC_LEN];
1679
1680 arc_get_raw_params(db->db_buf, &byteorder, salt,
1681 iv, mac);
1682 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1683 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1684 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1685 compress_type, complevel);
1686 } else if (compress_type != ZIO_COMPRESS_OFF) {
1687 ASSERT3U(type, ==, ARC_BUFC_DATA);
1688 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1689 size, arc_buf_lsize(db->db_buf), compress_type,
1690 complevel);
1691 } else {
1692 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1693 }
1694 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1695 } else {
1696 db->db_buf = NULL;
1697 dbuf_clear_data(db);
1698 }
1699 }
1700
1701 int
1702 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1703 {
1704 int err = 0;
1705 boolean_t prefetch;
1706 dnode_t *dn;
1707
1708 /*
1709 * We don't have to hold the mutex to check db_state because it
1710 * can't be freed while we have a hold on the buffer.
1711 */
1712 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1713
1714 if (db->db_state == DB_NOFILL)
1715 return (SET_ERROR(EIO));
1716
1717 DB_DNODE_ENTER(db);
1718 dn = DB_DNODE(db);
1719
1720 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1721 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1722 DBUF_IS_CACHEABLE(db);
1723
1724 mutex_enter(&db->db_mtx);
1725 if (db->db_state == DB_CACHED) {
1726 spa_t *spa = dn->dn_objset->os_spa;
1727
1728 /*
1729 * Ensure that this block's dnode has been decrypted if
1730 * the caller has requested decrypted data.
1731 */
1732 err = dbuf_read_verify_dnode_crypt(db, flags);
1733
1734 /*
1735 * If the arc buf is compressed or encrypted and the caller
1736 * requested uncompressed data, we need to untransform it
1737 * before returning. We also call arc_untransform() on any
1738 * unauthenticated blocks, which will verify their MAC if
1739 * the key is now available.
1740 */
1741 if (err == 0 && db->db_buf != NULL &&
1742 (flags & DB_RF_NO_DECRYPT) == 0 &&
1743 (arc_is_encrypted(db->db_buf) ||
1744 arc_is_unauthenticated(db->db_buf) ||
1745 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1746 zbookmark_phys_t zb;
1747
1748 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1749 db->db.db_object, db->db_level, db->db_blkid);
1750 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1751 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1752 dbuf_set_data(db, db->db_buf);
1753 }
1754 mutex_exit(&db->db_mtx);
1755 if (err == 0 && prefetch) {
1756 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1757 B_FALSE, flags & DB_RF_HAVESTRUCT);
1758 }
1759 DB_DNODE_EXIT(db);
1760 DBUF_STAT_BUMP(hash_hits);
1761 } else if (db->db_state == DB_UNCACHED) {
1762 spa_t *spa = dn->dn_objset->os_spa;
1763 boolean_t need_wait = B_FALSE;
1764
1765 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1766
1767 if (zio == NULL &&
1768 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1769 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1770 need_wait = B_TRUE;
1771 }
1772 err = dbuf_read_impl(db, zio, flags, dblt, FTAG);
1773 /*
1774 * dbuf_read_impl has dropped db_mtx and our parent's rwlock
1775 * for us
1776 */
1777 if (!err && prefetch) {
1778 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1779 db->db_state != DB_CACHED,
1780 flags & DB_RF_HAVESTRUCT);
1781 }
1782
1783 DB_DNODE_EXIT(db);
1784 DBUF_STAT_BUMP(hash_misses);
1785
1786 /*
1787 * If we created a zio_root we must execute it to avoid
1788 * leaking it, even if it isn't attached to any work due
1789 * to an error in dbuf_read_impl().
1790 */
1791 if (need_wait) {
1792 if (err == 0)
1793 err = zio_wait(zio);
1794 else
1795 VERIFY0(zio_wait(zio));
1796 }
1797 } else {
1798 /*
1799 * Another reader came in while the dbuf was in flight
1800 * between UNCACHED and CACHED. Either a writer will finish
1801 * writing the buffer (sending the dbuf to CACHED) or the
1802 * first reader's request will reach the read_done callback
1803 * and send the dbuf to CACHED. Otherwise, a failure
1804 * occurred and the dbuf went to UNCACHED.
1805 */
1806 mutex_exit(&db->db_mtx);
1807 if (prefetch) {
1808 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1809 B_TRUE, flags & DB_RF_HAVESTRUCT);
1810 }
1811 DB_DNODE_EXIT(db);
1812 DBUF_STAT_BUMP(hash_misses);
1813
1814 /* Skip the wait per the caller's request. */
1815 if ((flags & DB_RF_NEVERWAIT) == 0) {
1816 mutex_enter(&db->db_mtx);
1817 while (db->db_state == DB_READ ||
1818 db->db_state == DB_FILL) {
1819 ASSERT(db->db_state == DB_READ ||
1820 (flags & DB_RF_HAVESTRUCT) == 0);
1821 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1822 db, zio_t *, zio);
1823 cv_wait(&db->db_changed, &db->db_mtx);
1824 }
1825 if (db->db_state == DB_UNCACHED)
1826 err = SET_ERROR(EIO);
1827 mutex_exit(&db->db_mtx);
1828 }
1829 }
1830
1831 return (err);
1832 }
1833
1834 static void
1835 dbuf_noread(dmu_buf_impl_t *db)
1836 {
1837 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1838 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1839 mutex_enter(&db->db_mtx);
1840 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1841 cv_wait(&db->db_changed, &db->db_mtx);
1842 if (db->db_state == DB_UNCACHED) {
1843 ASSERT(db->db_buf == NULL);
1844 ASSERT(db->db.db_data == NULL);
1845 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1846 db->db_state = DB_FILL;
1847 DTRACE_SET_STATE(db, "assigning filled buffer");
1848 } else if (db->db_state == DB_NOFILL) {
1849 dbuf_clear_data(db);
1850 } else {
1851 ASSERT3U(db->db_state, ==, DB_CACHED);
1852 }
1853 mutex_exit(&db->db_mtx);
1854 }
1855
1856 void
1857 dbuf_unoverride(dbuf_dirty_record_t *dr)
1858 {
1859 dmu_buf_impl_t *db = dr->dr_dbuf;
1860 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1861 uint64_t txg = dr->dr_txg;
1862
1863 ASSERT(MUTEX_HELD(&db->db_mtx));
1864 /*
1865 * This assert is valid because dmu_sync() expects to be called by
1866 * a zilog's get_data while holding a range lock. This call only
1867 * comes from dbuf_dirty() callers who must also hold a range lock.
1868 */
1869 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1870 ASSERT(db->db_level == 0);
1871
1872 if (db->db_blkid == DMU_BONUS_BLKID ||
1873 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1874 return;
1875
1876 ASSERT(db->db_data_pending != dr);
1877
1878 /* free this block */
1879 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1880 zio_free(db->db_objset->os_spa, txg, bp);
1881
1882 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1883 dr->dt.dl.dr_nopwrite = B_FALSE;
1884 dr->dt.dl.dr_has_raw_params = B_FALSE;
1885
1886 /*
1887 * Release the already-written buffer, so we leave it in
1888 * a consistent dirty state. Note that all callers are
1889 * modifying the buffer, so they will immediately do
1890 * another (redundant) arc_release(). Therefore, leave
1891 * the buf thawed to save the effort of freezing &
1892 * immediately re-thawing it.
1893 */
1894 arc_release(dr->dt.dl.dr_data, db);
1895 }
1896
1897 /*
1898 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1899 * data blocks in the free range, so that any future readers will find
1900 * empty blocks.
1901 */
1902 void
1903 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1904 dmu_tx_t *tx)
1905 {
1906 dmu_buf_impl_t *db_search;
1907 dmu_buf_impl_t *db, *db_next;
1908 uint64_t txg = tx->tx_txg;
1909 avl_index_t where;
1910 dbuf_dirty_record_t *dr;
1911
1912 if (end_blkid > dn->dn_maxblkid &&
1913 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1914 end_blkid = dn->dn_maxblkid;
1915 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1916 (u_longlong_t)end_blkid);
1917
1918 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1919 db_search->db_level = 0;
1920 db_search->db_blkid = start_blkid;
1921 db_search->db_state = DB_SEARCH;
1922
1923 mutex_enter(&dn->dn_dbufs_mtx);
1924 db = avl_find(&dn->dn_dbufs, db_search, &where);
1925 ASSERT3P(db, ==, NULL);
1926
1927 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1928
1929 for (; db != NULL; db = db_next) {
1930 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1931 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1932
1933 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1934 break;
1935 }
1936 ASSERT3U(db->db_blkid, >=, start_blkid);
1937
1938 /* found a level 0 buffer in the range */
1939 mutex_enter(&db->db_mtx);
1940 if (dbuf_undirty(db, tx)) {
1941 /* mutex has been dropped and dbuf destroyed */
1942 continue;
1943 }
1944
1945 if (db->db_state == DB_UNCACHED ||
1946 db->db_state == DB_NOFILL ||
1947 db->db_state == DB_EVICTING) {
1948 ASSERT(db->db.db_data == NULL);
1949 mutex_exit(&db->db_mtx);
1950 continue;
1951 }
1952 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1953 /* will be handled in dbuf_read_done or dbuf_rele */
1954 db->db_freed_in_flight = TRUE;
1955 mutex_exit(&db->db_mtx);
1956 continue;
1957 }
1958 if (zfs_refcount_count(&db->db_holds) == 0) {
1959 ASSERT(db->db_buf);
1960 dbuf_destroy(db);
1961 continue;
1962 }
1963 /* The dbuf is referenced */
1964
1965 dr = list_head(&db->db_dirty_records);
1966 if (dr != NULL) {
1967 if (dr->dr_txg == txg) {
1968 /*
1969 * This buffer is "in-use", re-adjust the file
1970 * size to reflect that this buffer may
1971 * contain new data when we sync.
1972 */
1973 if (db->db_blkid != DMU_SPILL_BLKID &&
1974 db->db_blkid > dn->dn_maxblkid)
1975 dn->dn_maxblkid = db->db_blkid;
1976 dbuf_unoverride(dr);
1977 } else {
1978 /*
1979 * This dbuf is not dirty in the open context.
1980 * Either uncache it (if its not referenced in
1981 * the open context) or reset its contents to
1982 * empty.
1983 */
1984 dbuf_fix_old_data(db, txg);
1985 }
1986 }
1987 /* clear the contents if its cached */
1988 if (db->db_state == DB_CACHED) {
1989 ASSERT(db->db.db_data != NULL);
1990 arc_release(db->db_buf, db);
1991 rw_enter(&db->db_rwlock, RW_WRITER);
1992 bzero(db->db.db_data, db->db.db_size);
1993 rw_exit(&db->db_rwlock);
1994 arc_buf_freeze(db->db_buf);
1995 }
1996
1997 mutex_exit(&db->db_mtx);
1998 }
1999
2000 kmem_free(db_search, sizeof (dmu_buf_impl_t));
2001 mutex_exit(&dn->dn_dbufs_mtx);
2002 }
2003
2004 void
2005 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2006 {
2007 arc_buf_t *buf, *old_buf;
2008 dbuf_dirty_record_t *dr;
2009 int osize = db->db.db_size;
2010 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2011 dnode_t *dn;
2012
2013 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2014
2015 DB_DNODE_ENTER(db);
2016 dn = DB_DNODE(db);
2017
2018 /*
2019 * XXX we should be doing a dbuf_read, checking the return
2020 * value and returning that up to our callers
2021 */
2022 dmu_buf_will_dirty(&db->db, tx);
2023
2024 /* create the data buffer for the new block */
2025 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2026
2027 /* copy old block data to the new block */
2028 old_buf = db->db_buf;
2029 bcopy(old_buf->b_data, buf->b_data, MIN(osize, size));
2030 /* zero the remainder */
2031 if (size > osize)
2032 bzero((uint8_t *)buf->b_data + osize, size - osize);
2033
2034 mutex_enter(&db->db_mtx);
2035 dbuf_set_data(db, buf);
2036 arc_buf_destroy(old_buf, db);
2037 db->db.db_size = size;
2038
2039 dr = list_head(&db->db_dirty_records);
2040 /* dirty record added by dmu_buf_will_dirty() */
2041 VERIFY(dr != NULL);
2042 if (db->db_level == 0)
2043 dr->dt.dl.dr_data = buf;
2044 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2045 ASSERT3U(dr->dr_accounted, ==, osize);
2046 dr->dr_accounted = size;
2047 mutex_exit(&db->db_mtx);
2048
2049 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2050 DB_DNODE_EXIT(db);
2051 }
2052
2053 void
2054 dbuf_release_bp(dmu_buf_impl_t *db)
2055 {
2056 objset_t *os __maybe_unused = db->db_objset;
2057
2058 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2059 ASSERT(arc_released(os->os_phys_buf) ||
2060 list_link_active(&os->os_dsl_dataset->ds_synced_link));
2061 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2062
2063 (void) arc_release(db->db_buf, db);
2064 }
2065
2066 /*
2067 * We already have a dirty record for this TXG, and we are being
2068 * dirtied again.
2069 */
2070 static void
2071 dbuf_redirty(dbuf_dirty_record_t *dr)
2072 {
2073 dmu_buf_impl_t *db = dr->dr_dbuf;
2074
2075 ASSERT(MUTEX_HELD(&db->db_mtx));
2076
2077 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2078 /*
2079 * If this buffer has already been written out,
2080 * we now need to reset its state.
2081 */
2082 dbuf_unoverride(dr);
2083 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2084 db->db_state != DB_NOFILL) {
2085 /* Already released on initial dirty, so just thaw. */
2086 ASSERT(arc_released(db->db_buf));
2087 arc_buf_thaw(db->db_buf);
2088 }
2089 }
2090 }
2091
2092 dbuf_dirty_record_t *
2093 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2094 {
2095 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2096 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2097 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2098 ASSERT(dn->dn_maxblkid >= blkid);
2099
2100 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2101 list_link_init(&dr->dr_dirty_node);
2102 list_link_init(&dr->dr_dbuf_node);
2103 dr->dr_dnode = dn;
2104 dr->dr_txg = tx->tx_txg;
2105 dr->dt.dll.dr_blkid = blkid;
2106 dr->dr_accounted = dn->dn_datablksz;
2107
2108 /*
2109 * There should not be any dbuf for the block that we're dirtying.
2110 * Otherwise the buffer contents could be inconsistent between the
2111 * dbuf and the lightweight dirty record.
2112 */
2113 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid));
2114
2115 mutex_enter(&dn->dn_mtx);
2116 int txgoff = tx->tx_txg & TXG_MASK;
2117 if (dn->dn_free_ranges[txgoff] != NULL) {
2118 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2119 }
2120
2121 if (dn->dn_nlevels == 1) {
2122 ASSERT3U(blkid, <, dn->dn_nblkptr);
2123 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2124 mutex_exit(&dn->dn_mtx);
2125 rw_exit(&dn->dn_struct_rwlock);
2126 dnode_setdirty(dn, tx);
2127 } else {
2128 mutex_exit(&dn->dn_mtx);
2129
2130 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2131 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2132 1, blkid >> epbs, FTAG);
2133 rw_exit(&dn->dn_struct_rwlock);
2134 if (parent_db == NULL) {
2135 kmem_free(dr, sizeof (*dr));
2136 return (NULL);
2137 }
2138 int err = dbuf_read(parent_db, NULL,
2139 (DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2140 if (err != 0) {
2141 dbuf_rele(parent_db, FTAG);
2142 kmem_free(dr, sizeof (*dr));
2143 return (NULL);
2144 }
2145
2146 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2147 dbuf_rele(parent_db, FTAG);
2148 mutex_enter(&parent_dr->dt.di.dr_mtx);
2149 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2150 list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2151 mutex_exit(&parent_dr->dt.di.dr_mtx);
2152 dr->dr_parent = parent_dr;
2153 }
2154
2155 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2156
2157 return (dr);
2158 }
2159
2160 dbuf_dirty_record_t *
2161 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2162 {
2163 dnode_t *dn;
2164 objset_t *os;
2165 dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2166 int txgoff = tx->tx_txg & TXG_MASK;
2167 boolean_t drop_struct_rwlock = B_FALSE;
2168
2169 ASSERT(tx->tx_txg != 0);
2170 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2171 DMU_TX_DIRTY_BUF(tx, db);
2172
2173 DB_DNODE_ENTER(db);
2174 dn = DB_DNODE(db);
2175 /*
2176 * Shouldn't dirty a regular buffer in syncing context. Private
2177 * objects may be dirtied in syncing context, but only if they
2178 * were already pre-dirtied in open context.
2179 */
2180 #ifdef ZFS_DEBUG
2181 if (dn->dn_objset->os_dsl_dataset != NULL) {
2182 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2183 RW_READER, FTAG);
2184 }
2185 ASSERT(!dmu_tx_is_syncing(tx) ||
2186 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2187 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2188 dn->dn_objset->os_dsl_dataset == NULL);
2189 if (dn->dn_objset->os_dsl_dataset != NULL)
2190 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2191 #endif
2192 /*
2193 * We make this assert for private objects as well, but after we
2194 * check if we're already dirty. They are allowed to re-dirty
2195 * in syncing context.
2196 */
2197 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2198 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2199 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2200
2201 mutex_enter(&db->db_mtx);
2202 /*
2203 * XXX make this true for indirects too? The problem is that
2204 * transactions created with dmu_tx_create_assigned() from
2205 * syncing context don't bother holding ahead.
2206 */
2207 ASSERT(db->db_level != 0 ||
2208 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2209 db->db_state == DB_NOFILL);
2210
2211 mutex_enter(&dn->dn_mtx);
2212 dnode_set_dirtyctx(dn, tx, db);
2213 if (tx->tx_txg > dn->dn_dirty_txg)
2214 dn->dn_dirty_txg = tx->tx_txg;
2215 mutex_exit(&dn->dn_mtx);
2216
2217 if (db->db_blkid == DMU_SPILL_BLKID)
2218 dn->dn_have_spill = B_TRUE;
2219
2220 /*
2221 * If this buffer is already dirty, we're done.
2222 */
2223 dr_head = list_head(&db->db_dirty_records);
2224 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2225 db->db.db_object == DMU_META_DNODE_OBJECT);
2226 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2227 if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2228 DB_DNODE_EXIT(db);
2229
2230 dbuf_redirty(dr_next);
2231 mutex_exit(&db->db_mtx);
2232 return (dr_next);
2233 }
2234
2235 /*
2236 * Only valid if not already dirty.
2237 */
2238 ASSERT(dn->dn_object == 0 ||
2239 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2240 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2241
2242 ASSERT3U(dn->dn_nlevels, >, db->db_level);
2243
2244 /*
2245 * We should only be dirtying in syncing context if it's the
2246 * mos or we're initializing the os or it's a special object.
2247 * However, we are allowed to dirty in syncing context provided
2248 * we already dirtied it in open context. Hence we must make
2249 * this assertion only if we're not already dirty.
2250 */
2251 os = dn->dn_objset;
2252 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2253 #ifdef ZFS_DEBUG
2254 if (dn->dn_objset->os_dsl_dataset != NULL)
2255 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2256 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2257 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2258 if (dn->dn_objset->os_dsl_dataset != NULL)
2259 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2260 #endif
2261 ASSERT(db->db.db_size != 0);
2262
2263 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2264
2265 if (db->db_blkid != DMU_BONUS_BLKID) {
2266 dmu_objset_willuse_space(os, db->db.db_size, tx);
2267 }
2268
2269 /*
2270 * If this buffer is dirty in an old transaction group we need
2271 * to make a copy of it so that the changes we make in this
2272 * transaction group won't leak out when we sync the older txg.
2273 */
2274 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2275 list_link_init(&dr->dr_dirty_node);
2276 list_link_init(&dr->dr_dbuf_node);
2277 dr->dr_dnode = dn;
2278 if (db->db_level == 0) {
2279 void *data_old = db->db_buf;
2280
2281 if (db->db_state != DB_NOFILL) {
2282 if (db->db_blkid == DMU_BONUS_BLKID) {
2283 dbuf_fix_old_data(db, tx->tx_txg);
2284 data_old = db->db.db_data;
2285 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2286 /*
2287 * Release the data buffer from the cache so
2288 * that we can modify it without impacting
2289 * possible other users of this cached data
2290 * block. Note that indirect blocks and
2291 * private objects are not released until the
2292 * syncing state (since they are only modified
2293 * then).
2294 */
2295 arc_release(db->db_buf, db);
2296 dbuf_fix_old_data(db, tx->tx_txg);
2297 data_old = db->db_buf;
2298 }
2299 ASSERT(data_old != NULL);
2300 }
2301 dr->dt.dl.dr_data = data_old;
2302 } else {
2303 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2304 list_create(&dr->dt.di.dr_children,
2305 sizeof (dbuf_dirty_record_t),
2306 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2307 }
2308 if (db->db_blkid != DMU_BONUS_BLKID)
2309 dr->dr_accounted = db->db.db_size;
2310 dr->dr_dbuf = db;
2311 dr->dr_txg = tx->tx_txg;
2312 list_insert_before(&db->db_dirty_records, dr_next, dr);
2313
2314 /*
2315 * We could have been freed_in_flight between the dbuf_noread
2316 * and dbuf_dirty. We win, as though the dbuf_noread() had
2317 * happened after the free.
2318 */
2319 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2320 db->db_blkid != DMU_SPILL_BLKID) {
2321 mutex_enter(&dn->dn_mtx);
2322 if (dn->dn_free_ranges[txgoff] != NULL) {
2323 range_tree_clear(dn->dn_free_ranges[txgoff],
2324 db->db_blkid, 1);
2325 }
2326 mutex_exit(&dn->dn_mtx);
2327 db->db_freed_in_flight = FALSE;
2328 }
2329
2330 /*
2331 * This buffer is now part of this txg
2332 */
2333 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2334 db->db_dirtycnt += 1;
2335 ASSERT3U(db->db_dirtycnt, <=, 3);
2336
2337 mutex_exit(&db->db_mtx);
2338
2339 if (db->db_blkid == DMU_BONUS_BLKID ||
2340 db->db_blkid == DMU_SPILL_BLKID) {
2341 mutex_enter(&dn->dn_mtx);
2342 ASSERT(!list_link_active(&dr->dr_dirty_node));
2343 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2344 mutex_exit(&dn->dn_mtx);
2345 dnode_setdirty(dn, tx);
2346 DB_DNODE_EXIT(db);
2347 return (dr);
2348 }
2349
2350 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2351 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2352 drop_struct_rwlock = B_TRUE;
2353 }
2354
2355 /*
2356 * If we are overwriting a dedup BP, then unless it is snapshotted,
2357 * when we get to syncing context we will need to decrement its
2358 * refcount in the DDT. Prefetch the relevant DDT block so that
2359 * syncing context won't have to wait for the i/o.
2360 */
2361 if (db->db_blkptr != NULL) {
2362 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2363 ddt_prefetch(os->os_spa, db->db_blkptr);
2364 dmu_buf_unlock_parent(db, dblt, FTAG);
2365 }
2366
2367 /*
2368 * We need to hold the dn_struct_rwlock to make this assertion,
2369 * because it protects dn_phys / dn_next_nlevels from changing.
2370 */
2371 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2372 dn->dn_phys->dn_nlevels > db->db_level ||
2373 dn->dn_next_nlevels[txgoff] > db->db_level ||
2374 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2375 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2376
2377
2378 if (db->db_level == 0) {
2379 ASSERT(!db->db_objset->os_raw_receive ||
2380 dn->dn_maxblkid >= db->db_blkid);
2381 dnode_new_blkid(dn, db->db_blkid, tx,
2382 drop_struct_rwlock, B_FALSE);
2383 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2384 }
2385
2386 if (db->db_level+1 < dn->dn_nlevels) {
2387 dmu_buf_impl_t *parent = db->db_parent;
2388 dbuf_dirty_record_t *di;
2389 int parent_held = FALSE;
2390
2391 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2392 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2393 parent = dbuf_hold_level(dn, db->db_level + 1,
2394 db->db_blkid >> epbs, FTAG);
2395 ASSERT(parent != NULL);
2396 parent_held = TRUE;
2397 }
2398 if (drop_struct_rwlock)
2399 rw_exit(&dn->dn_struct_rwlock);
2400 ASSERT3U(db->db_level + 1, ==, parent->db_level);
2401 di = dbuf_dirty(parent, tx);
2402 if (parent_held)
2403 dbuf_rele(parent, FTAG);
2404
2405 mutex_enter(&db->db_mtx);
2406 /*
2407 * Since we've dropped the mutex, it's possible that
2408 * dbuf_undirty() might have changed this out from under us.
2409 */
2410 if (list_head(&db->db_dirty_records) == dr ||
2411 dn->dn_object == DMU_META_DNODE_OBJECT) {
2412 mutex_enter(&di->dt.di.dr_mtx);
2413 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2414 ASSERT(!list_link_active(&dr->dr_dirty_node));
2415 list_insert_tail(&di->dt.di.dr_children, dr);
2416 mutex_exit(&di->dt.di.dr_mtx);
2417 dr->dr_parent = di;
2418 }
2419 mutex_exit(&db->db_mtx);
2420 } else {
2421 ASSERT(db->db_level + 1 == dn->dn_nlevels);
2422 ASSERT(db->db_blkid < dn->dn_nblkptr);
2423 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2424 mutex_enter(&dn->dn_mtx);
2425 ASSERT(!list_link_active(&dr->dr_dirty_node));
2426 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2427 mutex_exit(&dn->dn_mtx);
2428 if (drop_struct_rwlock)
2429 rw_exit(&dn->dn_struct_rwlock);
2430 }
2431
2432 dnode_setdirty(dn, tx);
2433 DB_DNODE_EXIT(db);
2434 return (dr);
2435 }
2436
2437 static void
2438 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2439 {
2440 dmu_buf_impl_t *db = dr->dr_dbuf;
2441
2442 if (dr->dt.dl.dr_data != db->db.db_data) {
2443 struct dnode *dn = dr->dr_dnode;
2444 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2445
2446 kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2447 arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2448 }
2449 db->db_data_pending = NULL;
2450 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2451 list_remove(&db->db_dirty_records, dr);
2452 if (dr->dr_dbuf->db_level != 0) {
2453 mutex_destroy(&dr->dt.di.dr_mtx);
2454 list_destroy(&dr->dt.di.dr_children);
2455 }
2456 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2457 ASSERT3U(db->db_dirtycnt, >, 0);
2458 db->db_dirtycnt -= 1;
2459 }
2460
2461 /*
2462 * Undirty a buffer in the transaction group referenced by the given
2463 * transaction. Return whether this evicted the dbuf.
2464 */
2465 static boolean_t
2466 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2467 {
2468 uint64_t txg = tx->tx_txg;
2469
2470 ASSERT(txg != 0);
2471
2472 /*
2473 * Due to our use of dn_nlevels below, this can only be called
2474 * in open context, unless we are operating on the MOS.
2475 * From syncing context, dn_nlevels may be different from the
2476 * dn_nlevels used when dbuf was dirtied.
2477 */
2478 ASSERT(db->db_objset ==
2479 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2480 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2481 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2482 ASSERT0(db->db_level);
2483 ASSERT(MUTEX_HELD(&db->db_mtx));
2484
2485 /*
2486 * If this buffer is not dirty, we're done.
2487 */
2488 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2489 if (dr == NULL)
2490 return (B_FALSE);
2491 ASSERT(dr->dr_dbuf == db);
2492
2493 dnode_t *dn = dr->dr_dnode;
2494
2495 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2496
2497 ASSERT(db->db.db_size != 0);
2498
2499 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2500 dr->dr_accounted, txg);
2501
2502 list_remove(&db->db_dirty_records, dr);
2503
2504 /*
2505 * Note that there are three places in dbuf_dirty()
2506 * where this dirty record may be put on a list.
2507 * Make sure to do a list_remove corresponding to
2508 * every one of those list_insert calls.
2509 */
2510 if (dr->dr_parent) {
2511 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2512 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2513 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2514 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2515 db->db_level + 1 == dn->dn_nlevels) {
2516 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2517 mutex_enter(&dn->dn_mtx);
2518 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2519 mutex_exit(&dn->dn_mtx);
2520 }
2521
2522 if (db->db_state != DB_NOFILL) {
2523 dbuf_unoverride(dr);
2524
2525 ASSERT(db->db_buf != NULL);
2526 ASSERT(dr->dt.dl.dr_data != NULL);
2527 if (dr->dt.dl.dr_data != db->db_buf)
2528 arc_buf_destroy(dr->dt.dl.dr_data, db);
2529 }
2530
2531 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2532
2533 ASSERT(db->db_dirtycnt > 0);
2534 db->db_dirtycnt -= 1;
2535
2536 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2537 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2538 dbuf_destroy(db);
2539 return (B_TRUE);
2540 }
2541
2542 return (B_FALSE);
2543 }
2544
2545 static void
2546 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2547 {
2548 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2549
2550 ASSERT(tx->tx_txg != 0);
2551 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2552
2553 /*
2554 * Quick check for dirtiness. For already dirty blocks, this
2555 * reduces runtime of this function by >90%, and overall performance
2556 * by 50% for some workloads (e.g. file deletion with indirect blocks
2557 * cached).
2558 */
2559 mutex_enter(&db->db_mtx);
2560
2561 if (db->db_state == DB_CACHED) {
2562 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2563 /*
2564 * It's possible that it is already dirty but not cached,
2565 * because there are some calls to dbuf_dirty() that don't
2566 * go through dmu_buf_will_dirty().
2567 */
2568 if (dr != NULL) {
2569 /* This dbuf is already dirty and cached. */
2570 dbuf_redirty(dr);
2571 mutex_exit(&db->db_mtx);
2572 return;
2573 }
2574 }
2575 mutex_exit(&db->db_mtx);
2576
2577 DB_DNODE_ENTER(db);
2578 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2579 flags |= DB_RF_HAVESTRUCT;
2580 DB_DNODE_EXIT(db);
2581 (void) dbuf_read(db, NULL, flags);
2582 (void) dbuf_dirty(db, tx);
2583 }
2584
2585 void
2586 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2587 {
2588 dmu_buf_will_dirty_impl(db_fake,
2589 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2590 }
2591
2592 boolean_t
2593 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2594 {
2595 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2596 dbuf_dirty_record_t *dr;
2597
2598 mutex_enter(&db->db_mtx);
2599 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2600 mutex_exit(&db->db_mtx);
2601 return (dr != NULL);
2602 }
2603
2604 void
2605 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2606 {
2607 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2608
2609 db->db_state = DB_NOFILL;
2610 DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2611 dmu_buf_will_fill(db_fake, tx);
2612 }
2613
2614 void
2615 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2616 {
2617 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2618
2619 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2620 ASSERT(tx->tx_txg != 0);
2621 ASSERT(db->db_level == 0);
2622 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2623
2624 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2625 dmu_tx_private_ok(tx));
2626
2627 dbuf_noread(db);
2628 (void) dbuf_dirty(db, tx);
2629 }
2630
2631 /*
2632 * This function is effectively the same as dmu_buf_will_dirty(), but
2633 * indicates the caller expects raw encrypted data in the db, and provides
2634 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2635 * blkptr_t when this dbuf is written. This is only used for blocks of
2636 * dnodes, during raw receive.
2637 */
2638 void
2639 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2640 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2641 {
2642 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2643 dbuf_dirty_record_t *dr;
2644
2645 /*
2646 * dr_has_raw_params is only processed for blocks of dnodes
2647 * (see dbuf_sync_dnode_leaf_crypt()).
2648 */
2649 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2650 ASSERT3U(db->db_level, ==, 0);
2651 ASSERT(db->db_objset->os_raw_receive);
2652
2653 dmu_buf_will_dirty_impl(db_fake,
2654 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2655
2656 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2657
2658 ASSERT3P(dr, !=, NULL);
2659
2660 dr->dt.dl.dr_has_raw_params = B_TRUE;
2661 dr->dt.dl.dr_byteorder = byteorder;
2662 bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN);
2663 bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN);
2664 bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN);
2665 }
2666
2667 static void
2668 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2669 {
2670 struct dirty_leaf *dl;
2671 dbuf_dirty_record_t *dr;
2672
2673 dr = list_head(&db->db_dirty_records);
2674 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2675 dl = &dr->dt.dl;
2676 dl->dr_overridden_by = *bp;
2677 dl->dr_override_state = DR_OVERRIDDEN;
2678 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2679 }
2680
2681 /* ARGSUSED */
2682 void
2683 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx)
2684 {
2685 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2686 dbuf_states_t old_state;
2687 mutex_enter(&db->db_mtx);
2688 DBUF_VERIFY(db);
2689
2690 old_state = db->db_state;
2691 db->db_state = DB_CACHED;
2692 if (old_state == DB_FILL) {
2693 if (db->db_level == 0 && db->db_freed_in_flight) {
2694 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2695 /* we were freed while filling */
2696 /* XXX dbuf_undirty? */
2697 bzero(db->db.db_data, db->db.db_size);
2698 db->db_freed_in_flight = FALSE;
2699 DTRACE_SET_STATE(db,
2700 "fill done handling freed in flight");
2701 } else {
2702 DTRACE_SET_STATE(db, "fill done");
2703 }
2704 cv_broadcast(&db->db_changed);
2705 }
2706 mutex_exit(&db->db_mtx);
2707 }
2708
2709 void
2710 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2711 bp_embedded_type_t etype, enum zio_compress comp,
2712 int uncompressed_size, int compressed_size, int byteorder,
2713 dmu_tx_t *tx)
2714 {
2715 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2716 struct dirty_leaf *dl;
2717 dmu_object_type_t type;
2718 dbuf_dirty_record_t *dr;
2719
2720 if (etype == BP_EMBEDDED_TYPE_DATA) {
2721 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2722 SPA_FEATURE_EMBEDDED_DATA));
2723 }
2724
2725 DB_DNODE_ENTER(db);
2726 type = DB_DNODE(db)->dn_type;
2727 DB_DNODE_EXIT(db);
2728
2729 ASSERT0(db->db_level);
2730 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2731
2732 dmu_buf_will_not_fill(dbuf, tx);
2733
2734 dr = list_head(&db->db_dirty_records);
2735 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2736 dl = &dr->dt.dl;
2737 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2738 data, comp, uncompressed_size, compressed_size);
2739 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2740 BP_SET_TYPE(&dl->dr_overridden_by, type);
2741 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2742 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2743
2744 dl->dr_override_state = DR_OVERRIDDEN;
2745 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2746 }
2747
2748 void
2749 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
2750 {
2751 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2752 dmu_object_type_t type;
2753 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
2754 SPA_FEATURE_REDACTED_DATASETS));
2755
2756 DB_DNODE_ENTER(db);
2757 type = DB_DNODE(db)->dn_type;
2758 DB_DNODE_EXIT(db);
2759
2760 ASSERT0(db->db_level);
2761 dmu_buf_will_not_fill(dbuf, tx);
2762
2763 blkptr_t bp = { { { {0} } } };
2764 BP_SET_TYPE(&bp, type);
2765 BP_SET_LEVEL(&bp, 0);
2766 BP_SET_BIRTH(&bp, tx->tx_txg, 0);
2767 BP_SET_REDACTED(&bp);
2768 BPE_SET_LSIZE(&bp, dbuf->db_size);
2769
2770 dbuf_override_impl(db, &bp, tx);
2771 }
2772
2773 /*
2774 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2775 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2776 */
2777 void
2778 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2779 {
2780 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2781 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2782 ASSERT(db->db_level == 0);
2783 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2784 ASSERT(buf != NULL);
2785 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
2786 ASSERT(tx->tx_txg != 0);
2787
2788 arc_return_buf(buf, db);
2789 ASSERT(arc_released(buf));
2790
2791 mutex_enter(&db->db_mtx);
2792
2793 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2794 cv_wait(&db->db_changed, &db->db_mtx);
2795
2796 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2797
2798 if (db->db_state == DB_CACHED &&
2799 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2800 /*
2801 * In practice, we will never have a case where we have an
2802 * encrypted arc buffer while additional holds exist on the
2803 * dbuf. We don't handle this here so we simply assert that
2804 * fact instead.
2805 */
2806 ASSERT(!arc_is_encrypted(buf));
2807 mutex_exit(&db->db_mtx);
2808 (void) dbuf_dirty(db, tx);
2809 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2810 arc_buf_destroy(buf, db);
2811 return;
2812 }
2813
2814 if (db->db_state == DB_CACHED) {
2815 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2816
2817 ASSERT(db->db_buf != NULL);
2818 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2819 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2820
2821 if (!arc_released(db->db_buf)) {
2822 ASSERT(dr->dt.dl.dr_override_state ==
2823 DR_OVERRIDDEN);
2824 arc_release(db->db_buf, db);
2825 }
2826 dr->dt.dl.dr_data = buf;
2827 arc_buf_destroy(db->db_buf, db);
2828 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2829 arc_release(db->db_buf, db);
2830 arc_buf_destroy(db->db_buf, db);
2831 }
2832 db->db_buf = NULL;
2833 }
2834 ASSERT(db->db_buf == NULL);
2835 dbuf_set_data(db, buf);
2836 db->db_state = DB_FILL;
2837 DTRACE_SET_STATE(db, "filling assigned arcbuf");
2838 mutex_exit(&db->db_mtx);
2839 (void) dbuf_dirty(db, tx);
2840 dmu_buf_fill_done(&db->db, tx);
2841 }
2842
2843 void
2844 dbuf_destroy(dmu_buf_impl_t *db)
2845 {
2846 dnode_t *dn;
2847 dmu_buf_impl_t *parent = db->db_parent;
2848 dmu_buf_impl_t *dndb;
2849
2850 ASSERT(MUTEX_HELD(&db->db_mtx));
2851 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2852
2853 if (db->db_buf != NULL) {
2854 arc_buf_destroy(db->db_buf, db);
2855 db->db_buf = NULL;
2856 }
2857
2858 if (db->db_blkid == DMU_BONUS_BLKID) {
2859 int slots = DB_DNODE(db)->dn_num_slots;
2860 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2861 if (db->db.db_data != NULL) {
2862 kmem_free(db->db.db_data, bonuslen);
2863 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2864 db->db_state = DB_UNCACHED;
2865 DTRACE_SET_STATE(db, "buffer cleared");
2866 }
2867 }
2868
2869 dbuf_clear_data(db);
2870
2871 if (multilist_link_active(&db->db_cache_link)) {
2872 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2873 db->db_caching_status == DB_DBUF_METADATA_CACHE);
2874
2875 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
2876 (void) zfs_refcount_remove_many(
2877 &dbuf_caches[db->db_caching_status].size,
2878 db->db.db_size, db);
2879
2880 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
2881 DBUF_STAT_BUMPDOWN(metadata_cache_count);
2882 } else {
2883 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2884 DBUF_STAT_BUMPDOWN(cache_count);
2885 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2886 db->db.db_size);
2887 }
2888 db->db_caching_status = DB_NO_CACHE;
2889 }
2890
2891 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2892 ASSERT(db->db_data_pending == NULL);
2893 ASSERT(list_is_empty(&db->db_dirty_records));
2894
2895 db->db_state = DB_EVICTING;
2896 DTRACE_SET_STATE(db, "buffer eviction started");
2897 db->db_blkptr = NULL;
2898
2899 /*
2900 * Now that db_state is DB_EVICTING, nobody else can find this via
2901 * the hash table. We can now drop db_mtx, which allows us to
2902 * acquire the dn_dbufs_mtx.
2903 */
2904 mutex_exit(&db->db_mtx);
2905
2906 DB_DNODE_ENTER(db);
2907 dn = DB_DNODE(db);
2908 dndb = dn->dn_dbuf;
2909 if (db->db_blkid != DMU_BONUS_BLKID) {
2910 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2911 if (needlock)
2912 mutex_enter_nested(&dn->dn_dbufs_mtx,
2913 NESTED_SINGLE);
2914 avl_remove(&dn->dn_dbufs, db);
2915 membar_producer();
2916 DB_DNODE_EXIT(db);
2917 if (needlock)
2918 mutex_exit(&dn->dn_dbufs_mtx);
2919 /*
2920 * Decrementing the dbuf count means that the hold corresponding
2921 * to the removed dbuf is no longer discounted in dnode_move(),
2922 * so the dnode cannot be moved until after we release the hold.
2923 * The membar_producer() ensures visibility of the decremented
2924 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2925 * release any lock.
2926 */
2927 mutex_enter(&dn->dn_mtx);
2928 dnode_rele_and_unlock(dn, db, B_TRUE);
2929 db->db_dnode_handle = NULL;
2930
2931 dbuf_hash_remove(db);
2932 } else {
2933 DB_DNODE_EXIT(db);
2934 }
2935
2936 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2937
2938 db->db_parent = NULL;
2939
2940 ASSERT(db->db_buf == NULL);
2941 ASSERT(db->db.db_data == NULL);
2942 ASSERT(db->db_hash_next == NULL);
2943 ASSERT(db->db_blkptr == NULL);
2944 ASSERT(db->db_data_pending == NULL);
2945 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
2946 ASSERT(!multilist_link_active(&db->db_cache_link));
2947
2948 kmem_cache_free(dbuf_kmem_cache, db);
2949 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2950
2951 /*
2952 * If this dbuf is referenced from an indirect dbuf,
2953 * decrement the ref count on the indirect dbuf.
2954 */
2955 if (parent && parent != dndb) {
2956 mutex_enter(&parent->db_mtx);
2957 dbuf_rele_and_unlock(parent, db, B_TRUE);
2958 }
2959 }
2960
2961 /*
2962 * Note: While bpp will always be updated if the function returns success,
2963 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2964 * this happens when the dnode is the meta-dnode, or {user|group|project}used
2965 * object.
2966 */
2967 __attribute__((always_inline))
2968 static inline int
2969 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2970 dmu_buf_impl_t **parentp, blkptr_t **bpp)
2971 {
2972 *parentp = NULL;
2973 *bpp = NULL;
2974
2975 ASSERT(blkid != DMU_BONUS_BLKID);
2976
2977 if (blkid == DMU_SPILL_BLKID) {
2978 mutex_enter(&dn->dn_mtx);
2979 if (dn->dn_have_spill &&
2980 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2981 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2982 else
2983 *bpp = NULL;
2984 dbuf_add_ref(dn->dn_dbuf, NULL);
2985 *parentp = dn->dn_dbuf;
2986 mutex_exit(&dn->dn_mtx);
2987 return (0);
2988 }
2989
2990 int nlevels =
2991 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2992 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2993
2994 ASSERT3U(level * epbs, <, 64);
2995 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2996 /*
2997 * This assertion shouldn't trip as long as the max indirect block size
2998 * is less than 1M. The reason for this is that up to that point,
2999 * the number of levels required to address an entire object with blocks
3000 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
3001 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3002 * (i.e. we can address the entire object), objects will all use at most
3003 * N-1 levels and the assertion won't overflow. However, once epbs is
3004 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
3005 * enough to address an entire object, so objects will have 5 levels,
3006 * but then this assertion will overflow.
3007 *
3008 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3009 * need to redo this logic to handle overflows.
3010 */
3011 ASSERT(level >= nlevels ||
3012 ((nlevels - level - 1) * epbs) +
3013 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3014 if (level >= nlevels ||
3015 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3016 ((nlevels - level - 1) * epbs)) ||
3017 (fail_sparse &&
3018 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3019 /* the buffer has no parent yet */
3020 return (SET_ERROR(ENOENT));
3021 } else if (level < nlevels-1) {
3022 /* this block is referenced from an indirect block */
3023 int err;
3024
3025 err = dbuf_hold_impl(dn, level + 1,
3026 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3027
3028 if (err)
3029 return (err);
3030 err = dbuf_read(*parentp, NULL,
3031 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
3032 if (err) {
3033 dbuf_rele(*parentp, NULL);
3034 *parentp = NULL;
3035 return (err);
3036 }
3037 rw_enter(&(*parentp)->db_rwlock, RW_READER);
3038 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3039 (blkid & ((1ULL << epbs) - 1));
3040 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
3041 ASSERT(BP_IS_HOLE(*bpp));
3042 rw_exit(&(*parentp)->db_rwlock);
3043 return (0);
3044 } else {
3045 /* the block is referenced from the dnode */
3046 ASSERT3U(level, ==, nlevels-1);
3047 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3048 blkid < dn->dn_phys->dn_nblkptr);
3049 if (dn->dn_dbuf) {
3050 dbuf_add_ref(dn->dn_dbuf, NULL);
3051 *parentp = dn->dn_dbuf;
3052 }
3053 *bpp = &dn->dn_phys->dn_blkptr[blkid];
3054 return (0);
3055 }
3056 }
3057
3058 static dmu_buf_impl_t *
3059 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3060 dmu_buf_impl_t *parent, blkptr_t *blkptr)
3061 {
3062 objset_t *os = dn->dn_objset;
3063 dmu_buf_impl_t *db, *odb;
3064
3065 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3066 ASSERT(dn->dn_type != DMU_OT_NONE);
3067
3068 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3069
3070 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3071 offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3072
3073 db->db_objset = os;
3074 db->db.db_object = dn->dn_object;
3075 db->db_level = level;
3076 db->db_blkid = blkid;
3077 db->db_dirtycnt = 0;
3078 db->db_dnode_handle = dn->dn_handle;
3079 db->db_parent = parent;
3080 db->db_blkptr = blkptr;
3081
3082 db->db_user = NULL;
3083 db->db_user_immediate_evict = FALSE;
3084 db->db_freed_in_flight = FALSE;
3085 db->db_pending_evict = FALSE;
3086
3087 if (blkid == DMU_BONUS_BLKID) {
3088 ASSERT3P(parent, ==, dn->dn_dbuf);
3089 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3090 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3091 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3092 db->db.db_offset = DMU_BONUS_BLKID;
3093 db->db_state = DB_UNCACHED;
3094 DTRACE_SET_STATE(db, "bonus buffer created");
3095 db->db_caching_status = DB_NO_CACHE;
3096 /* the bonus dbuf is not placed in the hash table */
3097 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3098 return (db);
3099 } else if (blkid == DMU_SPILL_BLKID) {
3100 db->db.db_size = (blkptr != NULL) ?
3101 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3102 db->db.db_offset = 0;
3103 } else {
3104 int blocksize =
3105 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3106 db->db.db_size = blocksize;
3107 db->db.db_offset = db->db_blkid * blocksize;
3108 }
3109
3110 /*
3111 * Hold the dn_dbufs_mtx while we get the new dbuf
3112 * in the hash table *and* added to the dbufs list.
3113 * This prevents a possible deadlock with someone
3114 * trying to look up this dbuf before it's added to the
3115 * dn_dbufs list.
3116 */
3117 mutex_enter(&dn->dn_dbufs_mtx);
3118 db->db_state = DB_EVICTING; /* not worth logging this state change */
3119 if ((odb = dbuf_hash_insert(db)) != NULL) {
3120 /* someone else inserted it first */
3121 mutex_exit(&dn->dn_dbufs_mtx);
3122 kmem_cache_free(dbuf_kmem_cache, db);
3123 DBUF_STAT_BUMP(hash_insert_race);
3124 return (odb);
3125 }
3126 avl_add(&dn->dn_dbufs, db);
3127
3128 db->db_state = DB_UNCACHED;
3129 DTRACE_SET_STATE(db, "regular buffer created");
3130 db->db_caching_status = DB_NO_CACHE;
3131 mutex_exit(&dn->dn_dbufs_mtx);
3132 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3133
3134 if (parent && parent != dn->dn_dbuf)
3135 dbuf_add_ref(parent, db);
3136
3137 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3138 zfs_refcount_count(&dn->dn_holds) > 0);
3139 (void) zfs_refcount_add(&dn->dn_holds, db);
3140
3141 dprintf_dbuf(db, "db=%p\n", db);
3142
3143 return (db);
3144 }
3145
3146 /*
3147 * This function returns a block pointer and information about the object,
3148 * given a dnode and a block. This is a publicly accessible version of
3149 * dbuf_findbp that only returns some information, rather than the
3150 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
3151 * should be locked as (at least) a reader.
3152 */
3153 int
3154 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3155 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3156 {
3157 dmu_buf_impl_t *dbp = NULL;
3158 blkptr_t *bp2;
3159 int err = 0;
3160 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3161
3162 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3163 if (err == 0) {
3164 *bp = *bp2;
3165 if (dbp != NULL)
3166 dbuf_rele(dbp, NULL);
3167 if (datablkszsec != NULL)
3168 *datablkszsec = dn->dn_phys->dn_datablkszsec;
3169 if (indblkshift != NULL)
3170 *indblkshift = dn->dn_phys->dn_indblkshift;
3171 }
3172
3173 return (err);
3174 }
3175
3176 typedef struct dbuf_prefetch_arg {
3177 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
3178 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3179 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3180 int dpa_curlevel; /* The current level that we're reading */
3181 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3182 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3183 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3184 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3185 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3186 void *dpa_arg; /* prefetch completion arg */
3187 } dbuf_prefetch_arg_t;
3188
3189 static void
3190 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3191 {
3192 if (dpa->dpa_cb != NULL)
3193 dpa->dpa_cb(dpa->dpa_arg, io_done);
3194 kmem_free(dpa, sizeof (*dpa));
3195 }
3196
3197 static void
3198 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3199 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3200 {
3201 dbuf_prefetch_arg_t *dpa = private;
3202
3203 dbuf_prefetch_fini(dpa, B_TRUE);
3204 if (abuf != NULL)
3205 arc_buf_destroy(abuf, private);
3206 }
3207
3208 /*
3209 * Actually issue the prefetch read for the block given.
3210 */
3211 static void
3212 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3213 {
3214 ASSERT(!BP_IS_REDACTED(bp) ||
3215 dsl_dataset_feature_is_active(
3216 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3217 SPA_FEATURE_REDACTED_DATASETS));
3218
3219 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
3220 return (dbuf_prefetch_fini(dpa, B_FALSE));
3221
3222 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3223 arc_flags_t aflags =
3224 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3225 ARC_FLAG_NO_BUF;
3226
3227 /* dnodes are always read as raw and then converted later */
3228 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3229 dpa->dpa_curlevel == 0)
3230 zio_flags |= ZIO_FLAG_RAW;
3231
3232 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3233 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3234 ASSERT(dpa->dpa_zio != NULL);
3235 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3236 dbuf_issue_final_prefetch_done, dpa,
3237 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3238 }
3239
3240 /*
3241 * Called when an indirect block above our prefetch target is read in. This
3242 * will either read in the next indirect block down the tree or issue the actual
3243 * prefetch if the next block down is our target.
3244 */
3245 static void
3246 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3247 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3248 {
3249 dbuf_prefetch_arg_t *dpa = private;
3250
3251 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3252 ASSERT3S(dpa->dpa_curlevel, >, 0);
3253
3254 if (abuf == NULL) {
3255 ASSERT(zio == NULL || zio->io_error != 0);
3256 return (dbuf_prefetch_fini(dpa, B_TRUE));
3257 }
3258 ASSERT(zio == NULL || zio->io_error == 0);
3259
3260 /*
3261 * The dpa_dnode is only valid if we are called with a NULL
3262 * zio. This indicates that the arc_read() returned without
3263 * first calling zio_read() to issue a physical read. Once
3264 * a physical read is made the dpa_dnode must be invalidated
3265 * as the locks guarding it may have been dropped. If the
3266 * dpa_dnode is still valid, then we want to add it to the dbuf
3267 * cache. To do so, we must hold the dbuf associated with the block
3268 * we just prefetched, read its contents so that we associate it
3269 * with an arc_buf_t, and then release it.
3270 */
3271 if (zio != NULL) {
3272 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3273 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3274 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3275 } else {
3276 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3277 }
3278 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3279
3280 dpa->dpa_dnode = NULL;
3281 } else if (dpa->dpa_dnode != NULL) {
3282 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3283 (dpa->dpa_epbs * (dpa->dpa_curlevel -
3284 dpa->dpa_zb.zb_level));
3285 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3286 dpa->dpa_curlevel, curblkid, FTAG);
3287 if (db == NULL) {
3288 arc_buf_destroy(abuf, private);
3289 return (dbuf_prefetch_fini(dpa, B_TRUE));
3290 }
3291 (void) dbuf_read(db, NULL,
3292 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
3293 dbuf_rele(db, FTAG);
3294 }
3295
3296 dpa->dpa_curlevel--;
3297 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3298 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3299 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3300 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3301
3302 ASSERT(!BP_IS_REDACTED(bp) ||
3303 dsl_dataset_feature_is_active(
3304 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3305 SPA_FEATURE_REDACTED_DATASETS));
3306 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3307 dbuf_prefetch_fini(dpa, B_TRUE);
3308 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3309 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3310 dbuf_issue_final_prefetch(dpa, bp);
3311 } else {
3312 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3313 zbookmark_phys_t zb;
3314
3315 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3316 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3317 iter_aflags |= ARC_FLAG_L2CACHE;
3318
3319 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3320
3321 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3322 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3323
3324 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3325 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
3326 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3327 &iter_aflags, &zb);
3328 }
3329
3330 arc_buf_destroy(abuf, private);
3331 }
3332
3333 /*
3334 * Issue prefetch reads for the given block on the given level. If the indirect
3335 * blocks above that block are not in memory, we will read them in
3336 * asynchronously. As a result, this call never blocks waiting for a read to
3337 * complete. Note that the prefetch might fail if the dataset is encrypted and
3338 * the encryption key is unmapped before the IO completes.
3339 */
3340 int
3341 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3342 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3343 void *arg)
3344 {
3345 blkptr_t bp;
3346 int epbs, nlevels, curlevel;
3347 uint64_t curblkid;
3348
3349 ASSERT(blkid != DMU_BONUS_BLKID);
3350 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3351
3352 if (blkid > dn->dn_maxblkid)
3353 goto no_issue;
3354
3355 if (level == 0 && dnode_block_freed(dn, blkid))
3356 goto no_issue;
3357
3358 /*
3359 * This dnode hasn't been written to disk yet, so there's nothing to
3360 * prefetch.
3361 */
3362 nlevels = dn->dn_phys->dn_nlevels;
3363 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3364 goto no_issue;
3365
3366 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3367 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3368 goto no_issue;
3369
3370 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3371 level, blkid);
3372 if (db != NULL) {
3373 mutex_exit(&db->db_mtx);
3374 /*
3375 * This dbuf already exists. It is either CACHED, or
3376 * (we assume) about to be read or filled.
3377 */
3378 goto no_issue;
3379 }
3380
3381 /*
3382 * Find the closest ancestor (indirect block) of the target block
3383 * that is present in the cache. In this indirect block, we will
3384 * find the bp that is at curlevel, curblkid.
3385 */
3386 curlevel = level;
3387 curblkid = blkid;
3388 while (curlevel < nlevels - 1) {
3389 int parent_level = curlevel + 1;
3390 uint64_t parent_blkid = curblkid >> epbs;
3391 dmu_buf_impl_t *db;
3392
3393 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3394 FALSE, TRUE, FTAG, &db) == 0) {
3395 blkptr_t *bpp = db->db_buf->b_data;
3396 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3397 dbuf_rele(db, FTAG);
3398 break;
3399 }
3400
3401 curlevel = parent_level;
3402 curblkid = parent_blkid;
3403 }
3404
3405 if (curlevel == nlevels - 1) {
3406 /* No cached indirect blocks found. */
3407 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3408 bp = dn->dn_phys->dn_blkptr[curblkid];
3409 }
3410 ASSERT(!BP_IS_REDACTED(&bp) ||
3411 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3412 SPA_FEATURE_REDACTED_DATASETS));
3413 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3414 goto no_issue;
3415
3416 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3417
3418 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3419 ZIO_FLAG_CANFAIL);
3420
3421 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3422 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3423 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3424 dn->dn_object, level, blkid);
3425 dpa->dpa_curlevel = curlevel;
3426 dpa->dpa_prio = prio;
3427 dpa->dpa_aflags = aflags;
3428 dpa->dpa_spa = dn->dn_objset->os_spa;
3429 dpa->dpa_dnode = dn;
3430 dpa->dpa_epbs = epbs;
3431 dpa->dpa_zio = pio;
3432 dpa->dpa_cb = cb;
3433 dpa->dpa_arg = arg;
3434
3435 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3436 if (dnode_level_is_l2cacheable(&bp, dn, level))
3437 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3438
3439 /*
3440 * If we have the indirect just above us, no need to do the asynchronous
3441 * prefetch chain; we'll just run the last step ourselves. If we're at
3442 * a higher level, though, we want to issue the prefetches for all the
3443 * indirect blocks asynchronously, so we can go on with whatever we were
3444 * doing.
3445 */
3446 if (curlevel == level) {
3447 ASSERT3U(curblkid, ==, blkid);
3448 dbuf_issue_final_prefetch(dpa, &bp);
3449 } else {
3450 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3451 zbookmark_phys_t zb;
3452
3453 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3454 if (dnode_level_is_l2cacheable(&bp, dn, level))
3455 iter_aflags |= ARC_FLAG_L2CACHE;
3456
3457 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3458 dn->dn_object, curlevel, curblkid);
3459 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3460 &bp, dbuf_prefetch_indirect_done, dpa, prio,
3461 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3462 &iter_aflags, &zb);
3463 }
3464 /*
3465 * We use pio here instead of dpa_zio since it's possible that
3466 * dpa may have already been freed.
3467 */
3468 zio_nowait(pio);
3469 return (1);
3470 no_issue:
3471 if (cb != NULL)
3472 cb(arg, B_FALSE);
3473 return (0);
3474 }
3475
3476 int
3477 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3478 arc_flags_t aflags)
3479 {
3480
3481 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3482 }
3483
3484 /*
3485 * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3486 * the case of encrypted, compressed and uncompressed buffers by
3487 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3488 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3489 *
3490 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3491 */
3492 noinline static void
3493 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3494 {
3495 dbuf_dirty_record_t *dr = db->db_data_pending;
3496 arc_buf_t *data = dr->dt.dl.dr_data;
3497 enum zio_compress compress_type = arc_get_compression(data);
3498 uint8_t complevel = arc_get_complevel(data);
3499
3500 if (arc_is_encrypted(data)) {
3501 boolean_t byteorder;
3502 uint8_t salt[ZIO_DATA_SALT_LEN];
3503 uint8_t iv[ZIO_DATA_IV_LEN];
3504 uint8_t mac[ZIO_DATA_MAC_LEN];
3505
3506 arc_get_raw_params(data, &byteorder, salt, iv, mac);
3507 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3508 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3509 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3510 compress_type, complevel));
3511 } else if (compress_type != ZIO_COMPRESS_OFF) {
3512 dbuf_set_data(db, arc_alloc_compressed_buf(
3513 dn->dn_objset->os_spa, db, arc_buf_size(data),
3514 arc_buf_lsize(data), compress_type, complevel));
3515 } else {
3516 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3517 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3518 }
3519
3520 rw_enter(&db->db_rwlock, RW_WRITER);
3521 bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
3522 rw_exit(&db->db_rwlock);
3523 }
3524
3525 /*
3526 * Returns with db_holds incremented, and db_mtx not held.
3527 * Note: dn_struct_rwlock must be held.
3528 */
3529 int
3530 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3531 boolean_t fail_sparse, boolean_t fail_uncached,
3532 void *tag, dmu_buf_impl_t **dbp)
3533 {
3534 dmu_buf_impl_t *db, *parent = NULL;
3535
3536 /* If the pool has been created, verify the tx_sync_lock is not held */
3537 spa_t *spa = dn->dn_objset->os_spa;
3538 dsl_pool_t *dp = spa->spa_dsl_pool;
3539 if (dp != NULL) {
3540 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3541 }
3542
3543 ASSERT(blkid != DMU_BONUS_BLKID);
3544 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3545 ASSERT3U(dn->dn_nlevels, >, level);
3546
3547 *dbp = NULL;
3548
3549 /* dbuf_find() returns with db_mtx held */
3550 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
3551
3552 if (db == NULL) {
3553 blkptr_t *bp = NULL;
3554 int err;
3555
3556 if (fail_uncached)
3557 return (SET_ERROR(ENOENT));
3558
3559 ASSERT3P(parent, ==, NULL);
3560 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3561 if (fail_sparse) {
3562 if (err == 0 && bp && BP_IS_HOLE(bp))
3563 err = SET_ERROR(ENOENT);
3564 if (err) {
3565 if (parent)
3566 dbuf_rele(parent, NULL);
3567 return (err);
3568 }
3569 }
3570 if (err && err != ENOENT)
3571 return (err);
3572 db = dbuf_create(dn, level, blkid, parent, bp);
3573 }
3574
3575 if (fail_uncached && db->db_state != DB_CACHED) {
3576 mutex_exit(&db->db_mtx);
3577 return (SET_ERROR(ENOENT));
3578 }
3579
3580 if (db->db_buf != NULL) {
3581 arc_buf_access(db->db_buf);
3582 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3583 }
3584
3585 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3586
3587 /*
3588 * If this buffer is currently syncing out, and we are
3589 * still referencing it from db_data, we need to make a copy
3590 * of it in case we decide we want to dirty it again in this txg.
3591 */
3592 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3593 dn->dn_object != DMU_META_DNODE_OBJECT &&
3594 db->db_state == DB_CACHED && db->db_data_pending) {
3595 dbuf_dirty_record_t *dr = db->db_data_pending;
3596 if (dr->dt.dl.dr_data == db->db_buf)
3597 dbuf_hold_copy(dn, db);
3598 }
3599
3600 if (multilist_link_active(&db->db_cache_link)) {
3601 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3602 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3603 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3604
3605 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3606 (void) zfs_refcount_remove_many(
3607 &dbuf_caches[db->db_caching_status].size,
3608 db->db.db_size, db);
3609
3610 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3611 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3612 } else {
3613 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3614 DBUF_STAT_BUMPDOWN(cache_count);
3615 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3616 db->db.db_size);
3617 }
3618 db->db_caching_status = DB_NO_CACHE;
3619 }
3620 (void) zfs_refcount_add(&db->db_holds, tag);
3621 DBUF_VERIFY(db);
3622 mutex_exit(&db->db_mtx);
3623
3624 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3625 if (parent)
3626 dbuf_rele(parent, NULL);
3627
3628 ASSERT3P(DB_DNODE(db), ==, dn);
3629 ASSERT3U(db->db_blkid, ==, blkid);
3630 ASSERT3U(db->db_level, ==, level);
3631 *dbp = db;
3632
3633 return (0);
3634 }
3635
3636 dmu_buf_impl_t *
3637 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
3638 {
3639 return (dbuf_hold_level(dn, 0, blkid, tag));
3640 }
3641
3642 dmu_buf_impl_t *
3643 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
3644 {
3645 dmu_buf_impl_t *db;
3646 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3647 return (err ? NULL : db);
3648 }
3649
3650 void
3651 dbuf_create_bonus(dnode_t *dn)
3652 {
3653 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3654
3655 ASSERT(dn->dn_bonus == NULL);
3656 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3657 }
3658
3659 int
3660 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3661 {
3662 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3663
3664 if (db->db_blkid != DMU_SPILL_BLKID)
3665 return (SET_ERROR(ENOTSUP));
3666 if (blksz == 0)
3667 blksz = SPA_MINBLOCKSIZE;
3668 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3669 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3670
3671 dbuf_new_size(db, blksz, tx);
3672
3673 return (0);
3674 }
3675
3676 void
3677 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3678 {
3679 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3680 }
3681
3682 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3683 void
3684 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
3685 {
3686 int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3687 VERIFY3S(holds, >, 1);
3688 }
3689
3690 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3691 boolean_t
3692 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3693 void *tag)
3694 {
3695 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3696 dmu_buf_impl_t *found_db;
3697 boolean_t result = B_FALSE;
3698
3699 if (blkid == DMU_BONUS_BLKID)
3700 found_db = dbuf_find_bonus(os, obj);
3701 else
3702 found_db = dbuf_find(os, obj, 0, blkid);
3703
3704 if (found_db != NULL) {
3705 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3706 (void) zfs_refcount_add(&db->db_holds, tag);
3707 result = B_TRUE;
3708 }
3709 mutex_exit(&found_db->db_mtx);
3710 }
3711 return (result);
3712 }
3713
3714 /*
3715 * If you call dbuf_rele() you had better not be referencing the dnode handle
3716 * unless you have some other direct or indirect hold on the dnode. (An indirect
3717 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3718 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3719 * dnode's parent dbuf evicting its dnode handles.
3720 */
3721 void
3722 dbuf_rele(dmu_buf_impl_t *db, void *tag)
3723 {
3724 mutex_enter(&db->db_mtx);
3725 dbuf_rele_and_unlock(db, tag, B_FALSE);
3726 }
3727
3728 void
3729 dmu_buf_rele(dmu_buf_t *db, void *tag)
3730 {
3731 dbuf_rele((dmu_buf_impl_t *)db, tag);
3732 }
3733
3734 /*
3735 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3736 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3737 * argument should be set if we are already in the dbuf-evicting code
3738 * path, in which case we don't want to recursively evict. This allows us to
3739 * avoid deeply nested stacks that would have a call flow similar to this:
3740 *
3741 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3742 * ^ |
3743 * | |
3744 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3745 *
3746 */
3747 void
3748 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting)
3749 {
3750 int64_t holds;
3751 uint64_t size;
3752
3753 ASSERT(MUTEX_HELD(&db->db_mtx));
3754 DBUF_VERIFY(db);
3755
3756 /*
3757 * Remove the reference to the dbuf before removing its hold on the
3758 * dnode so we can guarantee in dnode_move() that a referenced bonus
3759 * buffer has a corresponding dnode hold.
3760 */
3761 holds = zfs_refcount_remove(&db->db_holds, tag);
3762 ASSERT(holds >= 0);
3763
3764 /*
3765 * We can't freeze indirects if there is a possibility that they
3766 * may be modified in the current syncing context.
3767 */
3768 if (db->db_buf != NULL &&
3769 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3770 arc_buf_freeze(db->db_buf);
3771 }
3772
3773 if (holds == db->db_dirtycnt &&
3774 db->db_level == 0 && db->db_user_immediate_evict)
3775 dbuf_evict_user(db);
3776
3777 if (holds == 0) {
3778 if (db->db_blkid == DMU_BONUS_BLKID) {
3779 dnode_t *dn;
3780 boolean_t evict_dbuf = db->db_pending_evict;
3781
3782 /*
3783 * If the dnode moves here, we cannot cross this
3784 * barrier until the move completes.
3785 */
3786 DB_DNODE_ENTER(db);
3787
3788 dn = DB_DNODE(db);
3789 atomic_dec_32(&dn->dn_dbufs_count);
3790
3791 /*
3792 * Decrementing the dbuf count means that the bonus
3793 * buffer's dnode hold is no longer discounted in
3794 * dnode_move(). The dnode cannot move until after
3795 * the dnode_rele() below.
3796 */
3797 DB_DNODE_EXIT(db);
3798
3799 /*
3800 * Do not reference db after its lock is dropped.
3801 * Another thread may evict it.
3802 */
3803 mutex_exit(&db->db_mtx);
3804
3805 if (evict_dbuf)
3806 dnode_evict_bonus(dn);
3807
3808 dnode_rele(dn, db);
3809 } else if (db->db_buf == NULL) {
3810 /*
3811 * This is a special case: we never associated this
3812 * dbuf with any data allocated from the ARC.
3813 */
3814 ASSERT(db->db_state == DB_UNCACHED ||
3815 db->db_state == DB_NOFILL);
3816 dbuf_destroy(db);
3817 } else if (arc_released(db->db_buf)) {
3818 /*
3819 * This dbuf has anonymous data associated with it.
3820 */
3821 dbuf_destroy(db);
3822 } else {
3823 boolean_t do_arc_evict = B_FALSE;
3824 blkptr_t bp;
3825 spa_t *spa = dmu_objset_spa(db->db_objset);
3826
3827 if (!DBUF_IS_CACHEABLE(db) &&
3828 db->db_blkptr != NULL &&
3829 !BP_IS_HOLE(db->db_blkptr) &&
3830 !BP_IS_EMBEDDED(db->db_blkptr)) {
3831 do_arc_evict = B_TRUE;
3832 bp = *db->db_blkptr;
3833 }
3834
3835 if (!DBUF_IS_CACHEABLE(db) ||
3836 db->db_pending_evict) {
3837 dbuf_destroy(db);
3838 } else if (!multilist_link_active(&db->db_cache_link)) {
3839 ASSERT3U(db->db_caching_status, ==,
3840 DB_NO_CACHE);
3841
3842 dbuf_cached_state_t dcs =
3843 dbuf_include_in_metadata_cache(db) ?
3844 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
3845 db->db_caching_status = dcs;
3846
3847 multilist_insert(&dbuf_caches[dcs].cache, db);
3848 uint64_t db_size = db->db.db_size;
3849 size = zfs_refcount_add_many(
3850 &dbuf_caches[dcs].size, db_size, db);
3851 uint8_t db_level = db->db_level;
3852 mutex_exit(&db->db_mtx);
3853
3854 if (dcs == DB_DBUF_METADATA_CACHE) {
3855 DBUF_STAT_BUMP(metadata_cache_count);
3856 DBUF_STAT_MAX(
3857 metadata_cache_size_bytes_max,
3858 size);
3859 } else {
3860 DBUF_STAT_BUMP(cache_count);
3861 DBUF_STAT_MAX(cache_size_bytes_max,
3862 size);
3863 DBUF_STAT_BUMP(cache_levels[db_level]);
3864 DBUF_STAT_INCR(
3865 cache_levels_bytes[db_level],
3866 db_size);
3867 }
3868
3869 if (dcs == DB_DBUF_CACHE && !evicting)
3870 dbuf_evict_notify(size);
3871 }
3872
3873 if (do_arc_evict)
3874 arc_freed(spa, &bp);
3875 }
3876 } else {
3877 mutex_exit(&db->db_mtx);
3878 }
3879
3880 }
3881
3882 #pragma weak dmu_buf_refcount = dbuf_refcount
3883 uint64_t
3884 dbuf_refcount(dmu_buf_impl_t *db)
3885 {
3886 return (zfs_refcount_count(&db->db_holds));
3887 }
3888
3889 uint64_t
3890 dmu_buf_user_refcount(dmu_buf_t *db_fake)
3891 {
3892 uint64_t holds;
3893 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3894
3895 mutex_enter(&db->db_mtx);
3896 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
3897 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
3898 mutex_exit(&db->db_mtx);
3899
3900 return (holds);
3901 }
3902
3903 void *
3904 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3905 dmu_buf_user_t *new_user)
3906 {
3907 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3908
3909 mutex_enter(&db->db_mtx);
3910 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3911 if (db->db_user == old_user)
3912 db->db_user = new_user;
3913 else
3914 old_user = db->db_user;
3915 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3916 mutex_exit(&db->db_mtx);
3917
3918 return (old_user);
3919 }
3920
3921 void *
3922 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3923 {
3924 return (dmu_buf_replace_user(db_fake, NULL, user));
3925 }
3926
3927 void *
3928 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3929 {
3930 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3931
3932 db->db_user_immediate_evict = TRUE;
3933 return (dmu_buf_set_user(db_fake, user));
3934 }
3935
3936 void *
3937 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3938 {
3939 return (dmu_buf_replace_user(db_fake, user, NULL));
3940 }
3941
3942 void *
3943 dmu_buf_get_user(dmu_buf_t *db_fake)
3944 {
3945 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3946
3947 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3948 return (db->db_user);
3949 }
3950
3951 void
3952 dmu_buf_user_evict_wait()
3953 {
3954 taskq_wait(dbu_evict_taskq);
3955 }
3956
3957 blkptr_t *
3958 dmu_buf_get_blkptr(dmu_buf_t *db)
3959 {
3960 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3961 return (dbi->db_blkptr);
3962 }
3963
3964 objset_t *
3965 dmu_buf_get_objset(dmu_buf_t *db)
3966 {
3967 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3968 return (dbi->db_objset);
3969 }
3970
3971 dnode_t *
3972 dmu_buf_dnode_enter(dmu_buf_t *db)
3973 {
3974 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3975 DB_DNODE_ENTER(dbi);
3976 return (DB_DNODE(dbi));
3977 }
3978
3979 void
3980 dmu_buf_dnode_exit(dmu_buf_t *db)
3981 {
3982 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3983 DB_DNODE_EXIT(dbi);
3984 }
3985
3986 static void
3987 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3988 {
3989 /* ASSERT(dmu_tx_is_syncing(tx) */
3990 ASSERT(MUTEX_HELD(&db->db_mtx));
3991
3992 if (db->db_blkptr != NULL)
3993 return;
3994
3995 if (db->db_blkid == DMU_SPILL_BLKID) {
3996 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3997 BP_ZERO(db->db_blkptr);
3998 return;
3999 }
4000 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4001 /*
4002 * This buffer was allocated at a time when there was
4003 * no available blkptrs from the dnode, or it was
4004 * inappropriate to hook it in (i.e., nlevels mismatch).
4005 */
4006 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4007 ASSERT(db->db_parent == NULL);
4008 db->db_parent = dn->dn_dbuf;
4009 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4010 DBUF_VERIFY(db);
4011 } else {
4012 dmu_buf_impl_t *parent = db->db_parent;
4013 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4014
4015 ASSERT(dn->dn_phys->dn_nlevels > 1);
4016 if (parent == NULL) {
4017 mutex_exit(&db->db_mtx);
4018 rw_enter(&dn->dn_struct_rwlock, RW_READER);
4019 parent = dbuf_hold_level(dn, db->db_level + 1,
4020 db->db_blkid >> epbs, db);
4021 rw_exit(&dn->dn_struct_rwlock);
4022 mutex_enter(&db->db_mtx);
4023 db->db_parent = parent;
4024 }
4025 db->db_blkptr = (blkptr_t *)parent->db.db_data +
4026 (db->db_blkid & ((1ULL << epbs) - 1));
4027 DBUF_VERIFY(db);
4028 }
4029 }
4030
4031 static void
4032 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4033 {
4034 dmu_buf_impl_t *db = dr->dr_dbuf;
4035 void *data = dr->dt.dl.dr_data;
4036
4037 ASSERT0(db->db_level);
4038 ASSERT(MUTEX_HELD(&db->db_mtx));
4039 ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4040 ASSERT(data != NULL);
4041
4042 dnode_t *dn = dr->dr_dnode;
4043 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4044 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4045 bcopy(data, DN_BONUS(dn->dn_phys), DN_MAX_BONUS_LEN(dn->dn_phys));
4046
4047 dbuf_sync_leaf_verify_bonus_dnode(dr);
4048
4049 dbuf_undirty_bonus(dr);
4050 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4051 }
4052
4053 /*
4054 * When syncing out a blocks of dnodes, adjust the block to deal with
4055 * encryption. Normally, we make sure the block is decrypted before writing
4056 * it. If we have crypt params, then we are writing a raw (encrypted) block,
4057 * from a raw receive. In this case, set the ARC buf's crypt params so
4058 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4059 */
4060 static void
4061 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4062 {
4063 int err;
4064 dmu_buf_impl_t *db = dr->dr_dbuf;
4065
4066 ASSERT(MUTEX_HELD(&db->db_mtx));
4067 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4068 ASSERT3U(db->db_level, ==, 0);
4069
4070 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4071 zbookmark_phys_t zb;
4072
4073 /*
4074 * Unfortunately, there is currently no mechanism for
4075 * syncing context to handle decryption errors. An error
4076 * here is only possible if an attacker maliciously
4077 * changed a dnode block and updated the associated
4078 * checksums going up the block tree.
4079 */
4080 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4081 db->db.db_object, db->db_level, db->db_blkid);
4082 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4083 &zb, B_TRUE);
4084 if (err)
4085 panic("Invalid dnode block MAC");
4086 } else if (dr->dt.dl.dr_has_raw_params) {
4087 (void) arc_release(dr->dt.dl.dr_data, db);
4088 arc_convert_to_raw(dr->dt.dl.dr_data,
4089 dmu_objset_id(db->db_objset),
4090 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4091 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4092 }
4093 }
4094
4095 /*
4096 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4097 * is critical the we not allow the compiler to inline this function in to
4098 * dbuf_sync_list() thereby drastically bloating the stack usage.
4099 */
4100 noinline static void
4101 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4102 {
4103 dmu_buf_impl_t *db = dr->dr_dbuf;
4104 dnode_t *dn = dr->dr_dnode;
4105
4106 ASSERT(dmu_tx_is_syncing(tx));
4107
4108 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4109
4110 mutex_enter(&db->db_mtx);
4111
4112 ASSERT(db->db_level > 0);
4113 DBUF_VERIFY(db);
4114
4115 /* Read the block if it hasn't been read yet. */
4116 if (db->db_buf == NULL) {
4117 mutex_exit(&db->db_mtx);
4118 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4119 mutex_enter(&db->db_mtx);
4120 }
4121 ASSERT3U(db->db_state, ==, DB_CACHED);
4122 ASSERT(db->db_buf != NULL);
4123
4124 /* Indirect block size must match what the dnode thinks it is. */
4125 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4126 dbuf_check_blkptr(dn, db);
4127
4128 /* Provide the pending dirty record to child dbufs */
4129 db->db_data_pending = dr;
4130
4131 mutex_exit(&db->db_mtx);
4132
4133 dbuf_write(dr, db->db_buf, tx);
4134
4135 zio_t *zio = dr->dr_zio;
4136 mutex_enter(&dr->dt.di.dr_mtx);
4137 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4138 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4139 mutex_exit(&dr->dt.di.dr_mtx);
4140 zio_nowait(zio);
4141 }
4142
4143 /*
4144 * Verify that the size of the data in our bonus buffer does not exceed
4145 * its recorded size.
4146 *
4147 * The purpose of this verification is to catch any cases in development
4148 * where the size of a phys structure (i.e space_map_phys_t) grows and,
4149 * due to incorrect feature management, older pools expect to read more
4150 * data even though they didn't actually write it to begin with.
4151 *
4152 * For a example, this would catch an error in the feature logic where we
4153 * open an older pool and we expect to write the space map histogram of
4154 * a space map with size SPACE_MAP_SIZE_V0.
4155 */
4156 static void
4157 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4158 {
4159 #ifdef ZFS_DEBUG
4160 dnode_t *dn = dr->dr_dnode;
4161
4162 /*
4163 * Encrypted bonus buffers can have data past their bonuslen.
4164 * Skip the verification of these blocks.
4165 */
4166 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4167 return;
4168
4169 uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4170 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4171 ASSERT3U(bonuslen, <=, maxbonuslen);
4172
4173 arc_buf_t *datap = dr->dt.dl.dr_data;
4174 char *datap_end = ((char *)datap) + bonuslen;
4175 char *datap_max = ((char *)datap) + maxbonuslen;
4176
4177 /* ensure that everything is zero after our data */
4178 for (; datap_end < datap_max; datap_end++)
4179 ASSERT(*datap_end == 0);
4180 #endif
4181 }
4182
4183 static blkptr_t *
4184 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4185 {
4186 /* This must be a lightweight dirty record. */
4187 ASSERT3P(dr->dr_dbuf, ==, NULL);
4188 dnode_t *dn = dr->dr_dnode;
4189
4190 if (dn->dn_phys->dn_nlevels == 1) {
4191 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4192 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4193 } else {
4194 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4195 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4196 VERIFY3U(parent_db->db_level, ==, 1);
4197 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn);
4198 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4199 blkptr_t *bp = parent_db->db.db_data;
4200 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4201 }
4202 }
4203
4204 static void
4205 dbuf_lightweight_ready(zio_t *zio)
4206 {
4207 dbuf_dirty_record_t *dr = zio->io_private;
4208 blkptr_t *bp = zio->io_bp;
4209
4210 if (zio->io_error != 0)
4211 return;
4212
4213 dnode_t *dn = dr->dr_dnode;
4214
4215 blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4216 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4217 int64_t delta = bp_get_dsize_sync(spa, bp) -
4218 bp_get_dsize_sync(spa, bp_orig);
4219 dnode_diduse_space(dn, delta);
4220
4221 uint64_t blkid = dr->dt.dll.dr_blkid;
4222 mutex_enter(&dn->dn_mtx);
4223 if (blkid > dn->dn_phys->dn_maxblkid) {
4224 ASSERT0(dn->dn_objset->os_raw_receive);
4225 dn->dn_phys->dn_maxblkid = blkid;
4226 }
4227 mutex_exit(&dn->dn_mtx);
4228
4229 if (!BP_IS_EMBEDDED(bp)) {
4230 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4231 BP_SET_FILL(bp, fill);
4232 }
4233
4234 dmu_buf_impl_t *parent_db;
4235 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4236 if (dr->dr_parent == NULL) {
4237 parent_db = dn->dn_dbuf;
4238 } else {
4239 parent_db = dr->dr_parent->dr_dbuf;
4240 }
4241 rw_enter(&parent_db->db_rwlock, RW_WRITER);
4242 *bp_orig = *bp;
4243 rw_exit(&parent_db->db_rwlock);
4244 }
4245
4246 static void
4247 dbuf_lightweight_physdone(zio_t *zio)
4248 {
4249 dbuf_dirty_record_t *dr = zio->io_private;
4250 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
4251 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4252
4253 /*
4254 * The callback will be called io_phys_children times. Retire one
4255 * portion of our dirty space each time we are called. Any rounding
4256 * error will be cleaned up by dbuf_lightweight_done().
4257 */
4258 int delta = dr->dr_accounted / zio->io_phys_children;
4259 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4260 }
4261
4262 static void
4263 dbuf_lightweight_done(zio_t *zio)
4264 {
4265 dbuf_dirty_record_t *dr = zio->io_private;
4266
4267 VERIFY0(zio->io_error);
4268
4269 objset_t *os = dr->dr_dnode->dn_objset;
4270 dmu_tx_t *tx = os->os_synctx;
4271
4272 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4273 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4274 } else {
4275 dsl_dataset_t *ds = os->os_dsl_dataset;
4276 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4277 dsl_dataset_block_born(ds, zio->io_bp, tx);
4278 }
4279
4280 /*
4281 * See comment in dbuf_write_done().
4282 */
4283 if (zio->io_phys_children == 0) {
4284 dsl_pool_undirty_space(dmu_objset_pool(os),
4285 dr->dr_accounted, zio->io_txg);
4286 } else {
4287 dsl_pool_undirty_space(dmu_objset_pool(os),
4288 dr->dr_accounted % zio->io_phys_children, zio->io_txg);
4289 }
4290
4291 abd_free(dr->dt.dll.dr_abd);
4292 kmem_free(dr, sizeof (*dr));
4293 }
4294
4295 noinline static void
4296 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4297 {
4298 dnode_t *dn = dr->dr_dnode;
4299 zio_t *pio;
4300 if (dn->dn_phys->dn_nlevels == 1) {
4301 pio = dn->dn_zio;
4302 } else {
4303 pio = dr->dr_parent->dr_zio;
4304 }
4305
4306 zbookmark_phys_t zb = {
4307 .zb_objset = dmu_objset_id(dn->dn_objset),
4308 .zb_object = dn->dn_object,
4309 .zb_level = 0,
4310 .zb_blkid = dr->dt.dll.dr_blkid,
4311 };
4312
4313 /*
4314 * See comment in dbuf_write(). This is so that zio->io_bp_orig
4315 * will have the old BP in dbuf_lightweight_done().
4316 */
4317 dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4318
4319 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4320 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4321 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4322 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4323 dbuf_lightweight_physdone, dbuf_lightweight_done, dr,
4324 ZIO_PRIORITY_ASYNC_WRITE,
4325 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4326
4327 zio_nowait(dr->dr_zio);
4328 }
4329
4330 /*
4331 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4332 * critical the we not allow the compiler to inline this function in to
4333 * dbuf_sync_list() thereby drastically bloating the stack usage.
4334 */
4335 noinline static void
4336 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4337 {
4338 arc_buf_t **datap = &dr->dt.dl.dr_data;
4339 dmu_buf_impl_t *db = dr->dr_dbuf;
4340 dnode_t *dn = dr->dr_dnode;
4341 objset_t *os;
4342 uint64_t txg = tx->tx_txg;
4343
4344 ASSERT(dmu_tx_is_syncing(tx));
4345
4346 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4347
4348 mutex_enter(&db->db_mtx);
4349 /*
4350 * To be synced, we must be dirtied. But we
4351 * might have been freed after the dirty.
4352 */
4353 if (db->db_state == DB_UNCACHED) {
4354 /* This buffer has been freed since it was dirtied */
4355 ASSERT(db->db.db_data == NULL);
4356 } else if (db->db_state == DB_FILL) {
4357 /* This buffer was freed and is now being re-filled */
4358 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4359 } else {
4360 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4361 }
4362 DBUF_VERIFY(db);
4363
4364 if (db->db_blkid == DMU_SPILL_BLKID) {
4365 mutex_enter(&dn->dn_mtx);
4366 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4367 /*
4368 * In the previous transaction group, the bonus buffer
4369 * was entirely used to store the attributes for the
4370 * dnode which overrode the dn_spill field. However,
4371 * when adding more attributes to the file a spill
4372 * block was required to hold the extra attributes.
4373 *
4374 * Make sure to clear the garbage left in the dn_spill
4375 * field from the previous attributes in the bonus
4376 * buffer. Otherwise, after writing out the spill
4377 * block to the new allocated dva, it will free
4378 * the old block pointed to by the invalid dn_spill.
4379 */
4380 db->db_blkptr = NULL;
4381 }
4382 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4383 mutex_exit(&dn->dn_mtx);
4384 }
4385
4386 /*
4387 * If this is a bonus buffer, simply copy the bonus data into the
4388 * dnode. It will be written out when the dnode is synced (and it
4389 * will be synced, since it must have been dirty for dbuf_sync to
4390 * be called).
4391 */
4392 if (db->db_blkid == DMU_BONUS_BLKID) {
4393 ASSERT(dr->dr_dbuf == db);
4394 dbuf_sync_bonus(dr, tx);
4395 return;
4396 }
4397
4398 os = dn->dn_objset;
4399
4400 /*
4401 * This function may have dropped the db_mtx lock allowing a dmu_sync
4402 * operation to sneak in. As a result, we need to ensure that we
4403 * don't check the dr_override_state until we have returned from
4404 * dbuf_check_blkptr.
4405 */
4406 dbuf_check_blkptr(dn, db);
4407
4408 /*
4409 * If this buffer is in the middle of an immediate write,
4410 * wait for the synchronous IO to complete.
4411 */
4412 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4413 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4414 cv_wait(&db->db_changed, &db->db_mtx);
4415 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
4416 }
4417
4418 /*
4419 * If this is a dnode block, ensure it is appropriately encrypted
4420 * or decrypted, depending on what we are writing to it this txg.
4421 */
4422 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4423 dbuf_prepare_encrypted_dnode_leaf(dr);
4424
4425 if (db->db_state != DB_NOFILL &&
4426 dn->dn_object != DMU_META_DNODE_OBJECT &&
4427 zfs_refcount_count(&db->db_holds) > 1 &&
4428 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
4429 *datap == db->db_buf) {
4430 /*
4431 * If this buffer is currently "in use" (i.e., there
4432 * are active holds and db_data still references it),
4433 * then make a copy before we start the write so that
4434 * any modifications from the open txg will not leak
4435 * into this write.
4436 *
4437 * NOTE: this copy does not need to be made for
4438 * objects only modified in the syncing context (e.g.
4439 * DNONE_DNODE blocks).
4440 */
4441 int psize = arc_buf_size(*datap);
4442 int lsize = arc_buf_lsize(*datap);
4443 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4444 enum zio_compress compress_type = arc_get_compression(*datap);
4445 uint8_t complevel = arc_get_complevel(*datap);
4446
4447 if (arc_is_encrypted(*datap)) {
4448 boolean_t byteorder;
4449 uint8_t salt[ZIO_DATA_SALT_LEN];
4450 uint8_t iv[ZIO_DATA_IV_LEN];
4451 uint8_t mac[ZIO_DATA_MAC_LEN];
4452
4453 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4454 *datap = arc_alloc_raw_buf(os->os_spa, db,
4455 dmu_objset_id(os), byteorder, salt, iv, mac,
4456 dn->dn_type, psize, lsize, compress_type,
4457 complevel);
4458 } else if (compress_type != ZIO_COMPRESS_OFF) {
4459 ASSERT3U(type, ==, ARC_BUFC_DATA);
4460 *datap = arc_alloc_compressed_buf(os->os_spa, db,
4461 psize, lsize, compress_type, complevel);
4462 } else {
4463 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
4464 }
4465 bcopy(db->db.db_data, (*datap)->b_data, psize);
4466 }
4467 db->db_data_pending = dr;
4468
4469 mutex_exit(&db->db_mtx);
4470
4471 dbuf_write(dr, *datap, tx);
4472
4473 ASSERT(!list_link_active(&dr->dr_dirty_node));
4474 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4475 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4476 } else {
4477 zio_nowait(dr->dr_zio);
4478 }
4479 }
4480
4481 void
4482 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4483 {
4484 dbuf_dirty_record_t *dr;
4485
4486 while ((dr = list_head(list))) {
4487 if (dr->dr_zio != NULL) {
4488 /*
4489 * If we find an already initialized zio then we
4490 * are processing the meta-dnode, and we have finished.
4491 * The dbufs for all dnodes are put back on the list
4492 * during processing, so that we can zio_wait()
4493 * these IOs after initiating all child IOs.
4494 */
4495 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4496 DMU_META_DNODE_OBJECT);
4497 break;
4498 }
4499 list_remove(list, dr);
4500 if (dr->dr_dbuf == NULL) {
4501 dbuf_sync_lightweight(dr, tx);
4502 } else {
4503 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4504 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4505 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4506 }
4507 if (dr->dr_dbuf->db_level > 0)
4508 dbuf_sync_indirect(dr, tx);
4509 else
4510 dbuf_sync_leaf(dr, tx);
4511 }
4512 }
4513 }
4514
4515 /* ARGSUSED */
4516 static void
4517 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4518 {
4519 dmu_buf_impl_t *db = vdb;
4520 dnode_t *dn;
4521 blkptr_t *bp = zio->io_bp;
4522 blkptr_t *bp_orig = &zio->io_bp_orig;
4523 spa_t *spa = zio->io_spa;
4524 int64_t delta;
4525 uint64_t fill = 0;
4526 int i;
4527
4528 ASSERT3P(db->db_blkptr, !=, NULL);
4529 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4530
4531 DB_DNODE_ENTER(db);
4532 dn = DB_DNODE(db);
4533 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4534 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4535 zio->io_prev_space_delta = delta;
4536
4537 if (bp->blk_birth != 0) {
4538 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4539 BP_GET_TYPE(bp) == dn->dn_type) ||
4540 (db->db_blkid == DMU_SPILL_BLKID &&
4541 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4542 BP_IS_EMBEDDED(bp));
4543 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4544 }
4545
4546 mutex_enter(&db->db_mtx);
4547
4548 #ifdef ZFS_DEBUG
4549 if (db->db_blkid == DMU_SPILL_BLKID) {
4550 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4551 ASSERT(!(BP_IS_HOLE(bp)) &&
4552 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4553 }
4554 #endif
4555
4556 if (db->db_level == 0) {
4557 mutex_enter(&dn->dn_mtx);
4558 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4559 db->db_blkid != DMU_SPILL_BLKID) {
4560 ASSERT0(db->db_objset->os_raw_receive);
4561 dn->dn_phys->dn_maxblkid = db->db_blkid;
4562 }
4563 mutex_exit(&dn->dn_mtx);
4564
4565 if (dn->dn_type == DMU_OT_DNODE) {
4566 i = 0;
4567 while (i < db->db.db_size) {
4568 dnode_phys_t *dnp =
4569 (void *)(((char *)db->db.db_data) + i);
4570
4571 i += DNODE_MIN_SIZE;
4572 if (dnp->dn_type != DMU_OT_NONE) {
4573 fill++;
4574 i += dnp->dn_extra_slots *
4575 DNODE_MIN_SIZE;
4576 }
4577 }
4578 } else {
4579 if (BP_IS_HOLE(bp)) {
4580 fill = 0;
4581 } else {
4582 fill = 1;
4583 }
4584 }
4585 } else {
4586 blkptr_t *ibp = db->db.db_data;
4587 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4588 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4589 if (BP_IS_HOLE(ibp))
4590 continue;
4591 fill += BP_GET_FILL(ibp);
4592 }
4593 }
4594 DB_DNODE_EXIT(db);
4595
4596 if (!BP_IS_EMBEDDED(bp))
4597 BP_SET_FILL(bp, fill);
4598
4599 mutex_exit(&db->db_mtx);
4600
4601 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
4602 *db->db_blkptr = *bp;
4603 dmu_buf_unlock_parent(db, dblt, FTAG);
4604 }
4605
4606 /* ARGSUSED */
4607 /*
4608 * This function gets called just prior to running through the compression
4609 * stage of the zio pipeline. If we're an indirect block comprised of only
4610 * holes, then we want this indirect to be compressed away to a hole. In
4611 * order to do that we must zero out any information about the holes that
4612 * this indirect points to prior to before we try to compress it.
4613 */
4614 static void
4615 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4616 {
4617 dmu_buf_impl_t *db = vdb;
4618 dnode_t *dn;
4619 blkptr_t *bp;
4620 unsigned int epbs, i;
4621
4622 ASSERT3U(db->db_level, >, 0);
4623 DB_DNODE_ENTER(db);
4624 dn = DB_DNODE(db);
4625 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4626 ASSERT3U(epbs, <, 31);
4627
4628 /* Determine if all our children are holes */
4629 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4630 if (!BP_IS_HOLE(bp))
4631 break;
4632 }
4633
4634 /*
4635 * If all the children are holes, then zero them all out so that
4636 * we may get compressed away.
4637 */
4638 if (i == 1ULL << epbs) {
4639 /*
4640 * We only found holes. Grab the rwlock to prevent
4641 * anybody from reading the blocks we're about to
4642 * zero out.
4643 */
4644 rw_enter(&db->db_rwlock, RW_WRITER);
4645 bzero(db->db.db_data, db->db.db_size);
4646 rw_exit(&db->db_rwlock);
4647 }
4648 DB_DNODE_EXIT(db);
4649 }
4650
4651 /*
4652 * The SPA will call this callback several times for each zio - once
4653 * for every physical child i/o (zio->io_phys_children times). This
4654 * allows the DMU to monitor the progress of each logical i/o. For example,
4655 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
4656 * block. There may be a long delay before all copies/fragments are completed,
4657 * so this callback allows us to retire dirty space gradually, as the physical
4658 * i/os complete.
4659 */
4660 /* ARGSUSED */
4661 static void
4662 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
4663 {
4664 dmu_buf_impl_t *db = arg;
4665 objset_t *os = db->db_objset;
4666 dsl_pool_t *dp = dmu_objset_pool(os);
4667 dbuf_dirty_record_t *dr;
4668 int delta = 0;
4669
4670 dr = db->db_data_pending;
4671 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4672
4673 /*
4674 * The callback will be called io_phys_children times. Retire one
4675 * portion of our dirty space each time we are called. Any rounding
4676 * error will be cleaned up by dbuf_write_done().
4677 */
4678 delta = dr->dr_accounted / zio->io_phys_children;
4679 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4680 }
4681
4682 /* ARGSUSED */
4683 static void
4684 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4685 {
4686 dmu_buf_impl_t *db = vdb;
4687 blkptr_t *bp_orig = &zio->io_bp_orig;
4688 blkptr_t *bp = db->db_blkptr;
4689 objset_t *os = db->db_objset;
4690 dmu_tx_t *tx = os->os_synctx;
4691
4692 ASSERT0(zio->io_error);
4693 ASSERT(db->db_blkptr == bp);
4694
4695 /*
4696 * For nopwrites and rewrites we ensure that the bp matches our
4697 * original and bypass all the accounting.
4698 */
4699 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4700 ASSERT(BP_EQUAL(bp, bp_orig));
4701 } else {
4702 dsl_dataset_t *ds = os->os_dsl_dataset;
4703 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4704 dsl_dataset_block_born(ds, bp, tx);
4705 }
4706
4707 mutex_enter(&db->db_mtx);
4708
4709 DBUF_VERIFY(db);
4710
4711 dbuf_dirty_record_t *dr = db->db_data_pending;
4712 dnode_t *dn = dr->dr_dnode;
4713 ASSERT(!list_link_active(&dr->dr_dirty_node));
4714 ASSERT(dr->dr_dbuf == db);
4715 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
4716 list_remove(&db->db_dirty_records, dr);
4717
4718 #ifdef ZFS_DEBUG
4719 if (db->db_blkid == DMU_SPILL_BLKID) {
4720 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4721 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4722 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4723 }
4724 #endif
4725
4726 if (db->db_level == 0) {
4727 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4728 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4729 if (db->db_state != DB_NOFILL) {
4730 if (dr->dt.dl.dr_data != db->db_buf)
4731 arc_buf_destroy(dr->dt.dl.dr_data, db);
4732 }
4733 } else {
4734 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4735 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4736 if (!BP_IS_HOLE(db->db_blkptr)) {
4737 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
4738 SPA_BLKPTRSHIFT;
4739 ASSERT3U(db->db_blkid, <=,
4740 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4741 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4742 db->db.db_size);
4743 }
4744 mutex_destroy(&dr->dt.di.dr_mtx);
4745 list_destroy(&dr->dt.di.dr_children);
4746 }
4747
4748 cv_broadcast(&db->db_changed);
4749 ASSERT(db->db_dirtycnt > 0);
4750 db->db_dirtycnt -= 1;
4751 db->db_data_pending = NULL;
4752 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4753
4754 /*
4755 * If we didn't do a physical write in this ZIO and we
4756 * still ended up here, it means that the space of the
4757 * dbuf that we just released (and undirtied) above hasn't
4758 * been marked as undirtied in the pool's accounting.
4759 *
4760 * Thus, we undirty that space in the pool's view of the
4761 * world here. For physical writes this type of update
4762 * happens in dbuf_write_physdone().
4763 *
4764 * If we did a physical write, cleanup any rounding errors
4765 * that came up due to writing multiple copies of a block
4766 * on disk [see dbuf_write_physdone()].
4767 */
4768 if (zio->io_phys_children == 0) {
4769 dsl_pool_undirty_space(dmu_objset_pool(os),
4770 dr->dr_accounted, zio->io_txg);
4771 } else {
4772 dsl_pool_undirty_space(dmu_objset_pool(os),
4773 dr->dr_accounted % zio->io_phys_children, zio->io_txg);
4774 }
4775
4776 kmem_free(dr, sizeof (dbuf_dirty_record_t));
4777 }
4778
4779 static void
4780 dbuf_write_nofill_ready(zio_t *zio)
4781 {
4782 dbuf_write_ready(zio, NULL, zio->io_private);
4783 }
4784
4785 static void
4786 dbuf_write_nofill_done(zio_t *zio)
4787 {
4788 dbuf_write_done(zio, NULL, zio->io_private);
4789 }
4790
4791 static void
4792 dbuf_write_override_ready(zio_t *zio)
4793 {
4794 dbuf_dirty_record_t *dr = zio->io_private;
4795 dmu_buf_impl_t *db = dr->dr_dbuf;
4796
4797 dbuf_write_ready(zio, NULL, db);
4798 }
4799
4800 static void
4801 dbuf_write_override_done(zio_t *zio)
4802 {
4803 dbuf_dirty_record_t *dr = zio->io_private;
4804 dmu_buf_impl_t *db = dr->dr_dbuf;
4805 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4806
4807 mutex_enter(&db->db_mtx);
4808 if (!BP_EQUAL(zio->io_bp, obp)) {
4809 if (!BP_IS_HOLE(obp))
4810 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4811 arc_release(dr->dt.dl.dr_data, db);
4812 }
4813 mutex_exit(&db->db_mtx);
4814
4815 dbuf_write_done(zio, NULL, db);
4816
4817 if (zio->io_abd != NULL)
4818 abd_free(zio->io_abd);
4819 }
4820
4821 typedef struct dbuf_remap_impl_callback_arg {
4822 objset_t *drica_os;
4823 uint64_t drica_blk_birth;
4824 dmu_tx_t *drica_tx;
4825 } dbuf_remap_impl_callback_arg_t;
4826
4827 static void
4828 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4829 void *arg)
4830 {
4831 dbuf_remap_impl_callback_arg_t *drica = arg;
4832 objset_t *os = drica->drica_os;
4833 spa_t *spa = dmu_objset_spa(os);
4834 dmu_tx_t *tx = drica->drica_tx;
4835
4836 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4837
4838 if (os == spa_meta_objset(spa)) {
4839 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4840 } else {
4841 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4842 size, drica->drica_blk_birth, tx);
4843 }
4844 }
4845
4846 static void
4847 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
4848 {
4849 blkptr_t bp_copy = *bp;
4850 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4851 dbuf_remap_impl_callback_arg_t drica;
4852
4853 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4854
4855 drica.drica_os = dn->dn_objset;
4856 drica.drica_blk_birth = bp->blk_birth;
4857 drica.drica_tx = tx;
4858 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4859 &drica)) {
4860 /*
4861 * If the blkptr being remapped is tracked by a livelist,
4862 * then we need to make sure the livelist reflects the update.
4863 * First, cancel out the old blkptr by appending a 'FREE'
4864 * entry. Next, add an 'ALLOC' to track the new version. This
4865 * way we avoid trying to free an inaccurate blkptr at delete.
4866 * Note that embedded blkptrs are not tracked in livelists.
4867 */
4868 if (dn->dn_objset != spa_meta_objset(spa)) {
4869 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
4870 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4871 bp->blk_birth > ds->ds_dir->dd_origin_txg) {
4872 ASSERT(!BP_IS_EMBEDDED(bp));
4873 ASSERT(dsl_dir_is_clone(ds->ds_dir));
4874 ASSERT(spa_feature_is_enabled(spa,
4875 SPA_FEATURE_LIVELIST));
4876 bplist_append(&ds->ds_dir->dd_pending_frees,
4877 bp);
4878 bplist_append(&ds->ds_dir->dd_pending_allocs,
4879 &bp_copy);
4880 }
4881 }
4882
4883 /*
4884 * The db_rwlock prevents dbuf_read_impl() from
4885 * dereferencing the BP while we are changing it. To
4886 * avoid lock contention, only grab it when we are actually
4887 * changing the BP.
4888 */
4889 if (rw != NULL)
4890 rw_enter(rw, RW_WRITER);
4891 *bp = bp_copy;
4892 if (rw != NULL)
4893 rw_exit(rw);
4894 }
4895 }
4896
4897 /*
4898 * Remap any existing BP's to concrete vdevs, if possible.
4899 */
4900 static void
4901 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4902 {
4903 spa_t *spa = dmu_objset_spa(db->db_objset);
4904 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4905
4906 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4907 return;
4908
4909 if (db->db_level > 0) {
4910 blkptr_t *bp = db->db.db_data;
4911 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4912 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
4913 }
4914 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4915 dnode_phys_t *dnp = db->db.db_data;
4916 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4917 DMU_OT_DNODE);
4918 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4919 i += dnp[i].dn_extra_slots + 1) {
4920 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4921 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
4922 &dn->dn_dbuf->db_rwlock);
4923 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
4924 tx);
4925 }
4926 }
4927 }
4928 }
4929
4930
4931 /* Issue I/O to commit a dirty buffer to disk. */
4932 static void
4933 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4934 {
4935 dmu_buf_impl_t *db = dr->dr_dbuf;
4936 dnode_t *dn = dr->dr_dnode;
4937 objset_t *os;
4938 dmu_buf_impl_t *parent = db->db_parent;
4939 uint64_t txg = tx->tx_txg;
4940 zbookmark_phys_t zb;
4941 zio_prop_t zp;
4942 zio_t *pio; /* parent I/O */
4943 int wp_flag = 0;
4944
4945 ASSERT(dmu_tx_is_syncing(tx));
4946
4947 os = dn->dn_objset;
4948
4949 if (db->db_state != DB_NOFILL) {
4950 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4951 /*
4952 * Private object buffers are released here rather
4953 * than in dbuf_dirty() since they are only modified
4954 * in the syncing context and we don't want the
4955 * overhead of making multiple copies of the data.
4956 */
4957 if (BP_IS_HOLE(db->db_blkptr)) {
4958 arc_buf_thaw(data);
4959 } else {
4960 dbuf_release_bp(db);
4961 }
4962 dbuf_remap(dn, db, tx);
4963 }
4964 }
4965
4966 if (parent != dn->dn_dbuf) {
4967 /* Our parent is an indirect block. */
4968 /* We have a dirty parent that has been scheduled for write. */
4969 ASSERT(parent && parent->db_data_pending);
4970 /* Our parent's buffer is one level closer to the dnode. */
4971 ASSERT(db->db_level == parent->db_level-1);
4972 /*
4973 * We're about to modify our parent's db_data by modifying
4974 * our block pointer, so the parent must be released.
4975 */
4976 ASSERT(arc_released(parent->db_buf));
4977 pio = parent->db_data_pending->dr_zio;
4978 } else {
4979 /* Our parent is the dnode itself. */
4980 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4981 db->db_blkid != DMU_SPILL_BLKID) ||
4982 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4983 if (db->db_blkid != DMU_SPILL_BLKID)
4984 ASSERT3P(db->db_blkptr, ==,
4985 &dn->dn_phys->dn_blkptr[db->db_blkid]);
4986 pio = dn->dn_zio;
4987 }
4988
4989 ASSERT(db->db_level == 0 || data == db->db_buf);
4990 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
4991 ASSERT(pio);
4992
4993 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
4994 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
4995 db->db.db_object, db->db_level, db->db_blkid);
4996
4997 if (db->db_blkid == DMU_SPILL_BLKID)
4998 wp_flag = WP_SPILL;
4999 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
5000
5001 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5002
5003 /*
5004 * We copy the blkptr now (rather than when we instantiate the dirty
5005 * record), because its value can change between open context and
5006 * syncing context. We do not need to hold dn_struct_rwlock to read
5007 * db_blkptr because we are in syncing context.
5008 */
5009 dr->dr_bp_copy = *db->db_blkptr;
5010
5011 if (db->db_level == 0 &&
5012 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5013 /*
5014 * The BP for this block has been provided by open context
5015 * (by dmu_sync() or dmu_buf_write_embedded()).
5016 */
5017 abd_t *contents = (data != NULL) ?
5018 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5019
5020 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5021 contents, db->db.db_size, db->db.db_size, &zp,
5022 dbuf_write_override_ready, NULL, NULL,
5023 dbuf_write_override_done,
5024 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5025 mutex_enter(&db->db_mtx);
5026 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5027 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5028 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
5029 mutex_exit(&db->db_mtx);
5030 } else if (db->db_state == DB_NOFILL) {
5031 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5032 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5033 dr->dr_zio = zio_write(pio, os->os_spa, txg,
5034 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5035 dbuf_write_nofill_ready, NULL, NULL,
5036 dbuf_write_nofill_done, db,
5037 ZIO_PRIORITY_ASYNC_WRITE,
5038 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5039 } else {
5040 ASSERT(arc_released(data));
5041
5042 /*
5043 * For indirect blocks, we want to setup the children
5044 * ready callback so that we can properly handle an indirect
5045 * block that only contains holes.
5046 */
5047 arc_write_done_func_t *children_ready_cb = NULL;
5048 if (db->db_level != 0)
5049 children_ready_cb = dbuf_write_children_ready;
5050
5051 dr->dr_zio = arc_write(pio, os->os_spa, txg,
5052 &dr->dr_bp_copy, data, dbuf_is_l2cacheable(db),
5053 &zp, dbuf_write_ready,
5054 children_ready_cb, dbuf_write_physdone,
5055 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
5056 ZIO_FLAG_MUSTSUCCEED, &zb);
5057 }
5058 }
5059
5060 EXPORT_SYMBOL(dbuf_find);
5061 EXPORT_SYMBOL(dbuf_is_metadata);
5062 EXPORT_SYMBOL(dbuf_destroy);
5063 EXPORT_SYMBOL(dbuf_loan_arcbuf);
5064 EXPORT_SYMBOL(dbuf_whichblock);
5065 EXPORT_SYMBOL(dbuf_read);
5066 EXPORT_SYMBOL(dbuf_unoverride);
5067 EXPORT_SYMBOL(dbuf_free_range);
5068 EXPORT_SYMBOL(dbuf_new_size);
5069 EXPORT_SYMBOL(dbuf_release_bp);
5070 EXPORT_SYMBOL(dbuf_dirty);
5071 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5072 EXPORT_SYMBOL(dmu_buf_will_dirty);
5073 EXPORT_SYMBOL(dmu_buf_is_dirty);
5074 EXPORT_SYMBOL(dmu_buf_will_not_fill);
5075 EXPORT_SYMBOL(dmu_buf_will_fill);
5076 EXPORT_SYMBOL(dmu_buf_fill_done);
5077 EXPORT_SYMBOL(dmu_buf_rele);
5078 EXPORT_SYMBOL(dbuf_assign_arcbuf);
5079 EXPORT_SYMBOL(dbuf_prefetch);
5080 EXPORT_SYMBOL(dbuf_hold_impl);
5081 EXPORT_SYMBOL(dbuf_hold);
5082 EXPORT_SYMBOL(dbuf_hold_level);
5083 EXPORT_SYMBOL(dbuf_create_bonus);
5084 EXPORT_SYMBOL(dbuf_spill_set_blksz);
5085 EXPORT_SYMBOL(dbuf_rm_spill);
5086 EXPORT_SYMBOL(dbuf_add_ref);
5087 EXPORT_SYMBOL(dbuf_rele);
5088 EXPORT_SYMBOL(dbuf_rele_and_unlock);
5089 EXPORT_SYMBOL(dbuf_refcount);
5090 EXPORT_SYMBOL(dbuf_sync_list);
5091 EXPORT_SYMBOL(dmu_buf_set_user);
5092 EXPORT_SYMBOL(dmu_buf_set_user_ie);
5093 EXPORT_SYMBOL(dmu_buf_get_user);
5094 EXPORT_SYMBOL(dmu_buf_get_blkptr);
5095
5096 /* BEGIN CSTYLED */
5097 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, ULONG, ZMOD_RW,
5098 "Maximum size in bytes of the dbuf cache.");
5099
5100 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5101 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
5102 "directly.");
5103
5104 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5105 "Percentage below dbuf_cache_max_bytes when the evict thread stops "
5106 "evicting dbufs.");
5107
5108 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, ULONG, ZMOD_RW,
5109 "Maximum size in bytes of the dbuf metadata cache.");
5110
5111 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, INT, ZMOD_RW,
5112 "Set the size of the dbuf cache to a log2 fraction of arc size.");
5113
5114 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, INT, ZMOD_RW,
5115 "Set the size of the dbuf metadata cache to a log2 fraction of arc "
5116 "size.");
5117 /* END CSTYLED */