]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dbuf.c
Convert dbuf dirty record record list to a list_t
[mirror_zfs.git] / module / zfs / dbuf.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/arc.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_send.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dbuf.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/spa.h>
40 #include <sys/zio.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/sa.h>
43 #include <sys/sa_impl.h>
44 #include <sys/zfeature.h>
45 #include <sys/blkptr.h>
46 #include <sys/range_tree.h>
47 #include <sys/trace_zfs.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50 #include <sys/vdev.h>
51 #include <sys/cityhash.h>
52 #include <sys/spa_impl.h>
53
54 kstat_t *dbuf_ksp;
55
56 typedef struct dbuf_stats {
57 /*
58 * Various statistics about the size of the dbuf cache.
59 */
60 kstat_named_t cache_count;
61 kstat_named_t cache_size_bytes;
62 kstat_named_t cache_size_bytes_max;
63 /*
64 * Statistics regarding the bounds on the dbuf cache size.
65 */
66 kstat_named_t cache_target_bytes;
67 kstat_named_t cache_lowater_bytes;
68 kstat_named_t cache_hiwater_bytes;
69 /*
70 * Total number of dbuf cache evictions that have occurred.
71 */
72 kstat_named_t cache_total_evicts;
73 /*
74 * The distribution of dbuf levels in the dbuf cache and
75 * the total size of all dbufs at each level.
76 */
77 kstat_named_t cache_levels[DN_MAX_LEVELS];
78 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
79 /*
80 * Statistics about the dbuf hash table.
81 */
82 kstat_named_t hash_hits;
83 kstat_named_t hash_misses;
84 kstat_named_t hash_collisions;
85 kstat_named_t hash_elements;
86 kstat_named_t hash_elements_max;
87 /*
88 * Number of sublists containing more than one dbuf in the dbuf
89 * hash table. Keep track of the longest hash chain.
90 */
91 kstat_named_t hash_chains;
92 kstat_named_t hash_chain_max;
93 /*
94 * Number of times a dbuf_create() discovers that a dbuf was
95 * already created and in the dbuf hash table.
96 */
97 kstat_named_t hash_insert_race;
98 /*
99 * Statistics about the size of the metadata dbuf cache.
100 */
101 kstat_named_t metadata_cache_count;
102 kstat_named_t metadata_cache_size_bytes;
103 kstat_named_t metadata_cache_size_bytes_max;
104 /*
105 * For diagnostic purposes, this is incremented whenever we can't add
106 * something to the metadata cache because it's full, and instead put
107 * the data in the regular dbuf cache.
108 */
109 kstat_named_t metadata_cache_overflow;
110 } dbuf_stats_t;
111
112 dbuf_stats_t dbuf_stats = {
113 { "cache_count", KSTAT_DATA_UINT64 },
114 { "cache_size_bytes", KSTAT_DATA_UINT64 },
115 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
116 { "cache_target_bytes", KSTAT_DATA_UINT64 },
117 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
118 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
119 { "cache_total_evicts", KSTAT_DATA_UINT64 },
120 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
121 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
122 { "hash_hits", KSTAT_DATA_UINT64 },
123 { "hash_misses", KSTAT_DATA_UINT64 },
124 { "hash_collisions", KSTAT_DATA_UINT64 },
125 { "hash_elements", KSTAT_DATA_UINT64 },
126 { "hash_elements_max", KSTAT_DATA_UINT64 },
127 { "hash_chains", KSTAT_DATA_UINT64 },
128 { "hash_chain_max", KSTAT_DATA_UINT64 },
129 { "hash_insert_race", KSTAT_DATA_UINT64 },
130 { "metadata_cache_count", KSTAT_DATA_UINT64 },
131 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
132 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
133 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
134 };
135
136 #define DBUF_STAT_INCR(stat, val) \
137 atomic_add_64(&dbuf_stats.stat.value.ui64, (val));
138 #define DBUF_STAT_DECR(stat, val) \
139 DBUF_STAT_INCR(stat, -(val));
140 #define DBUF_STAT_BUMP(stat) \
141 DBUF_STAT_INCR(stat, 1);
142 #define DBUF_STAT_BUMPDOWN(stat) \
143 DBUF_STAT_INCR(stat, -1);
144 #define DBUF_STAT_MAX(stat, v) { \
145 uint64_t _m; \
146 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
147 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
148 continue; \
149 }
150
151 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
152 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
153
154 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
155 dmu_buf_evict_func_t *evict_func_sync,
156 dmu_buf_evict_func_t *evict_func_async,
157 dmu_buf_t **clear_on_evict_dbufp);
158
159 /*
160 * Global data structures and functions for the dbuf cache.
161 */
162 static kmem_cache_t *dbuf_kmem_cache;
163 static taskq_t *dbu_evict_taskq;
164
165 static kthread_t *dbuf_cache_evict_thread;
166 static kmutex_t dbuf_evict_lock;
167 static kcondvar_t dbuf_evict_cv;
168 static boolean_t dbuf_evict_thread_exit;
169
170 /*
171 * There are two dbuf caches; each dbuf can only be in one of them at a time.
172 *
173 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
174 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
175 * that represent the metadata that describes filesystems/snapshots/
176 * bookmarks/properties/etc. We only evict from this cache when we export a
177 * pool, to short-circuit as much I/O as possible for all administrative
178 * commands that need the metadata. There is no eviction policy for this
179 * cache, because we try to only include types in it which would occupy a
180 * very small amount of space per object but create a large impact on the
181 * performance of these commands. Instead, after it reaches a maximum size
182 * (which should only happen on very small memory systems with a very large
183 * number of filesystem objects), we stop taking new dbufs into the
184 * metadata cache, instead putting them in the normal dbuf cache.
185 *
186 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
187 * are not currently held but have been recently released. These dbufs
188 * are not eligible for arc eviction until they are aged out of the cache.
189 * Dbufs that are aged out of the cache will be immediately destroyed and
190 * become eligible for arc eviction.
191 *
192 * Dbufs are added to these caches once the last hold is released. If a dbuf is
193 * later accessed and still exists in the dbuf cache, then it will be removed
194 * from the cache and later re-added to the head of the cache.
195 *
196 * If a given dbuf meets the requirements for the metadata cache, it will go
197 * there, otherwise it will be considered for the generic LRU dbuf cache. The
198 * caches and the refcounts tracking their sizes are stored in an array indexed
199 * by those caches' matching enum values (from dbuf_cached_state_t).
200 */
201 typedef struct dbuf_cache {
202 multilist_t *cache;
203 zfs_refcount_t size;
204 } dbuf_cache_t;
205 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
206
207 /* Size limits for the caches */
208 unsigned long dbuf_cache_max_bytes = 0;
209 unsigned long dbuf_metadata_cache_max_bytes = 0;
210 /* Set the default sizes of the caches to log2 fraction of arc size */
211 int dbuf_cache_shift = 5;
212 int dbuf_metadata_cache_shift = 6;
213
214 /*
215 * The LRU dbuf cache uses a three-stage eviction policy:
216 * - A low water marker designates when the dbuf eviction thread
217 * should stop evicting from the dbuf cache.
218 * - When we reach the maximum size (aka mid water mark), we
219 * signal the eviction thread to run.
220 * - The high water mark indicates when the eviction thread
221 * is unable to keep up with the incoming load and eviction must
222 * happen in the context of the calling thread.
223 *
224 * The dbuf cache:
225 * (max size)
226 * low water mid water hi water
227 * +----------------------------------------+----------+----------+
228 * | | | |
229 * | | | |
230 * | | | |
231 * | | | |
232 * +----------------------------------------+----------+----------+
233 * stop signal evict
234 * evicting eviction directly
235 * thread
236 *
237 * The high and low water marks indicate the operating range for the eviction
238 * thread. The low water mark is, by default, 90% of the total size of the
239 * cache and the high water mark is at 110% (both of these percentages can be
240 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
241 * respectively). The eviction thread will try to ensure that the cache remains
242 * within this range by waking up every second and checking if the cache is
243 * above the low water mark. The thread can also be woken up by callers adding
244 * elements into the cache if the cache is larger than the mid water (i.e max
245 * cache size). Once the eviction thread is woken up and eviction is required,
246 * it will continue evicting buffers until it's able to reduce the cache size
247 * to the low water mark. If the cache size continues to grow and hits the high
248 * water mark, then callers adding elements to the cache will begin to evict
249 * directly from the cache until the cache is no longer above the high water
250 * mark.
251 */
252
253 /*
254 * The percentage above and below the maximum cache size.
255 */
256 uint_t dbuf_cache_hiwater_pct = 10;
257 uint_t dbuf_cache_lowater_pct = 10;
258
259 /* ARGSUSED */
260 static int
261 dbuf_cons(void *vdb, void *unused, int kmflag)
262 {
263 dmu_buf_impl_t *db = vdb;
264 bzero(db, sizeof (dmu_buf_impl_t));
265
266 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
267 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL);
268 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
269 multilist_link_init(&db->db_cache_link);
270 zfs_refcount_create(&db->db_holds);
271
272 return (0);
273 }
274
275 /* ARGSUSED */
276 static void
277 dbuf_dest(void *vdb, void *unused)
278 {
279 dmu_buf_impl_t *db = vdb;
280 mutex_destroy(&db->db_mtx);
281 rw_destroy(&db->db_rwlock);
282 cv_destroy(&db->db_changed);
283 ASSERT(!multilist_link_active(&db->db_cache_link));
284 zfs_refcount_destroy(&db->db_holds);
285 }
286
287 /*
288 * dbuf hash table routines
289 */
290 static dbuf_hash_table_t dbuf_hash_table;
291
292 static uint64_t dbuf_hash_count;
293
294 /*
295 * We use Cityhash for this. It's fast, and has good hash properties without
296 * requiring any large static buffers.
297 */
298 static uint64_t
299 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
300 {
301 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
302 }
303
304 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
305 ((dbuf)->db.db_object == (obj) && \
306 (dbuf)->db_objset == (os) && \
307 (dbuf)->db_level == (level) && \
308 (dbuf)->db_blkid == (blkid))
309
310 dmu_buf_impl_t *
311 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
312 {
313 dbuf_hash_table_t *h = &dbuf_hash_table;
314 uint64_t hv;
315 uint64_t idx;
316 dmu_buf_impl_t *db;
317
318 hv = dbuf_hash(os, obj, level, blkid);
319 idx = hv & h->hash_table_mask;
320
321 mutex_enter(DBUF_HASH_MUTEX(h, idx));
322 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
323 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
324 mutex_enter(&db->db_mtx);
325 if (db->db_state != DB_EVICTING) {
326 mutex_exit(DBUF_HASH_MUTEX(h, idx));
327 return (db);
328 }
329 mutex_exit(&db->db_mtx);
330 }
331 }
332 mutex_exit(DBUF_HASH_MUTEX(h, idx));
333 return (NULL);
334 }
335
336 static dmu_buf_impl_t *
337 dbuf_find_bonus(objset_t *os, uint64_t object)
338 {
339 dnode_t *dn;
340 dmu_buf_impl_t *db = NULL;
341
342 if (dnode_hold(os, object, FTAG, &dn) == 0) {
343 rw_enter(&dn->dn_struct_rwlock, RW_READER);
344 if (dn->dn_bonus != NULL) {
345 db = dn->dn_bonus;
346 mutex_enter(&db->db_mtx);
347 }
348 rw_exit(&dn->dn_struct_rwlock);
349 dnode_rele(dn, FTAG);
350 }
351 return (db);
352 }
353
354 /*
355 * Insert an entry into the hash table. If there is already an element
356 * equal to elem in the hash table, then the already existing element
357 * will be returned and the new element will not be inserted.
358 * Otherwise returns NULL.
359 */
360 static dmu_buf_impl_t *
361 dbuf_hash_insert(dmu_buf_impl_t *db)
362 {
363 dbuf_hash_table_t *h = &dbuf_hash_table;
364 objset_t *os = db->db_objset;
365 uint64_t obj = db->db.db_object;
366 int level = db->db_level;
367 uint64_t blkid, hv, idx;
368 dmu_buf_impl_t *dbf;
369 uint32_t i;
370
371 blkid = db->db_blkid;
372 hv = dbuf_hash(os, obj, level, blkid);
373 idx = hv & h->hash_table_mask;
374
375 mutex_enter(DBUF_HASH_MUTEX(h, idx));
376 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
377 dbf = dbf->db_hash_next, i++) {
378 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
379 mutex_enter(&dbf->db_mtx);
380 if (dbf->db_state != DB_EVICTING) {
381 mutex_exit(DBUF_HASH_MUTEX(h, idx));
382 return (dbf);
383 }
384 mutex_exit(&dbf->db_mtx);
385 }
386 }
387
388 if (i > 0) {
389 DBUF_STAT_BUMP(hash_collisions);
390 if (i == 1)
391 DBUF_STAT_BUMP(hash_chains);
392
393 DBUF_STAT_MAX(hash_chain_max, i);
394 }
395
396 mutex_enter(&db->db_mtx);
397 db->db_hash_next = h->hash_table[idx];
398 h->hash_table[idx] = db;
399 mutex_exit(DBUF_HASH_MUTEX(h, idx));
400 atomic_inc_64(&dbuf_hash_count);
401 DBUF_STAT_MAX(hash_elements_max, dbuf_hash_count);
402
403 return (NULL);
404 }
405
406 /*
407 * This returns whether this dbuf should be stored in the metadata cache, which
408 * is based on whether it's from one of the dnode types that store data related
409 * to traversing dataset hierarchies.
410 */
411 static boolean_t
412 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
413 {
414 DB_DNODE_ENTER(db);
415 dmu_object_type_t type = DB_DNODE(db)->dn_type;
416 DB_DNODE_EXIT(db);
417
418 /* Check if this dbuf is one of the types we care about */
419 if (DMU_OT_IS_METADATA_CACHED(type)) {
420 /* If we hit this, then we set something up wrong in dmu_ot */
421 ASSERT(DMU_OT_IS_METADATA(type));
422
423 /*
424 * Sanity check for small-memory systems: don't allocate too
425 * much memory for this purpose.
426 */
427 if (zfs_refcount_count(
428 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
429 dbuf_metadata_cache_max_bytes) {
430 DBUF_STAT_BUMP(metadata_cache_overflow);
431 return (B_FALSE);
432 }
433
434 return (B_TRUE);
435 }
436
437 return (B_FALSE);
438 }
439
440 /*
441 * Remove an entry from the hash table. It must be in the EVICTING state.
442 */
443 static void
444 dbuf_hash_remove(dmu_buf_impl_t *db)
445 {
446 dbuf_hash_table_t *h = &dbuf_hash_table;
447 uint64_t hv, idx;
448 dmu_buf_impl_t *dbf, **dbp;
449
450 hv = dbuf_hash(db->db_objset, db->db.db_object,
451 db->db_level, db->db_blkid);
452 idx = hv & h->hash_table_mask;
453
454 /*
455 * We mustn't hold db_mtx to maintain lock ordering:
456 * DBUF_HASH_MUTEX > db_mtx.
457 */
458 ASSERT(zfs_refcount_is_zero(&db->db_holds));
459 ASSERT(db->db_state == DB_EVICTING);
460 ASSERT(!MUTEX_HELD(&db->db_mtx));
461
462 mutex_enter(DBUF_HASH_MUTEX(h, idx));
463 dbp = &h->hash_table[idx];
464 while ((dbf = *dbp) != db) {
465 dbp = &dbf->db_hash_next;
466 ASSERT(dbf != NULL);
467 }
468 *dbp = db->db_hash_next;
469 db->db_hash_next = NULL;
470 if (h->hash_table[idx] &&
471 h->hash_table[idx]->db_hash_next == NULL)
472 DBUF_STAT_BUMPDOWN(hash_chains);
473 mutex_exit(DBUF_HASH_MUTEX(h, idx));
474 atomic_dec_64(&dbuf_hash_count);
475 }
476
477 typedef enum {
478 DBVU_EVICTING,
479 DBVU_NOT_EVICTING
480 } dbvu_verify_type_t;
481
482 static void
483 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
484 {
485 #ifdef ZFS_DEBUG
486 int64_t holds;
487
488 if (db->db_user == NULL)
489 return;
490
491 /* Only data blocks support the attachment of user data. */
492 ASSERT(db->db_level == 0);
493
494 /* Clients must resolve a dbuf before attaching user data. */
495 ASSERT(db->db.db_data != NULL);
496 ASSERT3U(db->db_state, ==, DB_CACHED);
497
498 holds = zfs_refcount_count(&db->db_holds);
499 if (verify_type == DBVU_EVICTING) {
500 /*
501 * Immediate eviction occurs when holds == dirtycnt.
502 * For normal eviction buffers, holds is zero on
503 * eviction, except when dbuf_fix_old_data() calls
504 * dbuf_clear_data(). However, the hold count can grow
505 * during eviction even though db_mtx is held (see
506 * dmu_bonus_hold() for an example), so we can only
507 * test the generic invariant that holds >= dirtycnt.
508 */
509 ASSERT3U(holds, >=, db->db_dirtycnt);
510 } else {
511 if (db->db_user_immediate_evict == TRUE)
512 ASSERT3U(holds, >=, db->db_dirtycnt);
513 else
514 ASSERT3U(holds, >, 0);
515 }
516 #endif
517 }
518
519 static void
520 dbuf_evict_user(dmu_buf_impl_t *db)
521 {
522 dmu_buf_user_t *dbu = db->db_user;
523
524 ASSERT(MUTEX_HELD(&db->db_mtx));
525
526 if (dbu == NULL)
527 return;
528
529 dbuf_verify_user(db, DBVU_EVICTING);
530 db->db_user = NULL;
531
532 #ifdef ZFS_DEBUG
533 if (dbu->dbu_clear_on_evict_dbufp != NULL)
534 *dbu->dbu_clear_on_evict_dbufp = NULL;
535 #endif
536
537 /*
538 * There are two eviction callbacks - one that we call synchronously
539 * and one that we invoke via a taskq. The async one is useful for
540 * avoiding lock order reversals and limiting stack depth.
541 *
542 * Note that if we have a sync callback but no async callback,
543 * it's likely that the sync callback will free the structure
544 * containing the dbu. In that case we need to take care to not
545 * dereference dbu after calling the sync evict func.
546 */
547 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
548
549 if (dbu->dbu_evict_func_sync != NULL)
550 dbu->dbu_evict_func_sync(dbu);
551
552 if (has_async) {
553 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
554 dbu, 0, &dbu->dbu_tqent);
555 }
556 }
557
558 boolean_t
559 dbuf_is_metadata(dmu_buf_impl_t *db)
560 {
561 /*
562 * Consider indirect blocks and spill blocks to be meta data.
563 */
564 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
565 return (B_TRUE);
566 } else {
567 boolean_t is_metadata;
568
569 DB_DNODE_ENTER(db);
570 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
571 DB_DNODE_EXIT(db);
572
573 return (is_metadata);
574 }
575 }
576
577
578 /*
579 * This function *must* return indices evenly distributed between all
580 * sublists of the multilist. This is needed due to how the dbuf eviction
581 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
582 * distributed between all sublists and uses this assumption when
583 * deciding which sublist to evict from and how much to evict from it.
584 */
585 unsigned int
586 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
587 {
588 dmu_buf_impl_t *db = obj;
589
590 /*
591 * The assumption here, is the hash value for a given
592 * dmu_buf_impl_t will remain constant throughout it's lifetime
593 * (i.e. it's objset, object, level and blkid fields don't change).
594 * Thus, we don't need to store the dbuf's sublist index
595 * on insertion, as this index can be recalculated on removal.
596 *
597 * Also, the low order bits of the hash value are thought to be
598 * distributed evenly. Otherwise, in the case that the multilist
599 * has a power of two number of sublists, each sublists' usage
600 * would not be evenly distributed.
601 */
602 return (dbuf_hash(db->db_objset, db->db.db_object,
603 db->db_level, db->db_blkid) %
604 multilist_get_num_sublists(ml));
605 }
606
607 static inline unsigned long
608 dbuf_cache_target_bytes(void)
609 {
610 return MIN(dbuf_cache_max_bytes,
611 arc_target_bytes() >> dbuf_cache_shift);
612 }
613
614 static inline uint64_t
615 dbuf_cache_hiwater_bytes(void)
616 {
617 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
618 return (dbuf_cache_target +
619 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
620 }
621
622 static inline uint64_t
623 dbuf_cache_lowater_bytes(void)
624 {
625 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
626 return (dbuf_cache_target -
627 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
628 }
629
630 static inline boolean_t
631 dbuf_cache_above_hiwater(void)
632 {
633 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
634 dbuf_cache_hiwater_bytes());
635 }
636
637 static inline boolean_t
638 dbuf_cache_above_lowater(void)
639 {
640 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
641 dbuf_cache_lowater_bytes());
642 }
643
644 /*
645 * Evict the oldest eligible dbuf from the dbuf cache.
646 */
647 static void
648 dbuf_evict_one(void)
649 {
650 int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache);
651 multilist_sublist_t *mls = multilist_sublist_lock(
652 dbuf_caches[DB_DBUF_CACHE].cache, idx);
653
654 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
655
656 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
657 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
658 db = multilist_sublist_prev(mls, db);
659 }
660
661 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
662 multilist_sublist_t *, mls);
663
664 if (db != NULL) {
665 multilist_sublist_remove(mls, db);
666 multilist_sublist_unlock(mls);
667 (void) zfs_refcount_remove_many(
668 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db);
669 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
670 DBUF_STAT_BUMPDOWN(cache_count);
671 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
672 db->db.db_size);
673 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
674 db->db_caching_status = DB_NO_CACHE;
675 dbuf_destroy(db);
676 DBUF_STAT_MAX(cache_size_bytes_max,
677 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size));
678 DBUF_STAT_BUMP(cache_total_evicts);
679 } else {
680 multilist_sublist_unlock(mls);
681 }
682 }
683
684 /*
685 * The dbuf evict thread is responsible for aging out dbufs from the
686 * cache. Once the cache has reached it's maximum size, dbufs are removed
687 * and destroyed. The eviction thread will continue running until the size
688 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
689 * out of the cache it is destroyed and becomes eligible for arc eviction.
690 */
691 /* ARGSUSED */
692 static void
693 dbuf_evict_thread(void *unused)
694 {
695 callb_cpr_t cpr;
696
697 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
698
699 mutex_enter(&dbuf_evict_lock);
700 while (!dbuf_evict_thread_exit) {
701 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
702 CALLB_CPR_SAFE_BEGIN(&cpr);
703 (void) cv_timedwait_sig_hires(&dbuf_evict_cv,
704 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
705 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
706 }
707 mutex_exit(&dbuf_evict_lock);
708
709 /*
710 * Keep evicting as long as we're above the low water mark
711 * for the cache. We do this without holding the locks to
712 * minimize lock contention.
713 */
714 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
715 dbuf_evict_one();
716 }
717
718 mutex_enter(&dbuf_evict_lock);
719 }
720
721 dbuf_evict_thread_exit = B_FALSE;
722 cv_broadcast(&dbuf_evict_cv);
723 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
724 thread_exit();
725 }
726
727 /*
728 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
729 * If the dbuf cache is at its high water mark, then evict a dbuf from the
730 * dbuf cache using the callers context.
731 */
732 static void
733 dbuf_evict_notify(void)
734 {
735 /*
736 * We check if we should evict without holding the dbuf_evict_lock,
737 * because it's OK to occasionally make the wrong decision here,
738 * and grabbing the lock results in massive lock contention.
739 */
740 if (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
741 dbuf_cache_target_bytes()) {
742 if (dbuf_cache_above_hiwater())
743 dbuf_evict_one();
744 cv_signal(&dbuf_evict_cv);
745 }
746 }
747
748 static int
749 dbuf_kstat_update(kstat_t *ksp, int rw)
750 {
751 dbuf_stats_t *ds = ksp->ks_data;
752
753 if (rw == KSTAT_WRITE) {
754 return (SET_ERROR(EACCES));
755 } else {
756 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
757 &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
758 ds->cache_size_bytes.value.ui64 =
759 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
760 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
761 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
762 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
763 ds->hash_elements.value.ui64 = dbuf_hash_count;
764 }
765
766 return (0);
767 }
768
769 void
770 dbuf_init(void)
771 {
772 uint64_t hsize = 1ULL << 16;
773 dbuf_hash_table_t *h = &dbuf_hash_table;
774 int i;
775
776 /*
777 * The hash table is big enough to fill all of physical memory
778 * with an average block size of zfs_arc_average_blocksize (default 8K).
779 * By default, the table will take up
780 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
781 */
782 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
783 hsize <<= 1;
784
785 retry:
786 h->hash_table_mask = hsize - 1;
787 #if defined(_KERNEL)
788 /*
789 * Large allocations which do not require contiguous pages
790 * should be using vmem_alloc() in the linux kernel
791 */
792 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
793 #else
794 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
795 #endif
796 if (h->hash_table == NULL) {
797 /* XXX - we should really return an error instead of assert */
798 ASSERT(hsize > (1ULL << 10));
799 hsize >>= 1;
800 goto retry;
801 }
802
803 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
804 sizeof (dmu_buf_impl_t),
805 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
806
807 for (i = 0; i < DBUF_MUTEXES; i++)
808 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
809
810 dbuf_stats_init(h);
811
812 /*
813 * Setup the parameters for the dbuf caches. We set the sizes of the
814 * dbuf cache and the metadata cache to 1/32nd and 1/16th (default)
815 * of the target size of the ARC. If the values has been specified as
816 * a module option and they're not greater than the target size of the
817 * ARC, then we honor that value.
818 */
819 if (dbuf_cache_max_bytes == 0 ||
820 dbuf_cache_max_bytes >= arc_target_bytes()) {
821 dbuf_cache_max_bytes = arc_target_bytes() >> dbuf_cache_shift;
822 }
823 if (dbuf_metadata_cache_max_bytes == 0 ||
824 dbuf_metadata_cache_max_bytes >= arc_target_bytes()) {
825 dbuf_metadata_cache_max_bytes =
826 arc_target_bytes() >> dbuf_metadata_cache_shift;
827 }
828
829 /*
830 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
831 * configuration is not required.
832 */
833 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
834
835 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
836 dbuf_caches[dcs].cache =
837 multilist_create(sizeof (dmu_buf_impl_t),
838 offsetof(dmu_buf_impl_t, db_cache_link),
839 dbuf_cache_multilist_index_func);
840 zfs_refcount_create(&dbuf_caches[dcs].size);
841 }
842
843 dbuf_evict_thread_exit = B_FALSE;
844 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
845 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
846 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
847 NULL, 0, &p0, TS_RUN, minclsyspri);
848
849 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
850 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
851 KSTAT_FLAG_VIRTUAL);
852 if (dbuf_ksp != NULL) {
853 for (i = 0; i < DN_MAX_LEVELS; i++) {
854 snprintf(dbuf_stats.cache_levels[i].name,
855 KSTAT_STRLEN, "cache_level_%d", i);
856 dbuf_stats.cache_levels[i].data_type =
857 KSTAT_DATA_UINT64;
858 snprintf(dbuf_stats.cache_levels_bytes[i].name,
859 KSTAT_STRLEN, "cache_level_%d_bytes", i);
860 dbuf_stats.cache_levels_bytes[i].data_type =
861 KSTAT_DATA_UINT64;
862 }
863 dbuf_ksp->ks_data = &dbuf_stats;
864 dbuf_ksp->ks_update = dbuf_kstat_update;
865 kstat_install(dbuf_ksp);
866 }
867 }
868
869 void
870 dbuf_fini(void)
871 {
872 dbuf_hash_table_t *h = &dbuf_hash_table;
873 int i;
874
875 dbuf_stats_destroy();
876
877 for (i = 0; i < DBUF_MUTEXES; i++)
878 mutex_destroy(&h->hash_mutexes[i]);
879 #if defined(_KERNEL)
880 /*
881 * Large allocations which do not require contiguous pages
882 * should be using vmem_free() in the linux kernel
883 */
884 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
885 #else
886 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
887 #endif
888 kmem_cache_destroy(dbuf_kmem_cache);
889 taskq_destroy(dbu_evict_taskq);
890
891 mutex_enter(&dbuf_evict_lock);
892 dbuf_evict_thread_exit = B_TRUE;
893 while (dbuf_evict_thread_exit) {
894 cv_signal(&dbuf_evict_cv);
895 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
896 }
897 mutex_exit(&dbuf_evict_lock);
898
899 mutex_destroy(&dbuf_evict_lock);
900 cv_destroy(&dbuf_evict_cv);
901
902 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
903 zfs_refcount_destroy(&dbuf_caches[dcs].size);
904 multilist_destroy(dbuf_caches[dcs].cache);
905 }
906
907 if (dbuf_ksp != NULL) {
908 kstat_delete(dbuf_ksp);
909 dbuf_ksp = NULL;
910 }
911 }
912
913 /*
914 * Other stuff.
915 */
916
917 #ifdef ZFS_DEBUG
918 static void
919 dbuf_verify(dmu_buf_impl_t *db)
920 {
921 dnode_t *dn;
922 dbuf_dirty_record_t *dr;
923 uint32_t txg_prev;
924
925 ASSERT(MUTEX_HELD(&db->db_mtx));
926
927 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
928 return;
929
930 ASSERT(db->db_objset != NULL);
931 DB_DNODE_ENTER(db);
932 dn = DB_DNODE(db);
933 if (dn == NULL) {
934 ASSERT(db->db_parent == NULL);
935 ASSERT(db->db_blkptr == NULL);
936 } else {
937 ASSERT3U(db->db.db_object, ==, dn->dn_object);
938 ASSERT3P(db->db_objset, ==, dn->dn_objset);
939 ASSERT3U(db->db_level, <, dn->dn_nlevels);
940 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
941 db->db_blkid == DMU_SPILL_BLKID ||
942 !avl_is_empty(&dn->dn_dbufs));
943 }
944 if (db->db_blkid == DMU_BONUS_BLKID) {
945 ASSERT(dn != NULL);
946 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
947 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
948 } else if (db->db_blkid == DMU_SPILL_BLKID) {
949 ASSERT(dn != NULL);
950 ASSERT0(db->db.db_offset);
951 } else {
952 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
953 }
954
955 if ((dr = list_head(&db->db_dirty_records)) != NULL) {
956 ASSERT(dr->dr_dbuf == db);
957 txg_prev = dr->dr_txg;
958 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
959 dr = list_next(&db->db_dirty_records, dr)) {
960 ASSERT(dr->dr_dbuf == db);
961 ASSERT(txg_prev > dr->dr_txg);
962 txg_prev = dr->dr_txg;
963 }
964 }
965
966 /*
967 * We can't assert that db_size matches dn_datablksz because it
968 * can be momentarily different when another thread is doing
969 * dnode_set_blksz().
970 */
971 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
972 dr = db->db_data_pending;
973 /*
974 * It should only be modified in syncing context, so
975 * make sure we only have one copy of the data.
976 */
977 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
978 }
979
980 /* verify db->db_blkptr */
981 if (db->db_blkptr) {
982 if (db->db_parent == dn->dn_dbuf) {
983 /* db is pointed to by the dnode */
984 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
985 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
986 ASSERT(db->db_parent == NULL);
987 else
988 ASSERT(db->db_parent != NULL);
989 if (db->db_blkid != DMU_SPILL_BLKID)
990 ASSERT3P(db->db_blkptr, ==,
991 &dn->dn_phys->dn_blkptr[db->db_blkid]);
992 } else {
993 /* db is pointed to by an indirect block */
994 int epb __maybe_unused = db->db_parent->db.db_size >>
995 SPA_BLKPTRSHIFT;
996 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
997 ASSERT3U(db->db_parent->db.db_object, ==,
998 db->db.db_object);
999 /*
1000 * dnode_grow_indblksz() can make this fail if we don't
1001 * have the parent's rwlock. XXX indblksz no longer
1002 * grows. safe to do this now?
1003 */
1004 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
1005 ASSERT3P(db->db_blkptr, ==,
1006 ((blkptr_t *)db->db_parent->db.db_data +
1007 db->db_blkid % epb));
1008 }
1009 }
1010 }
1011 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1012 (db->db_buf == NULL || db->db_buf->b_data) &&
1013 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1014 db->db_state != DB_FILL && !dn->dn_free_txg) {
1015 /*
1016 * If the blkptr isn't set but they have nonzero data,
1017 * it had better be dirty, otherwise we'll lose that
1018 * data when we evict this buffer.
1019 *
1020 * There is an exception to this rule for indirect blocks; in
1021 * this case, if the indirect block is a hole, we fill in a few
1022 * fields on each of the child blocks (importantly, birth time)
1023 * to prevent hole birth times from being lost when you
1024 * partially fill in a hole.
1025 */
1026 if (db->db_dirtycnt == 0) {
1027 if (db->db_level == 0) {
1028 uint64_t *buf = db->db.db_data;
1029 int i;
1030
1031 for (i = 0; i < db->db.db_size >> 3; i++) {
1032 ASSERT(buf[i] == 0);
1033 }
1034 } else {
1035 blkptr_t *bps = db->db.db_data;
1036 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1037 db->db.db_size);
1038 /*
1039 * We want to verify that all the blkptrs in the
1040 * indirect block are holes, but we may have
1041 * automatically set up a few fields for them.
1042 * We iterate through each blkptr and verify
1043 * they only have those fields set.
1044 */
1045 for (int i = 0;
1046 i < db->db.db_size / sizeof (blkptr_t);
1047 i++) {
1048 blkptr_t *bp = &bps[i];
1049 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1050 &bp->blk_cksum));
1051 ASSERT(
1052 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1053 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1054 DVA_IS_EMPTY(&bp->blk_dva[2]));
1055 ASSERT0(bp->blk_fill);
1056 ASSERT0(bp->blk_pad[0]);
1057 ASSERT0(bp->blk_pad[1]);
1058 ASSERT(!BP_IS_EMBEDDED(bp));
1059 ASSERT(BP_IS_HOLE(bp));
1060 ASSERT0(bp->blk_phys_birth);
1061 }
1062 }
1063 }
1064 }
1065 DB_DNODE_EXIT(db);
1066 }
1067 #endif
1068
1069 static void
1070 dbuf_clear_data(dmu_buf_impl_t *db)
1071 {
1072 ASSERT(MUTEX_HELD(&db->db_mtx));
1073 dbuf_evict_user(db);
1074 ASSERT3P(db->db_buf, ==, NULL);
1075 db->db.db_data = NULL;
1076 if (db->db_state != DB_NOFILL)
1077 db->db_state = DB_UNCACHED;
1078 }
1079
1080 static void
1081 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1082 {
1083 ASSERT(MUTEX_HELD(&db->db_mtx));
1084 ASSERT(buf != NULL);
1085
1086 db->db_buf = buf;
1087 ASSERT(buf->b_data != NULL);
1088 db->db.db_data = buf->b_data;
1089 }
1090
1091 /*
1092 * Loan out an arc_buf for read. Return the loaned arc_buf.
1093 */
1094 arc_buf_t *
1095 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1096 {
1097 arc_buf_t *abuf;
1098
1099 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1100 mutex_enter(&db->db_mtx);
1101 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1102 int blksz = db->db.db_size;
1103 spa_t *spa = db->db_objset->os_spa;
1104
1105 mutex_exit(&db->db_mtx);
1106 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1107 bcopy(db->db.db_data, abuf->b_data, blksz);
1108 } else {
1109 abuf = db->db_buf;
1110 arc_loan_inuse_buf(abuf, db);
1111 db->db_buf = NULL;
1112 dbuf_clear_data(db);
1113 mutex_exit(&db->db_mtx);
1114 }
1115 return (abuf);
1116 }
1117
1118 /*
1119 * Calculate which level n block references the data at the level 0 offset
1120 * provided.
1121 */
1122 uint64_t
1123 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1124 {
1125 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1126 /*
1127 * The level n blkid is equal to the level 0 blkid divided by
1128 * the number of level 0s in a level n block.
1129 *
1130 * The level 0 blkid is offset >> datablkshift =
1131 * offset / 2^datablkshift.
1132 *
1133 * The number of level 0s in a level n is the number of block
1134 * pointers in an indirect block, raised to the power of level.
1135 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1136 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1137 *
1138 * Thus, the level n blkid is: offset /
1139 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1140 * = offset / 2^(datablkshift + level *
1141 * (indblkshift - SPA_BLKPTRSHIFT))
1142 * = offset >> (datablkshift + level *
1143 * (indblkshift - SPA_BLKPTRSHIFT))
1144 */
1145
1146 const unsigned exp = dn->dn_datablkshift +
1147 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1148
1149 if (exp >= 8 * sizeof (offset)) {
1150 /* This only happens on the highest indirection level */
1151 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1152 return (0);
1153 }
1154
1155 ASSERT3U(exp, <, 8 * sizeof (offset));
1156
1157 return (offset >> exp);
1158 } else {
1159 ASSERT3U(offset, <, dn->dn_datablksz);
1160 return (0);
1161 }
1162 }
1163
1164 /*
1165 * This function is used to lock the parent of the provided dbuf. This should be
1166 * used when modifying or reading db_blkptr.
1167 */
1168 db_lock_type_t
1169 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, void *tag)
1170 {
1171 enum db_lock_type ret = DLT_NONE;
1172 if (db->db_parent != NULL) {
1173 rw_enter(&db->db_parent->db_rwlock, rw);
1174 ret = DLT_PARENT;
1175 } else if (dmu_objset_ds(db->db_objset) != NULL) {
1176 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1177 tag);
1178 ret = DLT_OBJSET;
1179 }
1180 /*
1181 * We only return a DLT_NONE lock when it's the top-most indirect block
1182 * of the meta-dnode of the MOS.
1183 */
1184 return (ret);
1185 }
1186
1187 /*
1188 * We need to pass the lock type in because it's possible that the block will
1189 * move from being the topmost indirect block in a dnode (and thus, have no
1190 * parent) to not the top-most via an indirection increase. This would cause a
1191 * panic if we didn't pass the lock type in.
1192 */
1193 void
1194 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, void *tag)
1195 {
1196 if (type == DLT_PARENT)
1197 rw_exit(&db->db_parent->db_rwlock);
1198 else if (type == DLT_OBJSET)
1199 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1200 }
1201
1202 static void
1203 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1204 arc_buf_t *buf, void *vdb)
1205 {
1206 dmu_buf_impl_t *db = vdb;
1207
1208 mutex_enter(&db->db_mtx);
1209 ASSERT3U(db->db_state, ==, DB_READ);
1210 /*
1211 * All reads are synchronous, so we must have a hold on the dbuf
1212 */
1213 ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1214 ASSERT(db->db_buf == NULL);
1215 ASSERT(db->db.db_data == NULL);
1216 if (buf == NULL) {
1217 /* i/o error */
1218 ASSERT(zio == NULL || zio->io_error != 0);
1219 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1220 ASSERT3P(db->db_buf, ==, NULL);
1221 db->db_state = DB_UNCACHED;
1222 } else if (db->db_level == 0 && db->db_freed_in_flight) {
1223 /* freed in flight */
1224 ASSERT(zio == NULL || zio->io_error == 0);
1225 arc_release(buf, db);
1226 bzero(buf->b_data, db->db.db_size);
1227 arc_buf_freeze(buf);
1228 db->db_freed_in_flight = FALSE;
1229 dbuf_set_data(db, buf);
1230 db->db_state = DB_CACHED;
1231 } else {
1232 /* success */
1233 ASSERT(zio == NULL || zio->io_error == 0);
1234 dbuf_set_data(db, buf);
1235 db->db_state = DB_CACHED;
1236 }
1237 cv_broadcast(&db->db_changed);
1238 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1239 }
1240
1241
1242 /*
1243 * This function ensures that, when doing a decrypting read of a block,
1244 * we make sure we have decrypted the dnode associated with it. We must do
1245 * this so that we ensure we are fully authenticating the checksum-of-MACs
1246 * tree from the root of the objset down to this block. Indirect blocks are
1247 * always verified against their secure checksum-of-MACs assuming that the
1248 * dnode containing them is correct. Now that we are doing a decrypting read,
1249 * we can be sure that the key is loaded and verify that assumption. This is
1250 * especially important considering that we always read encrypted dnode
1251 * blocks as raw data (without verifying their MACs) to start, and
1252 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1253 */
1254 static int
1255 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1256 {
1257 int err = 0;
1258 objset_t *os = db->db_objset;
1259 arc_buf_t *dnode_abuf;
1260 dnode_t *dn;
1261 zbookmark_phys_t zb;
1262
1263 ASSERT(MUTEX_HELD(&db->db_mtx));
1264
1265 if (!os->os_encrypted || os->os_raw_receive ||
1266 (flags & DB_RF_NO_DECRYPT) != 0)
1267 return (0);
1268
1269 DB_DNODE_ENTER(db);
1270 dn = DB_DNODE(db);
1271 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1272
1273 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1274 DB_DNODE_EXIT(db);
1275 return (0);
1276 }
1277
1278 SET_BOOKMARK(&zb, dmu_objset_id(os),
1279 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1280 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1281
1282 /*
1283 * An error code of EACCES tells us that the key is still not
1284 * available. This is ok if we are only reading authenticated
1285 * (and therefore non-encrypted) blocks.
1286 */
1287 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1288 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1289 (db->db_blkid == DMU_BONUS_BLKID &&
1290 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1291 err = 0;
1292
1293 DB_DNODE_EXIT(db);
1294
1295 return (err);
1296 }
1297
1298 /*
1299 * Drops db_mtx and the parent lock specified by dblt and tag before
1300 * returning.
1301 */
1302 static int
1303 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags,
1304 db_lock_type_t dblt, void *tag)
1305 {
1306 dnode_t *dn;
1307 zbookmark_phys_t zb;
1308 uint32_t aflags = ARC_FLAG_NOWAIT;
1309 int err, zio_flags = 0;
1310
1311 DB_DNODE_ENTER(db);
1312 dn = DB_DNODE(db);
1313 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1314 ASSERT(MUTEX_HELD(&db->db_mtx));
1315 ASSERT(db->db_state == DB_UNCACHED);
1316 ASSERT(db->db_buf == NULL);
1317 ASSERT(db->db_parent == NULL ||
1318 RW_LOCK_HELD(&db->db_parent->db_rwlock));
1319
1320 if (db->db_blkid == DMU_BONUS_BLKID) {
1321 /*
1322 * The bonus length stored in the dnode may be less than
1323 * the maximum available space in the bonus buffer.
1324 */
1325 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1326 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1327
1328 /* if the underlying dnode block is encrypted, decrypt it */
1329 err = dbuf_read_verify_dnode_crypt(db, flags);
1330 if (err != 0) {
1331 DB_DNODE_EXIT(db);
1332 mutex_exit(&db->db_mtx);
1333 return (err);
1334 }
1335
1336 ASSERT3U(bonuslen, <=, db->db.db_size);
1337 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1338 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1339 if (bonuslen < max_bonuslen)
1340 bzero(db->db.db_data, max_bonuslen);
1341 if (bonuslen)
1342 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1343 DB_DNODE_EXIT(db);
1344 db->db_state = DB_CACHED;
1345 mutex_exit(&db->db_mtx);
1346 dmu_buf_unlock_parent(db, dblt, tag);
1347 return (0);
1348 }
1349
1350 /*
1351 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1352 * processes the delete record and clears the bp while we are waiting
1353 * for the dn_mtx (resulting in a "no" from block_freed).
1354 */
1355 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1356 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1357 BP_IS_HOLE(db->db_blkptr)))) {
1358 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1359
1360 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1361 db->db.db_size));
1362 bzero(db->db.db_data, db->db.db_size);
1363
1364 if (db->db_blkptr != NULL && db->db_level > 0 &&
1365 BP_IS_HOLE(db->db_blkptr) &&
1366 db->db_blkptr->blk_birth != 0) {
1367 blkptr_t *bps = db->db.db_data;
1368 for (int i = 0; i < ((1 <<
1369 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1370 i++) {
1371 blkptr_t *bp = &bps[i];
1372 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1373 1 << dn->dn_indblkshift);
1374 BP_SET_LSIZE(bp,
1375 BP_GET_LEVEL(db->db_blkptr) == 1 ?
1376 dn->dn_datablksz :
1377 BP_GET_LSIZE(db->db_blkptr));
1378 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1379 BP_SET_LEVEL(bp,
1380 BP_GET_LEVEL(db->db_blkptr) - 1);
1381 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1382 }
1383 }
1384 DB_DNODE_EXIT(db);
1385 db->db_state = DB_CACHED;
1386 mutex_exit(&db->db_mtx);
1387 dmu_buf_unlock_parent(db, dblt, tag);
1388 return (0);
1389 }
1390
1391 /*
1392 * Any attempt to read a redacted block should result in an error. This
1393 * will never happen under normal conditions, but can be useful for
1394 * debugging purposes.
1395 */
1396 if (BP_IS_REDACTED(db->db_blkptr)) {
1397 ASSERT(dsl_dataset_feature_is_active(
1398 db->db_objset->os_dsl_dataset,
1399 SPA_FEATURE_REDACTED_DATASETS));
1400 DB_DNODE_EXIT(db);
1401 mutex_exit(&db->db_mtx);
1402 return (SET_ERROR(EIO));
1403 }
1404
1405
1406 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1407 db->db.db_object, db->db_level, db->db_blkid);
1408
1409 /*
1410 * All bps of an encrypted os should have the encryption bit set.
1411 * If this is not true it indicates tampering and we report an error.
1412 */
1413 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1414 spa_log_error(db->db_objset->os_spa, &zb);
1415 zfs_panic_recover("unencrypted block in encrypted "
1416 "object set %llu", dmu_objset_id(db->db_objset));
1417 DB_DNODE_EXIT(db);
1418 mutex_exit(&db->db_mtx);
1419 dmu_buf_unlock_parent(db, dblt, tag);
1420 return (SET_ERROR(EIO));
1421 }
1422
1423 err = dbuf_read_verify_dnode_crypt(db, flags);
1424 if (err != 0) {
1425 DB_DNODE_EXIT(db);
1426 dmu_buf_unlock_parent(db, dblt, tag);
1427 mutex_exit(&db->db_mtx);
1428 return (err);
1429 }
1430
1431 DB_DNODE_EXIT(db);
1432
1433 db->db_state = DB_READ;
1434 mutex_exit(&db->db_mtx);
1435
1436 if (DBUF_IS_L2CACHEABLE(db))
1437 aflags |= ARC_FLAG_L2CACHE;
1438
1439 dbuf_add_ref(db, NULL);
1440
1441 zio_flags = (flags & DB_RF_CANFAIL) ?
1442 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1443
1444 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1445 zio_flags |= ZIO_FLAG_RAW;
1446 /*
1447 * The zio layer will copy the provided blkptr later, but we need to
1448 * do this now so that we can release the parent's rwlock. We have to
1449 * do that now so that if dbuf_read_done is called synchronously (on
1450 * an l1 cache hit) we don't acquire the db_mtx while holding the
1451 * parent's rwlock, which would be a lock ordering violation.
1452 */
1453 blkptr_t bp = *db->db_blkptr;
1454 dmu_buf_unlock_parent(db, dblt, tag);
1455 (void) arc_read(zio, db->db_objset->os_spa, &bp,
1456 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1457 &aflags, &zb);
1458 return (err);
1459 }
1460
1461 /*
1462 * This is our just-in-time copy function. It makes a copy of buffers that
1463 * have been modified in a previous transaction group before we access them in
1464 * the current active group.
1465 *
1466 * This function is used in three places: when we are dirtying a buffer for the
1467 * first time in a txg, when we are freeing a range in a dnode that includes
1468 * this buffer, and when we are accessing a buffer which was received compressed
1469 * and later referenced in a WRITE_BYREF record.
1470 *
1471 * Note that when we are called from dbuf_free_range() we do not put a hold on
1472 * the buffer, we just traverse the active dbuf list for the dnode.
1473 */
1474 static void
1475 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1476 {
1477 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1478
1479 ASSERT(MUTEX_HELD(&db->db_mtx));
1480 ASSERT(db->db.db_data != NULL);
1481 ASSERT(db->db_level == 0);
1482 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1483
1484 if (dr == NULL ||
1485 (dr->dt.dl.dr_data !=
1486 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1487 return;
1488
1489 /*
1490 * If the last dirty record for this dbuf has not yet synced
1491 * and its referencing the dbuf data, either:
1492 * reset the reference to point to a new copy,
1493 * or (if there a no active holders)
1494 * just null out the current db_data pointer.
1495 */
1496 ASSERT3U(dr->dr_txg, >=, txg - 2);
1497 if (db->db_blkid == DMU_BONUS_BLKID) {
1498 dnode_t *dn = DB_DNODE(db);
1499 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1500 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1501 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1502 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1503 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1504 dnode_t *dn = DB_DNODE(db);
1505 int size = arc_buf_size(db->db_buf);
1506 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1507 spa_t *spa = db->db_objset->os_spa;
1508 enum zio_compress compress_type =
1509 arc_get_compression(db->db_buf);
1510
1511 if (arc_is_encrypted(db->db_buf)) {
1512 boolean_t byteorder;
1513 uint8_t salt[ZIO_DATA_SALT_LEN];
1514 uint8_t iv[ZIO_DATA_IV_LEN];
1515 uint8_t mac[ZIO_DATA_MAC_LEN];
1516
1517 arc_get_raw_params(db->db_buf, &byteorder, salt,
1518 iv, mac);
1519 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1520 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1521 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1522 compress_type);
1523 } else if (compress_type != ZIO_COMPRESS_OFF) {
1524 ASSERT3U(type, ==, ARC_BUFC_DATA);
1525 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1526 size, arc_buf_lsize(db->db_buf), compress_type);
1527 } else {
1528 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1529 }
1530 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1531 } else {
1532 db->db_buf = NULL;
1533 dbuf_clear_data(db);
1534 }
1535 }
1536
1537 int
1538 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1539 {
1540 int err = 0;
1541 boolean_t prefetch;
1542 dnode_t *dn;
1543
1544 /*
1545 * We don't have to hold the mutex to check db_state because it
1546 * can't be freed while we have a hold on the buffer.
1547 */
1548 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1549
1550 if (db->db_state == DB_NOFILL)
1551 return (SET_ERROR(EIO));
1552
1553 DB_DNODE_ENTER(db);
1554 dn = DB_DNODE(db);
1555
1556 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1557 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1558 DBUF_IS_CACHEABLE(db);
1559
1560 mutex_enter(&db->db_mtx);
1561 if (db->db_state == DB_CACHED) {
1562 spa_t *spa = dn->dn_objset->os_spa;
1563
1564 /*
1565 * Ensure that this block's dnode has been decrypted if
1566 * the caller has requested decrypted data.
1567 */
1568 err = dbuf_read_verify_dnode_crypt(db, flags);
1569
1570 /*
1571 * If the arc buf is compressed or encrypted and the caller
1572 * requested uncompressed data, we need to untransform it
1573 * before returning. We also call arc_untransform() on any
1574 * unauthenticated blocks, which will verify their MAC if
1575 * the key is now available.
1576 */
1577 if (err == 0 && db->db_buf != NULL &&
1578 (flags & DB_RF_NO_DECRYPT) == 0 &&
1579 (arc_is_encrypted(db->db_buf) ||
1580 arc_is_unauthenticated(db->db_buf) ||
1581 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1582 zbookmark_phys_t zb;
1583
1584 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1585 db->db.db_object, db->db_level, db->db_blkid);
1586 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1587 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1588 dbuf_set_data(db, db->db_buf);
1589 }
1590 mutex_exit(&db->db_mtx);
1591 if (err == 0 && prefetch) {
1592 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1593 flags & DB_RF_HAVESTRUCT);
1594 }
1595 DB_DNODE_EXIT(db);
1596 DBUF_STAT_BUMP(hash_hits);
1597 } else if (db->db_state == DB_UNCACHED) {
1598 spa_t *spa = dn->dn_objset->os_spa;
1599 boolean_t need_wait = B_FALSE;
1600
1601 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1602
1603 if (zio == NULL &&
1604 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1605 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1606 need_wait = B_TRUE;
1607 }
1608 err = dbuf_read_impl(db, zio, flags, dblt, FTAG);
1609 /*
1610 * dbuf_read_impl has dropped db_mtx and our parent's rwlock
1611 * for us
1612 */
1613 if (!err && prefetch) {
1614 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1615 flags & DB_RF_HAVESTRUCT);
1616 }
1617
1618 DB_DNODE_EXIT(db);
1619 DBUF_STAT_BUMP(hash_misses);
1620
1621 /*
1622 * If we created a zio_root we must execute it to avoid
1623 * leaking it, even if it isn't attached to any work due
1624 * to an error in dbuf_read_impl().
1625 */
1626 if (need_wait) {
1627 if (err == 0)
1628 err = zio_wait(zio);
1629 else
1630 VERIFY0(zio_wait(zio));
1631 }
1632 } else {
1633 /*
1634 * Another reader came in while the dbuf was in flight
1635 * between UNCACHED and CACHED. Either a writer will finish
1636 * writing the buffer (sending the dbuf to CACHED) or the
1637 * first reader's request will reach the read_done callback
1638 * and send the dbuf to CACHED. Otherwise, a failure
1639 * occurred and the dbuf went to UNCACHED.
1640 */
1641 mutex_exit(&db->db_mtx);
1642 if (prefetch) {
1643 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1644 flags & DB_RF_HAVESTRUCT);
1645 }
1646 DB_DNODE_EXIT(db);
1647 DBUF_STAT_BUMP(hash_misses);
1648
1649 /* Skip the wait per the caller's request. */
1650 mutex_enter(&db->db_mtx);
1651 if ((flags & DB_RF_NEVERWAIT) == 0) {
1652 while (db->db_state == DB_READ ||
1653 db->db_state == DB_FILL) {
1654 ASSERT(db->db_state == DB_READ ||
1655 (flags & DB_RF_HAVESTRUCT) == 0);
1656 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1657 db, zio_t *, zio);
1658 cv_wait(&db->db_changed, &db->db_mtx);
1659 }
1660 if (db->db_state == DB_UNCACHED)
1661 err = SET_ERROR(EIO);
1662 }
1663 mutex_exit(&db->db_mtx);
1664 }
1665
1666 return (err);
1667 }
1668
1669 static void
1670 dbuf_noread(dmu_buf_impl_t *db)
1671 {
1672 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1673 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1674 mutex_enter(&db->db_mtx);
1675 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1676 cv_wait(&db->db_changed, &db->db_mtx);
1677 if (db->db_state == DB_UNCACHED) {
1678 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1679 spa_t *spa = db->db_objset->os_spa;
1680
1681 ASSERT(db->db_buf == NULL);
1682 ASSERT(db->db.db_data == NULL);
1683 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1684 db->db_state = DB_FILL;
1685 } else if (db->db_state == DB_NOFILL) {
1686 dbuf_clear_data(db);
1687 } else {
1688 ASSERT3U(db->db_state, ==, DB_CACHED);
1689 }
1690 mutex_exit(&db->db_mtx);
1691 }
1692
1693 void
1694 dbuf_unoverride(dbuf_dirty_record_t *dr)
1695 {
1696 dmu_buf_impl_t *db = dr->dr_dbuf;
1697 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1698 uint64_t txg = dr->dr_txg;
1699
1700 ASSERT(MUTEX_HELD(&db->db_mtx));
1701 /*
1702 * This assert is valid because dmu_sync() expects to be called by
1703 * a zilog's get_data while holding a range lock. This call only
1704 * comes from dbuf_dirty() callers who must also hold a range lock.
1705 */
1706 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1707 ASSERT(db->db_level == 0);
1708
1709 if (db->db_blkid == DMU_BONUS_BLKID ||
1710 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1711 return;
1712
1713 ASSERT(db->db_data_pending != dr);
1714
1715 /* free this block */
1716 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1717 zio_free(db->db_objset->os_spa, txg, bp);
1718
1719 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1720 dr->dt.dl.dr_nopwrite = B_FALSE;
1721 dr->dt.dl.dr_has_raw_params = B_FALSE;
1722
1723 /*
1724 * Release the already-written buffer, so we leave it in
1725 * a consistent dirty state. Note that all callers are
1726 * modifying the buffer, so they will immediately do
1727 * another (redundant) arc_release(). Therefore, leave
1728 * the buf thawed to save the effort of freezing &
1729 * immediately re-thawing it.
1730 */
1731 arc_release(dr->dt.dl.dr_data, db);
1732 }
1733
1734 /*
1735 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1736 * data blocks in the free range, so that any future readers will find
1737 * empty blocks.
1738 */
1739 void
1740 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1741 dmu_tx_t *tx)
1742 {
1743 dmu_buf_impl_t *db_search;
1744 dmu_buf_impl_t *db, *db_next;
1745 uint64_t txg = tx->tx_txg;
1746 avl_index_t where;
1747
1748 if (end_blkid > dn->dn_maxblkid &&
1749 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1750 end_blkid = dn->dn_maxblkid;
1751 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1752
1753 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1754 db_search->db_level = 0;
1755 db_search->db_blkid = start_blkid;
1756 db_search->db_state = DB_SEARCH;
1757
1758 mutex_enter(&dn->dn_dbufs_mtx);
1759 db = avl_find(&dn->dn_dbufs, db_search, &where);
1760 ASSERT3P(db, ==, NULL);
1761
1762 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1763
1764 for (; db != NULL; db = db_next) {
1765 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1766 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1767
1768 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1769 break;
1770 }
1771 ASSERT3U(db->db_blkid, >=, start_blkid);
1772
1773 /* found a level 0 buffer in the range */
1774 mutex_enter(&db->db_mtx);
1775 if (dbuf_undirty(db, tx)) {
1776 /* mutex has been dropped and dbuf destroyed */
1777 continue;
1778 }
1779
1780 if (db->db_state == DB_UNCACHED ||
1781 db->db_state == DB_NOFILL ||
1782 db->db_state == DB_EVICTING) {
1783 ASSERT(db->db.db_data == NULL);
1784 mutex_exit(&db->db_mtx);
1785 continue;
1786 }
1787 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1788 /* will be handled in dbuf_read_done or dbuf_rele */
1789 db->db_freed_in_flight = TRUE;
1790 mutex_exit(&db->db_mtx);
1791 continue;
1792 }
1793 if (zfs_refcount_count(&db->db_holds) == 0) {
1794 ASSERT(db->db_buf);
1795 dbuf_destroy(db);
1796 continue;
1797 }
1798 /* The dbuf is referenced */
1799
1800 if (!list_is_empty(&db->db_dirty_records)) {
1801 dbuf_dirty_record_t *dr;
1802
1803 dr = list_head(&db->db_dirty_records);
1804 if (dr->dr_txg == txg) {
1805 /*
1806 * This buffer is "in-use", re-adjust the file
1807 * size to reflect that this buffer may
1808 * contain new data when we sync.
1809 */
1810 if (db->db_blkid != DMU_SPILL_BLKID &&
1811 db->db_blkid > dn->dn_maxblkid)
1812 dn->dn_maxblkid = db->db_blkid;
1813 dbuf_unoverride(dr);
1814 } else {
1815 /*
1816 * This dbuf is not dirty in the open context.
1817 * Either uncache it (if its not referenced in
1818 * the open context) or reset its contents to
1819 * empty.
1820 */
1821 dbuf_fix_old_data(db, txg);
1822 }
1823 }
1824 /* clear the contents if its cached */
1825 if (db->db_state == DB_CACHED) {
1826 ASSERT(db->db.db_data != NULL);
1827 arc_release(db->db_buf, db);
1828 rw_enter(&db->db_rwlock, RW_WRITER);
1829 bzero(db->db.db_data, db->db.db_size);
1830 rw_exit(&db->db_rwlock);
1831 arc_buf_freeze(db->db_buf);
1832 }
1833
1834 mutex_exit(&db->db_mtx);
1835 }
1836
1837 kmem_free(db_search, sizeof (dmu_buf_impl_t));
1838 mutex_exit(&dn->dn_dbufs_mtx);
1839 }
1840
1841 void
1842 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1843 {
1844 arc_buf_t *buf, *obuf;
1845 dbuf_dirty_record_t *dr;
1846 int osize = db->db.db_size;
1847 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1848 dnode_t *dn;
1849
1850 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1851
1852 DB_DNODE_ENTER(db);
1853 dn = DB_DNODE(db);
1854
1855 /*
1856 * XXX we should be doing a dbuf_read, checking the return
1857 * value and returning that up to our callers
1858 */
1859 dmu_buf_will_dirty(&db->db, tx);
1860
1861 /* create the data buffer for the new block */
1862 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1863
1864 /* copy old block data to the new block */
1865 obuf = db->db_buf;
1866 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1867 /* zero the remainder */
1868 if (size > osize)
1869 bzero((uint8_t *)buf->b_data + osize, size - osize);
1870
1871 mutex_enter(&db->db_mtx);
1872 dbuf_set_data(db, buf);
1873 arc_buf_destroy(obuf, db);
1874 db->db.db_size = size;
1875
1876 dr = list_head(&db->db_dirty_records);
1877 if (db->db_level == 0)
1878 dr->dt.dl.dr_data = buf;
1879 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
1880 ASSERT3U(dr->dr_accounted, ==, osize);
1881 dr->dr_accounted = size;
1882 mutex_exit(&db->db_mtx);
1883
1884 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1885 DB_DNODE_EXIT(db);
1886 }
1887
1888 void
1889 dbuf_release_bp(dmu_buf_impl_t *db)
1890 {
1891 objset_t *os __maybe_unused = db->db_objset;
1892
1893 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1894 ASSERT(arc_released(os->os_phys_buf) ||
1895 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1896 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1897
1898 (void) arc_release(db->db_buf, db);
1899 }
1900
1901 /*
1902 * We already have a dirty record for this TXG, and we are being
1903 * dirtied again.
1904 */
1905 static void
1906 dbuf_redirty(dbuf_dirty_record_t *dr)
1907 {
1908 dmu_buf_impl_t *db = dr->dr_dbuf;
1909
1910 ASSERT(MUTEX_HELD(&db->db_mtx));
1911
1912 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1913 /*
1914 * If this buffer has already been written out,
1915 * we now need to reset its state.
1916 */
1917 dbuf_unoverride(dr);
1918 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1919 db->db_state != DB_NOFILL) {
1920 /* Already released on initial dirty, so just thaw. */
1921 ASSERT(arc_released(db->db_buf));
1922 arc_buf_thaw(db->db_buf);
1923 }
1924 }
1925 }
1926
1927 dbuf_dirty_record_t *
1928 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1929 {
1930 dnode_t *dn;
1931 objset_t *os;
1932 dbuf_dirty_record_t *dr, *dr_next, *dr_head;
1933 int txgoff = tx->tx_txg & TXG_MASK;
1934 boolean_t drop_struct_rwlock = B_FALSE;
1935
1936 ASSERT(tx->tx_txg != 0);
1937 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1938 DMU_TX_DIRTY_BUF(tx, db);
1939
1940 DB_DNODE_ENTER(db);
1941 dn = DB_DNODE(db);
1942 /*
1943 * Shouldn't dirty a regular buffer in syncing context. Private
1944 * objects may be dirtied in syncing context, but only if they
1945 * were already pre-dirtied in open context.
1946 */
1947 #ifdef DEBUG
1948 if (dn->dn_objset->os_dsl_dataset != NULL) {
1949 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1950 RW_READER, FTAG);
1951 }
1952 ASSERT(!dmu_tx_is_syncing(tx) ||
1953 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1954 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1955 dn->dn_objset->os_dsl_dataset == NULL);
1956 if (dn->dn_objset->os_dsl_dataset != NULL)
1957 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1958 #endif
1959 /*
1960 * We make this assert for private objects as well, but after we
1961 * check if we're already dirty. They are allowed to re-dirty
1962 * in syncing context.
1963 */
1964 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1965 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1966 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1967
1968 mutex_enter(&db->db_mtx);
1969 /*
1970 * XXX make this true for indirects too? The problem is that
1971 * transactions created with dmu_tx_create_assigned() from
1972 * syncing context don't bother holding ahead.
1973 */
1974 ASSERT(db->db_level != 0 ||
1975 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1976 db->db_state == DB_NOFILL);
1977
1978 mutex_enter(&dn->dn_mtx);
1979 /*
1980 * Don't set dirtyctx to SYNC if we're just modifying this as we
1981 * initialize the objset.
1982 */
1983 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1984 if (dn->dn_objset->os_dsl_dataset != NULL) {
1985 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1986 RW_READER, FTAG);
1987 }
1988 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1989 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1990 DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1991 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1992 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1993 }
1994 if (dn->dn_objset->os_dsl_dataset != NULL) {
1995 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1996 FTAG);
1997 }
1998 }
1999
2000 if (tx->tx_txg > dn->dn_dirty_txg)
2001 dn->dn_dirty_txg = tx->tx_txg;
2002 mutex_exit(&dn->dn_mtx);
2003
2004 if (db->db_blkid == DMU_SPILL_BLKID)
2005 dn->dn_have_spill = B_TRUE;
2006
2007 /*
2008 * If this buffer is already dirty, we're done.
2009 */
2010 dr_head = list_head(&db->db_dirty_records);
2011 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2012 db->db.db_object == DMU_META_DNODE_OBJECT);
2013 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2014 if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2015 DB_DNODE_EXIT(db);
2016
2017 dbuf_redirty(dr_next);
2018 mutex_exit(&db->db_mtx);
2019 return (dr_next);
2020 }
2021
2022 /*
2023 * Only valid if not already dirty.
2024 */
2025 ASSERT(dn->dn_object == 0 ||
2026 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2027 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2028
2029 ASSERT3U(dn->dn_nlevels, >, db->db_level);
2030
2031 /*
2032 * We should only be dirtying in syncing context if it's the
2033 * mos or we're initializing the os or it's a special object.
2034 * However, we are allowed to dirty in syncing context provided
2035 * we already dirtied it in open context. Hence we must make
2036 * this assertion only if we're not already dirty.
2037 */
2038 os = dn->dn_objset;
2039 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2040 #ifdef DEBUG
2041 if (dn->dn_objset->os_dsl_dataset != NULL)
2042 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2043 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2044 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2045 if (dn->dn_objset->os_dsl_dataset != NULL)
2046 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2047 #endif
2048 ASSERT(db->db.db_size != 0);
2049
2050 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2051
2052 if (db->db_blkid != DMU_BONUS_BLKID) {
2053 dmu_objset_willuse_space(os, db->db.db_size, tx);
2054 }
2055
2056 /*
2057 * If this buffer is dirty in an old transaction group we need
2058 * to make a copy of it so that the changes we make in this
2059 * transaction group won't leak out when we sync the older txg.
2060 */
2061 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2062 list_link_init(&dr->dr_dirty_node);
2063 list_link_init(&dr->dr_dbuf_node);
2064 if (db->db_level == 0) {
2065 void *data_old = db->db_buf;
2066
2067 if (db->db_state != DB_NOFILL) {
2068 if (db->db_blkid == DMU_BONUS_BLKID) {
2069 dbuf_fix_old_data(db, tx->tx_txg);
2070 data_old = db->db.db_data;
2071 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2072 /*
2073 * Release the data buffer from the cache so
2074 * that we can modify it without impacting
2075 * possible other users of this cached data
2076 * block. Note that indirect blocks and
2077 * private objects are not released until the
2078 * syncing state (since they are only modified
2079 * then).
2080 */
2081 arc_release(db->db_buf, db);
2082 dbuf_fix_old_data(db, tx->tx_txg);
2083 data_old = db->db_buf;
2084 }
2085 ASSERT(data_old != NULL);
2086 }
2087 dr->dt.dl.dr_data = data_old;
2088 } else {
2089 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2090 list_create(&dr->dt.di.dr_children,
2091 sizeof (dbuf_dirty_record_t),
2092 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2093 }
2094 if (db->db_blkid != DMU_BONUS_BLKID)
2095 dr->dr_accounted = db->db.db_size;
2096 dr->dr_dbuf = db;
2097 dr->dr_txg = tx->tx_txg;
2098 list_insert_before(&db->db_dirty_records, dr_next, dr);
2099
2100 /*
2101 * We could have been freed_in_flight between the dbuf_noread
2102 * and dbuf_dirty. We win, as though the dbuf_noread() had
2103 * happened after the free.
2104 */
2105 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2106 db->db_blkid != DMU_SPILL_BLKID) {
2107 mutex_enter(&dn->dn_mtx);
2108 if (dn->dn_free_ranges[txgoff] != NULL) {
2109 range_tree_clear(dn->dn_free_ranges[txgoff],
2110 db->db_blkid, 1);
2111 }
2112 mutex_exit(&dn->dn_mtx);
2113 db->db_freed_in_flight = FALSE;
2114 }
2115
2116 /*
2117 * This buffer is now part of this txg
2118 */
2119 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2120 db->db_dirtycnt += 1;
2121 ASSERT3U(db->db_dirtycnt, <=, 3);
2122
2123 mutex_exit(&db->db_mtx);
2124
2125 if (db->db_blkid == DMU_BONUS_BLKID ||
2126 db->db_blkid == DMU_SPILL_BLKID) {
2127 mutex_enter(&dn->dn_mtx);
2128 ASSERT(!list_link_active(&dr->dr_dirty_node));
2129 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2130 mutex_exit(&dn->dn_mtx);
2131 dnode_setdirty(dn, tx);
2132 DB_DNODE_EXIT(db);
2133 return (dr);
2134 }
2135
2136 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2137 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2138 drop_struct_rwlock = B_TRUE;
2139 }
2140
2141 /*
2142 * If we are overwriting a dedup BP, then unless it is snapshotted,
2143 * when we get to syncing context we will need to decrement its
2144 * refcount in the DDT. Prefetch the relevant DDT block so that
2145 * syncing context won't have to wait for the i/o.
2146 */
2147 if (db->db_blkptr != NULL) {
2148 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2149 ddt_prefetch(os->os_spa, db->db_blkptr);
2150 dmu_buf_unlock_parent(db, dblt, FTAG);
2151 }
2152
2153 /*
2154 * We need to hold the dn_struct_rwlock to make this assertion,
2155 * because it protects dn_phys / dn_next_nlevels from changing.
2156 */
2157 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2158 dn->dn_phys->dn_nlevels > db->db_level ||
2159 dn->dn_next_nlevels[txgoff] > db->db_level ||
2160 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2161 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2162
2163
2164 if (db->db_level == 0) {
2165 ASSERT(!db->db_objset->os_raw_receive ||
2166 dn->dn_maxblkid >= db->db_blkid);
2167 dnode_new_blkid(dn, db->db_blkid, tx,
2168 drop_struct_rwlock, B_FALSE);
2169 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2170 }
2171
2172 if (db->db_level+1 < dn->dn_nlevels) {
2173 dmu_buf_impl_t *parent = db->db_parent;
2174 dbuf_dirty_record_t *di;
2175 int parent_held = FALSE;
2176
2177 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2178 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2179 parent = dbuf_hold_level(dn, db->db_level + 1,
2180 db->db_blkid >> epbs, FTAG);
2181 ASSERT(parent != NULL);
2182 parent_held = TRUE;
2183 }
2184 if (drop_struct_rwlock)
2185 rw_exit(&dn->dn_struct_rwlock);
2186 ASSERT3U(db->db_level + 1, ==, parent->db_level);
2187 di = dbuf_dirty(parent, tx);
2188 if (parent_held)
2189 dbuf_rele(parent, FTAG);
2190
2191 mutex_enter(&db->db_mtx);
2192 /*
2193 * Since we've dropped the mutex, it's possible that
2194 * dbuf_undirty() might have changed this out from under us.
2195 */
2196 if (list_head(&db->db_dirty_records) == dr ||
2197 dn->dn_object == DMU_META_DNODE_OBJECT) {
2198 mutex_enter(&di->dt.di.dr_mtx);
2199 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2200 ASSERT(!list_link_active(&dr->dr_dirty_node));
2201 list_insert_tail(&di->dt.di.dr_children, dr);
2202 mutex_exit(&di->dt.di.dr_mtx);
2203 dr->dr_parent = di;
2204 }
2205 mutex_exit(&db->db_mtx);
2206 } else {
2207 ASSERT(db->db_level + 1 == dn->dn_nlevels);
2208 ASSERT(db->db_blkid < dn->dn_nblkptr);
2209 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2210 mutex_enter(&dn->dn_mtx);
2211 ASSERT(!list_link_active(&dr->dr_dirty_node));
2212 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2213 mutex_exit(&dn->dn_mtx);
2214 if (drop_struct_rwlock)
2215 rw_exit(&dn->dn_struct_rwlock);
2216 }
2217
2218 dnode_setdirty(dn, tx);
2219 DB_DNODE_EXIT(db);
2220 return (dr);
2221 }
2222
2223 /*
2224 * Undirty a buffer in the transaction group referenced by the given
2225 * transaction. Return whether this evicted the dbuf.
2226 */
2227 static boolean_t
2228 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2229 {
2230 dnode_t *dn;
2231 uint64_t txg = tx->tx_txg;
2232 dbuf_dirty_record_t *dr;
2233
2234 ASSERT(txg != 0);
2235
2236 /*
2237 * Due to our use of dn_nlevels below, this can only be called
2238 * in open context, unless we are operating on the MOS.
2239 * From syncing context, dn_nlevels may be different from the
2240 * dn_nlevels used when dbuf was dirtied.
2241 */
2242 ASSERT(db->db_objset ==
2243 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2244 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2245 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2246 ASSERT0(db->db_level);
2247 ASSERT(MUTEX_HELD(&db->db_mtx));
2248
2249 /*
2250 * If this buffer is not dirty, we're done.
2251 */
2252 dr = dbuf_find_dirty_eq(db, txg);
2253 if (dr == NULL)
2254 return (B_FALSE);
2255 ASSERT(dr->dr_dbuf == db);
2256
2257 DB_DNODE_ENTER(db);
2258 dn = DB_DNODE(db);
2259
2260 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2261
2262 ASSERT(db->db.db_size != 0);
2263
2264 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2265 dr->dr_accounted, txg);
2266
2267 list_remove(&db->db_dirty_records, dr);
2268
2269 /*
2270 * Note that there are three places in dbuf_dirty()
2271 * where this dirty record may be put on a list.
2272 * Make sure to do a list_remove corresponding to
2273 * every one of those list_insert calls.
2274 */
2275 if (dr->dr_parent) {
2276 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2277 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2278 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2279 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2280 db->db_level + 1 == dn->dn_nlevels) {
2281 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2282 mutex_enter(&dn->dn_mtx);
2283 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2284 mutex_exit(&dn->dn_mtx);
2285 }
2286 DB_DNODE_EXIT(db);
2287
2288 if (db->db_state != DB_NOFILL) {
2289 dbuf_unoverride(dr);
2290
2291 ASSERT(db->db_buf != NULL);
2292 ASSERT(dr->dt.dl.dr_data != NULL);
2293 if (dr->dt.dl.dr_data != db->db_buf)
2294 arc_buf_destroy(dr->dt.dl.dr_data, db);
2295 }
2296
2297 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2298
2299 ASSERT(db->db_dirtycnt > 0);
2300 db->db_dirtycnt -= 1;
2301
2302 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2303 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2304 dbuf_destroy(db);
2305 return (B_TRUE);
2306 }
2307
2308 return (B_FALSE);
2309 }
2310
2311 static void
2312 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2313 {
2314 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2315
2316 ASSERT(tx->tx_txg != 0);
2317 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2318
2319 /*
2320 * Quick check for dirtiness. For already dirty blocks, this
2321 * reduces runtime of this function by >90%, and overall performance
2322 * by 50% for some workloads (e.g. file deletion with indirect blocks
2323 * cached).
2324 */
2325 mutex_enter(&db->db_mtx);
2326
2327 if (db->db_state == DB_CACHED) {
2328 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2329 /*
2330 * It's possible that it is already dirty but not cached,
2331 * because there are some calls to dbuf_dirty() that don't
2332 * go through dmu_buf_will_dirty().
2333 */
2334 if (dr != NULL) {
2335 /* This dbuf is already dirty and cached. */
2336 dbuf_redirty(dr);
2337 mutex_exit(&db->db_mtx);
2338 return;
2339 }
2340 }
2341 mutex_exit(&db->db_mtx);
2342
2343 DB_DNODE_ENTER(db);
2344 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2345 flags |= DB_RF_HAVESTRUCT;
2346 DB_DNODE_EXIT(db);
2347 (void) dbuf_read(db, NULL, flags);
2348 (void) dbuf_dirty(db, tx);
2349 }
2350
2351 void
2352 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2353 {
2354 dmu_buf_will_dirty_impl(db_fake,
2355 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2356 }
2357
2358 boolean_t
2359 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2360 {
2361 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2362 dbuf_dirty_record_t *dr;
2363
2364 mutex_enter(&db->db_mtx);
2365 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2366 mutex_exit(&db->db_mtx);
2367 return (dr != NULL);
2368 }
2369
2370 void
2371 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2372 {
2373 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2374
2375 db->db_state = DB_NOFILL;
2376
2377 dmu_buf_will_fill(db_fake, tx);
2378 }
2379
2380 void
2381 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2382 {
2383 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2384
2385 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2386 ASSERT(tx->tx_txg != 0);
2387 ASSERT(db->db_level == 0);
2388 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2389
2390 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2391 dmu_tx_private_ok(tx));
2392
2393 dbuf_noread(db);
2394 (void) dbuf_dirty(db, tx);
2395 }
2396
2397 /*
2398 * This function is effectively the same as dmu_buf_will_dirty(), but
2399 * indicates the caller expects raw encrypted data in the db, and provides
2400 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2401 * blkptr_t when this dbuf is written. This is only used for blocks of
2402 * dnodes, during raw receive.
2403 */
2404 void
2405 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2406 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2407 {
2408 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2409 dbuf_dirty_record_t *dr;
2410
2411 /*
2412 * dr_has_raw_params is only processed for blocks of dnodes
2413 * (see dbuf_sync_dnode_leaf_crypt()).
2414 */
2415 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2416 ASSERT3U(db->db_level, ==, 0);
2417 ASSERT(db->db_objset->os_raw_receive);
2418
2419 dmu_buf_will_dirty_impl(db_fake,
2420 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2421
2422 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2423
2424 ASSERT3P(dr, !=, NULL);
2425
2426 dr->dt.dl.dr_has_raw_params = B_TRUE;
2427 dr->dt.dl.dr_byteorder = byteorder;
2428 bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN);
2429 bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN);
2430 bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN);
2431 }
2432
2433 static void
2434 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2435 {
2436 struct dirty_leaf *dl;
2437 dbuf_dirty_record_t *dr;
2438
2439 dr = list_head(&db->db_dirty_records);
2440 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2441 dl = &dr->dt.dl;
2442 dl->dr_overridden_by = *bp;
2443 dl->dr_override_state = DR_OVERRIDDEN;
2444 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2445 }
2446
2447 /* ARGSUSED */
2448 void
2449 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx)
2450 {
2451 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2452 mutex_enter(&db->db_mtx);
2453 DBUF_VERIFY(db);
2454
2455 if (db->db_state == DB_FILL) {
2456 if (db->db_level == 0 && db->db_freed_in_flight) {
2457 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2458 /* we were freed while filling */
2459 /* XXX dbuf_undirty? */
2460 bzero(db->db.db_data, db->db.db_size);
2461 db->db_freed_in_flight = FALSE;
2462 }
2463 db->db_state = DB_CACHED;
2464 cv_broadcast(&db->db_changed);
2465 }
2466 mutex_exit(&db->db_mtx);
2467 }
2468
2469 void
2470 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2471 bp_embedded_type_t etype, enum zio_compress comp,
2472 int uncompressed_size, int compressed_size, int byteorder,
2473 dmu_tx_t *tx)
2474 {
2475 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2476 struct dirty_leaf *dl;
2477 dmu_object_type_t type;
2478 dbuf_dirty_record_t *dr;
2479
2480 if (etype == BP_EMBEDDED_TYPE_DATA) {
2481 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2482 SPA_FEATURE_EMBEDDED_DATA));
2483 }
2484
2485 DB_DNODE_ENTER(db);
2486 type = DB_DNODE(db)->dn_type;
2487 DB_DNODE_EXIT(db);
2488
2489 ASSERT0(db->db_level);
2490 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2491
2492 dmu_buf_will_not_fill(dbuf, tx);
2493
2494 dr = list_head(&db->db_dirty_records);
2495 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2496 dl = &dr->dt.dl;
2497 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2498 data, comp, uncompressed_size, compressed_size);
2499 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2500 BP_SET_TYPE(&dl->dr_overridden_by, type);
2501 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2502 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2503
2504 dl->dr_override_state = DR_OVERRIDDEN;
2505 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2506 }
2507
2508 void
2509 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
2510 {
2511 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2512 dmu_object_type_t type;
2513 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
2514 SPA_FEATURE_REDACTED_DATASETS));
2515
2516 DB_DNODE_ENTER(db);
2517 type = DB_DNODE(db)->dn_type;
2518 DB_DNODE_EXIT(db);
2519
2520 ASSERT0(db->db_level);
2521 dmu_buf_will_not_fill(dbuf, tx);
2522
2523 blkptr_t bp = { { { {0} } } };
2524 BP_SET_TYPE(&bp, type);
2525 BP_SET_LEVEL(&bp, 0);
2526 BP_SET_BIRTH(&bp, tx->tx_txg, 0);
2527 BP_SET_REDACTED(&bp);
2528 BPE_SET_LSIZE(&bp, dbuf->db_size);
2529
2530 dbuf_override_impl(db, &bp, tx);
2531 }
2532
2533 /*
2534 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2535 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2536 */
2537 void
2538 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2539 {
2540 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2541 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2542 ASSERT(db->db_level == 0);
2543 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2544 ASSERT(buf != NULL);
2545 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
2546 ASSERT(tx->tx_txg != 0);
2547
2548 arc_return_buf(buf, db);
2549 ASSERT(arc_released(buf));
2550
2551 mutex_enter(&db->db_mtx);
2552
2553 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2554 cv_wait(&db->db_changed, &db->db_mtx);
2555
2556 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2557
2558 if (db->db_state == DB_CACHED &&
2559 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2560 /*
2561 * In practice, we will never have a case where we have an
2562 * encrypted arc buffer while additional holds exist on the
2563 * dbuf. We don't handle this here so we simply assert that
2564 * fact instead.
2565 */
2566 ASSERT(!arc_is_encrypted(buf));
2567 mutex_exit(&db->db_mtx);
2568 (void) dbuf_dirty(db, tx);
2569 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2570 arc_buf_destroy(buf, db);
2571 xuio_stat_wbuf_copied();
2572 return;
2573 }
2574
2575 xuio_stat_wbuf_nocopy();
2576 if (db->db_state == DB_CACHED) {
2577 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2578
2579 ASSERT(db->db_buf != NULL);
2580 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2581 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2582
2583 if (!arc_released(db->db_buf)) {
2584 ASSERT(dr->dt.dl.dr_override_state ==
2585 DR_OVERRIDDEN);
2586 arc_release(db->db_buf, db);
2587 }
2588 dr->dt.dl.dr_data = buf;
2589 arc_buf_destroy(db->db_buf, db);
2590 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2591 arc_release(db->db_buf, db);
2592 arc_buf_destroy(db->db_buf, db);
2593 }
2594 db->db_buf = NULL;
2595 }
2596 ASSERT(db->db_buf == NULL);
2597 dbuf_set_data(db, buf);
2598 db->db_state = DB_FILL;
2599 mutex_exit(&db->db_mtx);
2600 (void) dbuf_dirty(db, tx);
2601 dmu_buf_fill_done(&db->db, tx);
2602 }
2603
2604 void
2605 dbuf_destroy(dmu_buf_impl_t *db)
2606 {
2607 dnode_t *dn;
2608 dmu_buf_impl_t *parent = db->db_parent;
2609 dmu_buf_impl_t *dndb;
2610
2611 ASSERT(MUTEX_HELD(&db->db_mtx));
2612 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2613
2614 if (db->db_buf != NULL) {
2615 arc_buf_destroy(db->db_buf, db);
2616 db->db_buf = NULL;
2617 }
2618
2619 if (db->db_blkid == DMU_BONUS_BLKID) {
2620 int slots = DB_DNODE(db)->dn_num_slots;
2621 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2622 if (db->db.db_data != NULL) {
2623 kmem_free(db->db.db_data, bonuslen);
2624 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2625 db->db_state = DB_UNCACHED;
2626 }
2627 }
2628
2629 dbuf_clear_data(db);
2630
2631 if (multilist_link_active(&db->db_cache_link)) {
2632 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2633 db->db_caching_status == DB_DBUF_METADATA_CACHE);
2634
2635 multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
2636 (void) zfs_refcount_remove_many(
2637 &dbuf_caches[db->db_caching_status].size,
2638 db->db.db_size, db);
2639
2640 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
2641 DBUF_STAT_BUMPDOWN(metadata_cache_count);
2642 } else {
2643 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2644 DBUF_STAT_BUMPDOWN(cache_count);
2645 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2646 db->db.db_size);
2647 }
2648 db->db_caching_status = DB_NO_CACHE;
2649 }
2650
2651 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2652 ASSERT(db->db_data_pending == NULL);
2653
2654 db->db_state = DB_EVICTING;
2655 db->db_blkptr = NULL;
2656
2657 /*
2658 * Now that db_state is DB_EVICTING, nobody else can find this via
2659 * the hash table. We can now drop db_mtx, which allows us to
2660 * acquire the dn_dbufs_mtx.
2661 */
2662 mutex_exit(&db->db_mtx);
2663
2664 DB_DNODE_ENTER(db);
2665 dn = DB_DNODE(db);
2666 dndb = dn->dn_dbuf;
2667 if (db->db_blkid != DMU_BONUS_BLKID) {
2668 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2669 if (needlock)
2670 mutex_enter_nested(&dn->dn_dbufs_mtx,
2671 NESTED_SINGLE);
2672 avl_remove(&dn->dn_dbufs, db);
2673 atomic_dec_32(&dn->dn_dbufs_count);
2674 membar_producer();
2675 DB_DNODE_EXIT(db);
2676 if (needlock)
2677 mutex_exit(&dn->dn_dbufs_mtx);
2678 /*
2679 * Decrementing the dbuf count means that the hold corresponding
2680 * to the removed dbuf is no longer discounted in dnode_move(),
2681 * so the dnode cannot be moved until after we release the hold.
2682 * The membar_producer() ensures visibility of the decremented
2683 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2684 * release any lock.
2685 */
2686 mutex_enter(&dn->dn_mtx);
2687 dnode_rele_and_unlock(dn, db, B_TRUE);
2688 db->db_dnode_handle = NULL;
2689
2690 dbuf_hash_remove(db);
2691 } else {
2692 DB_DNODE_EXIT(db);
2693 }
2694
2695 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2696
2697 db->db_parent = NULL;
2698
2699 ASSERT(db->db_buf == NULL);
2700 ASSERT(db->db.db_data == NULL);
2701 ASSERT(db->db_hash_next == NULL);
2702 ASSERT(db->db_blkptr == NULL);
2703 ASSERT(db->db_data_pending == NULL);
2704 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
2705 ASSERT(!multilist_link_active(&db->db_cache_link));
2706
2707 kmem_cache_free(dbuf_kmem_cache, db);
2708 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2709
2710 /*
2711 * If this dbuf is referenced from an indirect dbuf,
2712 * decrement the ref count on the indirect dbuf.
2713 */
2714 if (parent && parent != dndb) {
2715 mutex_enter(&parent->db_mtx);
2716 dbuf_rele_and_unlock(parent, db, B_TRUE);
2717 }
2718 }
2719
2720 /*
2721 * Note: While bpp will always be updated if the function returns success,
2722 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2723 * this happens when the dnode is the meta-dnode, or {user|group|project}used
2724 * object.
2725 */
2726 __attribute__((always_inline))
2727 static inline int
2728 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2729 dmu_buf_impl_t **parentp, blkptr_t **bpp)
2730 {
2731 *parentp = NULL;
2732 *bpp = NULL;
2733
2734 ASSERT(blkid != DMU_BONUS_BLKID);
2735
2736 if (blkid == DMU_SPILL_BLKID) {
2737 mutex_enter(&dn->dn_mtx);
2738 if (dn->dn_have_spill &&
2739 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2740 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2741 else
2742 *bpp = NULL;
2743 dbuf_add_ref(dn->dn_dbuf, NULL);
2744 *parentp = dn->dn_dbuf;
2745 mutex_exit(&dn->dn_mtx);
2746 return (0);
2747 }
2748
2749 int nlevels =
2750 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2751 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2752
2753 ASSERT3U(level * epbs, <, 64);
2754 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2755 /*
2756 * This assertion shouldn't trip as long as the max indirect block size
2757 * is less than 1M. The reason for this is that up to that point,
2758 * the number of levels required to address an entire object with blocks
2759 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2760 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2761 * (i.e. we can address the entire object), objects will all use at most
2762 * N-1 levels and the assertion won't overflow. However, once epbs is
2763 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2764 * enough to address an entire object, so objects will have 5 levels,
2765 * but then this assertion will overflow.
2766 *
2767 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2768 * need to redo this logic to handle overflows.
2769 */
2770 ASSERT(level >= nlevels ||
2771 ((nlevels - level - 1) * epbs) +
2772 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2773 if (level >= nlevels ||
2774 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2775 ((nlevels - level - 1) * epbs)) ||
2776 (fail_sparse &&
2777 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2778 /* the buffer has no parent yet */
2779 return (SET_ERROR(ENOENT));
2780 } else if (level < nlevels-1) {
2781 /* this block is referenced from an indirect block */
2782 int err;
2783
2784 err = dbuf_hold_impl(dn, level + 1,
2785 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2786
2787 if (err)
2788 return (err);
2789 err = dbuf_read(*parentp, NULL,
2790 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2791 if (err) {
2792 dbuf_rele(*parentp, NULL);
2793 *parentp = NULL;
2794 return (err);
2795 }
2796 rw_enter(&(*parentp)->db_rwlock, RW_READER);
2797 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2798 (blkid & ((1ULL << epbs) - 1));
2799 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2800 ASSERT(BP_IS_HOLE(*bpp));
2801 rw_exit(&(*parentp)->db_rwlock);
2802 return (0);
2803 } else {
2804 /* the block is referenced from the dnode */
2805 ASSERT3U(level, ==, nlevels-1);
2806 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2807 blkid < dn->dn_phys->dn_nblkptr);
2808 if (dn->dn_dbuf) {
2809 dbuf_add_ref(dn->dn_dbuf, NULL);
2810 *parentp = dn->dn_dbuf;
2811 }
2812 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2813 return (0);
2814 }
2815 }
2816
2817 static dmu_buf_impl_t *
2818 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2819 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2820 {
2821 objset_t *os = dn->dn_objset;
2822 dmu_buf_impl_t *db, *odb;
2823
2824 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2825 ASSERT(dn->dn_type != DMU_OT_NONE);
2826
2827 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2828
2829 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
2830 offsetof(dbuf_dirty_record_t, dr_dbuf_node));
2831
2832 db->db_objset = os;
2833 db->db.db_object = dn->dn_object;
2834 db->db_level = level;
2835 db->db_blkid = blkid;
2836 db->db_dirtycnt = 0;
2837 db->db_dnode_handle = dn->dn_handle;
2838 db->db_parent = parent;
2839 db->db_blkptr = blkptr;
2840
2841 db->db_user = NULL;
2842 db->db_user_immediate_evict = FALSE;
2843 db->db_freed_in_flight = FALSE;
2844 db->db_pending_evict = FALSE;
2845
2846 if (blkid == DMU_BONUS_BLKID) {
2847 ASSERT3P(parent, ==, dn->dn_dbuf);
2848 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
2849 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2850 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2851 db->db.db_offset = DMU_BONUS_BLKID;
2852 db->db_state = DB_UNCACHED;
2853 db->db_caching_status = DB_NO_CACHE;
2854 /* the bonus dbuf is not placed in the hash table */
2855 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2856 return (db);
2857 } else if (blkid == DMU_SPILL_BLKID) {
2858 db->db.db_size = (blkptr != NULL) ?
2859 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2860 db->db.db_offset = 0;
2861 } else {
2862 int blocksize =
2863 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2864 db->db.db_size = blocksize;
2865 db->db.db_offset = db->db_blkid * blocksize;
2866 }
2867
2868 /*
2869 * Hold the dn_dbufs_mtx while we get the new dbuf
2870 * in the hash table *and* added to the dbufs list.
2871 * This prevents a possible deadlock with someone
2872 * trying to look up this dbuf before it's added to the
2873 * dn_dbufs list.
2874 */
2875 mutex_enter(&dn->dn_dbufs_mtx);
2876 db->db_state = DB_EVICTING;
2877 if ((odb = dbuf_hash_insert(db)) != NULL) {
2878 /* someone else inserted it first */
2879 kmem_cache_free(dbuf_kmem_cache, db);
2880 mutex_exit(&dn->dn_dbufs_mtx);
2881 DBUF_STAT_BUMP(hash_insert_race);
2882 return (odb);
2883 }
2884 avl_add(&dn->dn_dbufs, db);
2885
2886 db->db_state = DB_UNCACHED;
2887 db->db_caching_status = DB_NO_CACHE;
2888 mutex_exit(&dn->dn_dbufs_mtx);
2889 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2890
2891 if (parent && parent != dn->dn_dbuf)
2892 dbuf_add_ref(parent, db);
2893
2894 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2895 zfs_refcount_count(&dn->dn_holds) > 0);
2896 (void) zfs_refcount_add(&dn->dn_holds, db);
2897 atomic_inc_32(&dn->dn_dbufs_count);
2898
2899 dprintf_dbuf(db, "db=%p\n", db);
2900
2901 return (db);
2902 }
2903
2904 /*
2905 * This function returns a block pointer and information about the object,
2906 * given a dnode and a block. This is a publicly accessible version of
2907 * dbuf_findbp that only returns some information, rather than the
2908 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
2909 * should be locked as (at least) a reader.
2910 */
2911 int
2912 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
2913 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
2914 {
2915 dmu_buf_impl_t *dbp = NULL;
2916 blkptr_t *bp2;
2917 int err = 0;
2918 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2919
2920 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
2921 if (err == 0) {
2922 *bp = *bp2;
2923 if (dbp != NULL)
2924 dbuf_rele(dbp, NULL);
2925 if (datablkszsec != NULL)
2926 *datablkszsec = dn->dn_phys->dn_datablkszsec;
2927 if (indblkshift != NULL)
2928 *indblkshift = dn->dn_phys->dn_indblkshift;
2929 }
2930
2931 return (err);
2932 }
2933
2934 typedef struct dbuf_prefetch_arg {
2935 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2936 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2937 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2938 int dpa_curlevel; /* The current level that we're reading */
2939 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2940 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2941 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2942 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2943 } dbuf_prefetch_arg_t;
2944
2945 /*
2946 * Actually issue the prefetch read for the block given.
2947 */
2948 static void
2949 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2950 {
2951 ASSERT(!BP_IS_REDACTED(bp) ||
2952 dsl_dataset_feature_is_active(
2953 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
2954 SPA_FEATURE_REDACTED_DATASETS));
2955
2956 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2957 return;
2958
2959 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2960 arc_flags_t aflags =
2961 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2962
2963 /* dnodes are always read as raw and then converted later */
2964 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
2965 dpa->dpa_curlevel == 0)
2966 zio_flags |= ZIO_FLAG_RAW;
2967
2968 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2969 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2970 ASSERT(dpa->dpa_zio != NULL);
2971 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2972 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
2973 }
2974
2975 /*
2976 * Called when an indirect block above our prefetch target is read in. This
2977 * will either read in the next indirect block down the tree or issue the actual
2978 * prefetch if the next block down is our target.
2979 */
2980 static void
2981 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
2982 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
2983 {
2984 dbuf_prefetch_arg_t *dpa = private;
2985
2986 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2987 ASSERT3S(dpa->dpa_curlevel, >, 0);
2988
2989 if (abuf == NULL) {
2990 ASSERT(zio == NULL || zio->io_error != 0);
2991 kmem_free(dpa, sizeof (*dpa));
2992 return;
2993 }
2994 ASSERT(zio == NULL || zio->io_error == 0);
2995
2996 /*
2997 * The dpa_dnode is only valid if we are called with a NULL
2998 * zio. This indicates that the arc_read() returned without
2999 * first calling zio_read() to issue a physical read. Once
3000 * a physical read is made the dpa_dnode must be invalidated
3001 * as the locks guarding it may have been dropped. If the
3002 * dpa_dnode is still valid, then we want to add it to the dbuf
3003 * cache. To do so, we must hold the dbuf associated with the block
3004 * we just prefetched, read its contents so that we associate it
3005 * with an arc_buf_t, and then release it.
3006 */
3007 if (zio != NULL) {
3008 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3009 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3010 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3011 } else {
3012 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3013 }
3014 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3015
3016 dpa->dpa_dnode = NULL;
3017 } else if (dpa->dpa_dnode != NULL) {
3018 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3019 (dpa->dpa_epbs * (dpa->dpa_curlevel -
3020 dpa->dpa_zb.zb_level));
3021 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3022 dpa->dpa_curlevel, curblkid, FTAG);
3023 if (db == NULL) {
3024 kmem_free(dpa, sizeof (*dpa));
3025 arc_buf_destroy(abuf, private);
3026 return;
3027 }
3028
3029 (void) dbuf_read(db, NULL,
3030 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
3031 dbuf_rele(db, FTAG);
3032 }
3033
3034 dpa->dpa_curlevel--;
3035 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3036 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3037 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3038 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3039
3040 ASSERT(!BP_IS_REDACTED(bp) ||
3041 dsl_dataset_feature_is_active(
3042 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3043 SPA_FEATURE_REDACTED_DATASETS));
3044 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3045 kmem_free(dpa, sizeof (*dpa));
3046 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3047 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3048 dbuf_issue_final_prefetch(dpa, bp);
3049 kmem_free(dpa, sizeof (*dpa));
3050 } else {
3051 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3052 zbookmark_phys_t zb;
3053
3054 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3055 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3056 iter_aflags |= ARC_FLAG_L2CACHE;
3057
3058 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3059
3060 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3061 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3062
3063 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3064 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
3065 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3066 &iter_aflags, &zb);
3067 }
3068
3069 arc_buf_destroy(abuf, private);
3070 }
3071
3072 /*
3073 * Issue prefetch reads for the given block on the given level. If the indirect
3074 * blocks above that block are not in memory, we will read them in
3075 * asynchronously. As a result, this call never blocks waiting for a read to
3076 * complete. Note that the prefetch might fail if the dataset is encrypted and
3077 * the encryption key is unmapped before the IO completes.
3078 */
3079 void
3080 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3081 arc_flags_t aflags)
3082 {
3083 blkptr_t bp;
3084 int epbs, nlevels, curlevel;
3085 uint64_t curblkid;
3086
3087 ASSERT(blkid != DMU_BONUS_BLKID);
3088 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3089
3090 if (blkid > dn->dn_maxblkid)
3091 return;
3092
3093 if (level == 0 && dnode_block_freed(dn, blkid))
3094 return;
3095
3096 /*
3097 * This dnode hasn't been written to disk yet, so there's nothing to
3098 * prefetch.
3099 */
3100 nlevels = dn->dn_phys->dn_nlevels;
3101 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3102 return;
3103
3104 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3105 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3106 return;
3107
3108 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3109 level, blkid);
3110 if (db != NULL) {
3111 mutex_exit(&db->db_mtx);
3112 /*
3113 * This dbuf already exists. It is either CACHED, or
3114 * (we assume) about to be read or filled.
3115 */
3116 return;
3117 }
3118
3119 /*
3120 * Find the closest ancestor (indirect block) of the target block
3121 * that is present in the cache. In this indirect block, we will
3122 * find the bp that is at curlevel, curblkid.
3123 */
3124 curlevel = level;
3125 curblkid = blkid;
3126 while (curlevel < nlevels - 1) {
3127 int parent_level = curlevel + 1;
3128 uint64_t parent_blkid = curblkid >> epbs;
3129 dmu_buf_impl_t *db;
3130
3131 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3132 FALSE, TRUE, FTAG, &db) == 0) {
3133 blkptr_t *bpp = db->db_buf->b_data;
3134 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3135 dbuf_rele(db, FTAG);
3136 break;
3137 }
3138
3139 curlevel = parent_level;
3140 curblkid = parent_blkid;
3141 }
3142
3143 if (curlevel == nlevels - 1) {
3144 /* No cached indirect blocks found. */
3145 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3146 bp = dn->dn_phys->dn_blkptr[curblkid];
3147 }
3148 ASSERT(!BP_IS_REDACTED(&bp) ||
3149 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3150 SPA_FEATURE_REDACTED_DATASETS));
3151 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3152 return;
3153
3154 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3155
3156 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3157 ZIO_FLAG_CANFAIL);
3158
3159 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3160 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3161 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3162 dn->dn_object, level, blkid);
3163 dpa->dpa_curlevel = curlevel;
3164 dpa->dpa_prio = prio;
3165 dpa->dpa_aflags = aflags;
3166 dpa->dpa_spa = dn->dn_objset->os_spa;
3167 dpa->dpa_dnode = dn;
3168 dpa->dpa_epbs = epbs;
3169 dpa->dpa_zio = pio;
3170
3171 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3172 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
3173 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3174
3175 /*
3176 * If we have the indirect just above us, no need to do the asynchronous
3177 * prefetch chain; we'll just run the last step ourselves. If we're at
3178 * a higher level, though, we want to issue the prefetches for all the
3179 * indirect blocks asynchronously, so we can go on with whatever we were
3180 * doing.
3181 */
3182 if (curlevel == level) {
3183 ASSERT3U(curblkid, ==, blkid);
3184 dbuf_issue_final_prefetch(dpa, &bp);
3185 kmem_free(dpa, sizeof (*dpa));
3186 } else {
3187 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3188 zbookmark_phys_t zb;
3189
3190 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3191 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
3192 iter_aflags |= ARC_FLAG_L2CACHE;
3193
3194 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3195 dn->dn_object, curlevel, curblkid);
3196 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3197 &bp, dbuf_prefetch_indirect_done, dpa, prio,
3198 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3199 &iter_aflags, &zb);
3200 }
3201 /*
3202 * We use pio here instead of dpa_zio since it's possible that
3203 * dpa may have already been freed.
3204 */
3205 zio_nowait(pio);
3206 }
3207
3208 /*
3209 * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3210 * the case of encrypted, compressed and uncompressed buffers by
3211 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3212 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3213 *
3214 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3215 */
3216 noinline static void
3217 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3218 {
3219 dbuf_dirty_record_t *dr = db->db_data_pending;
3220 arc_buf_t *data = dr->dt.dl.dr_data;
3221 enum zio_compress compress_type = arc_get_compression(data);
3222
3223 if (arc_is_encrypted(data)) {
3224 boolean_t byteorder;
3225 uint8_t salt[ZIO_DATA_SALT_LEN];
3226 uint8_t iv[ZIO_DATA_IV_LEN];
3227 uint8_t mac[ZIO_DATA_MAC_LEN];
3228
3229 arc_get_raw_params(data, &byteorder, salt, iv, mac);
3230 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3231 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3232 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3233 compress_type));
3234 } else if (compress_type != ZIO_COMPRESS_OFF) {
3235 dbuf_set_data(db, arc_alloc_compressed_buf(
3236 dn->dn_objset->os_spa, db, arc_buf_size(data),
3237 arc_buf_lsize(data), compress_type));
3238 } else {
3239 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3240 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3241 }
3242
3243 rw_enter(&db->db_rwlock, RW_WRITER);
3244 bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
3245 rw_exit(&db->db_rwlock);
3246 }
3247
3248 /*
3249 * Returns with db_holds incremented, and db_mtx not held.
3250 * Note: dn_struct_rwlock must be held.
3251 */
3252 int
3253 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3254 boolean_t fail_sparse, boolean_t fail_uncached,
3255 void *tag, dmu_buf_impl_t **dbp)
3256 {
3257 dmu_buf_impl_t *db, *parent = NULL;
3258
3259 /* If the pool has been created, verify the tx_sync_lock is not held */
3260 spa_t *spa = dn->dn_objset->os_spa;
3261 dsl_pool_t *dp = spa->spa_dsl_pool;
3262 if (dp != NULL) {
3263 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3264 }
3265
3266 ASSERT(blkid != DMU_BONUS_BLKID);
3267 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3268 ASSERT3U(dn->dn_nlevels, >, level);
3269
3270 *dbp = NULL;
3271
3272 /* dbuf_find() returns with db_mtx held */
3273 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
3274
3275 if (db == NULL) {
3276 blkptr_t *bp = NULL;
3277 int err;
3278
3279 if (fail_uncached)
3280 return (SET_ERROR(ENOENT));
3281
3282 ASSERT3P(parent, ==, NULL);
3283 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3284 if (fail_sparse) {
3285 if (err == 0 && bp && BP_IS_HOLE(bp))
3286 err = SET_ERROR(ENOENT);
3287 if (err) {
3288 if (parent)
3289 dbuf_rele(parent, NULL);
3290 return (err);
3291 }
3292 }
3293 if (err && err != ENOENT)
3294 return (err);
3295 db = dbuf_create(dn, level, blkid, parent, bp);
3296 }
3297
3298 if (fail_uncached && db->db_state != DB_CACHED) {
3299 mutex_exit(&db->db_mtx);
3300 return (SET_ERROR(ENOENT));
3301 }
3302
3303 if (db->db_buf != NULL) {
3304 arc_buf_access(db->db_buf);
3305 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3306 }
3307
3308 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3309
3310 /*
3311 * If this buffer is currently syncing out, and we are
3312 * still referencing it from db_data, we need to make a copy
3313 * of it in case we decide we want to dirty it again in this txg.
3314 */
3315 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3316 dn->dn_object != DMU_META_DNODE_OBJECT &&
3317 db->db_state == DB_CACHED && db->db_data_pending) {
3318 dbuf_dirty_record_t *dr = db->db_data_pending;
3319 if (dr->dt.dl.dr_data == db->db_buf)
3320 dbuf_hold_copy(dn, db);
3321 }
3322
3323 if (multilist_link_active(&db->db_cache_link)) {
3324 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3325 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3326 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3327
3328 multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
3329 (void) zfs_refcount_remove_many(
3330 &dbuf_caches[db->db_caching_status].size,
3331 db->db.db_size, db);
3332
3333 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3334 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3335 } else {
3336 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3337 DBUF_STAT_BUMPDOWN(cache_count);
3338 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3339 db->db.db_size);
3340 }
3341 db->db_caching_status = DB_NO_CACHE;
3342 }
3343 (void) zfs_refcount_add(&db->db_holds, tag);
3344 DBUF_VERIFY(db);
3345 mutex_exit(&db->db_mtx);
3346
3347 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3348 if (parent)
3349 dbuf_rele(parent, NULL);
3350
3351 ASSERT3P(DB_DNODE(db), ==, dn);
3352 ASSERT3U(db->db_blkid, ==, blkid);
3353 ASSERT3U(db->db_level, ==, level);
3354 *dbp = db;
3355
3356 return (0);
3357 }
3358
3359 dmu_buf_impl_t *
3360 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
3361 {
3362 return (dbuf_hold_level(dn, 0, blkid, tag));
3363 }
3364
3365 dmu_buf_impl_t *
3366 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
3367 {
3368 dmu_buf_impl_t *db;
3369 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3370 return (err ? NULL : db);
3371 }
3372
3373 void
3374 dbuf_create_bonus(dnode_t *dn)
3375 {
3376 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3377
3378 ASSERT(dn->dn_bonus == NULL);
3379 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3380 }
3381
3382 int
3383 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3384 {
3385 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3386
3387 if (db->db_blkid != DMU_SPILL_BLKID)
3388 return (SET_ERROR(ENOTSUP));
3389 if (blksz == 0)
3390 blksz = SPA_MINBLOCKSIZE;
3391 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3392 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3393
3394 dbuf_new_size(db, blksz, tx);
3395
3396 return (0);
3397 }
3398
3399 void
3400 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3401 {
3402 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3403 }
3404
3405 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3406 void
3407 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
3408 {
3409 int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3410 VERIFY3S(holds, >, 1);
3411 }
3412
3413 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3414 boolean_t
3415 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3416 void *tag)
3417 {
3418 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3419 dmu_buf_impl_t *found_db;
3420 boolean_t result = B_FALSE;
3421
3422 if (blkid == DMU_BONUS_BLKID)
3423 found_db = dbuf_find_bonus(os, obj);
3424 else
3425 found_db = dbuf_find(os, obj, 0, blkid);
3426
3427 if (found_db != NULL) {
3428 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3429 (void) zfs_refcount_add(&db->db_holds, tag);
3430 result = B_TRUE;
3431 }
3432 mutex_exit(&found_db->db_mtx);
3433 }
3434 return (result);
3435 }
3436
3437 /*
3438 * If you call dbuf_rele() you had better not be referencing the dnode handle
3439 * unless you have some other direct or indirect hold on the dnode. (An indirect
3440 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3441 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3442 * dnode's parent dbuf evicting its dnode handles.
3443 */
3444 void
3445 dbuf_rele(dmu_buf_impl_t *db, void *tag)
3446 {
3447 mutex_enter(&db->db_mtx);
3448 dbuf_rele_and_unlock(db, tag, B_FALSE);
3449 }
3450
3451 void
3452 dmu_buf_rele(dmu_buf_t *db, void *tag)
3453 {
3454 dbuf_rele((dmu_buf_impl_t *)db, tag);
3455 }
3456
3457 /*
3458 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3459 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3460 * argument should be set if we are already in the dbuf-evicting code
3461 * path, in which case we don't want to recursively evict. This allows us to
3462 * avoid deeply nested stacks that would have a call flow similar to this:
3463 *
3464 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3465 * ^ |
3466 * | |
3467 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3468 *
3469 */
3470 void
3471 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting)
3472 {
3473 int64_t holds;
3474
3475 ASSERT(MUTEX_HELD(&db->db_mtx));
3476 DBUF_VERIFY(db);
3477
3478 /*
3479 * Remove the reference to the dbuf before removing its hold on the
3480 * dnode so we can guarantee in dnode_move() that a referenced bonus
3481 * buffer has a corresponding dnode hold.
3482 */
3483 holds = zfs_refcount_remove(&db->db_holds, tag);
3484 ASSERT(holds >= 0);
3485
3486 /*
3487 * We can't freeze indirects if there is a possibility that they
3488 * may be modified in the current syncing context.
3489 */
3490 if (db->db_buf != NULL &&
3491 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3492 arc_buf_freeze(db->db_buf);
3493 }
3494
3495 if (holds == db->db_dirtycnt &&
3496 db->db_level == 0 && db->db_user_immediate_evict)
3497 dbuf_evict_user(db);
3498
3499 if (holds == 0) {
3500 if (db->db_blkid == DMU_BONUS_BLKID) {
3501 dnode_t *dn;
3502 boolean_t evict_dbuf = db->db_pending_evict;
3503
3504 /*
3505 * If the dnode moves here, we cannot cross this
3506 * barrier until the move completes.
3507 */
3508 DB_DNODE_ENTER(db);
3509
3510 dn = DB_DNODE(db);
3511 atomic_dec_32(&dn->dn_dbufs_count);
3512
3513 /*
3514 * Decrementing the dbuf count means that the bonus
3515 * buffer's dnode hold is no longer discounted in
3516 * dnode_move(). The dnode cannot move until after
3517 * the dnode_rele() below.
3518 */
3519 DB_DNODE_EXIT(db);
3520
3521 /*
3522 * Do not reference db after its lock is dropped.
3523 * Another thread may evict it.
3524 */
3525 mutex_exit(&db->db_mtx);
3526
3527 if (evict_dbuf)
3528 dnode_evict_bonus(dn);
3529
3530 dnode_rele(dn, db);
3531 } else if (db->db_buf == NULL) {
3532 /*
3533 * This is a special case: we never associated this
3534 * dbuf with any data allocated from the ARC.
3535 */
3536 ASSERT(db->db_state == DB_UNCACHED ||
3537 db->db_state == DB_NOFILL);
3538 dbuf_destroy(db);
3539 } else if (arc_released(db->db_buf)) {
3540 /*
3541 * This dbuf has anonymous data associated with it.
3542 */
3543 dbuf_destroy(db);
3544 } else {
3545 boolean_t do_arc_evict = B_FALSE;
3546 blkptr_t bp;
3547 spa_t *spa = dmu_objset_spa(db->db_objset);
3548
3549 if (!DBUF_IS_CACHEABLE(db) &&
3550 db->db_blkptr != NULL &&
3551 !BP_IS_HOLE(db->db_blkptr) &&
3552 !BP_IS_EMBEDDED(db->db_blkptr)) {
3553 do_arc_evict = B_TRUE;
3554 bp = *db->db_blkptr;
3555 }
3556
3557 if (!DBUF_IS_CACHEABLE(db) ||
3558 db->db_pending_evict) {
3559 dbuf_destroy(db);
3560 } else if (!multilist_link_active(&db->db_cache_link)) {
3561 ASSERT3U(db->db_caching_status, ==,
3562 DB_NO_CACHE);
3563
3564 dbuf_cached_state_t dcs =
3565 dbuf_include_in_metadata_cache(db) ?
3566 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
3567 db->db_caching_status = dcs;
3568
3569 multilist_insert(dbuf_caches[dcs].cache, db);
3570 (void) zfs_refcount_add_many(
3571 &dbuf_caches[dcs].size,
3572 db->db.db_size, db);
3573
3574 if (dcs == DB_DBUF_METADATA_CACHE) {
3575 DBUF_STAT_BUMP(metadata_cache_count);
3576 DBUF_STAT_MAX(
3577 metadata_cache_size_bytes_max,
3578 zfs_refcount_count(
3579 &dbuf_caches[dcs].size));
3580 } else {
3581 DBUF_STAT_BUMP(
3582 cache_levels[db->db_level]);
3583 DBUF_STAT_BUMP(cache_count);
3584 DBUF_STAT_INCR(
3585 cache_levels_bytes[db->db_level],
3586 db->db.db_size);
3587 DBUF_STAT_MAX(cache_size_bytes_max,
3588 zfs_refcount_count(
3589 &dbuf_caches[dcs].size));
3590 }
3591 mutex_exit(&db->db_mtx);
3592
3593 if (db->db_caching_status == DB_DBUF_CACHE &&
3594 !evicting) {
3595 dbuf_evict_notify();
3596 }
3597 }
3598
3599 if (do_arc_evict)
3600 arc_freed(spa, &bp);
3601 }
3602 } else {
3603 mutex_exit(&db->db_mtx);
3604 }
3605
3606 }
3607
3608 #pragma weak dmu_buf_refcount = dbuf_refcount
3609 uint64_t
3610 dbuf_refcount(dmu_buf_impl_t *db)
3611 {
3612 return (zfs_refcount_count(&db->db_holds));
3613 }
3614
3615 uint64_t
3616 dmu_buf_user_refcount(dmu_buf_t *db_fake)
3617 {
3618 uint64_t holds;
3619 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3620
3621 mutex_enter(&db->db_mtx);
3622 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
3623 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
3624 mutex_exit(&db->db_mtx);
3625
3626 return (holds);
3627 }
3628
3629 void *
3630 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3631 dmu_buf_user_t *new_user)
3632 {
3633 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3634
3635 mutex_enter(&db->db_mtx);
3636 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3637 if (db->db_user == old_user)
3638 db->db_user = new_user;
3639 else
3640 old_user = db->db_user;
3641 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3642 mutex_exit(&db->db_mtx);
3643
3644 return (old_user);
3645 }
3646
3647 void *
3648 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3649 {
3650 return (dmu_buf_replace_user(db_fake, NULL, user));
3651 }
3652
3653 void *
3654 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3655 {
3656 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3657
3658 db->db_user_immediate_evict = TRUE;
3659 return (dmu_buf_set_user(db_fake, user));
3660 }
3661
3662 void *
3663 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3664 {
3665 return (dmu_buf_replace_user(db_fake, user, NULL));
3666 }
3667
3668 void *
3669 dmu_buf_get_user(dmu_buf_t *db_fake)
3670 {
3671 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3672
3673 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3674 return (db->db_user);
3675 }
3676
3677 void
3678 dmu_buf_user_evict_wait()
3679 {
3680 taskq_wait(dbu_evict_taskq);
3681 }
3682
3683 blkptr_t *
3684 dmu_buf_get_blkptr(dmu_buf_t *db)
3685 {
3686 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3687 return (dbi->db_blkptr);
3688 }
3689
3690 objset_t *
3691 dmu_buf_get_objset(dmu_buf_t *db)
3692 {
3693 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3694 return (dbi->db_objset);
3695 }
3696
3697 dnode_t *
3698 dmu_buf_dnode_enter(dmu_buf_t *db)
3699 {
3700 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3701 DB_DNODE_ENTER(dbi);
3702 return (DB_DNODE(dbi));
3703 }
3704
3705 void
3706 dmu_buf_dnode_exit(dmu_buf_t *db)
3707 {
3708 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3709 DB_DNODE_EXIT(dbi);
3710 }
3711
3712 static void
3713 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3714 {
3715 /* ASSERT(dmu_tx_is_syncing(tx) */
3716 ASSERT(MUTEX_HELD(&db->db_mtx));
3717
3718 if (db->db_blkptr != NULL)
3719 return;
3720
3721 if (db->db_blkid == DMU_SPILL_BLKID) {
3722 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3723 BP_ZERO(db->db_blkptr);
3724 return;
3725 }
3726 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3727 /*
3728 * This buffer was allocated at a time when there was
3729 * no available blkptrs from the dnode, or it was
3730 * inappropriate to hook it in (i.e., nlevels mismatch).
3731 */
3732 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3733 ASSERT(db->db_parent == NULL);
3734 db->db_parent = dn->dn_dbuf;
3735 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3736 DBUF_VERIFY(db);
3737 } else {
3738 dmu_buf_impl_t *parent = db->db_parent;
3739 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3740
3741 ASSERT(dn->dn_phys->dn_nlevels > 1);
3742 if (parent == NULL) {
3743 mutex_exit(&db->db_mtx);
3744 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3745 parent = dbuf_hold_level(dn, db->db_level + 1,
3746 db->db_blkid >> epbs, db);
3747 rw_exit(&dn->dn_struct_rwlock);
3748 mutex_enter(&db->db_mtx);
3749 db->db_parent = parent;
3750 }
3751 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3752 (db->db_blkid & ((1ULL << epbs) - 1));
3753 DBUF_VERIFY(db);
3754 }
3755 }
3756
3757 /*
3758 * When syncing out a blocks of dnodes, adjust the block to deal with
3759 * encryption. Normally, we make sure the block is decrypted before writing
3760 * it. If we have crypt params, then we are writing a raw (encrypted) block,
3761 * from a raw receive. In this case, set the ARC buf's crypt params so
3762 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
3763 */
3764 static void
3765 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
3766 {
3767 int err;
3768 dmu_buf_impl_t *db = dr->dr_dbuf;
3769
3770 ASSERT(MUTEX_HELD(&db->db_mtx));
3771 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
3772 ASSERT3U(db->db_level, ==, 0);
3773
3774 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
3775 zbookmark_phys_t zb;
3776
3777 /*
3778 * Unfortunately, there is currently no mechanism for
3779 * syncing context to handle decryption errors. An error
3780 * here is only possible if an attacker maliciously
3781 * changed a dnode block and updated the associated
3782 * checksums going up the block tree.
3783 */
3784 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
3785 db->db.db_object, db->db_level, db->db_blkid);
3786 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
3787 &zb, B_TRUE);
3788 if (err)
3789 panic("Invalid dnode block MAC");
3790 } else if (dr->dt.dl.dr_has_raw_params) {
3791 (void) arc_release(dr->dt.dl.dr_data, db);
3792 arc_convert_to_raw(dr->dt.dl.dr_data,
3793 dmu_objset_id(db->db_objset),
3794 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
3795 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
3796 }
3797 }
3798
3799 /*
3800 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
3801 * is critical the we not allow the compiler to inline this function in to
3802 * dbuf_sync_list() thereby drastically bloating the stack usage.
3803 */
3804 noinline static void
3805 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3806 {
3807 dmu_buf_impl_t *db = dr->dr_dbuf;
3808 dnode_t *dn;
3809 zio_t *zio;
3810
3811 ASSERT(dmu_tx_is_syncing(tx));
3812
3813 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3814
3815 mutex_enter(&db->db_mtx);
3816
3817 ASSERT(db->db_level > 0);
3818 DBUF_VERIFY(db);
3819
3820 /* Read the block if it hasn't been read yet. */
3821 if (db->db_buf == NULL) {
3822 mutex_exit(&db->db_mtx);
3823 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3824 mutex_enter(&db->db_mtx);
3825 }
3826 ASSERT3U(db->db_state, ==, DB_CACHED);
3827 ASSERT(db->db_buf != NULL);
3828
3829 DB_DNODE_ENTER(db);
3830 dn = DB_DNODE(db);
3831 /* Indirect block size must match what the dnode thinks it is. */
3832 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3833 dbuf_check_blkptr(dn, db);
3834 DB_DNODE_EXIT(db);
3835
3836 /* Provide the pending dirty record to child dbufs */
3837 db->db_data_pending = dr;
3838
3839 mutex_exit(&db->db_mtx);
3840
3841 dbuf_write(dr, db->db_buf, tx);
3842
3843 zio = dr->dr_zio;
3844 mutex_enter(&dr->dt.di.dr_mtx);
3845 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3846 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3847 mutex_exit(&dr->dt.di.dr_mtx);
3848 zio_nowait(zio);
3849 }
3850
3851 #ifdef ZFS_DEBUG
3852 /*
3853 * Verify that the size of the data in our bonus buffer does not exceed
3854 * its recorded size.
3855 *
3856 * The purpose of this verification is to catch any cases in development
3857 * where the size of a phys structure (i.e space_map_phys_t) grows and,
3858 * due to incorrect feature management, older pools expect to read more
3859 * data even though they didn't actually write it to begin with.
3860 *
3861 * For a example, this would catch an error in the feature logic where we
3862 * open an older pool and we expect to write the space map histogram of
3863 * a space map with size SPACE_MAP_SIZE_V0.
3864 */
3865 static void
3866 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
3867 {
3868 dnode_t *dn = DB_DNODE(dr->dr_dbuf);
3869
3870 /*
3871 * Encrypted bonus buffers can have data past their bonuslen.
3872 * Skip the verification of these blocks.
3873 */
3874 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
3875 return;
3876
3877 uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
3878 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
3879 ASSERT3U(bonuslen, <=, maxbonuslen);
3880
3881 arc_buf_t *datap = dr->dt.dl.dr_data;
3882 char *datap_end = ((char *)datap) + bonuslen;
3883 char *datap_max = ((char *)datap) + maxbonuslen;
3884
3885 /* ensure that everything is zero after our data */
3886 for (; datap_end < datap_max; datap_end++)
3887 ASSERT(*datap_end == 0);
3888 }
3889 #endif
3890
3891 /*
3892 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
3893 * critical the we not allow the compiler to inline this function in to
3894 * dbuf_sync_list() thereby drastically bloating the stack usage.
3895 */
3896 noinline static void
3897 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3898 {
3899 arc_buf_t **datap = &dr->dt.dl.dr_data;
3900 dmu_buf_impl_t *db = dr->dr_dbuf;
3901 dnode_t *dn;
3902 objset_t *os;
3903 uint64_t txg = tx->tx_txg;
3904
3905 ASSERT(dmu_tx_is_syncing(tx));
3906
3907 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3908
3909 mutex_enter(&db->db_mtx);
3910 /*
3911 * To be synced, we must be dirtied. But we
3912 * might have been freed after the dirty.
3913 */
3914 if (db->db_state == DB_UNCACHED) {
3915 /* This buffer has been freed since it was dirtied */
3916 ASSERT(db->db.db_data == NULL);
3917 } else if (db->db_state == DB_FILL) {
3918 /* This buffer was freed and is now being re-filled */
3919 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3920 } else {
3921 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3922 }
3923 DBUF_VERIFY(db);
3924
3925 DB_DNODE_ENTER(db);
3926 dn = DB_DNODE(db);
3927
3928 if (db->db_blkid == DMU_SPILL_BLKID) {
3929 mutex_enter(&dn->dn_mtx);
3930 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
3931 /*
3932 * In the previous transaction group, the bonus buffer
3933 * was entirely used to store the attributes for the
3934 * dnode which overrode the dn_spill field. However,
3935 * when adding more attributes to the file a spill
3936 * block was required to hold the extra attributes.
3937 *
3938 * Make sure to clear the garbage left in the dn_spill
3939 * field from the previous attributes in the bonus
3940 * buffer. Otherwise, after writing out the spill
3941 * block to the new allocated dva, it will free
3942 * the old block pointed to by the invalid dn_spill.
3943 */
3944 db->db_blkptr = NULL;
3945 }
3946 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3947 mutex_exit(&dn->dn_mtx);
3948 }
3949
3950 /*
3951 * If this is a bonus buffer, simply copy the bonus data into the
3952 * dnode. It will be written out when the dnode is synced (and it
3953 * will be synced, since it must have been dirty for dbuf_sync to
3954 * be called).
3955 */
3956 if (db->db_blkid == DMU_BONUS_BLKID) {
3957 ASSERT(*datap != NULL);
3958 ASSERT0(db->db_level);
3959 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
3960 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
3961 bcopy(*datap, DN_BONUS(dn->dn_phys),
3962 DN_MAX_BONUS_LEN(dn->dn_phys));
3963 DB_DNODE_EXIT(db);
3964
3965 #ifdef ZFS_DEBUG
3966 dbuf_sync_leaf_verify_bonus_dnode(dr);
3967 #endif
3968
3969 if (*datap != db->db.db_data) {
3970 int slots = DB_DNODE(db)->dn_num_slots;
3971 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3972 kmem_free(*datap, bonuslen);
3973 arc_space_return(bonuslen, ARC_SPACE_BONUS);
3974 }
3975 db->db_data_pending = NULL;
3976 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
3977 ASSERT(dr->dr_dbuf == db);
3978 list_remove(&db->db_dirty_records, dr);
3979 if (dr->dr_dbuf->db_level != 0) {
3980 mutex_destroy(&dr->dt.di.dr_mtx);
3981 list_destroy(&dr->dt.di.dr_children);
3982 }
3983 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3984 ASSERT(db->db_dirtycnt > 0);
3985 db->db_dirtycnt -= 1;
3986 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
3987 return;
3988 }
3989
3990 os = dn->dn_objset;
3991
3992 /*
3993 * This function may have dropped the db_mtx lock allowing a dmu_sync
3994 * operation to sneak in. As a result, we need to ensure that we
3995 * don't check the dr_override_state until we have returned from
3996 * dbuf_check_blkptr.
3997 */
3998 dbuf_check_blkptr(dn, db);
3999
4000 /*
4001 * If this buffer is in the middle of an immediate write,
4002 * wait for the synchronous IO to complete.
4003 */
4004 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4005 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4006 cv_wait(&db->db_changed, &db->db_mtx);
4007 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
4008 }
4009
4010 /*
4011 * If this is a dnode block, ensure it is appropriately encrypted
4012 * or decrypted, depending on what we are writing to it this txg.
4013 */
4014 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4015 dbuf_prepare_encrypted_dnode_leaf(dr);
4016
4017 if (db->db_state != DB_NOFILL &&
4018 dn->dn_object != DMU_META_DNODE_OBJECT &&
4019 zfs_refcount_count(&db->db_holds) > 1 &&
4020 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
4021 *datap == db->db_buf) {
4022 /*
4023 * If this buffer is currently "in use" (i.e., there
4024 * are active holds and db_data still references it),
4025 * then make a copy before we start the write so that
4026 * any modifications from the open txg will not leak
4027 * into this write.
4028 *
4029 * NOTE: this copy does not need to be made for
4030 * objects only modified in the syncing context (e.g.
4031 * DNONE_DNODE blocks).
4032 */
4033 int psize = arc_buf_size(*datap);
4034 int lsize = arc_buf_lsize(*datap);
4035 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4036 enum zio_compress compress_type = arc_get_compression(*datap);
4037
4038 if (arc_is_encrypted(*datap)) {
4039 boolean_t byteorder;
4040 uint8_t salt[ZIO_DATA_SALT_LEN];
4041 uint8_t iv[ZIO_DATA_IV_LEN];
4042 uint8_t mac[ZIO_DATA_MAC_LEN];
4043
4044 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4045 *datap = arc_alloc_raw_buf(os->os_spa, db,
4046 dmu_objset_id(os), byteorder, salt, iv, mac,
4047 dn->dn_type, psize, lsize, compress_type);
4048 } else if (compress_type != ZIO_COMPRESS_OFF) {
4049 ASSERT3U(type, ==, ARC_BUFC_DATA);
4050 *datap = arc_alloc_compressed_buf(os->os_spa, db,
4051 psize, lsize, compress_type);
4052 } else {
4053 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
4054 }
4055 bcopy(db->db.db_data, (*datap)->b_data, psize);
4056 }
4057 db->db_data_pending = dr;
4058
4059 mutex_exit(&db->db_mtx);
4060
4061 dbuf_write(dr, *datap, tx);
4062
4063 ASSERT(!list_link_active(&dr->dr_dirty_node));
4064 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4065 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4066 DB_DNODE_EXIT(db);
4067 } else {
4068 /*
4069 * Although zio_nowait() does not "wait for an IO", it does
4070 * initiate the IO. If this is an empty write it seems plausible
4071 * that the IO could actually be completed before the nowait
4072 * returns. We need to DB_DNODE_EXIT() first in case
4073 * zio_nowait() invalidates the dbuf.
4074 */
4075 DB_DNODE_EXIT(db);
4076 zio_nowait(dr->dr_zio);
4077 }
4078 }
4079
4080 void
4081 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4082 {
4083 dbuf_dirty_record_t *dr;
4084
4085 while ((dr = list_head(list))) {
4086 if (dr->dr_zio != NULL) {
4087 /*
4088 * If we find an already initialized zio then we
4089 * are processing the meta-dnode, and we have finished.
4090 * The dbufs for all dnodes are put back on the list
4091 * during processing, so that we can zio_wait()
4092 * these IOs after initiating all child IOs.
4093 */
4094 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4095 DMU_META_DNODE_OBJECT);
4096 break;
4097 }
4098 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4099 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4100 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4101 }
4102 list_remove(list, dr);
4103 if (dr->dr_dbuf->db_level > 0)
4104 dbuf_sync_indirect(dr, tx);
4105 else
4106 dbuf_sync_leaf(dr, tx);
4107 }
4108 }
4109
4110 /* ARGSUSED */
4111 static void
4112 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4113 {
4114 dmu_buf_impl_t *db = vdb;
4115 dnode_t *dn;
4116 blkptr_t *bp = zio->io_bp;
4117 blkptr_t *bp_orig = &zio->io_bp_orig;
4118 spa_t *spa = zio->io_spa;
4119 int64_t delta;
4120 uint64_t fill = 0;
4121 int i;
4122
4123 ASSERT3P(db->db_blkptr, !=, NULL);
4124 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4125
4126 DB_DNODE_ENTER(db);
4127 dn = DB_DNODE(db);
4128 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4129 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4130 zio->io_prev_space_delta = delta;
4131
4132 if (bp->blk_birth != 0) {
4133 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4134 BP_GET_TYPE(bp) == dn->dn_type) ||
4135 (db->db_blkid == DMU_SPILL_BLKID &&
4136 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4137 BP_IS_EMBEDDED(bp));
4138 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4139 }
4140
4141 mutex_enter(&db->db_mtx);
4142
4143 #ifdef ZFS_DEBUG
4144 if (db->db_blkid == DMU_SPILL_BLKID) {
4145 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4146 ASSERT(!(BP_IS_HOLE(bp)) &&
4147 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4148 }
4149 #endif
4150
4151 if (db->db_level == 0) {
4152 mutex_enter(&dn->dn_mtx);
4153 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4154 db->db_blkid != DMU_SPILL_BLKID) {
4155 ASSERT0(db->db_objset->os_raw_receive);
4156 dn->dn_phys->dn_maxblkid = db->db_blkid;
4157 }
4158 mutex_exit(&dn->dn_mtx);
4159
4160 if (dn->dn_type == DMU_OT_DNODE) {
4161 i = 0;
4162 while (i < db->db.db_size) {
4163 dnode_phys_t *dnp =
4164 (void *)(((char *)db->db.db_data) + i);
4165
4166 i += DNODE_MIN_SIZE;
4167 if (dnp->dn_type != DMU_OT_NONE) {
4168 fill++;
4169 i += dnp->dn_extra_slots *
4170 DNODE_MIN_SIZE;
4171 }
4172 }
4173 } else {
4174 if (BP_IS_HOLE(bp)) {
4175 fill = 0;
4176 } else {
4177 fill = 1;
4178 }
4179 }
4180 } else {
4181 blkptr_t *ibp = db->db.db_data;
4182 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4183 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4184 if (BP_IS_HOLE(ibp))
4185 continue;
4186 fill += BP_GET_FILL(ibp);
4187 }
4188 }
4189 DB_DNODE_EXIT(db);
4190
4191 if (!BP_IS_EMBEDDED(bp))
4192 BP_SET_FILL(bp, fill);
4193
4194 mutex_exit(&db->db_mtx);
4195
4196 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
4197 *db->db_blkptr = *bp;
4198 dmu_buf_unlock_parent(db, dblt, FTAG);
4199 }
4200
4201 /* ARGSUSED */
4202 /*
4203 * This function gets called just prior to running through the compression
4204 * stage of the zio pipeline. If we're an indirect block comprised of only
4205 * holes, then we want this indirect to be compressed away to a hole. In
4206 * order to do that we must zero out any information about the holes that
4207 * this indirect points to prior to before we try to compress it.
4208 */
4209 static void
4210 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4211 {
4212 dmu_buf_impl_t *db = vdb;
4213 dnode_t *dn;
4214 blkptr_t *bp;
4215 unsigned int epbs, i;
4216
4217 ASSERT3U(db->db_level, >, 0);
4218 DB_DNODE_ENTER(db);
4219 dn = DB_DNODE(db);
4220 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4221 ASSERT3U(epbs, <, 31);
4222
4223 /* Determine if all our children are holes */
4224 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4225 if (!BP_IS_HOLE(bp))
4226 break;
4227 }
4228
4229 /*
4230 * If all the children are holes, then zero them all out so that
4231 * we may get compressed away.
4232 */
4233 if (i == 1ULL << epbs) {
4234 /*
4235 * We only found holes. Grab the rwlock to prevent
4236 * anybody from reading the blocks we're about to
4237 * zero out.
4238 */
4239 rw_enter(&db->db_rwlock, RW_WRITER);
4240 bzero(db->db.db_data, db->db.db_size);
4241 rw_exit(&db->db_rwlock);
4242 }
4243 DB_DNODE_EXIT(db);
4244 }
4245
4246 /*
4247 * The SPA will call this callback several times for each zio - once
4248 * for every physical child i/o (zio->io_phys_children times). This
4249 * allows the DMU to monitor the progress of each logical i/o. For example,
4250 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
4251 * block. There may be a long delay before all copies/fragments are completed,
4252 * so this callback allows us to retire dirty space gradually, as the physical
4253 * i/os complete.
4254 */
4255 /* ARGSUSED */
4256 static void
4257 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
4258 {
4259 dmu_buf_impl_t *db = arg;
4260 objset_t *os = db->db_objset;
4261 dsl_pool_t *dp = dmu_objset_pool(os);
4262 dbuf_dirty_record_t *dr;
4263 int delta = 0;
4264
4265 dr = db->db_data_pending;
4266 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4267
4268 /*
4269 * The callback will be called io_phys_children times. Retire one
4270 * portion of our dirty space each time we are called. Any rounding
4271 * error will be cleaned up by dbuf_write_done().
4272 */
4273 delta = dr->dr_accounted / zio->io_phys_children;
4274 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4275 }
4276
4277 /* ARGSUSED */
4278 static void
4279 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4280 {
4281 dmu_buf_impl_t *db = vdb;
4282 blkptr_t *bp_orig = &zio->io_bp_orig;
4283 blkptr_t *bp = db->db_blkptr;
4284 objset_t *os = db->db_objset;
4285 dmu_tx_t *tx = os->os_synctx;
4286 dbuf_dirty_record_t *dr;
4287
4288 ASSERT0(zio->io_error);
4289 ASSERT(db->db_blkptr == bp);
4290
4291 /*
4292 * For nopwrites and rewrites we ensure that the bp matches our
4293 * original and bypass all the accounting.
4294 */
4295 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4296 ASSERT(BP_EQUAL(bp, bp_orig));
4297 } else {
4298 dsl_dataset_t *ds = os->os_dsl_dataset;
4299 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4300 dsl_dataset_block_born(ds, bp, tx);
4301 }
4302
4303 mutex_enter(&db->db_mtx);
4304
4305 DBUF_VERIFY(db);
4306
4307 dr = db->db_data_pending;
4308 ASSERT(!list_link_active(&dr->dr_dirty_node));
4309 ASSERT(dr->dr_dbuf == db);
4310 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
4311 list_remove(&db->db_dirty_records, dr);
4312
4313 #ifdef ZFS_DEBUG
4314 if (db->db_blkid == DMU_SPILL_BLKID) {
4315 dnode_t *dn;
4316
4317 DB_DNODE_ENTER(db);
4318 dn = DB_DNODE(db);
4319 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4320 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4321 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4322 DB_DNODE_EXIT(db);
4323 }
4324 #endif
4325
4326 if (db->db_level == 0) {
4327 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4328 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4329 if (db->db_state != DB_NOFILL) {
4330 if (dr->dt.dl.dr_data != db->db_buf)
4331 arc_buf_destroy(dr->dt.dl.dr_data, db);
4332 }
4333 } else {
4334 dnode_t *dn;
4335
4336 DB_DNODE_ENTER(db);
4337 dn = DB_DNODE(db);
4338 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4339 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4340 if (!BP_IS_HOLE(db->db_blkptr)) {
4341 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
4342 SPA_BLKPTRSHIFT;
4343 ASSERT3U(db->db_blkid, <=,
4344 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4345 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4346 db->db.db_size);
4347 }
4348 DB_DNODE_EXIT(db);
4349 mutex_destroy(&dr->dt.di.dr_mtx);
4350 list_destroy(&dr->dt.di.dr_children);
4351 }
4352
4353 cv_broadcast(&db->db_changed);
4354 ASSERT(db->db_dirtycnt > 0);
4355 db->db_dirtycnt -= 1;
4356 db->db_data_pending = NULL;
4357 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4358
4359 /*
4360 * If we didn't do a physical write in this ZIO and we
4361 * still ended up here, it means that the space of the
4362 * dbuf that we just released (and undirtied) above hasn't
4363 * been marked as undirtied in the pool's accounting.
4364 *
4365 * Thus, we undirty that space in the pool's view of the
4366 * world here. For physical writes this type of update
4367 * happens in dbuf_write_physdone().
4368 *
4369 * If we did a physical write, cleanup any rounding errors
4370 * that came up due to writing multiple copies of a block
4371 * on disk [see dbuf_write_physdone()].
4372 */
4373 if (zio->io_phys_children == 0) {
4374 dsl_pool_undirty_space(dmu_objset_pool(os),
4375 dr->dr_accounted, zio->io_txg);
4376 } else {
4377 dsl_pool_undirty_space(dmu_objset_pool(os),
4378 dr->dr_accounted % zio->io_phys_children, zio->io_txg);
4379 }
4380
4381 kmem_free(dr, sizeof (dbuf_dirty_record_t));
4382 }
4383
4384 static void
4385 dbuf_write_nofill_ready(zio_t *zio)
4386 {
4387 dbuf_write_ready(zio, NULL, zio->io_private);
4388 }
4389
4390 static void
4391 dbuf_write_nofill_done(zio_t *zio)
4392 {
4393 dbuf_write_done(zio, NULL, zio->io_private);
4394 }
4395
4396 static void
4397 dbuf_write_override_ready(zio_t *zio)
4398 {
4399 dbuf_dirty_record_t *dr = zio->io_private;
4400 dmu_buf_impl_t *db = dr->dr_dbuf;
4401
4402 dbuf_write_ready(zio, NULL, db);
4403 }
4404
4405 static void
4406 dbuf_write_override_done(zio_t *zio)
4407 {
4408 dbuf_dirty_record_t *dr = zio->io_private;
4409 dmu_buf_impl_t *db = dr->dr_dbuf;
4410 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4411
4412 mutex_enter(&db->db_mtx);
4413 if (!BP_EQUAL(zio->io_bp, obp)) {
4414 if (!BP_IS_HOLE(obp))
4415 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4416 arc_release(dr->dt.dl.dr_data, db);
4417 }
4418 mutex_exit(&db->db_mtx);
4419
4420 dbuf_write_done(zio, NULL, db);
4421
4422 if (zio->io_abd != NULL)
4423 abd_put(zio->io_abd);
4424 }
4425
4426 typedef struct dbuf_remap_impl_callback_arg {
4427 objset_t *drica_os;
4428 uint64_t drica_blk_birth;
4429 dmu_tx_t *drica_tx;
4430 } dbuf_remap_impl_callback_arg_t;
4431
4432 static void
4433 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4434 void *arg)
4435 {
4436 dbuf_remap_impl_callback_arg_t *drica = arg;
4437 objset_t *os = drica->drica_os;
4438 spa_t *spa = dmu_objset_spa(os);
4439 dmu_tx_t *tx = drica->drica_tx;
4440
4441 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4442
4443 if (os == spa_meta_objset(spa)) {
4444 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4445 } else {
4446 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4447 size, drica->drica_blk_birth, tx);
4448 }
4449 }
4450
4451 static void
4452 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
4453 {
4454 blkptr_t bp_copy = *bp;
4455 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4456 dbuf_remap_impl_callback_arg_t drica;
4457
4458 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4459
4460 drica.drica_os = dn->dn_objset;
4461 drica.drica_blk_birth = bp->blk_birth;
4462 drica.drica_tx = tx;
4463 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4464 &drica)) {
4465 /*
4466 * If the blkptr being remapped is tracked by a livelist,
4467 * then we need to make sure the livelist reflects the update.
4468 * First, cancel out the old blkptr by appending a 'FREE'
4469 * entry. Next, add an 'ALLOC' to track the new version. This
4470 * way we avoid trying to free an inaccurate blkptr at delete.
4471 * Note that embedded blkptrs are not tracked in livelists.
4472 */
4473 if (dn->dn_objset != spa_meta_objset(spa)) {
4474 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
4475 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4476 bp->blk_birth > ds->ds_dir->dd_origin_txg) {
4477 ASSERT(!BP_IS_EMBEDDED(bp));
4478 ASSERT(dsl_dir_is_clone(ds->ds_dir));
4479 ASSERT(spa_feature_is_enabled(spa,
4480 SPA_FEATURE_LIVELIST));
4481 bplist_append(&ds->ds_dir->dd_pending_frees,
4482 bp);
4483 bplist_append(&ds->ds_dir->dd_pending_allocs,
4484 &bp_copy);
4485 }
4486 }
4487
4488 /*
4489 * The db_rwlock prevents dbuf_read_impl() from
4490 * dereferencing the BP while we are changing it. To
4491 * avoid lock contention, only grab it when we are actually
4492 * changing the BP.
4493 */
4494 if (rw != NULL)
4495 rw_enter(rw, RW_WRITER);
4496 *bp = bp_copy;
4497 if (rw != NULL)
4498 rw_exit(rw);
4499 }
4500 }
4501
4502 /*
4503 * Remap any existing BP's to concrete vdevs, if possible.
4504 */
4505 static void
4506 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4507 {
4508 spa_t *spa = dmu_objset_spa(db->db_objset);
4509 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4510
4511 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4512 return;
4513
4514 if (db->db_level > 0) {
4515 blkptr_t *bp = db->db.db_data;
4516 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4517 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
4518 }
4519 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4520 dnode_phys_t *dnp = db->db.db_data;
4521 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4522 DMU_OT_DNODE);
4523 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4524 i += dnp[i].dn_extra_slots + 1) {
4525 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4526 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
4527 &dn->dn_dbuf->db_rwlock);
4528 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
4529 tx);
4530 }
4531 }
4532 }
4533 }
4534
4535
4536 /* Issue I/O to commit a dirty buffer to disk. */
4537 static void
4538 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4539 {
4540 dmu_buf_impl_t *db = dr->dr_dbuf;
4541 dnode_t *dn;
4542 objset_t *os;
4543 dmu_buf_impl_t *parent = db->db_parent;
4544 uint64_t txg = tx->tx_txg;
4545 zbookmark_phys_t zb;
4546 zio_prop_t zp;
4547 zio_t *zio;
4548 int wp_flag = 0;
4549
4550 ASSERT(dmu_tx_is_syncing(tx));
4551
4552 DB_DNODE_ENTER(db);
4553 dn = DB_DNODE(db);
4554 os = dn->dn_objset;
4555
4556 if (db->db_state != DB_NOFILL) {
4557 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4558 /*
4559 * Private object buffers are released here rather
4560 * than in dbuf_dirty() since they are only modified
4561 * in the syncing context and we don't want the
4562 * overhead of making multiple copies of the data.
4563 */
4564 if (BP_IS_HOLE(db->db_blkptr)) {
4565 arc_buf_thaw(data);
4566 } else {
4567 dbuf_release_bp(db);
4568 }
4569 dbuf_remap(dn, db, tx);
4570 }
4571 }
4572
4573 if (parent != dn->dn_dbuf) {
4574 /* Our parent is an indirect block. */
4575 /* We have a dirty parent that has been scheduled for write. */
4576 ASSERT(parent && parent->db_data_pending);
4577 /* Our parent's buffer is one level closer to the dnode. */
4578 ASSERT(db->db_level == parent->db_level-1);
4579 /*
4580 * We're about to modify our parent's db_data by modifying
4581 * our block pointer, so the parent must be released.
4582 */
4583 ASSERT(arc_released(parent->db_buf));
4584 zio = parent->db_data_pending->dr_zio;
4585 } else {
4586 /* Our parent is the dnode itself. */
4587 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4588 db->db_blkid != DMU_SPILL_BLKID) ||
4589 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4590 if (db->db_blkid != DMU_SPILL_BLKID)
4591 ASSERT3P(db->db_blkptr, ==,
4592 &dn->dn_phys->dn_blkptr[db->db_blkid]);
4593 zio = dn->dn_zio;
4594 }
4595
4596 ASSERT(db->db_level == 0 || data == db->db_buf);
4597 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
4598 ASSERT(zio);
4599
4600 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
4601 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
4602 db->db.db_object, db->db_level, db->db_blkid);
4603
4604 if (db->db_blkid == DMU_SPILL_BLKID)
4605 wp_flag = WP_SPILL;
4606 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
4607
4608 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
4609 DB_DNODE_EXIT(db);
4610
4611 /*
4612 * We copy the blkptr now (rather than when we instantiate the dirty
4613 * record), because its value can change between open context and
4614 * syncing context. We do not need to hold dn_struct_rwlock to read
4615 * db_blkptr because we are in syncing context.
4616 */
4617 dr->dr_bp_copy = *db->db_blkptr;
4618
4619 if (db->db_level == 0 &&
4620 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
4621 /*
4622 * The BP for this block has been provided by open context
4623 * (by dmu_sync() or dmu_buf_write_embedded()).
4624 */
4625 abd_t *contents = (data != NULL) ?
4626 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
4627
4628 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4629 &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size,
4630 &zp, dbuf_write_override_ready, NULL, NULL,
4631 dbuf_write_override_done,
4632 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
4633 mutex_enter(&db->db_mtx);
4634 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
4635 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
4636 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
4637 mutex_exit(&db->db_mtx);
4638 } else if (db->db_state == DB_NOFILL) {
4639 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
4640 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
4641 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4642 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
4643 dbuf_write_nofill_ready, NULL, NULL,
4644 dbuf_write_nofill_done, db,
4645 ZIO_PRIORITY_ASYNC_WRITE,
4646 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
4647 } else {
4648 ASSERT(arc_released(data));
4649
4650 /*
4651 * For indirect blocks, we want to setup the children
4652 * ready callback so that we can properly handle an indirect
4653 * block that only contains holes.
4654 */
4655 arc_write_done_func_t *children_ready_cb = NULL;
4656 if (db->db_level != 0)
4657 children_ready_cb = dbuf_write_children_ready;
4658
4659 dr->dr_zio = arc_write(zio, os->os_spa, txg,
4660 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
4661 &zp, dbuf_write_ready,
4662 children_ready_cb, dbuf_write_physdone,
4663 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
4664 ZIO_FLAG_MUSTSUCCEED, &zb);
4665 }
4666 }
4667
4668 EXPORT_SYMBOL(dbuf_find);
4669 EXPORT_SYMBOL(dbuf_is_metadata);
4670 EXPORT_SYMBOL(dbuf_destroy);
4671 EXPORT_SYMBOL(dbuf_loan_arcbuf);
4672 EXPORT_SYMBOL(dbuf_whichblock);
4673 EXPORT_SYMBOL(dbuf_read);
4674 EXPORT_SYMBOL(dbuf_unoverride);
4675 EXPORT_SYMBOL(dbuf_free_range);
4676 EXPORT_SYMBOL(dbuf_new_size);
4677 EXPORT_SYMBOL(dbuf_release_bp);
4678 EXPORT_SYMBOL(dbuf_dirty);
4679 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
4680 EXPORT_SYMBOL(dmu_buf_will_dirty);
4681 EXPORT_SYMBOL(dmu_buf_is_dirty);
4682 EXPORT_SYMBOL(dmu_buf_will_not_fill);
4683 EXPORT_SYMBOL(dmu_buf_will_fill);
4684 EXPORT_SYMBOL(dmu_buf_fill_done);
4685 EXPORT_SYMBOL(dmu_buf_rele);
4686 EXPORT_SYMBOL(dbuf_assign_arcbuf);
4687 EXPORT_SYMBOL(dbuf_prefetch);
4688 EXPORT_SYMBOL(dbuf_hold_impl);
4689 EXPORT_SYMBOL(dbuf_hold);
4690 EXPORT_SYMBOL(dbuf_hold_level);
4691 EXPORT_SYMBOL(dbuf_create_bonus);
4692 EXPORT_SYMBOL(dbuf_spill_set_blksz);
4693 EXPORT_SYMBOL(dbuf_rm_spill);
4694 EXPORT_SYMBOL(dbuf_add_ref);
4695 EXPORT_SYMBOL(dbuf_rele);
4696 EXPORT_SYMBOL(dbuf_rele_and_unlock);
4697 EXPORT_SYMBOL(dbuf_refcount);
4698 EXPORT_SYMBOL(dbuf_sync_list);
4699 EXPORT_SYMBOL(dmu_buf_set_user);
4700 EXPORT_SYMBOL(dmu_buf_set_user_ie);
4701 EXPORT_SYMBOL(dmu_buf_get_user);
4702 EXPORT_SYMBOL(dmu_buf_get_blkptr);
4703
4704 /* BEGIN CSTYLED */
4705 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, ULONG, ZMOD_RW,
4706 "Maximum size in bytes of the dbuf cache.");
4707
4708 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
4709 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
4710 "directly.");
4711
4712 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
4713 "Percentage below dbuf_cache_max_bytes when the evict thread stops "
4714 "evicting dbufs.");
4715
4716 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, ULONG, ZMOD_RW,
4717 "Maximum size in bytes of the dbuf metadata cache.");
4718
4719 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, INT, ZMOD_RW,
4720 "Set the size of the dbuf cache to a log2 fraction of arc size.");
4721
4722 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, INT, ZMOD_RW,
4723 "Set the size of the dbuf metadata cache to a log2 fraction of arc "
4724 "size.");
4725 /* END CSTYLED */