]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dmu.c
Illumos 5960, 5925
[mirror_zfs.git] / module / zfs / dmu.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
27 */
28
29 #include <sys/dmu.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dbuf.h>
33 #include <sys/dnode.h>
34 #include <sys/zfs_context.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dmu_traverse.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_prop.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/zfs_ioctl.h>
44 #include <sys/zap.h>
45 #include <sys/zio_checksum.h>
46 #include <sys/zio_compress.h>
47 #include <sys/sa.h>
48 #include <sys/zfeature.h>
49 #ifdef _KERNEL
50 #include <sys/vmsystm.h>
51 #include <sys/zfs_znode.h>
52 #endif
53
54 /*
55 * Enable/disable nopwrite feature.
56 */
57 int zfs_nopwrite_enabled = 1;
58
59 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
60 { DMU_BSWAP_UINT8, TRUE, "unallocated" },
61 { DMU_BSWAP_ZAP, TRUE, "object directory" },
62 { DMU_BSWAP_UINT64, TRUE, "object array" },
63 { DMU_BSWAP_UINT8, TRUE, "packed nvlist" },
64 { DMU_BSWAP_UINT64, TRUE, "packed nvlist size" },
65 { DMU_BSWAP_UINT64, TRUE, "bpobj" },
66 { DMU_BSWAP_UINT64, TRUE, "bpobj header" },
67 { DMU_BSWAP_UINT64, TRUE, "SPA space map header" },
68 { DMU_BSWAP_UINT64, TRUE, "SPA space map" },
69 { DMU_BSWAP_UINT64, TRUE, "ZIL intent log" },
70 { DMU_BSWAP_DNODE, TRUE, "DMU dnode" },
71 { DMU_BSWAP_OBJSET, TRUE, "DMU objset" },
72 { DMU_BSWAP_UINT64, TRUE, "DSL directory" },
73 { DMU_BSWAP_ZAP, TRUE, "DSL directory child map"},
74 { DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" },
75 { DMU_BSWAP_ZAP, TRUE, "DSL props" },
76 { DMU_BSWAP_UINT64, TRUE, "DSL dataset" },
77 { DMU_BSWAP_ZNODE, TRUE, "ZFS znode" },
78 { DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" },
79 { DMU_BSWAP_UINT8, FALSE, "ZFS plain file" },
80 { DMU_BSWAP_ZAP, TRUE, "ZFS directory" },
81 { DMU_BSWAP_ZAP, TRUE, "ZFS master node" },
82 { DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" },
83 { DMU_BSWAP_UINT8, FALSE, "zvol object" },
84 { DMU_BSWAP_ZAP, TRUE, "zvol prop" },
85 { DMU_BSWAP_UINT8, FALSE, "other uint8[]" },
86 { DMU_BSWAP_UINT64, FALSE, "other uint64[]" },
87 { DMU_BSWAP_ZAP, TRUE, "other ZAP" },
88 { DMU_BSWAP_ZAP, TRUE, "persistent error log" },
89 { DMU_BSWAP_UINT8, TRUE, "SPA history" },
90 { DMU_BSWAP_UINT64, TRUE, "SPA history offsets" },
91 { DMU_BSWAP_ZAP, TRUE, "Pool properties" },
92 { DMU_BSWAP_ZAP, TRUE, "DSL permissions" },
93 { DMU_BSWAP_ACL, TRUE, "ZFS ACL" },
94 { DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" },
95 { DMU_BSWAP_UINT8, TRUE, "FUID table" },
96 { DMU_BSWAP_UINT64, TRUE, "FUID table size" },
97 { DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"},
98 { DMU_BSWAP_ZAP, TRUE, "scan work queue" },
99 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" },
100 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" },
101 { DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"},
102 { DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" },
103 { DMU_BSWAP_ZAP, TRUE, "DDT statistics" },
104 { DMU_BSWAP_UINT8, TRUE, "System attributes" },
105 { DMU_BSWAP_ZAP, TRUE, "SA master node" },
106 { DMU_BSWAP_ZAP, TRUE, "SA attr registration" },
107 { DMU_BSWAP_ZAP, TRUE, "SA attr layouts" },
108 { DMU_BSWAP_ZAP, TRUE, "scan translations" },
109 { DMU_BSWAP_UINT8, FALSE, "deduplicated block" },
110 { DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" },
111 { DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" },
112 { DMU_BSWAP_ZAP, TRUE, "DSL dir clones" },
113 { DMU_BSWAP_UINT64, TRUE, "bpobj subobj" }
114 };
115
116 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
117 { byteswap_uint8_array, "uint8" },
118 { byteswap_uint16_array, "uint16" },
119 { byteswap_uint32_array, "uint32" },
120 { byteswap_uint64_array, "uint64" },
121 { zap_byteswap, "zap" },
122 { dnode_buf_byteswap, "dnode" },
123 { dmu_objset_byteswap, "objset" },
124 { zfs_znode_byteswap, "znode" },
125 { zfs_oldacl_byteswap, "oldacl" },
126 { zfs_acl_byteswap, "acl" }
127 };
128
129 int
130 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
131 void *tag, dmu_buf_t **dbp)
132 {
133 dnode_t *dn;
134 uint64_t blkid;
135 dmu_buf_impl_t *db;
136 int err;
137
138 err = dnode_hold(os, object, FTAG, &dn);
139 if (err)
140 return (err);
141 blkid = dbuf_whichblock(dn, 0, offset);
142 rw_enter(&dn->dn_struct_rwlock, RW_READER);
143 db = dbuf_hold(dn, blkid, tag);
144 rw_exit(&dn->dn_struct_rwlock);
145 dnode_rele(dn, FTAG);
146
147 if (db == NULL) {
148 *dbp = NULL;
149 return (SET_ERROR(EIO));
150 }
151
152 *dbp = &db->db;
153 return (err);
154 }
155
156 int
157 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
158 void *tag, dmu_buf_t **dbp, int flags)
159 {
160 int err;
161 int db_flags = DB_RF_CANFAIL;
162
163 if (flags & DMU_READ_NO_PREFETCH)
164 db_flags |= DB_RF_NOPREFETCH;
165
166 err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
167 if (err == 0) {
168 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
169 err = dbuf_read(db, NULL, db_flags);
170 if (err != 0) {
171 dbuf_rele(db, tag);
172 *dbp = NULL;
173 }
174 }
175
176 return (err);
177 }
178
179 int
180 dmu_bonus_max(void)
181 {
182 return (DN_MAX_BONUSLEN);
183 }
184
185 int
186 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
187 {
188 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
189 dnode_t *dn;
190 int error;
191
192 DB_DNODE_ENTER(db);
193 dn = DB_DNODE(db);
194
195 if (dn->dn_bonus != db) {
196 error = SET_ERROR(EINVAL);
197 } else if (newsize < 0 || newsize > db_fake->db_size) {
198 error = SET_ERROR(EINVAL);
199 } else {
200 dnode_setbonuslen(dn, newsize, tx);
201 error = 0;
202 }
203
204 DB_DNODE_EXIT(db);
205 return (error);
206 }
207
208 int
209 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
210 {
211 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
212 dnode_t *dn;
213 int error;
214
215 DB_DNODE_ENTER(db);
216 dn = DB_DNODE(db);
217
218 if (!DMU_OT_IS_VALID(type)) {
219 error = SET_ERROR(EINVAL);
220 } else if (dn->dn_bonus != db) {
221 error = SET_ERROR(EINVAL);
222 } else {
223 dnode_setbonus_type(dn, type, tx);
224 error = 0;
225 }
226
227 DB_DNODE_EXIT(db);
228 return (error);
229 }
230
231 dmu_object_type_t
232 dmu_get_bonustype(dmu_buf_t *db_fake)
233 {
234 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
235 dnode_t *dn;
236 dmu_object_type_t type;
237
238 DB_DNODE_ENTER(db);
239 dn = DB_DNODE(db);
240 type = dn->dn_bonustype;
241 DB_DNODE_EXIT(db);
242
243 return (type);
244 }
245
246 int
247 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
248 {
249 dnode_t *dn;
250 int error;
251
252 error = dnode_hold(os, object, FTAG, &dn);
253 dbuf_rm_spill(dn, tx);
254 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
255 dnode_rm_spill(dn, tx);
256 rw_exit(&dn->dn_struct_rwlock);
257 dnode_rele(dn, FTAG);
258 return (error);
259 }
260
261 /*
262 * returns ENOENT, EIO, or 0.
263 */
264 int
265 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
266 {
267 dnode_t *dn;
268 dmu_buf_impl_t *db;
269 int error;
270
271 error = dnode_hold(os, object, FTAG, &dn);
272 if (error)
273 return (error);
274
275 rw_enter(&dn->dn_struct_rwlock, RW_READER);
276 if (dn->dn_bonus == NULL) {
277 rw_exit(&dn->dn_struct_rwlock);
278 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
279 if (dn->dn_bonus == NULL)
280 dbuf_create_bonus(dn);
281 }
282 db = dn->dn_bonus;
283
284 /* as long as the bonus buf is held, the dnode will be held */
285 if (refcount_add(&db->db_holds, tag) == 1) {
286 VERIFY(dnode_add_ref(dn, db));
287 atomic_inc_32(&dn->dn_dbufs_count);
288 }
289
290 /*
291 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
292 * hold and incrementing the dbuf count to ensure that dnode_move() sees
293 * a dnode hold for every dbuf.
294 */
295 rw_exit(&dn->dn_struct_rwlock);
296
297 dnode_rele(dn, FTAG);
298
299 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
300
301 *dbp = &db->db;
302 return (0);
303 }
304
305 /*
306 * returns ENOENT, EIO, or 0.
307 *
308 * This interface will allocate a blank spill dbuf when a spill blk
309 * doesn't already exist on the dnode.
310 *
311 * if you only want to find an already existing spill db, then
312 * dmu_spill_hold_existing() should be used.
313 */
314 int
315 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
316 {
317 dmu_buf_impl_t *db = NULL;
318 int err;
319
320 if ((flags & DB_RF_HAVESTRUCT) == 0)
321 rw_enter(&dn->dn_struct_rwlock, RW_READER);
322
323 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
324
325 if ((flags & DB_RF_HAVESTRUCT) == 0)
326 rw_exit(&dn->dn_struct_rwlock);
327
328 ASSERT(db != NULL);
329 err = dbuf_read(db, NULL, flags);
330 if (err == 0)
331 *dbp = &db->db;
332 else
333 dbuf_rele(db, tag);
334 return (err);
335 }
336
337 int
338 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
339 {
340 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
341 dnode_t *dn;
342 int err;
343
344 DB_DNODE_ENTER(db);
345 dn = DB_DNODE(db);
346
347 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
348 err = SET_ERROR(EINVAL);
349 } else {
350 rw_enter(&dn->dn_struct_rwlock, RW_READER);
351
352 if (!dn->dn_have_spill) {
353 err = SET_ERROR(ENOENT);
354 } else {
355 err = dmu_spill_hold_by_dnode(dn,
356 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
357 }
358
359 rw_exit(&dn->dn_struct_rwlock);
360 }
361
362 DB_DNODE_EXIT(db);
363 return (err);
364 }
365
366 int
367 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
368 {
369 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
370 dnode_t *dn;
371 int err;
372
373 DB_DNODE_ENTER(db);
374 dn = DB_DNODE(db);
375 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
376 DB_DNODE_EXIT(db);
377
378 return (err);
379 }
380
381 /*
382 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
383 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
384 * and can induce severe lock contention when writing to several files
385 * whose dnodes are in the same block.
386 */
387 static int
388 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
389 int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
390 {
391 dmu_buf_t **dbp;
392 uint64_t blkid, nblks, i;
393 uint32_t dbuf_flags;
394 int err;
395 zio_t *zio;
396
397 ASSERT(length <= DMU_MAX_ACCESS);
398
399 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
400 if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
401 dbuf_flags |= DB_RF_NOPREFETCH;
402
403 rw_enter(&dn->dn_struct_rwlock, RW_READER);
404 if (dn->dn_datablkshift) {
405 int blkshift = dn->dn_datablkshift;
406 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
407 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
408 } else {
409 if (offset + length > dn->dn_datablksz) {
410 zfs_panic_recover("zfs: accessing past end of object "
411 "%llx/%llx (size=%u access=%llu+%llu)",
412 (longlong_t)dn->dn_objset->
413 os_dsl_dataset->ds_object,
414 (longlong_t)dn->dn_object, dn->dn_datablksz,
415 (longlong_t)offset, (longlong_t)length);
416 rw_exit(&dn->dn_struct_rwlock);
417 return (SET_ERROR(EIO));
418 }
419 nblks = 1;
420 }
421 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
422
423 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
424 blkid = dbuf_whichblock(dn, 0, offset);
425 for (i = 0; i < nblks; i++) {
426 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
427 if (db == NULL) {
428 rw_exit(&dn->dn_struct_rwlock);
429 dmu_buf_rele_array(dbp, nblks, tag);
430 zio_nowait(zio);
431 return (SET_ERROR(EIO));
432 }
433 /* initiate async i/o */
434 if (read) {
435 (void) dbuf_read(db, zio, dbuf_flags);
436 }
437 dbp[i] = &db->db;
438 }
439 rw_exit(&dn->dn_struct_rwlock);
440
441 /* wait for async i/o */
442 err = zio_wait(zio);
443 if (err) {
444 dmu_buf_rele_array(dbp, nblks, tag);
445 return (err);
446 }
447
448 /* wait for other io to complete */
449 if (read) {
450 for (i = 0; i < nblks; i++) {
451 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
452 mutex_enter(&db->db_mtx);
453 while (db->db_state == DB_READ ||
454 db->db_state == DB_FILL)
455 cv_wait(&db->db_changed, &db->db_mtx);
456 if (db->db_state == DB_UNCACHED)
457 err = SET_ERROR(EIO);
458 mutex_exit(&db->db_mtx);
459 if (err) {
460 dmu_buf_rele_array(dbp, nblks, tag);
461 return (err);
462 }
463 }
464 }
465
466 *numbufsp = nblks;
467 *dbpp = dbp;
468 return (0);
469 }
470
471 static int
472 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
473 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
474 {
475 dnode_t *dn;
476 int err;
477
478 err = dnode_hold(os, object, FTAG, &dn);
479 if (err)
480 return (err);
481
482 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
483 numbufsp, dbpp, DMU_READ_PREFETCH);
484
485 dnode_rele(dn, FTAG);
486
487 return (err);
488 }
489
490 int
491 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
492 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
493 {
494 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
495 dnode_t *dn;
496 int err;
497
498 DB_DNODE_ENTER(db);
499 dn = DB_DNODE(db);
500 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
501 numbufsp, dbpp, DMU_READ_PREFETCH);
502 DB_DNODE_EXIT(db);
503
504 return (err);
505 }
506
507 void
508 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
509 {
510 int i;
511 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
512
513 if (numbufs == 0)
514 return;
515
516 for (i = 0; i < numbufs; i++) {
517 if (dbp[i])
518 dbuf_rele(dbp[i], tag);
519 }
520
521 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
522 }
523
524 /*
525 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
526 * indirect blocks prefeteched will be those that point to the blocks containing
527 * the data starting at offset, and continuing to offset + len.
528 *
529 * Note that if the indirect blocks above the blocks being prefetched are not in
530 * cache, they will be asychronously read in.
531 */
532 void
533 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
534 uint64_t len, zio_priority_t pri)
535 {
536 dnode_t *dn;
537 uint64_t blkid;
538 int nblks, err;
539
540 if (zfs_prefetch_disable)
541 return;
542
543 if (len == 0) { /* they're interested in the bonus buffer */
544 dn = DMU_META_DNODE(os);
545
546 if (object == 0 || object >= DN_MAX_OBJECT)
547 return;
548
549 rw_enter(&dn->dn_struct_rwlock, RW_READER);
550 blkid = dbuf_whichblock(dn, level,
551 object * sizeof (dnode_phys_t));
552 dbuf_prefetch(dn, level, blkid, pri, 0);
553 rw_exit(&dn->dn_struct_rwlock);
554 return;
555 }
556
557 /*
558 * XXX - Note, if the dnode for the requested object is not
559 * already cached, we will do a *synchronous* read in the
560 * dnode_hold() call. The same is true for any indirects.
561 */
562 err = dnode_hold(os, object, FTAG, &dn);
563 if (err != 0)
564 return;
565
566 rw_enter(&dn->dn_struct_rwlock, RW_READER);
567 /*
568 * offset + len - 1 is the last byte we want to prefetch for, and offset
569 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
570 * last block we want to prefetch, and dbuf_whichblock(dn, level,
571 * offset) is the first. Then the number we need to prefetch is the
572 * last - first + 1.
573 */
574 if (level > 0 || dn->dn_datablkshift != 0) {
575 nblks = dbuf_whichblock(dn, level, offset + len - 1) -
576 dbuf_whichblock(dn, level, offset) + 1;
577 } else {
578 nblks = (offset < dn->dn_datablksz);
579 }
580
581 if (nblks != 0) {
582 int i;
583
584 blkid = dbuf_whichblock(dn, level, offset);
585 for (i = 0; i < nblks; i++)
586 dbuf_prefetch(dn, level, blkid + i, pri, 0);
587 }
588
589 rw_exit(&dn->dn_struct_rwlock);
590
591 dnode_rele(dn, FTAG);
592 }
593
594 /*
595 * Get the next "chunk" of file data to free. We traverse the file from
596 * the end so that the file gets shorter over time (if we crashes in the
597 * middle, this will leave us in a better state). We find allocated file
598 * data by simply searching the allocated level 1 indirects.
599 *
600 * On input, *start should be the first offset that does not need to be
601 * freed (e.g. "offset + length"). On return, *start will be the first
602 * offset that should be freed.
603 */
604 static int
605 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
606 {
607 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
608 /* bytes of data covered by a level-1 indirect block */
609 uint64_t iblkrange =
610 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
611 uint64_t blks;
612
613 ASSERT3U(minimum, <=, *start);
614
615 if (*start - minimum <= iblkrange * maxblks) {
616 *start = minimum;
617 return (0);
618 }
619 ASSERT(ISP2(iblkrange));
620
621 for (blks = 0; *start > minimum && blks < maxblks; blks++) {
622 int err;
623
624 /*
625 * dnode_next_offset(BACKWARDS) will find an allocated L1
626 * indirect block at or before the input offset. We must
627 * decrement *start so that it is at the end of the region
628 * to search.
629 */
630 (*start)--;
631 err = dnode_next_offset(dn,
632 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
633
634 /* if there are no indirect blocks before start, we are done */
635 if (err == ESRCH) {
636 *start = minimum;
637 break;
638 } else if (err != 0) {
639 return (err);
640 }
641
642 /* set start to the beginning of this L1 indirect */
643 *start = P2ALIGN(*start, iblkrange);
644 }
645 if (*start < minimum)
646 *start = minimum;
647 return (0);
648 }
649
650 static int
651 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
652 uint64_t length)
653 {
654 uint64_t object_size;
655 int err;
656
657 if (dn == NULL)
658 return (SET_ERROR(EINVAL));
659
660 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
661 if (offset >= object_size)
662 return (0);
663
664 if (length == DMU_OBJECT_END || offset + length > object_size)
665 length = object_size - offset;
666
667 while (length != 0) {
668 uint64_t chunk_end, chunk_begin;
669 dmu_tx_t *tx;
670
671 chunk_end = chunk_begin = offset + length;
672
673 /* move chunk_begin backwards to the beginning of this chunk */
674 err = get_next_chunk(dn, &chunk_begin, offset);
675 if (err)
676 return (err);
677 ASSERT3U(chunk_begin, >=, offset);
678 ASSERT3U(chunk_begin, <=, chunk_end);
679
680 tx = dmu_tx_create(os);
681 dmu_tx_hold_free(tx, dn->dn_object,
682 chunk_begin, chunk_end - chunk_begin);
683 err = dmu_tx_assign(tx, TXG_WAIT);
684 if (err) {
685 dmu_tx_abort(tx);
686 return (err);
687 }
688 dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
689 dmu_tx_commit(tx);
690
691 length -= chunk_end - chunk_begin;
692 }
693 return (0);
694 }
695
696 int
697 dmu_free_long_range(objset_t *os, uint64_t object,
698 uint64_t offset, uint64_t length)
699 {
700 dnode_t *dn;
701 int err;
702
703 err = dnode_hold(os, object, FTAG, &dn);
704 if (err != 0)
705 return (err);
706 err = dmu_free_long_range_impl(os, dn, offset, length);
707
708 /*
709 * It is important to zero out the maxblkid when freeing the entire
710 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
711 * will take the fast path, and (b) dnode_reallocate() can verify
712 * that the entire file has been freed.
713 */
714 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
715 dn->dn_maxblkid = 0;
716
717 dnode_rele(dn, FTAG);
718 return (err);
719 }
720
721 int
722 dmu_free_long_object(objset_t *os, uint64_t object)
723 {
724 dmu_tx_t *tx;
725 int err;
726
727 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
728 if (err != 0)
729 return (err);
730
731 tx = dmu_tx_create(os);
732 dmu_tx_hold_bonus(tx, object);
733 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
734 err = dmu_tx_assign(tx, TXG_WAIT);
735 if (err == 0) {
736 err = dmu_object_free(os, object, tx);
737 dmu_tx_commit(tx);
738 } else {
739 dmu_tx_abort(tx);
740 }
741
742 return (err);
743 }
744
745 int
746 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
747 uint64_t size, dmu_tx_t *tx)
748 {
749 dnode_t *dn;
750 int err = dnode_hold(os, object, FTAG, &dn);
751 if (err)
752 return (err);
753 ASSERT(offset < UINT64_MAX);
754 ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
755 dnode_free_range(dn, offset, size, tx);
756 dnode_rele(dn, FTAG);
757 return (0);
758 }
759
760 int
761 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
762 void *buf, uint32_t flags)
763 {
764 dnode_t *dn;
765 dmu_buf_t **dbp;
766 int numbufs, err;
767
768 err = dnode_hold(os, object, FTAG, &dn);
769 if (err)
770 return (err);
771
772 /*
773 * Deal with odd block sizes, where there can't be data past the first
774 * block. If we ever do the tail block optimization, we will need to
775 * handle that here as well.
776 */
777 if (dn->dn_maxblkid == 0) {
778 uint64_t newsz = offset > dn->dn_datablksz ? 0 :
779 MIN(size, dn->dn_datablksz - offset);
780 bzero((char *)buf + newsz, size - newsz);
781 size = newsz;
782 }
783
784 while (size > 0) {
785 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
786 int i;
787
788 /*
789 * NB: we could do this block-at-a-time, but it's nice
790 * to be reading in parallel.
791 */
792 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
793 TRUE, FTAG, &numbufs, &dbp, flags);
794 if (err)
795 break;
796
797 for (i = 0; i < numbufs; i++) {
798 uint64_t tocpy;
799 int64_t bufoff;
800 dmu_buf_t *db = dbp[i];
801
802 ASSERT(size > 0);
803
804 bufoff = offset - db->db_offset;
805 tocpy = MIN(db->db_size - bufoff, size);
806
807 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
808
809 offset += tocpy;
810 size -= tocpy;
811 buf = (char *)buf + tocpy;
812 }
813 dmu_buf_rele_array(dbp, numbufs, FTAG);
814 }
815 dnode_rele(dn, FTAG);
816 return (err);
817 }
818
819 void
820 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
821 const void *buf, dmu_tx_t *tx)
822 {
823 dmu_buf_t **dbp;
824 int numbufs, i;
825
826 if (size == 0)
827 return;
828
829 VERIFY0(dmu_buf_hold_array(os, object, offset, size,
830 FALSE, FTAG, &numbufs, &dbp));
831
832 for (i = 0; i < numbufs; i++) {
833 uint64_t tocpy;
834 int64_t bufoff;
835 dmu_buf_t *db = dbp[i];
836
837 ASSERT(size > 0);
838
839 bufoff = offset - db->db_offset;
840 tocpy = MIN(db->db_size - bufoff, size);
841
842 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
843
844 if (tocpy == db->db_size)
845 dmu_buf_will_fill(db, tx);
846 else
847 dmu_buf_will_dirty(db, tx);
848
849 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
850
851 if (tocpy == db->db_size)
852 dmu_buf_fill_done(db, tx);
853
854 offset += tocpy;
855 size -= tocpy;
856 buf = (char *)buf + tocpy;
857 }
858 dmu_buf_rele_array(dbp, numbufs, FTAG);
859 }
860
861 void
862 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
863 dmu_tx_t *tx)
864 {
865 dmu_buf_t **dbp;
866 int numbufs, i;
867
868 if (size == 0)
869 return;
870
871 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
872 FALSE, FTAG, &numbufs, &dbp));
873
874 for (i = 0; i < numbufs; i++) {
875 dmu_buf_t *db = dbp[i];
876
877 dmu_buf_will_not_fill(db, tx);
878 }
879 dmu_buf_rele_array(dbp, numbufs, FTAG);
880 }
881
882 void
883 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
884 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
885 int compressed_size, int byteorder, dmu_tx_t *tx)
886 {
887 dmu_buf_t *db;
888
889 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
890 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
891 VERIFY0(dmu_buf_hold_noread(os, object, offset,
892 FTAG, &db));
893
894 dmu_buf_write_embedded(db,
895 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
896 uncompressed_size, compressed_size, byteorder, tx);
897
898 dmu_buf_rele(db, FTAG);
899 }
900
901 /*
902 * DMU support for xuio
903 */
904 kstat_t *xuio_ksp = NULL;
905
906 typedef struct xuio_stats {
907 /* loaned yet not returned arc_buf */
908 kstat_named_t xuiostat_onloan_rbuf;
909 kstat_named_t xuiostat_onloan_wbuf;
910 /* whether a copy is made when loaning out a read buffer */
911 kstat_named_t xuiostat_rbuf_copied;
912 kstat_named_t xuiostat_rbuf_nocopy;
913 /* whether a copy is made when assigning a write buffer */
914 kstat_named_t xuiostat_wbuf_copied;
915 kstat_named_t xuiostat_wbuf_nocopy;
916 } xuio_stats_t;
917
918 static xuio_stats_t xuio_stats = {
919 { "onloan_read_buf", KSTAT_DATA_UINT64 },
920 { "onloan_write_buf", KSTAT_DATA_UINT64 },
921 { "read_buf_copied", KSTAT_DATA_UINT64 },
922 { "read_buf_nocopy", KSTAT_DATA_UINT64 },
923 { "write_buf_copied", KSTAT_DATA_UINT64 },
924 { "write_buf_nocopy", KSTAT_DATA_UINT64 }
925 };
926
927 #define XUIOSTAT_INCR(stat, val) \
928 atomic_add_64(&xuio_stats.stat.value.ui64, (val))
929 #define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1)
930
931 int
932 dmu_xuio_init(xuio_t *xuio, int nblk)
933 {
934 dmu_xuio_t *priv;
935 uio_t *uio = &xuio->xu_uio;
936
937 uio->uio_iovcnt = nblk;
938 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
939
940 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
941 priv->cnt = nblk;
942 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
943 priv->iovp = (iovec_t *)uio->uio_iov;
944 XUIO_XUZC_PRIV(xuio) = priv;
945
946 if (XUIO_XUZC_RW(xuio) == UIO_READ)
947 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
948 else
949 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
950
951 return (0);
952 }
953
954 void
955 dmu_xuio_fini(xuio_t *xuio)
956 {
957 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
958 int nblk = priv->cnt;
959
960 kmem_free(priv->iovp, nblk * sizeof (iovec_t));
961 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
962 kmem_free(priv, sizeof (dmu_xuio_t));
963
964 if (XUIO_XUZC_RW(xuio) == UIO_READ)
965 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
966 else
967 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
968 }
969
970 /*
971 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
972 * and increase priv->next by 1.
973 */
974 int
975 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
976 {
977 struct iovec *iov;
978 uio_t *uio = &xuio->xu_uio;
979 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
980 int i = priv->next++;
981
982 ASSERT(i < priv->cnt);
983 ASSERT(off + n <= arc_buf_size(abuf));
984 iov = (iovec_t *)uio->uio_iov + i;
985 iov->iov_base = (char *)abuf->b_data + off;
986 iov->iov_len = n;
987 priv->bufs[i] = abuf;
988 return (0);
989 }
990
991 int
992 dmu_xuio_cnt(xuio_t *xuio)
993 {
994 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
995 return (priv->cnt);
996 }
997
998 arc_buf_t *
999 dmu_xuio_arcbuf(xuio_t *xuio, int i)
1000 {
1001 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1002
1003 ASSERT(i < priv->cnt);
1004 return (priv->bufs[i]);
1005 }
1006
1007 void
1008 dmu_xuio_clear(xuio_t *xuio, int i)
1009 {
1010 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1011
1012 ASSERT(i < priv->cnt);
1013 priv->bufs[i] = NULL;
1014 }
1015
1016 static void
1017 xuio_stat_init(void)
1018 {
1019 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1020 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1021 KSTAT_FLAG_VIRTUAL);
1022 if (xuio_ksp != NULL) {
1023 xuio_ksp->ks_data = &xuio_stats;
1024 kstat_install(xuio_ksp);
1025 }
1026 }
1027
1028 static void
1029 xuio_stat_fini(void)
1030 {
1031 if (xuio_ksp != NULL) {
1032 kstat_delete(xuio_ksp);
1033 xuio_ksp = NULL;
1034 }
1035 }
1036
1037 void
1038 xuio_stat_wbuf_copied()
1039 {
1040 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1041 }
1042
1043 void
1044 xuio_stat_wbuf_nocopy()
1045 {
1046 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1047 }
1048
1049 #ifdef _KERNEL
1050 static int
1051 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1052 {
1053 dmu_buf_t **dbp;
1054 int numbufs, i, err;
1055 xuio_t *xuio = NULL;
1056
1057 /*
1058 * NB: we could do this block-at-a-time, but it's nice
1059 * to be reading in parallel.
1060 */
1061 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1062 TRUE, FTAG, &numbufs, &dbp, 0);
1063 if (err)
1064 return (err);
1065
1066 for (i = 0; i < numbufs; i++) {
1067 uint64_t tocpy;
1068 int64_t bufoff;
1069 dmu_buf_t *db = dbp[i];
1070
1071 ASSERT(size > 0);
1072
1073 bufoff = uio->uio_loffset - db->db_offset;
1074 tocpy = MIN(db->db_size - bufoff, size);
1075
1076 if (xuio) {
1077 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1078 arc_buf_t *dbuf_abuf = dbi->db_buf;
1079 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1080 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1081 if (!err) {
1082 uio->uio_resid -= tocpy;
1083 uio->uio_loffset += tocpy;
1084 }
1085
1086 if (abuf == dbuf_abuf)
1087 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1088 else
1089 XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1090 } else {
1091 err = uiomove((char *)db->db_data + bufoff, tocpy,
1092 UIO_READ, uio);
1093 }
1094 if (err)
1095 break;
1096
1097 size -= tocpy;
1098 }
1099 dmu_buf_rele_array(dbp, numbufs, FTAG);
1100
1101 return (err);
1102 }
1103
1104 /*
1105 * Read 'size' bytes into the uio buffer.
1106 * From object zdb->db_object.
1107 * Starting at offset uio->uio_loffset.
1108 *
1109 * If the caller already has a dbuf in the target object
1110 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1111 * because we don't have to find the dnode_t for the object.
1112 */
1113 int
1114 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1115 {
1116 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1117 dnode_t *dn;
1118 int err;
1119
1120 if (size == 0)
1121 return (0);
1122
1123 DB_DNODE_ENTER(db);
1124 dn = DB_DNODE(db);
1125 err = dmu_read_uio_dnode(dn, uio, size);
1126 DB_DNODE_EXIT(db);
1127
1128 return (err);
1129 }
1130
1131 /*
1132 * Read 'size' bytes into the uio buffer.
1133 * From the specified object
1134 * Starting at offset uio->uio_loffset.
1135 */
1136 int
1137 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1138 {
1139 dnode_t *dn;
1140 int err;
1141
1142 if (size == 0)
1143 return (0);
1144
1145 err = dnode_hold(os, object, FTAG, &dn);
1146 if (err)
1147 return (err);
1148
1149 err = dmu_read_uio_dnode(dn, uio, size);
1150
1151 dnode_rele(dn, FTAG);
1152
1153 return (err);
1154 }
1155
1156 static int
1157 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1158 {
1159 dmu_buf_t **dbp;
1160 int numbufs;
1161 int err = 0;
1162 int i;
1163
1164 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1165 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1166 if (err)
1167 return (err);
1168
1169 for (i = 0; i < numbufs; i++) {
1170 uint64_t tocpy;
1171 int64_t bufoff;
1172 dmu_buf_t *db = dbp[i];
1173
1174 ASSERT(size > 0);
1175
1176 bufoff = uio->uio_loffset - db->db_offset;
1177 tocpy = MIN(db->db_size - bufoff, size);
1178
1179 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1180
1181 if (tocpy == db->db_size)
1182 dmu_buf_will_fill(db, tx);
1183 else
1184 dmu_buf_will_dirty(db, tx);
1185
1186 /*
1187 * XXX uiomove could block forever (eg.nfs-backed
1188 * pages). There needs to be a uiolockdown() function
1189 * to lock the pages in memory, so that uiomove won't
1190 * block.
1191 */
1192 err = uiomove((char *)db->db_data + bufoff, tocpy,
1193 UIO_WRITE, uio);
1194
1195 if (tocpy == db->db_size)
1196 dmu_buf_fill_done(db, tx);
1197
1198 if (err)
1199 break;
1200
1201 size -= tocpy;
1202 }
1203
1204 dmu_buf_rele_array(dbp, numbufs, FTAG);
1205 return (err);
1206 }
1207
1208 /*
1209 * Write 'size' bytes from the uio buffer.
1210 * To object zdb->db_object.
1211 * Starting at offset uio->uio_loffset.
1212 *
1213 * If the caller already has a dbuf in the target object
1214 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1215 * because we don't have to find the dnode_t for the object.
1216 */
1217 int
1218 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1219 dmu_tx_t *tx)
1220 {
1221 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1222 dnode_t *dn;
1223 int err;
1224
1225 if (size == 0)
1226 return (0);
1227
1228 DB_DNODE_ENTER(db);
1229 dn = DB_DNODE(db);
1230 err = dmu_write_uio_dnode(dn, uio, size, tx);
1231 DB_DNODE_EXIT(db);
1232
1233 return (err);
1234 }
1235
1236 /*
1237 * Write 'size' bytes from the uio buffer.
1238 * To the specified object.
1239 * Starting at offset uio->uio_loffset.
1240 */
1241 int
1242 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1243 dmu_tx_t *tx)
1244 {
1245 dnode_t *dn;
1246 int err;
1247
1248 if (size == 0)
1249 return (0);
1250
1251 err = dnode_hold(os, object, FTAG, &dn);
1252 if (err)
1253 return (err);
1254
1255 err = dmu_write_uio_dnode(dn, uio, size, tx);
1256
1257 dnode_rele(dn, FTAG);
1258
1259 return (err);
1260 }
1261 #endif /* _KERNEL */
1262
1263 /*
1264 * Allocate a loaned anonymous arc buffer.
1265 */
1266 arc_buf_t *
1267 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1268 {
1269 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1270
1271 return (arc_loan_buf(db->db_objset->os_spa, size));
1272 }
1273
1274 /*
1275 * Free a loaned arc buffer.
1276 */
1277 void
1278 dmu_return_arcbuf(arc_buf_t *buf)
1279 {
1280 arc_return_buf(buf, FTAG);
1281 VERIFY(arc_buf_remove_ref(buf, FTAG));
1282 }
1283
1284 /*
1285 * When possible directly assign passed loaned arc buffer to a dbuf.
1286 * If this is not possible copy the contents of passed arc buf via
1287 * dmu_write().
1288 */
1289 void
1290 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1291 dmu_tx_t *tx)
1292 {
1293 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1294 dnode_t *dn;
1295 dmu_buf_impl_t *db;
1296 uint32_t blksz = (uint32_t)arc_buf_size(buf);
1297 uint64_t blkid;
1298
1299 DB_DNODE_ENTER(dbuf);
1300 dn = DB_DNODE(dbuf);
1301 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1302 blkid = dbuf_whichblock(dn, 0, offset);
1303 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1304 rw_exit(&dn->dn_struct_rwlock);
1305 DB_DNODE_EXIT(dbuf);
1306
1307 /*
1308 * We can only assign if the offset is aligned, the arc buf is the
1309 * same size as the dbuf, and the dbuf is not metadata. It
1310 * can't be metadata because the loaned arc buf comes from the
1311 * user-data kmem area.
1312 */
1313 if (offset == db->db.db_offset && blksz == db->db.db_size &&
1314 DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA) {
1315 dbuf_assign_arcbuf(db, buf, tx);
1316 dbuf_rele(db, FTAG);
1317 } else {
1318 objset_t *os;
1319 uint64_t object;
1320
1321 DB_DNODE_ENTER(dbuf);
1322 dn = DB_DNODE(dbuf);
1323 os = dn->dn_objset;
1324 object = dn->dn_object;
1325 DB_DNODE_EXIT(dbuf);
1326
1327 dbuf_rele(db, FTAG);
1328 dmu_write(os, object, offset, blksz, buf->b_data, tx);
1329 dmu_return_arcbuf(buf);
1330 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1331 }
1332 }
1333
1334 typedef struct {
1335 dbuf_dirty_record_t *dsa_dr;
1336 dmu_sync_cb_t *dsa_done;
1337 zgd_t *dsa_zgd;
1338 dmu_tx_t *dsa_tx;
1339 } dmu_sync_arg_t;
1340
1341 /* ARGSUSED */
1342 static void
1343 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1344 {
1345 dmu_sync_arg_t *dsa = varg;
1346 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1347 blkptr_t *bp = zio->io_bp;
1348
1349 if (zio->io_error == 0) {
1350 if (BP_IS_HOLE(bp)) {
1351 /*
1352 * A block of zeros may compress to a hole, but the
1353 * block size still needs to be known for replay.
1354 */
1355 BP_SET_LSIZE(bp, db->db_size);
1356 } else if (!BP_IS_EMBEDDED(bp)) {
1357 ASSERT(BP_GET_LEVEL(bp) == 0);
1358 bp->blk_fill = 1;
1359 }
1360 }
1361 }
1362
1363 static void
1364 dmu_sync_late_arrival_ready(zio_t *zio)
1365 {
1366 dmu_sync_ready(zio, NULL, zio->io_private);
1367 }
1368
1369 /* ARGSUSED */
1370 static void
1371 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1372 {
1373 dmu_sync_arg_t *dsa = varg;
1374 dbuf_dirty_record_t *dr = dsa->dsa_dr;
1375 dmu_buf_impl_t *db = dr->dr_dbuf;
1376
1377 mutex_enter(&db->db_mtx);
1378 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1379 if (zio->io_error == 0) {
1380 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1381 if (dr->dt.dl.dr_nopwrite) {
1382 ASSERTV(blkptr_t *bp = zio->io_bp);
1383 ASSERTV(blkptr_t *bp_orig = &zio->io_bp_orig);
1384 ASSERTV(uint8_t chksum = BP_GET_CHECKSUM(bp_orig));
1385
1386 ASSERT(BP_EQUAL(bp, bp_orig));
1387 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1388 ASSERT(zio_checksum_table[chksum].ci_dedup);
1389 }
1390 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1391 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1392 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1393
1394 /*
1395 * Old style holes are filled with all zeros, whereas
1396 * new-style holes maintain their lsize, type, level,
1397 * and birth time (see zio_write_compress). While we
1398 * need to reset the BP_SET_LSIZE() call that happened
1399 * in dmu_sync_ready for old style holes, we do *not*
1400 * want to wipe out the information contained in new
1401 * style holes. Thus, only zero out the block pointer if
1402 * it's an old style hole.
1403 */
1404 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1405 dr->dt.dl.dr_overridden_by.blk_birth == 0)
1406 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1407 } else {
1408 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1409 }
1410 cv_broadcast(&db->db_changed);
1411 mutex_exit(&db->db_mtx);
1412
1413 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1414
1415 kmem_free(dsa, sizeof (*dsa));
1416 }
1417
1418 static void
1419 dmu_sync_late_arrival_done(zio_t *zio)
1420 {
1421 blkptr_t *bp = zio->io_bp;
1422 dmu_sync_arg_t *dsa = zio->io_private;
1423 ASSERTV(blkptr_t *bp_orig = &zio->io_bp_orig);
1424
1425 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1426 /*
1427 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1428 * then there is nothing to do here. Otherwise, free the
1429 * newly allocated block in this txg.
1430 */
1431 if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1432 ASSERT(BP_EQUAL(bp, bp_orig));
1433 } else {
1434 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1435 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1436 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1437 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1438 }
1439 }
1440
1441 dmu_tx_commit(dsa->dsa_tx);
1442
1443 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1444
1445 kmem_free(dsa, sizeof (*dsa));
1446 }
1447
1448 static int
1449 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1450 zio_prop_t *zp, zbookmark_phys_t *zb)
1451 {
1452 dmu_sync_arg_t *dsa;
1453 dmu_tx_t *tx;
1454
1455 tx = dmu_tx_create(os);
1456 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1457 if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1458 dmu_tx_abort(tx);
1459 /* Make zl_get_data do txg_waited_synced() */
1460 return (SET_ERROR(EIO));
1461 }
1462
1463 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1464 dsa->dsa_dr = NULL;
1465 dsa->dsa_done = done;
1466 dsa->dsa_zgd = zgd;
1467 dsa->dsa_tx = tx;
1468
1469 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1470 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1471 dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1472 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL|ZIO_FLAG_FASTWRITE, zb));
1473
1474 return (0);
1475 }
1476
1477 /*
1478 * Intent log support: sync the block associated with db to disk.
1479 * N.B. and XXX: the caller is responsible for making sure that the
1480 * data isn't changing while dmu_sync() is writing it.
1481 *
1482 * Return values:
1483 *
1484 * EEXIST: this txg has already been synced, so there's nothing to do.
1485 * The caller should not log the write.
1486 *
1487 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1488 * The caller should not log the write.
1489 *
1490 * EALREADY: this block is already in the process of being synced.
1491 * The caller should track its progress (somehow).
1492 *
1493 * EIO: could not do the I/O.
1494 * The caller should do a txg_wait_synced().
1495 *
1496 * 0: the I/O has been initiated.
1497 * The caller should log this blkptr in the done callback.
1498 * It is possible that the I/O will fail, in which case
1499 * the error will be reported to the done callback and
1500 * propagated to pio from zio_done().
1501 */
1502 int
1503 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1504 {
1505 blkptr_t *bp = zgd->zgd_bp;
1506 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1507 objset_t *os = db->db_objset;
1508 dsl_dataset_t *ds = os->os_dsl_dataset;
1509 dbuf_dirty_record_t *dr;
1510 dmu_sync_arg_t *dsa;
1511 zbookmark_phys_t zb;
1512 zio_prop_t zp;
1513 dnode_t *dn;
1514
1515 ASSERT(pio != NULL);
1516 ASSERT(txg != 0);
1517
1518 SET_BOOKMARK(&zb, ds->ds_object,
1519 db->db.db_object, db->db_level, db->db_blkid);
1520
1521 DB_DNODE_ENTER(db);
1522 dn = DB_DNODE(db);
1523 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1524 DB_DNODE_EXIT(db);
1525
1526 /*
1527 * If we're frozen (running ziltest), we always need to generate a bp.
1528 */
1529 if (txg > spa_freeze_txg(os->os_spa))
1530 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1531
1532 /*
1533 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1534 * and us. If we determine that this txg is not yet syncing,
1535 * but it begins to sync a moment later, that's OK because the
1536 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1537 */
1538 mutex_enter(&db->db_mtx);
1539
1540 if (txg <= spa_last_synced_txg(os->os_spa)) {
1541 /*
1542 * This txg has already synced. There's nothing to do.
1543 */
1544 mutex_exit(&db->db_mtx);
1545 return (SET_ERROR(EEXIST));
1546 }
1547
1548 if (txg <= spa_syncing_txg(os->os_spa)) {
1549 /*
1550 * This txg is currently syncing, so we can't mess with
1551 * the dirty record anymore; just write a new log block.
1552 */
1553 mutex_exit(&db->db_mtx);
1554 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1555 }
1556
1557 dr = db->db_last_dirty;
1558 while (dr && dr->dr_txg != txg)
1559 dr = dr->dr_next;
1560
1561 if (dr == NULL) {
1562 /*
1563 * There's no dr for this dbuf, so it must have been freed.
1564 * There's no need to log writes to freed blocks, so we're done.
1565 */
1566 mutex_exit(&db->db_mtx);
1567 return (SET_ERROR(ENOENT));
1568 }
1569
1570 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1571
1572 /*
1573 * Assume the on-disk data is X, the current syncing data (in
1574 * txg - 1) is Y, and the current in-memory data is Z (currently
1575 * in dmu_sync).
1576 *
1577 * We usually want to perform a nopwrite if X and Z are the
1578 * same. However, if Y is different (i.e. the BP is going to
1579 * change before this write takes effect), then a nopwrite will
1580 * be incorrect - we would override with X, which could have
1581 * been freed when Y was written.
1582 *
1583 * (Note that this is not a concern when we are nop-writing from
1584 * syncing context, because X and Y must be identical, because
1585 * all previous txgs have been synced.)
1586 *
1587 * Therefore, we disable nopwrite if the current BP could change
1588 * before this TXG. There are two ways it could change: by
1589 * being dirty (dr_next is non-NULL), or by being freed
1590 * (dnode_block_freed()). This behavior is verified by
1591 * zio_done(), which VERIFYs that the override BP is identical
1592 * to the on-disk BP.
1593 */
1594 DB_DNODE_ENTER(db);
1595 dn = DB_DNODE(db);
1596 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1597 zp.zp_nopwrite = B_FALSE;
1598 DB_DNODE_EXIT(db);
1599
1600 ASSERT(dr->dr_txg == txg);
1601 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1602 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1603 /*
1604 * We have already issued a sync write for this buffer,
1605 * or this buffer has already been synced. It could not
1606 * have been dirtied since, or we would have cleared the state.
1607 */
1608 mutex_exit(&db->db_mtx);
1609 return (SET_ERROR(EALREADY));
1610 }
1611
1612 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1613 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1614 mutex_exit(&db->db_mtx);
1615
1616 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1617 dsa->dsa_dr = dr;
1618 dsa->dsa_done = done;
1619 dsa->dsa_zgd = zgd;
1620 dsa->dsa_tx = NULL;
1621
1622 zio_nowait(arc_write(pio, os->os_spa, txg,
1623 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1624 DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1625 NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1626 ZIO_FLAG_CANFAIL, &zb));
1627
1628 return (0);
1629 }
1630
1631 int
1632 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1633 dmu_tx_t *tx)
1634 {
1635 dnode_t *dn;
1636 int err;
1637
1638 err = dnode_hold(os, object, FTAG, &dn);
1639 if (err)
1640 return (err);
1641 err = dnode_set_blksz(dn, size, ibs, tx);
1642 dnode_rele(dn, FTAG);
1643 return (err);
1644 }
1645
1646 void
1647 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1648 dmu_tx_t *tx)
1649 {
1650 dnode_t *dn;
1651
1652 /*
1653 * Send streams include each object's checksum function. This
1654 * check ensures that the receiving system can understand the
1655 * checksum function transmitted.
1656 */
1657 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1658
1659 VERIFY0(dnode_hold(os, object, FTAG, &dn));
1660 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1661 dn->dn_checksum = checksum;
1662 dnode_setdirty(dn, tx);
1663 dnode_rele(dn, FTAG);
1664 }
1665
1666 void
1667 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1668 dmu_tx_t *tx)
1669 {
1670 dnode_t *dn;
1671
1672 /*
1673 * Send streams include each object's compression function. This
1674 * check ensures that the receiving system can understand the
1675 * compression function transmitted.
1676 */
1677 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1678
1679 VERIFY0(dnode_hold(os, object, FTAG, &dn));
1680 dn->dn_compress = compress;
1681 dnode_setdirty(dn, tx);
1682 dnode_rele(dn, FTAG);
1683 }
1684
1685 int zfs_mdcomp_disable = 0;
1686
1687 /*
1688 * When the "redundant_metadata" property is set to "most", only indirect
1689 * blocks of this level and higher will have an additional ditto block.
1690 */
1691 int zfs_redundant_metadata_most_ditto_level = 2;
1692
1693 void
1694 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1695 {
1696 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1697 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1698 (wp & WP_SPILL));
1699 enum zio_checksum checksum = os->os_checksum;
1700 enum zio_compress compress = os->os_compress;
1701 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1702 boolean_t dedup = B_FALSE;
1703 boolean_t nopwrite = B_FALSE;
1704 boolean_t dedup_verify = os->os_dedup_verify;
1705 int copies = os->os_copies;
1706
1707 /*
1708 * We maintain different write policies for each of the following
1709 * types of data:
1710 * 1. metadata
1711 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1712 * 3. all other level 0 blocks
1713 */
1714 if (ismd) {
1715 if (zfs_mdcomp_disable) {
1716 compress = ZIO_COMPRESS_EMPTY;
1717 } else {
1718 /*
1719 * XXX -- we should design a compression algorithm
1720 * that specializes in arrays of bps.
1721 */
1722 compress = zio_compress_select(os->os_spa,
1723 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1724 }
1725
1726 /*
1727 * Metadata always gets checksummed. If the data
1728 * checksum is multi-bit correctable, and it's not a
1729 * ZBT-style checksum, then it's suitable for metadata
1730 * as well. Otherwise, the metadata checksum defaults
1731 * to fletcher4.
1732 */
1733 if (zio_checksum_table[checksum].ci_correctable < 1 ||
1734 zio_checksum_table[checksum].ci_eck)
1735 checksum = ZIO_CHECKSUM_FLETCHER_4;
1736
1737 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1738 (os->os_redundant_metadata ==
1739 ZFS_REDUNDANT_METADATA_MOST &&
1740 (level >= zfs_redundant_metadata_most_ditto_level ||
1741 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1742 copies++;
1743 } else if (wp & WP_NOFILL) {
1744 ASSERT(level == 0);
1745
1746 /*
1747 * If we're writing preallocated blocks, we aren't actually
1748 * writing them so don't set any policy properties. These
1749 * blocks are currently only used by an external subsystem
1750 * outside of zfs (i.e. dump) and not written by the zio
1751 * pipeline.
1752 */
1753 compress = ZIO_COMPRESS_OFF;
1754 checksum = ZIO_CHECKSUM_OFF;
1755 } else {
1756 compress = zio_compress_select(os->os_spa, dn->dn_compress,
1757 compress);
1758
1759 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1760 zio_checksum_select(dn->dn_checksum, checksum) :
1761 dedup_checksum;
1762
1763 /*
1764 * Determine dedup setting. If we are in dmu_sync(),
1765 * we won't actually dedup now because that's all
1766 * done in syncing context; but we do want to use the
1767 * dedup checkum. If the checksum is not strong
1768 * enough to ensure unique signatures, force
1769 * dedup_verify.
1770 */
1771 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1772 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1773 if (!zio_checksum_table[checksum].ci_dedup)
1774 dedup_verify = B_TRUE;
1775 }
1776
1777 /*
1778 * Enable nopwrite if we have a cryptographically secure
1779 * checksum that has no known collisions (i.e. SHA-256)
1780 * and compression is enabled. We don't enable nopwrite if
1781 * dedup is enabled as the two features are mutually exclusive.
1782 */
1783 nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
1784 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1785 }
1786
1787 zp->zp_checksum = checksum;
1788 zp->zp_compress = compress;
1789 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1790 zp->zp_level = level;
1791 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
1792 zp->zp_dedup = dedup;
1793 zp->zp_dedup_verify = dedup && dedup_verify;
1794 zp->zp_nopwrite = nopwrite;
1795 }
1796
1797 int
1798 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1799 {
1800 dnode_t *dn;
1801 int i, err;
1802
1803 err = dnode_hold(os, object, FTAG, &dn);
1804 if (err)
1805 return (err);
1806 /*
1807 * Sync any current changes before
1808 * we go trundling through the block pointers.
1809 */
1810 for (i = 0; i < TXG_SIZE; i++) {
1811 if (list_link_active(&dn->dn_dirty_link[i]))
1812 break;
1813 }
1814 if (i != TXG_SIZE) {
1815 dnode_rele(dn, FTAG);
1816 txg_wait_synced(dmu_objset_pool(os), 0);
1817 err = dnode_hold(os, object, FTAG, &dn);
1818 if (err)
1819 return (err);
1820 }
1821
1822 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1823 dnode_rele(dn, FTAG);
1824
1825 return (err);
1826 }
1827
1828 void
1829 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1830 {
1831 dnode_phys_t *dnp = dn->dn_phys;
1832 int i;
1833
1834 doi->doi_data_block_size = dn->dn_datablksz;
1835 doi->doi_metadata_block_size = dn->dn_indblkshift ?
1836 1ULL << dn->dn_indblkshift : 0;
1837 doi->doi_type = dn->dn_type;
1838 doi->doi_bonus_type = dn->dn_bonustype;
1839 doi->doi_bonus_size = dn->dn_bonuslen;
1840 doi->doi_indirection = dn->dn_nlevels;
1841 doi->doi_checksum = dn->dn_checksum;
1842 doi->doi_compress = dn->dn_compress;
1843 doi->doi_nblkptr = dn->dn_nblkptr;
1844 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1845 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1846 doi->doi_fill_count = 0;
1847 for (i = 0; i < dnp->dn_nblkptr; i++)
1848 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
1849 }
1850
1851 void
1852 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1853 {
1854 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1855 mutex_enter(&dn->dn_mtx);
1856
1857 __dmu_object_info_from_dnode(dn, doi);
1858
1859 mutex_exit(&dn->dn_mtx);
1860 rw_exit(&dn->dn_struct_rwlock);
1861 }
1862
1863 /*
1864 * Get information on a DMU object.
1865 * If doi is NULL, just indicates whether the object exists.
1866 */
1867 int
1868 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1869 {
1870 dnode_t *dn;
1871 int err = dnode_hold(os, object, FTAG, &dn);
1872
1873 if (err)
1874 return (err);
1875
1876 if (doi != NULL)
1877 dmu_object_info_from_dnode(dn, doi);
1878
1879 dnode_rele(dn, FTAG);
1880 return (0);
1881 }
1882
1883 /*
1884 * As above, but faster; can be used when you have a held dbuf in hand.
1885 */
1886 void
1887 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1888 {
1889 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1890
1891 DB_DNODE_ENTER(db);
1892 dmu_object_info_from_dnode(DB_DNODE(db), doi);
1893 DB_DNODE_EXIT(db);
1894 }
1895
1896 /*
1897 * Faster still when you only care about the size.
1898 * This is specifically optimized for zfs_getattr().
1899 */
1900 void
1901 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1902 u_longlong_t *nblk512)
1903 {
1904 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1905 dnode_t *dn;
1906
1907 DB_DNODE_ENTER(db);
1908 dn = DB_DNODE(db);
1909
1910 *blksize = dn->dn_datablksz;
1911 /* add 1 for dnode space */
1912 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1913 SPA_MINBLOCKSHIFT) + 1;
1914 DB_DNODE_EXIT(db);
1915 }
1916
1917 void
1918 byteswap_uint64_array(void *vbuf, size_t size)
1919 {
1920 uint64_t *buf = vbuf;
1921 size_t count = size >> 3;
1922 int i;
1923
1924 ASSERT((size & 7) == 0);
1925
1926 for (i = 0; i < count; i++)
1927 buf[i] = BSWAP_64(buf[i]);
1928 }
1929
1930 void
1931 byteswap_uint32_array(void *vbuf, size_t size)
1932 {
1933 uint32_t *buf = vbuf;
1934 size_t count = size >> 2;
1935 int i;
1936
1937 ASSERT((size & 3) == 0);
1938
1939 for (i = 0; i < count; i++)
1940 buf[i] = BSWAP_32(buf[i]);
1941 }
1942
1943 void
1944 byteswap_uint16_array(void *vbuf, size_t size)
1945 {
1946 uint16_t *buf = vbuf;
1947 size_t count = size >> 1;
1948 int i;
1949
1950 ASSERT((size & 1) == 0);
1951
1952 for (i = 0; i < count; i++)
1953 buf[i] = BSWAP_16(buf[i]);
1954 }
1955
1956 /* ARGSUSED */
1957 void
1958 byteswap_uint8_array(void *vbuf, size_t size)
1959 {
1960 }
1961
1962 void
1963 dmu_init(void)
1964 {
1965 zfs_dbgmsg_init();
1966 sa_cache_init();
1967 xuio_stat_init();
1968 dmu_objset_init();
1969 dnode_init();
1970 dbuf_init();
1971 zfetch_init();
1972 dmu_tx_init();
1973 l2arc_init();
1974 arc_init();
1975 }
1976
1977 void
1978 dmu_fini(void)
1979 {
1980 arc_fini(); /* arc depends on l2arc, so arc must go first */
1981 l2arc_fini();
1982 dmu_tx_fini();
1983 zfetch_fini();
1984 dbuf_fini();
1985 dnode_fini();
1986 dmu_objset_fini();
1987 xuio_stat_fini();
1988 sa_cache_fini();
1989 zfs_dbgmsg_fini();
1990 }
1991
1992 #if defined(_KERNEL) && defined(HAVE_SPL)
1993 EXPORT_SYMBOL(dmu_bonus_hold);
1994 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
1995 EXPORT_SYMBOL(dmu_buf_rele_array);
1996 EXPORT_SYMBOL(dmu_prefetch);
1997 EXPORT_SYMBOL(dmu_free_range);
1998 EXPORT_SYMBOL(dmu_free_long_range);
1999 EXPORT_SYMBOL(dmu_free_long_object);
2000 EXPORT_SYMBOL(dmu_read);
2001 EXPORT_SYMBOL(dmu_write);
2002 EXPORT_SYMBOL(dmu_prealloc);
2003 EXPORT_SYMBOL(dmu_object_info);
2004 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2005 EXPORT_SYMBOL(dmu_object_info_from_db);
2006 EXPORT_SYMBOL(dmu_object_size_from_db);
2007 EXPORT_SYMBOL(dmu_object_set_blocksize);
2008 EXPORT_SYMBOL(dmu_object_set_checksum);
2009 EXPORT_SYMBOL(dmu_object_set_compress);
2010 EXPORT_SYMBOL(dmu_write_policy);
2011 EXPORT_SYMBOL(dmu_sync);
2012 EXPORT_SYMBOL(dmu_request_arcbuf);
2013 EXPORT_SYMBOL(dmu_return_arcbuf);
2014 EXPORT_SYMBOL(dmu_assign_arcbuf);
2015 EXPORT_SYMBOL(dmu_buf_hold);
2016 EXPORT_SYMBOL(dmu_ot);
2017
2018 module_param(zfs_mdcomp_disable, int, 0644);
2019 MODULE_PARM_DESC(zfs_mdcomp_disable, "Disable meta data compression");
2020
2021 module_param(zfs_nopwrite_enabled, int, 0644);
2022 MODULE_PARM_DESC(zfs_nopwrite_enabled, "Enable NOP writes");
2023
2024 #endif