]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/dbuf.c
Imported Upstream version 0.6.4.2
[mirror_zfs-debian.git] / module / zfs / dbuf.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/arc.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_send.h>
32 #include <sys/dmu_impl.h>
33 #include <sys/dbuf.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/dsl_dir.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/spa.h>
39 #include <sys/zio.h>
40 #include <sys/dmu_zfetch.h>
41 #include <sys/sa.h>
42 #include <sys/sa_impl.h>
43 #include <sys/zfeature.h>
44 #include <sys/blkptr.h>
45 #include <sys/range_tree.h>
46 #include <sys/trace_dbuf.h>
47
48 struct dbuf_hold_impl_data {
49 /* Function arguments */
50 dnode_t *dh_dn;
51 uint8_t dh_level;
52 uint64_t dh_blkid;
53 int dh_fail_sparse;
54 void *dh_tag;
55 dmu_buf_impl_t **dh_dbp;
56 /* Local variables */
57 dmu_buf_impl_t *dh_db;
58 dmu_buf_impl_t *dh_parent;
59 blkptr_t *dh_bp;
60 int dh_err;
61 dbuf_dirty_record_t *dh_dr;
62 arc_buf_contents_t dh_type;
63 int dh_depth;
64 };
65
66 static void __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
67 dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse,
68 void *tag, dmu_buf_impl_t **dbp, int depth);
69 static int __dbuf_hold_impl(struct dbuf_hold_impl_data *dh);
70
71 /*
72 * Number of times that zfs_free_range() took the slow path while doing
73 * a zfs receive. A nonzero value indicates a potential performance problem.
74 */
75 uint64_t zfs_free_range_recv_miss;
76
77 static void dbuf_destroy(dmu_buf_impl_t *db);
78 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
79 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
80
81 /*
82 * Global data structures and functions for the dbuf cache.
83 */
84 static kmem_cache_t *dbuf_cache;
85
86 /* ARGSUSED */
87 static int
88 dbuf_cons(void *vdb, void *unused, int kmflag)
89 {
90 dmu_buf_impl_t *db = vdb;
91 bzero(db, sizeof (dmu_buf_impl_t));
92
93 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
94 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
95 refcount_create(&db->db_holds);
96 list_link_init(&db->db_link);
97 return (0);
98 }
99
100 /* ARGSUSED */
101 static void
102 dbuf_dest(void *vdb, void *unused)
103 {
104 dmu_buf_impl_t *db = vdb;
105 mutex_destroy(&db->db_mtx);
106 cv_destroy(&db->db_changed);
107 refcount_destroy(&db->db_holds);
108 }
109
110 /*
111 * dbuf hash table routines
112 */
113 static dbuf_hash_table_t dbuf_hash_table;
114
115 static uint64_t dbuf_hash_count;
116
117 static uint64_t
118 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
119 {
120 uintptr_t osv = (uintptr_t)os;
121 uint64_t crc = -1ULL;
122
123 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
124 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
125 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
126 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
127 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
128 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
129 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
130
131 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
132
133 return (crc);
134 }
135
136 #define DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
137
138 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
139 ((dbuf)->db.db_object == (obj) && \
140 (dbuf)->db_objset == (os) && \
141 (dbuf)->db_level == (level) && \
142 (dbuf)->db_blkid == (blkid))
143
144 dmu_buf_impl_t *
145 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid)
146 {
147 dbuf_hash_table_t *h = &dbuf_hash_table;
148 objset_t *os = dn->dn_objset;
149 uint64_t obj;
150 uint64_t hv;
151 uint64_t idx;
152 dmu_buf_impl_t *db;
153
154 obj = dn->dn_object;
155 hv = DBUF_HASH(os, obj, level, blkid);
156 idx = hv & h->hash_table_mask;
157
158 mutex_enter(DBUF_HASH_MUTEX(h, idx));
159 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
160 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
161 mutex_enter(&db->db_mtx);
162 if (db->db_state != DB_EVICTING) {
163 mutex_exit(DBUF_HASH_MUTEX(h, idx));
164 return (db);
165 }
166 mutex_exit(&db->db_mtx);
167 }
168 }
169 mutex_exit(DBUF_HASH_MUTEX(h, idx));
170 return (NULL);
171 }
172
173 /*
174 * Insert an entry into the hash table. If there is already an element
175 * equal to elem in the hash table, then the already existing element
176 * will be returned and the new element will not be inserted.
177 * Otherwise returns NULL.
178 */
179 static dmu_buf_impl_t *
180 dbuf_hash_insert(dmu_buf_impl_t *db)
181 {
182 dbuf_hash_table_t *h = &dbuf_hash_table;
183 objset_t *os = db->db_objset;
184 uint64_t obj = db->db.db_object;
185 int level = db->db_level;
186 uint64_t blkid, hv, idx;
187 dmu_buf_impl_t *dbf;
188
189 blkid = db->db_blkid;
190 hv = DBUF_HASH(os, obj, level, blkid);
191 idx = hv & h->hash_table_mask;
192
193 mutex_enter(DBUF_HASH_MUTEX(h, idx));
194 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
195 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
196 mutex_enter(&dbf->db_mtx);
197 if (dbf->db_state != DB_EVICTING) {
198 mutex_exit(DBUF_HASH_MUTEX(h, idx));
199 return (dbf);
200 }
201 mutex_exit(&dbf->db_mtx);
202 }
203 }
204
205 mutex_enter(&db->db_mtx);
206 db->db_hash_next = h->hash_table[idx];
207 h->hash_table[idx] = db;
208 mutex_exit(DBUF_HASH_MUTEX(h, idx));
209 atomic_add_64(&dbuf_hash_count, 1);
210
211 return (NULL);
212 }
213
214 /*
215 * Remove an entry from the hash table. It must be in the EVICTING state.
216 */
217 static void
218 dbuf_hash_remove(dmu_buf_impl_t *db)
219 {
220 dbuf_hash_table_t *h = &dbuf_hash_table;
221 uint64_t hv, idx;
222 dmu_buf_impl_t *dbf, **dbp;
223
224 hv = DBUF_HASH(db->db_objset, db->db.db_object,
225 db->db_level, db->db_blkid);
226 idx = hv & h->hash_table_mask;
227
228 /*
229 * We musn't hold db_mtx to maintain lock ordering:
230 * DBUF_HASH_MUTEX > db_mtx.
231 */
232 ASSERT(refcount_is_zero(&db->db_holds));
233 ASSERT(db->db_state == DB_EVICTING);
234 ASSERT(!MUTEX_HELD(&db->db_mtx));
235
236 mutex_enter(DBUF_HASH_MUTEX(h, idx));
237 dbp = &h->hash_table[idx];
238 while ((dbf = *dbp) != db) {
239 dbp = &dbf->db_hash_next;
240 ASSERT(dbf != NULL);
241 }
242 *dbp = db->db_hash_next;
243 db->db_hash_next = NULL;
244 mutex_exit(DBUF_HASH_MUTEX(h, idx));
245 atomic_add_64(&dbuf_hash_count, -1);
246 }
247
248 static arc_evict_func_t dbuf_do_evict;
249
250 static void
251 dbuf_evict_user(dmu_buf_impl_t *db)
252 {
253 ASSERT(MUTEX_HELD(&db->db_mtx));
254
255 if (db->db_level != 0 || db->db_evict_func == NULL)
256 return;
257
258 if (db->db_user_data_ptr_ptr)
259 *db->db_user_data_ptr_ptr = db->db.db_data;
260 db->db_evict_func(&db->db, db->db_user_ptr);
261 db->db_user_ptr = NULL;
262 db->db_user_data_ptr_ptr = NULL;
263 db->db_evict_func = NULL;
264 }
265
266 boolean_t
267 dbuf_is_metadata(dmu_buf_impl_t *db)
268 {
269 /*
270 * Consider indirect blocks and spill blocks to be meta data.
271 */
272 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
273 return (B_TRUE);
274 } else {
275 boolean_t is_metadata;
276
277 DB_DNODE_ENTER(db);
278 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
279 DB_DNODE_EXIT(db);
280
281 return (is_metadata);
282 }
283 }
284
285 void
286 dbuf_evict(dmu_buf_impl_t *db)
287 {
288 ASSERT(MUTEX_HELD(&db->db_mtx));
289 ASSERT(db->db_buf == NULL);
290 ASSERT(db->db_data_pending == NULL);
291
292 dbuf_clear(db);
293 dbuf_destroy(db);
294 }
295
296 void
297 dbuf_init(void)
298 {
299 uint64_t hsize = 1ULL << 16;
300 dbuf_hash_table_t *h = &dbuf_hash_table;
301 int i;
302
303 /*
304 * The hash table is big enough to fill all of physical memory
305 * with an average 4K block size. The table will take up
306 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
307 */
308 while (hsize * 4096 < physmem * PAGESIZE)
309 hsize <<= 1;
310
311 retry:
312 h->hash_table_mask = hsize - 1;
313 #if defined(_KERNEL) && defined(HAVE_SPL)
314 /*
315 * Large allocations which do not require contiguous pages
316 * should be using vmem_alloc() in the linux kernel
317 */
318 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
319 #else
320 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
321 #endif
322 if (h->hash_table == NULL) {
323 /* XXX - we should really return an error instead of assert */
324 ASSERT(hsize > (1ULL << 10));
325 hsize >>= 1;
326 goto retry;
327 }
328
329 dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
330 sizeof (dmu_buf_impl_t),
331 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
332
333 for (i = 0; i < DBUF_MUTEXES; i++)
334 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
335
336 dbuf_stats_init(h);
337 }
338
339 void
340 dbuf_fini(void)
341 {
342 dbuf_hash_table_t *h = &dbuf_hash_table;
343 int i;
344
345 dbuf_stats_destroy();
346
347 for (i = 0; i < DBUF_MUTEXES; i++)
348 mutex_destroy(&h->hash_mutexes[i]);
349 #if defined(_KERNEL) && defined(HAVE_SPL)
350 /*
351 * Large allocations which do not require contiguous pages
352 * should be using vmem_free() in the linux kernel
353 */
354 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
355 #else
356 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
357 #endif
358 kmem_cache_destroy(dbuf_cache);
359 }
360
361 /*
362 * Other stuff.
363 */
364
365 #ifdef ZFS_DEBUG
366 static void
367 dbuf_verify(dmu_buf_impl_t *db)
368 {
369 dnode_t *dn;
370 dbuf_dirty_record_t *dr;
371
372 ASSERT(MUTEX_HELD(&db->db_mtx));
373
374 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
375 return;
376
377 ASSERT(db->db_objset != NULL);
378 DB_DNODE_ENTER(db);
379 dn = DB_DNODE(db);
380 if (dn == NULL) {
381 ASSERT(db->db_parent == NULL);
382 ASSERT(db->db_blkptr == NULL);
383 } else {
384 ASSERT3U(db->db.db_object, ==, dn->dn_object);
385 ASSERT3P(db->db_objset, ==, dn->dn_objset);
386 ASSERT3U(db->db_level, <, dn->dn_nlevels);
387 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
388 db->db_blkid == DMU_SPILL_BLKID ||
389 !list_is_empty(&dn->dn_dbufs));
390 }
391 if (db->db_blkid == DMU_BONUS_BLKID) {
392 ASSERT(dn != NULL);
393 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
394 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
395 } else if (db->db_blkid == DMU_SPILL_BLKID) {
396 ASSERT(dn != NULL);
397 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
398 ASSERT0(db->db.db_offset);
399 } else {
400 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
401 }
402
403 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
404 ASSERT(dr->dr_dbuf == db);
405
406 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
407 ASSERT(dr->dr_dbuf == db);
408
409 /*
410 * We can't assert that db_size matches dn_datablksz because it
411 * can be momentarily different when another thread is doing
412 * dnode_set_blksz().
413 */
414 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
415 dr = db->db_data_pending;
416 /*
417 * It should only be modified in syncing context, so
418 * make sure we only have one copy of the data.
419 */
420 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
421 }
422
423 /* verify db->db_blkptr */
424 if (db->db_blkptr) {
425 if (db->db_parent == dn->dn_dbuf) {
426 /* db is pointed to by the dnode */
427 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
428 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
429 ASSERT(db->db_parent == NULL);
430 else
431 ASSERT(db->db_parent != NULL);
432 if (db->db_blkid != DMU_SPILL_BLKID)
433 ASSERT3P(db->db_blkptr, ==,
434 &dn->dn_phys->dn_blkptr[db->db_blkid]);
435 } else {
436 /* db is pointed to by an indirect block */
437 ASSERTV(int epb = db->db_parent->db.db_size >>
438 SPA_BLKPTRSHIFT);
439 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
440 ASSERT3U(db->db_parent->db.db_object, ==,
441 db->db.db_object);
442 /*
443 * dnode_grow_indblksz() can make this fail if we don't
444 * have the struct_rwlock. XXX indblksz no longer
445 * grows. safe to do this now?
446 */
447 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
448 ASSERT3P(db->db_blkptr, ==,
449 ((blkptr_t *)db->db_parent->db.db_data +
450 db->db_blkid % epb));
451 }
452 }
453 }
454 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
455 (db->db_buf == NULL || db->db_buf->b_data) &&
456 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
457 db->db_state != DB_FILL && !dn->dn_free_txg) {
458 /*
459 * If the blkptr isn't set but they have nonzero data,
460 * it had better be dirty, otherwise we'll lose that
461 * data when we evict this buffer.
462 */
463 if (db->db_dirtycnt == 0) {
464 ASSERTV(uint64_t *buf = db->db.db_data);
465 int i;
466
467 for (i = 0; i < db->db.db_size >> 3; i++) {
468 ASSERT(buf[i] == 0);
469 }
470 }
471 }
472 DB_DNODE_EXIT(db);
473 }
474 #endif
475
476 static void
477 dbuf_update_data(dmu_buf_impl_t *db)
478 {
479 ASSERT(MUTEX_HELD(&db->db_mtx));
480 if (db->db_level == 0 && db->db_user_data_ptr_ptr) {
481 ASSERT(!refcount_is_zero(&db->db_holds));
482 *db->db_user_data_ptr_ptr = db->db.db_data;
483 }
484 }
485
486 static void
487 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
488 {
489 ASSERT(MUTEX_HELD(&db->db_mtx));
490 db->db_buf = buf;
491 if (buf != NULL) {
492 ASSERT(buf->b_data != NULL);
493 db->db.db_data = buf->b_data;
494 if (!arc_released(buf))
495 arc_set_callback(buf, dbuf_do_evict, db);
496 dbuf_update_data(db);
497 } else {
498 dbuf_evict_user(db);
499 db->db.db_data = NULL;
500 if (db->db_state != DB_NOFILL)
501 db->db_state = DB_UNCACHED;
502 }
503 }
504
505 /*
506 * Loan out an arc_buf for read. Return the loaned arc_buf.
507 */
508 arc_buf_t *
509 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
510 {
511 arc_buf_t *abuf;
512
513 mutex_enter(&db->db_mtx);
514 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
515 int blksz = db->db.db_size;
516 spa_t *spa = db->db_objset->os_spa;
517
518 mutex_exit(&db->db_mtx);
519 abuf = arc_loan_buf(spa, blksz);
520 bcopy(db->db.db_data, abuf->b_data, blksz);
521 } else {
522 abuf = db->db_buf;
523 arc_loan_inuse_buf(abuf, db);
524 dbuf_set_data(db, NULL);
525 mutex_exit(&db->db_mtx);
526 }
527 return (abuf);
528 }
529
530 uint64_t
531 dbuf_whichblock(dnode_t *dn, uint64_t offset)
532 {
533 if (dn->dn_datablkshift) {
534 return (offset >> dn->dn_datablkshift);
535 } else {
536 ASSERT3U(offset, <, dn->dn_datablksz);
537 return (0);
538 }
539 }
540
541 static void
542 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
543 {
544 dmu_buf_impl_t *db = vdb;
545
546 mutex_enter(&db->db_mtx);
547 ASSERT3U(db->db_state, ==, DB_READ);
548 /*
549 * All reads are synchronous, so we must have a hold on the dbuf
550 */
551 ASSERT(refcount_count(&db->db_holds) > 0);
552 ASSERT(db->db_buf == NULL);
553 ASSERT(db->db.db_data == NULL);
554 if (db->db_level == 0 && db->db_freed_in_flight) {
555 /* we were freed in flight; disregard any error */
556 arc_release(buf, db);
557 bzero(buf->b_data, db->db.db_size);
558 arc_buf_freeze(buf);
559 db->db_freed_in_flight = FALSE;
560 dbuf_set_data(db, buf);
561 db->db_state = DB_CACHED;
562 } else if (zio == NULL || zio->io_error == 0) {
563 dbuf_set_data(db, buf);
564 db->db_state = DB_CACHED;
565 } else {
566 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
567 ASSERT3P(db->db_buf, ==, NULL);
568 VERIFY(arc_buf_remove_ref(buf, db));
569 db->db_state = DB_UNCACHED;
570 }
571 cv_broadcast(&db->db_changed);
572 dbuf_rele_and_unlock(db, NULL);
573 }
574
575 static int
576 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
577 {
578 dnode_t *dn;
579 zbookmark_phys_t zb;
580 uint32_t aflags = ARC_NOWAIT;
581 int err;
582
583 DB_DNODE_ENTER(db);
584 dn = DB_DNODE(db);
585 ASSERT(!refcount_is_zero(&db->db_holds));
586 /* We need the struct_rwlock to prevent db_blkptr from changing. */
587 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
588 ASSERT(MUTEX_HELD(&db->db_mtx));
589 ASSERT(db->db_state == DB_UNCACHED);
590 ASSERT(db->db_buf == NULL);
591
592 if (db->db_blkid == DMU_BONUS_BLKID) {
593 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
594
595 ASSERT3U(bonuslen, <=, db->db.db_size);
596 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
597 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
598 if (bonuslen < DN_MAX_BONUSLEN)
599 bzero(db->db.db_data, DN_MAX_BONUSLEN);
600 if (bonuslen)
601 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
602 DB_DNODE_EXIT(db);
603 dbuf_update_data(db);
604 db->db_state = DB_CACHED;
605 mutex_exit(&db->db_mtx);
606 return (0);
607 }
608
609 /*
610 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
611 * processes the delete record and clears the bp while we are waiting
612 * for the dn_mtx (resulting in a "no" from block_freed).
613 */
614 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
615 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
616 BP_IS_HOLE(db->db_blkptr)))) {
617 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
618
619 DB_DNODE_EXIT(db);
620 dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa,
621 db->db.db_size, db, type));
622 bzero(db->db.db_data, db->db.db_size);
623 db->db_state = DB_CACHED;
624 *flags |= DB_RF_CACHED;
625 mutex_exit(&db->db_mtx);
626 return (0);
627 }
628
629 DB_DNODE_EXIT(db);
630
631 db->db_state = DB_READ;
632 mutex_exit(&db->db_mtx);
633
634 if (DBUF_IS_L2CACHEABLE(db))
635 aflags |= ARC_L2CACHE;
636 if (DBUF_IS_L2COMPRESSIBLE(db))
637 aflags |= ARC_L2COMPRESS;
638
639 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
640 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
641 db->db.db_object, db->db_level, db->db_blkid);
642
643 dbuf_add_ref(db, NULL);
644
645 err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
646 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
647 (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
648 &aflags, &zb);
649 if (aflags & ARC_CACHED)
650 *flags |= DB_RF_CACHED;
651
652 return (SET_ERROR(err));
653 }
654
655 int
656 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
657 {
658 int err = 0;
659 boolean_t havepzio = (zio != NULL);
660 boolean_t prefetch;
661 dnode_t *dn;
662
663 /*
664 * We don't have to hold the mutex to check db_state because it
665 * can't be freed while we have a hold on the buffer.
666 */
667 ASSERT(!refcount_is_zero(&db->db_holds));
668
669 if (db->db_state == DB_NOFILL)
670 return (SET_ERROR(EIO));
671
672 DB_DNODE_ENTER(db);
673 dn = DB_DNODE(db);
674 if ((flags & DB_RF_HAVESTRUCT) == 0)
675 rw_enter(&dn->dn_struct_rwlock, RW_READER);
676
677 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
678 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
679 DBUF_IS_CACHEABLE(db);
680
681 mutex_enter(&db->db_mtx);
682 if (db->db_state == DB_CACHED) {
683 mutex_exit(&db->db_mtx);
684 if (prefetch)
685 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
686 db->db.db_size, TRUE);
687 if ((flags & DB_RF_HAVESTRUCT) == 0)
688 rw_exit(&dn->dn_struct_rwlock);
689 DB_DNODE_EXIT(db);
690 } else if (db->db_state == DB_UNCACHED) {
691 spa_t *spa = dn->dn_objset->os_spa;
692
693 if (zio == NULL)
694 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
695
696 err = dbuf_read_impl(db, zio, &flags);
697
698 /* dbuf_read_impl has dropped db_mtx for us */
699
700 if (!err && prefetch)
701 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
702 db->db.db_size, flags & DB_RF_CACHED);
703
704 if ((flags & DB_RF_HAVESTRUCT) == 0)
705 rw_exit(&dn->dn_struct_rwlock);
706 DB_DNODE_EXIT(db);
707
708 if (!err && !havepzio)
709 err = zio_wait(zio);
710 } else {
711 /*
712 * Another reader came in while the dbuf was in flight
713 * between UNCACHED and CACHED. Either a writer will finish
714 * writing the buffer (sending the dbuf to CACHED) or the
715 * first reader's request will reach the read_done callback
716 * and send the dbuf to CACHED. Otherwise, a failure
717 * occurred and the dbuf went to UNCACHED.
718 */
719 mutex_exit(&db->db_mtx);
720 if (prefetch)
721 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
722 db->db.db_size, TRUE);
723 if ((flags & DB_RF_HAVESTRUCT) == 0)
724 rw_exit(&dn->dn_struct_rwlock);
725 DB_DNODE_EXIT(db);
726
727 /* Skip the wait per the caller's request. */
728 mutex_enter(&db->db_mtx);
729 if ((flags & DB_RF_NEVERWAIT) == 0) {
730 while (db->db_state == DB_READ ||
731 db->db_state == DB_FILL) {
732 ASSERT(db->db_state == DB_READ ||
733 (flags & DB_RF_HAVESTRUCT) == 0);
734 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
735 db, zio_t *, zio);
736 cv_wait(&db->db_changed, &db->db_mtx);
737 }
738 if (db->db_state == DB_UNCACHED)
739 err = SET_ERROR(EIO);
740 }
741 mutex_exit(&db->db_mtx);
742 }
743
744 ASSERT(err || havepzio || db->db_state == DB_CACHED);
745 return (err);
746 }
747
748 static void
749 dbuf_noread(dmu_buf_impl_t *db)
750 {
751 ASSERT(!refcount_is_zero(&db->db_holds));
752 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
753 mutex_enter(&db->db_mtx);
754 while (db->db_state == DB_READ || db->db_state == DB_FILL)
755 cv_wait(&db->db_changed, &db->db_mtx);
756 if (db->db_state == DB_UNCACHED) {
757 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
758 spa_t *spa = db->db_objset->os_spa;
759
760 ASSERT(db->db_buf == NULL);
761 ASSERT(db->db.db_data == NULL);
762 dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
763 db->db_state = DB_FILL;
764 } else if (db->db_state == DB_NOFILL) {
765 dbuf_set_data(db, NULL);
766 } else {
767 ASSERT3U(db->db_state, ==, DB_CACHED);
768 }
769 mutex_exit(&db->db_mtx);
770 }
771
772 /*
773 * This is our just-in-time copy function. It makes a copy of
774 * buffers, that have been modified in a previous transaction
775 * group, before we modify them in the current active group.
776 *
777 * This function is used in two places: when we are dirtying a
778 * buffer for the first time in a txg, and when we are freeing
779 * a range in a dnode that includes this buffer.
780 *
781 * Note that when we are called from dbuf_free_range() we do
782 * not put a hold on the buffer, we just traverse the active
783 * dbuf list for the dnode.
784 */
785 static void
786 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
787 {
788 dbuf_dirty_record_t *dr = db->db_last_dirty;
789
790 ASSERT(MUTEX_HELD(&db->db_mtx));
791 ASSERT(db->db.db_data != NULL);
792 ASSERT(db->db_level == 0);
793 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
794
795 if (dr == NULL ||
796 (dr->dt.dl.dr_data !=
797 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
798 return;
799
800 /*
801 * If the last dirty record for this dbuf has not yet synced
802 * and its referencing the dbuf data, either:
803 * reset the reference to point to a new copy,
804 * or (if there a no active holders)
805 * just null out the current db_data pointer.
806 */
807 ASSERT(dr->dr_txg >= txg - 2);
808 if (db->db_blkid == DMU_BONUS_BLKID) {
809 /* Note that the data bufs here are zio_bufs */
810 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
811 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
812 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
813 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
814 int size = db->db.db_size;
815 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
816 spa_t *spa = db->db_objset->os_spa;
817
818 dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
819 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
820 } else {
821 dbuf_set_data(db, NULL);
822 }
823 }
824
825 void
826 dbuf_unoverride(dbuf_dirty_record_t *dr)
827 {
828 dmu_buf_impl_t *db = dr->dr_dbuf;
829 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
830 uint64_t txg = dr->dr_txg;
831
832 ASSERT(MUTEX_HELD(&db->db_mtx));
833 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
834 ASSERT(db->db_level == 0);
835
836 if (db->db_blkid == DMU_BONUS_BLKID ||
837 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
838 return;
839
840 ASSERT(db->db_data_pending != dr);
841
842 /* free this block */
843 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
844 zio_free(db->db_objset->os_spa, txg, bp);
845
846 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
847 dr->dt.dl.dr_nopwrite = B_FALSE;
848
849 /*
850 * Release the already-written buffer, so we leave it in
851 * a consistent dirty state. Note that all callers are
852 * modifying the buffer, so they will immediately do
853 * another (redundant) arc_release(). Therefore, leave
854 * the buf thawed to save the effort of freezing &
855 * immediately re-thawing it.
856 */
857 arc_release(dr->dt.dl.dr_data, db);
858 }
859
860 /*
861 * Evict (if its unreferenced) or clear (if its referenced) any level-0
862 * data blocks in the free range, so that any future readers will find
863 * empty blocks.
864 *
865 * This is a no-op if the dataset is in the middle of an incremental
866 * receive; see comment below for details.
867 */
868 void
869 dbuf_free_range(dnode_t *dn, uint64_t start, uint64_t end, dmu_tx_t *tx)
870 {
871 dmu_buf_impl_t *db, *db_next;
872 uint64_t txg = tx->tx_txg;
873 boolean_t freespill =
874 (start == DMU_SPILL_BLKID || end == DMU_SPILL_BLKID);
875
876 if (end > dn->dn_maxblkid && !freespill)
877 end = dn->dn_maxblkid;
878 dprintf_dnode(dn, "start=%llu end=%llu\n", start, end);
879
880 mutex_enter(&dn->dn_dbufs_mtx);
881 if (start >= dn->dn_unlisted_l0_blkid * dn->dn_datablksz &&
882 !freespill) {
883 /* There can't be any dbufs in this range; no need to search. */
884 mutex_exit(&dn->dn_dbufs_mtx);
885 return;
886 } else if (dmu_objset_is_receiving(dn->dn_objset)) {
887 /*
888 * If we are receiving, we expect there to be no dbufs in
889 * the range to be freed, because receive modifies each
890 * block at most once, and in offset order. If this is
891 * not the case, it can lead to performance problems,
892 * so note that we unexpectedly took the slow path.
893 */
894 atomic_inc_64(&zfs_free_range_recv_miss);
895 }
896
897 for (db = list_head(&dn->dn_dbufs); db != NULL; db = db_next) {
898 db_next = list_next(&dn->dn_dbufs, db);
899 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
900
901 /* Skip indirect blocks. */
902 if (db->db_level != 0)
903 continue;
904 /* Skip direct blocks outside the range. */
905 if (!freespill && (db->db_blkid < start || db->db_blkid > end))
906 continue;
907 /* Skip all direct blocks, only free spill blocks. */
908 if (freespill && (db->db_blkid != DMU_SPILL_BLKID))
909 continue;
910
911 /* found a level 0 buffer in the range */
912 mutex_enter(&db->db_mtx);
913 if (dbuf_undirty(db, tx)) {
914 /* mutex has been dropped and dbuf destroyed */
915 continue;
916 }
917
918 if (db->db_state == DB_UNCACHED ||
919 db->db_state == DB_NOFILL ||
920 db->db_state == DB_EVICTING) {
921 ASSERT(db->db.db_data == NULL);
922 mutex_exit(&db->db_mtx);
923 continue;
924 }
925 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
926 /* will be handled in dbuf_read_done or dbuf_rele */
927 db->db_freed_in_flight = TRUE;
928 mutex_exit(&db->db_mtx);
929 continue;
930 }
931 if (refcount_count(&db->db_holds) == 0) {
932 ASSERT(db->db_buf);
933 dbuf_clear(db);
934 continue;
935 }
936 /* The dbuf is referenced */
937
938 if (db->db_last_dirty != NULL) {
939 dbuf_dirty_record_t *dr = db->db_last_dirty;
940
941 if (dr->dr_txg == txg) {
942 /*
943 * This buffer is "in-use", re-adjust the file
944 * size to reflect that this buffer may
945 * contain new data when we sync.
946 */
947 if (db->db_blkid != DMU_SPILL_BLKID &&
948 db->db_blkid > dn->dn_maxblkid)
949 dn->dn_maxblkid = db->db_blkid;
950 dbuf_unoverride(dr);
951 } else {
952 /*
953 * This dbuf is not dirty in the open context.
954 * Either uncache it (if its not referenced in
955 * the open context) or reset its contents to
956 * empty.
957 */
958 dbuf_fix_old_data(db, txg);
959 }
960 }
961 /* clear the contents if its cached */
962 if (db->db_state == DB_CACHED) {
963 ASSERT(db->db.db_data != NULL);
964 arc_release(db->db_buf, db);
965 bzero(db->db.db_data, db->db.db_size);
966 arc_buf_freeze(db->db_buf);
967 }
968
969 mutex_exit(&db->db_mtx);
970 }
971 mutex_exit(&dn->dn_dbufs_mtx);
972 }
973
974 static int
975 dbuf_block_freeable(dmu_buf_impl_t *db)
976 {
977 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
978 uint64_t birth_txg = 0;
979
980 /*
981 * We don't need any locking to protect db_blkptr:
982 * If it's syncing, then db_last_dirty will be set
983 * so we'll ignore db_blkptr.
984 *
985 * This logic ensures that only block births for
986 * filled blocks are considered.
987 */
988 ASSERT(MUTEX_HELD(&db->db_mtx));
989 if (db->db_last_dirty && (db->db_blkptr == NULL ||
990 !BP_IS_HOLE(db->db_blkptr))) {
991 birth_txg = db->db_last_dirty->dr_txg;
992 } else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
993 birth_txg = db->db_blkptr->blk_birth;
994 }
995
996 /*
997 * If this block don't exist or is in a snapshot, it can't be freed.
998 * Don't pass the bp to dsl_dataset_block_freeable() since we
999 * are holding the db_mtx lock and might deadlock if we are
1000 * prefetching a dedup-ed block.
1001 */
1002 if (birth_txg != 0)
1003 return (ds == NULL ||
1004 dsl_dataset_block_freeable(ds, NULL, birth_txg));
1005 else
1006 return (B_FALSE);
1007 }
1008
1009 void
1010 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1011 {
1012 arc_buf_t *buf, *obuf;
1013 int osize = db->db.db_size;
1014 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1015 dnode_t *dn;
1016
1017 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1018
1019 DB_DNODE_ENTER(db);
1020 dn = DB_DNODE(db);
1021
1022 /* XXX does *this* func really need the lock? */
1023 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1024
1025 /*
1026 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1027 * is OK, because there can be no other references to the db
1028 * when we are changing its size, so no concurrent DB_FILL can
1029 * be happening.
1030 */
1031 /*
1032 * XXX we should be doing a dbuf_read, checking the return
1033 * value and returning that up to our callers
1034 */
1035 dmu_buf_will_dirty(&db->db, tx);
1036
1037 /* create the data buffer for the new block */
1038 buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
1039
1040 /* copy old block data to the new block */
1041 obuf = db->db_buf;
1042 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1043 /* zero the remainder */
1044 if (size > osize)
1045 bzero((uint8_t *)buf->b_data + osize, size - osize);
1046
1047 mutex_enter(&db->db_mtx);
1048 dbuf_set_data(db, buf);
1049 VERIFY(arc_buf_remove_ref(obuf, db));
1050 db->db.db_size = size;
1051
1052 if (db->db_level == 0) {
1053 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1054 db->db_last_dirty->dt.dl.dr_data = buf;
1055 }
1056 mutex_exit(&db->db_mtx);
1057
1058 dnode_willuse_space(dn, size-osize, tx);
1059 DB_DNODE_EXIT(db);
1060 }
1061
1062 void
1063 dbuf_release_bp(dmu_buf_impl_t *db)
1064 {
1065 ASSERTV(objset_t *os = db->db_objset);
1066
1067 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1068 ASSERT(arc_released(os->os_phys_buf) ||
1069 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1070 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1071
1072 (void) arc_release(db->db_buf, db);
1073 }
1074
1075 dbuf_dirty_record_t *
1076 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1077 {
1078 dnode_t *dn;
1079 objset_t *os;
1080 dbuf_dirty_record_t **drp, *dr;
1081 int drop_struct_lock = FALSE;
1082 boolean_t do_free_accounting = B_FALSE;
1083 int txgoff = tx->tx_txg & TXG_MASK;
1084
1085 ASSERT(tx->tx_txg != 0);
1086 ASSERT(!refcount_is_zero(&db->db_holds));
1087 DMU_TX_DIRTY_BUF(tx, db);
1088
1089 DB_DNODE_ENTER(db);
1090 dn = DB_DNODE(db);
1091 /*
1092 * Shouldn't dirty a regular buffer in syncing context. Private
1093 * objects may be dirtied in syncing context, but only if they
1094 * were already pre-dirtied in open context.
1095 */
1096 ASSERT(!dmu_tx_is_syncing(tx) ||
1097 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1098 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1099 dn->dn_objset->os_dsl_dataset == NULL);
1100 /*
1101 * We make this assert for private objects as well, but after we
1102 * check if we're already dirty. They are allowed to re-dirty
1103 * in syncing context.
1104 */
1105 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1106 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1107 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1108
1109 mutex_enter(&db->db_mtx);
1110 /*
1111 * XXX make this true for indirects too? The problem is that
1112 * transactions created with dmu_tx_create_assigned() from
1113 * syncing context don't bother holding ahead.
1114 */
1115 ASSERT(db->db_level != 0 ||
1116 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1117 db->db_state == DB_NOFILL);
1118
1119 mutex_enter(&dn->dn_mtx);
1120 /*
1121 * Don't set dirtyctx to SYNC if we're just modifying this as we
1122 * initialize the objset.
1123 */
1124 if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1125 !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1126 dn->dn_dirtyctx =
1127 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1128 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1129 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1130 }
1131 mutex_exit(&dn->dn_mtx);
1132
1133 if (db->db_blkid == DMU_SPILL_BLKID)
1134 dn->dn_have_spill = B_TRUE;
1135
1136 /*
1137 * If this buffer is already dirty, we're done.
1138 */
1139 drp = &db->db_last_dirty;
1140 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1141 db->db.db_object == DMU_META_DNODE_OBJECT);
1142 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1143 drp = &dr->dr_next;
1144 if (dr && dr->dr_txg == tx->tx_txg) {
1145 DB_DNODE_EXIT(db);
1146
1147 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1148 /*
1149 * If this buffer has already been written out,
1150 * we now need to reset its state.
1151 */
1152 dbuf_unoverride(dr);
1153 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1154 db->db_state != DB_NOFILL)
1155 arc_buf_thaw(db->db_buf);
1156 }
1157 mutex_exit(&db->db_mtx);
1158 return (dr);
1159 }
1160
1161 /*
1162 * Only valid if not already dirty.
1163 */
1164 ASSERT(dn->dn_object == 0 ||
1165 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1166 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1167
1168 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1169 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1170 dn->dn_phys->dn_nlevels > db->db_level ||
1171 dn->dn_next_nlevels[txgoff] > db->db_level ||
1172 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1173 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1174
1175 /*
1176 * We should only be dirtying in syncing context if it's the
1177 * mos or we're initializing the os or it's a special object.
1178 * However, we are allowed to dirty in syncing context provided
1179 * we already dirtied it in open context. Hence we must make
1180 * this assertion only if we're not already dirty.
1181 */
1182 os = dn->dn_objset;
1183 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1184 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1185 ASSERT(db->db.db_size != 0);
1186
1187 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1188
1189 if (db->db_blkid != DMU_BONUS_BLKID) {
1190 /*
1191 * Update the accounting.
1192 * Note: we delay "free accounting" until after we drop
1193 * the db_mtx. This keeps us from grabbing other locks
1194 * (and possibly deadlocking) in bp_get_dsize() while
1195 * also holding the db_mtx.
1196 */
1197 dnode_willuse_space(dn, db->db.db_size, tx);
1198 do_free_accounting = dbuf_block_freeable(db);
1199 }
1200
1201 /*
1202 * If this buffer is dirty in an old transaction group we need
1203 * to make a copy of it so that the changes we make in this
1204 * transaction group won't leak out when we sync the older txg.
1205 */
1206 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1207 list_link_init(&dr->dr_dirty_node);
1208 if (db->db_level == 0) {
1209 void *data_old = db->db_buf;
1210
1211 if (db->db_state != DB_NOFILL) {
1212 if (db->db_blkid == DMU_BONUS_BLKID) {
1213 dbuf_fix_old_data(db, tx->tx_txg);
1214 data_old = db->db.db_data;
1215 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1216 /*
1217 * Release the data buffer from the cache so
1218 * that we can modify it without impacting
1219 * possible other users of this cached data
1220 * block. Note that indirect blocks and
1221 * private objects are not released until the
1222 * syncing state (since they are only modified
1223 * then).
1224 */
1225 arc_release(db->db_buf, db);
1226 dbuf_fix_old_data(db, tx->tx_txg);
1227 data_old = db->db_buf;
1228 }
1229 ASSERT(data_old != NULL);
1230 }
1231 dr->dt.dl.dr_data = data_old;
1232 } else {
1233 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1234 list_create(&dr->dt.di.dr_children,
1235 sizeof (dbuf_dirty_record_t),
1236 offsetof(dbuf_dirty_record_t, dr_dirty_node));
1237 }
1238 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1239 dr->dr_accounted = db->db.db_size;
1240 dr->dr_dbuf = db;
1241 dr->dr_txg = tx->tx_txg;
1242 dr->dr_next = *drp;
1243 *drp = dr;
1244
1245 /*
1246 * We could have been freed_in_flight between the dbuf_noread
1247 * and dbuf_dirty. We win, as though the dbuf_noread() had
1248 * happened after the free.
1249 */
1250 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1251 db->db_blkid != DMU_SPILL_BLKID) {
1252 mutex_enter(&dn->dn_mtx);
1253 if (dn->dn_free_ranges[txgoff] != NULL) {
1254 range_tree_clear(dn->dn_free_ranges[txgoff],
1255 db->db_blkid, 1);
1256 }
1257 mutex_exit(&dn->dn_mtx);
1258 db->db_freed_in_flight = FALSE;
1259 }
1260
1261 /*
1262 * This buffer is now part of this txg
1263 */
1264 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1265 db->db_dirtycnt += 1;
1266 ASSERT3U(db->db_dirtycnt, <=, 3);
1267
1268 mutex_exit(&db->db_mtx);
1269
1270 if (db->db_blkid == DMU_BONUS_BLKID ||
1271 db->db_blkid == DMU_SPILL_BLKID) {
1272 mutex_enter(&dn->dn_mtx);
1273 ASSERT(!list_link_active(&dr->dr_dirty_node));
1274 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1275 mutex_exit(&dn->dn_mtx);
1276 dnode_setdirty(dn, tx);
1277 DB_DNODE_EXIT(db);
1278 return (dr);
1279 } else if (do_free_accounting) {
1280 blkptr_t *bp = db->db_blkptr;
1281 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1282 bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1283 /*
1284 * This is only a guess -- if the dbuf is dirty
1285 * in a previous txg, we don't know how much
1286 * space it will use on disk yet. We should
1287 * really have the struct_rwlock to access
1288 * db_blkptr, but since this is just a guess,
1289 * it's OK if we get an odd answer.
1290 */
1291 ddt_prefetch(os->os_spa, bp);
1292 dnode_willuse_space(dn, -willfree, tx);
1293 }
1294
1295 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1296 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1297 drop_struct_lock = TRUE;
1298 }
1299
1300 if (db->db_level == 0) {
1301 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1302 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1303 }
1304
1305 if (db->db_level+1 < dn->dn_nlevels) {
1306 dmu_buf_impl_t *parent = db->db_parent;
1307 dbuf_dirty_record_t *di;
1308 int parent_held = FALSE;
1309
1310 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1311 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1312
1313 parent = dbuf_hold_level(dn, db->db_level+1,
1314 db->db_blkid >> epbs, FTAG);
1315 ASSERT(parent != NULL);
1316 parent_held = TRUE;
1317 }
1318 if (drop_struct_lock)
1319 rw_exit(&dn->dn_struct_rwlock);
1320 ASSERT3U(db->db_level+1, ==, parent->db_level);
1321 di = dbuf_dirty(parent, tx);
1322 if (parent_held)
1323 dbuf_rele(parent, FTAG);
1324
1325 mutex_enter(&db->db_mtx);
1326 /*
1327 * Since we've dropped the mutex, it's possible that
1328 * dbuf_undirty() might have changed this out from under us.
1329 */
1330 if (db->db_last_dirty == dr ||
1331 dn->dn_object == DMU_META_DNODE_OBJECT) {
1332 mutex_enter(&di->dt.di.dr_mtx);
1333 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1334 ASSERT(!list_link_active(&dr->dr_dirty_node));
1335 list_insert_tail(&di->dt.di.dr_children, dr);
1336 mutex_exit(&di->dt.di.dr_mtx);
1337 dr->dr_parent = di;
1338 }
1339 mutex_exit(&db->db_mtx);
1340 } else {
1341 ASSERT(db->db_level+1 == dn->dn_nlevels);
1342 ASSERT(db->db_blkid < dn->dn_nblkptr);
1343 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1344 mutex_enter(&dn->dn_mtx);
1345 ASSERT(!list_link_active(&dr->dr_dirty_node));
1346 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1347 mutex_exit(&dn->dn_mtx);
1348 if (drop_struct_lock)
1349 rw_exit(&dn->dn_struct_rwlock);
1350 }
1351
1352 dnode_setdirty(dn, tx);
1353 DB_DNODE_EXIT(db);
1354 return (dr);
1355 }
1356
1357 /*
1358 * Undirty a buffer in the transaction group referenced by the given
1359 * transaction. Return whether this evicted the dbuf.
1360 */
1361 static boolean_t
1362 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1363 {
1364 dnode_t *dn;
1365 uint64_t txg = tx->tx_txg;
1366 dbuf_dirty_record_t *dr, **drp;
1367
1368 ASSERT(txg != 0);
1369 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1370 ASSERT0(db->db_level);
1371 ASSERT(MUTEX_HELD(&db->db_mtx));
1372
1373 /*
1374 * If this buffer is not dirty, we're done.
1375 */
1376 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1377 if (dr->dr_txg <= txg)
1378 break;
1379 if (dr == NULL || dr->dr_txg < txg)
1380 return (B_FALSE);
1381 ASSERT(dr->dr_txg == txg);
1382 ASSERT(dr->dr_dbuf == db);
1383
1384 DB_DNODE_ENTER(db);
1385 dn = DB_DNODE(db);
1386
1387 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1388
1389 ASSERT(db->db.db_size != 0);
1390
1391 /*
1392 * Any space we accounted for in dp_dirty_* will be cleaned up by
1393 * dsl_pool_sync(). This is relatively rare so the discrepancy
1394 * is not a big deal.
1395 */
1396
1397 *drp = dr->dr_next;
1398
1399 /*
1400 * Note that there are three places in dbuf_dirty()
1401 * where this dirty record may be put on a list.
1402 * Make sure to do a list_remove corresponding to
1403 * every one of those list_insert calls.
1404 */
1405 if (dr->dr_parent) {
1406 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1407 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1408 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1409 } else if (db->db_blkid == DMU_SPILL_BLKID ||
1410 db->db_level+1 == dn->dn_nlevels) {
1411 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1412 mutex_enter(&dn->dn_mtx);
1413 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1414 mutex_exit(&dn->dn_mtx);
1415 }
1416 DB_DNODE_EXIT(db);
1417
1418 if (db->db_state != DB_NOFILL) {
1419 dbuf_unoverride(dr);
1420
1421 ASSERT(db->db_buf != NULL);
1422 ASSERT(dr->dt.dl.dr_data != NULL);
1423 if (dr->dt.dl.dr_data != db->db_buf)
1424 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1425 }
1426 kmem_free(dr, sizeof (dbuf_dirty_record_t));
1427
1428 ASSERT(db->db_dirtycnt > 0);
1429 db->db_dirtycnt -= 1;
1430
1431 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1432 arc_buf_t *buf = db->db_buf;
1433
1434 ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1435 dbuf_set_data(db, NULL);
1436 VERIFY(arc_buf_remove_ref(buf, db));
1437 dbuf_evict(db);
1438 return (B_TRUE);
1439 }
1440
1441 return (B_FALSE);
1442 }
1443
1444 void
1445 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1446 {
1447 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1448 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1449
1450 ASSERT(tx->tx_txg != 0);
1451 ASSERT(!refcount_is_zero(&db->db_holds));
1452
1453 DB_DNODE_ENTER(db);
1454 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1455 rf |= DB_RF_HAVESTRUCT;
1456 DB_DNODE_EXIT(db);
1457 (void) dbuf_read(db, NULL, rf);
1458 (void) dbuf_dirty(db, tx);
1459 }
1460
1461 void
1462 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1463 {
1464 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1465
1466 db->db_state = DB_NOFILL;
1467
1468 dmu_buf_will_fill(db_fake, tx);
1469 }
1470
1471 void
1472 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1473 {
1474 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1475
1476 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1477 ASSERT(tx->tx_txg != 0);
1478 ASSERT(db->db_level == 0);
1479 ASSERT(!refcount_is_zero(&db->db_holds));
1480
1481 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1482 dmu_tx_private_ok(tx));
1483
1484 dbuf_noread(db);
1485 (void) dbuf_dirty(db, tx);
1486 }
1487
1488 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1489 /* ARGSUSED */
1490 void
1491 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1492 {
1493 mutex_enter(&db->db_mtx);
1494 DBUF_VERIFY(db);
1495
1496 if (db->db_state == DB_FILL) {
1497 if (db->db_level == 0 && db->db_freed_in_flight) {
1498 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1499 /* we were freed while filling */
1500 /* XXX dbuf_undirty? */
1501 bzero(db->db.db_data, db->db.db_size);
1502 db->db_freed_in_flight = FALSE;
1503 }
1504 db->db_state = DB_CACHED;
1505 cv_broadcast(&db->db_changed);
1506 }
1507 mutex_exit(&db->db_mtx);
1508 }
1509
1510 void
1511 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1512 bp_embedded_type_t etype, enum zio_compress comp,
1513 int uncompressed_size, int compressed_size, int byteorder,
1514 dmu_tx_t *tx)
1515 {
1516 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1517 struct dirty_leaf *dl;
1518 dmu_object_type_t type;
1519
1520 DB_DNODE_ENTER(db);
1521 type = DB_DNODE(db)->dn_type;
1522 DB_DNODE_EXIT(db);
1523
1524 ASSERT0(db->db_level);
1525 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1526
1527 dmu_buf_will_not_fill(dbuf, tx);
1528
1529 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1530 dl = &db->db_last_dirty->dt.dl;
1531 encode_embedded_bp_compressed(&dl->dr_overridden_by,
1532 data, comp, uncompressed_size, compressed_size);
1533 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1534 BP_SET_TYPE(&dl->dr_overridden_by, type);
1535 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1536 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1537
1538 dl->dr_override_state = DR_OVERRIDDEN;
1539 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1540 }
1541
1542 /*
1543 * Directly assign a provided arc buf to a given dbuf if it's not referenced
1544 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1545 */
1546 void
1547 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1548 {
1549 ASSERT(!refcount_is_zero(&db->db_holds));
1550 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1551 ASSERT(db->db_level == 0);
1552 ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1553 ASSERT(buf != NULL);
1554 ASSERT(arc_buf_size(buf) == db->db.db_size);
1555 ASSERT(tx->tx_txg != 0);
1556
1557 arc_return_buf(buf, db);
1558 ASSERT(arc_released(buf));
1559
1560 mutex_enter(&db->db_mtx);
1561
1562 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1563 cv_wait(&db->db_changed, &db->db_mtx);
1564
1565 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1566
1567 if (db->db_state == DB_CACHED &&
1568 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1569 mutex_exit(&db->db_mtx);
1570 (void) dbuf_dirty(db, tx);
1571 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1572 VERIFY(arc_buf_remove_ref(buf, db));
1573 xuio_stat_wbuf_copied();
1574 return;
1575 }
1576
1577 xuio_stat_wbuf_nocopy();
1578 if (db->db_state == DB_CACHED) {
1579 dbuf_dirty_record_t *dr = db->db_last_dirty;
1580
1581 ASSERT(db->db_buf != NULL);
1582 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1583 ASSERT(dr->dt.dl.dr_data == db->db_buf);
1584 if (!arc_released(db->db_buf)) {
1585 ASSERT(dr->dt.dl.dr_override_state ==
1586 DR_OVERRIDDEN);
1587 arc_release(db->db_buf, db);
1588 }
1589 dr->dt.dl.dr_data = buf;
1590 VERIFY(arc_buf_remove_ref(db->db_buf, db));
1591 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1592 arc_release(db->db_buf, db);
1593 VERIFY(arc_buf_remove_ref(db->db_buf, db));
1594 }
1595 db->db_buf = NULL;
1596 }
1597 ASSERT(db->db_buf == NULL);
1598 dbuf_set_data(db, buf);
1599 db->db_state = DB_FILL;
1600 mutex_exit(&db->db_mtx);
1601 (void) dbuf_dirty(db, tx);
1602 dmu_buf_fill_done(&db->db, tx);
1603 }
1604
1605 /*
1606 * "Clear" the contents of this dbuf. This will mark the dbuf
1607 * EVICTING and clear *most* of its references. Unfortunately,
1608 * when we are not holding the dn_dbufs_mtx, we can't clear the
1609 * entry in the dn_dbufs list. We have to wait until dbuf_destroy()
1610 * in this case. For callers from the DMU we will usually see:
1611 * dbuf_clear()->arc_clear_callback()->dbuf_do_evict()->dbuf_destroy()
1612 * For the arc callback, we will usually see:
1613 * dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1614 * Sometimes, though, we will get a mix of these two:
1615 * DMU: dbuf_clear()->arc_clear_callback()
1616 * ARC: dbuf_do_evict()->dbuf_destroy()
1617 *
1618 * This routine will dissociate the dbuf from the arc, by calling
1619 * arc_clear_callback(), but will not evict the data from the ARC.
1620 */
1621 void
1622 dbuf_clear(dmu_buf_impl_t *db)
1623 {
1624 dnode_t *dn;
1625 dmu_buf_impl_t *parent = db->db_parent;
1626 dmu_buf_impl_t *dndb;
1627 boolean_t dbuf_gone = B_FALSE;
1628
1629 ASSERT(MUTEX_HELD(&db->db_mtx));
1630 ASSERT(refcount_is_zero(&db->db_holds));
1631
1632 dbuf_evict_user(db);
1633
1634 if (db->db_state == DB_CACHED) {
1635 ASSERT(db->db.db_data != NULL);
1636 if (db->db_blkid == DMU_BONUS_BLKID) {
1637 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1638 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1639 }
1640 db->db.db_data = NULL;
1641 db->db_state = DB_UNCACHED;
1642 }
1643
1644 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1645 ASSERT(db->db_data_pending == NULL);
1646
1647 db->db_state = DB_EVICTING;
1648 db->db_blkptr = NULL;
1649
1650 DB_DNODE_ENTER(db);
1651 dn = DB_DNODE(db);
1652 dndb = dn->dn_dbuf;
1653 if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1654 list_remove(&dn->dn_dbufs, db);
1655 atomic_dec_32(&dn->dn_dbufs_count);
1656 membar_producer();
1657 DB_DNODE_EXIT(db);
1658 /*
1659 * Decrementing the dbuf count means that the hold corresponding
1660 * to the removed dbuf is no longer discounted in dnode_move(),
1661 * so the dnode cannot be moved until after we release the hold.
1662 * The membar_producer() ensures visibility of the decremented
1663 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1664 * release any lock.
1665 */
1666 dnode_rele(dn, db);
1667 db->db_dnode_handle = NULL;
1668 } else {
1669 DB_DNODE_EXIT(db);
1670 }
1671
1672 if (db->db_buf)
1673 dbuf_gone = arc_clear_callback(db->db_buf);
1674
1675 if (!dbuf_gone)
1676 mutex_exit(&db->db_mtx);
1677
1678 /*
1679 * If this dbuf is referenced from an indirect dbuf,
1680 * decrement the ref count on the indirect dbuf.
1681 */
1682 if (parent && parent != dndb)
1683 dbuf_rele(parent, db);
1684 }
1685
1686 __attribute__((always_inline))
1687 static inline int
1688 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1689 dmu_buf_impl_t **parentp, blkptr_t **bpp, struct dbuf_hold_impl_data *dh)
1690 {
1691 int nlevels, epbs;
1692
1693 *parentp = NULL;
1694 *bpp = NULL;
1695
1696 ASSERT(blkid != DMU_BONUS_BLKID);
1697
1698 if (blkid == DMU_SPILL_BLKID) {
1699 mutex_enter(&dn->dn_mtx);
1700 if (dn->dn_have_spill &&
1701 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1702 *bpp = &dn->dn_phys->dn_spill;
1703 else
1704 *bpp = NULL;
1705 dbuf_add_ref(dn->dn_dbuf, NULL);
1706 *parentp = dn->dn_dbuf;
1707 mutex_exit(&dn->dn_mtx);
1708 return (0);
1709 }
1710
1711 if (dn->dn_phys->dn_nlevels == 0)
1712 nlevels = 1;
1713 else
1714 nlevels = dn->dn_phys->dn_nlevels;
1715
1716 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1717
1718 ASSERT3U(level * epbs, <, 64);
1719 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1720 if (level >= nlevels ||
1721 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1722 /* the buffer has no parent yet */
1723 return (SET_ERROR(ENOENT));
1724 } else if (level < nlevels-1) {
1725 /* this block is referenced from an indirect block */
1726 int err;
1727 if (dh == NULL) {
1728 err = dbuf_hold_impl(dn, level+1, blkid >> epbs,
1729 fail_sparse, NULL, parentp);
1730 } else {
1731 __dbuf_hold_impl_init(dh + 1, dn, dh->dh_level + 1,
1732 blkid >> epbs, fail_sparse, NULL,
1733 parentp, dh->dh_depth + 1);
1734 err = __dbuf_hold_impl(dh + 1);
1735 }
1736 if (err)
1737 return (err);
1738 err = dbuf_read(*parentp, NULL,
1739 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1740 if (err) {
1741 dbuf_rele(*parentp, NULL);
1742 *parentp = NULL;
1743 return (err);
1744 }
1745 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1746 (blkid & ((1ULL << epbs) - 1));
1747 return (0);
1748 } else {
1749 /* the block is referenced from the dnode */
1750 ASSERT3U(level, ==, nlevels-1);
1751 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1752 blkid < dn->dn_phys->dn_nblkptr);
1753 if (dn->dn_dbuf) {
1754 dbuf_add_ref(dn->dn_dbuf, NULL);
1755 *parentp = dn->dn_dbuf;
1756 }
1757 *bpp = &dn->dn_phys->dn_blkptr[blkid];
1758 return (0);
1759 }
1760 }
1761
1762 static dmu_buf_impl_t *
1763 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1764 dmu_buf_impl_t *parent, blkptr_t *blkptr)
1765 {
1766 objset_t *os = dn->dn_objset;
1767 dmu_buf_impl_t *db, *odb;
1768
1769 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1770 ASSERT(dn->dn_type != DMU_OT_NONE);
1771
1772 db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1773
1774 db->db_objset = os;
1775 db->db.db_object = dn->dn_object;
1776 db->db_level = level;
1777 db->db_blkid = blkid;
1778 db->db_last_dirty = NULL;
1779 db->db_dirtycnt = 0;
1780 db->db_dnode_handle = dn->dn_handle;
1781 db->db_parent = parent;
1782 db->db_blkptr = blkptr;
1783
1784 db->db_user_ptr = NULL;
1785 db->db_user_data_ptr_ptr = NULL;
1786 db->db_evict_func = NULL;
1787 db->db_immediate_evict = 0;
1788 db->db_freed_in_flight = 0;
1789
1790 if (blkid == DMU_BONUS_BLKID) {
1791 ASSERT3P(parent, ==, dn->dn_dbuf);
1792 db->db.db_size = DN_MAX_BONUSLEN -
1793 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1794 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1795 db->db.db_offset = DMU_BONUS_BLKID;
1796 db->db_state = DB_UNCACHED;
1797 /* the bonus dbuf is not placed in the hash table */
1798 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1799 return (db);
1800 } else if (blkid == DMU_SPILL_BLKID) {
1801 db->db.db_size = (blkptr != NULL) ?
1802 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1803 db->db.db_offset = 0;
1804 } else {
1805 int blocksize =
1806 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1807 db->db.db_size = blocksize;
1808 db->db.db_offset = db->db_blkid * blocksize;
1809 }
1810
1811 /*
1812 * Hold the dn_dbufs_mtx while we get the new dbuf
1813 * in the hash table *and* added to the dbufs list.
1814 * This prevents a possible deadlock with someone
1815 * trying to look up this dbuf before its added to the
1816 * dn_dbufs list.
1817 */
1818 mutex_enter(&dn->dn_dbufs_mtx);
1819 db->db_state = DB_EVICTING;
1820 if ((odb = dbuf_hash_insert(db)) != NULL) {
1821 /* someone else inserted it first */
1822 kmem_cache_free(dbuf_cache, db);
1823 mutex_exit(&dn->dn_dbufs_mtx);
1824 return (odb);
1825 }
1826 list_insert_head(&dn->dn_dbufs, db);
1827 if (db->db_level == 0 && db->db_blkid >=
1828 dn->dn_unlisted_l0_blkid)
1829 dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
1830 db->db_state = DB_UNCACHED;
1831 mutex_exit(&dn->dn_dbufs_mtx);
1832 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1833
1834 if (parent && parent != dn->dn_dbuf)
1835 dbuf_add_ref(parent, db);
1836
1837 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1838 refcount_count(&dn->dn_holds) > 0);
1839 (void) refcount_add(&dn->dn_holds, db);
1840 atomic_inc_32(&dn->dn_dbufs_count);
1841
1842 dprintf_dbuf(db, "db=%p\n", db);
1843
1844 return (db);
1845 }
1846
1847 static int
1848 dbuf_do_evict(void *private)
1849 {
1850 dmu_buf_impl_t *db = private;
1851
1852 if (!MUTEX_HELD(&db->db_mtx))
1853 mutex_enter(&db->db_mtx);
1854
1855 ASSERT(refcount_is_zero(&db->db_holds));
1856
1857 if (db->db_state != DB_EVICTING) {
1858 ASSERT(db->db_state == DB_CACHED);
1859 DBUF_VERIFY(db);
1860 db->db_buf = NULL;
1861 dbuf_evict(db);
1862 } else {
1863 mutex_exit(&db->db_mtx);
1864 dbuf_destroy(db);
1865 }
1866 return (0);
1867 }
1868
1869 static void
1870 dbuf_destroy(dmu_buf_impl_t *db)
1871 {
1872 ASSERT(refcount_is_zero(&db->db_holds));
1873
1874 if (db->db_blkid != DMU_BONUS_BLKID) {
1875 /*
1876 * If this dbuf is still on the dn_dbufs list,
1877 * remove it from that list.
1878 */
1879 if (db->db_dnode_handle != NULL) {
1880 dnode_t *dn;
1881
1882 DB_DNODE_ENTER(db);
1883 dn = DB_DNODE(db);
1884 mutex_enter(&dn->dn_dbufs_mtx);
1885 list_remove(&dn->dn_dbufs, db);
1886 atomic_dec_32(&dn->dn_dbufs_count);
1887 mutex_exit(&dn->dn_dbufs_mtx);
1888 DB_DNODE_EXIT(db);
1889 /*
1890 * Decrementing the dbuf count means that the hold
1891 * corresponding to the removed dbuf is no longer
1892 * discounted in dnode_move(), so the dnode cannot be
1893 * moved until after we release the hold.
1894 */
1895 dnode_rele(dn, db);
1896 db->db_dnode_handle = NULL;
1897 }
1898 dbuf_hash_remove(db);
1899 }
1900 db->db_parent = NULL;
1901 db->db_buf = NULL;
1902
1903 ASSERT(!list_link_active(&db->db_link));
1904 ASSERT(db->db.db_data == NULL);
1905 ASSERT(db->db_hash_next == NULL);
1906 ASSERT(db->db_blkptr == NULL);
1907 ASSERT(db->db_data_pending == NULL);
1908
1909 kmem_cache_free(dbuf_cache, db);
1910 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1911 }
1912
1913 void
1914 dbuf_prefetch(dnode_t *dn, uint64_t blkid, zio_priority_t prio)
1915 {
1916 dmu_buf_impl_t *db = NULL;
1917 blkptr_t *bp = NULL;
1918
1919 ASSERT(blkid != DMU_BONUS_BLKID);
1920 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1921
1922 if (dnode_block_freed(dn, blkid))
1923 return;
1924
1925 /* dbuf_find() returns with db_mtx held */
1926 if ((db = dbuf_find(dn, 0, blkid))) {
1927 /*
1928 * This dbuf is already in the cache. We assume that
1929 * it is already CACHED, or else about to be either
1930 * read or filled.
1931 */
1932 mutex_exit(&db->db_mtx);
1933 return;
1934 }
1935
1936 if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp, NULL) == 0) {
1937 if (bp && !BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
1938 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
1939 uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH;
1940 zbookmark_phys_t zb;
1941
1942 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
1943 dn->dn_object, 0, blkid);
1944
1945 (void) arc_read(NULL, dn->dn_objset->os_spa,
1946 bp, NULL, NULL, prio,
1947 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1948 &aflags, &zb);
1949 }
1950 if (db)
1951 dbuf_rele(db, NULL);
1952 }
1953 }
1954
1955 #define DBUF_HOLD_IMPL_MAX_DEPTH 20
1956
1957 /*
1958 * Returns with db_holds incremented, and db_mtx not held.
1959 * Note: dn_struct_rwlock must be held.
1960 */
1961 static int
1962 __dbuf_hold_impl(struct dbuf_hold_impl_data *dh)
1963 {
1964 ASSERT3S(dh->dh_depth, <, DBUF_HOLD_IMPL_MAX_DEPTH);
1965 dh->dh_parent = NULL;
1966
1967 ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
1968 ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
1969 ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
1970
1971 *(dh->dh_dbp) = NULL;
1972 top:
1973 /* dbuf_find() returns with db_mtx held */
1974 dh->dh_db = dbuf_find(dh->dh_dn, dh->dh_level, dh->dh_blkid);
1975
1976 if (dh->dh_db == NULL) {
1977 dh->dh_bp = NULL;
1978
1979 ASSERT3P(dh->dh_parent, ==, NULL);
1980 dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
1981 dh->dh_fail_sparse, &dh->dh_parent,
1982 &dh->dh_bp, dh);
1983 if (dh->dh_fail_sparse) {
1984 if (dh->dh_err == 0 &&
1985 dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
1986 dh->dh_err = SET_ERROR(ENOENT);
1987 if (dh->dh_err) {
1988 if (dh->dh_parent)
1989 dbuf_rele(dh->dh_parent, NULL);
1990 return (dh->dh_err);
1991 }
1992 }
1993 if (dh->dh_err && dh->dh_err != ENOENT)
1994 return (dh->dh_err);
1995 dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
1996 dh->dh_parent, dh->dh_bp);
1997 }
1998
1999 if (dh->dh_db->db_buf && refcount_is_zero(&dh->dh_db->db_holds)) {
2000 arc_buf_add_ref(dh->dh_db->db_buf, dh->dh_db);
2001 if (dh->dh_db->db_buf->b_data == NULL) {
2002 dbuf_clear(dh->dh_db);
2003 if (dh->dh_parent) {
2004 dbuf_rele(dh->dh_parent, NULL);
2005 dh->dh_parent = NULL;
2006 }
2007 goto top;
2008 }
2009 ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
2010 }
2011
2012 ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
2013
2014 /*
2015 * If this buffer is currently syncing out, and we are are
2016 * still referencing it from db_data, we need to make a copy
2017 * of it in case we decide we want to dirty it again in this txg.
2018 */
2019 if (dh->dh_db->db_level == 0 &&
2020 dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
2021 dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
2022 dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
2023 dh->dh_dr = dh->dh_db->db_data_pending;
2024
2025 if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf) {
2026 dh->dh_type = DBUF_GET_BUFC_TYPE(dh->dh_db);
2027
2028 dbuf_set_data(dh->dh_db,
2029 arc_buf_alloc(dh->dh_dn->dn_objset->os_spa,
2030 dh->dh_db->db.db_size, dh->dh_db, dh->dh_type));
2031 bcopy(dh->dh_dr->dt.dl.dr_data->b_data,
2032 dh->dh_db->db.db_data, dh->dh_db->db.db_size);
2033 }
2034 }
2035
2036 (void) refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
2037 dbuf_update_data(dh->dh_db);
2038 DBUF_VERIFY(dh->dh_db);
2039 mutex_exit(&dh->dh_db->db_mtx);
2040
2041 /* NOTE: we can't rele the parent until after we drop the db_mtx */
2042 if (dh->dh_parent)
2043 dbuf_rele(dh->dh_parent, NULL);
2044
2045 ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
2046 ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
2047 ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
2048 *(dh->dh_dbp) = dh->dh_db;
2049
2050 return (0);
2051 }
2052
2053 /*
2054 * The following code preserves the recursive function dbuf_hold_impl()
2055 * but moves the local variables AND function arguments to the heap to
2056 * minimize the stack frame size. Enough space is initially allocated
2057 * on the stack for 20 levels of recursion.
2058 */
2059 int
2060 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse,
2061 void *tag, dmu_buf_impl_t **dbp)
2062 {
2063 struct dbuf_hold_impl_data *dh;
2064 int error;
2065
2066 dh = kmem_zalloc(sizeof (struct dbuf_hold_impl_data) *
2067 DBUF_HOLD_IMPL_MAX_DEPTH, KM_SLEEP);
2068 __dbuf_hold_impl_init(dh, dn, level, blkid, fail_sparse, tag, dbp, 0);
2069
2070 error = __dbuf_hold_impl(dh);
2071
2072 kmem_free(dh, sizeof (struct dbuf_hold_impl_data) *
2073 DBUF_HOLD_IMPL_MAX_DEPTH);
2074
2075 return (error);
2076 }
2077
2078 static void
2079 __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
2080 dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse,
2081 void *tag, dmu_buf_impl_t **dbp, int depth)
2082 {
2083 dh->dh_dn = dn;
2084 dh->dh_level = level;
2085 dh->dh_blkid = blkid;
2086 dh->dh_fail_sparse = fail_sparse;
2087 dh->dh_tag = tag;
2088 dh->dh_dbp = dbp;
2089 dh->dh_depth = depth;
2090 }
2091
2092 dmu_buf_impl_t *
2093 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2094 {
2095 dmu_buf_impl_t *db;
2096 int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db);
2097 return (err ? NULL : db);
2098 }
2099
2100 dmu_buf_impl_t *
2101 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2102 {
2103 dmu_buf_impl_t *db;
2104 int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db);
2105 return (err ? NULL : db);
2106 }
2107
2108 void
2109 dbuf_create_bonus(dnode_t *dn)
2110 {
2111 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2112
2113 ASSERT(dn->dn_bonus == NULL);
2114 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2115 }
2116
2117 int
2118 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2119 {
2120 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2121 dnode_t *dn;
2122
2123 if (db->db_blkid != DMU_SPILL_BLKID)
2124 return (SET_ERROR(ENOTSUP));
2125 if (blksz == 0)
2126 blksz = SPA_MINBLOCKSIZE;
2127 if (blksz > SPA_MAXBLOCKSIZE)
2128 blksz = SPA_MAXBLOCKSIZE;
2129 else
2130 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2131
2132 DB_DNODE_ENTER(db);
2133 dn = DB_DNODE(db);
2134 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2135 dbuf_new_size(db, blksz, tx);
2136 rw_exit(&dn->dn_struct_rwlock);
2137 DB_DNODE_EXIT(db);
2138
2139 return (0);
2140 }
2141
2142 void
2143 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2144 {
2145 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2146 }
2147
2148 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2149 void
2150 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2151 {
2152 VERIFY(refcount_add(&db->db_holds, tag) > 1);
2153 }
2154
2155 /*
2156 * If you call dbuf_rele() you had better not be referencing the dnode handle
2157 * unless you have some other direct or indirect hold on the dnode. (An indirect
2158 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2159 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2160 * dnode's parent dbuf evicting its dnode handles.
2161 */
2162 void
2163 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2164 {
2165 mutex_enter(&db->db_mtx);
2166 dbuf_rele_and_unlock(db, tag);
2167 }
2168
2169 void
2170 dmu_buf_rele(dmu_buf_t *db, void *tag)
2171 {
2172 dbuf_rele((dmu_buf_impl_t *)db, tag);
2173 }
2174
2175 /*
2176 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
2177 * db_dirtycnt and db_holds to be updated atomically.
2178 */
2179 void
2180 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2181 {
2182 int64_t holds;
2183
2184 ASSERT(MUTEX_HELD(&db->db_mtx));
2185 DBUF_VERIFY(db);
2186
2187 /*
2188 * Remove the reference to the dbuf before removing its hold on the
2189 * dnode so we can guarantee in dnode_move() that a referenced bonus
2190 * buffer has a corresponding dnode hold.
2191 */
2192 holds = refcount_remove(&db->db_holds, tag);
2193 ASSERT(holds >= 0);
2194
2195 /*
2196 * We can't freeze indirects if there is a possibility that they
2197 * may be modified in the current syncing context.
2198 */
2199 if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2200 arc_buf_freeze(db->db_buf);
2201
2202 if (holds == db->db_dirtycnt &&
2203 db->db_level == 0 && db->db_immediate_evict)
2204 dbuf_evict_user(db);
2205
2206 if (holds == 0) {
2207 if (db->db_blkid == DMU_BONUS_BLKID) {
2208 dnode_t *dn;
2209
2210 /*
2211 * If the dnode moves here, we cannot cross this
2212 * barrier until the move completes.
2213 */
2214 DB_DNODE_ENTER(db);
2215
2216 dn = DB_DNODE(db);
2217 atomic_dec_32(&dn->dn_dbufs_count);
2218
2219 /*
2220 * Decrementing the dbuf count means that the bonus
2221 * buffer's dnode hold is no longer discounted in
2222 * dnode_move(). The dnode cannot move until after
2223 * the dnode_rele_and_unlock() below.
2224 */
2225 DB_DNODE_EXIT(db);
2226
2227 /*
2228 * Do not reference db after its lock is dropped.
2229 * Another thread may evict it.
2230 */
2231 mutex_exit(&db->db_mtx);
2232
2233 /*
2234 * If the dnode has been freed, evict the bonus
2235 * buffer immediately. The data in the bonus
2236 * buffer is no longer relevant and this prevents
2237 * a stale bonus buffer from being associated
2238 * with this dnode_t should the dnode_t be reused
2239 * prior to being destroyed.
2240 */
2241 mutex_enter(&dn->dn_mtx);
2242 if (dn->dn_type == DMU_OT_NONE ||
2243 dn->dn_free_txg != 0) {
2244 /*
2245 * Drop dn_mtx. It is a leaf lock and
2246 * cannot be held when dnode_evict_bonus()
2247 * acquires other locks in order to
2248 * perform the eviction.
2249 *
2250 * Freed dnodes cannot be reused until the
2251 * last hold is released. Since this bonus
2252 * buffer has a hold, the dnode will remain
2253 * in the free state, even without dn_mtx
2254 * held, until the dnode_rele_and_unlock()
2255 * below.
2256 */
2257 mutex_exit(&dn->dn_mtx);
2258 dnode_evict_bonus(dn);
2259 mutex_enter(&dn->dn_mtx);
2260 }
2261 dnode_rele_and_unlock(dn, db);
2262 } else if (db->db_buf == NULL) {
2263 /*
2264 * This is a special case: we never associated this
2265 * dbuf with any data allocated from the ARC.
2266 */
2267 ASSERT(db->db_state == DB_UNCACHED ||
2268 db->db_state == DB_NOFILL);
2269 dbuf_evict(db);
2270 } else if (arc_released(db->db_buf)) {
2271 arc_buf_t *buf = db->db_buf;
2272 /*
2273 * This dbuf has anonymous data associated with it.
2274 */
2275 dbuf_set_data(db, NULL);
2276 VERIFY(arc_buf_remove_ref(buf, db));
2277 dbuf_evict(db);
2278 } else {
2279 VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2280
2281 /*
2282 * A dbuf will be eligible for eviction if either the
2283 * 'primarycache' property is set or a duplicate
2284 * copy of this buffer is already cached in the arc.
2285 *
2286 * In the case of the 'primarycache' a buffer
2287 * is considered for eviction if it matches the
2288 * criteria set in the property.
2289 *
2290 * To decide if our buffer is considered a
2291 * duplicate, we must call into the arc to determine
2292 * if multiple buffers are referencing the same
2293 * block on-disk. If so, then we simply evict
2294 * ourselves.
2295 */
2296 if (!DBUF_IS_CACHEABLE(db)) {
2297 if (db->db_blkptr != NULL &&
2298 !BP_IS_HOLE(db->db_blkptr) &&
2299 !BP_IS_EMBEDDED(db->db_blkptr)) {
2300 spa_t *spa =
2301 dmu_objset_spa(db->db_objset);
2302 blkptr_t bp = *db->db_blkptr;
2303 dbuf_clear(db);
2304 arc_freed(spa, &bp);
2305 } else {
2306 dbuf_clear(db);
2307 }
2308 } else if (arc_buf_eviction_needed(db->db_buf)) {
2309 dbuf_clear(db);
2310 } else {
2311 mutex_exit(&db->db_mtx);
2312 }
2313 }
2314 } else {
2315 mutex_exit(&db->db_mtx);
2316 }
2317 }
2318
2319 #pragma weak dmu_buf_refcount = dbuf_refcount
2320 uint64_t
2321 dbuf_refcount(dmu_buf_impl_t *db)
2322 {
2323 return (refcount_count(&db->db_holds));
2324 }
2325
2326 void *
2327 dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
2328 dmu_buf_evict_func_t *evict_func)
2329 {
2330 return (dmu_buf_update_user(db_fake, NULL, user_ptr,
2331 user_data_ptr_ptr, evict_func));
2332 }
2333
2334 void *
2335 dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
2336 dmu_buf_evict_func_t *evict_func)
2337 {
2338 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2339
2340 db->db_immediate_evict = TRUE;
2341 return (dmu_buf_update_user(db_fake, NULL, user_ptr,
2342 user_data_ptr_ptr, evict_func));
2343 }
2344
2345 void *
2346 dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr,
2347 void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func)
2348 {
2349 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2350 ASSERT(db->db_level == 0);
2351
2352 ASSERT((user_ptr == NULL) == (evict_func == NULL));
2353
2354 mutex_enter(&db->db_mtx);
2355
2356 if (db->db_user_ptr == old_user_ptr) {
2357 db->db_user_ptr = user_ptr;
2358 db->db_user_data_ptr_ptr = user_data_ptr_ptr;
2359 db->db_evict_func = evict_func;
2360
2361 dbuf_update_data(db);
2362 } else {
2363 old_user_ptr = db->db_user_ptr;
2364 }
2365
2366 mutex_exit(&db->db_mtx);
2367 return (old_user_ptr);
2368 }
2369
2370 void *
2371 dmu_buf_get_user(dmu_buf_t *db_fake)
2372 {
2373 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2374 ASSERT(!refcount_is_zero(&db->db_holds));
2375
2376 return (db->db_user_ptr);
2377 }
2378
2379 boolean_t
2380 dmu_buf_freeable(dmu_buf_t *dbuf)
2381 {
2382 boolean_t res = B_FALSE;
2383 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2384
2385 if (db->db_blkptr)
2386 res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2387 db->db_blkptr, db->db_blkptr->blk_birth);
2388
2389 return (res);
2390 }
2391
2392 blkptr_t *
2393 dmu_buf_get_blkptr(dmu_buf_t *db)
2394 {
2395 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2396 return (dbi->db_blkptr);
2397 }
2398
2399 static void
2400 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2401 {
2402 /* ASSERT(dmu_tx_is_syncing(tx) */
2403 ASSERT(MUTEX_HELD(&db->db_mtx));
2404
2405 if (db->db_blkptr != NULL)
2406 return;
2407
2408 if (db->db_blkid == DMU_SPILL_BLKID) {
2409 db->db_blkptr = &dn->dn_phys->dn_spill;
2410 BP_ZERO(db->db_blkptr);
2411 return;
2412 }
2413 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2414 /*
2415 * This buffer was allocated at a time when there was
2416 * no available blkptrs from the dnode, or it was
2417 * inappropriate to hook it in (i.e., nlevels mis-match).
2418 */
2419 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2420 ASSERT(db->db_parent == NULL);
2421 db->db_parent = dn->dn_dbuf;
2422 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2423 DBUF_VERIFY(db);
2424 } else {
2425 dmu_buf_impl_t *parent = db->db_parent;
2426 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2427
2428 ASSERT(dn->dn_phys->dn_nlevels > 1);
2429 if (parent == NULL) {
2430 mutex_exit(&db->db_mtx);
2431 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2432 (void) dbuf_hold_impl(dn, db->db_level+1,
2433 db->db_blkid >> epbs, FALSE, db, &parent);
2434 rw_exit(&dn->dn_struct_rwlock);
2435 mutex_enter(&db->db_mtx);
2436 db->db_parent = parent;
2437 }
2438 db->db_blkptr = (blkptr_t *)parent->db.db_data +
2439 (db->db_blkid & ((1ULL << epbs) - 1));
2440 DBUF_VERIFY(db);
2441 }
2442 }
2443
2444 /*
2445 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
2446 * is critical the we not allow the compiler to inline this function in to
2447 * dbuf_sync_list() thereby drastically bloating the stack usage.
2448 */
2449 noinline static void
2450 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2451 {
2452 dmu_buf_impl_t *db = dr->dr_dbuf;
2453 dnode_t *dn;
2454 zio_t *zio;
2455
2456 ASSERT(dmu_tx_is_syncing(tx));
2457
2458 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2459
2460 mutex_enter(&db->db_mtx);
2461
2462 ASSERT(db->db_level > 0);
2463 DBUF_VERIFY(db);
2464
2465 /* Read the block if it hasn't been read yet. */
2466 if (db->db_buf == NULL) {
2467 mutex_exit(&db->db_mtx);
2468 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2469 mutex_enter(&db->db_mtx);
2470 }
2471 ASSERT3U(db->db_state, ==, DB_CACHED);
2472 ASSERT(db->db_buf != NULL);
2473
2474 DB_DNODE_ENTER(db);
2475 dn = DB_DNODE(db);
2476 /* Indirect block size must match what the dnode thinks it is. */
2477 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2478 dbuf_check_blkptr(dn, db);
2479 DB_DNODE_EXIT(db);
2480
2481 /* Provide the pending dirty record to child dbufs */
2482 db->db_data_pending = dr;
2483
2484 mutex_exit(&db->db_mtx);
2485 dbuf_write(dr, db->db_buf, tx);
2486
2487 zio = dr->dr_zio;
2488 mutex_enter(&dr->dt.di.dr_mtx);
2489 dbuf_sync_list(&dr->dt.di.dr_children, tx);
2490 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2491 mutex_exit(&dr->dt.di.dr_mtx);
2492 zio_nowait(zio);
2493 }
2494
2495 /*
2496 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
2497 * critical the we not allow the compiler to inline this function in to
2498 * dbuf_sync_list() thereby drastically bloating the stack usage.
2499 */
2500 noinline static void
2501 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2502 {
2503 arc_buf_t **datap = &dr->dt.dl.dr_data;
2504 dmu_buf_impl_t *db = dr->dr_dbuf;
2505 dnode_t *dn;
2506 objset_t *os;
2507 uint64_t txg = tx->tx_txg;
2508
2509 ASSERT(dmu_tx_is_syncing(tx));
2510
2511 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2512
2513 mutex_enter(&db->db_mtx);
2514 /*
2515 * To be synced, we must be dirtied. But we
2516 * might have been freed after the dirty.
2517 */
2518 if (db->db_state == DB_UNCACHED) {
2519 /* This buffer has been freed since it was dirtied */
2520 ASSERT(db->db.db_data == NULL);
2521 } else if (db->db_state == DB_FILL) {
2522 /* This buffer was freed and is now being re-filled */
2523 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2524 } else {
2525 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2526 }
2527 DBUF_VERIFY(db);
2528
2529 DB_DNODE_ENTER(db);
2530 dn = DB_DNODE(db);
2531
2532 if (db->db_blkid == DMU_SPILL_BLKID) {
2533 mutex_enter(&dn->dn_mtx);
2534 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2535 mutex_exit(&dn->dn_mtx);
2536 }
2537
2538 /*
2539 * If this is a bonus buffer, simply copy the bonus data into the
2540 * dnode. It will be written out when the dnode is synced (and it
2541 * will be synced, since it must have been dirty for dbuf_sync to
2542 * be called).
2543 */
2544 if (db->db_blkid == DMU_BONUS_BLKID) {
2545 dbuf_dirty_record_t **drp;
2546
2547 ASSERT(*datap != NULL);
2548 ASSERT0(db->db_level);
2549 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2550 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2551 DB_DNODE_EXIT(db);
2552
2553 if (*datap != db->db.db_data) {
2554 zio_buf_free(*datap, DN_MAX_BONUSLEN);
2555 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2556 }
2557 db->db_data_pending = NULL;
2558 drp = &db->db_last_dirty;
2559 while (*drp != dr)
2560 drp = &(*drp)->dr_next;
2561 ASSERT(dr->dr_next == NULL);
2562 ASSERT(dr->dr_dbuf == db);
2563 *drp = dr->dr_next;
2564 if (dr->dr_dbuf->db_level != 0) {
2565 mutex_destroy(&dr->dt.di.dr_mtx);
2566 list_destroy(&dr->dt.di.dr_children);
2567 }
2568 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2569 ASSERT(db->db_dirtycnt > 0);
2570 db->db_dirtycnt -= 1;
2571 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2572 return;
2573 }
2574
2575 os = dn->dn_objset;
2576
2577 /*
2578 * This function may have dropped the db_mtx lock allowing a dmu_sync
2579 * operation to sneak in. As a result, we need to ensure that we
2580 * don't check the dr_override_state until we have returned from
2581 * dbuf_check_blkptr.
2582 */
2583 dbuf_check_blkptr(dn, db);
2584
2585 /*
2586 * If this buffer is in the middle of an immediate write,
2587 * wait for the synchronous IO to complete.
2588 */
2589 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2590 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2591 cv_wait(&db->db_changed, &db->db_mtx);
2592 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2593 }
2594
2595 if (db->db_state != DB_NOFILL &&
2596 dn->dn_object != DMU_META_DNODE_OBJECT &&
2597 refcount_count(&db->db_holds) > 1 &&
2598 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2599 *datap == db->db_buf) {
2600 /*
2601 * If this buffer is currently "in use" (i.e., there
2602 * are active holds and db_data still references it),
2603 * then make a copy before we start the write so that
2604 * any modifications from the open txg will not leak
2605 * into this write.
2606 *
2607 * NOTE: this copy does not need to be made for
2608 * objects only modified in the syncing context (e.g.
2609 * DNONE_DNODE blocks).
2610 */
2611 int blksz = arc_buf_size(*datap);
2612 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2613 *datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2614 bcopy(db->db.db_data, (*datap)->b_data, blksz);
2615 }
2616 db->db_data_pending = dr;
2617
2618 mutex_exit(&db->db_mtx);
2619
2620 dbuf_write(dr, *datap, tx);
2621
2622 ASSERT(!list_link_active(&dr->dr_dirty_node));
2623 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2624 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2625 DB_DNODE_EXIT(db);
2626 } else {
2627 /*
2628 * Although zio_nowait() does not "wait for an IO", it does
2629 * initiate the IO. If this is an empty write it seems plausible
2630 * that the IO could actually be completed before the nowait
2631 * returns. We need to DB_DNODE_EXIT() first in case
2632 * zio_nowait() invalidates the dbuf.
2633 */
2634 DB_DNODE_EXIT(db);
2635 zio_nowait(dr->dr_zio);
2636 }
2637 }
2638
2639 void
2640 dbuf_sync_list(list_t *list, dmu_tx_t *tx)
2641 {
2642 dbuf_dirty_record_t *dr;
2643
2644 while ((dr = list_head(list))) {
2645 if (dr->dr_zio != NULL) {
2646 /*
2647 * If we find an already initialized zio then we
2648 * are processing the meta-dnode, and we have finished.
2649 * The dbufs for all dnodes are put back on the list
2650 * during processing, so that we can zio_wait()
2651 * these IOs after initiating all child IOs.
2652 */
2653 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2654 DMU_META_DNODE_OBJECT);
2655 break;
2656 }
2657 list_remove(list, dr);
2658 if (dr->dr_dbuf->db_level > 0)
2659 dbuf_sync_indirect(dr, tx);
2660 else
2661 dbuf_sync_leaf(dr, tx);
2662 }
2663 }
2664
2665 /* ARGSUSED */
2666 static void
2667 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2668 {
2669 dmu_buf_impl_t *db = vdb;
2670 dnode_t *dn;
2671 blkptr_t *bp = zio->io_bp;
2672 blkptr_t *bp_orig = &zio->io_bp_orig;
2673 spa_t *spa = zio->io_spa;
2674 int64_t delta;
2675 uint64_t fill = 0;
2676 int i;
2677
2678 ASSERT3P(db->db_blkptr, ==, bp);
2679
2680 DB_DNODE_ENTER(db);
2681 dn = DB_DNODE(db);
2682 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2683 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2684 zio->io_prev_space_delta = delta;
2685
2686 if (bp->blk_birth != 0) {
2687 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2688 BP_GET_TYPE(bp) == dn->dn_type) ||
2689 (db->db_blkid == DMU_SPILL_BLKID &&
2690 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
2691 BP_IS_EMBEDDED(bp));
2692 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
2693 }
2694
2695 mutex_enter(&db->db_mtx);
2696
2697 #ifdef ZFS_DEBUG
2698 if (db->db_blkid == DMU_SPILL_BLKID) {
2699 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2700 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2701 db->db_blkptr == &dn->dn_phys->dn_spill);
2702 }
2703 #endif
2704
2705 if (db->db_level == 0) {
2706 mutex_enter(&dn->dn_mtx);
2707 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2708 db->db_blkid != DMU_SPILL_BLKID)
2709 dn->dn_phys->dn_maxblkid = db->db_blkid;
2710 mutex_exit(&dn->dn_mtx);
2711
2712 if (dn->dn_type == DMU_OT_DNODE) {
2713 dnode_phys_t *dnp = db->db.db_data;
2714 for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2715 i--, dnp++) {
2716 if (dnp->dn_type != DMU_OT_NONE)
2717 fill++;
2718 }
2719 } else {
2720 if (BP_IS_HOLE(bp)) {
2721 fill = 0;
2722 } else {
2723 fill = 1;
2724 }
2725 }
2726 } else {
2727 blkptr_t *ibp = db->db.db_data;
2728 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2729 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2730 if (BP_IS_HOLE(ibp))
2731 continue;
2732 fill += BP_GET_FILL(ibp);
2733 }
2734 }
2735 DB_DNODE_EXIT(db);
2736
2737 if (!BP_IS_EMBEDDED(bp))
2738 bp->blk_fill = fill;
2739
2740 mutex_exit(&db->db_mtx);
2741 }
2742
2743 /*
2744 * The SPA will call this callback several times for each zio - once
2745 * for every physical child i/o (zio->io_phys_children times). This
2746 * allows the DMU to monitor the progress of each logical i/o. For example,
2747 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
2748 * block. There may be a long delay before all copies/fragments are completed,
2749 * so this callback allows us to retire dirty space gradually, as the physical
2750 * i/os complete.
2751 */
2752 /* ARGSUSED */
2753 static void
2754 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
2755 {
2756 dmu_buf_impl_t *db = arg;
2757 objset_t *os = db->db_objset;
2758 dsl_pool_t *dp = dmu_objset_pool(os);
2759 dbuf_dirty_record_t *dr;
2760 int delta = 0;
2761
2762 dr = db->db_data_pending;
2763 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
2764
2765 /*
2766 * The callback will be called io_phys_children times. Retire one
2767 * portion of our dirty space each time we are called. Any rounding
2768 * error will be cleaned up by dsl_pool_sync()'s call to
2769 * dsl_pool_undirty_space().
2770 */
2771 delta = dr->dr_accounted / zio->io_phys_children;
2772 dsl_pool_undirty_space(dp, delta, zio->io_txg);
2773 }
2774
2775 /* ARGSUSED */
2776 static void
2777 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2778 {
2779 dmu_buf_impl_t *db = vdb;
2780 blkptr_t *bp_orig = &zio->io_bp_orig;
2781 blkptr_t *bp = db->db_blkptr;
2782 objset_t *os = db->db_objset;
2783 dmu_tx_t *tx = os->os_synctx;
2784 dbuf_dirty_record_t **drp, *dr;
2785
2786 ASSERT0(zio->io_error);
2787 ASSERT(db->db_blkptr == bp);
2788
2789 /*
2790 * For nopwrites and rewrites we ensure that the bp matches our
2791 * original and bypass all the accounting.
2792 */
2793 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
2794 ASSERT(BP_EQUAL(bp, bp_orig));
2795 } else {
2796 dsl_dataset_t *ds = os->os_dsl_dataset;
2797 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
2798 dsl_dataset_block_born(ds, bp, tx);
2799 }
2800
2801 mutex_enter(&db->db_mtx);
2802
2803 DBUF_VERIFY(db);
2804
2805 drp = &db->db_last_dirty;
2806 while ((dr = *drp) != db->db_data_pending)
2807 drp = &dr->dr_next;
2808 ASSERT(!list_link_active(&dr->dr_dirty_node));
2809 ASSERT(dr->dr_dbuf == db);
2810 ASSERT(dr->dr_next == NULL);
2811 *drp = dr->dr_next;
2812
2813 #ifdef ZFS_DEBUG
2814 if (db->db_blkid == DMU_SPILL_BLKID) {
2815 dnode_t *dn;
2816
2817 DB_DNODE_ENTER(db);
2818 dn = DB_DNODE(db);
2819 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2820 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2821 db->db_blkptr == &dn->dn_phys->dn_spill);
2822 DB_DNODE_EXIT(db);
2823 }
2824 #endif
2825
2826 if (db->db_level == 0) {
2827 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2828 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2829 if (db->db_state != DB_NOFILL) {
2830 if (dr->dt.dl.dr_data != db->db_buf)
2831 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
2832 db));
2833 else if (!arc_released(db->db_buf))
2834 arc_set_callback(db->db_buf, dbuf_do_evict, db);
2835 }
2836 } else {
2837 dnode_t *dn;
2838
2839 DB_DNODE_ENTER(db);
2840 dn = DB_DNODE(db);
2841 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2842 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
2843 if (!BP_IS_HOLE(db->db_blkptr)) {
2844 ASSERTV(int epbs = dn->dn_phys->dn_indblkshift -
2845 SPA_BLKPTRSHIFT);
2846 ASSERT3U(db->db_blkid, <=,
2847 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
2848 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
2849 db->db.db_size);
2850 if (!arc_released(db->db_buf))
2851 arc_set_callback(db->db_buf, dbuf_do_evict, db);
2852 }
2853 DB_DNODE_EXIT(db);
2854 mutex_destroy(&dr->dt.di.dr_mtx);
2855 list_destroy(&dr->dt.di.dr_children);
2856 }
2857 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2858
2859 cv_broadcast(&db->db_changed);
2860 ASSERT(db->db_dirtycnt > 0);
2861 db->db_dirtycnt -= 1;
2862 db->db_data_pending = NULL;
2863 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
2864 }
2865
2866 static void
2867 dbuf_write_nofill_ready(zio_t *zio)
2868 {
2869 dbuf_write_ready(zio, NULL, zio->io_private);
2870 }
2871
2872 static void
2873 dbuf_write_nofill_done(zio_t *zio)
2874 {
2875 dbuf_write_done(zio, NULL, zio->io_private);
2876 }
2877
2878 static void
2879 dbuf_write_override_ready(zio_t *zio)
2880 {
2881 dbuf_dirty_record_t *dr = zio->io_private;
2882 dmu_buf_impl_t *db = dr->dr_dbuf;
2883
2884 dbuf_write_ready(zio, NULL, db);
2885 }
2886
2887 static void
2888 dbuf_write_override_done(zio_t *zio)
2889 {
2890 dbuf_dirty_record_t *dr = zio->io_private;
2891 dmu_buf_impl_t *db = dr->dr_dbuf;
2892 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
2893
2894 mutex_enter(&db->db_mtx);
2895 if (!BP_EQUAL(zio->io_bp, obp)) {
2896 if (!BP_IS_HOLE(obp))
2897 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
2898 arc_release(dr->dt.dl.dr_data, db);
2899 }
2900 mutex_exit(&db->db_mtx);
2901
2902 dbuf_write_done(zio, NULL, db);
2903 }
2904
2905 /* Issue I/O to commit a dirty buffer to disk. */
2906 static void
2907 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
2908 {
2909 dmu_buf_impl_t *db = dr->dr_dbuf;
2910 dnode_t *dn;
2911 objset_t *os;
2912 dmu_buf_impl_t *parent = db->db_parent;
2913 uint64_t txg = tx->tx_txg;
2914 zbookmark_phys_t zb;
2915 zio_prop_t zp;
2916 zio_t *zio;
2917 int wp_flag = 0;
2918
2919 DB_DNODE_ENTER(db);
2920 dn = DB_DNODE(db);
2921 os = dn->dn_objset;
2922
2923 if (db->db_state != DB_NOFILL) {
2924 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
2925 /*
2926 * Private object buffers are released here rather
2927 * than in dbuf_dirty() since they are only modified
2928 * in the syncing context and we don't want the
2929 * overhead of making multiple copies of the data.
2930 */
2931 if (BP_IS_HOLE(db->db_blkptr)) {
2932 arc_buf_thaw(data);
2933 } else {
2934 dbuf_release_bp(db);
2935 }
2936 }
2937 }
2938
2939 if (parent != dn->dn_dbuf) {
2940 /* Our parent is an indirect block. */
2941 /* We have a dirty parent that has been scheduled for write. */
2942 ASSERT(parent && parent->db_data_pending);
2943 /* Our parent's buffer is one level closer to the dnode. */
2944 ASSERT(db->db_level == parent->db_level-1);
2945 /*
2946 * We're about to modify our parent's db_data by modifying
2947 * our block pointer, so the parent must be released.
2948 */
2949 ASSERT(arc_released(parent->db_buf));
2950 zio = parent->db_data_pending->dr_zio;
2951 } else {
2952 /* Our parent is the dnode itself. */
2953 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
2954 db->db_blkid != DMU_SPILL_BLKID) ||
2955 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
2956 if (db->db_blkid != DMU_SPILL_BLKID)
2957 ASSERT3P(db->db_blkptr, ==,
2958 &dn->dn_phys->dn_blkptr[db->db_blkid]);
2959 zio = dn->dn_zio;
2960 }
2961
2962 ASSERT(db->db_level == 0 || data == db->db_buf);
2963 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
2964 ASSERT(zio);
2965
2966 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
2967 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
2968 db->db.db_object, db->db_level, db->db_blkid);
2969
2970 if (db->db_blkid == DMU_SPILL_BLKID)
2971 wp_flag = WP_SPILL;
2972 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
2973
2974 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
2975 DB_DNODE_EXIT(db);
2976
2977 if (db->db_level == 0 &&
2978 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2979 /*
2980 * The BP for this block has been provided by open context
2981 * (by dmu_sync() or dmu_buf_write_embedded()).
2982 */
2983 void *contents = (data != NULL) ? data->b_data : NULL;
2984
2985 dr->dr_zio = zio_write(zio, os->os_spa, txg,
2986 db->db_blkptr, contents, db->db.db_size, &zp,
2987 dbuf_write_override_ready, NULL, dbuf_write_override_done,
2988 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2989 mutex_enter(&db->db_mtx);
2990 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
2991 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
2992 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
2993 mutex_exit(&db->db_mtx);
2994 } else if (db->db_state == DB_NOFILL) {
2995 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF);
2996 dr->dr_zio = zio_write(zio, os->os_spa, txg,
2997 db->db_blkptr, NULL, db->db.db_size, &zp,
2998 dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
2999 ZIO_PRIORITY_ASYNC_WRITE,
3000 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3001 } else {
3002 ASSERT(arc_released(data));
3003 dr->dr_zio = arc_write(zio, os->os_spa, txg,
3004 db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
3005 DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
3006 dbuf_write_physdone, dbuf_write_done, db,
3007 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3008 }
3009 }
3010
3011 #if defined(_KERNEL) && defined(HAVE_SPL)
3012 EXPORT_SYMBOL(dbuf_find);
3013 EXPORT_SYMBOL(dbuf_is_metadata);
3014 EXPORT_SYMBOL(dbuf_evict);
3015 EXPORT_SYMBOL(dbuf_loan_arcbuf);
3016 EXPORT_SYMBOL(dbuf_whichblock);
3017 EXPORT_SYMBOL(dbuf_read);
3018 EXPORT_SYMBOL(dbuf_unoverride);
3019 EXPORT_SYMBOL(dbuf_free_range);
3020 EXPORT_SYMBOL(dbuf_new_size);
3021 EXPORT_SYMBOL(dbuf_release_bp);
3022 EXPORT_SYMBOL(dbuf_dirty);
3023 EXPORT_SYMBOL(dmu_buf_will_dirty);
3024 EXPORT_SYMBOL(dmu_buf_will_not_fill);
3025 EXPORT_SYMBOL(dmu_buf_will_fill);
3026 EXPORT_SYMBOL(dmu_buf_fill_done);
3027 EXPORT_SYMBOL(dmu_buf_rele);
3028 EXPORT_SYMBOL(dbuf_assign_arcbuf);
3029 EXPORT_SYMBOL(dbuf_clear);
3030 EXPORT_SYMBOL(dbuf_prefetch);
3031 EXPORT_SYMBOL(dbuf_hold_impl);
3032 EXPORT_SYMBOL(dbuf_hold);
3033 EXPORT_SYMBOL(dbuf_hold_level);
3034 EXPORT_SYMBOL(dbuf_create_bonus);
3035 EXPORT_SYMBOL(dbuf_spill_set_blksz);
3036 EXPORT_SYMBOL(dbuf_rm_spill);
3037 EXPORT_SYMBOL(dbuf_add_ref);
3038 EXPORT_SYMBOL(dbuf_rele);
3039 EXPORT_SYMBOL(dbuf_rele_and_unlock);
3040 EXPORT_SYMBOL(dbuf_refcount);
3041 EXPORT_SYMBOL(dbuf_sync_list);
3042 EXPORT_SYMBOL(dmu_buf_set_user);
3043 EXPORT_SYMBOL(dmu_buf_set_user_ie);
3044 EXPORT_SYMBOL(dmu_buf_update_user);
3045 EXPORT_SYMBOL(dmu_buf_get_user);
3046 EXPORT_SYMBOL(dmu_buf_freeable);
3047 EXPORT_SYMBOL(dmu_buf_get_blkptr);
3048 #endif