]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dmu.c
Illumos 4757, 4913
[mirror_zfs.git] / module / zfs / dmu.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 */
26
27 #include <sys/dmu.h>
28 #include <sys/dmu_impl.h>
29 #include <sys/dmu_tx.h>
30 #include <sys/dbuf.h>
31 #include <sys/dnode.h>
32 #include <sys/zfs_context.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dmu_traverse.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/dsl_dir.h>
37 #include <sys/dsl_pool.h>
38 #include <sys/dsl_synctask.h>
39 #include <sys/dsl_prop.h>
40 #include <sys/dmu_zfetch.h>
41 #include <sys/zfs_ioctl.h>
42 #include <sys/zap.h>
43 #include <sys/zio_checksum.h>
44 #include <sys/zio_compress.h>
45 #include <sys/sa.h>
46 #ifdef _KERNEL
47 #include <sys/vmsystm.h>
48 #include <sys/zfs_znode.h>
49 #endif
50
51 /*
52 * Enable/disable nopwrite feature.
53 */
54 int zfs_nopwrite_enabled = 1;
55
56 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
57 { DMU_BSWAP_UINT8, TRUE, "unallocated" },
58 { DMU_BSWAP_ZAP, TRUE, "object directory" },
59 { DMU_BSWAP_UINT64, TRUE, "object array" },
60 { DMU_BSWAP_UINT8, TRUE, "packed nvlist" },
61 { DMU_BSWAP_UINT64, TRUE, "packed nvlist size" },
62 { DMU_BSWAP_UINT64, TRUE, "bpobj" },
63 { DMU_BSWAP_UINT64, TRUE, "bpobj header" },
64 { DMU_BSWAP_UINT64, TRUE, "SPA space map header" },
65 { DMU_BSWAP_UINT64, TRUE, "SPA space map" },
66 { DMU_BSWAP_UINT64, TRUE, "ZIL intent log" },
67 { DMU_BSWAP_DNODE, TRUE, "DMU dnode" },
68 { DMU_BSWAP_OBJSET, TRUE, "DMU objset" },
69 { DMU_BSWAP_UINT64, TRUE, "DSL directory" },
70 { DMU_BSWAP_ZAP, TRUE, "DSL directory child map"},
71 { DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" },
72 { DMU_BSWAP_ZAP, TRUE, "DSL props" },
73 { DMU_BSWAP_UINT64, TRUE, "DSL dataset" },
74 { DMU_BSWAP_ZNODE, TRUE, "ZFS znode" },
75 { DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" },
76 { DMU_BSWAP_UINT8, FALSE, "ZFS plain file" },
77 { DMU_BSWAP_ZAP, TRUE, "ZFS directory" },
78 { DMU_BSWAP_ZAP, TRUE, "ZFS master node" },
79 { DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" },
80 { DMU_BSWAP_UINT8, FALSE, "zvol object" },
81 { DMU_BSWAP_ZAP, TRUE, "zvol prop" },
82 { DMU_BSWAP_UINT8, FALSE, "other uint8[]" },
83 { DMU_BSWAP_UINT64, FALSE, "other uint64[]" },
84 { DMU_BSWAP_ZAP, TRUE, "other ZAP" },
85 { DMU_BSWAP_ZAP, TRUE, "persistent error log" },
86 { DMU_BSWAP_UINT8, TRUE, "SPA history" },
87 { DMU_BSWAP_UINT64, TRUE, "SPA history offsets" },
88 { DMU_BSWAP_ZAP, TRUE, "Pool properties" },
89 { DMU_BSWAP_ZAP, TRUE, "DSL permissions" },
90 { DMU_BSWAP_ACL, TRUE, "ZFS ACL" },
91 { DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" },
92 { DMU_BSWAP_UINT8, TRUE, "FUID table" },
93 { DMU_BSWAP_UINT64, TRUE, "FUID table size" },
94 { DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"},
95 { DMU_BSWAP_ZAP, TRUE, "scan work queue" },
96 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" },
97 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" },
98 { DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"},
99 { DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" },
100 { DMU_BSWAP_ZAP, TRUE, "DDT statistics" },
101 { DMU_BSWAP_UINT8, TRUE, "System attributes" },
102 { DMU_BSWAP_ZAP, TRUE, "SA master node" },
103 { DMU_BSWAP_ZAP, TRUE, "SA attr registration" },
104 { DMU_BSWAP_ZAP, TRUE, "SA attr layouts" },
105 { DMU_BSWAP_ZAP, TRUE, "scan translations" },
106 { DMU_BSWAP_UINT8, FALSE, "deduplicated block" },
107 { DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" },
108 { DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" },
109 { DMU_BSWAP_ZAP, TRUE, "DSL dir clones" },
110 { DMU_BSWAP_UINT64, TRUE, "bpobj subobj" }
111 };
112
113 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
114 { byteswap_uint8_array, "uint8" },
115 { byteswap_uint16_array, "uint16" },
116 { byteswap_uint32_array, "uint32" },
117 { byteswap_uint64_array, "uint64" },
118 { zap_byteswap, "zap" },
119 { dnode_buf_byteswap, "dnode" },
120 { dmu_objset_byteswap, "objset" },
121 { zfs_znode_byteswap, "znode" },
122 { zfs_oldacl_byteswap, "oldacl" },
123 { zfs_acl_byteswap, "acl" }
124 };
125
126 int
127 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
128 void *tag, dmu_buf_t **dbp)
129 {
130 dnode_t *dn;
131 uint64_t blkid;
132 dmu_buf_impl_t *db;
133 int err;
134
135 err = dnode_hold(os, object, FTAG, &dn);
136 if (err)
137 return (err);
138 blkid = dbuf_whichblock(dn, offset);
139 rw_enter(&dn->dn_struct_rwlock, RW_READER);
140 db = dbuf_hold(dn, blkid, tag);
141 rw_exit(&dn->dn_struct_rwlock);
142 dnode_rele(dn, FTAG);
143
144 if (db == NULL) {
145 *dbp = NULL;
146 return (SET_ERROR(EIO));
147 }
148
149 *dbp = &db->db;
150 return (err);
151 }
152
153 int
154 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
155 void *tag, dmu_buf_t **dbp, int flags)
156 {
157 int err;
158 int db_flags = DB_RF_CANFAIL;
159
160 if (flags & DMU_READ_NO_PREFETCH)
161 db_flags |= DB_RF_NOPREFETCH;
162
163 err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
164 if (err == 0) {
165 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
166 err = dbuf_read(db, NULL, db_flags);
167 if (err != 0) {
168 dbuf_rele(db, tag);
169 *dbp = NULL;
170 }
171 }
172
173 return (err);
174 }
175
176 int
177 dmu_bonus_max(void)
178 {
179 return (DN_MAX_BONUSLEN);
180 }
181
182 int
183 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
184 {
185 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
186 dnode_t *dn;
187 int error;
188
189 DB_DNODE_ENTER(db);
190 dn = DB_DNODE(db);
191
192 if (dn->dn_bonus != db) {
193 error = SET_ERROR(EINVAL);
194 } else if (newsize < 0 || newsize > db_fake->db_size) {
195 error = SET_ERROR(EINVAL);
196 } else {
197 dnode_setbonuslen(dn, newsize, tx);
198 error = 0;
199 }
200
201 DB_DNODE_EXIT(db);
202 return (error);
203 }
204
205 int
206 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
207 {
208 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
209 dnode_t *dn;
210 int error;
211
212 DB_DNODE_ENTER(db);
213 dn = DB_DNODE(db);
214
215 if (!DMU_OT_IS_VALID(type)) {
216 error = SET_ERROR(EINVAL);
217 } else if (dn->dn_bonus != db) {
218 error = SET_ERROR(EINVAL);
219 } else {
220 dnode_setbonus_type(dn, type, tx);
221 error = 0;
222 }
223
224 DB_DNODE_EXIT(db);
225 return (error);
226 }
227
228 dmu_object_type_t
229 dmu_get_bonustype(dmu_buf_t *db_fake)
230 {
231 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
232 dnode_t *dn;
233 dmu_object_type_t type;
234
235 DB_DNODE_ENTER(db);
236 dn = DB_DNODE(db);
237 type = dn->dn_bonustype;
238 DB_DNODE_EXIT(db);
239
240 return (type);
241 }
242
243 int
244 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
245 {
246 dnode_t *dn;
247 int error;
248
249 error = dnode_hold(os, object, FTAG, &dn);
250 dbuf_rm_spill(dn, tx);
251 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
252 dnode_rm_spill(dn, tx);
253 rw_exit(&dn->dn_struct_rwlock);
254 dnode_rele(dn, FTAG);
255 return (error);
256 }
257
258 /*
259 * returns ENOENT, EIO, or 0.
260 */
261 int
262 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
263 {
264 dnode_t *dn;
265 dmu_buf_impl_t *db;
266 int error;
267
268 error = dnode_hold(os, object, FTAG, &dn);
269 if (error)
270 return (error);
271
272 rw_enter(&dn->dn_struct_rwlock, RW_READER);
273 if (dn->dn_bonus == NULL) {
274 rw_exit(&dn->dn_struct_rwlock);
275 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
276 if (dn->dn_bonus == NULL)
277 dbuf_create_bonus(dn);
278 }
279 db = dn->dn_bonus;
280
281 /* as long as the bonus buf is held, the dnode will be held */
282 if (refcount_add(&db->db_holds, tag) == 1) {
283 VERIFY(dnode_add_ref(dn, db));
284 (void) atomic_inc_32_nv(&dn->dn_dbufs_count);
285 }
286
287 /*
288 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
289 * hold and incrementing the dbuf count to ensure that dnode_move() sees
290 * a dnode hold for every dbuf.
291 */
292 rw_exit(&dn->dn_struct_rwlock);
293
294 dnode_rele(dn, FTAG);
295
296 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
297
298 *dbp = &db->db;
299 return (0);
300 }
301
302 /*
303 * returns ENOENT, EIO, or 0.
304 *
305 * This interface will allocate a blank spill dbuf when a spill blk
306 * doesn't already exist on the dnode.
307 *
308 * if you only want to find an already existing spill db, then
309 * dmu_spill_hold_existing() should be used.
310 */
311 int
312 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
313 {
314 dmu_buf_impl_t *db = NULL;
315 int err;
316
317 if ((flags & DB_RF_HAVESTRUCT) == 0)
318 rw_enter(&dn->dn_struct_rwlock, RW_READER);
319
320 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
321
322 if ((flags & DB_RF_HAVESTRUCT) == 0)
323 rw_exit(&dn->dn_struct_rwlock);
324
325 ASSERT(db != NULL);
326 err = dbuf_read(db, NULL, flags);
327 if (err == 0)
328 *dbp = &db->db;
329 else
330 dbuf_rele(db, tag);
331 return (err);
332 }
333
334 int
335 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
336 {
337 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
338 dnode_t *dn;
339 int err;
340
341 DB_DNODE_ENTER(db);
342 dn = DB_DNODE(db);
343
344 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
345 err = SET_ERROR(EINVAL);
346 } else {
347 rw_enter(&dn->dn_struct_rwlock, RW_READER);
348
349 if (!dn->dn_have_spill) {
350 err = SET_ERROR(ENOENT);
351 } else {
352 err = dmu_spill_hold_by_dnode(dn,
353 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
354 }
355
356 rw_exit(&dn->dn_struct_rwlock);
357 }
358
359 DB_DNODE_EXIT(db);
360 return (err);
361 }
362
363 int
364 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
365 {
366 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
367 dnode_t *dn;
368 int err;
369
370 DB_DNODE_ENTER(db);
371 dn = DB_DNODE(db);
372 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
373 DB_DNODE_EXIT(db);
374
375 return (err);
376 }
377
378 /*
379 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
380 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
381 * and can induce severe lock contention when writing to several files
382 * whose dnodes are in the same block.
383 */
384 static int
385 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
386 int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
387 {
388 dmu_buf_t **dbp;
389 uint64_t blkid, nblks, i;
390 uint32_t dbuf_flags;
391 int err;
392 zio_t *zio;
393
394 ASSERT(length <= DMU_MAX_ACCESS);
395
396 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
397 if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
398 dbuf_flags |= DB_RF_NOPREFETCH;
399
400 rw_enter(&dn->dn_struct_rwlock, RW_READER);
401 if (dn->dn_datablkshift) {
402 int blkshift = dn->dn_datablkshift;
403 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
404 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
405 } else {
406 if (offset + length > dn->dn_datablksz) {
407 zfs_panic_recover("zfs: accessing past end of object "
408 "%llx/%llx (size=%u access=%llu+%llu)",
409 (longlong_t)dn->dn_objset->
410 os_dsl_dataset->ds_object,
411 (longlong_t)dn->dn_object, dn->dn_datablksz,
412 (longlong_t)offset, (longlong_t)length);
413 rw_exit(&dn->dn_struct_rwlock);
414 return (SET_ERROR(EIO));
415 }
416 nblks = 1;
417 }
418 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks,
419 KM_PUSHPAGE | KM_NODEBUG);
420
421 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
422 blkid = dbuf_whichblock(dn, offset);
423 for (i = 0; i < nblks; i++) {
424 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
425 if (db == NULL) {
426 rw_exit(&dn->dn_struct_rwlock);
427 dmu_buf_rele_array(dbp, nblks, tag);
428 zio_nowait(zio);
429 return (SET_ERROR(EIO));
430 }
431 /* initiate async i/o */
432 if (read) {
433 (void) dbuf_read(db, zio, dbuf_flags);
434 }
435 dbp[i] = &db->db;
436 }
437 rw_exit(&dn->dn_struct_rwlock);
438
439 /* wait for async i/o */
440 err = zio_wait(zio);
441 if (err) {
442 dmu_buf_rele_array(dbp, nblks, tag);
443 return (err);
444 }
445
446 /* wait for other io to complete */
447 if (read) {
448 for (i = 0; i < nblks; i++) {
449 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
450 mutex_enter(&db->db_mtx);
451 while (db->db_state == DB_READ ||
452 db->db_state == DB_FILL)
453 cv_wait(&db->db_changed, &db->db_mtx);
454 if (db->db_state == DB_UNCACHED)
455 err = SET_ERROR(EIO);
456 mutex_exit(&db->db_mtx);
457 if (err) {
458 dmu_buf_rele_array(dbp, nblks, tag);
459 return (err);
460 }
461 }
462 }
463
464 *numbufsp = nblks;
465 *dbpp = dbp;
466 return (0);
467 }
468
469 static int
470 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
471 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
472 {
473 dnode_t *dn;
474 int err;
475
476 err = dnode_hold(os, object, FTAG, &dn);
477 if (err)
478 return (err);
479
480 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
481 numbufsp, dbpp, DMU_READ_PREFETCH);
482
483 dnode_rele(dn, FTAG);
484
485 return (err);
486 }
487
488 int
489 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
490 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
491 {
492 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
493 dnode_t *dn;
494 int err;
495
496 DB_DNODE_ENTER(db);
497 dn = DB_DNODE(db);
498 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
499 numbufsp, dbpp, DMU_READ_PREFETCH);
500 DB_DNODE_EXIT(db);
501
502 return (err);
503 }
504
505 void
506 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
507 {
508 int i;
509 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
510
511 if (numbufs == 0)
512 return;
513
514 for (i = 0; i < numbufs; i++) {
515 if (dbp[i])
516 dbuf_rele(dbp[i], tag);
517 }
518
519 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
520 }
521
522 /*
523 * Issue prefetch i/os for the given blocks.
524 *
525 * Note: The assumption is that we *know* these blocks will be needed
526 * almost immediately. Therefore, the prefetch i/os will be issued at
527 * ZIO_PRIORITY_SYNC_READ
528 *
529 * Note: indirect blocks and other metadata will be read synchronously,
530 * causing this function to block if they are not already cached.
531 */
532 void
533 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
534 {
535 dnode_t *dn;
536 uint64_t blkid;
537 int nblks, err;
538
539 if (zfs_prefetch_disable)
540 return;
541
542 if (len == 0) { /* they're interested in the bonus buffer */
543 dn = DMU_META_DNODE(os);
544
545 if (object == 0 || object >= DN_MAX_OBJECT)
546 return;
547
548 rw_enter(&dn->dn_struct_rwlock, RW_READER);
549 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
550 dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ);
551 rw_exit(&dn->dn_struct_rwlock);
552 return;
553 }
554
555 /*
556 * XXX - Note, if the dnode for the requested object is not
557 * already cached, we will do a *synchronous* read in the
558 * dnode_hold() call. The same is true for any indirects.
559 */
560 err = dnode_hold(os, object, FTAG, &dn);
561 if (err != 0)
562 return;
563
564 rw_enter(&dn->dn_struct_rwlock, RW_READER);
565 if (dn->dn_datablkshift) {
566 int blkshift = dn->dn_datablkshift;
567 nblks = (P2ROUNDUP(offset + len, 1 << blkshift) -
568 P2ALIGN(offset, 1 << blkshift)) >> blkshift;
569 } else {
570 nblks = (offset < dn->dn_datablksz);
571 }
572
573 if (nblks != 0) {
574 int i;
575
576 blkid = dbuf_whichblock(dn, offset);
577 for (i = 0; i < nblks; i++)
578 dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ);
579 }
580
581 rw_exit(&dn->dn_struct_rwlock);
582
583 dnode_rele(dn, FTAG);
584 }
585
586 /*
587 * Get the next "chunk" of file data to free. We traverse the file from
588 * the end so that the file gets shorter over time (if we crashes in the
589 * middle, this will leave us in a better state). We find allocated file
590 * data by simply searching the allocated level 1 indirects.
591 *
592 * On input, *start should be the first offset that does not need to be
593 * freed (e.g. "offset + length"). On return, *start will be the first
594 * offset that should be freed.
595 */
596 static int
597 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
598 {
599 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
600 /* bytes of data covered by a level-1 indirect block */
601 uint64_t iblkrange =
602 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
603 uint64_t blks;
604
605 ASSERT3U(minimum, <=, *start);
606
607 if (*start - minimum <= iblkrange * maxblks) {
608 *start = minimum;
609 return (0);
610 }
611 ASSERT(ISP2(iblkrange));
612
613 for (blks = 0; *start > minimum && blks < maxblks; blks++) {
614 int err;
615
616 /*
617 * dnode_next_offset(BACKWARDS) will find an allocated L1
618 * indirect block at or before the input offset. We must
619 * decrement *start so that it is at the end of the region
620 * to search.
621 */
622 (*start)--;
623 err = dnode_next_offset(dn,
624 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
625
626 /* if there are no indirect blocks before start, we are done */
627 if (err == ESRCH) {
628 *start = minimum;
629 break;
630 } else if (err != 0) {
631 return (err);
632 }
633
634 /* set start to the beginning of this L1 indirect */
635 *start = P2ALIGN(*start, iblkrange);
636 }
637 if (*start < minimum)
638 *start = minimum;
639 return (0);
640 }
641
642 static int
643 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
644 uint64_t length)
645 {
646 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
647 int err;
648
649 if (offset >= object_size)
650 return (0);
651
652 if (length == DMU_OBJECT_END || offset + length > object_size)
653 length = object_size - offset;
654
655 while (length != 0) {
656 uint64_t chunk_end, chunk_begin;
657 dmu_tx_t *tx;
658
659 chunk_end = chunk_begin = offset + length;
660
661 /* move chunk_begin backwards to the beginning of this chunk */
662 err = get_next_chunk(dn, &chunk_begin, offset);
663 if (err)
664 return (err);
665 ASSERT3U(chunk_begin, >=, offset);
666 ASSERT3U(chunk_begin, <=, chunk_end);
667
668 tx = dmu_tx_create(os);
669 dmu_tx_hold_free(tx, dn->dn_object,
670 chunk_begin, chunk_end - chunk_begin);
671 err = dmu_tx_assign(tx, TXG_WAIT);
672 if (err) {
673 dmu_tx_abort(tx);
674 return (err);
675 }
676 dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
677 dmu_tx_commit(tx);
678
679 length -= chunk_end - chunk_begin;
680 }
681 return (0);
682 }
683
684 int
685 dmu_free_long_range(objset_t *os, uint64_t object,
686 uint64_t offset, uint64_t length)
687 {
688 dnode_t *dn;
689 int err;
690
691 err = dnode_hold(os, object, FTAG, &dn);
692 if (err != 0)
693 return (err);
694 err = dmu_free_long_range_impl(os, dn, offset, length);
695
696 /*
697 * It is important to zero out the maxblkid when freeing the entire
698 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
699 * will take the fast path, and (b) dnode_reallocate() can verify
700 * that the entire file has been freed.
701 */
702 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
703 dn->dn_maxblkid = 0;
704
705 dnode_rele(dn, FTAG);
706 return (err);
707 }
708
709 int
710 dmu_free_long_object(objset_t *os, uint64_t object)
711 {
712 dmu_tx_t *tx;
713 int err;
714
715 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
716 if (err != 0)
717 return (err);
718
719 tx = dmu_tx_create(os);
720 dmu_tx_hold_bonus(tx, object);
721 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
722 err = dmu_tx_assign(tx, TXG_WAIT);
723 if (err == 0) {
724 err = dmu_object_free(os, object, tx);
725 dmu_tx_commit(tx);
726 } else {
727 dmu_tx_abort(tx);
728 }
729
730 return (err);
731 }
732
733 int
734 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
735 uint64_t size, dmu_tx_t *tx)
736 {
737 dnode_t *dn;
738 int err = dnode_hold(os, object, FTAG, &dn);
739 if (err)
740 return (err);
741 ASSERT(offset < UINT64_MAX);
742 ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
743 dnode_free_range(dn, offset, size, tx);
744 dnode_rele(dn, FTAG);
745 return (0);
746 }
747
748 int
749 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
750 void *buf, uint32_t flags)
751 {
752 dnode_t *dn;
753 dmu_buf_t **dbp;
754 int numbufs, err;
755
756 err = dnode_hold(os, object, FTAG, &dn);
757 if (err)
758 return (err);
759
760 /*
761 * Deal with odd block sizes, where there can't be data past the first
762 * block. If we ever do the tail block optimization, we will need to
763 * handle that here as well.
764 */
765 if (dn->dn_maxblkid == 0) {
766 int newsz = offset > dn->dn_datablksz ? 0 :
767 MIN(size, dn->dn_datablksz - offset);
768 bzero((char *)buf + newsz, size - newsz);
769 size = newsz;
770 }
771
772 while (size > 0) {
773 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
774 int i;
775
776 /*
777 * NB: we could do this block-at-a-time, but it's nice
778 * to be reading in parallel.
779 */
780 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
781 TRUE, FTAG, &numbufs, &dbp, flags);
782 if (err)
783 break;
784
785 for (i = 0; i < numbufs; i++) {
786 int tocpy;
787 int bufoff;
788 dmu_buf_t *db = dbp[i];
789
790 ASSERT(size > 0);
791
792 bufoff = offset - db->db_offset;
793 tocpy = (int)MIN(db->db_size - bufoff, size);
794
795 bcopy((char *)db->db_data + bufoff, buf, tocpy);
796
797 offset += tocpy;
798 size -= tocpy;
799 buf = (char *)buf + tocpy;
800 }
801 dmu_buf_rele_array(dbp, numbufs, FTAG);
802 }
803 dnode_rele(dn, FTAG);
804 return (err);
805 }
806
807 void
808 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
809 const void *buf, dmu_tx_t *tx)
810 {
811 dmu_buf_t **dbp;
812 int numbufs, i;
813
814 if (size == 0)
815 return;
816
817 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
818 FALSE, FTAG, &numbufs, &dbp));
819
820 for (i = 0; i < numbufs; i++) {
821 int tocpy;
822 int bufoff;
823 dmu_buf_t *db = dbp[i];
824
825 ASSERT(size > 0);
826
827 bufoff = offset - db->db_offset;
828 tocpy = (int)MIN(db->db_size - bufoff, size);
829
830 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
831
832 if (tocpy == db->db_size)
833 dmu_buf_will_fill(db, tx);
834 else
835 dmu_buf_will_dirty(db, tx);
836
837 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
838
839 if (tocpy == db->db_size)
840 dmu_buf_fill_done(db, tx);
841
842 offset += tocpy;
843 size -= tocpy;
844 buf = (char *)buf + tocpy;
845 }
846 dmu_buf_rele_array(dbp, numbufs, FTAG);
847 }
848
849 void
850 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
851 dmu_tx_t *tx)
852 {
853 dmu_buf_t **dbp;
854 int numbufs, i;
855
856 if (size == 0)
857 return;
858
859 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
860 FALSE, FTAG, &numbufs, &dbp));
861
862 for (i = 0; i < numbufs; i++) {
863 dmu_buf_t *db = dbp[i];
864
865 dmu_buf_will_not_fill(db, tx);
866 }
867 dmu_buf_rele_array(dbp, numbufs, FTAG);
868 }
869
870 void
871 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
872 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
873 int compressed_size, int byteorder, dmu_tx_t *tx)
874 {
875 dmu_buf_t *db;
876
877 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
878 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
879 VERIFY0(dmu_buf_hold_noread(os, object, offset,
880 FTAG, &db));
881
882 dmu_buf_write_embedded(db,
883 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
884 uncompressed_size, compressed_size, byteorder, tx);
885
886 dmu_buf_rele(db, FTAG);
887 }
888
889 /*
890 * DMU support for xuio
891 */
892 kstat_t *xuio_ksp = NULL;
893
894 typedef struct xuio_stats {
895 /* loaned yet not returned arc_buf */
896 kstat_named_t xuiostat_onloan_rbuf;
897 kstat_named_t xuiostat_onloan_wbuf;
898 /* whether a copy is made when loaning out a read buffer */
899 kstat_named_t xuiostat_rbuf_copied;
900 kstat_named_t xuiostat_rbuf_nocopy;
901 /* whether a copy is made when assigning a write buffer */
902 kstat_named_t xuiostat_wbuf_copied;
903 kstat_named_t xuiostat_wbuf_nocopy;
904 } xuio_stats_t;
905
906 static xuio_stats_t xuio_stats = {
907 { "onloan_read_buf", KSTAT_DATA_UINT64 },
908 { "onloan_write_buf", KSTAT_DATA_UINT64 },
909 { "read_buf_copied", KSTAT_DATA_UINT64 },
910 { "read_buf_nocopy", KSTAT_DATA_UINT64 },
911 { "write_buf_copied", KSTAT_DATA_UINT64 },
912 { "write_buf_nocopy", KSTAT_DATA_UINT64 }
913 };
914
915 #define XUIOSTAT_INCR(stat, val) \
916 atomic_add_64(&xuio_stats.stat.value.ui64, (val))
917 #define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1)
918
919 int
920 dmu_xuio_init(xuio_t *xuio, int nblk)
921 {
922 dmu_xuio_t *priv;
923 uio_t *uio = &xuio->xu_uio;
924
925 uio->uio_iovcnt = nblk;
926 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_PUSHPAGE);
927
928 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_PUSHPAGE);
929 priv->cnt = nblk;
930 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_PUSHPAGE);
931 priv->iovp = uio->uio_iov;
932 XUIO_XUZC_PRIV(xuio) = priv;
933
934 if (XUIO_XUZC_RW(xuio) == UIO_READ)
935 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
936 else
937 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
938
939 return (0);
940 }
941
942 void
943 dmu_xuio_fini(xuio_t *xuio)
944 {
945 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
946 int nblk = priv->cnt;
947
948 kmem_free(priv->iovp, nblk * sizeof (iovec_t));
949 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
950 kmem_free(priv, sizeof (dmu_xuio_t));
951
952 if (XUIO_XUZC_RW(xuio) == UIO_READ)
953 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
954 else
955 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
956 }
957
958 /*
959 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
960 * and increase priv->next by 1.
961 */
962 int
963 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
964 {
965 struct iovec *iov;
966 uio_t *uio = &xuio->xu_uio;
967 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
968 int i = priv->next++;
969
970 ASSERT(i < priv->cnt);
971 ASSERT(off + n <= arc_buf_size(abuf));
972 iov = uio->uio_iov + i;
973 iov->iov_base = (char *)abuf->b_data + off;
974 iov->iov_len = n;
975 priv->bufs[i] = abuf;
976 return (0);
977 }
978
979 int
980 dmu_xuio_cnt(xuio_t *xuio)
981 {
982 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
983 return (priv->cnt);
984 }
985
986 arc_buf_t *
987 dmu_xuio_arcbuf(xuio_t *xuio, int i)
988 {
989 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
990
991 ASSERT(i < priv->cnt);
992 return (priv->bufs[i]);
993 }
994
995 void
996 dmu_xuio_clear(xuio_t *xuio, int i)
997 {
998 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
999
1000 ASSERT(i < priv->cnt);
1001 priv->bufs[i] = NULL;
1002 }
1003
1004 static void
1005 xuio_stat_init(void)
1006 {
1007 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1008 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1009 KSTAT_FLAG_VIRTUAL);
1010 if (xuio_ksp != NULL) {
1011 xuio_ksp->ks_data = &xuio_stats;
1012 kstat_install(xuio_ksp);
1013 }
1014 }
1015
1016 static void
1017 xuio_stat_fini(void)
1018 {
1019 if (xuio_ksp != NULL) {
1020 kstat_delete(xuio_ksp);
1021 xuio_ksp = NULL;
1022 }
1023 }
1024
1025 void
1026 xuio_stat_wbuf_copied()
1027 {
1028 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1029 }
1030
1031 void
1032 xuio_stat_wbuf_nocopy()
1033 {
1034 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1035 }
1036
1037 #ifdef _KERNEL
1038
1039 /*
1040 * Copy up to size bytes between arg_buf and req based on the data direction
1041 * described by the req. If an entire req's data cannot be transfered in one
1042 * pass, you should pass in @req_offset to indicate where to continue. The
1043 * return value is the number of bytes successfully copied to arg_buf.
1044 */
1045 static int
1046 dmu_req_copy(void *arg_buf, int size, struct request *req, size_t req_offset)
1047 {
1048 struct bio_vec bv, *bvp;
1049 struct req_iterator iter;
1050 char *bv_buf;
1051 int tocpy, bv_len, bv_offset;
1052 int offset = 0;
1053
1054 rq_for_each_segment4(bv, bvp, req, iter) {
1055 /*
1056 * Fully consumed the passed arg_buf. We use goto here because
1057 * rq_for_each_segment is a double loop
1058 */
1059 ASSERT3S(offset, <=, size);
1060 if (size == offset)
1061 goto out;
1062
1063 /* Skip already copied bv */
1064 if (req_offset >= bv.bv_len) {
1065 req_offset -= bv.bv_len;
1066 continue;
1067 }
1068
1069 bv_len = bv.bv_len - req_offset;
1070 bv_offset = bv.bv_offset + req_offset;
1071 req_offset = 0;
1072
1073 tocpy = MIN(bv_len, size - offset);
1074 ASSERT3S(tocpy, >=, 0);
1075
1076 bv_buf = page_address(bv.bv_page) + bv_offset;
1077 ASSERT3P(bv_buf, !=, NULL);
1078
1079 if (rq_data_dir(req) == WRITE)
1080 memcpy(arg_buf + offset, bv_buf, tocpy);
1081 else
1082 memcpy(bv_buf, arg_buf + offset, tocpy);
1083
1084 offset += tocpy;
1085 }
1086 out:
1087 return (offset);
1088 }
1089
1090 int
1091 dmu_read_req(objset_t *os, uint64_t object, struct request *req)
1092 {
1093 uint64_t size = blk_rq_bytes(req);
1094 uint64_t offset = blk_rq_pos(req) << 9;
1095 dmu_buf_t **dbp;
1096 int numbufs, i, err;
1097 size_t req_offset;
1098
1099 /*
1100 * NB: we could do this block-at-a-time, but it's nice
1101 * to be reading in parallel.
1102 */
1103 err = dmu_buf_hold_array(os, object, offset, size, TRUE, FTAG,
1104 &numbufs, &dbp);
1105 if (err)
1106 return (err);
1107
1108 req_offset = 0;
1109 for (i = 0; i < numbufs; i++) {
1110 int tocpy, didcpy, bufoff;
1111 dmu_buf_t *db = dbp[i];
1112
1113 bufoff = offset - db->db_offset;
1114 ASSERT3S(bufoff, >=, 0);
1115
1116 tocpy = (int)MIN(db->db_size - bufoff, size);
1117 if (tocpy == 0)
1118 break;
1119
1120 didcpy = dmu_req_copy(db->db_data + bufoff, tocpy, req,
1121 req_offset);
1122
1123 if (didcpy < tocpy)
1124 err = EIO;
1125
1126 if (err)
1127 break;
1128
1129 size -= tocpy;
1130 offset += didcpy;
1131 req_offset += didcpy;
1132 err = 0;
1133 }
1134 dmu_buf_rele_array(dbp, numbufs, FTAG);
1135
1136 return (err);
1137 }
1138
1139 int
1140 dmu_write_req(objset_t *os, uint64_t object, struct request *req, dmu_tx_t *tx)
1141 {
1142 uint64_t size = blk_rq_bytes(req);
1143 uint64_t offset = blk_rq_pos(req) << 9;
1144 dmu_buf_t **dbp;
1145 int numbufs, i, err;
1146 size_t req_offset;
1147
1148 if (size == 0)
1149 return (0);
1150
1151 err = dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1152 &numbufs, &dbp);
1153 if (err)
1154 return (err);
1155
1156 req_offset = 0;
1157 for (i = 0; i < numbufs; i++) {
1158 int tocpy, didcpy, bufoff;
1159 dmu_buf_t *db = dbp[i];
1160
1161 bufoff = offset - db->db_offset;
1162 ASSERT3S(bufoff, >=, 0);
1163
1164 tocpy = (int)MIN(db->db_size - bufoff, size);
1165 if (tocpy == 0)
1166 break;
1167
1168 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1169
1170 if (tocpy == db->db_size)
1171 dmu_buf_will_fill(db, tx);
1172 else
1173 dmu_buf_will_dirty(db, tx);
1174
1175 didcpy = dmu_req_copy(db->db_data + bufoff, tocpy, req,
1176 req_offset);
1177
1178 if (tocpy == db->db_size)
1179 dmu_buf_fill_done(db, tx);
1180
1181 if (didcpy < tocpy)
1182 err = EIO;
1183
1184 if (err)
1185 break;
1186
1187 size -= tocpy;
1188 offset += didcpy;
1189 req_offset += didcpy;
1190 err = 0;
1191 }
1192
1193 dmu_buf_rele_array(dbp, numbufs, FTAG);
1194 return (err);
1195 }
1196
1197 int
1198 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1199 {
1200 dmu_buf_t **dbp;
1201 int numbufs, i, err;
1202 xuio_t *xuio = NULL;
1203
1204 /*
1205 * NB: we could do this block-at-a-time, but it's nice
1206 * to be reading in parallel.
1207 */
1208 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
1209 &numbufs, &dbp);
1210 if (err)
1211 return (err);
1212
1213 for (i = 0; i < numbufs; i++) {
1214 int tocpy;
1215 int bufoff;
1216 dmu_buf_t *db = dbp[i];
1217
1218 ASSERT(size > 0);
1219
1220 bufoff = uio->uio_loffset - db->db_offset;
1221 tocpy = (int)MIN(db->db_size - bufoff, size);
1222
1223 if (xuio) {
1224 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1225 arc_buf_t *dbuf_abuf = dbi->db_buf;
1226 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1227 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1228 if (!err) {
1229 uio->uio_resid -= tocpy;
1230 uio->uio_loffset += tocpy;
1231 }
1232
1233 if (abuf == dbuf_abuf)
1234 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1235 else
1236 XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1237 } else {
1238 err = uiomove((char *)db->db_data + bufoff, tocpy,
1239 UIO_READ, uio);
1240 }
1241 if (err)
1242 break;
1243
1244 size -= tocpy;
1245 }
1246 dmu_buf_rele_array(dbp, numbufs, FTAG);
1247
1248 return (err);
1249 }
1250
1251 static int
1252 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1253 {
1254 dmu_buf_t **dbp;
1255 int numbufs;
1256 int err = 0;
1257 int i;
1258
1259 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1260 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1261 if (err)
1262 return (err);
1263
1264 for (i = 0; i < numbufs; i++) {
1265 int tocpy;
1266 int bufoff;
1267 dmu_buf_t *db = dbp[i];
1268
1269 ASSERT(size > 0);
1270
1271 bufoff = uio->uio_loffset - db->db_offset;
1272 tocpy = (int)MIN(db->db_size - bufoff, size);
1273
1274 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1275
1276 if (tocpy == db->db_size)
1277 dmu_buf_will_fill(db, tx);
1278 else
1279 dmu_buf_will_dirty(db, tx);
1280
1281 /*
1282 * XXX uiomove could block forever (eg.nfs-backed
1283 * pages). There needs to be a uiolockdown() function
1284 * to lock the pages in memory, so that uiomove won't
1285 * block.
1286 */
1287 err = uiomove((char *)db->db_data + bufoff, tocpy,
1288 UIO_WRITE, uio);
1289
1290 if (tocpy == db->db_size)
1291 dmu_buf_fill_done(db, tx);
1292
1293 if (err)
1294 break;
1295
1296 size -= tocpy;
1297 }
1298
1299 dmu_buf_rele_array(dbp, numbufs, FTAG);
1300 return (err);
1301 }
1302
1303 int
1304 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1305 dmu_tx_t *tx)
1306 {
1307 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1308 dnode_t *dn;
1309 int err;
1310
1311 if (size == 0)
1312 return (0);
1313
1314 DB_DNODE_ENTER(db);
1315 dn = DB_DNODE(db);
1316 err = dmu_write_uio_dnode(dn, uio, size, tx);
1317 DB_DNODE_EXIT(db);
1318
1319 return (err);
1320 }
1321
1322 int
1323 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1324 dmu_tx_t *tx)
1325 {
1326 dnode_t *dn;
1327 int err;
1328
1329 if (size == 0)
1330 return (0);
1331
1332 err = dnode_hold(os, object, FTAG, &dn);
1333 if (err)
1334 return (err);
1335
1336 err = dmu_write_uio_dnode(dn, uio, size, tx);
1337
1338 dnode_rele(dn, FTAG);
1339
1340 return (err);
1341 }
1342 #endif /* _KERNEL */
1343
1344 /*
1345 * Allocate a loaned anonymous arc buffer.
1346 */
1347 arc_buf_t *
1348 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1349 {
1350 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1351
1352 return (arc_loan_buf(db->db_objset->os_spa, size));
1353 }
1354
1355 /*
1356 * Free a loaned arc buffer.
1357 */
1358 void
1359 dmu_return_arcbuf(arc_buf_t *buf)
1360 {
1361 arc_return_buf(buf, FTAG);
1362 VERIFY(arc_buf_remove_ref(buf, FTAG));
1363 }
1364
1365 /*
1366 * When possible directly assign passed loaned arc buffer to a dbuf.
1367 * If this is not possible copy the contents of passed arc buf via
1368 * dmu_write().
1369 */
1370 void
1371 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1372 dmu_tx_t *tx)
1373 {
1374 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1375 dnode_t *dn;
1376 dmu_buf_impl_t *db;
1377 uint32_t blksz = (uint32_t)arc_buf_size(buf);
1378 uint64_t blkid;
1379
1380 DB_DNODE_ENTER(dbuf);
1381 dn = DB_DNODE(dbuf);
1382 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1383 blkid = dbuf_whichblock(dn, offset);
1384 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1385 rw_exit(&dn->dn_struct_rwlock);
1386 DB_DNODE_EXIT(dbuf);
1387
1388 if (offset == db->db.db_offset && blksz == db->db.db_size) {
1389 dbuf_assign_arcbuf(db, buf, tx);
1390 dbuf_rele(db, FTAG);
1391 } else {
1392 objset_t *os;
1393 uint64_t object;
1394
1395 DB_DNODE_ENTER(dbuf);
1396 dn = DB_DNODE(dbuf);
1397 os = dn->dn_objset;
1398 object = dn->dn_object;
1399 DB_DNODE_EXIT(dbuf);
1400
1401 dbuf_rele(db, FTAG);
1402 dmu_write(os, object, offset, blksz, buf->b_data, tx);
1403 dmu_return_arcbuf(buf);
1404 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1405 }
1406 }
1407
1408 typedef struct {
1409 dbuf_dirty_record_t *dsa_dr;
1410 dmu_sync_cb_t *dsa_done;
1411 zgd_t *dsa_zgd;
1412 dmu_tx_t *dsa_tx;
1413 } dmu_sync_arg_t;
1414
1415 /* ARGSUSED */
1416 static void
1417 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1418 {
1419 dmu_sync_arg_t *dsa = varg;
1420 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1421 blkptr_t *bp = zio->io_bp;
1422
1423 if (zio->io_error == 0) {
1424 if (BP_IS_HOLE(bp)) {
1425 /*
1426 * A block of zeros may compress to a hole, but the
1427 * block size still needs to be known for replay.
1428 */
1429 BP_SET_LSIZE(bp, db->db_size);
1430 } else if (!BP_IS_EMBEDDED(bp)) {
1431 ASSERT(BP_GET_LEVEL(bp) == 0);
1432 bp->blk_fill = 1;
1433 }
1434 }
1435 }
1436
1437 static void
1438 dmu_sync_late_arrival_ready(zio_t *zio)
1439 {
1440 dmu_sync_ready(zio, NULL, zio->io_private);
1441 }
1442
1443 /* ARGSUSED */
1444 static void
1445 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1446 {
1447 dmu_sync_arg_t *dsa = varg;
1448 dbuf_dirty_record_t *dr = dsa->dsa_dr;
1449 dmu_buf_impl_t *db = dr->dr_dbuf;
1450
1451 mutex_enter(&db->db_mtx);
1452 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1453 if (zio->io_error == 0) {
1454 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1455 if (dr->dt.dl.dr_nopwrite) {
1456 ASSERTV(blkptr_t *bp = zio->io_bp);
1457 ASSERTV(blkptr_t *bp_orig = &zio->io_bp_orig);
1458 ASSERTV(uint8_t chksum = BP_GET_CHECKSUM(bp_orig));
1459
1460 ASSERT(BP_EQUAL(bp, bp_orig));
1461 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1462 ASSERT(zio_checksum_table[chksum].ci_dedup);
1463 }
1464 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1465 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1466 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1467 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1468 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1469 } else {
1470 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1471 }
1472 cv_broadcast(&db->db_changed);
1473 mutex_exit(&db->db_mtx);
1474
1475 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1476
1477 kmem_free(dsa, sizeof (*dsa));
1478 }
1479
1480 static void
1481 dmu_sync_late_arrival_done(zio_t *zio)
1482 {
1483 blkptr_t *bp = zio->io_bp;
1484 dmu_sync_arg_t *dsa = zio->io_private;
1485 ASSERTV(blkptr_t *bp_orig = &zio->io_bp_orig);
1486
1487 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1488 /*
1489 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1490 * then there is nothing to do here. Otherwise, free the
1491 * newly allocated block in this txg.
1492 */
1493 if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1494 ASSERT(BP_EQUAL(bp, bp_orig));
1495 } else {
1496 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1497 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1498 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1499 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1500 }
1501 }
1502
1503 dmu_tx_commit(dsa->dsa_tx);
1504
1505 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1506
1507 kmem_free(dsa, sizeof (*dsa));
1508 }
1509
1510 static int
1511 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1512 zio_prop_t *zp, zbookmark_t *zb)
1513 {
1514 dmu_sync_arg_t *dsa;
1515 dmu_tx_t *tx;
1516
1517 tx = dmu_tx_create(os);
1518 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1519 if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1520 dmu_tx_abort(tx);
1521 /* Make zl_get_data do txg_waited_synced() */
1522 return (SET_ERROR(EIO));
1523 }
1524
1525 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_PUSHPAGE);
1526 dsa->dsa_dr = NULL;
1527 dsa->dsa_done = done;
1528 dsa->dsa_zgd = zgd;
1529 dsa->dsa_tx = tx;
1530
1531 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1532 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1533 dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1534 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL|ZIO_FLAG_FASTWRITE, zb));
1535
1536 return (0);
1537 }
1538
1539 /*
1540 * Intent log support: sync the block associated with db to disk.
1541 * N.B. and XXX: the caller is responsible for making sure that the
1542 * data isn't changing while dmu_sync() is writing it.
1543 *
1544 * Return values:
1545 *
1546 * EEXIST: this txg has already been synced, so there's nothing to do.
1547 * The caller should not log the write.
1548 *
1549 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1550 * The caller should not log the write.
1551 *
1552 * EALREADY: this block is already in the process of being synced.
1553 * The caller should track its progress (somehow).
1554 *
1555 * EIO: could not do the I/O.
1556 * The caller should do a txg_wait_synced().
1557 *
1558 * 0: the I/O has been initiated.
1559 * The caller should log this blkptr in the done callback.
1560 * It is possible that the I/O will fail, in which case
1561 * the error will be reported to the done callback and
1562 * propagated to pio from zio_done().
1563 */
1564 int
1565 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1566 {
1567 blkptr_t *bp = zgd->zgd_bp;
1568 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1569 objset_t *os = db->db_objset;
1570 dsl_dataset_t *ds = os->os_dsl_dataset;
1571 dbuf_dirty_record_t *dr;
1572 dmu_sync_arg_t *dsa;
1573 zbookmark_t zb;
1574 zio_prop_t zp;
1575 dnode_t *dn;
1576
1577 ASSERT(pio != NULL);
1578 ASSERT(txg != 0);
1579
1580 SET_BOOKMARK(&zb, ds->ds_object,
1581 db->db.db_object, db->db_level, db->db_blkid);
1582
1583 DB_DNODE_ENTER(db);
1584 dn = DB_DNODE(db);
1585 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1586 DB_DNODE_EXIT(db);
1587
1588 /*
1589 * If we're frozen (running ziltest), we always need to generate a bp.
1590 */
1591 if (txg > spa_freeze_txg(os->os_spa))
1592 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1593
1594 /*
1595 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1596 * and us. If we determine that this txg is not yet syncing,
1597 * but it begins to sync a moment later, that's OK because the
1598 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1599 */
1600 mutex_enter(&db->db_mtx);
1601
1602 if (txg <= spa_last_synced_txg(os->os_spa)) {
1603 /*
1604 * This txg has already synced. There's nothing to do.
1605 */
1606 mutex_exit(&db->db_mtx);
1607 return (SET_ERROR(EEXIST));
1608 }
1609
1610 if (txg <= spa_syncing_txg(os->os_spa)) {
1611 /*
1612 * This txg is currently syncing, so we can't mess with
1613 * the dirty record anymore; just write a new log block.
1614 */
1615 mutex_exit(&db->db_mtx);
1616 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1617 }
1618
1619 dr = db->db_last_dirty;
1620 while (dr && dr->dr_txg != txg)
1621 dr = dr->dr_next;
1622
1623 if (dr == NULL) {
1624 /*
1625 * There's no dr for this dbuf, so it must have been freed.
1626 * There's no need to log writes to freed blocks, so we're done.
1627 */
1628 mutex_exit(&db->db_mtx);
1629 return (SET_ERROR(ENOENT));
1630 }
1631
1632 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1633
1634 /*
1635 * Assume the on-disk data is X, the current syncing data is Y,
1636 * and the current in-memory data is Z (currently in dmu_sync).
1637 * X and Z are identical but Y is has been modified. Normally,
1638 * when X and Z are the same we will perform a nopwrite but if Y
1639 * is different we must disable nopwrite since the resulting write
1640 * of Y to disk can free the block containing X. If we allowed a
1641 * nopwrite to occur the block pointing to Z would reference a freed
1642 * block. Since this is a rare case we simplify this by disabling
1643 * nopwrite if the current dmu_sync-ing dbuf has been modified in
1644 * a previous transaction.
1645 */
1646 if (dr->dr_next)
1647 zp.zp_nopwrite = B_FALSE;
1648
1649 ASSERT(dr->dr_txg == txg);
1650 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1651 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1652 /*
1653 * We have already issued a sync write for this buffer,
1654 * or this buffer has already been synced. It could not
1655 * have been dirtied since, or we would have cleared the state.
1656 */
1657 mutex_exit(&db->db_mtx);
1658 return (SET_ERROR(EALREADY));
1659 }
1660
1661 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1662 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1663 mutex_exit(&db->db_mtx);
1664
1665 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_PUSHPAGE);
1666 dsa->dsa_dr = dr;
1667 dsa->dsa_done = done;
1668 dsa->dsa_zgd = zgd;
1669 dsa->dsa_tx = NULL;
1670
1671 zio_nowait(arc_write(pio, os->os_spa, txg,
1672 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1673 DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1674 NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1675 ZIO_FLAG_CANFAIL, &zb));
1676
1677 return (0);
1678 }
1679
1680 int
1681 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1682 dmu_tx_t *tx)
1683 {
1684 dnode_t *dn;
1685 int err;
1686
1687 err = dnode_hold(os, object, FTAG, &dn);
1688 if (err)
1689 return (err);
1690 err = dnode_set_blksz(dn, size, ibs, tx);
1691 dnode_rele(dn, FTAG);
1692 return (err);
1693 }
1694
1695 void
1696 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1697 dmu_tx_t *tx)
1698 {
1699 dnode_t *dn;
1700
1701 /*
1702 * Send streams include each object's checksum function. This
1703 * check ensures that the receiving system can understand the
1704 * checksum function transmitted.
1705 */
1706 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1707
1708 VERIFY0(dnode_hold(os, object, FTAG, &dn));
1709 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1710 dn->dn_checksum = checksum;
1711 dnode_setdirty(dn, tx);
1712 dnode_rele(dn, FTAG);
1713 }
1714
1715 void
1716 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1717 dmu_tx_t *tx)
1718 {
1719 dnode_t *dn;
1720
1721 /*
1722 * Send streams include each object's compression function. This
1723 * check ensures that the receiving system can understand the
1724 * compression function transmitted.
1725 */
1726 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1727
1728 VERIFY0(dnode_hold(os, object, FTAG, &dn));
1729 dn->dn_compress = compress;
1730 dnode_setdirty(dn, tx);
1731 dnode_rele(dn, FTAG);
1732 }
1733
1734 int zfs_mdcomp_disable = 0;
1735
1736 /*
1737 * When the "redundant_metadata" property is set to "most", only indirect
1738 * blocks of this level and higher will have an additional ditto block.
1739 */
1740 int zfs_redundant_metadata_most_ditto_level = 2;
1741
1742 void
1743 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1744 {
1745 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1746 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1747 (wp & WP_SPILL));
1748 enum zio_checksum checksum = os->os_checksum;
1749 enum zio_compress compress = os->os_compress;
1750 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1751 boolean_t dedup = B_FALSE;
1752 boolean_t nopwrite = B_FALSE;
1753 boolean_t dedup_verify = os->os_dedup_verify;
1754 int copies = os->os_copies;
1755
1756 /*
1757 * We maintain different write policies for each of the following
1758 * types of data:
1759 * 1. metadata
1760 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1761 * 3. all other level 0 blocks
1762 */
1763 if (ismd) {
1764 /*
1765 * XXX -- we should design a compression algorithm
1766 * that specializes in arrays of bps.
1767 */
1768 compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
1769 ZIO_COMPRESS_LZJB;
1770
1771 /*
1772 * Metadata always gets checksummed. If the data
1773 * checksum is multi-bit correctable, and it's not a
1774 * ZBT-style checksum, then it's suitable for metadata
1775 * as well. Otherwise, the metadata checksum defaults
1776 * to fletcher4.
1777 */
1778 if (zio_checksum_table[checksum].ci_correctable < 1 ||
1779 zio_checksum_table[checksum].ci_eck)
1780 checksum = ZIO_CHECKSUM_FLETCHER_4;
1781
1782 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1783 (os->os_redundant_metadata ==
1784 ZFS_REDUNDANT_METADATA_MOST &&
1785 (level >= zfs_redundant_metadata_most_ditto_level ||
1786 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1787 copies++;
1788 } else if (wp & WP_NOFILL) {
1789 ASSERT(level == 0);
1790
1791 /*
1792 * If we're writing preallocated blocks, we aren't actually
1793 * writing them so don't set any policy properties. These
1794 * blocks are currently only used by an external subsystem
1795 * outside of zfs (i.e. dump) and not written by the zio
1796 * pipeline.
1797 */
1798 compress = ZIO_COMPRESS_OFF;
1799 checksum = ZIO_CHECKSUM_OFF;
1800 } else {
1801 compress = zio_compress_select(dn->dn_compress, compress);
1802
1803 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1804 zio_checksum_select(dn->dn_checksum, checksum) :
1805 dedup_checksum;
1806
1807 /*
1808 * Determine dedup setting. If we are in dmu_sync(),
1809 * we won't actually dedup now because that's all
1810 * done in syncing context; but we do want to use the
1811 * dedup checkum. If the checksum is not strong
1812 * enough to ensure unique signatures, force
1813 * dedup_verify.
1814 */
1815 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1816 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1817 if (!zio_checksum_table[checksum].ci_dedup)
1818 dedup_verify = B_TRUE;
1819 }
1820
1821 /*
1822 * Enable nopwrite if we have a cryptographically secure
1823 * checksum that has no known collisions (i.e. SHA-256)
1824 * and compression is enabled. We don't enable nopwrite if
1825 * dedup is enabled as the two features are mutually exclusive.
1826 */
1827 nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
1828 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1829 }
1830
1831 zp->zp_checksum = checksum;
1832 zp->zp_compress = compress;
1833 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1834 zp->zp_level = level;
1835 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
1836 zp->zp_dedup = dedup;
1837 zp->zp_dedup_verify = dedup && dedup_verify;
1838 zp->zp_nopwrite = nopwrite;
1839 }
1840
1841 int
1842 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1843 {
1844 dnode_t *dn;
1845 int i, err;
1846
1847 err = dnode_hold(os, object, FTAG, &dn);
1848 if (err)
1849 return (err);
1850 /*
1851 * Sync any current changes before
1852 * we go trundling through the block pointers.
1853 */
1854 for (i = 0; i < TXG_SIZE; i++) {
1855 if (list_link_active(&dn->dn_dirty_link[i]))
1856 break;
1857 }
1858 if (i != TXG_SIZE) {
1859 dnode_rele(dn, FTAG);
1860 txg_wait_synced(dmu_objset_pool(os), 0);
1861 err = dnode_hold(os, object, FTAG, &dn);
1862 if (err)
1863 return (err);
1864 }
1865
1866 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1867 dnode_rele(dn, FTAG);
1868
1869 return (err);
1870 }
1871
1872 void
1873 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1874 {
1875 dnode_phys_t *dnp = dn->dn_phys;
1876 int i;
1877
1878 doi->doi_data_block_size = dn->dn_datablksz;
1879 doi->doi_metadata_block_size = dn->dn_indblkshift ?
1880 1ULL << dn->dn_indblkshift : 0;
1881 doi->doi_type = dn->dn_type;
1882 doi->doi_bonus_type = dn->dn_bonustype;
1883 doi->doi_bonus_size = dn->dn_bonuslen;
1884 doi->doi_indirection = dn->dn_nlevels;
1885 doi->doi_checksum = dn->dn_checksum;
1886 doi->doi_compress = dn->dn_compress;
1887 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1888 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1889 doi->doi_fill_count = 0;
1890 for (i = 0; i < dnp->dn_nblkptr; i++)
1891 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
1892 }
1893
1894 void
1895 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1896 {
1897 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1898 mutex_enter(&dn->dn_mtx);
1899
1900 __dmu_object_info_from_dnode(dn, doi);
1901
1902 mutex_exit(&dn->dn_mtx);
1903 rw_exit(&dn->dn_struct_rwlock);
1904 }
1905
1906 /*
1907 * Get information on a DMU object.
1908 * If doi is NULL, just indicates whether the object exists.
1909 */
1910 int
1911 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1912 {
1913 dnode_t *dn;
1914 int err = dnode_hold(os, object, FTAG, &dn);
1915
1916 if (err)
1917 return (err);
1918
1919 if (doi != NULL)
1920 dmu_object_info_from_dnode(dn, doi);
1921
1922 dnode_rele(dn, FTAG);
1923 return (0);
1924 }
1925
1926 /*
1927 * As above, but faster; can be used when you have a held dbuf in hand.
1928 */
1929 void
1930 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1931 {
1932 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1933
1934 DB_DNODE_ENTER(db);
1935 dmu_object_info_from_dnode(DB_DNODE(db), doi);
1936 DB_DNODE_EXIT(db);
1937 }
1938
1939 /*
1940 * Faster still when you only care about the size.
1941 * This is specifically optimized for zfs_getattr().
1942 */
1943 void
1944 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1945 u_longlong_t *nblk512)
1946 {
1947 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1948 dnode_t *dn;
1949
1950 DB_DNODE_ENTER(db);
1951 dn = DB_DNODE(db);
1952
1953 *blksize = dn->dn_datablksz;
1954 /* add 1 for dnode space */
1955 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1956 SPA_MINBLOCKSHIFT) + 1;
1957 DB_DNODE_EXIT(db);
1958 }
1959
1960 void
1961 byteswap_uint64_array(void *vbuf, size_t size)
1962 {
1963 uint64_t *buf = vbuf;
1964 size_t count = size >> 3;
1965 int i;
1966
1967 ASSERT((size & 7) == 0);
1968
1969 for (i = 0; i < count; i++)
1970 buf[i] = BSWAP_64(buf[i]);
1971 }
1972
1973 void
1974 byteswap_uint32_array(void *vbuf, size_t size)
1975 {
1976 uint32_t *buf = vbuf;
1977 size_t count = size >> 2;
1978 int i;
1979
1980 ASSERT((size & 3) == 0);
1981
1982 for (i = 0; i < count; i++)
1983 buf[i] = BSWAP_32(buf[i]);
1984 }
1985
1986 void
1987 byteswap_uint16_array(void *vbuf, size_t size)
1988 {
1989 uint16_t *buf = vbuf;
1990 size_t count = size >> 1;
1991 int i;
1992
1993 ASSERT((size & 1) == 0);
1994
1995 for (i = 0; i < count; i++)
1996 buf[i] = BSWAP_16(buf[i]);
1997 }
1998
1999 /* ARGSUSED */
2000 void
2001 byteswap_uint8_array(void *vbuf, size_t size)
2002 {
2003 }
2004
2005 void
2006 dmu_init(void)
2007 {
2008 zfs_dbgmsg_init();
2009 sa_cache_init();
2010 xuio_stat_init();
2011 dmu_objset_init();
2012 dnode_init();
2013 dbuf_init();
2014 zfetch_init();
2015 dmu_tx_init();
2016 l2arc_init();
2017 arc_init();
2018 }
2019
2020 void
2021 dmu_fini(void)
2022 {
2023 arc_fini(); /* arc depends on l2arc, so arc must go first */
2024 l2arc_fini();
2025 dmu_tx_fini();
2026 zfetch_fini();
2027 dbuf_fini();
2028 dnode_fini();
2029 dmu_objset_fini();
2030 xuio_stat_fini();
2031 sa_cache_fini();
2032 zfs_dbgmsg_fini();
2033 }
2034
2035 #if defined(_KERNEL) && defined(HAVE_SPL)
2036 EXPORT_SYMBOL(dmu_bonus_hold);
2037 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2038 EXPORT_SYMBOL(dmu_buf_rele_array);
2039 EXPORT_SYMBOL(dmu_prefetch);
2040 EXPORT_SYMBOL(dmu_free_range);
2041 EXPORT_SYMBOL(dmu_free_long_range);
2042 EXPORT_SYMBOL(dmu_free_long_object);
2043 EXPORT_SYMBOL(dmu_read);
2044 EXPORT_SYMBOL(dmu_write);
2045 EXPORT_SYMBOL(dmu_prealloc);
2046 EXPORT_SYMBOL(dmu_object_info);
2047 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2048 EXPORT_SYMBOL(dmu_object_info_from_db);
2049 EXPORT_SYMBOL(dmu_object_size_from_db);
2050 EXPORT_SYMBOL(dmu_object_set_blocksize);
2051 EXPORT_SYMBOL(dmu_object_set_checksum);
2052 EXPORT_SYMBOL(dmu_object_set_compress);
2053 EXPORT_SYMBOL(dmu_write_policy);
2054 EXPORT_SYMBOL(dmu_sync);
2055 EXPORT_SYMBOL(dmu_request_arcbuf);
2056 EXPORT_SYMBOL(dmu_return_arcbuf);
2057 EXPORT_SYMBOL(dmu_assign_arcbuf);
2058 EXPORT_SYMBOL(dmu_buf_hold);
2059 EXPORT_SYMBOL(dmu_ot);
2060
2061 module_param(zfs_mdcomp_disable, int, 0644);
2062 MODULE_PARM_DESC(zfs_mdcomp_disable, "Disable meta data compression");
2063
2064 module_param(zfs_nopwrite_enabled, int, 0644);
2065 MODULE_PARM_DESC(zfs_nopwrite_enabled, "Enable NOP writes");
2066
2067 #endif